

Prep Standard - Chemical Standard Summary

Order ID: N3259

Test: PESTICIDE Group1

Prepbatch ID: PB145434,

Sequence ID/Qc Batch ID: pl060922,PL061022,

Sta	 	 _

EP2247,PP19654,PP19729,PP19731,PP19746,PP19747,PP19748,PP19749,PP19750,PP19751,PP19752,PP19753,PP19754,PP19755,PP19756,PP19757,PP19758,PP19759,PP19760,PP19761,PP19762,PP19763,PP19764,PP19831,PP19950,

Chemical ID:

E3284,E3285,E3296,E3316,E3339,E3341,P10213,P10330,P8488,P9647,P9652,

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Extractions STANDARD PREPARATION LOG

Recipe ID 3923	NAME Baked Sodium Sulfate	NO. EP2247	Prep Date 05/28/2022	 Prepared By Rajesh Parikh	<u>ScaleID</u> None	PipetteID None	Supervised By RUPESHKUMAR SHAH 05/28/2022
FROM	4000.00000gram of E3296 = Final Q	uantity: 400	00.000 gram				

Recipe ID	NAME.	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Yogesh Patel
84	Pest/PCB Surrogate Stock 20 PPM	PP19654	03/08/2022	09/08/2022	Ankita Jodhani	None	None	03/09/2022

FROM 1.00000ml of P10213 + 9.00000ml of E3284 = Final Quantity: 10.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
1472	20 PPM Pest Stock Solution 2nd Source	PP19729	03/10/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022
FROM	1.00000ml of P9652 + 9.00000ml of	E3284 = Fir	nal Quantity: 1	10.000 ml				

<u> </u>	Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
	3663	20 PPM MIREX Stock STD (Secondary source)	PP19731	03/10/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 1.00000ml of P9647 + 9.00000ml of E3284 = Final Quantity: 10.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID 3629	NAME 20 PPM PEST stock Solution 1st	NO. PP19746	Prep Date 03/10/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	ScaleID None	PipettelD None	Supervised By Ankita Jodhani
FROM	source(RESTEK) 1.00000ml of P9652 + 9.00000ml of	E3284 = Fii	nal Quantity: 1	10.000 ml				03/11/2022

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
1273	20 PPM Mirex Stock (Primary Source)	<u>PP19747</u>	03/10/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.20000ml of P9647 + 9.80000ml of E3284 = Final Quantity: 10.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
3630	100/100 PPB PEST Working std.1st Source(RESTEK)	PP19748	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 98.50000ml of E3284 + 0.50000ml of PP19654 + 0.50000ml of PP19746 + 0.50000ml of PP19747 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
3631	75 PPB ICAL PEST STD(RESTEK)	<u>PP19749</u>	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.25000ml of E3284 + 0.75000ml of PP19748 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipo ID 3632	NAME 50 PPB ICAL PEST STD(RESTEK)	NO. PP19750	Prep Date 03/11/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	<u>ScaleID</u> None	PipetteID None	Supervised By Ankita Jodhani 03/11/2022
FROM	0.50000ml of E3284 + 0.50000ml of	PP19748 =	Final Quantit	y: 1.000 ml				

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
3633	25 PPB ICAL PEST STD(RESTEK)	PP19751	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.75000ml of E3284 + 0.25000ml of PP19748 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID 3634	NAME 5 PPB ICAL PEST STD(RESTEK)	NO. PP19752	Prep Date 03/11/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	<u>ScaleID</u> None	PipetteID None	Supervised By Ankita Jodhani 03/11/2022	
FROM	0.90000ml of E3284 + 0.10000ml of l	PP19750 =	Final Quantity	y: 1.000 ml					

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
386	1000/100 PPB Chlordane STD (Restek)	PP19753	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.10000ml of P8488 + 99.40000ml of E3284 + 0.50000ml of PP19654 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

ID NAME NO. Prep Date Date By Scale 528 CHLOR 750 PPB STD PP19754 03/11/2022 09/08/2022 Abdul Mirza Nor	e None	Ankita Jodhani 03/11/2022
FROM 0.25000ml of E3284 + 0.75000ml of PP19753 = Final Quantity: 1.000 ml		33.1112922

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
529	CHLOR 500 PPB STD	PP19755	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.50000ml of E3284 + 0.50000ml of PP19753 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

			03/11/2022	09/08/2022	Abdul Mirza	None	PipetteID None	Ankita Jodhani 03/11/2022
FROM 0.75000ml c	f E3284 + 0.25000ml of PP1	19753 = F	Final Quantity	v: 1.000 ml				

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
3408	CHLOR 50 PPB STD	PP19757	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

FROM 0.90000ml of E3284 + 0.10000ml of PP19755 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
383	1000/100 PPB Toxaphene STD (Restek)	PP19758	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022
FROM	0.10000ml of P10330 + 99.40000ml	of E3284 + (0.50000ml of	PP19654 = Fir	nal Quantity: 100	0.000 ml		

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Ankita Jodhani
533	TOX 750 PPB STD	PP19759	03/11/2022	09/08/2022	Abdul Mirza	None	None	

03/11/2022

FROM 0.25000ml of E3284 + 0.75000ml of PP19758 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID 534	NAME TOX 500 PPB STD	NO. PP19760	Prep Date 03/11/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	<u>ScaleID</u> None	PipetteID None	Supervised By Ankita Jodhani 03/11/2022
FROM	0.50000ml of E3284 + 0.50000ml of l	PP19758 =	Final Quantit	y: 1.000 ml				

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Ankita Jodhani
535	TOX 250 PPB STD	PP19761	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022
		<u> </u>						357 : 172022

FROM 0.75000ml of E3284 + 0.25000ml of PP19758 = Final Quantity: 1.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	NO.	Prep Date	Date	By	<u>ScaleID</u>	<u>PipetteID</u>	Ankita Jodhani
2217	TOX 100 PPB STD	PP19762	03/11/2022	09/08/2022	Abdul Mirza	None	None	
								03/11/2022
FROM	0.90000ml of E3284 + 0.10000ml of	PP19758 =	Final Quantity	y: 1.000 ml				

Recipe ID	NAME.	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
80	100/100 PPB Pesticide Working Solution 2nd Source	PP19763	03/11/2022	09/08/2022	Abdul Mirza	None	None	03/11/2022

PROM 98.50000ml of E3284 + 0.50000ml of PP19654 + 0.50000ml of PP19729 + 0.50000ml of PP19731 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID 3988	NAME 50 PPB PEST ICV STD(RESTEK)	NO. PP19764	Prep Date 03/11/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Ankita Jodhani 03/11/2022
FROM	0.50000ml of E3284 + 0.50000ml of	PP19763 =	Final Quantit	y: 1.000 ml				

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sohil Jodhani
840	12.5 PPB Pest-608 Spike (Restek)	PP19831	03/21/2022	09/08/2022	Abdul Mirza	None	None	03/23/2022

FROM 99.87500ml of E3285 + 0.06250ml of PP19729 + 0.06250ml of PP19731 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

Pest/Pcb STANDARD PREPARATION LOG

Recipe <u>ID</u> 1638	NAME 20 PPB Pest/PCB Surg Spike	NO. PP19950	Prep Date 04/25/2022	Expiration Date 09/08/2022	Prepared By Abdul Mirza	<u>ScaleID</u> None	PipetteID None	Supervised By Yogesh Patel 05/05/2022
FROM	249.75000ml of E3316 + 0.25000ml of	I of PP19654	= Final Quar	ntity: 250.000 n	nl			33/03/2022

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9262-03 / Hexane, Ultra-Resi (cs/4x4L)	21K1662002	09/08/2022	03/08/2022 / Rajesh	03/02/2022 / Rajesh	E3284
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	0000285502	09/25/2022	03/15/2022 / Rajesh	03/10/2022 / Rajesh	E3285
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19631-100 / SODIUM SULFATE, ANHYDROUS, PEST GRADE, 1	125102	10/01/2022	04/01/2022 / Rajesh	03/28/2022 / Rajesh	E3296
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	21J3062001	10/21/2022	04/21/2022 / Rajesh	04/20/2022 / Rajesh	E3316
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	22D1462024	11/28/2022	05/28/2022 / Rajesh	05/13/2022 / Rajesh	E3339
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9262-03 / Hexane, Ultra-Resi (cs/4x4L)	22B0762004	12/02/2022	06/02/2022 / Rajesh	06/01/2022 / Rajesh	E3341

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	32000 / Pesticide Mix, CLP method, Pesticide Surrogate Mix, 200ug/mL, Acetone, 1mL	A0166555	09/08/2022	03/08/2022 / Ankita	01/19/2021 / Abdul	P10213
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	32005 / Toxaphene Standard	A0163125	09/11/2022	03/11/2022 / Abdul	03/04/2021 / Abdul	P10330
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	32021 / Pesticide Mix, chlordane (technical), 1000ug/mL, hexane, 1mL,	A0144623	09/11/2022	03/11/2022 / Abdul	05/09/2019 / Ankita	P8488
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	79136 / Mirex, 1000 ug/ml	061820	09/10/2022	03/10/2022 / Abdul	06/19/2020 / Sohil	P9647
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	32291 / Pesticide Mix, CLP method, organochlorine Std AB#1, 200ug/mL, hexane/toluene, 1mL/ampul	A0154466	09/10/2022	03/10/2022 / Abdul	06/22/2020 / Sohil	P9652

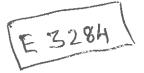
Hexanes (95% n-hexane)
BAKER RESI-ANALYZED® Reagent

Material No.: 9262-03

Batch No.: 21K1662002

Manufactured Date: 2021-10-19

Expiration Date: 2023-01-18


Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	≤5	<1
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	≤ 10	3
ECD-Sensitive Impurities (as Ethylene Dibromide) - Single Impurity Peak (ng/mL)	≤5	<1
Assay (Total Saturated C ₆ Isomers) (by GC, corrected for water)	≥ 99.5 %	99.7%
Assay (as n-Hexane) (by GC, corrected for water)	≥ 95 %	98 %
Color (APHA)	≤ 10	5
desidue after Evaporation	≤ 1.0 ppm	< 0.1 ppm
ubstances Darkened by H₂SO₄	Passes Test	Passes Test
/ater (by KF, coulometric)	≤ 0.05 %	< 0.01 %

For Laboratory, Research, or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Red. by R8 on 3/2/22

Acetone
ULTRA RESI-ANALYZED
For Organic Residue Analysis

Material No.: 9254-03 Batch No.: 0000285502

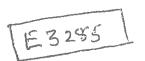
Manufactured Date: 2021/02/03 Expiration Date: 2024/02/03

Revision No: 1

Certificate of Analysis

<u>Te</u> st	Specification	Result
Assay ((CH3)2CO) (by GC, corrected for water)	>= 99.4 %	
Color (APHA)	<= 10	99.7
Residue after Evaporation	<= 1.0000 ppm	10
Substances Reducing Permanganate	Passes Test	0.1000
Titrable Acid (µeq/g)	<= 0.3	PT
Titrable Base (µeq/g)	<= 0.5 <= 0.6	0.2
Water (H₂O)	<= 0.5 %	< 0.1
FID-Sensitive Impurities (as 2-Octanol) Single Impurity		0.3
Peak (ng/mL)	<= 5	< 1
ECD Sensitive Impurities (as Heptachlor Epoxide)	<= 10	_
single Peak (pg/mL)	\- IV	1

For Laboratory, Research or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD


Country of Origin:

US

Packaging Site:

Phillipsburg Mfg Ctr & DC

Red & R on 3/10/22

Mirador 201, Col. Mirador MONTERREY, N.L. MÉXICO CP 64070 TEL +52 81 13 52 57 57 www.pqm.com.mx

CERTIFICATE OF ANALYSIS

PRODUCT:

SODIUM SULFATE CRYSTALS ANHYDROUS

QUALITY:

ACS (CODE RMB3375)

FORMULA:

Na₂SO₄

SPECIFICATION NUMBER: 6399

RELEASE DATE:

JUL/22/2021

LOT NUMBER:

125102

TEST	SPECIFICATIONS	LOT VALUES	
Assay (Na₂SO₄)	Min. 99.0%	99.8 %	
pH of a 5% solution at 25°C	5.2 - 9.2	6.0	
Insoluble matter	Max. 0.01%	0.005 %	
Loss on ignition	Max. 0.5%	0.1 %	
Chloride (Cl)	Max. 0.001%	<0.001%	
Nitrogen compounds (as N)	Max. 5 ppm	<5 ppm	
Phosphate (PO ₄)	Max. 0.001%	<0.001%	
Heavy metals (as Pb)	Max. 5 ppm	<5 ppm	
Iron (Fe)	Max. 0.001%	<0.001%	
Gałcium (Ca)	Max. 0.01%	0.002 %	
Magnesium (Mg)	Max. 0.005%	0.001 %	
Potassium (K)	Max. 0.008%	0.002 %	
Extraction-concentration suitability	Passes test	Passes test	
Appearance	Passes test	Passes test	
dentification	Passes test	Passes test	
Solubility and foreing matter	Passes test	Passes test	
Retained on US Standard No. 10 sieve	Max. 1%	0.33 %	
Retained on US Standard No. 60 sieve	Min. 94%	97.40 %	
Through US Standard No. 60 sieve	Max. 5%	2.04 %	
Through US Standard No. 100 sieve	Max. 10%	0.23 %	

COMMENTS

E3296

QC: PhC Irma Beimares

Acetone
BAKER RESI-ANALYZED® Reagent
For Organic Residue Analysis

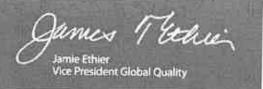
Material No.: 9254-03

Batch No.: 21J3062001

Manufactured Date: 2021-09-20

Expiration Date: 2024-09-19

Revision No.: 0


Certificate of Analysis

Test	Specification	Result
Assay ((CH _a) ₂ CO) (by GC, corrected for water)	≥ 99.4 %	99.7 %
Color (APHA)	≤10	10
Residue after Evaporation	≤ 1.0 ppm	0.3 ppm
Substances Reducing Permanganate	Passes Test	Passes Test
Titrable Acid (μeq/g)	≤ 0.3	0.3
Fitrable Base (μeq/g)	≤0.6	0.1
Water (H₂O)	≤ 0.5 %	- 0.3 %
FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	≤5	1
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	≤10	2

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Roed- by RP on 4/20/22

E3316

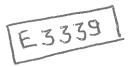
For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700
Avantor Performance Materials, LLC
100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone 610.386.1700

Methylene Chloride **ULTRA RESI-ANALYZED** For Organic Residue Analysis (dichloromethane)

Material No.: 9266-A4

Batch No.: 22D1462024

Manufactured Date: 2022-03-12 Expiration Date: 2023-06-11


Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	≤ 5	< 1
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	≤ 10	1
Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water)	≥ 99.8 %	100.0 %
Color (APHA)	≤ 10	5
Residue after Evaporation	≤ 1.0 ppm	0.2 ppm
Titrable Acid (µeq/g)	≤ 0.3	< 0.1
Chloride (CI)	≤ 10 ppm	5 ppm
Water (by KF, coulometric)	≤ 0.02 %	< 0.01 %

For Laboratory, Research, or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Page 1 of 1

Hexanes (95% n-hexane)
BAKER RESI-ANALYZED® Reagent

Material No.: 9262-03

Batch No.: 22B0762004

Manufactured Date: 2021-11-24

Expiration Date: 2023-02-23

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	≤5	<1
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	≤ 10	1
ECD-Sensitive Impurities (as Ethylene Dibromide) - Single Impurity Peak (ng/mL)	≤5	<1
Assay (Total Saturated C ₆ Isomers) (by GC, corrected for water)	≥ 99.5 %	99.7 %
Assay (as n-Hexane) (by GC, corrected for water)	≥ 95 %	98 %
Color (APHA)	≤ 10	5
Residue after Evaporation	≤ 1.0 ppm	< 0.1 ppm
Substances Darkened by H₂SO₄	Passes Test	Passes Test
Water (by KF, coulometric)	≤ 0.05 %	< 0.01 %

For Laboratory, Research, or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Recd. 57 RP on 6/1/22,

E 3341

CERTIFIED REFERENCE MATERIAL

110 Benner Circle Bellefonte, PA 16823-8812 Tel: (800)356-1688 Fax: (814)353-1309

Certificate of Analysis

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.: 32000 Lot No.: A0166555

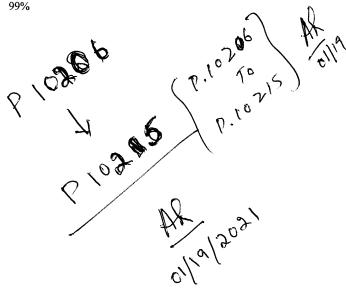
Description : Pesticide Surrogate Mix

Pesticide Surrogate Mix 200 µg/mL, Acetone, 1mL/ampul

Container Size : 2 mL Pkg Amt: > 1 mL

Expiration Date : February 28, 2027 Storage: 10°C or colder

Handling: Contains PCBs - sonicate prior to Ship: Ambient


use.

CERTIFIED VALUES

Elution Order	Compound			Grav. Conc. (weight/volume)			Expanded Uncertainty (95% C.L.; K=2)		
1	2,4,5,6-7 CAS # Purity	Tetrachloro-m-xylene 877-09-8 98%	(Lot 0052481)	200.2	μg/mL	+/- +/- +/-	1.1807 6.3448 8.2879	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
2	Decachle CAS # Purity	orobiphenyl (BZ# 209) 2051-24-3 99%	(Lot ER071509-01)	200.1	μg/mL	+/- +/- +/-	1.1804 6.3431 8.2856	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

Solvent: Acetone

CAS # 67-64-1 Purity 99%

Column:

30m x .25mm x .2um Rtx-CLP II (cat.# 11323)

Carrier Gas:

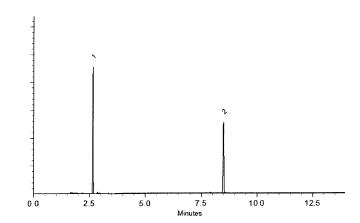
helium-constant pressure 20 psi.

Temp. Program:

200°C to 300°C

@ 25°C/min. (hold 10 min.)

Inj. Temp:


250°C

Det. Temp:

300°C

Det. Type:

ECD

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

- the many in the same Katelyn McGinni - Operations Tech I

Date Mixed:

19-Nov-2020

Balance: B442140311

Date Passed: 24-Nov-2020

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

* CERTIFIED REFERENCE MATERIAL

110 Benner Circle Bellefonte, PA 16823-8812 Tel: (800)356-1688 Fax: (814)353-1309

Certificate of Analysis

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

32005

Lot No.: A0163125

Description:

Toxaphene Standard

toxaphene 1000µg/mL, Hexane, 1mL/ampul

Container Size :

2 mL

Purity

99%

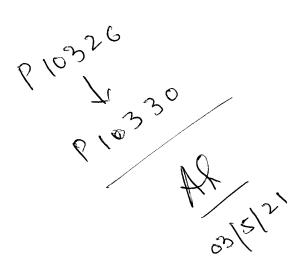
Pkg Amt:

> 1 mL

Expiration Date:

October 31, 2024

Storage:


10°C or colder

Ship:

: Ambient

CERTIFIED VALUES

Elution Order	Compound		Compound	Grav. Conc. (weight/volume)					
1	Toxaphe CAS # Purity	(200 0000002101)		1,004.7	μg/mL	+/- +/- +/-	5.9674 31.8552 41.6063	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
Solvent:	Hexane	110-54-3							

Column:

30m x .25mm x .2um Rtx-CLP II (cat.# 11323)

Carrier Gas:

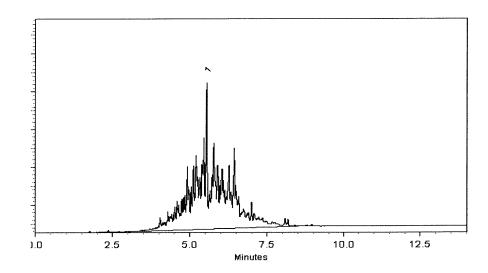
helium-constant pressure 20 psi.

Temp. Program:

200°C to 300°C

@ 25°C/min. (hold 10 min.)

Inj. Temp:


250°C

Det. Temp:

300°C

Det. Type:

ECD ECD

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Mikand Kline

Miranda Kline - Operations Technician I

Date Mixed:

31-Jul-2020

Balance: B345965662

Jennyu 2 Pollino
Jennifer Pollino - Operations Tech-ARM QC

Dat

Date Passed: 04-Aug-2020

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

CERTIFIED REFERENCE MATERIAL

Bellefonte, PA 16823-8812 Tel: (800)356-1688 Fax: (814)353-1309

Certificate of Analysis

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

32021

Lot No.: <u>A0144623</u>

Description:

Chlordane Standard

Chlordane Standard 1000µg/mL, Hexane, 1mL/ampul

Container Size:

2 mL

Pkg Amt:

> 1 mL

Expiration Date:

April 30, 2025

Storage:

10°C or colder

benen ozlodla

CERTIFIED VALUES

Elution Order			Compound	Grav. ((weight/			Expanded (95% C.L.;	Uncertainty K=2)	
1	Chlordar CAS # Purity	ne 57-74-9 %	(Lot 142990)	1,010.0	μg/mL	+/- +/- +/-	5.9272 32.0109 41.8169	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
Solvent:	Hexane CAS # Purity	110-54-3 99%					**************************************		1000 P. C.

Tech Tips:

CAS #57-74-9 nomenclature is based on EPA method 8081B.

Column:

30m x .25mm x .2um Rtx-CLP II (cat.# 11323)

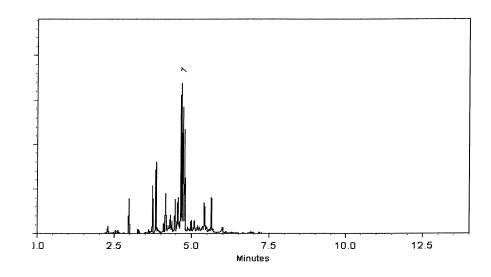
Carrier Gas:

helium-constant pressure 20 psi.

Temp. Program:

200°C to 300°C

@ 25°C/min. (hold 10 min.)


Inj. Temp:

250°C

Det. Temp:

300°C

Det. Type:

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Maggie Wong

Maggie Wang - Operations Technician I

Date Mixed:

04-Jan-2019

Balance: B251644995

Junifu 2 Pollino
Jennifer Pollino - Operations Tech-ARM QC

Date Passed:

09-Jan-2019

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- · Purity of isomeric compounds is reported as the sum of the isomers.
- · Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed
uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ stressed} = \ k \sqrt{U_{gravimetric}^2 + U_{homogeneity}^2 + U_{storage\ stability}^2 + U_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

- It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was stored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at non-standard temperature conditions.
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping
 conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard
 conditions as specified below.

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer)	< 25°C	≥ 25°C up to 7 days

- Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed, separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us.
- The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

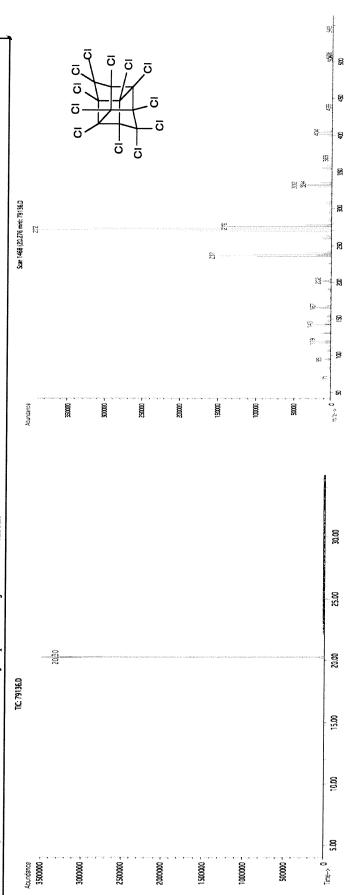
- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

				EDELECTO
				A second
				ness consecutions and the
				en e
	•			an est sense
				overposterous.
				Historius
				t tidenticos sensos
				edililinei kontustuspos
				West Commission
				annous
				nimidasida
				nomias seerikosisiasi janjalista
				nentesseedededededelegenetesseededelegenetesseede
				naminuses Scott nicht mehr von siede Libertonisch sieste Alle Mittel Beschlotte

dards, Inc. Absolute Sf

800-368-1131 www.absolutestandards.com

Certified Reference Material CRM


849E9

F4964 P3646 P964, P9645

ANAB IS. 034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

	Solvent(s): Lot#	Acetone 81025	Minister	Formulated By: Benson Chan	7	A. C.	flata flerto	5E-05 Balance Uncertainty Reviewed By: Pedro I. Bentras	
								5E-05 Ba	
	79136	061820	Mirex		061825	Refrigerate (4 °C)	1000	23060	diluted to (mL): 50.0
CERTIFIED WEIGHT REPORT	Part Number:	Lot Number:	Description:	1	Expiration Date:	Recommended Storage:	Nominal Concentration (µg/mL):	NIST Test ID#;	Neight(s) shown below were combined and diluted to (mL):

									Formulated By:		Benson Chan	۵	DATE
Expiration Date:		061825									,		ľ
Recommended Storage:		Refrigerate (4 °C)	1 °C)						water to		V		
Nominal Concentration (µg/mL):		1000								Here	Rento	061820	820
NIST Test ID#:	 .	23060		5E-05	5E-05 Balance Uncertainty	th			Reviewed By		Pedro L. Rentas		DATE
Weight(s) shown below were combined and diluted to (mL):	and dilute	3d to (mL):	20.0	0.001	0.001 Flask Uncertainty			-					
									Expanded		SDS Information		
,		ጀ	Nominal	Purity	Purity Uncertainty Target	Target	Actual	Actual	Actual Uncertainty	(Solvent	(Solvent Safety Info. On Attached pg.)	ched pa.)	
Compound	RM#	Number Conc (µg/mL)		%	Purity	Weight (g)	Weight (g)	Weight (g) Conc(µg/mL) (+/-) (µg/mL)	(+/-) (mg/mL)	CAS#	OSHA PEL (TWA)	LD50	
1. Mirex	437	437 9492400	1000	99.4	0.5	0.05030	0.05030	1000.0	10.3	10.3 2385-85-5	ΝΑ	orl-rat 306ma/kg	/ka
Method GC7MSD-1.M: Column: SPB-608 (30m X 0.25mm ID X 0.25\m film thickness) Temp 1 = 150°C (4min.). Temp 2 = 290°C (13.5 min.). Rate = 8°C/min. Injector B= 200°C. Detector B	-608 (30n	1 X 0.25mm l	D X 0.25µm	film thic	kness) Temp	1 = 150°C (4	min.). Temp 2	2 = 290°C (13	3.5 min) Rat	e = 8°C/min	Injector B= 200°C D	Petentor B	
= 290°C. Split Ratio = 100:1, Scan Rate = 2. Analysis performed by Candice Warren.	te = 2. An	alysis perfort	ned by Candia	e Warn	, ri	:	•		The second secon		, mjewi z- zoo C, z	מארונו מ	

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 Standards are critified (4.7) 6.5% of the stated value, unless otherwise stated.
 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

CERTIFIED REFERENCE MATERIAL

Bellefonte, PA 16823-8812 Tel: (800)356-1688 Fax: (814)353-1309

Certificate of Analysis

www.restek.com

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

32291

Lot No.: A0154466

P9654 P9649

P9650 P9655

Description:

Organochlorine Pesticide Mix AB #1

P9651 P9656

Organochlorine Pesticide Mix AB #1 200µg/mL, Hexane/Toluene(50:50),

1mL/ampul

October 31, 2023

P9652 P9657

P9658 P9653

Container Size: **Expiration Date:** 2 mL

Pkg Amt:

> 1 mL

10°C or colder Storage:

6/22/2020

CERTIFIED VALUES

Elution Order	Comp	ound	Grav. Conc. (weight/volume)	Expanded (95% C.L.;	Uncertainty K=2)	
1	alpha-BHC CAS# 319-84-6 Purity 99%	(Lot 0012018BHC)	201.6 µg/mL	+/- 1.1974 +/- 9.1846 +/- 13.2599	μg/mL μg/mL μg/mΙ:	Gravimetric Unstressed Stressed
2	gamma-BHC (Lindane) CAS # 58-89-9 Purity 99%	(Lot 8521900)	201.6 µg/mL	+/- 1.1974 +/- 9.1846 +/- 13.2599	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
3	beta-BHC CAS # 319-85-7 Purity 99%	(Lot BCBS8692V)	200.0 μg/mL	+/- 1.1879 +/- 9.1117 +/- 13.1547	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
4	delta-BHC CAS # 319-86-8 Purity 99%	(Lot ER02101401)	200.0 μg/mL	+/- 1.1879 +/- 9.1117 +/- 13.1547	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	Heptachlor CAS # 76-44-8 Purity 98%	(Lot 0006467453)	200.3 μg/mL	+/- 1.1898 +/- 9.1259 +/- 13.1752	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
6	Aldrin CAS # 309-00-2 Purity 96%	(Lot 8737100)	200.1 μg/mL	+/- 1.1883 +/- 9.1146 +/- 13.1589	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
7	Heptachlor epoxide (isomer B) CAS # 1024-57-3 Purity 99%	(Lot 8666700)	200.0 μg/mL	+/- 1.1879 +/- 9.1117 +/- 13.1547	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

8	trans-Chlordane CAS # 5103-74-2	(Lot ER06190604)	201.2 μg/mL	+/- 9.1664	μg/mL μg/mL	Gravimetric Unstressed	
	Purity 99%			+/- 13.2336	μg/mL	Stressed	
9	cis-Chlordane		201.2 μg/mL	+/- 1.1951	μg/mL	Gravimetric	
	CAS# 5103-71-9	(Lot 24407)		+/- 9.1664	$\mu g/mL$	Unstressed	
	Purity 99%			+/- 13.2336	μg/mL	Stressed	
10	Endosulfan I		202.0 μg/mL	+/- 1.1998	μg/mL	Gravimetric	
	CAS# 959-98-8	(Lot BCBS8631)		+/- 9.2028	μg/mL	Unstressed	
	Purity 99%			+/- 13.2862	μg/mL	Stressed	
11	4,4'-DDE		200.8 μg/mL	+/- 1.1927	μg/mL	Gravimetric	
	CAS# 72-55-9	(Lot GHYQG)		+/- 9.1481	μg/mL	Unstressed	
	Purity 99%			+/- 13.2073	μg/mL	Stressed	
12	Dieldrin		200.4 μg/mL	+/- 1.1903	μg/mL	Gravimetric	
	CAS# 60-57-1	(Lot 8815700)		+/- 9.1299	μg/mL	Unstressed	
	Purity 99%	,		+/- 13.1810	μg/mL	Stressed	
13	Endrin		200.8 μg/mL	+/- 1.1927	μg/mL	Gravimetric	
	CAS# 72-20-8	(Lot 8532900)	1.0	+/- 9.1481	μg/mL	Unstressed	
	Purity 99%	,		+/- 13.2073	μg/mL	Stressed	
14	4,4'-DDD		201.2 μg/mL	+/- 1.1951	μg/mL	Gravimetric	
	CAS# 72-54-8	(Lot HAN02)		+/- 9.1664	μg/mL	Unstressed	
	Purity 99%			+/- 13.2336	μg/mL	Stressed	
15	Endosulfan II		200.0 μg/mL	+/- 1.1879	μg/mL	Gravimetric	
	CAS # 33213-65-9	(Lot 8679900)		+/- 9.1117	μg/mL	Unstressed	
	Purity 99%			+/- 13.1547	$\mu g/mL$	Stressed	
16	4,4'-DDT		201.2 μg/mL	+/- 1.1951	μg/mL	Gravimetric	
	CAS # 50-29-3	(Lot S37912V)		+/- 9.1664	μg/mL	Unstressed	
	Purity 99%			+/- 13.2336	$\mu g/mL$	Stressed	-
17	Endrin aldehyde		200.8 μg/mL	+/- 1.1927	μg/mL	Gravimetric	
	CAS# 7421-93-4	(Lot 30720)		+/- 9.1481	μg/mL	Unstressed	
	Purity 99%			+/- 13.2073	μg/mL	Stressed	
18	Endosulfan sulfate		202.0 μg/mL	+/- 1.1998	μg/mL	Gravimetric	
	CAS# 1031-07-8	(Lot BCCB0424)		+/- 9.2028	μg/mL	Unstressed	
	Purity 99%			+/- 13.2862	μg/mL	Stressed	
19	Methoxychlor		200.4 μg/mL	+/- 1.1903	μg/mL	Gravimetric	
	CAS# 72-43-5	(Lot 9013400)		+/- 9.1299	μg/mL	Unstressed	
	Purity 99%			+/- 13.1810	$\mu g/mL$	Stressed	
20	Endrin ketone		200.4 μg/mL	+/- 1.1903	μg/mL	Gravimetric	
	CAS # 53494-70-5	(Lot 8618200)		+/- 9.1299	μg/mL	Unstressed	
	Purity 99%	•		+/- 13.1810	μg/mL	Stressed	

Solvent: Hexane/Toluene (50:50)

CAS # 110-54-3/108-88-3

Purity 99%

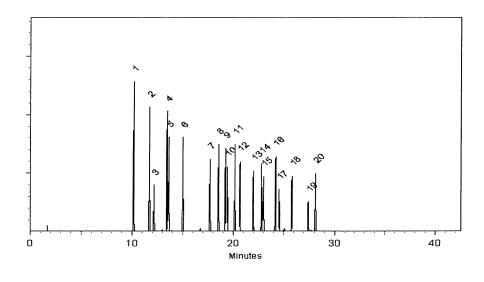
¹ Column:

x .25mm x .2um CLP II (cat.# 11323)

Carrier Gas:

helium-constant pressure 20 psi.

Temp. Program: 150°C to 300°C


@ 4°C/min. (hold 5 min.)

Inj. Temp: 200°C

Det. Temp:

300°C

Det. Type:

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Date Mixed:

29-Oct-2019

Balance: 1128353505

Date Passed:

05-Nov-2019

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/μΕCD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

• The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ stressed} = \ k \sqrt{U_{gravimetric}^2 + U_{homogeneity}^2 + U_{storage\ stability}^2 + U_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

- It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
 intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was
 stored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at
 www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstandard temperature conditions.
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping
 conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard
 conditions as specified below.

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer)	< 25°C	≥ 25°C up to 7 days

- Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed, separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us.
- The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

• Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.