

#### **Prep Standard - Chemical Standard Summary**

Order ID: 01232

Test: Mercury, Metals ICP-TAL

Prepbatch ID: PB150370,PB150381,

**Sequence ID/Qc Batch ID:** LB123754,LB123763,LB123785,

#### Standard ID:

 $MP73163,MP73178,MP73188,MP73191,MP73192,MP73193,MP73235,MP73253,MP73254,MP73255,MP732\\56,MP73257,MP73258,MP73259,MP73260,MP73261,MP73262,MP73263,MP73406,MP73407,MP73408,MP73409,MP73410,MP73411,MP73412,MP73413,MP73414,MP73415,MP73416,MP73417,MP73418,MP73419,MP73420,MP73437,MP73473,MP73474,MP73475,MP73476,MP73477,MP73478,MP73479,MP73480,MP73481,MP73482,MP73483,MP73484,MP73485,$ 

#### Chemical ID:

M4371,M4459,M4583,M4589,M4657,M4768,M4794,M4825,M4844,M4874,M4876,M4877,M4878,M4880,M4881,M4882, M4883,M4884,M4885,M4886,M4888,M4889,M4891,M4894,M4901,M4902,M4916,M4920,M4939,M4960,M4961,M5019, M5020,M5062,M5100,M5108,M5127,M5184,M5193,M5200,M5201,M5218,M5220,M5224,M5226,M5227,M5228,M5285, M5289,M5290,M5291,M5317,M5322,M5387,M5393,M5394,M5408,M5412,M5414,M5416,M5418,M5422,M5425,W2606,

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>902 | NAME ICP AES CAL BLK ( SO/ICB/CCB) | NO.<br>MP73163 | Prep Date<br>01/02/2023 | Expiration Date 02/28/2023 | Prepared<br>By<br>Bin He | <u>ScaleID</u><br>None | PipetteID  METALS_PIP ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/03/2023 |
|---------------------|------------------------------------|----------------|-------------------------|----------------------------|--------------------------|------------------------|----------------------------------|------------------------------------------|
| FROM                | 125.00000ml of M5408 + 2350.0000   | oml of W260    | 06 + 25.00000           | ml of M5412 =              | Final Quantity:          | 2500.000 ml            |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |
|                     |                                    |                |                         |                            |                          |                        |                                  |                                          |

| Recipe<br>ID | NAME | NO. | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | PipetteID   | Supervised By   |
|--------------|------|-----|------------|--------------------|----------------|---------|-------------|-----------------|
| 169          |      |     | 01/04/2023 |                    | Al-Terek Isaac |         | METALS PIP  | Sarabjit Jaswal |
|              |      |     |            |                    |                |         | ETTE_1 (ICP | 01/05/2023      |

FROM 1250.00000ml of M5412 + 1250.00000ml of W2606 = Final Quantity: 2500.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### **Metals STANDARD PREPARATION LOG**

| Reci |   | <u>NAME</u>          | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipettelD</u>         | Supervised By Sarabjit Jaswal |  |  |
|------|---|----------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|--|--|
| 919  | 9 | ICP AES INTERNAL STD | MP73188 | 01/03/2023 | 02/28/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | 01/05/2023                    |  |  |
|      |   |                      |         |            |                    |                |                |                          |                               |  |  |

FROM 1.00000ml of M4961 + 10.00000ml of M4960 + 1969.00000ml of W2606 + 20.00000ml of M5412 = Final Quantity: 2000.000 ml

| Recipe    |                  |            |            | Expiration  | Prepared  |                |                  | Supervised By   |
|-----------|------------------|------------|------------|-------------|-----------|----------------|------------------|-----------------|
| <u>ID</u> | <u>NAME</u>      | <u>NO.</u> | Prep Date  | <u>Date</u> | <u>By</u> | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal |
| 912       | ICP AES ICV SOLN | MP73191    | 01/04/2023 | 01/22/2023  | Bin He    | None           | None             | -               |
|           |                  |            |            |             |           |                |                  | 01/05/2023      |

FROM 0.02500ml of M5019 + 0.02500ml of M5020 + 0.02500ml of M5228 + 0.25000ml of M5218 + 10.00000ml of M5291 + 89.67500ml of MP73163 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### Metals STANDARD PREPARATION LOG

| Recipe<br>ID | NAME                     | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipettelD</u>         | Supervised By Sarabiit Jaswal |
|--------------|--------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 2950         | ICP AES S1/CRI STOCK STD | MP73192 | 01/04/2023 | 02/28/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | ,                             |

**FROM** 

 $0.03000ml\ of\ M4876+0.03000ml\ of\ M4877+0.05000ml\ of\ M4657+0.05000ml\ of\ M4885+0.05000ml\ of\ M4894+0.05000ml\ of\ M5289+0.06000ml\ of\ M4881+0.10000ml\ of\ M4874+0.10000ml\ of\ M4880+0.10000ml\ of\ M4883+0.10000ml\ of\ M4902+0.10000ml\ of\ M4939+0.10000ml\ of\ M5184+0.10000ml\ of\ M5228+0.15000ml\ of\ M4825+0.20000ml\ of\ M4768+0.20000ml\ of\ M4886+0.20000ml\ of\ M4888+0.20000ml\ of\ M4889+0.20000ml\ of\ M4891+0.20000ml\ of\ M5227+0.25000ml\ of\ M5224+0.50000ml\ of\ M4901+0.50000ml\ of\ M5387+1.00000ml\ of\ M4878+1.00000ml\ of\ M5108+1.00000ml\ of\ M5200+1.00000ml\ of\ M5201+1.00000ml\ of\ M5290+2.00000ml\ of\ M4882+2.00000ml\ of\ M4884+87.38000ml\ of\ MP73163\ =\ Final\ Quantity: 100.000\ ml$ 

| Recipe<br>ID | NAME                    | NO.      | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By |
|--------------|-------------------------|----------|------------|--------------------|----------------|----------------|--------------------------|---------------|
| 2951         | ICP AES S1/CRI WORK STD | <u> </u> | 01/04/2023 |                    | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) |               |

FROM 196.00000ml of MP73163 + 4.00000ml of MP73192 = Final Quantity: 200.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME                                   | NO.         | Prep Date    | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u>              | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|--------------|----------------------------------------|-------------|--------------|--------------------|----------------|-----------------------------|------------------|-------------------------------|
| 65           | POTASSIUM PERMANGANATE<br>SOLUTION 5 % | MP73235     | 01/06/2023   | 07/06/2023         |                | METALS_SCA<br>LE_3 (M SC-3) |                  | 01/06/2023                    |
| FROM         | 100.00000gram of M4916 + 2000.00       | 000ml of W2 | 2606 = Final | Quantity: 2000.    | 000 ml         |                             |                  |                               |

| FROM | 100.00000gram of M4916 + 2000.00000ml of W2606 = Final Quantity: 2000.000 ml |
|------|------------------------------------------------------------------------------|
|------|------------------------------------------------------------------------------|

| Recipe<br>ID | NAME_                                               | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u>              | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|--------------|-----------------------------------------------------|---------|------------|--------------------|----------------|-----------------------------|------------------|-------------------------------|
| 67           | SODIUM CHLORIDE -<br>HYDROXYL- CHLORIDE<br>SOLUTION | MP73236 | 01/06/2023 | 07/06/2023         |                | METALS_SCA<br>LE_3 (M SC-3) |                  | 01/06/2023                    |

FROM 2000.0000ml of W2606 + 240.00000gram of M4371 + 240.00000gram of M4459 = Final Quantity: 2000.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>902 | NAME ICP AES CAL BLK ( SO/ICB/CCB) | NO.<br>MP73253 | Prep Date 01/09/2023 | Expiration Date 01/22/2023 | Prepared<br>By<br>Bin He | ScaleID<br>None | PipetteID  METALS_PIP ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/11/2023 |
|---------------------|------------------------------------|----------------|----------------------|----------------------------|--------------------------|-----------------|----------------------------------|------------------------------------------|
| FROM                | 125.00000ml of M5416 + 2350.00000  | Oml of W260    | 06 + 25.00000        | ml of M5414 =              | Final Quantity:          | 2500.000 ml     | <u> </u>                         |                                          |

| Recipe<br>ID | NAME | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | PipettelD                | Supervised By |
|--------------|------|------------|------------|--------------------|----------------|---------|--------------------------|---------------|
| 903          |      |            | 01/09/2023 | 01/22/2023         | Bin He         |         | METALS_PIP<br>ETTE_3 (A) |               |

**FROM** 200.0000ml of M5414 + 9800.0000ml of W2606 = Final Quantity: 10000.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### **Metals STANDARD PREPARATION LOG**

| Recipe    |                                  |            |               | Expiration     | <u>Prepared</u> |                |                  | Supervised By   |
|-----------|----------------------------------|------------|---------------|----------------|-----------------|----------------|------------------|-----------------|
| <u>ID</u> | <u>NAME</u>                      | <u>NO.</u> | Prep Date     | <u>Date</u>    | <u>By</u>       | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal |
| 904       | ICP AES ICSA SOLN                | MP73255    | 01/09/2023    | 01/22/2023     | Bin He          | None           | METALS_PIP       |                 |
|           |                                  |            |               |                |                 |                | ETTE_3 (A)       | 01/11/2023      |
| FROM      | 10.00000ml of M5127 + 90.00000ml | of MP73253 | 3 = Final Qua | ntity: 100.000 | ml              |                |                  |                 |
|           |                                  |            |               |                |                 |                |                  |                 |
|           |                                  |            |               |                |                 |                |                  |                 |
|           |                                  |            |               |                |                 |                |                  |                 |
|           |                                  |            |               |                |                 |                |                  |                 |

| Recipe    |                      |            |            | Expiration  | Prepared  |                |                          | Supervised By   |
|-----------|----------------------|------------|------------|-------------|-----------|----------------|--------------------------|-----------------|
| <u>ID</u> | NAME                 | <u>NO.</u> | Prep Date  | <u>Date</u> | <u>By</u> | <u>ScaleID</u> | <u>PipetteID</u>         | Sarabjit Jaswal |
| 3494      | ICP AES ICSAB SOLN-1 | MP73256    | 01/09/2023 | 01/22/2023  | Bin He    | None           | METALS_PIP<br>ETTE_3 (A) |                 |

FROM 0.10000ml of M4589 + 0.10000ml of M4880 + 0.10000ml of M4882 + 0.10000ml of M4939 + 0.10000ml of M5228 + 10.00000ml of M5127 + 10.00000ml of M5220 + 79.50000ml of MP73253 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>907                                                                                                     | NAME<br>ICP AES STD S ( S5 ) | NO.<br>MP73257 | Prep Date<br>01/09/2023 | Expiration Date 01/22/2023 | Prepared<br>By<br>Bin He | ScaleID<br>None | PipettelD  METALS_PIP ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/11/2023 |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|-------------------------|----------------------------|--------------------------|-----------------|----------------------------------|------------------------------------------|--|
| FROM 5.00000ml of M4589 + 5.00000ml of M4880 + 5.00000ml of M4882 + 5.00000ml of M4939 + 5.00000ml of M5100 + 5.00000ml |                              |                |                         |                            |                          |                 |                                  |                                          |  |

of M5224 + 5.00000ml of M5228 + 5.00000ml of M5394 + 460.00000ml of MP73253 = Final Quantity: 500.000 ml

| Recipe<br>ID | NAME           | NO. | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | PipetteID                | Supervised By                 |
|--------------|----------------|-----|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 910          | ICP AES STD S4 |     | 01/09/2023 | 01/22/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | Sarabjit Jaswal<br>01/11/2023 |

**FROM** 100.00000ml of MP73253 + 100.00000ml of MP73257 = Final Quantity: 200.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>909 | NAME<br>ICP AES STD S3           | NO.<br>MP73259 | Prep Date<br>01/09/2023 | Expiration Date 01/22/2023 | Prepared<br>By<br>Bin He | <u>ScaleID</u><br>None | PipetteID  METALS_PIP ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/11/2023 |
|---------------------|----------------------------------|----------------|-------------------------|----------------------------|--------------------------|------------------------|----------------------------------|------------------------------------------|
| FROM                | 150.00000ml of MP73253 + 50.0000 | Oml of MP7     | 3257 = Final (          | Quantity: 200.0            | 00 ml                    |                        |                                  |                                          |
|                     |                                  |                |                         |                            |                          |                        |                                  |                                          |

| Recipe<br>ID | NAME           | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | PipetteID                | Supervised By   |
|--------------|----------------|------------|------------|--------------------|----------------|---------|--------------------------|-----------------|
| 3913         | ICP AES STD S2 |            | 01/09/2023 | 01/22/2023         | Bin He         | None    | METALS_PIP<br>ETTE_3 (A) | Sarabjit Jaswal |

**FROM** 16.00000ml of MP73257 + 184.00000ml of MP73253 = Final Quantity: 200.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID                                                                      | NAME             | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |  |
|-----------------------------------------------------------------------------------|------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|--|
| 911                                                                               | ICP AES CCV SOLN | MP73261 | 01/09/2023 | 01/22/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | 01/11/2023                    |  |
| FROM 100.00000ml of MP73253 + 100.00000ml of MP73257 = Final Quantity: 200.000 ml |                  |         |            |                    |                |                |                          |                               |  |

| <u>FROM</u> | 100.00000ml of MP/3253 + | 100.00000ml of MP/325/ | = Final Quantity: 200.000 mi |
|-------------|--------------------------|------------------------|------------------------------|
|             |                          |                        |                              |

| Recipe<br>ID | <u>NAME</u> | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|-------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 3651         | LR CHECK 1  | MP73262 | 01/09/2023 | 01/22/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | ,                             |

10.00000ml of M5201 + 18.00000ml of M5108 + 18.00000ml of M5200 + 18.00000ml of M5290 + 20.00000ml of M5289 + **FROM** 9.00000ml of M4894 + 7.00000ml of MP73253 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

|                                                                                                                                                                                         | Recipe<br><u>ID</u><br>3652 | NAME<br>LR CHECK2 | NO.<br>MP73263 | Prep Date<br>01/09/2023 | Expiration Date 01/22/2023 | Prepared<br>By<br>Bin He | <u>ScaleID</u><br>None | PipetteID  METALS_PIP ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/11/2023 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------|-------------------------|----------------------------|--------------------------|------------------------|----------------------------------|------------------------------------------|
| FROM 10.00000ml of M5387 + 2.50000ml of M4844 + 25.00000ml of M5226 + 3.50000ml of M4891 + 4.50000ml of M5184 + 5.00000ml of M4768 + 54.50000ml of MP73253 = Final Quantity: 100.000 ml |                             |                   |                |                         |                            |                          |                        |                                  |                                          |

| Recipe<br>ID | NAME                          | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|-------------------------------|---------|------------|--------------------|----------------|---------|--------------------------|-------------------------------|
| 902          | ICP AES CAL BLK ( SO/ICB/CCB) | MP73406 | 01/19/2023 | 01/25/2023         | Bin He         | None    | METALS_PIP<br>ETTE_3 (A) | •                             |

FROM 125.00000ml of M5418 + 2350.00000ml of W2606 + 25.00000ml of M5425 = Final Quantity: 2500.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME_                                         | NO.        | Prep Date      | Expiration<br>Date | Prepared<br>By  | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|--------------|-----------------------------------------------|------------|----------------|--------------------|-----------------|----------------|------------------|-------------------------------|
| 871          | MERCURY INTERMEDIATE B<br>250PPB WORKING STD. | MP73407    | 01/20/2023     | 01/21/2023         | Mohan Bera      | None           | None             | 01/20/2023                    |
| FROM         | 1.00000ml of M5425 + 2.50000ml of             | M5062 + 96 | 3.50000ml of V | V2606 = Final      | Quantity: 100.0 | 00 ml          |                  |                               |

| Recipe<br>ID | NAME            | NO. | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | PipettelD | Supervised By   |
|--------------|-----------------|-----|------------|--------------------|----------------|---------|-----------|-----------------|
| 1340         | Hg 0.00 PPB STD |     | 01/20/2023 | 01/21/2023         | Mohan Bera     | None    | None      | Sarabjit Jaswal |
|              |                 |     |            |                    |                |         |           | 01/20/2023      |

**FROM** 2.50000ml of M5425 + 247.50000ml of W2606 = Final Quantity: 250.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME                                                                                               | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |  |  |
|--------------|----------------------------------------------------------------------------------------------------|---------|------------|--------------------|----------------|----------------|------------------|-------------------------------|--|--|
| 1341         | Hg 0.2 PPB STD                                                                                     | MP73409 | 01/20/2023 | 01/21/2023         | Mohan Bera     | None           | None             | ,                             |  |  |
|              |                                                                                                    |         |            |                    |                |                |                  | 01/20/2023                    |  |  |
| FROM         | FROM 2.50000ml of M5425 + 247.30000ml of W2606 + 0.20000ml of MP73407 = Final Quantity: 250.000 ml |         |            |                    |                |                |                  |                               |  |  |

| Recipe<br>ID | NAME           | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|--------------|----------------|------------|------------|--------------------|----------------|----------------|------------------|-------------------------------|
| 1342         | Hg 2.5 PPB STD | MP73410    | 01/20/2023 | 01/21/2023         | Mohan Bera     | None           | None             | 01/20/2023                    |

**FROM** 2.50000ml of M5425 + 245.00000ml of W2606 + 2.50000ml of MP73407 = Final Quantity: 250.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>1343 | NAME Hg 5.0 PPB STD                                                                                | NO.      | Prep Date<br>01/20/2023 |              | Prepared By  Mohan Bera | <u>ScaleID</u><br>None | <u>PipettelD</u><br>None | Supervised By Sarabjit Jaswal |  |  |
|----------------------|----------------------------------------------------------------------------------------------------|----------|-------------------------|--------------|-------------------------|------------------------|--------------------------|-------------------------------|--|--|
| 10.10                | 119 0.0 1 1 2 0 1 2                                                                                | <u> </u> | 0 1/20/2020             | 0 1/2 1/2020 | Worldin Bord            | 110110                 | 110110                   | 01/20/2023                    |  |  |
| FROM                 | FROM 2.50000ml of M5425 + 242.50000ml of W2606 + 5.00000ml of MP73407 = Final Quantity: 250.000 ml |          |                         |              |                         |                        |                          |                               |  |  |

| Recipe    | NAME           | NO             | Dron Data  | Expiration | <u>Prepared</u> | SaalalD        | DinettelD        | Supervised By   |
|-----------|----------------|----------------|------------|------------|-----------------|----------------|------------------|-----------------|
| <u>ID</u> | NAME           | <u>NO.</u>     | Prep Date  |            | <u>By</u>       | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal |
| 1344      | Hg 7.5 PPB STD | <u>MP73412</u> | 01/20/2023 | 01/21/2023 | Mohan Bera      | None           | None             | 01/20/2023      |

**FROM** 2.50000ml of M5425 + 240.00000ml of W2606 + 7.50000ml of MP73407 = Final Quantity: 250.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME                                                                                                | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |  |  |
|--------------|-----------------------------------------------------------------------------------------------------|------------|------------|--------------------|----------------|----------------|------------------|-------------------------------|--|--|
| 1345         | Hg 10.0 PPB STD                                                                                     | MP73413    | 01/20/2023 | 01/21/2023         | Mohan Bera     | None           | None             |                               |  |  |
|              |                                                                                                     |            |            |                    |                |                |                  | 01/20/2023                    |  |  |
| FROM         | FROM 2.50000ml of M5425 + 237.50000ml of W2606 + 10.00000ml of MP73407 = Final Quantity: 250.000 ml |            |            |                    |                |                |                  |                               |  |  |

| 1 1 1 0 111 | <br> | <br> |
|-------------|------|------|
|             |      |      |
|             |      |      |
|             |      |      |
|             |      |      |

| Recipe    |                 |            |            | Expiration  | Prepared   |                |                  | Supervised By   |
|-----------|-----------------|------------|------------|-------------|------------|----------------|------------------|-----------------|
| <u>ID</u> | <u>NAME</u>     | <u>NO.</u> | Prep Date  | <u>Date</u> | <u>By</u>  | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal |
| 1346      | Hg ICV SOLUTION | MP73414    | 01/20/2023 | 01/21/2023  | Mohan Bera | None           | None             | -               |
|           |                 |            |            |             |            |                |                  | 01/20/2023      |

**FROM** 2.50000ml of M4794 + 2.50000ml of M5425 + 245.00000ml of W2606 = Final Quantity: 250.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br><u>ID</u><br>1351 | NAME ICB (Hg 0.00 PPB SOLUTION)  | NO.<br>MP73415 | Prep Date<br>01/20/2023 | Expiration Date 01/21/2023 | Prepared<br>By<br>Mohan Bera | <u>ScaleID</u><br>None | PipetteID  METALS_PIP ETTE_5 (HG |  |
|-----------------------------|----------------------------------|----------------|-------------------------|----------------------------|------------------------------|------------------------|----------------------------------|--|
| FROM                        | 2.50000ml of M5425 + 247.50000ml | of W2606 =     | Final Quanti            | ty: 250.000 ml             |                              |                        | <del>' A)</del>                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |
|                             |                                  |                |                         |                            |                              |                        |                                  |  |

| Recipe    |                           |         |            | <b>Expiration</b> | <u>Prepared</u> |                |                  | Supervised By   |
|-----------|---------------------------|---------|------------|-------------------|-----------------|----------------|------------------|-----------------|
| <u>ID</u> | <u>NAME</u>               | NO.     | Prep Date  | <u>Date</u>       | <u>By</u>       | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal |
| 1358      | CCV (Hg 5.0 PPB SOLUTION) | MP73416 | 01/20/2023 | 01/21/2023        | Mohan Bera      | None           | METALS_PIP       | ,               |
|           |                           |         |            |                   |                 |                | ETTE_5 (HG       | 01/20/2023      |
|           |                           |         |            |                   |                 |                | A)               |                 |

FROM 485.00000ml of W2606 + 5.00000ml of M5425 + 10.00000ml of MP73407 = Final Quantity: 500.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br><u>ID</u><br>1352 | NAME CCB (Hg 0.00 PPB SOLUTION)  | NO.<br>MP73417 | Prep Date<br>01/20/2023 | Expiration Date 01/21/2023 | Prepared<br>By<br>Mohan Bera | <u>ScaleID</u><br>None | PipetteID  METALS_PIP ETTE_5 (HG |            |
|-----------------------------|----------------------------------|----------------|-------------------------|----------------------------|------------------------------|------------------------|----------------------------------|------------|
| FROM                        | 495.00000ml of W2606 + 5.00000ml | of M5425 =     | EFinal Quanti           | ty: 500.000 ml             |                              |                        | A)                               | 01/20/2023 |
|                             |                                  |                |                         |                            |                              |                        |                                  |            |

| 1349 CRA/CRI (Hg 0.2 PPB SOLUTION) MP73418 01/20/2023 01/21/2023 Mohan Bera None METALS_PIP ETTE_5 (HG 01/20/2023 | Recipe<br>ID | NAME                | NO. | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | <u>PipetteID</u> | Supervised By |
|-------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----|------------|--------------------|----------------|---------|------------------|---------------|
|                                                                                                                   |              | CRA/CRI (Hg 0.2 PPB |     | 01/20/2023 |                    |                |         | METALS_PIP       |               |

**FROM** 2.50000ml of M5425 + 247.30000ml of W2606 + 0.20000ml of MP73407 = Final Quantity: 250.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br><u>ID</u><br>1350 | NAME  CHK STD (Hg 7.0 PPB SOLUTION) | NO.<br>MP73419 | Prep Date<br>01/20/2023 | Expiration Date 01/21/2023 | Prepared By  Mohan Bera | ScaleID<br>None | PipettelD  METALS_PIP ETTE 5 (HG |            |
|-----------------------------|-------------------------------------|----------------|-------------------------|----------------------------|-------------------------|-----------------|----------------------------------|------------|
| FROM                        | 2.50000ml of M5425 + 240.50000ml    | of W2606 +     | 7.00000ml of            | MP73407 = F                | inal Quantity: 29       | 50.000 ml       | A)                               | 01/20/2023 |

| Recipe<br>ID | NAME                       | <u>NO.</u> | Prep Date  | Expiration<br>Date | <u>Prepared</u><br><u>By</u> | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|--------------|----------------------------|------------|------------|--------------------|------------------------------|----------------|------------------|-------------------------------|
| 887          | AQUA REGIA FOR HG ON 7471A | MP73420    | 01/20/2023 | 01/21/2023         | Mohan Bera                   | None           | None             | 01/20/2023                    |

FROM 150.00000ml of M5418 + 50.00000ml of M5425 = Final Quantity: 200.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| <u>ID</u> <u>NAME</u> |   | <u>NO.</u>     | Prep Date  | Date       | <u>Prepared</u><br><u>By</u> | <u>ScaleID</u>              | <u>PipetteID</u> | Supervised By Sarabjit Jaswal |
|-----------------------|---|----------------|------------|------------|------------------------------|-----------------------------|------------------|-------------------------------|
| 68 STANNOI<br>SOLUTIO | _ | <u>1P73437</u> | 01/23/2023 | 01/24/2023 |                              | METALS_SCA<br>LE_3 (M SC-3) |                  | 01/23/2023                    |

FROM 450.00000ml of W2606 + 50.00000gram of M4920 + 50.00000ml of M5418 = Final Quantity: 500.000 ml

| Recipe           |                                    |                |                         | <b>Expiration</b>         | <u>Prepared</u>     |                        |                       | Supervised By   |
|------------------|------------------------------------|----------------|-------------------------|---------------------------|---------------------|------------------------|-----------------------|-----------------|
| <u>ID</u><br>902 | NAME ICP AES CAL BLK ( SO/ICB/CCB) | NO.<br>MP73473 | Prep Date<br>01/24/2023 | <u>Date</u><br>02/05/2023 | <u>By</u><br>Bin He | <u>ScaleID</u><br>None | PipetteID  METALS PIP | Sarabjit Jaswal |
|                  | TOT THE OTHER BEIN ( OOTHOR TOOR)  | <u> </u>       | 0172472020              | 02/00/2020                | BiiTTiC             | 140110                 | ETTE_3 (A)            | 01/27/2023      |

FROM 125.00000ml of M5418 + 2350.00000ml of W2606 + 25.00000ml of M5425 = Final Quantity: 2500.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>903 | NAME ICP AES RINSE SOLN          | NO.<br>MP73474   | Prep Date<br>01/24/2023 | Expiration Date 02/05/2023 | Prepared By Bin He | ScaleID<br>None | PipetteID  METALS_PIP ETTE 3 (A) |            |
|---------------------|----------------------------------|------------------|-------------------------|----------------------------|--------------------|-----------------|----------------------------------|------------|
| FROM                | 200.00000ml of M5425 + 9800.0000 | I<br>Oml of W260 | I<br>06 = Final Qu      | antity: 10000.0            | 00 ml              |                 |                                  | 01/2//2023 |

| Rec |                     |         |            | <b>Expiration</b> | <u>Prepared</u> |                |                          | Supervised By   |
|-----|---------------------|---------|------------|-------------------|-----------------|----------------|--------------------------|-----------------|
| IC  | NAME                | NO.     | Prep Date  | <u>Date</u>       | <u>By</u>       | <u>ScaleID</u> | <u>PipetteID</u>         | Sarabjit Jaswal |
| 90  | 4 ICP AES ICSA SOLN | MP73475 | 01/24/2023 | 02/05/2023        | Bin He          | None           | METALS_PIP<br>ETTE 3 (A) |                 |
|     |                     |         |            |                   |                 |                |                          | 01/27/2023      |

**FROM** 10.00000ml of M5127 + 90.00000ml of MP73473 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### **Metals STANDARD PREPARATION LOG**

| 3494 ICP AES ICSAB SOLN-1 MP73476 01/24/2023 02/05/2023 Bin He None METALS_PIP ETTE_3 (A) 01/27/2023 | Recipe<br>ID | NAME                 | NO.            | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal |
|------------------------------------------------------------------------------------------------------|--------------|----------------------|----------------|------------|--------------------|----------------|----------------|------------------|-------------------------------|
|                                                                                                      | 3494         | ICP AES ICSAB SOLN-1 | <u>MP73476</u> | 01/24/2023 | 02/05/2023         | Bin He         | None           | _                |                               |

FROM 0.10000ml of M4880 + 0.10000ml of M4882 + 0.10000ml of M4939 + 0.10000ml of M5228 + 0.10100ml of M4589 + 10.00000ml of M5127 + 10.00000ml of M5220 + 79.50000ml of MP73473 = Final Quantity: 100.000 ml

| Recipe           |                           |                |                             | Expiration                | <u>Prepared</u>            |                        |                       | Supervised By   |
|------------------|---------------------------|----------------|-----------------------------|---------------------------|----------------------------|------------------------|-----------------------|-----------------|
| <u>ID</u><br>907 | NAME ICP AES STD S ( S5 ) | NO.<br>MP73477 | <b>Prep Date</b> 01/24/2023 | <u>Date</u><br>02/05/2023 | <u><b>By</b></u><br>Bin He | <u>ScaleID</u><br>None | PipetteID  METALS_PIP | Sarabjit Jaswal |
|                  | , , ,                     |                |                             |                           |                            |                        | ETTE_3 (A)            | 01/27/2023      |

**FROM** 5.00000ml of M4589 + 5.00000ml of M4880 + 5.00000ml of M4882 + 5.00000ml of M4939 + 5.00000ml of M5100 + 5.00000ml of M5224 + 5.00000ml of M5228 + 5.00000ml of M5393 + 460.00000ml of MP73473 = Final Quantity: 500.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | <u>NAME</u>                      | <u>NO.</u>     | Prep Date    | Expiration<br>Date | <u>Prepared</u><br><u>By</u> | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|----------------------------------|----------------|--------------|--------------------|------------------------------|----------------|--------------------------|-------------------------------|
| 910          | ICP AES STD S4                   | <u>MP73478</u> | 01/24/2023   | 02/05/2023         | Bin He                       | None           | METALS_PIP<br>ETTE_3 (A) | -                             |
| FROM         | 100.00000ml of MP73473 + 100.000 | 00ml of MP     | 73477 = Fina | l Quantity: 200.   | 000 ml                       |                |                          |                               |
|              |                                  |                |              |                    |                              |                |                          |                               |
|              |                                  |                |              |                    |                              |                |                          |                               |
|              |                                  |                |              |                    |                              |                |                          |                               |
|              |                                  |                |              |                    |                              |                |                          |                               |
|              |                                  |                |              |                    |                              |                |                          |                               |

| Recipe<br>ID | NAME           | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|----------------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 909          | ICP AES STD S3 | MP73479    | 01/24/2023 | 02/05/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | ,                             |

**FROM** 150.00000ml of MP73473 + 50.00000ml of MP73477 = Final Quantity: 200.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

## **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID<br>3913 | NAME ICP AES STD S2              | NO.<br>MP73480 | Prep Date<br>01/24/2023 | Expiration Date 02/05/2023 | Prepared<br>By<br>Bin He | <u>ScaleID</u><br>None | PipetteID<br>METALS_PIP<br>ETTE_3 (A) | Supervised By Sarabjit Jaswal 01/27/2023 |
|----------------------|----------------------------------|----------------|-------------------------|----------------------------|--------------------------|------------------------|---------------------------------------|------------------------------------------|
| FROM                 | 16.00000ml of MP73477 + 184.0000 | Oml of MP7     | 3473 = Final (          | Quantity: 200.0            | 00 ml                    |                        |                                       |                                          |
|                      |                                  |                |                         |                            |                          |                        |                                       |                                          |

| Recipe<br>ID | NAME             | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|------------------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 911          | ICP AES CCV SOLN | MP73481    | 01/24/2023 | 02/05/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | ,                             |

FROM 100.00000ml of MP73473 + 100.00000ml of MP73477 = Final Quantity: 200.000 ml

**FROM** 

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

#### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME                                                                                                               | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipettelD</u>         | Supervised By Sarabjit Jaswal |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|--|--|
| 3651         | LR CHECK 1                                                                                                         | MP73482 | 01/24/2023 | 02/05/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | 01/27/2023                    |  |  |
| FROM         | FROM 10.00000ml of M5201 + 18.00000ml of M5193 + 18.00000ml of M5200 + 18.00000ml of M5290 + 20.00000ml of M5289 + |         |            |                    |                |                |                          |                               |  |  |

10.00000ml of M5201 + 18.00000ml of M5193 + 18.00000ml of M5200 + 18.00000ml of M5290 + 20.00000ml of M5289 + 9.00000ml of M4894 + 7.00000ml of MP73473 = Final Quantity: 100.000 ml

| Recipe<br>ID | NAME      | <u>NO.</u> | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipetteID</u>         | Supervised By Sarabjit Jaswal |
|--------------|-----------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|
| 3652         | LR CHECK2 | MP73483    | 01/24/2023 | 02/05/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | ,                             |

10.00000ml of M5387 + 2.50000ml of M4844 + 25.0000ml of M5226 + 3.50000ml of M4891 + 4.50000ml of M5184 + 5.0000ml of M4768 + 54.50000ml of MP73473 = Final Quantity: 100.000 ml

284, Sheffield Street, Mountainside NJ 07092 (908) 789 - 8900

### **Metals STANDARD PREPARATION LOG**

| Recipe<br>ID | NAME                                                                            | NO.     | Prep Date  | Expiration<br>Date | Prepared<br>By | <u>ScaleID</u> | <u>PipettelD</u>         | Supervised By Sarabjit Jaswal |  |  |
|--------------|---------------------------------------------------------------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|--|--|
| 2951         | ICP AES S1/CRI WORK STD                                                         | MP73484 | 01/24/2023 | 02/05/2023         | Bin He         | None           | METALS_PIP<br>ETTE_3 (A) | 01/27/2023                    |  |  |
| EDOM         | EDOM 196 00000ml of MP73473 + 4 00000ml of MP73192 = Final Quantity: 200 000 ml |         |            |                    |                |                |                          |                               |  |  |

| Recipe<br>ID | NAME | NO. | Prep Date  | Expiration<br>Date | Prepared<br>By | ScaleID | PipetteID                | Supervised By   |
|--------------|------|-----|------------|--------------------|----------------|---------|--------------------------|-----------------|
| 912          |      |     | 01/24/2023 | 02/05/2023         | Bin He         |         | METALS_PIP<br>ETTE 3 (A) | Sarabjit Jaswal |
|              |      |     |            |                    |                |         | L11L_0 (//)              | 01/2//2023      |

FROM 0.02500ml of M5019 + 0.02500ml of M5020 + 0.25000ml of M5218 + 0.25000ml of M5228 + 10.00000ml of M5291 + 89.87500ml of MP73473 = Final Quantity: 100.000 ml



| Supplier                           | ItemCode / ItemName                                                    | Lot #           | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|------------------------------------|------------------------------------------------------------------------|-----------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical                   | BA-2196-01 /<br>Hydroxylamine<br>Hydrochloride, Crystal<br>(cs/4x500g) | 0000215387      | 06/25/2025         | 07/01/2019 /<br>RICHARD    | 06/07/2019 /<br>RICHARD        | M4371             |
| Supplier                           | ItemCode / ItemName                                                    | Lot #           | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical                   | BA-3624-05 / Sodium<br>Chloride, Crystal<br>(cs/4x2.5kg)               | 0000237721      | 04/13/2026         | 10/03/2022 /<br>Ankita     | 10/30/2019 /<br>AMANDEEP       | M4459             |
| Supplier                           | ItemCode / ItemName                                                    | Lot #           | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Labpure                            | 0919120 / Boiling Stones                                               | 26275770        | 07/07/2025         | 07/03/2020 /<br>mohan      | 05/07/2020 /<br>mohan          | M4583             |
| Supplier                           | ItemCode / ItemName                                                    | Lot #           | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Inorganic<br>Ventures              | Z9651Q /<br>CHEM-CLP-4/.25L                                            | R2-MEB694243    | 06/29/2024         | 07/13/2020 /<br>bin        | 07/02/2020 /<br>bin            | M4589             |
|                                    |                                                                        |                 |                    |                            |                                |                   |
| Supplier                           | ItemCode / ItemName                                                    | Lot #           | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Supplier  Absolute Standards, Inc. | ItemCode / ItemName  58024 / Chromium, Cr, 500 ml, 1000 PPM            | Lot #<br>082620 | l -                | -                          |                                |                   |
| Absolute                           | 58024 / Chromium, Cr, 500                                              |                 | Date               | Opened By<br>11/11/2020 /  | Received By<br>10/28/2020 /    | Lot #             |



| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|----------------------------------|-----------|--------------------|----------------------------|--------------------------------|-------------------|
| EPA                         | ICV-5 / ICV (HG)STOCK<br>SOLN    | ICV5-0415 | 04/30/2023         | 11/25/2022 /<br>mohan      | 04/20/2021 /<br>mohan          | M4794             |
| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57027 / CO, 1000 PPM,<br>125 ml  | 020821    | 02/08/2024         | 05/23/2021 /<br>jaswal     | 05/18/2021 /<br>jaswal         | M4825             |
| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57182 / Pb, 10000 PPM,<br>125 ml | 032321    | 03/23/2024         | 08/09/2021 /<br>bin        | 05/06/2021 /<br>jaswal         | M4844             |
| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | / Arsenic (As)                   | 012521    | 01/25/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4874             |
| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57004 / Be, 1000 PPM,<br>125 ml  | 030221    | 03/02/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4876             |
| Supplier                    | ItemCode / ItemName              | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57048 / Cd, 1000 PPM,<br>125 ml  | 072821    | 07/28/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4877             |



| Supplier                    | ItemCode / ItemName             | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|---------------------------------|--------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 57042 / Mo, 1000 PPM,<br>125 ml | 072821 | 07/28/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4878             |
| Supplier                    | ItemCode / ItemName             | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57015 / P, 1000 PPM, 125<br>ml  | 051121 | 05/11/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4880             |
| Supplier                    | ItemCode / ItemName             | Lot #  | Expiration Date    | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57082 / Pb, 1000 PPM,<br>125 ml | 062221 | 06/22/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4881             |
| Supplier                    | ItemCode / ItemName             | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57016 / S, 1000 PPM, 125<br>ml  | 051721 | 05/17/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4882             |
| Supplier                    | ItemCode / ItemName             | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57034 / Se, 1000 PPM,<br>125 ml | 070221 | 07/02/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4883             |
|                             |                                 |        | Expiration         | Date Opened /              | Received Date /                | Chemtech          |
| Supplier                    | ItemCode / ItemName             | Lot #  | Date               | Opened By                  | Received By                    | Lot #             |



| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|---------------------------------------|--------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 57047 / Ag, 1000 PPM,<br>125 ml       | 072921 | 07/29/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4885             |
| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57050 / Sn, 1000 PPM,<br>125 ml       | 021121 | 02/11/2024         | 08/05/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4886             |
| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57022 / Ti, 1000 PPM, 125<br>ml       | 070721 | 07/07/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4888             |
| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57081 / TI, 1000 PPM, 125<br>ml       | 073021 | 07/30/2024         | 08/06/2021 /<br>jaswal     | 08/05/2021 /<br>jaswal         | M4889             |
| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58030 / Zinc, Zn, 500 ml,<br>1000 PPM | 031921 | 03/19/2024         | 08/25/2021 /<br>bin        | 08/05/2021 /<br>jaswal         | M4891             |
| Supplier                    | ItemCode / ItemName                   | Lot #  | Expiration Date    | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute                    | 58126 / Fe, 10000 PPM,                | 061021 | 06/10/2024         | 07/26/2021 /               | 06/25/2021 /                   | M4894             |



| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|------------------------------------------------|--------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 57005 / B, 1000 PPM, 125<br>ml                 | 031921 | 03/19/2024         | 08/06/2021 /<br>jaswal     | 08/06/2021 /<br>jaswal         | M4901             |
| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58029 / Cu, 1000 PPM,<br>500 ml                | 080321 | 08/03/2024         | 08/06/2021 /<br>jaswal     | 08/06/2021 /<br>jaswal         | M4902             |
| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical            | BA-3227-05 / Potassium<br>Permanganate (2.5kg) | 210800 | 03/31/2026         | 11/30/2022 /<br>mohan      | 07/28/2021 /<br>mohan          | M4916             |
| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration Date    | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical            | BA-3980-01 / Stannous<br>Chloride (cs/4x500g)  | 210800 | 03/31/2026         | 05/28/2022 /<br>mohan      | 07/28/2021 /<br>mohan          | M4920             |
| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57003 / Li, 1000 PPM, 125<br>ml                | 030221 | 03/02/2024         | 09/23/2021 /<br>bin        | 09/22/2021 /<br>bin            | M4939             |
| Supplier                    | ItemCode / ItemName                            | Lot #  | Expiration Date    | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | CGIN10-5 / INDIUM 1 x 500 ml                   | 100721 | 10/07/2024         | 10/09/2021 /<br>jaswal     | 10/08/2021 /<br>jaswal         | M4960             |



| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|----------------------------------------------|--------------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 58139 / Y, 10000 PPM,<br>500 ml              | 052521       | 05/25/2024         | 10/09/2021 /<br>jaswal     | 01/25/2019 /<br>jaswal         | M4961             |
| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57116 / S, 10000 PPM,<br>125 ml              | 011421       | 01/14/2024         | 12/13/2021 /<br>bin        | 12/09/2021 /<br>bin            | M5019             |
| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57115 / P, 10000 PPM,<br>125 ml              | 032921       | 03/29/2024         | 12/13/2021 /<br>bin        | 12/09/2021 /<br>bin            | M5020             |
| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | MSHG-10PPM /<br>MERCURY HCI 125mL<br>10ug/mL | S2-HG709270  | 09/22/2026         | 05/28/2022 /<br>mohan      | 01/27/2022 /<br>mohan          | M5062             |
| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | CLPP-CAL-1 / CLP CAL<br>SOLUTION #1, 125mL   | R2-MEB689870 | 02/14/2024         | 03/14/2022 /<br>bin        | 04/29/2020 /<br>bin            | M5100             |
| Supplier                    | ItemCode / ItemName                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|                             |                                              |              | 08/20/2024         | 12/05/2021 /               | 10/05/2021 /                   |                   |



| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|------------------------------------------------------------------------------|--------------|--------------------|----------------------------|--------------------------------|-------------------|
| EPA                         | PART A / ICSA (ICP)<br>STOCK SOLN                                            | ICSA-1211    | 04/26/2023         | 10/26/2022 /               | 04/20/2021 /<br>bin            | M5127             |
| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58025 / Mn, 1000 PPM,<br>500 ml                                              | 060122       | 06/01/2025         | 07/01/2022 /<br>bin        | 06/02/2022 /<br>jaswal         | M5184             |
| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58120 / Ca, 10000 PPM,<br>500 ml                                             | 082021       | 08/20/2024         | 06/23/2022 /<br>bin        | 09/25/2021 /<br>bin            | M5193             |
| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58111 / Na, 10000 PPM,<br>500 ml                                             | 092121       | 09/21/2024         | 06/23/2022 /<br>bin        | 10/05/2021 /<br>bin            | M5200             |
| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57119 / Potassium (K)<br>10,000PPM                                           | 062321       | 06/23/2024         | 06/23/2022 /<br>bin        | 10/05/2021 /<br>bin            | M5201             |
| Supplier                    | ItemCode / ItemName                                                          | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | CHEM-QC-4 /<br>CHEM-QC-4, Second<br>Source, 1000 ug/ml, B, Mo,<br>Si, Sn, Ti | S2-MEB711674 | 07/01/2024         | 07/01/2022 /<br>bin        | 09/10/2021 /<br>bin            | M5218             |



| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|--------------------------------|----------------------------------------|-----------|--------------------|----------------------------|--------------------------------|-------------------|
| EPA                            | PART B / ICSAB ( ICP )<br>STOCK SOLN   | ICSB-0710 | 04/26/2023         | 10/26/2022 /               | 04/20/2021 /<br>bin            | M5220             |
| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc.    | 57051 / Sb, 1000 PPM,<br>125 ml        | 101521    | 10/15/2024         | 06/29/2022 /<br>bin        | 10/18/2021 /<br>bin            | M5224             |
| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc.    | 58029 / Cu, 1000 PPM,<br>500 ml        | 022822    | 02/28/2025         | 06/15/2022 /<br>bin        | 03/30/2022 /<br>bin            | M5226             |
| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc.    | 57023 / V, 1000 PPM, 125<br>ml         | 100121    | 10/01/2024         | 07/01/2022 /<br>bin        | 10/18/2021 /<br>bin            | M5227             |
| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc.    | 57038 / Sr, 1000 PPM, 125<br>ml        | 073021    | 07/30/2024         | 11/27/2022 /<br>jaswal     | 07/05/2022 /<br>bin            | M5228             |
| Supplier                       | ItemCode / ItemName                    | Lot #     | Expiration Date    | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| PCI Scientific<br>Supply, Inc. | 1403 / Hydrogen Peroxide,<br>30% 1 gal | 820803    | 02/01/2023         | 10/01/2022 /<br>Al-Terek   | 09/07/2022 /<br>bin            | M5285             |



| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|----------------------------------------------------------------|--------------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 58113 / Aluminum (AI)<br>10,000PPM                             | 070622       | 07/06/2025         | 09/02/2022 /<br>jaswal     | 07/12/2022 /<br>jaswal         | M5289             |
| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 58112 / Mg, 10000 PPM,<br>500 ml                               | 071222       | 07/12/2025         | 09/02/2022 /<br>jaswal     | 07/21/2022 /<br>jaswal         | M5290             |
| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| EPA                         | ICV-1 / ICV (ICP/ICPMS)<br>STOCK SOLN                          | ICV-1014     | 03/12/2023         | 09/12/2022 /<br>bin        | 02/20/2020 /<br>bin            | M5291             |
| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | WW-LFS-1 / Laboratory<br>Fortified Stock Solution 1,<br>125 ml | S2-MEB710999 | 10/18/2025         | 11/24/2022 /<br>bin        | 08/11/2022 /<br>bin            | M5317             |
| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |
| Inorganic<br>Ventures       | WW-LFS-2 / Laboratory<br>Fortified Stock Solution 2,<br>125 ml | R2-MEB693161 | 05/20/2024         | 11/24/2022 /<br>bin        | 08/11/2022 /<br>bin            | M5322             |
| Supplier                    | ItemCode / ItemName                                            | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 57056 / Ba, 1000 PPM,<br>125 ml                                | 072122       | 07/21/2025         | 11/01/2022 /<br>jaswal     | 09/18/2022 /<br>jaswal         | M5387             |



| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------|-------------------------------------------------------------------|--------------|--------------------|----------------------------|--------------------------------|-------------------|
| Inorganic<br>Ventures | CLPP-CAL-3 / CLP CAL<br>SOLUTION #3, 125mL                        | T2-MEB714159 | 12/12/2023         | 10/12/2022 /<br>bin        | 09/19/2022 /<br>bin            | M5393             |
| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Inorganic<br>Ventures | CLPP-CAL-3 / CLP CAL<br>SOLUTION #3, 125mL                        | T2-MEB714159 | 11/28/2023         | 11/28/2022 /<br>bin        | 09/19/2022 /<br>bin            | M5394             |
| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical      | BA-9530-33 / Hydrochloric<br>Acid, Instra-Analyzed<br>(cs/6x2.5L) | 22E1662006   | 06/22/2023         | 12/23/2022 /<br>Al-Terek   | 04/11/2022 /<br>Al-Terek       | M5408             |
| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical      | BA-9598-34 / Nitric Acid,<br>Instra-Analyzed (cs/4x2.5L)          | 22B0862001   | 06/27/2023         | 01/02/2023 /<br>bin        | 01/28/2022 /<br>Al-Terek       | M5412             |
| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical      | BA-9598-34 / Nitric Acid,<br>Instra-Analyzed (cs/4x2.5L)          | 22B0862001   | 06/27/2023         | 01/09/2023 /<br>Al-Terek   | 01/28/2022 /<br>Al-Terek       | M5414             |
| Supplier              | ItemCode / ItemName                                               | Lot #        | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical      | BA-9530-33 / Hydrochloric<br>Acid, Instra-Analyzed<br>(cs/6x2.5L) | 22D1462006   | 07/05/2023         | 01/06/2023 /<br>Al-Terek   | 02/24/2022 /<br>Al-Terek       | M5416             |



| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|------------------|-------------------------------------------------------------------|------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical | BA-9530-33 / Hydrochloric<br>Acid, Instra-Analyzed<br>(cs/6x2.5L) | 22D1462006 | 07/05/2023         | 01/17/2023 /<br>Al-Terek   | 02/24/2022 /<br>Al-Terek       | M5418             |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /                | Chemtech<br>Lot # |

| Supplier                       | ItemCode / ItemName                | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|--------------------------------|------------------------------------|------------|--------------------|----------------------------|--------------------------------|-------------------|
| PCI Scientific<br>Supply, Inc. | 26397-103 / PTFE<br>BOILING STONES | 26397-103g | 07/09/2023         | 01/09/2023 /<br>Al-Terek   | 01/09/2023 /<br>Al-Terek       | M5422             |

| Supplier         | ItemCode / ItemName                                      | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|------------------|----------------------------------------------------------|------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical | BA-9598-34 / Nitric Acid,<br>Instra-Analyzed (cs/4x2.5L) | 22C0462001 | 07/11/2023         | 01/18/2023 /<br>Al-Terek   | 02/11/2022 /<br>Al-Terek       | M5425             |
|                  |                                                          |            |                    |                            |                                |                   |

| Supplier         | ItemCode / ItemName | Lot #               | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|------------------|---------------------|---------------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical | DIW / DI Water      | Daily Lab-Certified | 10/24/2024         | 10/24/2019 /<br>apatel     | 10/24/2019 /<br>apatel         | W2606             |



# CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

Christiansburg, VA 24073 · USA inorganicventures.com

## 1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



#### PRODUCT DESCRIPTION 2.0

Multi Analyte Custom Grade Solution Product Code:

CLPP-CAL-1 Catalog Number: R2-MEB689870 Lot Number: Matrix: 5% (v/v) HNO3 Value / Analyte(s):

5 000 μg/mL ea:

Calcium, Potassium, Magnesium, Sodium,

2 000 µg/mL ea:

Aluminum, Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Nickel, Vanadium, Zinc, Cobalt,

Manganese,

250 μg/mL ea:

Copper, Silver,

200 μg/mL ea: Chromium, 50 µg/mL ea: Beryllium

#### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

| ANALYTE<br>Aluminum, Al | CERTIFIED VALUE<br>2 000 ± 7 μg/mL | ANALYTE<br>Barium, Ba | CERTIFIED VALUE<br>2 000 ± 9 μg/mL |
|-------------------------|------------------------------------|-----------------------|------------------------------------|
| Beryllium, Be           | 50.00 ± 0.24 μg/mL                 | Calcium, Ca           | 5 000 ± 20 μg/mL                   |
| Chromium, Cr            | 200.0 ± 1.2 μg/mL                  | Cobalt, Co            | 500.0 ± 2.4 μg/mL                  |
| Copper, Cu              | 250.0 ± 1.0 μg/mL                  | Iron, Fe              | 1 000 ± 4 μg/mL                    |
| Magnesium, Mg           | 5 000 ± 20 μg/mL                   | Manganese, Mn         | 500.0 ± 1.9 μg/mL                  |
| Nickel, Ni              | 500.0 ± 2.2 μg/mL                  | Potassium, K          | 5 000 ± 18 μg/mL                   |
| Silver, Ag              | 250.0 ± 1.1 μg/mL                  | Sodium, Na            | 5 000 ± 18 μg/mL                   |
| Vanadium, V             | 500.0 ± 2.2 μg/mL                  | Zinc, Zn              | 500.0 ± 2.1 μg/mL                  |

**Density:** 1.116 g/mL (measured at  $20 \pm 4$  °C)

# **Assay Information:**

| 3 | say iiiioiiiiatioii. |             |                   |              |
|---|----------------------|-------------|-------------------|--------------|
|   | ANALYTE              | METHOD      | NIST SRM#         | SRM LOT#     |
|   | Ag                   | ICP Assay   | 3151              | 160729       |
|   | Ag                   | Volhard     | 999c              | 999c         |
|   | Al                   | ICP Assay   | 3101a             | 140903       |
|   | Al                   | EDTA        | 928               | 928          |
|   | Ва                   | ICP Assay   | 3104a             | 140909       |
|   | Ва                   | Gravimetric |                   | See Sec. 4.2 |
|   | Ве                   | ICP Assay   | 3105a             | 090514       |
|   | Ве                   | Calculated  |                   | See Sec. 4.2 |
|   | Ca                   | ICP Assay   | 3109a             | 130213       |
|   | Ca                   | EDTA        | 928               | 928          |
|   | Co                   | EDTA        | 928               | 928          |
|   | Co                   | ICP Assay   | traceable to 3113 | M2-CO661665  |
|   | Cr                   | ICP Assay   | 3112a             | 170630       |
|   | Cr                   | Calculated  |                   | See Sec. 4.2 |
|   | Cu                   | ICP Assay   | 3114              | 121207       |
|   | Cu                   | EDTA        | 928               | 928          |
|   | Fe                   | ICP Assay   | 3126a             | 140812       |
|   | Fe                   | EDTA        | 928               | 928          |
|   | K                    | ICP Assay   | 3141a             | 140813       |
|   | K                    | Gravimetric |                   | See Sec. 4.2 |
|   | Mg                   | ICP Assay   | 3131a             | 140110       |
|   | Mg                   | EDTA        | 928               | 928          |
|   | Mn                   | ICP Assay   | 3132              | 050429       |
|   | Mn                   | EDTA        | 928               | 928          |
|   | Na                   | ICP Assay   | 3152a             | 120715       |
|   | Na                   | Gravimetric |                   | See Sec. 4.2 |
|   | Ni                   | ICP Assay   | 3136              | 120619       |
|   | Ni                   | EDTA        | 928               | 928          |
|   | V                    | ICP Assay   | 3165              | 160906       |
|   | V                    | EDTA        | 928               | 928          |
|   | Zn                   | ICP Assay   | 3168a             | 120629       |
|   | Zn                   | EDTA        | 928               | 928          |
|   |                      |             |                   |              |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

# 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

# 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

# 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

# 4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

# 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

# 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

# 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

# 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

# 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

# 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

# 10.0 QUALITY STANDARD DOCUMENTATION

# 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

# 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

# 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

# 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

# 11.1 Certification Issue Date

February 14, 2020

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

# 11.2 Lot Expiration Date

- February 14, 2024
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

# 11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

# 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

# **Certificate Approved By:**

Michael Booth Manager, Quality Control

# **Certifying Officer:**

Paul Gaines

CEO, Senior Technical Director

Paul R Sains



# Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

#### 1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



#### 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

CLPP-CAL-3 Catalog Number: T2-MEB714159 Lot Number: Matrix: 7% (v/v) HNO3 Value / Analyte(s):

> Arsenic, Lead, Selenium, Thallium,

500 µg/mL ea: Cadmium

1 000 µg/mL ea:

### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

**ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE** 1 000 ± 8 µg/mL Cadmium, Cd  $500.0 \pm 2.1 \, \mu g/mL$ Arsenic, As Lead, Pb 1 000 ± 5 µg/mL Selenium, Se 1 000 ± 8 µg/mL

Thallium, TI 1 000 ± 7 µg/mL

Density: 1.043 g/mL (measured at 20  $\pm$  4 °C)

# **Assay Information:**

| ANALYTE | METHOD    | NIST SRM# | SRM LOT# |
|---------|-----------|-----------|----------|
| As      | ICP Assay | 3103a     | 100818   |
| Cd      | ICP Assay | 3108      | 130116   |
| Cd      | EDTA      | 928       | 928      |
| Pb      | ICP Assay | 3128      | 101026   |
| Pb      | EDTA      | 928       | 928      |
| Se      | ICP Assay | 3149      | 100901   |
| TI      | ICP Assay | 3158      | 151215   |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

# 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

# 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

# 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

# 4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

# 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

# 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

# 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

# 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

# 8.0 HAZARDOUS INFORMATION

Please refer to the Safety Data Sheet for information regarding this CRM/RM.

# 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

# 10.0 QUALITY STANDARD DOCUMENTATION

# 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

# 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

# 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

# 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

# 11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

# 11.2 Lot Expiration Date

- January 13, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

# 11.3 Period of Validity

| Sealed TCT Bag Open Date:   |  |
|-----------------------------|--|
| · Sealeo TCT Bao Oberi Dale |  |

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

# 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

# **Certificate Approved By:**

Thomas Kozikowski Manager, Quality Control

# **Certifying Officer:**

Paul Gaines

Chairman / Senior Technical Director

20178Ci



# Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

#### 1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



#### 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

CLPP-CAL-3 Catalog Number: T2-MEB714159 Lot Number: Matrix: 7% (v/v) HNO3 Value / Analyte(s):

> Arsenic, Lead, Selenium, Thallium,

500 µg/mL ea: Cadmium

1 000 µg/mL ea:

### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

**ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE** 1 000 ± 8 µg/mL Cadmium, Cd  $500.0 \pm 2.1 \, \mu g/mL$ Arsenic, As Lead, Pb 1 000 ± 5 µg/mL Selenium, Se 1 000 ± 8 µg/mL

Thallium, TI 1 000 ± 7 µg/mL

Density: 1.043 g/mL (measured at 20  $\pm$  4 °C)

# **Assay Information:**

| ANALYTE | METHOD    | NIST SRM# | SRM LOT# |
|---------|-----------|-----------|----------|
| As      | ICP Assay | 3103a     | 100818   |
| Cd      | ICP Assay | 3108      | 130116   |
| Cd      | EDTA      | 928       | 928      |
| Pb      | ICP Assay | 3128      | 101026   |
| Pb      | EDTA      | 928       | 928      |
| Se      | ICP Assay | 3149      | 100901   |
| TI      | ICP Assay | 3158      | 151215   |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

# 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

# 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

# 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

# 4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

# 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

# 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

# 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

# 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

# 8.0 HAZARDOUS INFORMATION

Please refer to the Safety Data Sheet for information regarding this CRM/RM.

# 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

# 10.0 QUALITY STANDARD DOCUMENTATION

# 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

# 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

# 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

# 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

# 11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

# 11.2 Lot Expiration Date

- January 13, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

# 11.3 Period of Validity

| Sealed TCT Bag Open Date:   |  |
|-----------------------------|--|
| · Sealeo TCT Bao Oberi Dale |  |

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

# 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

# **Certificate Approved By:**

Thomas Kozikowski Manager, Quality Control

# **Certifying Officer:**

Paul Gaines

Chairman / Senior Technical Director

20178Ci

Sodium Chloride, Crystal BAKER ANALYZED® A.C.S. Reagent





# From M4452 to M4459

Received on - 10/30/2019 Received by -: AK

Material No.: 3624-05

Batch No.: 0000237721

Manufactured Date: 2019/04/15

Retest Date: 2026/04/13

Revision No: 1

# Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

| Test                               | Specification | Result  |
|------------------------------------|---------------|---------|
| Assay (NaCl) (by Ag titrn)         | >= 99.0 %     | 100.3   |
| pH of 5% Solution at 25°C          | 5.0 - 9.0     | 6.0     |
| ACS – Insoluble Matter             | <= 0.005 %    | < 0.001 |
| lodide (I)                         | <= 0.002 %    | < 0.002 |
| Bromide (Br)                       | <= 0.01 %     | < 0.01  |
| Chlorate and Nitrate (as NO3)      | <= 0.003 %    | < 0.001 |
| ACS – Phosphate (PO <sub>4</sub> ) | <= 5 ppm      | < 5     |
| Sulfate (SO <sub>4</sub> )         | <= 0.004 %    | < 0.004 |
| Barium (Ba)                        | Passes Test   | PT      |
| ACS – Heavy Metals (as Pb)         | <= 5 ppm      | < 5     |
| Iron (Fe)                          | <= 2 ppm      | < 2     |
| Calcium (Ca)                       | <= 0.002 %    | < 0.001 |
| Magnesium (Mg)                     | <= 0.001 %    | < 0.001 |
| Potassium (K)                      | <= 0.005 %    | 0.002   |

For Laboratory, Research or Manufacturing Use

Meets Reagent Specifications for testing USP/NF monographs

Country of Origin:

US

Packaging Site:

Paris Mfg Ctr & DC



M4371

Hydroxylamine Hydrochloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Suitable for Mercury Determination (hydroxylammonium chloride)

Rec - 06.07.12





Material No.: 2196-01

Batch No.: 0000215387

Manufactured Date: 2018/06/27 Retest Date: 2025/06/25

Revision No: 1

# Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

| Test                                          | Specification | Result  |
|-----------------------------------------------|---------------|---------|
| Assay (NH2OH·HCl) (by KMnO4 titrn)            | >= 96.0 %     | 99.1    |
| Clarity of Alcohol Solution                   | Passes Test   | PT      |
| Residue after Ignition                        | <= 0.050 %    | 0.017   |
| Titrable Free Acid (meq/g)                    | <= 0.25       | 0.19    |
| Ammonium (NH4)                                | Passes Test   | PT      |
| Sulfur Compounds (as SO <sub>4</sub> )        | <= 0.005 %    | < 0.003 |
| Trace Impurities - ACS - Heavy Metals (as Pb) | <= 5 ppm      | 4       |
| Trace Impurities - Iron (Fe)                  | <= 5 ppm      | < 3     |
| Trace Impurities - Mercury (Hg)               | <= 0.050 ppm  | < 0.005 |

For Laboratory, Research or Manufacturing Use

Country of Origin:

CN

Packaging Site:

Paris Mfg Ctr & DC



Phillipsburg, NJ 9001:2015, FSSC22000
Paris, KY 9001:2008
Mexico City, Mexico 9001:2008
Gliwice, Poland 9001:2015, 13485:2012
Selangor, Malaysia 9001:2008
Dehradun, India, 9001:2008, 14001:2004, 13485:2003
Mumbai, India, 9001:2015, 17025:2005
Panoli, India 9001:2015

Jamie Ethier
Vice President Global Quality

WAZY DX.



# Manufacturer:

Saint-Gobain Performance Plastics 11 Sicho Drive Poestenkill, NY 12140

# **Certificate of Conformance**

| Part Number                    |                                                                                  | Customer<br>Part Number/<br>Revision: | 1069103<br>N/A |
|--------------------------------|----------------------------------------------------------------------------------|---------------------------------------|----------------|
| Description:                   | *PTFE BOILING STONES-450 GR                                                      | AMS                                   |                |
| Lot Number:                    | 26275770                                                                         | Lot Quantity:                         | 10 EA          |
| Date of Manufacture (MM/DD/YY) | 03/23/20                                                                         | Expiration Date: (MM/DD/YY)           | N/A            |
| (Refer to th                   | Post Processing Run Number:<br>ne attached Certificate for Additional<br>Detail) |                                       | N/A            |

# We certify the material listed above confirms in full with the following specifications:

All items have been manufactured, inspected, tested, and accepted in accordance with our Quality Management system, ISO 9001-2015. Documentation substantiating this certification is kept on record per the Company's retention policy and is available for review.

All materials and processes used in manufacturing conform to the materials and/or manufacturing specifications and notes indicated on the purchase order, drawing, specifications, quality assurance requirements, or other applicable documents effective on the date of manufacture.

Saint-Gobain does not warrant the product for any particular application and it is the responsibility of the user to conduct tests that are deemed necessary to determine the suitability of the product for any particular use. Saint-Gobain's sole responsibility shall be for failure to manufacture the product in accordance with specifications and requirements of the buyer, and from defects in material and workmanship. This warranty is expressly made in lieu of any and all other warranties and Saint-Gobain's sole liability shall be to replace any product not in conformance with the specification and requirements of the buyer.

| Quality Approval: | goodla Kondla | Date: | 05/13/20 |  |
|-------------------|---------------|-------|----------|--|
|                   | ,             |       |          |  |



# CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

# 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



# 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

 Catalog Number:
 CHEM-CLP-4

 Lot Number:
 R2-MEB694243

 Matrix:
 3% (v/v) HNO3

 3% (v/v) HF

Value / Analyte(s): 1 000 µg/mL ea:

Boron, Molybdenum,

Silicon, Tin,

Titanium

# 3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Boron, B  $1\ 000\ \pm\ 7\ \mu g/mL$  Molybdenum, Mo  $1\ 000\ \pm\ 5\ \mu g/mL$  Silicon, Si  $1\ 000\ \pm\ 7\ \mu g/mL$  Tin, Sn  $1\ 000\ \pm\ 5\ \mu g/mL$ 

Titanium, Ti 1 000  $\pm$  7  $\mu$ g/mL

**Density:** 1.031 g/mL (measured at 20  $\pm$  4 °C)

# Assay Information:

| ANALYTE | METHOD    | NIST SRM# | SRM LOT# |
|---------|-----------|-----------|----------|
| В       | ICP Assay | 3107      | 110830   |
| Mo      | ICP Assay | 3134      | 130418   |
| Si      | ICP Assay | 3150      | 130912   |
| Sn      | ICP Assay | 3161a     | 140917   |
| Ti      | ICP Assay | 3162a     | 130925   |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

# 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMRM are available, the term 'in-house std.' is specified.

# 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

# 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

# 4.3 Glassware Calibration

 - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs.

# 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

N/A

# 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

# 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

# 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRMRM is negligible. After opening the sealed TCT bag transpiration of the CRMRM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

**HF Note:** This standard should not be prepared or stored in glass.

# 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

# 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

# 10.0 QUALITY STANDARD DOCUMENTATION

# 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

# 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

# 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

# 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

# 11.1 Certification Issue Date

June 29, 2020

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified.

# 11.2 Lot Expiration Date

- June 29, 2024
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

# 11.3 Period of Validity

| <ul> <li>Sealed TCT Bag Open Date:</li> </ul> |  |
|-----------------------------------------------|--|
|-----------------------------------------------|--|

- This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

# 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

# Certificate Approved By:

Michael Booth Director, Quality Control

# **Certifying Officer:**

Paul Gaines

Chairman / Senior Technical Director

Paul R Sains

# Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

19410105

Nitric Acid

Initial

Nitric Acid

Final

Expanded

Uncertainty



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

CERTIFIED WEIGHT REPORT: Lot # Solvent:

Part Number: <u>58024</u>
Lot Number: 082620

Description: Chromium (Cr)

2.0% 40.0 082623 (mL)

Uncertainty

Initial

Recommended Storage: Ambient (20 °C)

Part

Nominal Concentration (µg/mL): 1000

**Expiration Date:** 

NIST Test Number: 23060 5E-05 Balance Uncertainty

Dilution

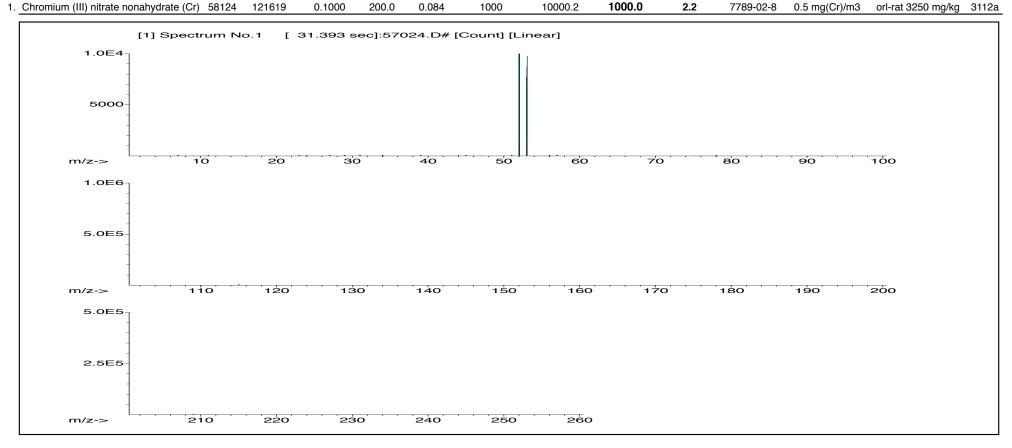
Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Lot

Formulated By: Lawrence Barry 082620

Lawrence Barry 082620

Reviewed By: Pedro L. Rentas 082620


**SDS Information** 

(Solvent Safety Info. On Attached pg.)

Compound

Number Number Factor Vol. (mL) Pipette Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM

Nominal



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |      |        |     |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|------|--------|-----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb I | <0.02  | l w | <0.02  |
| Sb | <0.02  | Ca | <0.02  | Er | <0.02  | Ho | <0.02   | Lu    | <0.02    | Nb   | <0.02    | Re   | <0.02  | Si | <0.02  | Te   | < 0.02 | U " | <0.02  |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | <0.01    | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl   | < 0.02 | V   | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | <0.2   | Th   | < 0.02 | Yb  | < 0.02 |
| Be | < 0.01 | Cr | T      | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm   | < 0.02 | Y   | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn   | < 0.02 | Zn  | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti   | < 0.02 | Zr  | < 0.02 |

(T)= Target analyte

# Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Bu f. All

800-368-1131 www.absolutestandards.com



R: |0/28/2020 GB Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Nickel (II) nitrate Hexahydrate (Ni) Nominal Concentration (µg/mL): m/z-> m/z-> m/z-> 5.0E6 1.0E7 1.0E5 2.0E5 Recommended Storage: 2500 5000 Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date:** Part Number: Description: Lot Number: [1] Spectrum No.1 210 110 10 58128 Number Part 23060 57028 072420 1000 Ambient (20 °C) 072423 082719 Nickel (Ni) 220 120 Lot 20 9.135 sec]:58028.D# [Count] [Linear] 2000.02 0.1000 Dilution Factor 230 130 30 Vol. (mL) Pipette (mL) 200.0 0.058 5E-05 Flask Uncertainty Balance Uncertainty Uncertainty 140 0.013 40 Conc. (µg/mL) 19410105 Nominal 2.0% Lot # 1000 250 150 50 Conc. (µg/mL) Nitric Acid 10000.5 Solvent: Initial (mL) 40.0 260 160 Conc. (µg/mL) Nitric Acid 1000.0 Final 170 0 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Expanded 2.0 Lamone 180 80 13478-00-7 (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) Pedro L. Rentas 190 Lawrence Barry 90 SDS Information 1 mg/m3 200 100 orl-rat 1620 mg/kg 072420 072420 3136 TSIN SRM

www.absolutestandards.com



Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|       | B     | В      | Ве     | Ба     | 3 43   | <b>^</b> | £ 5        | Δ     |                 |          |  |
|-------|-------|--------|--------|--------|--------|----------|------------|-------|-----------------|----------|--|
|       | <0.02 | < 0.02 | <0.01  | <0.02  | 2.02   | 70.02    | 20.02      | 20.03 |                 |          |  |
|       | C.    | င္၀    | 5      | CS     | 9      | 3        | . E        | 2     |                 |          |  |
|       | <0.02 | < 0.02 | <0.02  | <0.02  | <0.02  | 20.2     | \$0.0Z     | 20.02 |                 |          |  |
|       | Au    | Ge     | Ga     | Gd     | Eu     | 1 [      | ī. Uy      |       |                 |          |  |
|       | <0.02 | < 0.02 | <0.02  | <0.02  | <0.02  | <0.02    | <0.02      |       |                 |          |  |
|       | P,    | La     | Fe     | lr     | In     | Но       | : #        |       |                 |          |  |
|       | <0.00 | < 0.02 | <0.2   | <0.02  | <0.02  | <0.02    | <0.02      |       |                 | Trace V  |  |
|       | Z     | Mo     | Hg     | Mn     | Mg     | Lu       | , <u>r</u> |       |                 | etals    |  |
| 20.02 | 200   | <0.02  | <0.2   | < 0.02 | <0.01  | <0.02    | <0.02      |       |                 | Verifica |  |
| ,     | ς.    | Ŗ      | P      | Pd     | Os     | Nb       | Z          |       |                 | tion     |  |
| 7.0.7 | 2     | <0.02  | < 0.02 | < 0.02 | < 0.02 | <0.02    | -          |       | 101             | by ICP-N |  |
| JC.   | c     | Sm     | Ru     | Rb     | Rh     | Re       | Ρŗ         |       | \(\frac{1}{2}\) | 2        |  |
| <0.02 | 3     | <0.02  | <0.02  | < 0.02 | < 0.02 | <0.02    | < 0.02     |       | 9/1111/         | /m/ )    |  |
| 1 a   |       | S      | Sr     | Na     | Ag     | Si       | Se         |       |                 |          |  |
| <0.02 |       | <0.02  | <0.02  | <0.2   | <0.02  | <0.02    | <0.2       |       |                 |          |  |
| =     | 9 5   | ŝ      | Tm     | Th     | TI     | Te       | Ть         |       |                 |          |  |
| <0.02 | 0.02  | 2003   | <0.02  | <0.02  | < 0.02 | < 0.02   | < 0.02     |       |                 |          |  |
| 17    | 1 1   | 7,     | Υ      | Yb     | <      | U        | W          |       |                 |          |  |
| <0.02 | 10.02 | 200    | <0.02  | <0.02  | <0.02  | <0.02    | < 0.02     |       |                 |          |  |

(T)= Target analyte

# **Physical Characterization:**

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.

  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



# QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R: 04/20/21

Instructions for QATS Reference Material: Inorganic ICV Solutions

# QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION:

For use with the CLP SFAM01.0 SOW and revisions.

**CAUTION:** 

Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

M4797 M4793 M4794 M4794 M4791 M4791

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

# SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

# (B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

> QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

# (C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in  $\mu g/L$  (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

Page 1 of 2

QATS Form 20-007F188R00, 04-19-2021



RMs ICV 1, 5, 6 SFAM.docx



# QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R:04/20/21

**APTIM** 

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v)  $K_2Cr_2O_7$  and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from  $K_3Fe(CN)_6$ , Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

# (D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

|         | ICV1-1014                                     |                                                  |
|---------|-----------------------------------------------|--------------------------------------------------|
| lement  | Concentration (µg/L) (after 10-fold dilution) | Concentration (µg/L)<br>(after 50-fold dilution) |
| AI      | 2500                                          | 500                                              |
| Sb      | 1000                                          | 200                                              |
| As      | 1000                                          | 200                                              |
| Ba      | 520                                           | 100                                              |
| Be      | 510                                           | 100                                              |
|         | 510                                           | 100                                              |
| Cd      | 10000                                         | 2000                                             |
| Ca      | 520                                           | 100                                              |
| Cr      | 520                                           | 100                                              |
| Co      | 510                                           | 100                                              |
| Cu      | 10000                                         | 2000                                             |
| Fe      | 1000                                          | 200                                              |
| Pb      | 6000                                          | 1200                                             |
| Mg      | 520                                           | 100                                              |
| Mn      | 530                                           | 110                                              |
| Ni      | 9900                                          | 2000                                             |
| K       | 1000                                          | 200                                              |
| Se      | 250                                           | 50                                               |
| Ag      | 10000                                         | 2000                                             |
| Na      | 1000                                          | 210                                              |
| TI      | 500                                           | 100                                              |
| V<br>Zn | 1000                                          | 200                                              |

|         | ICV5-0415                                      |         | ICV6-0400                                         |
|---------|------------------------------------------------|---------|---------------------------------------------------|
| Element | Concentration (µg/L) (after 100-fold dilution) | Analyte | Concentration (µg/L)<br>(after 100-fold dilution) |
| Hg      | 4.0                                            | CN-     | 99                                                |

# **Absolute Standards, Inc.**

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

19410105

2.0%

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

CERTIFIED WEIGHT REPORT: Lot # Solvent:

Part Number: <u>57027</u>
Lot Number: 020821

Description: Cobalt (Co)

Part

Expiration Date: 020824

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 23060 5E-05 Balance Uncertainty

Dilution

Initial

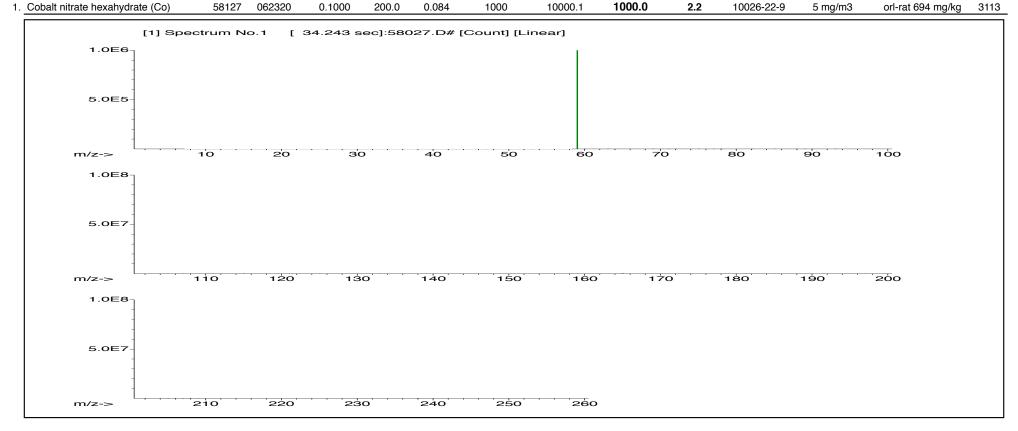
Uncertainty

Volume shown below was diluted to (mL): 1999.78 0.265 Flask Uncertainty

Lot

Formulated By: Lawrence Barry 020821

Serviewed By: Pedro L. Rentas 020821


**SDS Information** 

(Solvent Safety Info. On Attached pg.)

Compound

Number Number Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM

Nominal



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

# **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | <0.2    | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | T      | Ge | < 0.02 | La | < 0.02  | Мо    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Bu P. Sha

# **Absolute Standards, Inc.**

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM



Expanded

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

**CERTIFIED WEIGHT REPORT:** Lot #

> Part Number: 57182 Solvent: 20370011 Nitric Acid

Lot Number: 032321 **Description:** Lead (Pb)

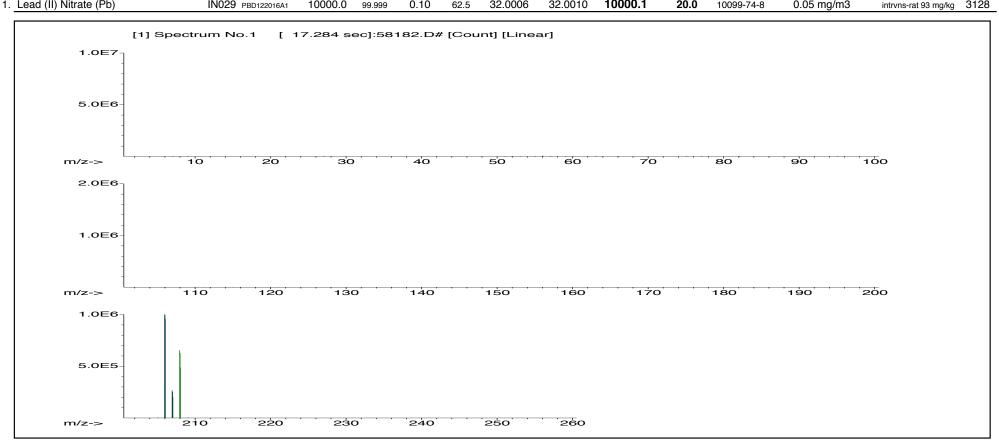
> 2% 40.0 Nitric Acid 032324

(mL)

**Recommended Storage:** Ambient (20 °C)

Nominal Concentration (µg/mL): 10000

**Expiration Date:** 


**NIST Test Number:** 6UTB 5E-05 Balance Uncertainty

Weight shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Formulated By: Lawrence Barry 032321 Reviewed By: Pedro L. Rentas 032321

**SDS Information** 

|                          | Lot        | Nominal Puri     | y Uncertainty Assa | y Target     | Actual A        | <b>Actual</b> Uncerta     | inty (So   | lvent Safety Info. On A | ttached pg.) | NIST |
|--------------------------|------------|------------------|--------------------|--------------|-----------------|---------------------------|------------|-------------------------|--------------|------|
| Compound                 | RM# Number | Conc. (µg/mL) (% | Purity (%) (%      | ) Weight (g) | Weight (g) Conc | <b>c. (μg/mL)</b> +/- (μg | /mL) CAS#  | OSHA PEL (TWA)          | LD50         | SRM  |
| 1 Lood (II) Nitrato (Db) | INIO20     | 10000 0          | 0.10 00            | r 20,000e    | 22.0010 10      | 0000 1 000                | 10000 74.0 | 0.0E ma/m2              |              | 0100 |



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace Me | tals | Verifica | tion | by ICP-N | ИS ( | μg/mL) |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|----------|------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | < 0.02 | Cd | < 0.02 | Dy | < 0.02 | Hf | < 0.02   | Li   | <0.02    | Ni   | <0.02    | Pr   | < 0.02 | Se | <0.2   | Tb | < 0.02 | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02   | Lu   | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02   | Mg   | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02   | Mn   | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2    | Hg   | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02   | Mo   | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | T        | Nd   | < 0.02   | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

# **Physical Characterization:**

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

But All

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

# **Absolute Standards, Inc.**

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Nitric Acid

Expanded

19410105

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 57033

 Lot Number:
 012521

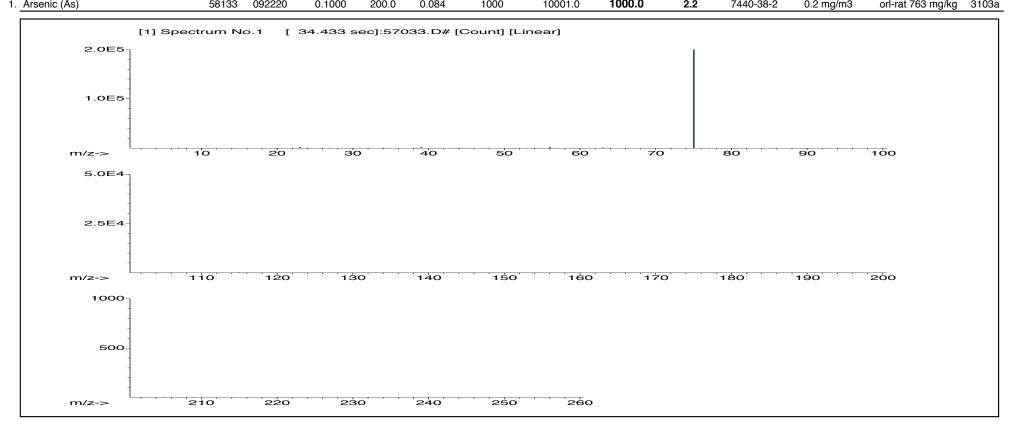
Description: Arsenic (As)

**Expiration Date:** 012524

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 23060 5E-05 Balance Uncertainty


Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Formulated By: Lawrence Barry 012521

Adds Reviewed By: Pedro L. Rentas 012521

**SDS Information** 

|                | Part   | Lot    | Dilution | Initial   | Uncertainty  | Nominal       | Initial       | Final         | Uncertainty | (Solv     | ent Safety Info. On A | Attached pg.)     | NIST  |
|----------------|--------|--------|----------|-----------|--------------|---------------|---------------|---------------|-------------|-----------|-----------------------|-------------------|-------|
| Compound       | Number | Number | Factor   | Vol. (mL) | Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#      | OSHA PEL (TWA)        | LD50              | SRM   |
|                |        |        |          |           |              |               |               |               |             |           |                       |                   |       |
| 1 Arconio (Ac) | 50122  | വരാദാവ | 0.1000   | 200.0     | 0.004        | 1000          | 10001 0       | 1000 0        | 2 2         | 7440 20 2 | $0.2  \text{ma/m}^2$  | orl rat 762 ma/ka | 21022 |



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

# **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | < 0.02   | Ni   | < 0.02   | Pr   | < 0.02 | Se | <0.2   | Tb | < 0.02 | W  | < 0.02 |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | T      | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

# Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Bu P. Sha

Part # 57033 Lot # 012521 2 of 2 Printed: 2/8/2021, 11:15:08 PM

# **Absolute Standards, Inc.**

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

19410105

2.0%

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

CERTIFIED WEIGHT REPORT: Lot # Solvent:

Part Number: <u>57004</u>

Lot Number: 030221

Description: Beryllium (Be)

Part

Expiration Date: 030224

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 23060 5E-05 Balance Uncertainty

Dilution

Initial

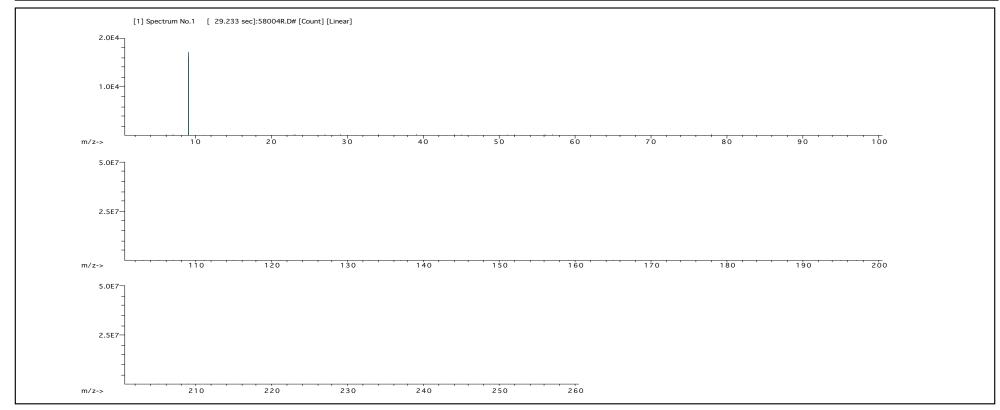
Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Lot

Formulated By: Lawrence Barry 030221

Lawrence Barry 030221


Reviewed By: Pedro L. Rentas 030221

**SDS Information** 

(Solvent Safety Info. On Attached pg.)

| Compound                     | Number | Number | Factor | Vol. (mL) | Pipette | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#       | OSHA PEL (TWA) | LD50             | SRM   |
|------------------------------|--------|--------|--------|-----------|---------|---------------|---------------|---------------|-------------|------------|----------------|------------------|-------|
| Beryllium acetate basic (Be) | 58104  | 063020 | 0.1000 | 200.0     | 0.084   | 1000          | 10000.1       | 1000.0        | 2.2         | 19049-40-2 | 0.002 mg/m3    | orl-rat 28 mg/kg | 3105a |

Nominal



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu P. Sha

# **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | < 0.02 | Cd | <0.02  | Dy | < 0.02 | Hf | < 0.02  | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | < 0.02 | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | T      | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57004 Lot # 030221 2 of 2 Printed: 3/3/2021, 11:15:33 PM

# Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

**CERTIFIED WEIGHT REPORT:** Lot # Solvent:

> Part Number: 57048 072821 Lot Number:

**Description:** Cadmium (Cd)

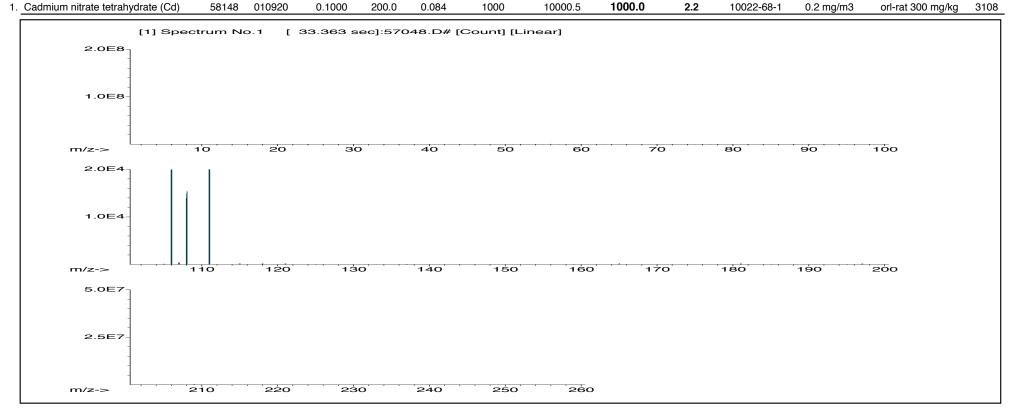
Part

**Expiration Date:** 072824

**Recommended Storage:** Ambient (20 °C)

1000 Nominal Concentration (µg/mL):

> **NIST Test Number:** 6UTB 5E-05 Balance Uncertainty


Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Liovanni Esposito Formulated By: Giovanni Esposito 072821 Reviewed By 072821 Pedro L. Rentas

**SDS Information** 

Dilution Initial Uncertainty (Solvent Safety Info. On Attached pg.) Lot Uncertainty Compound SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# OSHA PEL (TWA) LD50

Nominal



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu P. All

# **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    | Trace Metals Verification by ICP-MS (μg/mL) |    |        |    |        |    |        |    |        |    |        |    |        |    |        |    |        |    |        |
|----|---------------------------------------------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|
| Al | <0.02                                       | Cd | T      | Dy | <0.02  | Hf | < 0.02 | Li | < 0.02 | Ni | <0.02  | Pr | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02                                      | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02 | Lu | < 0.02 | Nb | < 0.02 | Re | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2                                        | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02 | Mg | < 0.01 | Os | < 0.02 | Rh | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02                                      | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02 | Mn | < 0.02 | Pd | < 0.02 | Rb | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01                                      | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2  | Hg | < 0.2  | P  | < 0.02 | Ru | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02                                      | Co | < 0.02 | Ge | < 0.02 | La | < 0.02 | Mo | < 0.02 | Pt | < 0.02 | Sm | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02                                      | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02 | Nd | < 0.02 | K  | < 0.2  | Sc | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

Part # **57048** Lot # **072821** Printed: 8/19/2021, 11:15:05 PM

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com



# Certified Reference Material CRM



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: Description: Lot Number: 57042 072821 **BTU9** 1000 072824 Ambient (20 °C) Molybdenum (Mo) 2000.02 0.058 5E-05 Balance Uncertainty Flask Uncertainty MKBQ8597V Ammonium hydroxide Lot # 0.5% Solvent: (ME) 10.0 Ammonium hydroxide Formulated By: Reviewed By: Dievanie LASSEL Giovanni Esposito Pedro L. Rentas SDS Information 072821 072821

Compound

Number Part

Number Lot

Vol. (ml.) Pipette (ml.) Conc. (µg/ml.)

Conc. (µg/mL)

Conc. (µg/mL)

Dilution Factor

Initial

Uncertainty

Nominal

Initial

Final

Uncertainty +/- (µg/mL)

(Solvent Safety Info. On Attached pg.)

CAS#

OSHA PEL (TWA)

LD50

TSIN SRM

Expanded

| M/z->  | 1.0E6 | m/z-> | 1000 | 2000 | 1.0E5 | 2.005                                |
|--------|-------|-------|------|------|-------|--------------------------------------|
|        |       |       |      |      |       | [1] S <sub>[</sub> [1]               |
| N10    |       | 110   |      | 10   |       | [1] Spectrum No.1                    |
| N<br>N |       | 120   |      | 20   | ×     | Z<br>0.1                             |
| ŏ      |       | ő     |      | O    |       | 8.59                                 |
| 230    |       | 130   |      | 30   |       | )4 sec]:5                            |
| 240    |       | 140   |      | 40   |       | 8.594 sec]:57042.D# [Count] [Linear] |
|        |       |       |      |      |       | * [Coun                              |
| 250    |       | 150   |      | 50   |       | t] [Linea                            |
| 260    |       | 160   |      | 60   |       |                                      |
|        |       |       |      |      |       |                                      |
|        |       | 170   |      | 70   |       |                                      |
|        |       | 180   |      | 80   |       |                                      |
|        |       | 190   |      | 90   |       |                                      |
|        |       | 200   |      | 100  |       |                                      |

1 of 2

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|        |       | Ве    |       |                                         |       |       | Constant Property     |          | The same of the last of the la |
|--------|-------|-------|-------|-----------------------------------------|-------|-------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <0.02  | 40.02 | 40.01 | 40.02 | <0.2                                    | 40.02 | <0.02 | The State of State of |          | THE REAL PROPERTY AND ADDRESS OF THE PERSONS NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cu     | င္ပ   | Ü,    | S     | င့                                      | Ca    | Cd    |                       |          | Care Company or Parket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| < 0.02 | <0.02 | <0.02 | <0.02 | <0.02                                   | <0.2  | <0.02 |                       |          | CONTRACTOR AND ADDRESS OF THE PERSONS AND ADDRESS AND ADDRESS OF THE PERSONS AND ADDRESS OF THE PERSON |
| Αu     | Ge    | Ga    | Gd    | 턉                                       | 띡     | Dy    |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | <0.02 | <0.02 | <0.02 | <0.02                                   | <0.02 | <0.02 |                       |          | The second secon |
| Pb     | La    | Fe    | Ιτ    | 'n                                      | Но    | ЭH    |                       |          | Control of the last of the las |
| <0.02  | <0.02 | <0.2  | <0.02 | <0.02                                   | <0.02 | <0.02 |                       | Trace M  | The real Property lies and the least lies and the lies and the least lies and the least lies and the least lies and the least lies and the lies and the least lies and the least lies and the |
| Nd     | Mo    | Hg    | Mn    | Mg                                      | Lu    | Ľ     |                       | /letals  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | Н     | <0.2  | <0.02 | 40.01                                   | <0.02 | <0.02 |                       | Verifica |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ×      | 7     | P     | Pd    | o <sub>s</sub>                          | No.   | Ž.    |                       | tion     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.2   | 40.02 | <0.02 | <0.02 | <0.02                                   | <0.02 | <0.02 |                       | by ICP-M |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sc     | Sm    | Ru    | Rb    | Rh                                      | Re    | Pr    |                       | S (µg    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | <0.02 | <0.02 | <0.02 | <0.02                                   | <0.02 | <0.02 |                       | J/mL)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ta     | s     | Sr    | Na    | Ag                                      | Si    | Se    |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | <0.02 | <0.02 | 40.2  | <0.02                                   | <0.02 | 40.2  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ti     | Sn    | Tm    | 긁     | ======================================= | Te    | т     |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | <0.02 | 40.02 | 40.02 | 40.02                                   | 40.02 | <0.02 |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zr     | Zn    | ×     | 4,4   | <                                       | C     | W     |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.02  | 40.02 | <0.02 | 40.02 | 40.02                                   | <0.02 | <0.02 |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(1)= larger arrange

# Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.

  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

# Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com



# Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

<u>CERTIFIED WEIGHT REPORT:</u>

Lot # Solvent:

Part Number: <u>57015</u> Lot Number: 051121

Description: Phosphorous (P)

Expiration Date: 051124

Part

Recommended Storage: Ambient (20 °C)

Nominal Concentration (μg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Dilution

Initial

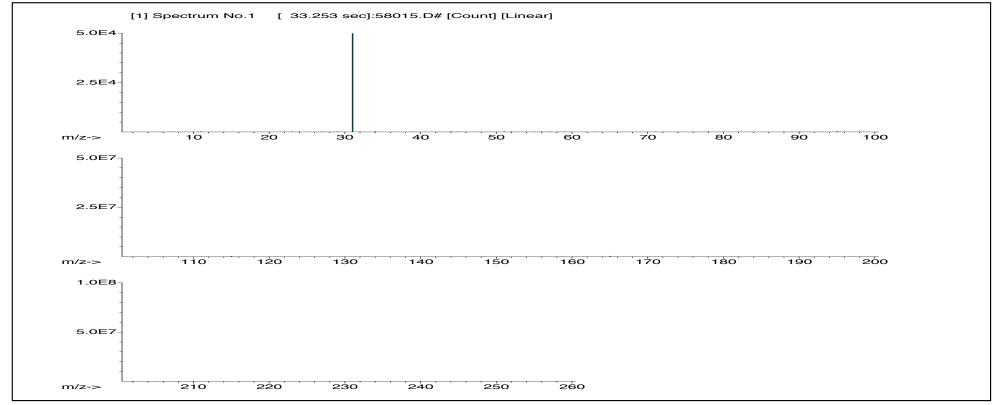
Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Lot

Formulated By: Lawrence Barry 051121

Lawrence Barry 051121


Reviewed By: Pedro L. Rentas 051121

**SDS Information** 

(Solvent Safety Info. On Attached pg.)

Compound Number OSHA PEL (TWA) SRM Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# LD50 Number 1000.0 1. Ammonium dihydrogen phosphate (P) 58115 121020 0.1000 200.0 0.084 1000 10000.3 2.2 7722-76-1 5 mg/m3 NA 3186

Nominal



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu R. All

# **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    | Trace Metals Verification by ICP-MS (μg/mL) |    |        |    |        |    |        |    |        |    |        |    |        |    |        |    |        |    |        |
|----|---------------------------------------------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|----|--------|
| Al | <0.02                                       | Cd | <0.02  | Dy | <0.02  | Hf | <0.02  | Li | <0.02  | Ni | <0.02  | Pr | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02                                      | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02 | Lu | < 0.02 | Nb | <0.02  | Re | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2                                        | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02 | Mg | <0.01  | Os | < 0.02 | Rh | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02                                      | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02 | Mn | < 0.02 | Pd | < 0.02 | Rb | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | <0.01                                       | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2  | Hg | <0.2   | P  | T      | Ru | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02                                      | Co | < 0.02 | Ge | < 0.02 | La | < 0.02 | Mo | < 0.02 | Pt | <0.02  | Sm | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02                                      | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02 | Nd | < 0.02 | K  | <0.2   | Sc | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # **57015** Lot # **051121** 2 of 2 Printed: 5/17/2021, 11:15:11 PM

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Nitric Acid

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 57082

 Lot Number:
 062221

Description: Lead (Pb)

**Expiration Date:** 062224

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Formulated By: Lawrence Barry 062221

Lawrence Barry 062221

Reviewed By: Pedro L. Rentas 062221

**SDS Information** Expanded Part Lot Dilution Initial Uncertainty Nominal Initial Final Uncertainty (Solvent Safety Info. On Attached pg.) NIST Compound OSHA PEL (TWA) SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# LD50

1000.0 2.2 1. Lead (II) Nitrate (Pb) 58182 032321 0.1000 200.0 0.084 1000 10000.1 10099-74-8 0.05 mg/m3 intrvns-rat 93 mg/kg 3128 [1] Spectrum No.1 [ 14.144 sec]:58082.D# [Count] [Linear] 1.0E5 5.0E4 m/z->10 20 зо 40 50 60 70 80 90 100 1.0E5 5.0E4 m/z->110 120 130 140 150 160 170 180 190 200 2.0E6 1.0E6 220 230 240 250 260 m/z->210



Certified by:

Bur P. All

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | <0.2   | Th | < 0.02 | Yb | < 0.02 |
| Be | <0.01  | Cr | < 0.02 | Ga | < 0.02 | Fe | <0.2    | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | T       | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

## **Physical Characterization:**

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

5.0E8

2.5E8

m/z->

210

220

230

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

ASTM Type 1 Water

051721



Expanded

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

**CERTIFIED WEIGHT REPORT:** Lot # Solvent:

> Part Number: 57016 Lot Number:

051721 **Description:** Sulfur (S)

**Expiration Date:** 051724

**Recommended Storage:** Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

> **NIST Test Number:** 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 1999.48 0.058 Flask Uncertainty Formulated By: Lawrence Barry 051721 Reviewed By Pedro L. Rentas 051721

**SDS Information** 

|    |                      | Part            | Lot    | Dilution Initia | Uncertainty     | Nominal       | Initial       | Final         | Uncertainty | (Solv       | vent Safety Info. On | Attached pg.) | NIST |
|----|----------------------|-----------------|--------|-----------------|-----------------|---------------|---------------|---------------|-------------|-------------|----------------------|---------------|------|
|    | Compound             | Number          | Number | Factor Vol. (n  | L) Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#        | OSHA PEL (TWA)       | LD50          | SRM  |
| 1. | Ammonium sulfate (S) | 58116           | 011421 | 0.1000 199.     | 0.084           | 1000          | 10000.2       | 1000.0        | 2.2         | 7783-20-2   | NA                   | NA            | 3181 |
|    | 5.0E5                | [1] Spectrum No | 9.1 [  | 33.603 sec]:5   | 7016.D#         | [Count] [Li   | inear]        |               |             |             |                      |               |      |
|    | 2.5E5-               |                 |        |                 |                 |               |               |               |             |             |                      |               |      |
|    | m/z->                | 10              | 20     | 30              | 40              |               | 60            | 70            | <del></del> | <b>ദ</b> ്ഠ | 90                   | 100           |      |
|    | 5.0E7                |                 |        |                 |                 |               |               |               |             |             |                      |               |      |
|    | m/z->                | 110             | 120    | 130             | 140             | 150           | 160           | 17            | 0           | 180         | 190                  | 200           |      |

250

260

240



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al |        |    |        |    |        |    |         |       |          |      |          |      |        |    |        |    |        |    |        |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | <0.02    | Sm   | < 0.02 | S  | T      | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Bu f. All

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Nitric Acid

Expanded

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 57034

 Lot Number:
 070221

Description: Selenium (Se)

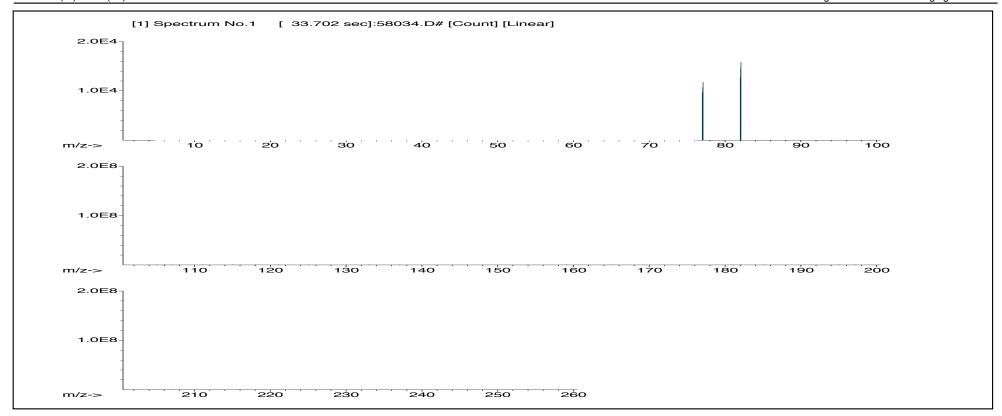
**Expiration Date:** 070224

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty


Formulated By: Giovanni Esposito 070221

Lector Denta 070221

Reviewed By: Pedro L. Rentas 070221

**SDS Information** 

|                                             | Part   | Lot    | Dilution | Initial   | Uncertainty  | Nominal       | Initial       | Final         | Uncertainty | (Solv     | ent Safety Info. On A | Attached pg.)    | NIST |
|---------------------------------------------|--------|--------|----------|-----------|--------------|---------------|---------------|---------------|-------------|-----------|-----------------------|------------------|------|
| Compound                                    | Number | Number | Factor   | Vol. (mL) | Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#      | OSHA PEL (TWA)        | LD50             | SRM  |
|                                             |        |        |          |           |              |               |               |               |             |           |                       |                  |      |
| <ol> <li>Selenium(IV) oxide (Se)</li> </ol> | 58134  | 021621 | 0.1000   | 200.0     | 0.084        | 1000          | 10000.2       | 1000.0        | 2.2         | 7446-08-4 | 0.2 mg/m3             | orl-rat 68 mg/kg | 3149 |





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Sn P. Shi

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | <b>Verifica</b> | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|-----------------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02           | Ni   | <0.02    | Pr   | <0.02  | Se | T      | Tb | < 0.02 | W  | < 0.02 |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02          | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01          | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02          | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2           | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02          | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02          | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Part # 57034 Lot # 070221 Printed: 8/19/2021, 11:15:02 PM

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

19410105

2.0%

Nitric Acid

Nitric Acid



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

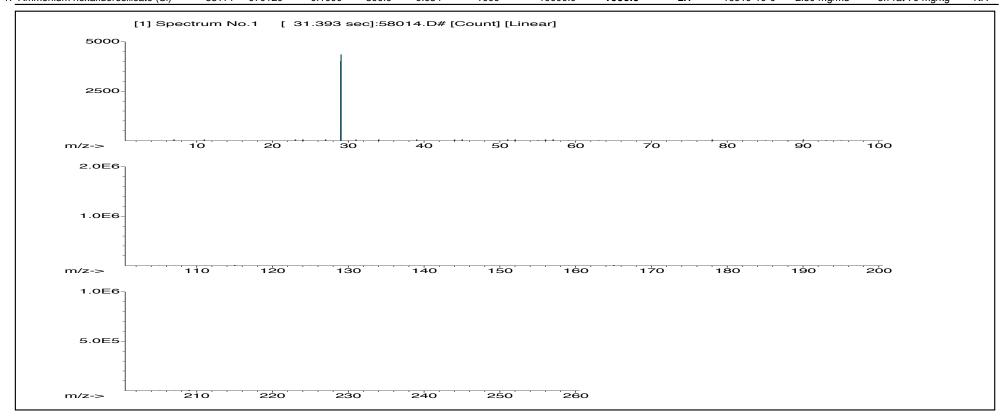
**CERTIFIED WEIGHT REPORT:** Lot # Solvent:

> Part Number: 57014 030921 Lot Number:

Description: Silicon (Si)

60.0 **Expiration Date:** 030924 (mL)

**Recommended Storage:** Ambient (20 °C)


Nominal Concentration (µg/mL): 1000

> **NIST Test Number: 6UTB** 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 3000.41 0.058 Flask Uncertainty

Formulated By: Lawrence Barry 030921 Reviewed By: Pedro L. Rentas 030921

|                                  |        |        |          |           |              |               |               |               | Expanded    |            | SDS Informat          | ion              |      |
|----------------------------------|--------|--------|----------|-----------|--------------|---------------|---------------|---------------|-------------|------------|-----------------------|------------------|------|
|                                  | Part   | Lot    | Dilution | Initial   | Uncertainty  | Nominal       | Initial       | Final         | Uncertainty | (Solve     | ent Safety Info. On A | Attached pg.)    | NIST |
| Compound                         | Number | Number | Factor   | Vol. (mL) | Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#       | OSHA PEL (TWA)        | LD50             | SRM  |
| Ammonium hexafluorosilicate (Si) | 58114  | 070120 | 0 1000   | 300.0     | 0 084        | 1000          | 10000 0       | 1000.0        | 2.1         | 16919-19-0 | 2 50 mg/m3            | orl-rat 70 mg/kg | NA   |





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu K. Spla

## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | < 0.02 | Cd | <0.02  | Dy | < 0.02 | Hf | < 0.02  | Li    | < 0.02   | Ni   | <0.02    | Pr   | < 0.02 | Se | <0.2   | Tb | < 0.02 | W  | < 0.02 |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | T      | Te | < 0.02 | U  | < 0.02 |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | T1 | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | <0.2   | Th | < 0.02 | Yb | < 0.02 |
| Be | <0.01  | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # **57014** Lot # **030921** 2 of 2 Printed: 3/16/2021, 11:15:07 PM

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Nitric Acid

Expanded

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

**CERTIFIED WEIGHT REPORT:** Lot # Solvent:

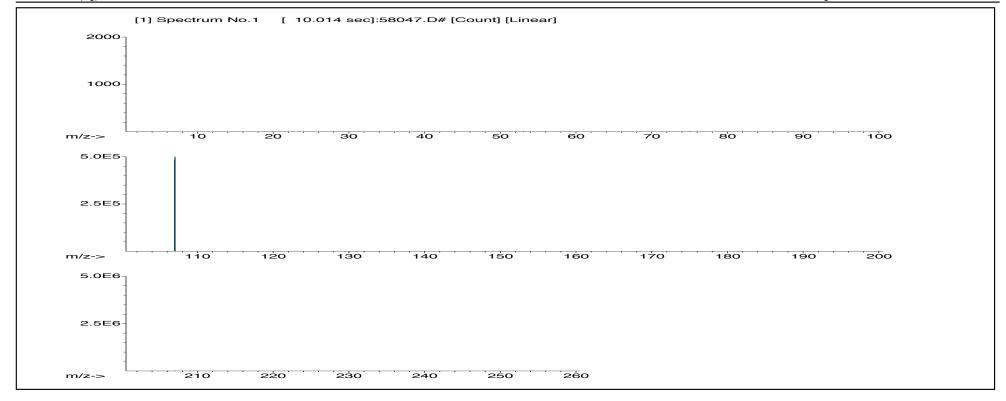
> Part Number: 57047 Lot Number: 072921

**Description:** Silver (Ag)

**Expiration Date:** 072924

**Recommended Storage:** Ambient (20 °C)

1000 Nominal Concentration (µg/mL):


> **NIST Test Number:** 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Liovanni Esporto Formulated By: Giovanni Esposito 072921 Reviewed By 072921 Pedro L. Rentas

**SDS Information** 

|                        | Part   | Lot    | Dilution | Initial   | Uncertainty  | Nominal       | Initial       | Final         | Uncertainty | (Solv     | vent Safety Info. On At | tached pg.) | NIST |
|------------------------|--------|--------|----------|-----------|--------------|---------------|---------------|---------------|-------------|-----------|-------------------------|-------------|------|
| Compound               | Number | Number | Factor   | Vol. (mL) | Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#      | OSHA PEL (TWA)          | LD50        | SRM  |
|                        |        |        |          |           |              |               |               |               |             |           |                         |             |      |
| 1. Silver nitrate (Ag) | 58147  | 010820 | 0.1000   | 200.0     | 0.084        | 1000          | 10000.4       | 1000.0        | 2.2         | 7761-88-8 | 10 ug/m3                | N/A         | 3151 |





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu P. Sha

## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | T      | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Part # 57047 Lot # 072921 2 of 2 Printed: 8/19/2021, 11:15:10 PM

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 www.absolutestandards.com



Part

## Certified Reference Material CRM



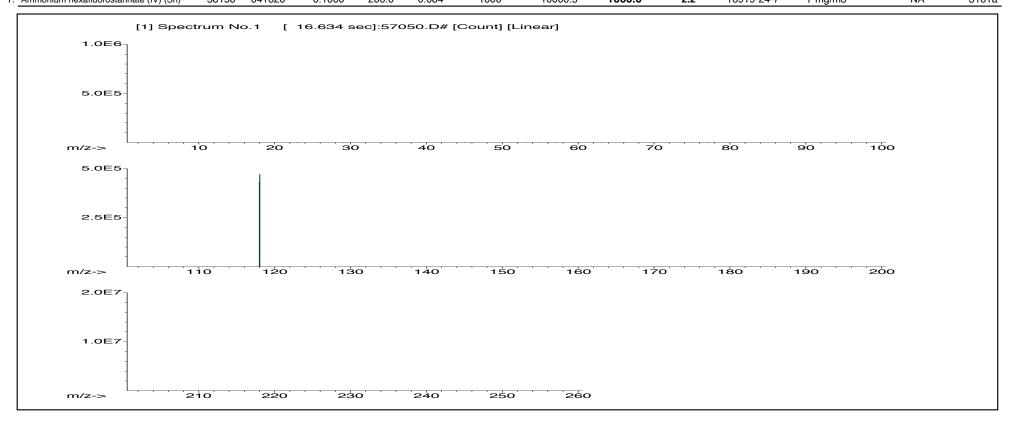
Expanded

**SDS Information** 

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

**CERTIFIED WEIGHT REPORT:** Lot # Solvent: Part Number: 57050 19410105 Nitric Acid 021121 Lot Number: 240241 Hydrochloric acid


**Description:** Tin (Sn) 2.0% 40.0 Nitric Acid Formulated By: Lawrence Barry 021121 **Expiration Date:** 021124 6.0% 120.0 Hydrochloric acid **Recommended Storage:** Ambient (20 °C) (mL) 1000 Nominal Concentration (µg/mL): **NIST Test Number:** 23060 5E-05 Balance Uncertainty Reviewed By 021121 Pedro L. Rentas Volume shown below was diluted to (mL): 1999.78 0.265 Flask Uncertainty

Dilution Initial (Solvent Safety Info. On Attached pg.) Lot Uncertainty Uncertainty Compound OSHA PEL (TWA) SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# LD50 1000.0 1. Ammonium hexafluorostannate (IV) (Sn) 58150 041620 0.1000 200.0 0.084 1000 10000.5 2.2 16919-24-7 7 mg/m3 NA 3161a

Initial

Final

Nominal





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu f. All

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | <0.02  | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | T      | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot # 021121 2 of 2 Printed: 2/23/2021, 11:15:13 PM

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

20370011

2.0%

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 57022

 Lot Number:
 070721

Description: <u>Titanium (Ti)</u>

Expiration Date: 070724

Part

Recommended Storage: Ambient (20 °C)

Nominal Concentration ( $\mu$ g/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Dilution

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

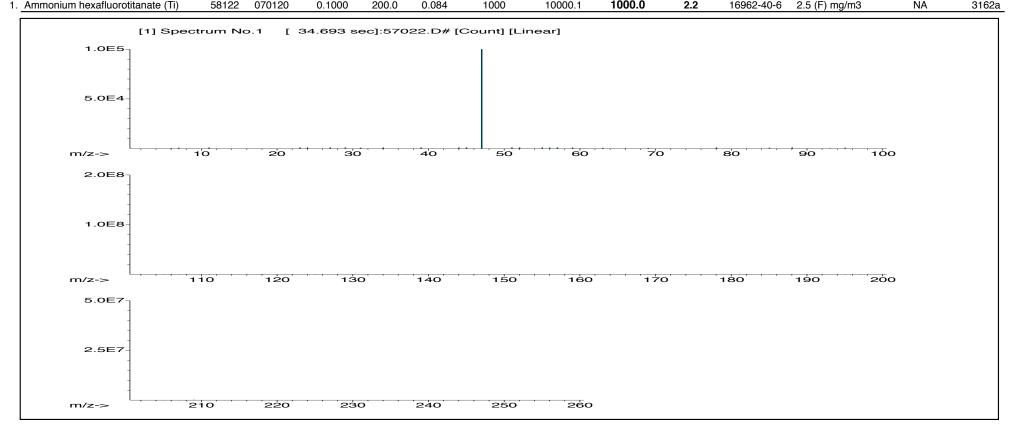
Lot

Formulated By: Lawrence Barry 070721

Lawrence Barry 070721

Reviewed By: Pedro L. Rentas 070721

**SDS Information** 


(Solvent Safety Info. On Attached pg.)

Compound CAS# OSHA PEL (TWA) LD50 SRM Number Number Factor Vol. (mL) Pipette Conc. (µg/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (µg/mL) 1000.0 16962-40-6 1. Ammonium hexafluorotitanate (Ti) 070120 0.1000 200.0 0.084 1000 10000.1 2.2 2.5 (F) mg/m3 NA 3162a

Nominal

Uncertainty

Initial





Certified by:

Bu f. All

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al |        |    |        |    |        |    |         |       |          |      |          |      |        |    |        |    |        |    |        |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | T      | Zr | < 0.02 |

(T)= Target analyte

## **Physical Characterization:**

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

\* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. \* All standards should be stored with caps tight and under appropriate laboratory conditions.

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

20370011

Nitric Acid

40.0

(mL)

Nitric Acid



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 57081

 Lot Number:
 073021

Description: Thallium (TI)

2.0% **Expiration Date:** 073024

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Formulated By: Giovanni Esposito 073021

Reviewed By: Pedro L. Rentas 073021

**SDS Information** Expanded Dilution Initial Final (Solvent Safety Info. On Attached pg.) NIST Lot Initial Uncertainty Nominal Part Uncertainty Compound CAS# OSHA PEL (TWA) LD50 SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (µg/mL)

1000.0 1. Thallium (TI) 58181 060920 0.1000 200.0 0.084 1000 10001.0 2.2 7440-28-0 0.1 mg/m3 orl-rat 6700 mg/kg 3158 [1] Spectrum No.1 [ 14.044 sec]:57081.D# [Count] [Linear] 2.0E6 1.0E6 10 20 30 40 60 70 80 90 100 m/z->50 1.0E4 5000 110 120 130 140 150 160 170 180 190 200 m/z->1.0E6 5.0E5 m/z-> 210 220 230 240 250 260



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |        |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|--------|--------|----|--------|
| Al |        |    |        |    |        |    |         |       |          |      |          |      |        |    |        | < 0.02 |        |    |        |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te     | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | T1     | T      | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th     | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm     | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn     | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti     | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Part # **57081** Lot # **073021** Printed: 8/20/2021, 11:15:04 PM

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 $<sup>^{\</sup>star}$  Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 58030

 Lot Number:
 031921

Description: Zinc (Zn)

Part

Expiration Date: 031924

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Dilution

Initial

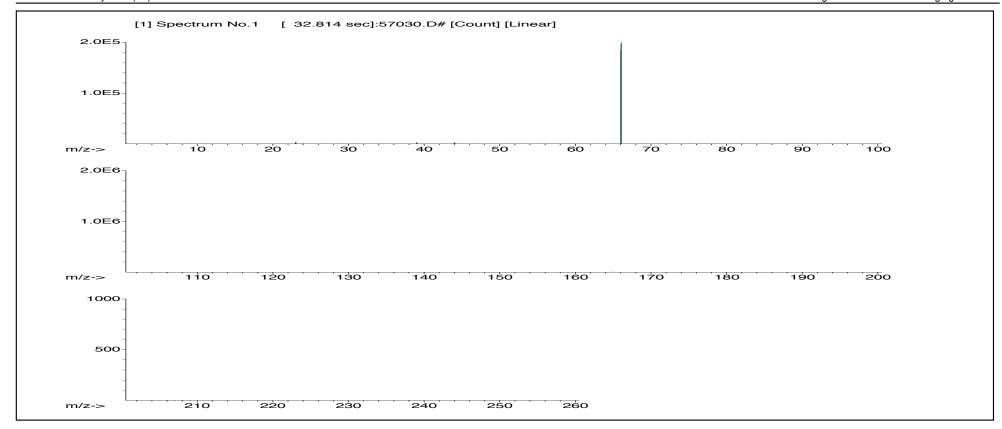
Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty

Lot

Formulated By: Giovanni Esposito 031921

Licks Kenta


Reviewed By: Pedro L. Rentas 031921

**SDS Information** 

(Solvent Safety Info. On Attached pg.)

Compound OSHA PEL (TWA) SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# LD50 1000.0 1. Zinc nitrate hexahydrate (Zn) 58130 082020 0.1000 200.0 0.084 1000 10000.3 2.2 10196-18-6 1 mg/m3 orl-rat 1190mg/kg 3168

Nominal





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bn f. Sfla

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | < 0.02 | Cd | < 0.02 | Dy | < 0.02 | Hf | < 0.02  | Li    | <0.02    | Ni   | < 0.02   | Pr   | < 0.02 | Se | <0.2   | Tb | <0.02  | W  | < 0.02 |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | <0.2     | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | T      |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 $<sup>\</sup>star$  Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

## Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com



## Certified Reference Material CRM 06/25/21

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Part Number: HPRHM Lot #

Lot Number: 58126 061021

Solvent: 20370011

Nitric Acid

Description: Iron (Fe)

7.0%

210.0

Nitric Acid

Formulated By:

Giovanni Esposito

061021

061021

TSIN

Giovannie

arear L

(mL)

**Expiration Date:** 

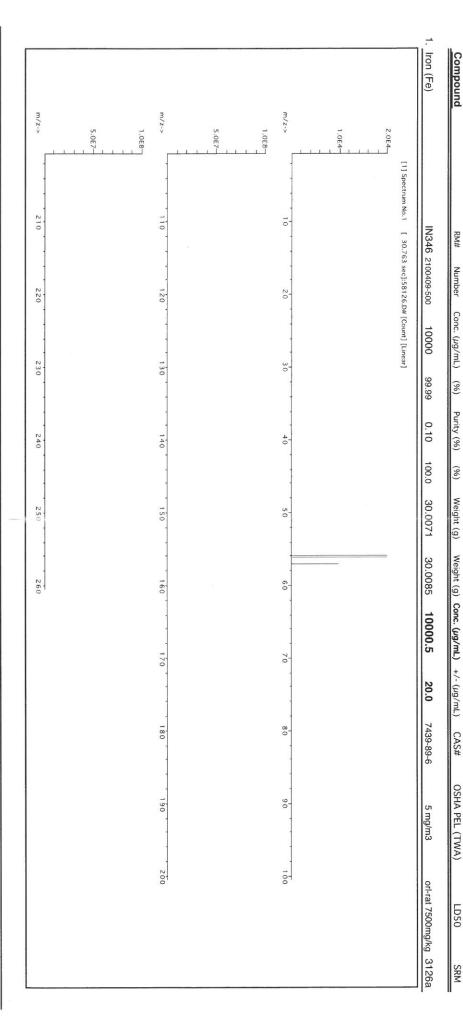
061024

Weight shown below was diluted to (mL): 3000.41 0.058 Flask Uncertainty

Lot

Nominal

Purity Uncertainty Assay


Target

Actual

Actual

Nominal Concentration (µg/mL): NIST Test Number: 10000 **6UTB** 5E-05 Balance Uncertainty

Recommended Storage: Ambient (20 °C) Expanded Uncertainty Reviewed By: SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 Pedro L. Rentas



Part # 58126



## https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |      |    |      |    |      |    | Trace N | Metals          | Verif | ication        | by ICP-MS | lS (μg/ | )/L) |    |      |    |      |    |      |
|----|------|----|------|----|------|----|---------|-----------------|-------|----------------|-----------|---------|------|----|------|----|------|----|------|
| Al | <0.3 | Са | <0.1 | Dy | <0.1 | Ж  | <0.1    |                 | <0.1  | Z.             | 75        | Pr      | <0.1 | Se | <0.5 | Тb | <0.1 | W  | <0.1 |
| Sb | 4    | Ca | ۵    | Er | <0.1 | Но | <0.1    | Lu              | <0.1  | N <sub>P</sub> | <0.1      | Re      | <0.1 | S: | <10  | Te | <0.1 | U  | <0.3 |
| As | ۵    | Се | <0.1 | Eu | <0.1 | Ín | <0.1    | M <sub>SG</sub> | < 0.5 | O <sub>s</sub> | <0.1      | Rh      | <0.1 | Ag | <0.1 | ]  | <0.1 | <  | <0.3 |
| Ba | <0.1 | Cs | <0.1 | Gd | <0.1 | Ιτ | <0.1    | Mn              | 85    | Pd             | <0.1      | Rb      | <0.1 | Na | ۵    | Th | <0.1 | Yb | <0.1 |
| Ве | <0.1 | Cr | 33   | Ga | ۵    | Fe | Т       | Hg              | <0.1  | P              | <0.1      | Ru      | <0.1 | Sr | <0.1 | Tm | <0.1 | ~  | <0.1 |
| Bi | <0.1 | Со | 80   | Ge | 60   | La | <0.1    | Mo              | ۵     | Pt             | <0.1      | Sm      | <0.1 | s  | <0.1 | Sn | ۵    | Zn | <45  |
| В  | ٥.   | Cu | 50   | Au | <0.1 | Pb | <0.3    | Nd              | <0.1  | 7              | ۵         | Sc      | <0.1 | Ta | <0.1 | Ti | <0.1 | Zr | <0.1 |
|    |      |    |      |    |      |    |         |                 |       |                |           |         |      |    |      |    |      |    |      |

(T)= Target analyte

## Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. 
\* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM



Expanded

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

Part Number: 57005 MKBQ8597V Ammonium hydroxide

Lot Number: 031921
Description: Boron (B)

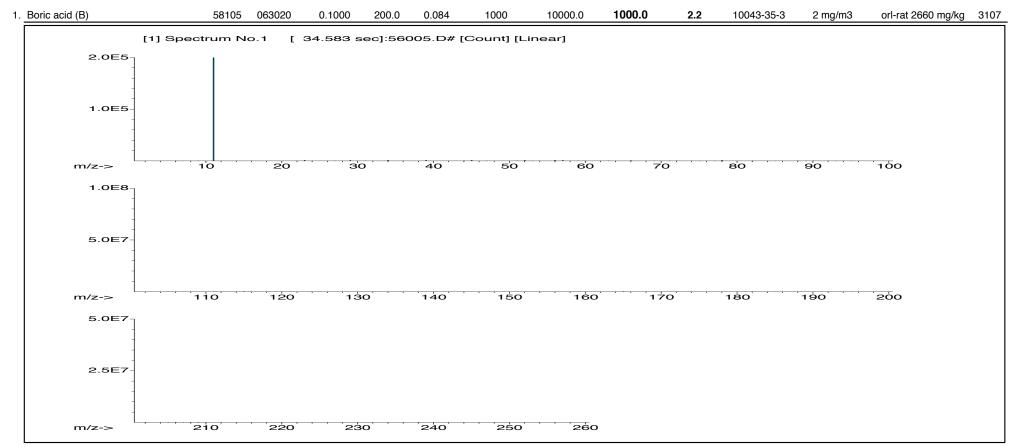
2.0% 40.0 Ammonium hy **Expiration Date:** 031924 (mL)

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty


Formulated By: Giovanni Esposito 031921

Lista Henta

Reviewed By: Pedro L. Rentas 031921

**SDS Information** 

Part Lot Dilution Initial Uncertainty Nominal Initial Final Uncertainty (Solvent Safety Info. On Attached pg.) NIST Compound OSHA PEL (TWA) LD50 SRM Number Number Factor Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS#





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu P. Sha

## **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | < 0.02 | Cd | < 0.02 | Dy | < 0.02 | Hf | < 0.02  | Li    | < 0.02   | Ni   | < 0.02   | Pr   | < 0.02 | Se | <0.2   | Tb | < 0.02 | W  | < 0.02 |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | T      | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Part # 57005 Lot # 031921 2 of 2 Printed: 4/12/2021, 11:15:01 PM

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 $<sup>^{\</sup>star}$  Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Nitric Acid

Expanded

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Lot # Solvent:

 Part Number:
 58029

 Lot Number:
 080321

Description: Copper (Cu)

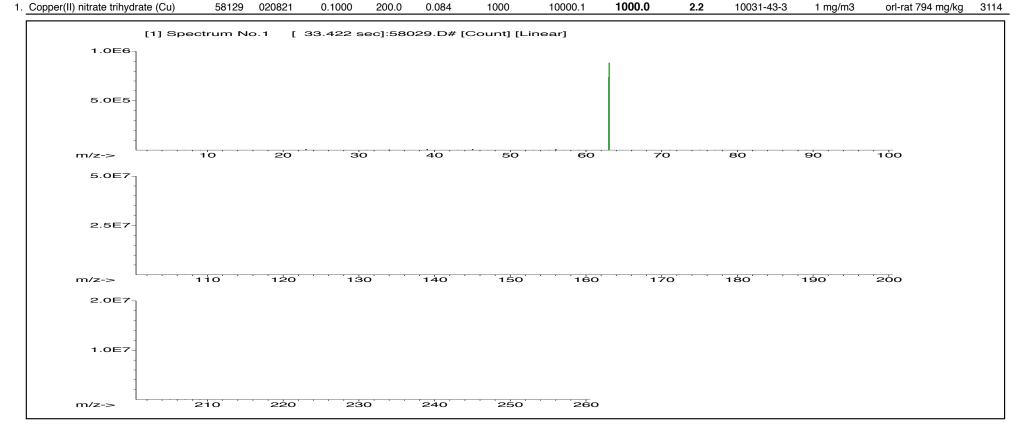
Expiration Date: 080324

Recommended Storage: Ambient (20 °C)

Nominal Concentration (µg/mL): 1000

NIST Test Number: 6UTB 5E-05 Balance Uncertainty

Volume shown below was diluted to (mL): 2000.02 0.058 Flask Uncertainty


Formulated By: Lawrence Barry 080321

Lawrence Barry 080321

Reviewed By: Pedro L. Rentas 080321

**SDS Information** 

Part Lot Dilution Initial Uncertainty Nominal Initial Final (Solvent Safety Info. On Attached pg.) NIST Uncertainty Compound OSHA PEL (TWA) SRM Number Number Factor Vol. (mL) Pipette Conc. (µg/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- (μg/mL) CAS# LD50





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (µ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | <0.02  | Dy | <0.02  | Hf | <0.02   | Li    | <0.02    | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | <0.02  | W  | <0.02  |
| Sb | < 0.02 | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | <0.2   | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | <0.02    | Rh   | < 0.02 | Ag | < 0.02 | Tl | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | <0.02    | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | <0.02    | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | T      | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | <0.2     | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

## **Physical Characterization:**

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.
- \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Bu P. Sha

Part # 58029 Lot # 080321 2 of 2 Printed: 8/23/2021, 11:15:06 PM



M4913- 16



## Certificate of Analysis

1 Reagent Lane Fair Lawn, NJ 07410 201.796.7100 tel 201.796.1329 fax

Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System Standard ISO9001:2015 by SAI Global Certificate Number CERT – 0120632

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

| Catalog Number    | P279                           | Quality Test / Release Date | 01/12/2021 |
|-------------------|--------------------------------|-----------------------------|------------|
| Lot Number        | 210306                         |                             |            |
| Description       | POTASSIUM PERMANGANATE, A.C.S. |                             |            |
| Country of Origin | United States                  | Suggested Retest Date       | Jan/2026   |

| N/A                 |           |                |                                      |
|---------------------|-----------|----------------|--------------------------------------|
| Result Name         | Units     | Specifications | Test Value                           |
| APPEARANCE          |           | REPORT         | Dark purple to purple green crystals |
| ASSAY               | %         | >= 99          | 99.3                                 |
| CHLORIDE & CHLORATE | %         | <= 0.005       | <0.005                               |
| IDENTIFICATION      | PASS/FAIL | = PASS TEST    | pass test                            |
| INSOLUBLE MATTER    | %         | <= 0.2         | <0.2                                 |
| MERCURY (Hg)        | ppm       | <= 0.05        | <0.004                               |
| SULFATE (SO4)       | %         | <= 0.02        | <0.02                                |

Julian Burton

Julian Burton - Quality Control Manager - Fair Lawn



M4917- 20

## Certificate of Analysis

1 Reagent Lane Fair Lawn, NJ 07410 201.796.7100 tel 201.796.1329 fax

Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System
Standard ISO9001:2015 by SAI Global Certificate Number CERT – 0120632

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

| Catalog Number    | T142                   | Quality Test / Release Date                                                                 | 03/22/2021            |
|-------------------|------------------------|---------------------------------------------------------------------------------------------|-----------------------|
| Lot Number        | 210800                 |                                                                                             |                       |
| Description       | STANNOUS CHLORIDE, DIF | HYDRATE CERTIFIED ACS (Suitable for Me                                                      | ercury Determination) |
| Country of Origin | United States          | Suggested Retest Date                                                                       | Mar/2026              |
| Chemical Origin   | Inorganic-non animal   |                                                                                             |                       |
| BSE/TSE Comment   |                        | as starting raw material ingredients, or used material that might migrate to the finished p |                       |

| N/A               |           |                            |                     |
|-------------------|-----------|----------------------------|---------------------|
| Result Name       | Units     | Specifications             | Test Value          |
| APPEARANCE        |           | REPORT                     | Clear crystals      |
| ASSAY             | %         | Inclusive Between 98 - 103 | 101.56              |
| CALCIUM           | %         | <= 0.005                   | <0.005              |
| IDENTIFICATION    | PASS/FAIL | = PASS TEST                | PASS TEST           |
| IRON (Fe)         | %         | <= 0.003                   | <0.003              |
| LEAD (Pb)         | %         | <= 0.01                    | <0.01               |
| MERCURY (Hg)      | ppm       | <= 0.05                    | <0.05               |
| POTASSIUM (K)     | %         | <= 0.005                   | <0.005              |
| SODIUM (Na)       | %         | <= 0.01                    | <0.01               |
| SOLUBILITY IN HCL | PASS/FAIL | = PASS TEST                | PASS TEST           |
| SULFATE (SO4)     | PASS/FAIL | = P.T. (ABOUT 0.003%)      | P.T. (ABOUT 0.003%) |

Julian Burton

Julian Burton - Quality Control Manager - Fair Lawn



| m/z-> 210                          | 5.0E7 | 1.0E8<br>5.0E7 | 2.0E5                                   | 1. Lithium nitrate (Li) | Volume shown below was diluted to (mL):  Part Lot Compound Number Number                 | Recommended Storage: Nominal Concentration (ug/mL): NIST Test Number: | Part Number: Lot Number: Description: | Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com |
|------------------------------------|-------|----------------|-----------------------------------------|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|
| O                                  |       | 0              | [ 32.093                                | 58103                   | Part Number                                                                              |                                                                       |                                       |                                                                 |
| 220                                |       | 120            | [ 32.093 sec]:58003.D# [Count] [Linear] | 010320                  | Lot<br>Number                                                                            | Ambient (20 °C)<br>1000<br>23060                                      | 57003<br>030221<br>Lithium (Li)       |                                                                 |
| 230                                |       | 130            | Ount] [Linear]                          | 0.1000                  | 2000.02 Dilution Factor                                                                  | Ċ                                                                     |                                       |                                                                 |
| A some subsequence and the same of |       |                |                                         | 200.0                   | 0.058<br>Initial<br>Vol. (mL)                                                            | 5E-05                                                                 |                                       |                                                                 |
| 240                                |       | 140            | 0                                       | 0.084                   | 0.058 Flask Uncertainty Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL) | Balance Uncertainty                                                   |                                       | ertified R                                                      |
| 250                                |       | 150            | 50                                      | 1000                    | Nominal Conc. (µg/mL)                                                                    | winty                                                                 | 19410105<br>2.0%                      | eference                                                        |
| 260                                |       | 160            | 60                                      |                         | Initial Conc. (µg/mL) C                                                                  | 3                                                                     | <b>光</b> 5                            | Certified Reference Material CRM $\mathbb{N}4^9$                |
|                                    |       |                |                                         | 1000.0                  | Final Conc. (µg/mL)                                                                      |                                                                       | Nitric Acid                           | Mc                                                              |
|                                    |       | 170            | 76                                      |                         | 11                                                                                       | Reviewed By:                                                          | Formulated                            | P893                                                            |
|                                    |       | 180            | 80                                      | 7790-69-4               | CAS                                                                                      | 3                                                                     | By:                                   |                                                                 |
|                                    |       | 190            | 90                                      | 5 mg/m3                 | SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50             | Pedro L. Rentas                                                       | Lawrence Barry                        | R:09/22/V                                                       |
|                                    |       | 200            | 100                                     | ori-rat                 | ation<br>Attached pg.)<br>LD50                                                           | 030221                                                                | 030221                                | (B) https://absolutestandards.com                               |
|                                    |       |                |                                         |                         | NIST                                                                                     |                                                                       |                                       | occredited<br>Number<br>lards.com                               |



# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

| B B AS        |        |          |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|---------------|--------|----------|----------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>4</b> 0.02 |        |          |                |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140      |
| 5 5 5         | -      | <u>ک</u> | <u>چ</u>       | 2     | 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| A 0.02        | <0.02  |          | <0.02          | 40.2  | <0.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 5 E           | 2      |          | Eu             | T.    | Dy    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 40.02         | 20.02  | 2        | <0.02          | <0.02 | 40.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| िस म          | F      |          | 7              | Но    | Hf    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|               | 40.2   | <0.02    | <0.02          | <0.02 | <0.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trace Mo |
| Mo            | Нд     | Mn       | Mg             | Ŀ     | 1.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | letals   |
| 20.02         | 402    | <0.02    | 10.0>          | <0.02 | Т     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Verifica |
| 7 7           | р -р   | Pd       | S <sub>O</sub> | ¥     | Z.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion I   |
| A.0.2         | A 0.02 | <0.02    | 40.02          | <0.02 | <0.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by ICP-M |
| Sm            | S R    | Rb       | Rh             | Re    | Pr    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in) S    |
| 40.02         | 40.02  | <0.02    | <0.02          | <0.02 | <0.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g/mL)    |
| - J           | s Sr   | Na       | Ag             | Si    | Se    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| A).02         | 40.02  | 40.2     | <0.02          | 40.02 | <0.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| H K           | S II   | 규        | Ħ              | Te    | 4T    | STREET, STREET |          |
| A) (2)        | A.02   | <0.02    | <0.02          | <0.02 | <0.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 72            | 7 ~    | 4,       | <              | c     | W     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| A 0.02        | 40.02  | 40.02    | <0.02          | 40.02 | 40.02 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

(T)= Target analyte

## Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.

  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

  \* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

## 800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com



# Certified Reference Material CRM



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: Description:

58149

100721

Indium (In)

R: 10/08/

Lot #

Solvent: 20370011 Nitric Acid

Gierannie

reporter

5%

Nitric Acid

(III) 25.0

> Formulated By: Giovanni Esposito

> > 100721

Reviewed By:

Pedro L. Rentas

100721

(Solvent Safety Info. On Attached pg.)

# OSHA PEL (TWA) LD50 SDS Information

Indium Oxide (In)

IN086 W1096A

10000

99.999

0.10

82.6

6.05408

6.05441

10000.6

20.1

1312-43-2

X

X

3124a

NIST SRM

RM#

Number Lot

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

Weight (g) Conc. (µg/mL)

+/- (µg/mL)

CAS#

Target

Actual

Actual

Uncertainty Expanded

Nominal

Purity Uncertainty Assay

Nominal Concentration (µg/mL): NIST Test Number:

10000

Ambient (20 °C)

Recommended Storage:

**Expiration Date:** 

100724

Weight shown below was diluted to (mL):

500.06

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

| 2.5E6 | m/z->   | 1.0E6 | m/z-><br>2.0E6 | 2.5E7 | 5.0E7                                   |
|-------|---------|-------|----------------|-------|-----------------------------------------|
| 270   | 110     |       | 10             |       | [1] Spectrum No.1                       |
| 220   | 120     |       | 20             |       |                                         |
| 230   | 130     |       | 30             |       | 965 sec]:57                             |
| N 40  | 140     |       | 40             |       | [ 12.965 sec]:57049.D# [Count] [Linear] |
| 2500  | 150     |       | 50             |       | .nt] [Linear]                           |
| 260   | 160     |       | 60             |       |                                         |
|       | 170 180 |       | 70 80          |       |                                         |
|       | 190     |       | 90             |       |                                         |
|       | 200     |       | 100            |       |                                         |
|       |         |       |                |       |                                         |



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|                | CHILI | -     | NO DESCRIPTION OF THE PERSON NAMED IN COLUMN |          |       | and the | 020   | H                     |             | 179 |
|----------------|-------|-------|----------------------------------------------|----------|-------|---------|-------|-----------------------|-------------|-----|
|                | ш     | Bi    | Be                                           | Ва       | As    | Sb      | 2     |                       |             |     |
|                | 0.02  | <0.02 | <0.01                                        | 40.02    | 40,2  | <0.02   | <0.02 |                       |             |     |
|                | 5     | င္ပ   | Ç                                            | CS       | Çe    | Ca      | Cd    |                       |             |     |
|                | <0.02 | <0.02 | <0.02                                        | <0.02    | <0.02 | 40.2    | <0.02 |                       |             |     |
|                | Au    | ල     | Ga                                           | <u>G</u> | 臣     | 먁       | Dy    |                       |             |     |
|                | <0.02 | <0.02 | <0.02                                        | <0.02    | <0.02 | <0.02   | <0.02 |                       |             |     |
|                | B     | La    | æ                                            | F        | In    | Но      | Hf    | NO PROPERTY.          |             |     |
|                | <0.02 | <0.02 | <0.2                                         | <0.02    | 7     | <0.02   | <0.02 |                       | Trace Me    | :   |
|                | Z.    | Mo    | Hg                                           | Mn       | Mg    | Lu      | Ľ     |                       | letals      |     |
| Tarnet analyte | 8     | <0.02 | 40.2                                         | < 0.02   | 10.05 | <0.02   | <0.02 |                       | Verificat   |     |
| anaktu         | ~     | P     | P                                            | Pd       | 0°    | S.      | Z     |                       | d noi:      |     |
|                | 3     | <0.02 | <0.02                                        | <0.02    | <0.02 | <0.02   | <0.02 |                       | y ICP-MS    |     |
| 5              | s     | Sm    | R <sub>L</sub>                               | Rb       | Rh    | Re      | Pr    |                       | (lig        |     |
| 20.00          | 4000  | <0.02 | <0.02                                        | <0.02    | <0.02 | <0.02   | <0.02 |                       | <u>m</u> L) |     |
| 100            | 1     | S     | Sr                                           | Za       | Ag    | Si      | Se    |                       |             |     |
| 20.02          | 3     | <0.02 | <0.02                                        | 40.2     | <0.02 | 40.02   | <0.2  |                       |             |     |
|                | 1     | Sn    | Tm                                           | T        | 11    | Te      | Тb    |                       |             |     |
| 20.02          | 3     | 40.02 | 40.02                                        | 40.02    | <0.02 | <0.02   | <0.02 |                       |             |     |
| 1              | 7,    | Zn    | Y                                            | 44       | <     | c       | W     |                       |             |     |
| 70.02          | 3     | <0.02 | <0.02                                        | <0.02    | <0.02 | <0.02   | <0.02 | P. Land B. C. Britain |             |     |

(I)= larger analyte

## Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

\* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

\* All standard containers are meticulously cleaned prior to use.

\* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

\* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

\* All Standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

\* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

## Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:



# Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

180/08 Lot #

Part Number: Lot Number: Description: 052521 Yttrium (Y) 58139

Solvent: 20370011

Nitric Acid

2%

Nitric Acid

Formulated By:

Lawrence Barry

052521

052521

Lumine

<u>a</u> 40.0

**Expiration Date:** 052524

Nominal Concentration (µg/mL): Recommended Storage: **6UTB** 10000 Ambient (20 °C)

Weight shown below was diluted to (mL): **NIST Test Number:** 2000.02 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Expanded Pedro L. Rentas SDS Information

| -                       | II.                                   |                                        |
|-------------------------|---------------------------------------|----------------------------------------|
| Yttrium (III) Oxide (Y) | Compound                              |                                        |
| IN087                   | RM#                                   |                                        |
| IN087 YV012015B1        | Number                                | Lot                                    |
| 10000                   | er Conc. (µg/mL) (%) Purity (%) (%) \ | Nominal                                |
| 99.999                  | (%)                                   | Purity                                 |
| 0.10                    | Purity (%)                            | Uncertainty                            |
| 77.9                    | (%)                                   | Assay                                  |
| 77.9 25.6744 25.6745    | Weight (g)                            | Target                                 |
| 25.6745                 | Weight (g)                            | Actual                                 |
| 10000.0                 | Conc. (µg/mL)                         | Actual                                 |
| <b>20.0</b> 1314-36-9   | onc. (µg/mL) +/- (µg/mL) CAS#         | Uncertainty                            |
| 1314-36-9               | CAS#                                  | (Solv                                  |
| NA                      | OSHA PEL (TWA)                        | (Solvent Safety Info. On Attached pg.) |
| N                       | LD50                                  | thed pg.)                              |
| N N                     | SRM                                   | NIST                                   |

| m/z-> | 1.0∈5 | 2.0E5 | m/z-> | 2.5E4 | 0.<br>0.<br>1.<br>1. | m/z-> | 1.0E6 | 2.016 |
|-------|-------|-------|-------|-------|----------------------|-------|-------|-------|
|       |       |       |       |       |                      |       |       |       |
| 210   |       |       | 110   |       |                      | 10    |       |       |
| N     |       |       |       |       |                      | N     |       |       |
| 220   |       |       | 120   |       |                      | 20    |       |       |
| 230   |       |       | 130   |       |                      | 30    |       |       |
| M     |       |       |       |       |                      |       |       |       |
| 240   |       |       | 140   |       |                      | 4     |       |       |
| 250   |       |       | 150   |       |                      | 50    |       |       |
|       |       |       |       |       |                      |       |       |       |
| 260   |       |       | 160   |       |                      | 60    |       |       |
|       |       |       | 170   |       |                      | 70    |       |       |
|       |       |       |       |       |                      |       |       |       |
|       |       |       | 180   |       |                      | 80    |       |       |
|       |       |       | 190   |       |                      | 90    |       |       |
|       |       |       |       |       |                      |       |       |       |
|       |       |       | 200   |       |                      | 100   |       |       |
|       |       |       |       |       |                      |       |       |       |

Part # 58139

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

(i)= larget analyte

## Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

\* All standard containers are meticulously cleaned prior to use.

\* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 $\ast$  Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

\* All Standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58139

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:



# Certified Reference Material CRM

RA



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

011421 57116 Lot Number: Part Number:

Sulfur (S) Description:

Ambient (20 °C) 011424 **Expiration Date:** Recommended Storage:

10000 23060 Nominal Concentration (µg/mL): NIST Test Number: 1999.53

5E-05 Balance Uncertainty

ASTM Type 1 Water

011421

Solvent:

Lot #

Lawrence Barry Or Formulated By:

011421

011421 Pedro L. Rentas Reviewed By:

> 0.100 Flask Uncertainty Weight shown below was diluted to (mL):

Nominal

to Co

SDS Information (Solvent Safety Info. On Attached pg.) Uncertainty Expanded Actual Actual Target Purity Uncertainty Assay

NIST SRM OSHA PEL (TWA) CAS# +/- (ng/mL) Weight (g) Conc. (µg/mL) Weight (g) Z Purity (%) (%) Conc. (µg/mL) Number RM# Compound

3181 Ž ¥ 7783-20-2 20.2 10000.2 83.2206 83.2191 24.3 0.10 99.0 100001 IN117 SLBF9912V Ammonium sulfate (S)

Lot # 011421 Part # 57116

260

250

240

230

220

210

m/z->

1.0E5



Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131



# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

| The state of |       |    |       |                |       |    | I lace me | vetais | Verillication | 5  | 를<br>한 | ) CIVI- | /JIII/8/ |    |       |    |       |    |       |
|--------------|-------|----|-------|----------------|-------|----|-----------|--------|---------------|----|--------|---------|----------|----|-------|----|-------|----|-------|
|              |       |    |       |                |       |    |           |        |               |    |        |         |          |    |       |    |       |    |       |
| Al           | <0.02 | ਤ  | <0.02 | Dy             | <0.02 | Ħ  | <0.02     | ij     | <0.02         | Z  | <0.02  | Pr      | <0.02    | Se | <0.2  | TP | <0.02 | *  | <0.02 |
| Sp           | <0.02 | రౌ | 40.2  | 占              | <0.02 | Ho | • <0.02   | 3      | <0.02         | £  | <0.02  | Re      | <0.02    | Si | <0.02 | Te | <0.02 | n  | <0.02 |
| As           | 402   | ප  | <0.02 | 岀              | <0.02 | 되  | <0.02     | Mg     | <0.01         | ő  | <0.02  | A2      | <0.02    | Ag | <0.02 | E  | <0.02 | >  | <0.02 |
| Ba           | <0.02 | ొ  | <0.02 | B              | <0.02 | 긔  | <0.02     | M      | <0.02         | R  | <0.02  | Rb      | <0.02    | Na | <0.2  | Th | <0.02 | χp | <0.02 |
| Be           | 40.01 | ర  | <0.02 | g <sub>a</sub> | <0.02 | Fe | 40.2      | Hg     | <0.2          | Д, | <0.02  | Ru      | <0.02    | Si | <0.02 | Tm | <0.02 | Y  | <0.02 |
| Bi           | <0.02 | රි | <0.02 | g              | <0.02 | Ľ  | <0.02     | Mo     | <0.02         | ┺  | <0.02  | Sm      | <0.02    | S  | T     | Sn | <0.02 | Zn | <0.02 |
| В            | <0.02 | ♂  | <0.02 | Αn             | <0.02 | Pb | < 0.02    | PN     | <0.02         | Х  | <0.2   | Sc      | <0.02    | Ta | <0.02 | Ε  | <0.02 | Z  | <0.02 |

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

\* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

\* All standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



∯https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: 57115 032921

Solvent: 20370011

Nitric Acid

Lot #

2%

Nitric Acid

Formulated By:

Lawrence Barry

032921

Rurance

(mL) 60.0

Description: Phosphorous (P)

Recommended Storage: **Expiration Date:** Ambient (20 °C) 032924

NIST Test Number: **BTU9** 

Nominal Concentration (µg/mL): Weight shown below was 10000 5E-05 Balance Uncertainty

|                 | s diluted to (mL):              | 0                         |
|-----------------|---------------------------------|---------------------------|
|                 | 3000.41                         | •                         |
|                 | 3000.41 0.058 Flask Uncertainty | CE-US Balance Uncertainty |
| Expanded        |                                 | Reviewed By:              |
| SDS Information |                                 | Pedro L. Rentas           |
| -               | 000001                          | 032921                    |

NIST SRM 3186

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Ammonium dihydrogen phosphate (P) |         |                                  | Compound                               |                        |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|----------------------------------|----------------------------------------|------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN008 PV052018A1                     |         | MAIN                             | BM#                                    |                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V052018A1                            |         | 1                                | Nimber                                 | בפר                    | 2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                                |         | Conc. (July 1111)                | Cons (male)                            | Monningi               | Nominal         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.999                               |         | (9%)                             |                                        | Furity                 | 0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                 |         | Punty (%)                        |                                        | Uncertainty Assay      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.3                                 |         | (%)                              |                                        | ASSAY                  | •               |
| The second name of the second na | 109.9063                             |         | Weight (g)                       |                                        | larget                 | •               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.9093                             |         | Weight (g)                       |                                        | Actua                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000.3                              |         | ) Conc. (ug/mL) +/- (ug/ml) CAS# |                                        | Actual                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0                                 |         | +/- (ua/ml                       | Contraction of                         | Incertainty            | expanded        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0 7722-76-1                       | 0, 1011 | CAS#                             | (50)                                   | (5)                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 ma/m3                              | (1447)  | OSHA DEL (TWA)                   | (Solvent Salety line, on Attached bg.) | ant Cafaty late On Att | and information |
| 1 44 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA<br>A                              | רביטט   | DEO                              | acried pg.)                            | noted and              | 3               |

| m/z-> | . 2500 | m/z-> | 500 | m/z->          | 2.564 | 5.0€4                                   |
|-------|--------|-------|-----|----------------|-------|-----------------------------------------|
|       |        |       |     | •              |       | [1] Spe                                 |
| 210   |        | 110   |     | 0              |       | [1] Spectrum No.1                       |
| 220   |        | 120   |     | N <sub>O</sub> |       |                                         |
| 8     |        | ā     |     | 30             |       | 12.074                                  |
| 230   |        | 130   |     |                |       | sec]:581                                |
| 240   |        | 140   |     | <b>4</b>       |       | 15.D#[C                                 |
| 250   |        | 150   |     | 50             |       | [ 12.074 sec]:58115.D# [Count] [Linear] |
| 260   |        | 160   |     | 80             |       | nearj                                   |
| U     |        |       |     |                |       |                                         |
|       |        | 170   |     | 70             |       |                                         |
|       |        | 180   |     | 80             |       |                                         |
|       |        | 190   |     | 90             |       |                                         |
|       |        | 200   |     |                |       |                                         |
|       |        | 0     |     | 100            |       |                                         |



|                     |       | В             | Bi:     | Be             | Ва    | 3          | >              | Sb       | Α                    |          |                                       |
|---------------------|-------|---------------|---------|----------------|-------|------------|----------------|----------|----------------------|----------|---------------------------------------|
|                     |       | 0.0           | <0.02   | 0.0            | ٥.٥   | 6          | 3              | - A      | 00                   |          |                                       |
|                     |       | _             | _       |                |       |            |                |          |                      |          |                                       |
|                     |       | 5             | င္ပ     | ζ              | C     | 8          | 3 6            | <u>.</u> | 2                    |          |                                       |
|                     |       | <0.02         | 40.02   | <0.02          | 40.02 | <0.02      |                | 7        | 40.02                |          |                                       |
|                     |       | Au            | Ge      | Ga             | DQ.   | Eu         | 1              | ų į      | Dγ                   |          |                                       |
|                     |       | <b>∆</b> 0.02 | 40.02   | 40.02          | <0.02 | <0.02      | 20.02          | 3 6      | A)A                  |          |                                       |
|                     |       | Р             | <u></u> | ਸ਼<br>ਜ        | r,    | In         | HO             | : :      | HF                   |          |                                       |
|                     | 1000  | A) 03         | 40.02   | A) 2           | 40.02 | <0.02      | <0.02          | 20.02    | 2003                 | 11900    | 1                                     |
|                     |       | Z :           | Mo de   | H <sub>0</sub> | M     | Mg         | Lu             |          |                      | INCLU    | Note                                  |
|                     | ŀ     |               |         |                |       |            |                |          | 1                    | V V V    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| (T)= Target analyte | 20.07 | 000           | 3 6     | 3              | 0.02  | 20.01      | 0.02           | 20.02    | 2                    |          |                                       |
| rget an             | 7     | ۲ ;           | ģ -     | o ;            | P     | ၀ွ         | N <sub>p</sub> | 2        |                      |          |                                       |
| alyte               | 7.03  | 20.02         | 3 -     | 10:00          | 400   | 40.02      | <0.02          | 40.02    |                      | by ICP-I |                                       |
|                     | Sc    | mc            | ? 2     | 7 8            | 5     | Rh         | Re             | 7        |                      | D<br>F   | 5                                     |
|                     | 40.02 | 40.02         | 40.02   | \$0.02         | 3 8   | 8          | A).02          | <0.02    |                      | /g/mL)   |                                       |
|                     | Ta    | · v.          | y,      | . 2            | 31.6  | Ag         | S:             | Se       |                      |          |                                       |
|                     | <0.02 | 40.02         | <0.02   | 8              | 20.02 | 3          | A) (2)         | 402      |                      |          |                                       |
|                     | Ti    | Sn            | Tm      | -              | 1 =   | <b>=</b> ; | <del>,</del>   | 7        |                      |          |                                       |
|                     | <0.02 | <0.02         | 40.02   | <0.02          | 20.02 | 9 9        | A 89           | <0.02    | PARTICIPATION STREET |          |                                       |
|                     | Zr    | Zn            | ×       | 4,4            | <     | ; (        | =              | W        |                      |          |                                       |
|                     | <0.02 | <0.02         | <0.02   | <0.02          | 20.02 | 2002       | 3              | 40.02    |                      |          |                                       |

## Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

\* All standard containers are meticulously cleaned prior to use.

\* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
\* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

\* All Standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



### Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

### 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



### 2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Mass Spec Solution

Catalog Number:

MSHG-10PPM

Lot Number:

S2-HG709270

Matrix:

10% (v/v) HCI

Value / Analyte(s):

10 μg/mL ea:

Mercury

Starting Material:

Hg metal

Starting Material Lot#:

1959

Starting Material Purity:

99.9994%

### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

**Certified Value:** 

 $10.001 \pm 0.053 \,\mu g/mL$ 

Density:

1.020 g/mL (measured at 20 ± 4 °C)

### **Assay Information:**

| ANALYTE | METHOD     | NIST SRM# | SRM LOT#     |
|---------|------------|-----------|--------------|
| Hg      | ICP Assay  | 3133      | 160921       |
| Hg      | EDTA       | 928       | 928          |
| Ha      | Calculated |           | See Sec. 4.2 |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

### Characterization of CRM/RM by Two or More Methods

Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$ 

 $\mathbf{X_i}$  = mean of Assay Method i with standard uncertainty  $\mathbf{u_{char}}$  i

w<sub>i</sub> = the weighting factors for each method calculated using the inverse square of

the variance.

 $\mathbf{w_i} = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$ 

CRM/RM Expanded Uncertainty (±) =  $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$ 

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$  where  $u_{char}$  i are the errors from each characterization method

u<sub>bb</sub> = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

### Characterization of CRM/RM by One Method

Certified Value,  $X_{CRM/RM}$ , where one method of characterization is used is the mean of individual results:

X<sub>CRM/RM</sub> = (X<sub>a</sub>) (u<sub>char a</sub>)

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = U<sub>CRM/RM</sub> = k (u<sup>2</sup>char a + u<sup>2</sup>bb + u<sup>2</sup>lts + u<sup>2</sup>ts) 1/2

k = coverage factor = 2

u<sub>char a</sub> = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

u<sub>lts</sub> = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

### 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

### 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

### 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

### 4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
O Ag
          0.000011 M Eu <
                            0.000201 O Na
                                              0.000004 M Se <
                                                               0.015915 O Zn <
                                                                                 0.001510
0
   Al
          0.000001 O Fe
                            0.000001 M Nb <
                                              0.000201 O Si
                                                                0.000005 M Zr <
                                                                                 0.000201
M
   As <
          0.000402 M Ga <
                            0.000201 M Nd <
                                              0.000201 M Sm <
                                                               0.000201
M
   Au <
          0.003631 M Gd <
                            0.000201 M Ni <
                                              0.000402 M
                                                        Sn <
                                                               0.001007
M
   B <
          0.001208 M
                    Ge <
                            0.000201 M Os <
                                              0.000605 M
                                                        Sr <
                                                               0.000201
M Ba <
          0.000201 M Hf <
                            0.000201 O P <
                                              0.032370 M
                                                        Ta <
                                                               0.000201
M
  Be <
          0.000201 s
                                   M Pb <
                    Hq <
                                              0.000201 M Tb <
                                                               0.000201
M Bi <
          0.000201 M
                    Ho <
                            0.000201 M Pd <
                                              0.000403 M
                                                        Te <
                                                               0.002216
0
  Ca
          0.000007 M In <
                            0.000201 M Pr <
                                              0.000201 M Th <
                                                               0.000201
M
  Cd <
          0.000201 M Ir
                            0.000201 M
                                      Pt <
                                              0.000402 M Ti <
                                                               0.000402
                                              0.000201 O TI <
M
  Ce <
          0.000201 O K
                            0.000020 M
                                      Rb <
                                                               0.016508
  Co <
M
          0.000201 M La <
                            0.000201 M
                                      Re <
                                              0.000201 M Tm <
                                                               0.000201
  Cr <
0
          0.003021 O Li <
                            0.000107 M
                                      Rh <
                                              0.000201 M U <
                                                               0.008058
M
  Cs <
          0.001208 M Lu <
                            0.000201 M Ru <
                                              0.000201 M V <
                                                               0.000201
M
  Cu <
          0.000402 O
                    Mg
                            0.000001 O
                                      S <
                                             0.053950 M W <
                                                               0.000604
M Dy <
          0.000201 M Mn <
                            0.000604 M Sb <
                                             0.001208 M Y <
                                                               0.000201
M Er <
          0.000201 M Mo
                           0.000009 M Sc <
                                             0.000201 M Yb <
                                                               0.000201
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

### 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

### 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

**Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 200.59 +2 4 Hg(OH)(aq) 1+ **Chemical Compatibility -** Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water.

**Stability -** 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container.

**Hg Containing Samples (Preparation and Solution) -** Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation questions in further detail.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

| Technique/Line     | Estimated D.L.     | Order | Interferences (underlined indicates severe) |
|--------------------|--------------------|-------|---------------------------------------------|
| ICP-MS 202 amu     | 9 ppt              | n/a   | 186W16O                                     |
| ICP-OES 184.950 nm | 0.03 / 0.005 μg/mL | 1     |                                             |
| ICP-OES 194.227 nm | 0.03 / 0.005 µg/mL | 1     | V                                           |
| ICP-OES 253.652 nm | 0.1 / 0.03 µg/mL   | 1     | Ta, Co, Th, Rh, Fe,                         |
|                    |                    |       | U                                           |

### 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

### 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

### 10.0 QUALITY STANDARD DOCUMENTATION

### 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

### 11.1 Certification Issue Date

September 22, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

### 11.2 Lot Expiration Date

- September 22, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

### 11.3 Period of Validity

| Sealed TCT | Bag | Open Date: |  |  |
|------------|-----|------------|--|--|
|            |     |            |  |  |

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong
Supervisor, Product Documentation

Mya Truong

### Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Booth

### Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Laines





### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

### QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

**NOTE:** These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

**APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.

**CAUTION:** Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

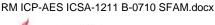
Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

### (A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.** 


### (B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

### (C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,







### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

### Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

**ICSA-1211**, **Interferents:** Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO<sub>3</sub>. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO<sub>3</sub>. Analyze this ICSAB solution by ICP-AES.

### (D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

| Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211, |
|------------------------------------------------------------------------------|
| AND ICSA-1211 MIXED WITH ICSB-0710                                           |

| Element | CRQL | Part A<br>(µg/L) | Low<br>Limit<br>(µg/L) | High<br>Limit<br>(µg/L) | Part A<br>+Part B<br>(µg/L) | Low<br>Limit<br>(µg/L) | High<br>Limit<br>(µg/L) |
|---------|------|------------------|------------------------|-------------------------|-----------------------------|------------------------|-------------------------|
| Al      | 200  | 255000           | 216000                 | 294000                  | 247000                      | 209000                 | 285000                  |
| Sb      | 60   | (0.0)            | -60.0                  | 60.0                    | 618                         | 525                    | 711                     |
| As      | 10   | (0.0)            | -10.0                  | 10.0                    | 104                         | 88.4                   | 120                     |
| Ва      | 200  | (6.0)            | -194                   | 206                     | (537)                       | 337                    | 737                     |
| Be      | 5.0  | (0.0)            | -5.0                   | 5.0                     | 495                         | 420                    | 570                     |
| Cd      | 5.0  | (1.0)            | -4.0                   | 6.0                     | 972                         | 826                    | 1120                    |
| Ca      | 5000 | 245000           | 208000                 | 282000                  | 235000                      | 199000                 | 271000                  |
| Cr      | 10   | (52.0)           | 42.0                   | 62.0                    | 542                         | 460                    | 624                     |
| Со      | 50   | (0.0)            | -50.0                  | 50.0                    | 476                         | 404                    | 548                     |
| Cu      | 25   | (2.0)            | -23.0                  | 27.0                    | 511                         | 434                    | 588                     |
| Fe      | 100  | 101000           | 85600                  | 116500                  | 99300                       | 84400                  | 114500                  |
| Pb      | 10   | (0.0)            | -10.0                  | 10.0                    | (49.0)                      | 39.0                   | 59.0                    |
| Mg      | 5000 | 255000           | 216000                 | 294000                  | 248000                      | 210000                 | 286000                  |
| Mn      | 15   | (7.0)            | -8.0                   | 22.0                    | 507                         | 430                    | 584                     |
| Ni      | 40   | (2.0)            | -38.0                  | 42.0                    | 954                         | 810                    | 1100                    |
| Se      | 35   | (0.0)            | -35.0                  | 35.0                    | (46.0)                      | 11.0                   | 81.0                    |
| Ag      | 10   | (0.0)            | -10.0                  | 10.0                    | 201                         | 170                    | 232                     |
| TI      | 25   | (0.0)            | -25.0                  | 25.0                    | (108)                       | 83.0                   | 133                     |
| V       | 50   | (0.0)            | -50.0                  | 50.0                    | 491                         | 417                    | 565                     |
| Zn      | 60   | (0.0)            | -60.0                  | 60.0                    | 952                         | 809                    | 1095                    |

ICSA M5126 M5127 M5128 M5129 M5130

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value  $\pm$  1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value  $\pm$  15 percent of the listed certified value.

value  $\pm$  15 percent of the listed certified value.

**ICSB** 

M5219

M5220

M5221

M5222

M5223

### Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com



## Certified Reference Material CRM

R: 6/2/22

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Manganese(II) nitrate tetrahydrate (Mn) Compound Nominal Concentration (µg/mL): m/z-> m/z-> m/z-> 5.0E7 1.0E8 5.0E7 1.0E8 2.5E6 5.0E6 Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: [1] Spectrum No.1 Lot Number: Description: 210 110 10 58125 Number Part **BTU9** 1000 58025 060122 Ambient (20 °C) 060125 Manganese (Mn) 021022 Number 120 220 20 Lot [ 34.243 sec]:57025.D# [Count] [Linear] 3000.41 0.1000 Dilution Factor 230 130 30 M5184 Vol. (mL) Pipette (mL) Conc. (µg/mL) 300.0 0.058 Flask Uncertainty 5E-05 Initial Balance Uncertainty 140 Uncertainty 240 40 0.084 20510011 Nominal Lot # 2.0% 1000 150 250 50 Conc. (µg/mL) Nitric Acid Solvent: 10000.5 Initial (mL) 60.0 260 160 60 Conc. (µg/mL) Nitric Acid 1000.0 Final 170 70 Formulated By: Reviewed By: Uncertainty +/- (µg/mL) Expanded 2.1 180 Ferne 80 20694-39-7 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) 190 Pedro L. Rentas Lawrence Barry 90 SDS Information 5 mg/m3 100 200 orl-rat >300mg/kg 060122 060122 3132 TSIN SRM

www.absolutestandards.com



## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|       |    |       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the last of the l | STREET, SQUARE, SQUARE | Management of the Party of the | STREET, SQUARE, SQUARE, | Charles of the latest of the l | STATE OF THE PERSON NAMED IN | CONTRACTOR AND ADDRESS OF THE PARTY NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Charge and the last of the las | THE RESIDENCE OF THE PARTY OF T |    |       |     |       | The Person named in column 2 is not the owner, where |
|-------|----|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----|-------|------------------------------------------------------|
| 40.0  | Zr | <0.02 | ∄                 | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                       | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z                            | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Au | 40.02 | δ   | 40.02 | В                                                    |
| 0.00  | Zn | <0.02 | Sn                | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                      | 40,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo                           | €0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ද  | <0.02 | င္ပ | 40.02 | Bi                                                   |
| 40.02 | Y  | <0.02 | Tm                | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Þ                       | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hg                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ga | <0.02 | 유   | 40.01 | Ве                                                   |
| <0.02 | ΥЪ | <0.02 | Th.               | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pd                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min                          | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ଜ  | <0.02 | ည   | 40.02 | Ва                                                   |
| <0.02 | <  | <0.02 | П                 | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                       | 10.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mg                           | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eu | <0.02 | င္ပ | 40.2  | As                                                   |
| 40.02 | С  | <0.02 | Te                | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$                      | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lu                           | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 딱  | 02    | Ω.  | <0.02 | Sb                                                   |
| <0.02 | W  | <0.02 | Ъ                 | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z                       | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ľ                            | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dy | <0.02 | Ю   | <0.02 | A                                                    |
|       |    |       | Section 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |     |       |                                                      |
|       |    |       | ×                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S (µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | by ICP-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion                    | Verifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metals                       | Trace M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |     |       |                                                      |
|       | -  |       | The second second | No. of Street, Square, | The Party State of the Party Sta | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE RESERVE AND PERSONS ASSESSED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |       |     |       | -                                                    |

(T)= Target analyte

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:



- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above).

- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
  \* All standards should be stored with caps tight and under appropriate laboratory conditions.
  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).





### Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

## Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number:

58120 082021 Solvent: 20370011 Lot # Nitric Acid

Lot Number: Description: Calcium (Ca)

Recommended Storage: **Expiration Date:** 082024

2%

60.0 (<u>1</u>)

Nitric Acid

Formulated By:

Giovanni Esposito

082021

Pedro L. Rentas

082021

SDS Information

Horana

Laborate

Ambient (20 °C)

Nominal Concentration (µg/mL): NIST Test Number: **BTU3** 10000

Weight shown below was diluted to (mL): 3000.4 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Expanded

| IN014 cazaszo1941 10000 99.995 0.10 39.9 75.1986 75.2065 <b>10001.0 20.0</b> 471-34-1 5 mg/m3 |
|-----------------------------------------------------------------------------------------------|
| IN014 CAZD82019A1 10000 99.8995 0.10 39.9 75.1986 75.2065 <b>10001.0</b>                      |
| [1] Spectrum No.1 [ 12.514 sec]:58120.D# [Count] [Linear]                                     |
|                                                                                               |

| m/z-> | 5.0M4 | m/z->   | 2.5 🗆 4 | m/z-> | 1.0E4 | 2.0∈4                                   |
|-------|-------|---------|---------|-------|-------|-----------------------------------------|
|       |       |         |         |       |       | [1] Spe                                 |
|       |       | 110     |         | ō     |       | [1] Spectrum No.1                       |
|       |       | 120     |         | NO    |       |                                         |
|       |       | 130     |         | ۵     |       | 12.514                                  |
|       |       | ŏ       |         | 30    |       | sec]:581                                |
|       |       | 140     |         | 40    |       | 20.D# [0                                |
|       |       | 150     |         | 50    |       | [ 12.514 sec]:58120.D# [Count] [Linear] |
|       |       | _       |         |       |       | inear                                   |
|       |       | 160     |         | 00    |       |                                         |
|       |       | 170     |         | 70    |       |                                         |
|       |       | 180     |         | 80    |       |                                         |
|       |       |         |         |       |       |                                         |
|       |       | 190     |         | 90    |       |                                         |
|       |       | N<br>00 |         | 100   |       |                                         |
|       |       |         |         |       |       |                                         |

## Certified Reference Material CRM



Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131



# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|            |       |    |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Trace Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tals | Verifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion | by ICP-A | MS (        | (ua/ml) |     |       | To the second           |       |     |       |   |
|------------|-------|----|--------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-------------|---------|-----|-------|-------------------------|-------|-----|-------|---|
|            |       |    |        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | September 1 | . 18    |     |       | STORY STORY STORY STORY |       |     |       | 7 |
| Ψ          | <0.02 | P) | <0.02  | Š  | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hf         | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17   | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ž    | <0.02    |             | <0.02   | Se  | 40.2  | F                       | 2002  | M   | 2007  |   |
| Sb         | <0.02 | S  | L      | 臣  | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ho         | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E    | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    | <0.02    | Re          | <0.02   | :5  | 200   | , t                     | 500   | : : | 7000  | _ |
| As         | 40.2  | రి | <0.02  | Eu | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ш          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mg   | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ő    | <0.02    | Rh          | 2000    | Ao  | 200   | F                       | 20:05 | >   | 7000  |   |
| Ba         | <0.02 | ర  | < 0.02 | PS | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ㅂ          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , M  | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pd   | <0.02    | Rh.         | 200     | 0 2 | 200   | Ę                       | 70.05 | > 5 | 20.02 | - |
| Be         | 100>  | ర  | <0.02  | Ga | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 괍          | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hg   | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۵    | <0.02    | Ru          | 200     | 1 3 | 200   | 1 1                     | 20.05 | 01  | 20.02 | - |
| <u>B</u> ; | <0.02 | ර  | <0.02  | Š  | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo   | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4    | <0.02    | E.          | 2000    | 5 0 | 200   | 1 5                     | 20.02 | , , | <0.02 | _ |
| В          | <0.02 | ĵ  | <0.02  | Αn | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | £          | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PN   | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×    | <0.2     | 3           | 40.02   | ) L | 20.05 | ī E                     | 20:05 | 17  | 20.02 | - |
|            |       |    |        |    | The same of the sa | The second | THE PERSON NAMED IN COLUMN NAM | -    | The second secon | 1    |          | 1           |         | -   | 20:00 |                         | 70.07 | 7   | 70.05 | - |

### Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.



Certified by:

Lot # 082021

2 of 2

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com



## Certified Reference Material CRM

0



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number:

Lot #

Solvent: 20370011 Nitric Acid

2%

60.0 (IE)

Nitric Acid

Formulated By:

Giovanni Esposito

092121

Pedro L. Rentas

092121

SDS Information

Giranie

rapider

Description: Sodium (Na)

092121 58111

Recommended Storage: **Expiration Date:** 092124

Ambient (20 °C)

Nominal Concentration (µg/mL): 10000

Weight shown below was diluted to (mL): **NIST Test Number: 6UTB** Lot 3000.41 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Actual Uncertainty Reviewed By: Expanded

| kg 3152a | orl-rat 3236 mg/kg 3152a | 5 mg/m3                                | 7631-99-4 | 20.0        | 10001.4                          | 111.1274 111.1433 | 111.1274 | 27.0  | 0.10                     | 99.999 | 10000 99.999  | IN036 NAV01201511 | IN036 | 1. Sodium nitrate (Na) |
|----------|--------------------------|----------------------------------------|-----------|-------------|----------------------------------|-------------------|----------|-------|--------------------------|--------|---------------|-------------------|-------|------------------------|
| SRM      | LD50                     | OSHA PEL (TWA)                         | CAS#      | +/- (µg/mL) | ) Conc. (µg/mL) +/- (µg/mL) CAS# | Weight (g)        |          | (%)   | Purity (%)               | 11 -   | Conc. (µg/mL) | Number            | RM#   | Compound               |
| NIST     | tached pg.)              | (Solvent Safety Info. On Attached pg.) | (So       | Uncertainty | Actual                           | Actual            | Target   | Assay | Purity Uncertainty Assay |        | Nominal       | Lot               |       |                        |

|       |       |                |       |                                          |                                                |                                        | -                       |
|-------|-------|----------------|-------|------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------|
| m/z-> | 2.5E6 | m/z-><br>5.0E6 | 2.5E6 | m/z-><br>5.0E6                           | 2.5E5                                          | 5.085                                  | . Cocioin inuale (Na)   |
|       |       |                |       |                                          |                                                | SE                                     |                         |
| 210   |       | 1 0            |       | 10                                       |                                                | [1] Spectrum No.1                      |                         |
|       |       |                |       |                                          |                                                | ,<br>Z<br>3                            | INU36 NAV01201511       |
| 220   |       | 120            |       | 20                                       |                                                |                                        | V012015I1               |
|       |       |                |       | 10.0 (0.00 1.0 (0.00 0.00 0.00 0.00 0.00 | MANAGET PERAPA ANGERSISTE BART SESSE ET SPECIE | 8.93                                   | 0000                    |
| 230   | *     | 130            |       | 30                                       |                                                | 5 sec]                                 |                         |
|       |       |                |       |                                          |                                                | :5811                                  | 99.999                  |
| 240   |       | 140            |       | 40                                       |                                                | [ 8.935 sec]:58111.D# [Count] [Linear] | 0.10                    |
|       |       |                |       | (8)                                      |                                                | Coun                                   | 27.0                    |
| 250   |       | 150            |       | O                                        |                                                | 7. [C.                                 | 111,1274                |
|       |       |                |       | 38<br>5 <b>4</b> 5                       |                                                | ear]                                   | 11                      |
| 260   |       | 160            |       | 60                                       |                                                |                                        | 111.1433                |
|       | •     |                |       |                                          |                                                |                                        | 10001.4                 |
|       |       | 170            |       | 70                                       |                                                |                                        |                         |
|       |       |                |       |                                          |                                                |                                        | 20.0                    |
|       |       | 180            |       | 80                                       |                                                |                                        | 7631-99-4               |
|       |       | 4              |       | 10                                       |                                                |                                        |                         |
|       |       | 190            |       | 90                                       |                                                |                                        | 5 mg/m3                 |
|       |       | 200            |       | 100                                      |                                                |                                        |                         |
|       |       | ŏ              |       | ŏ                                        |                                                |                                        | orl-rat 3236 mg/kg 3152 |
|       |       |                |       |                                          |                                                |                                        | 5                       |



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|                  |       | - 17  | 1 17  | -              | <b>D</b>       | S     | <b>*</b> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|-------|-------|-------|----------------|----------------|-------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | -     | 2 20  | : ~   | 20             | 15             | ŏ     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 70.02 | 0.02  | 40.01 | <0.02          | 40.2           | <0.02 | 40.02    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 3     | S &   | τ̈    | S              | ಜ              | ಬ     | 2        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <0.02 | <0.02 | <0.02 | <0.02          | <0.02          | <0.2  | 40.02    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Au    | ල     | Ga    | 6              | Eu             | ቪ     | Dy       |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | <0.02 | 40.02 | <0.02 | 40.02          | <0.02          | <0.02 | <0.02    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Pb    | 1     | Fe    | F              | In             | Н     | Hf       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <0.02 | <0.02 | 40.2  | <0.02          | <0.02          | <0.02 | <0.02    | Irace M    | THE REAL PROPERTY AND ADDRESS OF THE PERSONS ASSESSED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | Nd    | Mo    | Hg    | Mn             | Mg             | L     | Li       | Vetals     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state of the | <0.02 | 40.02 | <0.2  | <0.02          | 40.01          | 40.02 | <0.02    | Verificati | THE RESIDENCE OF THE PARTY OF T |
|                  | ~     | Pt    | P     | Pd             | S <sub>O</sub> | S     | Z        | tion       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                | <0.2  | <0.02 | <0.02 | <0.02          | <0.02          | <0.02 | <0.02    | by ICP-N   | THE REAL PROPERTY AND PERSONS ASSESSED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Sc    | Sm    | Ru    | Rb             | Rh             | Re    | 뫈        | NS (µ      | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | <0.02 | <0.02 | <0.02 | <0.02          | <0.02          | <0.02 | 40.02    | /g/mL)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Ta    | S     | Sr    | Na             | Ago            | S     | Se       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <0.02 | <0.02 | <0.02 | Н              | <0.02          | <0.02 | €0.2     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Ti    | Sn    | Tin   | 7              | ∄              | F     | 41       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <0.02 | <0.02 | <0.02 | <0.02          | <0.02          | <0.02 | <0.02    |            | THE RESERVE THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Zr    | Zh    | ~     | ۲ <del>/</del> | <              | c     | W        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <0.02 | <0.02 | <0.02 | <0.02          | <0.02          | <0.02 | <0.02    |            | The second secon |

Physical Characterization:

(1)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIŞT (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

\* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



Mellona

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

10/0/12

Fot #

Nitric Acid Solvent: 20370011 Potassium (K) 062321 57119

> Lot Number: Description:

Part Number:

CERTIFIED WEIGHT REPORT:

40.0 (mL) %

Nitric Acid

NIST 062321 062321 SDS Information
(Solvent Safety Info. On Attached pg.) Pedro L. Rentas Gabriel Helland CAS# Formulated By: Reviewed By: Weight (g) Conc. (µg/mL) +/- (µg/mL) Uncertainty Expanded Actual Actual Weight (g) Target Uncertainty Assay 8 5E-05 Balance Uncertainty 0.058 Flask Uncertainty Purity (%) Purity (%) Conc. (µg/mL) 2000.02 Nominal Ambient (20 °C) Weight shown below was diluted to (mL): 062324 Number 10000 **6UTB** ĕ RW# **Expiration Date:** Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Compound

| Potassium nitrate (K) |            | IN034 KZ062019A1 10000              | 10000  | 866.66  | 0.10   | 38.2 | 52.3570                | 52.3590 | 0.10 38.2 52.3570 52.3590 10000,4 20,0 7757-79-1 | 20.0 | 7757-79-1 | 5 ma/m3 | ori-rat 3015 molec 3141a |
|-----------------------|------------|-------------------------------------|--------|---------|--------|------|------------------------|---------|--------------------------------------------------|------|-----------|---------|--------------------------|
|                       | [1] Spectn | [1] Spectrum No.1 [ 35.763 sec]:581 | 35.763 | sec]:58 | 119.D# | Cou  | 19.D# [Count] [Linear] | ari     |                                                  |      |           | h       | Bulling                  |
| 2.0E6                 |            |                                     |        |         |        |      |                        |         |                                                  |      |           |         |                          |
| 1.0E6                 |            |                                     |        |         |        |      |                        |         |                                                  |      |           |         |                          |
| ~-z/w                 | 0          | 80                                  | Ø      | 30      | 6      |      | 9                      | 09      | 70                                               |      | 90        | 06      | 100                      |

Lot # 062321 Part # 57119

260

250

230

210

<-z/ш

5000

200

190

180

170

160

150

140

130

120

110

1.0E4 m/z->

2.0E5

1.0E5

## Certified Reference Material CRM





AR-1539 Certificate Number https://Absolutestandards.com

ANAB ISO 17034 Accredited

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|    |       |             |       |                |       |                | Trace Me               | etals           | Verifical              | ation | by ICP-MS | VIS | (ng/mL) |    |       |    |       |    |       |
|----|-------|-------------|-------|----------------|-------|----------------|------------------------|-----------------|------------------------|-------|-----------|-----|---------|----|-------|----|-------|----|-------|
|    |       | ALCONOMICS. |       | STATE STATE OF |       | Sec. at Column | SAMPLE SECTION SECTION | THE DESIGNATION | Secretary and a second |       |           |     |         |    |       |    |       |    |       |
| [A | <0.02 | 2           | <0.02 | Ų.             | <0.02 | HŁ             | <0.02                  | Ľ               | <0.02                  | Z     | <0.02     | 뇬   | <0.02   | Se | <02   | TP | <0.02 | M  | <0.02 |
| Sp | <0.02 | ೮           | 40.2  | 山              | <0.02 | He             | <0.02                  | 3               | <0.02                  | £     | <0.02     | æ   | <0.02   | Si | <0.02 | Te | <0.02 | D  | <0.02 |
| As | <0.2  | ප           | <0.02 | 盘              | <0.02 | ᄪ              | ₹0.02                  | Mg              | <0.01                  | ő     | <0.02     | Rh  | <0.02   | Ag | <0.02 | E  | <0.02 | >  | <0.02 |
| Ba | <0.02 | ర           | <0.02 | B              | <0.02 | ㅂ              | <0.02                  | Mn              | <0.02                  | Pd    | <0.02     | Rb  | <0.02   | Na | <0.2  | Ħ  | <0.02 | Yb | <0.02 |
| Be | <0.01 | Ċ           | <0.02 | Ča             | <0.02 | æ              | 402                    | Hg              | <0.2                   | Ы     | <0.02     | Ru  | <0.02   | Şr | <0.02 | Tm | <0.02 | 7  | <0.02 |
| Bi | <0.02 | රි          | <0.02 | ප              | <0.02 | 2              | <b>₹0.02</b>           | Mo              | <0.02                  | K     | <0.02     | Sm  | <0.02   | S  | <0.02 | Sn | <0.02 | Zn | <0.02 |
| В  | <0.02 | ರೆ          | <0.02 | Au             | <0.02 | Ps             | <0.02                  | PN              | <0.02                  | X     | L         | ઝ   | <0.02   | Ta | <0.02 | F  | <0.02 | 77 | <0.02 |

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.



(T)= Target analyte



\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

\* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

\* All standard containers are meticulously cleaned prior to use.

\* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

\* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). \* All standards should be stored with caps tight and under appropriate laboratory conditions.



### Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

### 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



### 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CHEM-QC-4

Lot Number: S2-MEB711674

Matrix: 3% (v/v) HNO3
 3% (v/v) HF

3 /0 (V/V) I II

Value / Analyte(s): 1 000 μg/mL ea:

Boron, Molybdenum,

Silicon, Tin,

Titanium

**Second Source**: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Boron, B  $1\,000\pm7\,\mu\text{g/mL}$  Molybdenum, Mo  $1\,000\pm5\,\mu\text{g/mL}$  Silicon, Si  $1\,000\pm7\,\mu\text{g/mL}$  Tin, Sn  $1\,000\pm5\,\mu\text{g/mL}$ 

Titanium, Ti  $1 001 \pm 6 \mu g/mL$ 

**Density:** 1.032 g/mL (measured at 20  $\pm$  4 °C)

### **Assay Information:**

| ANALYTE | METHOD    | NIST SRM# | SRM LOT# |
|---------|-----------|-----------|----------|
| В       | ICP Assay | 3107      | 110830   |
| Мо      | ICP Assay | 3134      | 130418   |
| Si      | ICP Assay | 3150      | 130912   |
| Sn      | ICP Assay | 3161a     | 140917   |
| Ti      | ICP Assay | 3162a     | 130925   |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ( $u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$ )<sup>1/2</sup> CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty u<sub>lts</sub> = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

### 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

### 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

### 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

### 4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

### 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

### 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

### 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit <a href="www.inorganicventures.com/TCT">www.inorganicventures.com/TCT</a> **HF Note:** This standard should not be prepared or stored in glass.

### 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

### 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

### 10.0 QUALITY STANDARD DOCUMENTATION

### 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

### 11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

### 11.2 Lot Expiration Date

- November 02, 2026

- Sealed TCT Rag Open Date:

- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

### 11.3 Period of Validity

|                              |                                  | -                  |           |
|------------------------------|----------------------------------|--------------------|-----------|
|                              |                                  |                    |           |
| This CDM/DM should not be us | and langer than one year (or civ | months in the cook | of a 20 m |

- Inis CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

### Certificate Approved By:

Michael Booth Director, Quality Control

### **Certifying Officer:**

Paul Gaines

Chairman / Senior Technical Director

Paul R Saines





### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

### QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

**NOTE:** These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

**APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.

**CAUTION:** Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

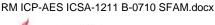
Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

### (A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.** 


### (B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

### (C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,







### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

### Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

**ICSA-1211**, **Interferents:** Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO<sub>3</sub>. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO<sub>3</sub>. Analyze this ICSAB solution by ICP-AES.

### (D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

| Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211, |
|------------------------------------------------------------------------------|
| AND ICSA-1211 MIXED WITH ICSB-0710                                           |

| Element | CRQL | Part A<br>(µg/L) | Low<br>Limit<br>(µg/L) | High<br>Limit<br>(µg/L) | Part A<br>+Part B<br>(µg/L) | Low<br>Limit<br>(µg/L) | High<br>Limit<br>(µg/L) |
|---------|------|------------------|------------------------|-------------------------|-----------------------------|------------------------|-------------------------|
| Al      | 200  | 255000           | 216000                 | 294000                  | 247000                      | 209000                 | 285000                  |
| Sb      | 60   | (0.0)            | -60.0                  | 60.0                    | 618                         | 525                    | 711                     |
| As      | 10   | (0.0)            | -10.0                  | 10.0                    | 104                         | 88.4                   | 120                     |
| Ва      | 200  | (6.0)            | -194                   | 206                     | (537)                       | 337                    | 737                     |
| Be      | 5.0  | (0.0)            | -5.0                   | 5.0                     | 495                         | 420                    | 570                     |
| Cd      | 5.0  | (1.0)            | -4.0                   | 6.0                     | 972                         | 826                    | 1120                    |
| Ca      | 5000 | 245000           | 208000                 | 282000                  | 235000                      | 199000                 | 271000                  |
| Cr      | 10   | (52.0)           | 42.0                   | 62.0                    | 542                         | 460                    | 624                     |
| Со      | 50   | (0.0)            | -50.0                  | 50.0                    | 476                         | 404                    | 548                     |
| Cu      | 25   | (2.0)            | -23.0                  | 27.0                    | 511                         | 434                    | 588                     |
| Fe      | 100  | 101000           | 85600                  | 116500                  | 99300                       | 84400                  | 114500                  |
| Pb      | 10   | (0.0)            | -10.0                  | 10.0                    | (49.0)                      | 39.0                   | 59.0                    |
| Mg      | 5000 | 255000           | 216000                 | 294000                  | 248000                      | 210000                 | 286000                  |
| Mn      | 15   | (7.0)            | -8.0                   | 22.0                    | 507                         | 430                    | 584                     |
| Ni      | 40   | (2.0)            | -38.0                  | 42.0                    | 954                         | 810                    | 1100                    |
| Se      | 35   | (0.0)            | -35.0                  | 35.0                    | (46.0)                      | 11.0                   | 81.0                    |
| Ag      | 10   | (0.0)            | -10.0                  | 10.0                    | 201                         | 170                    | 232                     |
| TI      | 25   | (0.0)            | -25.0                  | 25.0                    | (108)                       | 83.0                   | 133                     |
| V       | 50   | (0.0)            | -50.0                  | 50.0                    | 491                         | 417                    | 565                     |
| Zn      | 60   | (0.0)            | -60.0                  | 60.0                    | 952                         | 809                    | 1095                    |

ICSA M5126 M5127 M5128 M5129 M5130

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value  $\pm$  1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value  $\pm$  15 percent of the listed certified value.

value  $\pm$  15 percent of the listed certified value.

**ICSB** 

M5219

M5220

M5221

M5222

M5223

### Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com



### Certified Reference Material CRM

Nitric Acid

40.0

(mL)

Initial

Nitric Acid

Final

Expanded

Uncertainty

20370011

2.0%



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

NIST

**CERTIFIED WEIGHT REPORT:** Lot # Solvent:

> Part Number: 57051 101521 Lot Number:

**Description:** Antimony (Sb)

Part

**Expiration Date:** 101524

**Recommended Storage:** Ambient (20 °C)

1000 Nominal Concentration (µg/mL):

> **NIST Test Number:** 6UTB 5E-05 Balance Uncertainty

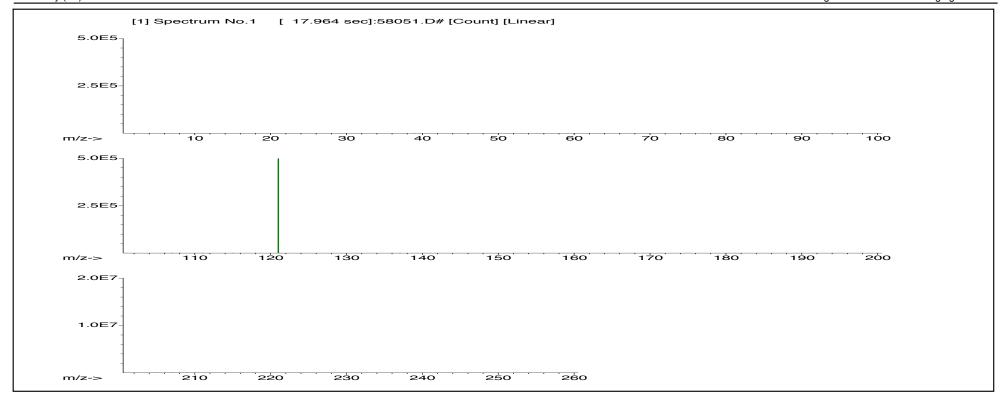
> > Dilution

Initial

Uncertainty

Volume shown below was diluted to (mL): 2000.25 0.116 Flask Uncertainty

Lot


Giovanni Esposito Giovanni Esposito Formulated By: 101521 Reviewed By Pedro L. Rentas 101521

**SDS Information** 

(Solvent Safety Info. On Attached pg.)

| Compound                          | Number | Number | Factor | Vol. (mL) | Pipette (mL) | Conc. (µg/mL) | Conc. (µg/mL) | Conc. (µg/mL) | +/- (μg/mL) | CAS#      | OSHA PEL (TWA) | LD50               | SRM   |
|-----------------------------------|--------|--------|--------|-----------|--------------|---------------|---------------|---------------|-------------|-----------|----------------|--------------------|-------|
|                                   |        |        |        |           |              |               |               |               |             |           |                |                    |       |
| <ol> <li>Antimony (Sb)</li> </ol> | 58151  | 081820 | 0.1000 | 200.0     | 0.084        | 1000          | 10001.5       | 1000.0        | 2.2         | 7440-36-0 | 0.5 mg/m3      | orl-rat 7000 mg/kg | 3102a |

Nominal



### Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Bu f. Spa

### **Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):**

|    |        |    |        |    |        |    | Trace M | etals | Verifica | tion | by ICP-M | S (μ | g/mL)  |    |        |    |        |    |        |
|----|--------|----|--------|----|--------|----|---------|-------|----------|------|----------|------|--------|----|--------|----|--------|----|--------|
| Al | <0.02  | Cd | < 0.02 | Dy | < 0.02 | Hf | < 0.02  | Li    | < 0.02   | Ni   | <0.02    | Pr   | <0.02  | Se | <0.2   | Tb | < 0.02 | W  | <0.02  |
| Sb | T      | Ca | < 0.2  | Er | < 0.02 | Но | < 0.02  | Lu    | < 0.02   | Nb   | < 0.02   | Re   | < 0.02 | Si | < 0.02 | Te | < 0.02 | U  | < 0.02 |
| As | < 0.2  | Ce | < 0.02 | Eu | < 0.02 | In | < 0.02  | Mg    | < 0.01   | Os   | < 0.02   | Rh   | < 0.02 | Ag | < 0.02 | T1 | < 0.02 | V  | < 0.02 |
| Ba | < 0.02 | Cs | < 0.02 | Gd | < 0.02 | Ir | < 0.02  | Mn    | < 0.02   | Pd   | < 0.02   | Rb   | < 0.02 | Na | < 0.2  | Th | < 0.02 | Yb | < 0.02 |
| Be | < 0.01 | Cr | < 0.02 | Ga | < 0.02 | Fe | < 0.2   | Hg    | < 0.2    | P    | < 0.02   | Ru   | < 0.02 | Sr | < 0.02 | Tm | < 0.02 | Y  | < 0.02 |
| Bi | < 0.02 | Co | < 0.02 | Ge | < 0.02 | La | < 0.02  | Mo    | < 0.02   | Pt   | < 0.02   | Sm   | < 0.02 | S  | < 0.02 | Sn | < 0.02 | Zn | < 0.02 |
| В  | < 0.02 | Cu | < 0.02 | Au | < 0.02 | Pb | < 0.02  | Nd    | < 0.02   | K    | < 0.2    | Sc   | < 0.02 | Ta | < 0.02 | Ti | < 0.02 | Zr | < 0.02 |

(T)= Target analyte

Physical Characterization: Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

Part # 57051 Lot # 101521 2 of 2 Printed: 11/22/2021, 11:15:06 PM

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

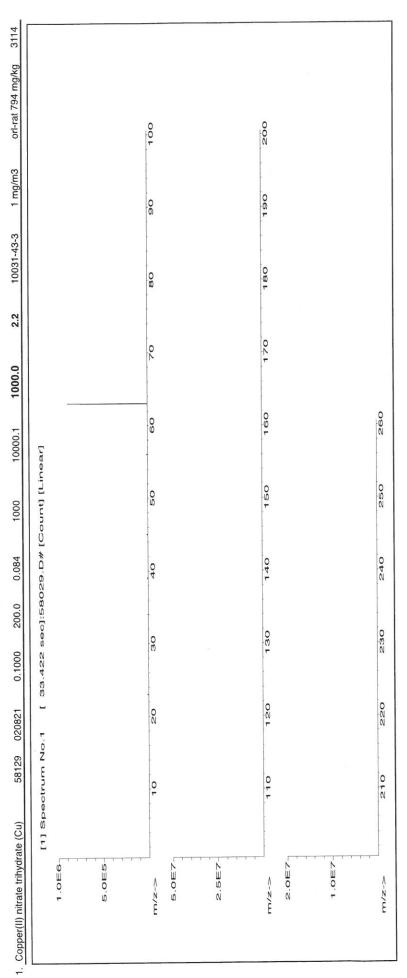
<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).


Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

W52仏 Certified Reference Material CRM

**B** 

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

| CERTIFIED WEIGHT REPORT:                |               |                 |          |           |                     | # 10T         | Solvent:      |                                                                                                      |                |        |                                        |          | ſ    |
|-----------------------------------------|---------------|-----------------|----------|-----------|---------------------|---------------|---------------|------------------------------------------------------------------------------------------------------|----------------|--------|----------------------------------------|----------|------|
| Part Number:<br>Lot Number:             |               | 58029<br>022822 |          |           |                     | 20370011      | Nitric Acid   |                                                                                                      | Livannie       | ž.     | aposto                                 |          |      |
| Description:                            |               | Copper (Cu)     | ~        |           |                     |               |               | !                                                                                                    | 7              |        |                                        |          | _    |
|                                         |               |                 |          |           |                     | 2.0%          | 40.0          | Nitric Acid F                                                                                        | Formulated By: |        | Giovanni Esposito                      | 022822   | ΛΙΙ  |
| Expiration Date:                        |               | 022825          |          |           |                     |               | (mL)          |                                                                                                      | 1              |        | (                                      |          |      |
| Recommended Storage:                    |               | Ambient (20 °C) | ()       |           |                     |               |               |                                                                                                      | 1              | M      | on the                                 |          |      |
| Nominal Concentration (µg/mL):          |               | 1000            |          |           |                     |               |               |                                                                                                      | June           |        |                                        |          | _    |
| NIST Test Number:                       |               | 6UTB            |          | 5E-05     | Balance Uncertainty | inty          |               |                                                                                                      | Reviewed By:   |        | Pedro L. Rentas                        | 022822   | ন    |
| Volume shown below was diluted to (mL): | was diluted t | o (mL):         | 2000.02  | 0.058     | Flask Uncertainty   | >             |               |                                                                                                      |                |        |                                        |          |      |
|                                         |               |                 |          |           |                     |               |               |                                                                                                      | Expanded       |        | SDS Information                        |          |      |
|                                         | Part          | Lot             | Dilution | Initial   | Uncertainty         | Nominal       | Initial       | Final                                                                                                | Uncertainty    | (Solve | (Solvent Safety Info. On Attached pg.) | hed pg.) | NIST |
| Compound                                | Number Number | umber           | Factor   | Vol. (mL) | Pipette (mL)        | Conc. (µg/mL) | Conc. (µg/mL) | Vol. (mL) Pipette (mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) Conc. ( $\mu$ g/mL) +/- ( $\mu$ g/mL) |                | CAS#   | OSHA PEL (TWA)                         | LD50     | SRM  |







## Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

|            |        |    |        |    |       |    | Trace M | Metals | Verifica            | tion    | by ICP-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S (µg             | J/mL)               |     |        |    |       |    |                                                                                                                |
|------------|--------|----|--------|----|-------|----|---------|--------|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-----|--------|----|-------|----|----------------------------------------------------------------------------------------------------------------|
|            |        |    |        |    |       |    |         |        |                     |         | The state of the s | <b>MANAGEMENT</b> | <b>Managamental</b> |     |        |    |       |    | SCHOOL STREET, |
| Α          | <0.02  | Cd | < 0.02 | Dy | <0.02 | ЭH | < 0.02  | Li     | <0.02               | Ņ.      | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pr                | <0.02               | Se  | <0.2   | ТЪ | <0.02 | *  | <0.02                                                                                                          |
| Sb         | < 0.02 | Ca | <0.2   | 퍕  | <0.02 | Но | < 0.02  | Lu     | < 0.02              | Nb      | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Re                | < 0.02              | S:  | < 0.02 | Te | <0.02 | C  | <0.02                                                                                                          |
| As         | <0.2   | Се | < 0.02 | Eu | <0.02 | In | < 0.02  | Mg     | <0.01               | Os      | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rh                | < 0.02              | Ago | < 0.02 | 11 | <0.02 | <  | < 0.02                                                                                                         |
| Ba         | < 0.02 | Cs | < 0.02 | Gd | <0.02 | İr | < 0.02  | Mn     | < 0.02              | Pd      | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rb                | < 0.02              | Na  | <0.2   | Th | <0.02 | ΥЬ | <0.02                                                                                                          |
| Be         | < 0.01 | Cr | < 0.02 | Ga | <0.02 | Fe | <0.2    | Hg     | <0.2                | P       | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ru                | < 0.02              | Sr  | < 0.02 | Tm | <0.02 | 4  | <0.02                                                                                                          |
| <u>B</u> : | < 0.02 | Со | < 0.02 | Ge | <0.02 | La | < 0.02  | Mo     | < 0.02              | Pt      | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sm                | < 0.02              | S   | < 0.02 | Sn | <0.02 | Zn | <0.02                                                                                                          |
| В          | <0.02  | Cu | T      | Au | <0.02 | Pb | <0.02   | Nd     | <0.02               | ×       | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sc                | <0.02               | Ta  | <0.02  | Ti | <0.02 | Zr | <0.02                                                                                                          |
|            |        |    |        |    |       |    |         |        | (T)- Target analyte | analyta |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |     |        |    |       |    |                                                                                                                |

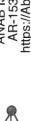
(T)= Target analyte

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.


  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

R: [0/18/221

Certified Reference Material CRM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com





ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

| 5      |                          |                                             |                   |                                                     |                     |                                         | NIST                                                   | SRM                             | 3165                         |                                       | <br>    |       |       |       |   |       |       |        |   |       |
|--------|--------------------------|---------------------------------------------|-------------------|-----------------------------------------------------|---------------------|-----------------------------------------|--------------------------------------------------------|---------------------------------|------------------------------|---------------------------------------|---------|-------|-------|-------|---|-------|-------|--------|---|-------|
| יוממוי |                          |                                             | 100121            |                                                     | 100121              |                                         | z                                                      | S                               |                              |                                       |         |       |       |       |   |       |       |        |   |       |
| 2000   |                          | 1                                           | 100               |                                                     | 100                 |                                         | pg.)                                                   | LD50                            | orl-rat 630 mg/kg            |                                       |         |       |       |       |   |       |       |        |   |       |
| 2      |                          |                                             |                   |                                                     |                     |                                         | on<br>tached                                           | _                               | orl-rat 6                    |                                       |         | 100   |       |       |   | 200   |       |        |   |       |
|        |                          | B                                           | osito             | 1                                                   | tas                 |                                         | ormation or On At                                      | WA)                             |                              |                                       |         | F     |       |       |   | Ñ     |       |        |   |       |
|        |                          | 200                                         | Giovanni Esposito | O K                                                 | Pedro L. Rentas     |                                         | SDS Information<br>Safety Info. On Attac               | OSHA PEL (TWA)                  | 1.0 mg/m3                    |                                       |         | 0     |       |       |   | 00    |       |        |   |       |
|        |                          | B                                           | Gio               | B                                                   | Ped                 |                                         | SDS Information (Solvent Safety Info. On Attached pg.) | OSH                             |                              |                                       |         | 06    |       |       |   | 190   |       |        |   |       |
|        |                          | vri.                                        |                   | 4                                                   |                     |                                         | s)                                                     | CAS#                            | 7803-55-6                    |                                       |         |       |       |       |   | 0     |       |        |   |       |
|        |                          | Liorannie                                   | ted By:           | 14                                                  | ed By:              |                                         | led<br>inty                                            | /mL)                            |                              |                                       |         | 80    |       |       |   | 180   |       |        |   |       |
| )      |                          | 五                                           | Formulated By:    | No                                                  | Reviewed By:        |                                         | Expanded<br>Uncertainty                                | +/- (µg/mL)                     | 2.1                          |                                       |         |       |       |       |   | 0     |       |        |   |       |
| ,      |                          |                                             | Nitric Acid       |                                                     | رت                  |                                         | Final                                                  | ug/mL)                          | 1000.0                       | 100                                   |         | 70    |       |       |   | 170   |       |        |   |       |
|        |                          |                                             | Nitrio            |                                                     |                     |                                         | Ē                                                      | Conc. (                         | 100                          |                                       |         |       |       |       | 5 |       |       |        |   |       |
|        | Solvent:                 | Nitric Acid                                 | 0.09              | (JE)                                                |                     |                                         | Initial                                                | Conc. (µg/mL) Conc. (µg/mL)     | 10000.4                      | -                                     |         | 9     |       |       |   | 160   |       |        |   | 260   |
|        | S                        | Nitr                                        |                   |                                                     |                     |                                         | _                                                      | - 1                             | 10                           | inear                                 |         |       |       |       |   |       |       |        |   |       |
|        | Lot #                    | 20370011                                    | 2.0%              |                                                     |                     |                                         | Nominal                                                | (mL) Pipette (mL) Conc. (µg/mL) | 1000                         | 34.243 sec]:58023.D# [Count] [Linear] |         | 50    |       |       |   | 150   |       |        |   | 250   |
|        |                          | 20                                          |                   |                                                     | ncertainty          | ertainty                                |                                                        | nL) Cond                        |                              | * [Co                                 |         |       |       |       |   |       |       |        |   |       |
|        |                          |                                             |                   |                                                     | Balance Uncertainty | Flask Uncertainty                       | Uncertainty                                            | Pipette (r                      | 0.084                        | 23. D.                                |         | 40    |       |       |   | 140   |       |        |   | 240   |
|        |                          |                                             |                   |                                                     |                     | 90.0                                    | Initial                                                | Vol. (mL)                       | 300.0                        | ]:580                                 |         |       |       |       |   |       |       |        |   |       |
|        |                          |                                             |                   |                                                     |                     |                                         |                                                        |                                 |                              | 3 8 6 0                               |         | 30    |       |       |   | 130   |       |        |   | 230   |
|        |                          | S                                           |                   | (Ç                                                  |                     | 3000.4                                  | Dilution                                               | Factor                          | 0.1000                       | 34.24                                 |         |       |       |       |   |       |       |        |   |       |
|        |                          | 57023<br>100121<br>Vanadium (V)             | 5                 | Ambient (20 °C)<br>1000                             | В                   | (mL):                                   | Lot                                                    | Number                          | 070721                       | 3                                     |         | 20    |       |       |   | 120   |       |        |   | 220   |
| )      |                          | 570<br>100<br>Van                           | 70707             | Ambie<br>1000                                       | 6UTB                | luted to                                |                                                        | Į                               |                              | No.1                                  |         |       |       |       |   |       |       |        |   |       |
|        |                          | 222                                         | i                 | ni ai <del>∷</del>                                  | Ľ                   | Volume shown below was diluted to (mL): | Part                                                   | Number                          | 58123                        | [1] Spectrum No.1                     |         | 10    |       |       |   | 110   |       |        |   | 210   |
|        |                          | Part Number:<br>Lot Number:<br>Description: | - ctol            | Recommended Storage: Nominal Concentration (µg/mL): | NIST Test Number:   | n below                                 |                                                        |                                 |                              | Spec                                  |         |       |       |       |   |       |       |        |   | Į (V  |
|        | ORT:                     | Part I<br>Lot I<br>Des                      | 40,100            | nended<br>nended<br>ntration                        | ST Test             | e show                                  |                                                        |                                 | date (V)                     | - 1                                   | <br>- 1 |       | ,     |       |   |       |       |        |   |       |
|        | HT REF                   |                                             |                   | Recomin<br>Concer                                   | ž                   | Volum                                   |                                                        |                                 | etavana                      | 2.0E6                                 | 1.0E6   | W/z-> | 2.0E7 | 1.0E7 |   | m/z-> | 5.0E8 | и<br>П | ) | m/z-> |
|        | D WEIG                   |                                             |                   | lominal                                             |                     |                                         |                                                        | puno                            | nium M                       | .,                                    | ,       | È     | "     |       |   | È     |       | ,      |   | È     |
|        | CERTIFIED WEIGHT REPORT: |                                             |                   | z                                                   |                     |                                         |                                                        | Compound                        | 1. Ammonium Metavanadate (V) |                                       | <br>    |       |       |       |   |       |       | -      |   |       |
| 1      | S                        |                                             |                   |                                                     |                     |                                         |                                                        |                                 | -                            |                                       |         |       |       |       |   |       |       |        |   |       |

Printed: 11/18/2021, 11:15:07 PM

## Certified Reference Material CRM



Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131



## Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

|    |       |          |       |    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trace M | Matale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Verifica                 | 2.5            | hy ICP N  | 2                         | ( Jun/ 2                |          | and the second                    |    |       |     |       |
|----|-------|----------|-------|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-----------|---------------------------|-------------------------|----------|-----------------------------------|----|-------|-----|-------|
|    |       |          |       |    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1      | בושוט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1                      |                | Dy ICF-IV | 2                         | g/ IIIL)                |          |                                   |    |       |     |       |
|    |       |          |       |    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | STATE | The second second second |                |           | STATE STATE OF THE PARTY. | RESOCIAL DESIGNATION OF |          | MANAGEMENT OF THE PERSON NAMED IN |    |       |     |       |
| F  | <0.02 | <u>В</u> | <0.02 | Dy | <0.02 | Hf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02   | Γį                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.02                    | ž              | <0.02     | Pr                        | <0.02                   | Se       | <0.2                              | Tb | <0.02 | M   | <0.02 |
| Sb | <0.02 | ů        | <0.2  | Ē  | <0.02 | Но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02   | Lu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.02                    | S <sub>P</sub> | <0.02     | Re                        | <0.02                   | Si       | <0.02                             | Te | <0.02 | Ξ   | <0.00 |
| As | <0.2  | ပိ       | <0.02 | En | <0.02 | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02   | Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.01                    | Os             | <0.02     | Rh                        | <0.02                   | Ag       | <0.02                             | E  | <0.02 | >   | -     |
| Ва | <0.02 | Cs       | <0.02 | PS | <0.02 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.02   | Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.02                    | Pd             | <0.02     | Rb                        | <0.02                   | Na<br>Ra | <0.2                              | Ţ  | <0.02 | . X | 200>  |
| Be | <0.01 | ڻ        | <0.02 | Ga | <0.02 | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.2    | Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.2                     | Ы              | <0.02     | Ru                        | <0.02                   | S        | <0.02                             | E  | 200>  | ; > | 20.07 |
| Bi | <0.02 | ပိ       | <0.02 | Ge | <0.02 | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02   | Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.02                    | £              | <0.02     | Sm                        | <0.02                   | S        | <0.02                             | S. | 20.02 | , Z | 20.02 |
| В  | <0.02 | Cu       | <0.02 | Αn | <0.02 | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02   | PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.02                    | ×              | <0.2      | Sc                        | <0.02                   | Та       | <0.02                             | Ë  | <0.02 | 7.  | 20.02 |
|    |       |          |       |    |       | The same of the sa |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                |           |                           |                         |          |                                   |    | -     | i   | 20:05 |

(T)= Target analyte

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.



Certified by:

the preparation of all standards.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com



### Certified Reference Material CRM 20/65



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: 57038 073021 Strontium (Sr) **BTU9** 1000 Ambient (20 °C) 073024 3000.41 5E-05 0.058 Flask Uncertainty Balance Uncertainty 20370011 Lot # 2.0% Nitric Acid Solvent: 60.0 Nitric Acid Formulated By: Reviewed By: Expanded Gievannie areas 2 Giovanni Esposito Pedro L. Rentas **SDS Information** 073021 073021

| ಲ್ಲ  | orl-rat 2750mg/kg 3153a | NA                                    | 10042-76-9 | 2.1         | 1000.0                    | 10000.1       | 1000                                 | 0.084        | 300.0    | 0.1000   | 062321 | 58138  | Strontium nitrate (Sr) |
|------|-------------------------|---------------------------------------|------------|-------------|---------------------------|---------------|--------------------------------------|--------------|----------|----------|--------|--------|------------------------|
| SRIV | LD50                    | OSHA PEL (TWA)                        | CAS#       | +/- (µg/mL) | Conc. (µg/mL) +/- (µg/mL) | Conc. (µg/mL) | Vol. (mL) Pipette (mL) Conc. (µg/mL) | Pipette (mL) | Vol. (mL | Factor   | Number | Number | Compound               |
| TSIN | ttached pg.)            | (Solvent Safety Info. On Attached pg. | (Solv      | Uncertainty | Final                     | Initial       | Nominal                              | Uncertainty  | Initial  | Dilution | ρţ     | Part   |                        |

|        | S.OE7 | m/z-> 1 | 5.0E7 | 1.0E8     | 1.0E6 | 2.0E6                                   |
|--------|-------|---------|-------|-----------|-------|-----------------------------------------|
|        |       | 110     |       | 10        |       | [1] Spectrum No.1                       |
| )      |       | 20      |       | N O       |       |                                         |
| N<br>D |       | 130     |       | 30        |       | 33.272 se                               |
| 2      |       | 140     |       | <b>\$</b> |       | c]:57038                                |
| 0 20   |       | 150     |       | 50        |       | [ 33.272 sec]:57038.D# [Count] [Linear] |
| ,<br>0 |       | 160     |       | 60        |       | t] [Linear]                             |
|        |       | 170     |       | 70        |       | _                                       |
|        |       | 180     |       | 80        |       |                                         |
|        |       | 190     |       | 90        |       |                                         |
|        |       | 200     |       | 100       |       |                                         |



https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

|                     | I     | -              |       | -     | 0     | -     | -              | -     | -     | -     | 7                                    |                                                | Г          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-------|----------------|-------|-------|-------|-------|----------------|-------|-------|-------|--------------------------------------|------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |       | B              | Id    | . !   | Be    | Ba    | -              | Ac    | Sb    | ? ;   | Al                                   |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       | <0.02          | 20.02 | 0.00  | 4001  | <0.02 | 10.4           | 3     | <0.02 | 10.04 | 2000                                 | を できる のできる できる できる できる できる できる できる できる できる できる |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       | C <sub>1</sub> | co    | 2     | ?     | S.    | 6              | ?     | က္    | 2     | 2                                    |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       | 40.02          | <0.02 | 20.02 | 3     | <0.02 | 20.02          | 3     | 02    | 20.02 | 000                                  |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       | Au             | ဂ္ဂ   | Ca    | 9 1   | 2     | n <sub>3</sub> | 1 1   | 47    | Ų     |                                      |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |       | 4000           | 40.02 | 20.02 | 6.02  | A) 02 | <0.02          |       | 80    | 20.02 | THE PERSON NAMED IN COLUMN           |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 1:0   | 5              | La    | re    | j :   | 7'    | In             | ***   | H5    | H     |                                      |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 20.02 | 3              | 6.02  | 40.2  | 20.02 | 3     | 40.02          | 20.02 | 3     | 40.02 | STATES OF THE PERSON NAMED IN COLUMN |                                                | Irace M    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 17.00 | 2              | Mo    | Hg    | IIIAI | , ,   | Me             | -     | -     | Ľ     |                                      |                                                | Vetals     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (T)= Target analyte | 20.02 | 000            | A) 02 | 40.2  | 20.02 | 3     | 10.0           | 20.02 | 3     | 40.02 |                                      |                                                | Verifica   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| analyte             | ,     | : :            | Ŗ     | P     | Pa    | 2     | os<br>Os       | IND   | i     | Z     |                                      |                                                | tion<br>On |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 7.05  | 10.01          | 3     | <0.02 | 20.02 | 3     | 40.02          | 20.02 | 3     | 40.02 |                                      | -                                              | by ICP-N   | and the Publishment of the Publi |
|                     | 36    | 311            | ŝ     | Ru    | K     | ! !   | Rh             | Ke    | ,     | Pr    |                                      | Ś                                              | S<br>S     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <0.02 | 10.02          | 3     | <0.02 | <0.02 | 000   | 4000           | <0.02 |       | <0.02 |                                      | 9,                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Ta    | ٥              | 2     | Sr    | Na    | - 6   | AG             | S     | : :   | S     | 100                                  |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <0.02 | 20.02          | 3     | -     | 40.2  | 20.02 | 3              | 40.02 | i     | 400   |                                      |                                                |            | Account of the second of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | Ti    | on             | 2     | T T   | 규     | -     | 1              | Te    |       | 7     |                                      |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <0.02 | 20.02          | 000   | <0.00 | <0.02 | 20.02 | 3              | <0.02 | 10.04 | A03   |                                      |                                                |            | The second secon |
|                     | 72    | 70             | ,     | <     | 4     | <     | 4              | c     | *     | W     |                                      |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | <0.02 | <0.02          | 10.02 | 3     | <0.02 | <0.02 | 3              | 40.02 | 20.02 | 200   |                                      |                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

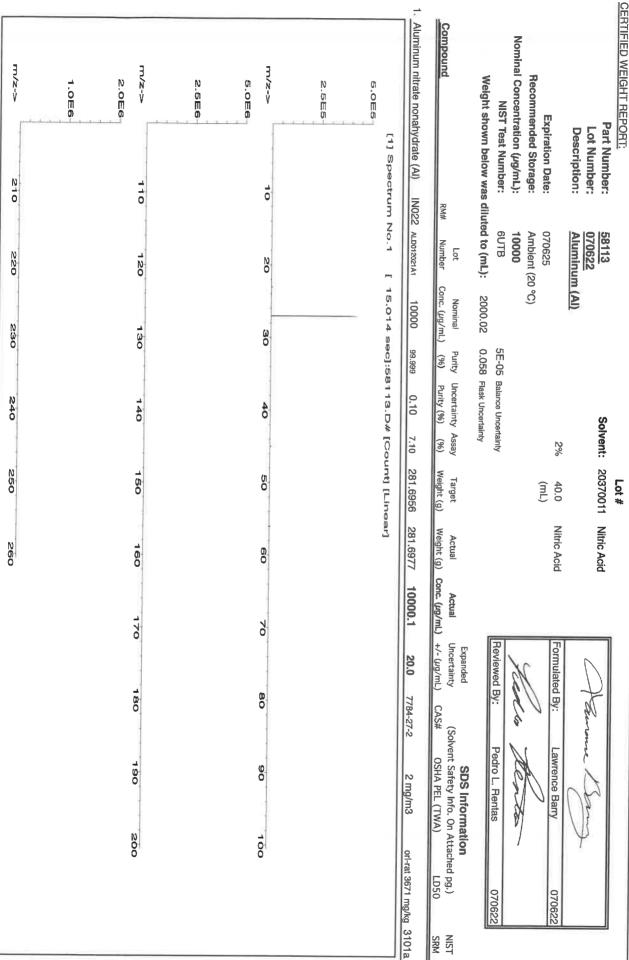
(I)= larget analyte

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

\* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in


the preparation of all standards.

<sup>\*</sup> All standard containers are meticulously cleaned prior to use.

<sup>\*</sup> Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above),

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.
\* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
\* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number





# Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

Physical Characterization:

(I)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- \* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.
  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
  \* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2







# Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

| <u> </u> | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Trace Metals Verification by ICP-MS (ua/mL) | <br>  <0.02   Dy   <0.02   Hf   <0.07   1;   <0.07   Ni   <0.10   Pr   <0.02 | 50.2 Th <0.02 W | 40.2 ET 40.02   Ho 40.02   Lu   40.02   Nb   40.02   Re   40.02   Si   40.02   To   20.02   To | < CO02 Eu < CO02 Fu < CO02 Fu < CO02 Fu < CO02 Fu < CO02 < CO03 < CO03 < CO03 < CO0 | <br><0.02 Gd <0.02 Ir <0.02 Ma <0.10 Pd <0.07 Rb <0.07 No. <0.02 No. | CO Co CO Les AO 10 CO LO TO | 12 | Co <0.10   Ge <0.10   La <0.02   Mo <0.02   Pr <0.07   Sm <0.00   Sm <0.00 | 2010 An 2000 But 2000 Sin 2000 |  |
|----------|-----------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          |                                         |                                             | Ĺ                                                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                    | _                                                               |    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

(T)= Target analyte

### Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.





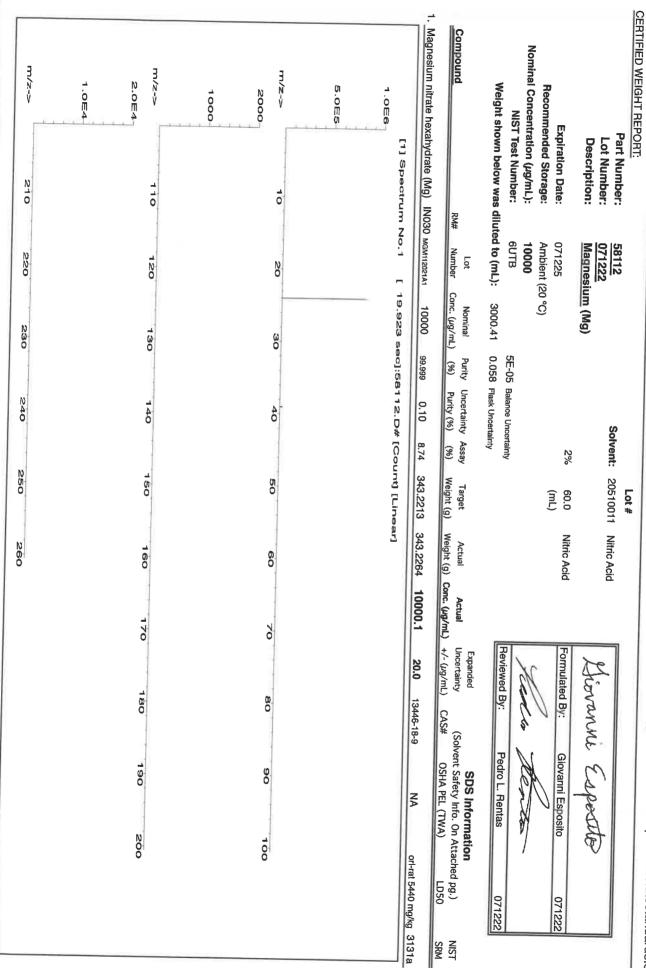
Lot # 020422

2 of 2

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

(X)

## Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com



# Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

|        |                           |          |       |        |               |        | Trace M   | Metals   | Verif                                 | ication | by ICP-N | d) St | g/mL)   |                |        | 1        |       |    |          |
|--------|---------------------------|----------|-------|--------|---------------|--------|-----------|----------|---------------------------------------|---------|----------|-------|---------|----------------|--------|----------|-------|----|----------|
| A      | 4                         | 3        | <0.00 |        | 2000          |        |           |          |                                       |         |          | I     | TO SE   |                |        | ı        |       | ı  |          |
| Ç      | 3 1                       | 9 6      | 20.02 | ر<br>ا | 20.02         | H      | <0.02     |          | <0.02                                 | N.      | <0.02    | P     | <0.02   | 00             | 3      | The same |       |    |          |
| 30     |                           | Ca       | <0.2  | 듸      | <b>△</b> 0.02 | -<br>당 | 200       | 7        | 6000                                  | T T     |          |       | 10.02   | 30             | 2.0>   | ď        | <0.02 | W  | <0.02    |
| As     |                           | 3        | 2003  | 1      |               | 1 1    | 20.02     | Į,       | <0.02                                 | Nb      | <0.02    | Re    | 20.03   | 2              | <0.00  | 7        | 3     | 1  |          |
|        | _                         | 5        | 20.02 | E      | <0.02         | İn     | ∆<br>0.02 | <b>₹</b> | -                                     | -<br>?  | 20.00    | 2     |         |                | 10.02  | ì        | 20.02 | _  | <0.02    |
| Ba     | _                         | ္ဌာ      | <0.00 | 3      | 3             | -      |           | 9        |                                       | S       | 20.02    | K     | <0.02   | A <sub>S</sub> | <0.02  |          | <0.02 | <  | 3        |
| j      |                           |          |       | 9      | 70.02         | 1      | <0.02     | MIN      | <u>^</u> 0.02                         | 2       | 2003     | Ď,    | 600     | 1              |        |          |       |    | 10.04    |
| Ве     | _                         | t.       | <0.02 | G.     | <0.02         | हा     | 2         | i i      | 5                                     | , ;     | 10.01    | 7.0   | 20.02   | Na             | <0.2   | 116      | <0.02 | 47 | <0.02    |
| 죠.     |                           | 3        | 3     | >      | i             | ,      | 10.1      | 211      | 2.0>                                  | 7       | <0.02    | Ru    | <u></u> | 2              | 2003   | 1        | 3     | 4  |          |
| ,      |                           | -        | Z0.02 | Ge     | <0.02         | La     | ∆<br>0.02 | Mo       | \$0 PA                                | À       | 3        | 2     |         | ,              | 10:01  | ш.       | 20.02 | I  | <0.02    |
| K      |                           | <u>υ</u> | <0.02 | Au     | \$0.02        | P.     | 23        | 2        | 000                                   | ; ;     | V0.02    | )III  | <0.02   | s.             | <0.02  | Sn       | <0.02 | Zn | <u> </u> |
|        |                           | ļ        |       |        |               | Ē      | 70,02     | TAU      | <0.02                                 | 7       | <0.2     | Sc    | <0.02   | i a            | \$0.02 | .]       | 3     | 7. | 000      |
|        |                           |          |       |        |               |        |           |          |                                       |         |          |       |         |                |        |          | 1000  | 12 | \0.0Z    |
| Physic | Physical Characterization |          |       |        |               |        |           |          | <ul><li>(T) =Target analyte</li></ul> | analyte | (p       |       |         |                |        |          |       |    |          |

A HYSICHI CHAFACTERIZATION:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- \* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in \* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- \* All standard containers are meticulously cleaned prior to use.
- \* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- $^{\star}$  Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated
- \* All Standards should be stored with caps tight and under appropriate laboratory conditions.

  \* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY

"An ISO 9001:2015 Certified Program"

R1.02/20/21

Instructions for QATS Reference Material: Inorganic ICV Solutions

### QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION:

For use with CLP SOWs and revisions.

**CAUTION:** 

Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

QATS Form 20-007F169R05, 05-17-2018

### (A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.



Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain-of-custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

> QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

### (C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES use: dilute the ICV1 concentrate 10-fold with 2% (v/v) nitric acid; pipet 10 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

Page 1 of 2

ICV 1, 5, 6.docx



The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.





### QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R! 02/20/20

**APTIM** 

### Instructions for QATS Reference Material: Inorganic ICV Solutions

For ICP-MS use: dilute the ICV1 concentrate 50-fold with 1% (v/v) nitric acid; pipet 2 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA: dilute the ICV5 concentrate 100-fold with 2% (v/v) nitric acid; pipet 1 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide: dilute the ICV6 concentrate 100-fold with Type II water; pipet 1 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K<sub>3</sub>Fe(CN)<sub>6</sub>, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

### (D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

| 42.1    | ICV1-1014                                     |                                                  |
|---------|-----------------------------------------------|--------------------------------------------------|
| Element | Concentration (µg/L) (after 10-fold dilution) | Concentration (μg/L)<br>(after 50-fold dilution) |
| AI      | 2520                                          | 504                                              |
| Sb      | 1010                                          | 202-                                             |
| As      | 997                                           | 199                                              |
| Ba      | 518                                           | 104                                              |
| Be      | 514                                           | 103                                              |
| Cd      | 514                                           | 103                                              |
| Ca      | 10000                                         | 2000                                             |
| Cr      | 517                                           | 103                                              |
| Co      | 521                                           | 104                                              |
| Cu      | 505                                           | 101                                              |
| Fe      | 10100                                         | 2020                                             |
| Pb      | 1030                                          | 206                                              |
| Mg      | 5990                                          | 1198                                             |
| Mn      | 524                                           | 105                                              |
| Ni      | 525                                           | . 105                                            |
| K       | 9940                                          | 1988                                             |
| Se      | 1030                                          | 206                                              |
| Ag      | 252                                           | 50                                               |
| Na      | 10100                                         | 2020                                             |
| Ti      | 1040                                          | 208                                              |
| V       | 504                                           | 101                                              |
| Zn      | 1010                                          | 202                                              |

|         | ICV5-0415                                         |         | ICV6-0400                                         |
|---------|---------------------------------------------------|---------|---------------------------------------------------|
| Element | Concentration (µg/L)<br>(after 100-fold dilution) | Analyte | Concentration (µg/L)<br>(after 100-fold dilution) |
| Hg      | . 4.0                                             | CN-     | 99                                                |

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

57056

Solvent:

20510011

Nitric Acid

8

40.0

Nitric Acid

Description: Lot Number:

072122 Barium (Ba)

Certified Reference Material CRM

Riograph 33

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Formulated By: Liovannie Giovanni Esposito appeal 2

072122

Reviewed By: Pedro L. Rentas 072122

IN023 BAD022019A1 RM# Number 5 Conc. (µg/mL) Nominal 1000 99.999 Purity 8 Uncertainty Assay Purity (%) 0.10 52.3 <u>8</u> Weight (g) 3.82417 Target Weight (g) Conc. (µg/mL) 3.82426 Actual 1000.0 Actual +/- (µg/mL) Uncertainty Expanded 2.0 10022-31-8 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information 0.5 mg/m3 orl-rat 355 mg/kg 3104a SRM TSIN

1. Barium nitrate (Ba)

Nominal Concentration (µg/mL):

1000

Ambient (20 °C) 072125

**NIST Test Number:** 

Recommended Storage:

**Expiration Date:** 

Weight shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

m/z-> **1/2-**2 17/2-Y 2.5E6 5.0E6 2.0E5 1.0ES 2.0E6 1.OE6 [1] Spectrum No.1 210 110 0 220 120 N O [ 12.514 sec]:58156.D# [Count] [Linear] 130 230 30 140 240 4 250 150 Ö. 160 260 00 170 8 180 80 190 90 200 100

## Certified Reference Material CRM



ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com


# Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

|          |       |   |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Trace M           | otolo          | Vorifico | ÷:   | 4 CO 1                                  | 3  |                                         |          |       |    |       |     |       |
|----------|-------|---|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----------------|----------|------|-----------------------------------------|----|-----------------------------------------|----------|-------|----|-------|-----|-------|
|          |       |   |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1                 | Crais<br>Crais | ۱^       |      | Š                                       | 20 | ng/mr)                                  |          |       |    |       |     |       |
|          |       |   |        |     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          | The second second |                |          |      |                                         |    |                                         |          |       |    |       | ı   |       |
| IA<br>IA | <0.02 | ొ | <0.02  | δ   | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HF       | <0.02             | ī              | <0.02    | Z    | <0.02                                   | F. | <0.05                                   | 97.      | 200   | É  | 200   | 100 | 000   |
| Sb       | <0.02 | ű | <0.5   | į.  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H        | 70.00             | -              | 200      | 11.4 | 000                                     | ,  |                                         | 3 ;      | 7     | 2  | 70.02 | A   | 70.05 |
| A        | 4     | , | 100    | 1 1 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2        | 70.00             | 7              | 70.05    | D.   | 70.02                                   | 2  | <b>40.02</b>                            | 2        | 40.02 | Te | ₹0.05 | Þ   | <0.02 |
| AS       | 7.02  | 3 | Z0:02  | 3   | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 드        | <0.02             | Mg             | Q.0.0    | ő    | <0.02                                   | Rh | CO 02                                   | Αo       | 7002  | F  | 60 6  | 77  | 9     |
| Ha       | €     | ێ | 2002   | 2   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,1       | 000               | 1              | 200      | i    |                                         | 1  | *************************************** | D<br>*   | 70.07 | 17 | 20:02 | >   | 70:05 |
|          | ٠.    | 3 | *0°0   | 3   | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =        | 70.0>             | IMI            | 70.02    | 로    | <0.02                                   | 80 | <b>20.0</b> 2                           | Z        | 89.5  | Ę  | 2000  | 5   | 500   |
| Be       | <0.01 | Ö | <0.02  | Sa  | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 윤        | 40.2              | He             | <0.2     | ۵    | 2000                                    | Ϋ́ | 200                                     | ď        | 60 6  | Ę  |       | ; ; | 70.00 |
| B.       | Q (Q) | 2 | 2002   | ď   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        | 600               | 2              | 000      | . ,  | *************************************** | 1  | 70'07                                   | <u> </u> | 70'05 |    | 70.02 | -   | Q.02  |
| i        | 000   | 3 | - N.O. | 3   | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Š        | 70'0>             | Mo             | Z0:02    | =    | <0.02                                   | Sm | <b>0.02</b>                             | S        | <0.02 | S  | SO 02 | 7,0 | 2007  |
| 20       | <0.02 | ð | <0.02  | Au  | <b>₹</b> 0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>P</b> | <0.02             | ž              | <0.02    | ×    | <0>                                     | Ů. | 20 02                                   | 5        | 5     | Ë  | 900   | 1 6 | 70.00 |
|          |       |   |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |                |          |      | 4000                                    | 2  | 70.07                                   | P        |       | _  |       | -   |       |

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.



Certified by:

2 of 2

<sup>\*</sup> The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

<sup>\*</sup> Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

<sup>\*</sup> All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

<sup>\*</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).



M5408 M5409 M5410

Material No.: 9530-33 Batch No.: 22E1662006 Manufactured Date: 2022-04-11 Retest Date: 2027-04-10

Revision No.: 0

## Certificate of Analysis

| Test                                      | Specification | Result      |
|-------------------------------------------|---------------|-------------|
| ACS – Assay (as HCI) (by acid-base titrn) | 36.5 - 38.0 % | 37.6 %      |
| ACS – Color (APHA)                        | ≤ 10          | 5           |
| ACS – Residue after Ignition              | ≤ 3 ppm       | < 1 ppm     |
| ACS – Specific Gravity at 60°/60°F        | 1.185 - 1.192 | 1.190       |
| ACS – Bromide (Br)                        | ≤ 0.005 %     | < 0.005 %   |
| ACS – Extractable Organic Substances      | ≤ 5 ppm       | < 1 ppm     |
| ACS – Free Chlorine (as Cl2)              | ≤ 0.5 ppm     | < 0.5 ppm   |
| Phosphate (PO4)                           | ≤ 0.05 ppm    | < 0.03 ppm  |
| Sulfate (SO4)                             | ≤ 0.5 ppm     | < 0.3 ppm   |
| Sulfite (SO3)                             | ≤ 0.8 ppm     | 0.3 ppm     |
| Ammonium (NH4)                            | ≤ 3 ppm       | < 1 ppm     |
| Trace Impurities – Arsenic (As)           | ≤ 0.010 ppm   | < 0.003 ppm |
| Trace Impurities – Aluminum (Al)          | ≤ 10.0 ppb    | < 0.2 ppb   |
| Arsenic and Antimony (as As)              | ≤ 5.0 ppb     | < 3.0 ppb   |
| Trace Impurities – Barium (Ba)            | ≤ 1.0 ppb     | < 0.2 ppb   |
| Trace Impurities – Beryllium (Be)         | ≤ 1.0 ppb     | < 0.2 ppb   |
| Trace Impurities – Bismuth (Bi)           | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities – Boron (B)              | ≤ 20.0 ppb    | < 5.0 ppb   |
| Trace Impurities – Cadmium (Cd)           | ≤ 1.0 ppb     | < 0.3 ppb   |
| Trace Impurities – Calcium (Ca)           | ≤ 50.0 ppb    | 37.0 ppb    |
| Trace Impurities – Chromium (Cr)          | ≤ 1.0 ppb     | < 0.4 ppb   |
| Trace Impurities – Cobalt (Co)            | ≤ 1.0 ppb     | < 0.3 ppb   |
| Trace Impurities - Copper (Cu)            | ≤ 1.0 ppb     | < 0.1 ppb   |
| Trace Impurities - Gallium (Ga)           | ≤ 1.0 ppb     | < 0.2 ppb   |
| Trace Impurities – Germanium (Ge)         | ≤ 3.0 ppb     | < 2.0 ppb   |
| Trace Impurities - Gold (Au)              | ≤ 4.0 ppb     | 0.2 ppb     |
| Heavy Metals (as Pb)                      | ≤ 100 ppb     | < 50 ppb    |
| Trace Impurities – Iron (Fe)              | ≤ 15 ppb      | 1 ppb       |

>>> Continued on page 2 >>>



Material No.: 9530-33 Batch No.: 22E1662006

| Test                                                   | Specification  | Result    |
|--------------------------------------------------------|----------------|-----------|
| Trace Impurities – Lead (Pb)                           | ≤ 1.0 ppb      | < 0.5 ppb |
| Trace Impurities – Lithium (Li)                        | ≤ 1.0 ppb      | < 0.2 ppb |
| Trace Impurities – Magnesium (Mg)                      | ≤ 10.0 ppb     | 1.0 ppb   |
| Trace Impurities – Manganese (Mn)                      | ≤ 1.0 ppb      | < 0.4 ppb |
| Trace Impurities – Mercury (Hg)                        | ≤ 0.5 ppb      | 0.1 ppb   |
| Trace Impurities – Molybdenum (Mo)                     | ≤ 10.0 ppb     | < 3.0 ppb |
| Trace Impurities – Nickel (Ni)                         | ≤ 4.0 ppb      | < 0.3 ppb |
| Trace Impurities – Niobium (Nb)                        | ≤ 1.0 ppb      | < 0.2 ppb |
| Trace Impurities – Potassium (K)                       | $\leq$ 9.0 ppb | < 2.0 ppb |
| Trace Impurities – Selenium (Se), For Information Only |                | 1.0 ppb   |
| Trace Impurities - Silicon (Si)                        | ≤ 100.0 ppb    | < 0.4 ppb |
| Trace Impurities – Silver (Ag)                         | ≤ 1.0 ppb      | < 0.3 ppb |
| Trace Impurities – Sodium (Na)                         | ≤ 100.0 ppb    | 1.9 ppb   |
| Trace Impurities – Strontium (Sr)                      | ≤ 1.0 ppb      | < 0.2 ppb |
| Trace Impurities – Tantalum (Ta)                       | ≤ 1.0 ppb      | < 0.9 ppb |
| Trace Impurities – Thallium (Tl)                       | ≤ 5.0 ppb      | < 2.0 ppb |
| Trace Impurities – Tin (Sn)                            | ≤ 5.0 ppb      | < 0.8 ppb |
| Trace Impurities – Titanium (Ti)                       | ≤ 1.0 ppb      | < 0.2 ppb |
| Trace Impurities – Vanadium (V)                        | ≤ 1.0 ppb      | < 0.2 ppb |
| Trace Impurities – Zinc (Zn)                           | ≤ 5.0 ppb      | < 0.3 ppb |
| Trace Impurities – Zirconium (Zr)                      | ≤ 1.0 ppb      | < 0.1 ppb |

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis



Material No.: 9530-33 Batch No.: 22E1662006

Test Specification Result

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA





M5411 M5412 M5413 M5414 M5415

Material No.: 9606-03 Batch No.: 22B0862001

Manufactured Date: 2022-01-28

Retest Date: 2027-01-27

Revision No.: 0

# **Certificate of Analysis**

| Test                              | Specification | Result      |
|-----------------------------------|---------------|-------------|
| Assay (HNO₃)                      | 69.0 - 70.0 % | 69.7 %      |
| Appearance                        | Passes Test   | Passes Test |
| Color (APHA)                      | ≤ 10          | 5           |
| Residue after Ignition            | ≤ 2 ppm       | < 1 ppm     |
| Chloride (CI)                     | ≤ 0.08 ppm    | < 0.03 ppm  |
| Phosphate (PO <sub>4</sub> )      | ≤ 0.10 ppm    | < 0.03 ppm  |
| Sulfate (SO₄)                     | ≤ 0.2 ppm     | < 0.2 ppm   |
| Trace Impurities - Aluminum (Al)  | ≤ 40.0 ppb    | < 1.0 ppb   |
| Arsenic and Antimony (as As)      | ≤ 5.0 ppb     | < 2.0 ppb   |
| Trace Impurities - Barium (Ba)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Beryllium (Be) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Bismuth (Bi)   | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Boron (B)      | ≤ 10.0 ppb    | < 5.0 ppb   |
| Trace Impurities - Cadmium (Cd)   | ≤ 50 ppb      | < 1 ppb     |
| Trace Impurities - Calcium (Ca)   | ≤ 50.0 ppb    | 1.5 ppb     |
| Trace Impurities - Chromium (Cr)  | ≤ 30.0 ppb    | 2.3 ppb     |
| Trace Impurities - Cobalt (Co)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Copper (Cu)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Gallium (Ga)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Germanium (Ge) | ≤ 20 ppb      | < 10 ppb    |
| Trace Impurities - Gold (Au)      | ≤ 20 ppb      | < 5 ppb     |
| Heavy Metals (as Pb)              | ≤ 100 ppb     | < 50 ppb    |
| Trace Impurities - Iron (Fe)      | ≤ 40.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Lead (Pb)      | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Lithium (Li)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Magnesium (Mg) | ≤ 20 ppb      | < 1 ppb     |
| Trace Impurities - Manganese (Mn) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Nickel (Ni)    | ≤ 20.0 ppb    | < 5.0 ppb   |



Material No.: 9606-03 Batch No.: 22B0862001

| Test                                     | Specification | Result     |
|------------------------------------------|---------------|------------|
| Trace Impurities - Niobium (Nb)          | ≤ 50.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Potassium (K)         | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silicon (Si)          | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silver (Ag)           | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Sodium (Na)           | ≤ 150.0 ppb   | < 5.0 ppb  |
| Trace Impurities - Strontium (Sr)        | ≤ 30.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Tantalum (Ta)         | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Thallium (TI)         | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Tin (Sn)              | ≤ 20.0 ppb    | < 10.0 ppb |
| Trace Impurities - Titanium (Ti)         | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Vanadium (V)          | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zinc (Zn)             | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zirconium (Zr)        | ≤ 10.0 ppb    | < 1.0 ppb  |
| Particle Count - 0.5 $\mu m$ and greater | ≤ 60 par/ml   | 4 par/ml   |
| Particle Count - 1.0 μm and greater      | ≤ 10 par/ml   | 1 par/ml   |

Nitric Acid CMOS



Material No.: 9606-03 Batch No.: 22B0862001

Test Specification Result

For Microelectronic Use Country of Origin: USA





M5411 M5412 M5413 M5414 M5415

Material No.: 9606-03 Batch No.: 22B0862001

Manufactured Date: 2022-01-28

Retest Date: 2027-01-27

Revision No.: 0

# **Certificate of Analysis**

| Test                              | Specification | Result      |
|-----------------------------------|---------------|-------------|
| Assay (HNO₃)                      | 69.0 - 70.0 % | 69.7 %      |
| Appearance                        | Passes Test   | Passes Test |
| Color (APHA)                      | ≤ 10          | 5           |
| Residue after Ignition            | ≤ 2 ppm       | < 1 ppm     |
| Chloride (CI)                     | ≤ 0.08 ppm    | < 0.03 ppm  |
| Phosphate (PO <sub>4</sub> )      | ≤ 0.10 ppm    | < 0.03 ppm  |
| Sulfate (SO₄)                     | ≤ 0.2 ppm     | < 0.2 ppm   |
| Trace Impurities - Aluminum (Al)  | ≤ 40.0 ppb    | < 1.0 ppb   |
| Arsenic and Antimony (as As)      | ≤ 5.0 ppb     | < 2.0 ppb   |
| Trace Impurities - Barium (Ba)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Beryllium (Be) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Bismuth (Bi)   | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Boron (B)      | ≤ 10.0 ppb    | < 5.0 ppb   |
| Trace Impurities - Cadmium (Cd)   | ≤ 50 ppb      | < 1 ppb     |
| Trace Impurities - Calcium (Ca)   | ≤ 50.0 ppb    | 1.5 ppb     |
| Trace Impurities - Chromium (Cr)  | ≤ 30.0 ppb    | 2.3 ppb     |
| Trace Impurities - Cobalt (Co)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Copper (Cu)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Gallium (Ga)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Germanium (Ge) | ≤ 20 ppb      | < 10 ppb    |
| Trace Impurities - Gold (Au)      | ≤ 20 ppb      | < 5 ppb     |
| Heavy Metals (as Pb)              | ≤ 100 ppb     | < 50 ppb    |
| Trace Impurities - Iron (Fe)      | ≤ 40.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Lead (Pb)      | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Lithium (Li)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Magnesium (Mg) | ≤ 20 ppb      | < 1 ppb     |
| Trace Impurities - Manganese (Mn) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Nickel (Ni)    | ≤ 20.0 ppb    | < 5.0 ppb   |



Material No.: 9606-03 Batch No.: 22B0862001

| Test                                     | Specification | Result     |
|------------------------------------------|---------------|------------|
| Trace Impurities - Niobium (Nb)          | ≤ 50.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Potassium (K)         | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silicon (Si)          | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silver (Ag)           | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Sodium (Na)           | ≤ 150.0 ppb   | < 5.0 ppb  |
| Trace Impurities - Strontium (Sr)        | ≤ 30.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Tantalum (Ta)         | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Thallium (TI)         | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Tin (Sn)              | ≤ 20.0 ppb    | < 10.0 ppb |
| Trace Impurities - Titanium (Ti)         | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Vanadium (V)          | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zinc (Zn)             | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zirconium (Zr)        | ≤ 10.0 ppb    | < 1.0 ppb  |
| Particle Count - 0.5 $\mu m$ and greater | ≤ 60 par/ml   | 4 par/ml   |
| Particle Count - 1.0 μm and greater      | ≤ 10 par/ml   | 1 par/ml   |

Nitric Acid CMOS



Material No.: 9606-03 Batch No.: 22B0862001

Test Specification Result

For Microelectronic Use Country of Origin: USA





M5416 M5417 M5418 M5419 M5420 M5421 Material No.: 9530-33 Batch No.: 22D1462006 Manufactured Date: 2022-02-24 Retest Date: 2027-02-23

Revision No.: 0

## Certificate of Analysis

| Test                                      | Specification  | Result      |
|-------------------------------------------|----------------|-------------|
| ACS – Assay (as HCl) (by acid-base titrn) | 36.5 - 38.0 %  | 37.6 %      |
| ACS – Color (APHA)                        | ≤ 10           | 5           |
| ACS – Residue after Ignition              | ≤ 3 ppm        | < 1 ppm     |
| ACS – Specific Gravity at 60°/60°F        | 1.185 - 1.192  | 1.190       |
| ACS – Bromide (Br)                        | ≤ 0.005 %      | < 0.005 %   |
| ACS – Extractable Organic Substances      | ≤ 5 ppm        | < 1 ppm     |
| ACS – Free Chlorine (as Cl <sub>2</sub> ) | ≤ 0.5 ppm      | < 0.5 ppm   |
| Phosphate (PO4)                           | ≤ 0.05 ppm     | < 0.03 ppm  |
| Sulfate (SO4)                             | ≤ 0.5 ppm      | < 0.5 ppm   |
| Sulfite (SO <sub>3</sub> )                | ≤ 0.8 ppm      | 0.3 ppm     |
| Ammonium (NH4)                            | ≤ 3 ppm        | < 1 ppm     |
| Trace Impurities – Arsenic (As)           | ≤ 0.010 ppm    | < 0.003 ppm |
| Trace Impurities – Aluminum (Al)          | ≤ 10.0 ppb     | 0.2 ppb     |
| Arsenic and Antimony (as As)              | $\leq 5.0 ppb$ | < 3.0 ppb   |
| Trace Impurities – Barium (Ba)            | ≤ 1.0 ppb      | < 0.2 ppb   |
| Trace Impurities – Beryllium (Be)         | ≤ 1.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Bismuth (Bi)           | ≤ 10.0 ppb     | < 1.0 ppb   |
| Trace Impurities - Boron (B)              | ≤ 20.0 ppb     | 1.4 ppb     |
| Trace Impurities - Cadmium (Cd)           | ≤ 1.0 ppb      | < 0.3 ppb   |
| Trace Impurities – Calcium (Ca)           | ≤ 50.0 ppb     | 48.0 ppb    |
| Trace Impurities - Chromium (Cr)          | ≤ 1.0 ppb      | < 0.4 ppb   |
| Trace Impurities – Cobalt (Co)            | ≤ 1.0 ppb      | < 0.3 ppb   |
| Trace Impurities – Copper (Cu)            | ≤ 1.0 ppb      | < 0.1 ppb   |
| Trace Impurities – Gallium (Ga)           | $\leq 1.0 ppb$ | < 0.2 ppb   |
| Trace Impurities – Germanium (Ge)         | $\leq$ 3.0 ppb | < 2.0 ppb   |
| Trace Impurities – Gold (Au)              | $\leq 4.0 ppb$ | 0.2 ppb     |
| Heavy Metals (as Pb)                      | ≤ 100 ppb      | < 50 ppb    |
| Trace Impurities – Iron (Fe)              | ≤ 15 ppb       | 2 ppb       |

>>> Continued on page 2 >>>



Material No.: 9530-33 Batch No.: 22D1462006

| Test                                                   | Specification  | Result     |
|--------------------------------------------------------|----------------|------------|
| Trace Impurities – Lead (Pb)                           | ≤ 1.0 ppb      | < 0.5 ppb  |
| Trace Impurities – Lithium (Li)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Magnesium (Mg)                      | ≤ 10.0 ppb     | 0.7 ppb    |
| Trace Impurities – Manganese (Mn)                      | ≤ 1.0 ppb      | < 0.4 ppb  |
| Trace Impurities - Mercury (Hg)                        | ≤ 0.5 ppb      | < 0.1 ppb  |
| Trace Impurities - Molybdenum (Mo)                     | ≤ 10.0 ppb     | < 5.0 ppb  |
| Trace Impurities - Nickel (Ni)                         | ≤ 4.0 ppb      | < 0.3 ppb  |
| Trace Impurities - Niobium (Nb)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Potassium (K)                       | $\leq$ 9.0 ppb | < 2.0 ppb  |
| Trace Impurities - Selenium (Se), For Information Only |                | < 1.0 ppb  |
| Trace Impurities - Silicon (Si)                        | ≤ 100.0 ppb    | < 10.0 ppb |
| Trace Impurities – Silver (Ag)                         | ≤ 1.0 ppb      | < 0.3 ppb  |
| Trace Impurities – Sodium (Na)                         | ≤ 100.0 ppb    | < 5.0 ppb  |
| Trace Impurities – Strontium (Sr)                      | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Tantalum (Ta)                       | ≤ 1.0 ppb      | < 0.9 ppb  |
| Trace Impurities – Thallium (Tl)                       | ≤ 5.0 ppb      | < 0.9 ppb  |
| Trace Impurities – Tin (Sn)                            | ≤ 5.0 ppb      | < 0.8 ppb  |
| Trace Impurities – Titanium (Ti)                       | ≤ 1.0 ppb      | 0.3 ppb    |
| Trace Impurities – Vanadium (V)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Zinc (Zn)                           | ≤ 5.0 ppb      | 0.5 ppb    |
| Trace Impurities - Zirconium (Zr)                      | ≤ 1.0 ppb      | < 0.1 ppb  |

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis



Material No.: 9530-33 Batch No.: 22D1462006

Test Specification Result

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA





M5416 M5417 M5418 M5419 M5420 M5421 Material No.: 9530-33 Batch No.: 22D1462006 Manufactured Date: 2022-02-24 Retest Date: 2027-02-23

Revision No.: 0

## Certificate of Analysis

| Test                                      | Specification  | Result      |
|-------------------------------------------|----------------|-------------|
| ACS – Assay (as HCl) (by acid-base titrn) | 36.5 - 38.0 %  | 37.6 %      |
| ACS – Color (APHA)                        | ≤ 10           | 5           |
| ACS – Residue after Ignition              | ≤ 3 ppm        | < 1 ppm     |
| ACS – Specific Gravity at 60°/60°F        | 1.185 - 1.192  | 1.190       |
| ACS – Bromide (Br)                        | ≤ 0.005 %      | < 0.005 %   |
| ACS – Extractable Organic Substances      | ≤ 5 ppm        | < 1 ppm     |
| ACS – Free Chlorine (as Cl <sub>2</sub> ) | ≤ 0.5 ppm      | < 0.5 ppm   |
| Phosphate (PO4)                           | ≤ 0.05 ppm     | < 0.03 ppm  |
| Sulfate (SO4)                             | ≤ 0.5 ppm      | < 0.5 ppm   |
| Sulfite (SO <sub>3</sub> )                | ≤ 0.8 ppm      | 0.3 ppm     |
| Ammonium (NH4)                            | ≤ 3 ppm        | < 1 ppm     |
| Trace Impurities – Arsenic (As)           | ≤ 0.010 ppm    | < 0.003 ppm |
| Trace Impurities – Aluminum (Al)          | ≤ 10.0 ppb     | 0.2 ppb     |
| Arsenic and Antimony (as As)              | $\leq 5.0 ppb$ | < 3.0 ppb   |
| Trace Impurities – Barium (Ba)            | ≤ 1.0 ppb      | < 0.2 ppb   |
| Trace Impurities – Beryllium (Be)         | ≤ 1.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Bismuth (Bi)           | ≤ 10.0 ppb     | < 1.0 ppb   |
| Trace Impurities - Boron (B)              | ≤ 20.0 ppb     | 1.4 ppb     |
| Trace Impurities - Cadmium (Cd)           | ≤ 1.0 ppb      | < 0.3 ppb   |
| Trace Impurities – Calcium (Ca)           | ≤ 50.0 ppb     | 48.0 ppb    |
| Trace Impurities - Chromium (Cr)          | ≤ 1.0 ppb      | < 0.4 ppb   |
| Trace Impurities – Cobalt (Co)            | ≤ 1.0 ppb      | < 0.3 ppb   |
| Trace Impurities – Copper (Cu)            | ≤ 1.0 ppb      | < 0.1 ppb   |
| Trace Impurities – Gallium (Ga)           | $\leq 1.0 ppb$ | < 0.2 ppb   |
| Trace Impurities – Germanium (Ge)         | $\leq$ 3.0 ppb | < 2.0 ppb   |
| Trace Impurities – Gold (Au)              | $\leq 4.0 ppb$ | 0.2 ppb     |
| Heavy Metals (as Pb)                      | ≤ 100 ppb      | < 50 ppb    |
| Trace Impurities – Iron (Fe)              | ≤ 15 ppb       | 2 ppb       |

>>> Continued on page 2 >>>



Material No.: 9530-33 Batch No.: 22D1462006

| Test                                                   | Specification  | Result     |
|--------------------------------------------------------|----------------|------------|
| Trace Impurities – Lead (Pb)                           | ≤ 1.0 ppb      | < 0.5 ppb  |
| Trace Impurities – Lithium (Li)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Magnesium (Mg)                      | ≤ 10.0 ppb     | 0.7 ppb    |
| Trace Impurities – Manganese (Mn)                      | ≤ 1.0 ppb      | < 0.4 ppb  |
| Trace Impurities - Mercury (Hg)                        | ≤ 0.5 ppb      | < 0.1 ppb  |
| Trace Impurities - Molybdenum (Mo)                     | ≤ 10.0 ppb     | < 5.0 ppb  |
| Trace Impurities - Nickel (Ni)                         | ≤ 4.0 ppb      | < 0.3 ppb  |
| Trace Impurities - Niobium (Nb)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Potassium (K)                       | $\leq$ 9.0 ppb | < 2.0 ppb  |
| Trace Impurities - Selenium (Se), For Information Only |                | < 1.0 ppb  |
| Trace Impurities - Silicon (Si)                        | ≤ 100.0 ppb    | < 10.0 ppb |
| Trace Impurities – Silver (Ag)                         | ≤ 1.0 ppb      | < 0.3 ppb  |
| Trace Impurities – Sodium (Na)                         | ≤ 100.0 ppb    | < 5.0 ppb  |
| Trace Impurities – Strontium (Sr)                      | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Tantalum (Ta)                       | ≤ 1.0 ppb      | < 0.9 ppb  |
| Trace Impurities – Thallium (Tl)                       | ≤ 5.0 ppb      | < 0.9 ppb  |
| Trace Impurities – Tin (Sn)                            | ≤ 5.0 ppb      | < 0.8 ppb  |
| Trace Impurities – Titanium (Ti)                       | ≤ 1.0 ppb      | 0.3 ppb    |
| Trace Impurities – Vanadium (V)                        | ≤ 1.0 ppb      | < 0.2 ppb  |
| Trace Impurities – Zinc (Zn)                           | ≤ 5.0 ppb      | 0.5 ppb    |
| Trace Impurities - Zirconium (Zr)                      | ≤ 1.0 ppb      | < 0.1 ppb  |

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis



Material No.: 9530-33 Batch No.: 22D1462006

Test Specification Result

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA



Nitric Acid CMOS



M5423 M5424 M5425 M5426 M5427 M5428

Material No.: 9606-03 Batch No.: 22C0462001

Manufactured Date: 2022-02-11

Retest Date: 2027-02-10

Revision No.: 0

# Certificate of Analysis

| Test                              | Specification | Result      |
|-----------------------------------|---------------|-------------|
| Assay (HNO₃)                      | 69.0 - 70.0 % | 69.4 %      |
| Appearance                        | Passes Test   | Passes Test |
| Color (APHA)                      | ≤ 10          | 5           |
| Residue after Ignition            | ≤ 2 ppm       | < 1 ppm     |
| Chloride (CI)                     | ≤ 0.08 ppm    | < 0.03 ppm  |
| Phosphate (PO <sub>4</sub> )      | ≤ 0.10 ppm    | < 0.03 ppm  |
| Sulfate (SO <sub>4</sub> )        | ≤ 0.2 ppm     | < 0.2 ppm   |
| Trace Impurities - Aluminum (Al)  | ≤ 40.0 ppb    | < 1.0 ppb   |
| Arsenic and Antimony (as As)      | ≤ 5.0 ppb     | < 2.0 ppb   |
| Trace Impurities - Barium (Ba)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Beryllium (Be) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Bismuth (Bi)   | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Boron (B)      | ≤ 10.0 ppb    | < 5.0 ppb   |
| Trace Impurities - Cadmium (Cd)   | ≤ 50 ppb      | < 1 ppb     |
| Trace Impurities - Calcium (Ca)   | ≤ 50.0 ppb    | 1.2 ppb     |
| Trace Impurities - Chromium (Cr)  | ≤ 30.0 ppb    | 1.7 ppb     |
| Trace Impurities - Cobalt (Co)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Copper (Cu)    | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Gallium (Ga)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Germanium (Ge) | ≤ 20 ppb      | < 10 ppb    |
| Trace Impurities - Gold (Au)      | ≤ 20 ppb      | < 5 ppb     |
| Heavy Metals (as Pb)              | ≤ 100 ppb     | < 50 ppb    |
| Trace Impurities - Iron (Fe)      | ≤ 40.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Lead (Pb)      | ≤ 20.0 ppb    | < 10.0 ppb  |
| Trace Impurities - Lithium (Li)   | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Magnesium (Mg) | ≤ 20 ppb      | < 1 ppb     |
| Trace Impurities - Manganese (Mn) | ≤ 10.0 ppb    | < 1.0 ppb   |
| Trace Impurities - Nickel (Ni)    | ≤ 20.0 ppb    | < 5.0 ppb   |



Material No.: 9606-03 Batch No.: 22C0462001

| Test                                | Specification | Result     |
|-------------------------------------|---------------|------------|
| Trace Impurities - Niobium (Nb)     | ≤ 50.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Potassium (K)    | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silicon (Si)     | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities - Silver (Ag)      | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Sodium (Na)      | ≤ 150.0 ppb   | < 5.0 ppb  |
| Trace Impurities - Strontium (Sr)   | ≤ 30.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Tantalum (Ta)    | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Thallium (TI)    | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Tin (Sn)         | ≤ 20.0 ppb    | < 10.0 ppb |
| Trace Impurities - Titanium (Ti)    | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Vanadium (V)     | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zinc (Zn)        | ≤ 20.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zirconium (Zr)   | ≤ 10.0 ppb    | < 1.0 ppb  |
| Particle Count - 0.5 μm and greater | ≤ 60 par/ml   | 7 par/ml   |
| Particle Count - 1.0 μm and greater | ≤ 10 par/ml   | 2 par/ml   |

Nitric Acid CMOS



Material No.: 9606-03 Batch No.: 22C0462001

Test Specification Result

For Microelectronic Use Country of Origin: USA



N5285 NS286 9/7/2022 A.I

# CORCO CHEMICAL CORPORATION

Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

## **CERTIFICATE OF ANALYSIS**

Date: 8/3/2022

Lot No 820803

## Hydrogen Peroxide, ACS

Reagent Grade

| TEST                        | MAXIMUM LIMITS                                       | RESULT        |
|-----------------------------|------------------------------------------------------|---------------|
| Appearance                  | Colorless and free from suspended matter or sediment | Pass          |
| Assay                       | 29-32%                                               | 31.4%         |
| Color (APHA)                | 10                                                   | 5             |
| Residue after Evaporation   | 0.002%                                               | .0001%        |
| Titratable Acid             | 0.0006 meq/g                                         | < .0006 meq/g |
| Chloride (CI)               | 2 ppm                                                | < 1 ppm       |
| Nitrate (NO <sub>3</sub> )  | 2 ppm                                                | < 1 ppm       |
| Phosphate                   | 2 ppm                                                | < 1 ppm       |
| Sulfate (SO <sub>4</sub> )  | 5 ppm                                                | < .5 ppm      |
| Ammonium (NH <sub>4</sub> ) | 5 ppm                                                | < 1 ppm       |
| Heavy Metals (as Pb)        | 1 ppm                                                | < .1 ppm      |
| Iron (Fe)                   | 0.5 ppm                                              | < .1 ppm      |
| Sodium Stannate             | 200 – 300 ppb                                        | Pass          |

<sup>\*\*\*</sup>Our Hydrogen Peroxide is considered un-stabilized because it is very slightly stabilized with Sodium Stannate, 500 ppb maximum, just for safety purposes.

Date of MFG: 8/2022 Retest date: 8/2024

Gina M. Rambo
Office Manager



# Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

## 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



## 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: WW-LFS-1
Lot Number: S2-MEB710999

Matrix: 5% (v/v) HNO3

Value / Analyte(s): 1 000 μg/mL ea:

Potassium,

600 µg/mL ea: Phosphorus,

300 μg/mL ea:

Sodium, Iron,

200 μg/mL ea:

Magnesium, Aluminum, Cerium, Selenium,

Thallium,

100 μg/mL ea:

Lead, Calcium,

80 μg/mL ea: Arsenic,

70 μg/mL ea: Mercury, 50 μg/mL ea: Nickel,

40 μg/mL ea: Chromium,

 $30~\mu g/mL$  ea:

Copper, Boron,

Vanadium,

20 µg/mL ea:

Zinc, Strontium,
Barium, Beryllium,
Cadmium, Cobalt,
Manganese, Lithium,

7.5 µg/mL ea: Silver

## 3.0 CERTIFIED VALUES AND UNCERTAINTIES

| ANALYTE<br>Aluminum, Al | CERTIFIED VALUE<br>200.0 ± 0.7 μg/mL | ANALYTE<br>Arsenic, As | CERTIFIED VALUE<br>80.0 ± 0.5 μg/mL |
|-------------------------|--------------------------------------|------------------------|-------------------------------------|
| Barium, Ba              | 20.00 ± 0.09 μg/mL                   | Beryllium, Be          | 20.00 ± 0.10 μg/mL                  |
| Boron, B                | 30.00 ± 0.20 μg/mL                   | Cadmium, Cd            | 20.00 ± 0.09 μg/mL                  |
| Calcium, Ca             | 100.0 ± 0.4 μg/mL                    | Cerium, Ce             | 200.0 ± 0.8 μg/mL                   |
| Chromium, Cr            | 40.00 ± 0.20 μg/mL                   | Cobalt, Co             | 20.00 ± 0.09 μg/mL                  |
| Copper, Cu              | 30.00 ± 0.13 μg/mL                   | Iron, Fe               | 300.0 ± 1.3 μg/mL                   |
| Lead, Pb                | 100.0 ± 0.5 μg/mL                    | Lithium, Li            | 20.00 ± 0.09 μg/mL                  |
| Magnesium, Mg           | 200.0 ± 0.8 μg/mL                    | Manganese, Mn          | 20.00 ± 0.09 μg/mL                  |
| Mercury, Hg             | 70.0 ± 0.3 μg/mL                     | Nickel, Ni             | 50.00 ± 0.22 μg/mL                  |
| Phosphorus, P           | 600.0 ± 2.7 μg/mL                    | Potassium, K           | 1 000 ± 4 μg/mL                     |
| Selenium, Se            | 200.0 ± 1.6 μg/mL                    | Silver, Ag             | 7.50 ± 0.05 µg/mL                   |
| Sodium, Na              | 300.0 ± 1.1 μg/mL                    | Strontium, Sr          | 20.00 ± 0.09 μg/mL                  |
| Thallium, TI            | 200.0 ± 1.4 μg/mL                    | Vanadium, V            | 30.00 ± 0.13 μg/mL                  |
| Zino Zn                 | 20 00 + 0 09 ug/ml                   |                        |                                     |

Zinc, Zn  $20.00 \pm 0.09 \mu g/mL$ 

**Density:** 1.037 g/mL (measured at 20  $\pm$  4 °C)

**Assay Information:** 

| ANALYTE  | METHOD      | NIST SRM# | SRM LOT#     |
|----------|-------------|-----------|--------------|
| Ag       | ICP Assay   | 3151      | 160729       |
| Ag       | Volhard     | 999c      | 999c         |
| Ag       | Calculated  |           | See Sec. 4.2 |
| Al       | ICP Assay   | 3101a     | 140903       |
| Al       | EDTA        | 928       | 928          |
| As       | ICP Assay   | 3103a     | 100818       |
| В        | ICP Assay   | 3107      | 110830       |
| Ва       | ICP Assay   | 3104a     | 140909       |
| Ва       | Calculated  |           | See Sec. 4.2 |
| Ва       | Gravimetric |           | See Sec. 4.2 |
| Ве       | ICP Assay   | 3105a     | 090514       |
| Be       | Calculated  |           | See Sec. 4.2 |
| Ca       | ICP Assay   | 3109a     | 130213       |
| Ca       | EDTA        | 928       | 928          |
| Ca       | Calculated  |           | See Sec. 4.2 |
| Cd       | ICP Assay   | 3108      | 130116       |
| Cd       | EDTA        | 928       | 928          |
| Cd       | Calculated  |           | See Sec. 4.2 |
| Ce       | ICP Assay   | 3110      | 090504       |
| Ce       | EDTA        | 928       | 928          |
| Co       | ICP Assay   | 3113      | 190630       |
| Co       | EDTA        | 928       | 928          |
| Co       | Calculated  |           | See Sec. 4.2 |
| Cr       | ICP Assay   | 3112a     | 170630       |
| Cr       | Calculated  |           | See Sec. 4.2 |
| Cu       | ICP Assay   | 3114      | 121207       |
| Cu       | EDTA        | 928       | 928          |
| Cu       | Calculated  |           | See Sec. 4.2 |
| Fe       | ICP Assay   | 3126a     | 140812       |
| Fe       | EDTA        | 928       | 928          |
| Hg       | ICP Assay   | 3133      | 061204       |
| Hg       | EDTA        | 928       | 928          |
| K        | ICP Assay   | 3141a     | 140813       |
| K        | Gravimetric |           | See Sec. 4.2 |
| Li       | ICP Assay   | 3129a     | 100714       |
| Li       | Calculated  |           | See Sec. 4.2 |
| Li       | Gravimetric |           | See Sec. 4.2 |
| Mg       | ICP Assay   | 3131a     | 140110       |
| Mg       | EDTA        | 928       | 928          |
| Mn       | ICP Assay   | 3132      | 050429       |
| Mn       | EDTA        | 928       | 928          |
| Mn       | Calculated  | 0.450     | See Sec. 4.2 |
| Na       | ICP Assay   | 3152a     | 120715       |
| Na       | Gravimetric | 0400      | See Sec. 4.2 |
| Ni<br>Ni | ICP Assay   | 3136      | 120619       |
| Ni       | EDTA        | 928       | 928          |
| Ni       | Calculated  | 0400-     | See Sec. 4.2 |
| Р        | ICP Assay   | 3139a     | 060717       |
| Р        | Acidimetric | 84L       | 84L          |

| Pb | ICP Assay  | 3128               | 101026       |
|----|------------|--------------------|--------------|
| Pb | EDTA       | 928                | 928          |
| Se | ICP Assay  | 3149               | 100901       |
| Sr | EDTA       | 928                | 928          |
| Sr | ICP Assay  | Traceable to 3153a | K2-SR650985  |
| Sr | Calculated |                    | See Sec. 4.2 |
| TI | ICP Assay  | 3158               | 151215       |
| V  | ICP Assay  | 3165               | 160906       |
| V  | EDTA       | 928                | 928          |
| Zn | ICP Assay  | 3168a              | 120629       |
| Zn | EDTA       | 928                | 928          |
| Zn | Calculated |                    | See Sec. 4.2 |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

| Characterization of CRM/RM by Two or More Methods                                                                                                           | Characterization of CRM/RM by One Method                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Certified Value, X <sub>CRM/RM</sub> , where two or more methods of characterization are used is the weighted mean of the results:                          | Certified Value, X <sub>CRM/RM</sub> , where one method of characterization is used is the mean of individual results:                                                                                   |
| $X_{CRM/RM} = \Sigma(w_i) (X_i)$                                                                                                                            | $X_{CRM/RM} = (X_a) (u_{char\ a})$                                                                                                                                                                       |
| X <sub>i</sub> = mean of Assay Method i with standard uncertainty u <sub>char i</sub>                                                                       | X <sub>a</sub> = mean of Assay Method A with                                                                                                                                                             |
| $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of                                                               | uchar a = the standard uncertainty of characterization Method A                                                                                                                                          |
| the variance:                                                                                                                                               |                                                                                                                                                                                                          |
| $\mathbf{w_i} = (1/u_{\text{char }i})^2 / (\Sigma (1/(u_{\text{char }i})^2)$                                                                                |                                                                                                                                                                                                          |
| CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$                                                     | CRM/RM Expanded Uncertainty (±) = U <sub>CRM/RM</sub> = k (u <sup>2</sup> <sub>char a</sub> + u <sup>2</sup> <sub>bb</sub> + u <sup>2</sup> <sub>lts</sub> + u <sup>2</sup> <sub>ts</sub> ) <sup>y</sup> |
| k = coverage factor = 2                                                                                                                                     | k = coverage factor = 2                                                                                                                                                                                  |
| $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method | u <sub>char a</sub> = the errors from characterization                                                                                                                                                   |
| u <sub>bb</sub> = bottle to bottle homogeneity standard uncertainty                                                                                         | u <sub>bb</sub> = bottle to bottle homogeneity standard uncertainty                                                                                                                                      |
| u <sub>lts</sub> = long term stability standard uncertainty (storage)                                                                                       | ults = long term stability standard uncertainty (storage)                                                                                                                                                |
| u <sub>ts</sub> = transport stability standard uncertainty                                                                                                  | uts = transport stability standard uncertainty                                                                                                                                                           |

## 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

## 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

## 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

## 4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

## 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

## 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

## 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar.

## 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

## 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

## 10.0 QUALITY STANDARD DOCUMENTATION

## 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganicventures.com

## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

## 11.1 Certification Issue Date

October 18, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

## 11.2 Lot Expiration Date

- October 18, 2025
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

## 11.3 Period of Validity

| Sealed TCT Bag Open Date: |  |
|---------------------------|--|
|                           |  |

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

# 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Booth

## **Certifying Officer:**

Paul Gaines Chairman / Senior Technical Director



## CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

## 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).



## 2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: WW-LFS-2

Lot Number: R2-MEB693161
Matrix: 5% (v/v) HNO3

tr. HF

Value / Analyte(s): 200 µg/mL ea:

Silica,

80 μg/mL ea: Antimony, 70 μg/mL ea:

Tin,

40 μg/mL ea: Molybdenum, 20 μg/mL ea: Titanium

## 3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Antimony, Sb  $80.0\pm0.6~\mu\text{g/mL}$  Molybdenum, Mo  $40.00\pm0.17~\mu\text{g/mL}$  Silica, SiO2  $200.0\pm1.5~\mu\text{g/mL}$  Tin, Sn  $70.0\pm0.3~\mu\text{g/mL}$ 

Titanium, Ti 20.00 ± 0.12 μg/mL

**Density:** 1.024 g/mL (measured at 20  $\pm$  4 °C)

## Assav Information:

| ,       |            |           |              |
|---------|------------|-----------|--------------|
| ANALYTE | METHOD     | NIST SRM# | SRM LOT#     |
| Mo      | ICP Assay  | 3134      | 130418       |
| Mo      | Calculated |           | See Sec. 4.2 |
| Sb      | ICP Assay  | 3102a     | 140911       |
| SiO2    | Calculated |           | See Sec. 4.2 |
| Sn      | ICP Assay  | 3161a     | 070330       |
| Ti      | ICP Assay  | 3162a     | 130925       |
| Ti      | Calculated |           | See Sec. 4.2 |

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where two or more methods of characterization are Certified Value, X<sub>CRM/RM</sub>, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X<sub>i</sub> = mean of Assay Method i with standard uncertainty u<sub>char i</sub> Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u<sub>char a</sub> = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u<sub>char a</sub> = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u<sub>lts</sub> = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u<sub>ts</sub> = transport stability standard uncertainty

## 4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMRM are available, the term 'in-house std.' is specified.

### 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

## 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

## 4.3 Glassware Calibration

 - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs.

## 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

N/A

## 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

## 7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRMRM is negligible. After opening the sealed TCT bag transpiration of the CRMRM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between  $4^{\circ}$   $24^{\circ}$  C to minimize the effects of transpiration. Use at  $20^{\circ} \pm 4^{\circ}$  C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

**HF Note:** This standard should not be prepared or stored in glass.

## 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

#### 9.0 **HOMOGENEITY**

 This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

#### 10.0 QUALITY STANDARD DOCUMENTATION

## 10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

## 11.1 Certification Issue Date

May 20, 2020

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified.

## 11.2 Lot Expiration Date

- May 20, 2024
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

## 11.3 Period of Validity

| <ul> <li>Sealed TCT Bag Open Date:</li> </ul> |  |
|-----------------------------------------------|--|
|-----------------------------------------------|--|

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRWRM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

## Certificate Approved By:

Michael Booth Manager, Quality Control

## **Certifying Officer:**

Paul Gaines

Paul R & ine CEO, Senior Technical Director