

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID :	P2409
Test :	Mercury

Prepbatch ID: PB160891,PB161839,

Sequence ID/Qc Batch ID: LB130740,LB131453,

				_	
Sta	nd	25	~	ın	

MP80612, MP80613, MP80615, MP80616, MP80617, MP80618, MP80619, MP80620, MP80621, MP80622, MP80623, MP80627, MP81229, MP81230, MP81232, MP81233, MP81234, MP81235, MP81236, MP81237, MP81238, MP81239, MP81240, MP81244, MP81236, MP81237, MP81238, MP81239, MP81240, MP81244, MP81236, MP81239, M

Chemical ID:

M5062, M5531, M5776, M5792, M5836, M5895, M5935, W2606,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
871	MERCURY INTERMEDIATE B 250PPB WORKING STD.	MP80612	05/13/2024	05/14/2024	Mohan Bera	None	METALS_PIP ETTE_5 (HG	
	4 00000 1 6145000 0 50000 1 6				0 100.0		A)	

FROM 1.00000ml of M5836 + 2.50000ml of M5062 + 96.50000ml of W2606 = Final Quantity: 100.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1340	Hg 0.00 PPB STD	MP80613	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	05/13/2024
							A)	

FROM 2.50000ml of M5836 + 247.50000ml of W2606 = Final Quantity: 250.000 ml

Metals STANDARD PREPARATION LOG

Recipe				Expiration	Prepared			Supervised By	
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal	
1341	Hg 0.2 PPB STD	MP80615	05/13/2024	05/14/2024	Mohan Bera	None	METALS_PIP		
							ETTE_5 (HG	05/13/2024	
FROM 2.50000ml of M5836 + 247.30000ml of W2606 + 0.20000ml of MP80612 = Final Quantity: 250.000 ml									

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1342	Hg 2.5 PPB STD	MP80616	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5836 + 245.00000ml of W2606 + 2.50000ml of MP80612 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1343	Hg 5.0 PPB STD	MP80617	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M5836 + 242.50000ml of W2606 + 5.00000ml of MP80612 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1344	Hg 7.5 PPB STD	MP80618	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5836 + 240.00000ml of W2606 + 7.50000ml of MP80612 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1345	Hg 10.0 PPB STD	MP80619	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M5836 + 237.50000ml of W2606 + 10.00000ml of MP80612 = Final Quantity: 250.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1346	Hg ICV SOLUTION	MP80620	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5531 + 2.50000ml of M5836 + 245.00000ml of W2606 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1351	ICB (Hg 0.00 PPB SOLUTION)	MP80621	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M5836 + 247.50000ml of W2606 = Final Quantity: 250.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1358	CCV (Hg 5.0 PPB SOLUTION)	MP80622	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	05/13/2024

FROM 485.00000ml of W2606 + 5.00000ml of M5836 + 10.00000ml of MP80612 = Final Quantity: 500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal		
1352	CCB (Hg 0.00 PPB SOLUTION)	MP80623	05/13/2024	05/14/2024	Mohan Bera		METALS_PIP ETTE_5 (HG			
	A)									

FROM 495.00000ml of W2606 + 5.00000ml of M5836 = Final Quantity: 500.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
68	STANNOUS CHLORIDE SOLUTION	MP80627	05/13/2024	05/14/2024		METALS_SCA LE_3 (M SC-3)		05/13/2024

FROM 450.00000ml of W2606 + 50.00000gram of M5776 + 50.00000ml of M5792 = Final Quantity: 500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal		
871	MERCURY INTERMEDIATE B 250PPB WORKING STD.	MP81229	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG			
	A)									

FROM 1.00000ml of M5935 + 2.50000ml of M5062 + 96.50000ml of W2606 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1340	Hg 0.00 PPB STD	MP81230	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5935 + 247.50000ml of W2606 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
1341	Hg 0.2 PPB STD	MP81232	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG		
	A)								

FROM 2.50000ml of M5935 + 247.30000ml of W2606 + 0.20000ml of MP81229 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1342	Hg 2.5 PPB STD	MP81233	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5935 + 245.00000ml of W2606 + 2.50000ml of MP81229 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1343	Hg 5.0 PPB STD	MP81234	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M5935 + 242.50000ml of W2606 + 5.00000ml of MP81229 = Final Quantity: 250.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1344	Hg 7.5 PPB STD	MP81235	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M5935 + 240.00000ml of W2606 + 7.50000ml of MP81229 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

1345 Hg 10.0 PPB STD MP81236 06/28/2024 06/29/2024 Mohan Bera None METALS_PIP ETTE_5 (HG 06/28/2024	Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
	1345	Hg 10.0 PPB STD	MP81236	06/28/2024	06/29/2024	Mohan Bera		_	•

FROM 2.50000ml of M5935 + 237.50000ml of W2606 + 10.00000ml of MP81229 = Final Quantity: 250.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1346	Hg ICV SOLUTION	MP81237	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	06/28/2024

FROM 2.50000ml of M5531 + 2.50000ml of M5935 + 245.00000ml of W2606 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal		
1351	ICB (Hg 0.00 PPB SOLUTION)	MP81238	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP ETTE_5 (HG			
	A)									

FROM 2.50000ml of M5935 + 247.50000ml of W2606 = Final Quantity: 250.000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1358	CCV (Hg 5.0 PPB SOLUTION)	MP81239	06/28/2024	06/29/2024	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	06/28/2024

FROM 485.00000ml of W2606 + 5.00000ml of M5935 + 10.00000ml of MP81229 = Final Quantity: 500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1352	CCB (Hg 0.00 PPB SOLUTION)	MP81240	06/28/2024	06/29/2024	Mohan Bera	None	METALS_PIP ETTE_5 (HG	
							A)	

FROM 495.00000ml of W2606 + 5.00000ml of M5935 = Final Quantity: 500.000 ml

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
68	STANNOUS CHLORIDE SOLUTION	MP81244	06/28/2024	06/29/2024		METALS_SCA LE_3 (M SC-3)		06/28/2024

FROM 450.00000ml of W2606 + 50.00000gram of M5776 + 50.00000ml of M5895 = Final Quantity: 500.000 ml

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	MSHG-10PPM / MERCURY HCI 125mL 10ug/mL	S2-HG709270	09/22/2026	05/28/2022 / mohan	01/27/2022 / mohan	M5062
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-5 / ICV (HG)STOCK SOLN	ICV5-0415	06/30/2024	10/31/2023 /	03/30/2023 / mohan	M5531
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3980-01 / Stannous Chloride (cs/4x500g)	0000281938	07/06/2026	06/26/2023 / mohan	07/18/2023 / mohan	M5776
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical					00/04/0000	
Selulei Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	22D1462006	08/05/2024	02/05/2024 / Al-Terek	02/24/2022 / Al-Terek	M5792
Supplier	Acid, Instra-Analyzed	22D1462006	08/05/2024 Expiration Date			M5792 Chemtech Lot #
	Acid, Instra-Analyzed (cs/6x2.5L)		Expiration	Al-Terek Date Opened /	Al-Terek Received Date /	Chemtech
Supplier	Acid, Instra-Analyzed (cs/6x2.5L) ItemCode / ItemName BA-9598-34 / Nitric Acid,	Lot #	Expiration Date	Date Opened / Opened By	Al-Terek Received Date / Received By 03/04/2024 /	Chemtech Lot #

Fax: 908 789 8922

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	12/08/2024	06/21/2024 / Al-Terek	06/07/2024 / Al-Terek	M5935

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606

M5833, M5834, M5835, M5836, M5837, M5839

AI 03/04/2024

Material No.: 9606-03 Batch No.: 2310662003 Manufactured Date: 2023-08-21

Retest Date: 2028-08-19 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO3)	69.0 - 70.0 %	69.5 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	10
Residue after Ignition	≤ 2 ppm	< 2 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.08 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.10 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 40.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 5.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Beryllium (Be)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 20.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Cadmium (Cd)	≤ 50 ppb	< 50 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	< 50.0 ppb
Trace Impurities – Chromium (Cr)	≤ 30.0 ppb	30.0 ppb
Trace Impurities – Cobalt (Co)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Copper (Cu)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Gallium (Ga)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Germanium (Ge)	≤ 20 ppb	< 20 ppb
Trace Impurities – Gold (Au)	≤ 20 ppb	< 20 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 100 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 40.0 ppb
Trace Impurities – Lead (Pb)	≤ 20.0 ppb	< 20.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 20 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 20.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 2310662003

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 50.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	< 50 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 50 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 20.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 150.0 ppb
Trace Impurities – Strontium (Sr)	≤ 30.0 ppb	< 30.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities - Thallium (TI)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities - Tin (Sn)	$\leq 20.0 \text{ ppb}$	< 20.0 ppb
Trace Impurities - Titanium (Ti)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 20.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 10.0 ppb
Particle Count - 0.5 µm and greater	≤ 60 par/ml	60 par/ml
Particle Count – 1.0 µm and greater	≤ 10 par/ml	10 par/ml

Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 2310662003

Specification Result Test

For Microelectronic Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

kemetilee. Ken Koehnlein Sr. Manager, Quality Assurance Sodium Chloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Material No.: 3624-01

Batch No.: 0000281938

Manufactured Date: 2021-06-07

Retest Date: 2026-06-07

Revision No.: 1

M SAZO RSZ

Certificate of Analysis

Test	Specification	Result
Assay (NaCl) (by Ag titrn)	≥ 99.0 %	100.0 %
pH of 5% Solution at 25°C	5.0 - 9.0	6.3
Insoluble Matter	≤ 0.005 %	0.003 %
lodide (I)	≤ 0.002 %	< 0.002 %
Bromide (Br)	≤ 0.01 %	< 0.01 %
Chlorate and Nitrate (as NO ₃)	≤ 0.003 %	< 0.001 %
ACS - Phosphate (PO ₄)	≤ 5 ppm	< 5 ppm
Sulfate (SO ₄)	≤ 0.004 %	< 0.004 %
Barium (Ba)	Passes Test	Passes Test
ACS - Heavy Metals (as Pb)	≤ 5 ppm	< 5 ppm
Iron (Fe)	≤ 2 ppm	< 1 ppm
Calcium (Ca)	≤ 0.002 %	< 0.001 %
Magnesium (Mg)	≤ 0.001 %	< 0.001 %
Potassium (K)	≤ 0.005 %	0.001 %

For Laboratory, Research, or Manufacturing Use
Meets Reagent Specifications for testing USP/NF monographs
Country of Origin: USA
Packaging Site: Paris Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Mass Spec Solution

Catalog Number:

MSHG-10PPM

Lot Number:

S2-HG709270

Matrix:

10% (v/v) HCI

Value / Analyte(s):

10 μg/mL ea:

Mercury

Starting Material:

Hg metal

Starting Material Lot#:

1959

Starting Material Purity:

99.9994%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10.001 \pm 0.053 \,\mu g/mL$

Density:

1.020 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
Ha	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

 $\mathbf{X_i}$ = mean of Assay Method i with standard uncertainty $\mathbf{u_{char}}$ i

w_i = the weighting factors for each method calculated using the inverse square of

the variance.

 $\mathbf{w_i} = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²char a + u²bb + u²lts + u²ts) 1/2

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
O Ag
          0.000011 M Eu <
                            0.000201 O Na
                                              0.000004 M Se <
                                                               0.015915 O Zn <
                                                                                 0.001510
0
   Al
          0.000001 O Fe
                            0.000001 M Nb <
                                              0.000201 O Si
                                                                0.000005 M Zr <
                                                                                 0.000201
M
   As <
          0.000402 M Ga <
                            0.000201 M Nd <
                                              0.000201 M Sm <
                                                               0.000201
M
   Au <
          0.003631 M Gd <
                            0.000201 M Ni <
                                              0.000402 M
                                                        Sn <
                                                               0.001007
M
   B <
          0.001208 M
                    Ge <
                            0.000201 M Os <
                                              0.000605 M
                                                        Sr <
                                                               0.000201
M Ba <
          0.000201 M Hf <
                            0.000201 O P <
                                              0.032370 M
                                                        Ta <
                                                               0.000201
M
  Be <
          0.000201 s
                                   M Pb <
                    Hq <
                                              0.000201 M Tb <
                                                               0.000201
M Bi <
          0.000201 M
                    Ho <
                            0.000201 M Pd <
                                              0.000403 M
                                                        Te <
                                                               0.002216
0
  Ca
          0.000007 M In <
                            0.000201 M Pr <
                                              0.000201 M Th <
                                                               0.000201
M
  Cd <
          0.000201 M Ir
                            0.000201 M
                                      Pt <
                                              0.000402 M Ti <
                                                               0.000402
                                              0.000201 O TI <
M
  Ce <
          0.000201 O K
                            0.000020 M
                                      Rb <
                                                               0.016508
  Co <
M
          0.000201 M La <
                            0.000201 M
                                      Re <
                                              0.000201 M Tm <
                                                               0.000201
  Cr <
0
          0.003021 O Li <
                            0.000107 M
                                      Rh <
                                              0.000201 M U <
                                                               0.008058
M
  Cs <
          0.001208 M Lu <
                            0.000201 M Ru <
                                              0.000201 M V <
                                                               0.000201
M
  Cu <
          0.000402 O
                    Mg
                            0.000001 O
                                      S <
                                             0.053950 M W <
                                                               0.000604
M Dy <
          0.000201 M Mn <
                            0.000604 M Sb <
                                             0.001208 M Y <
                                                               0.000201
M Er <
          0.000201 M Mo
                           0.000009 M Sc <
                                             0.000201 M Yb <
                                                               0.000201
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 200.59 +2 4 Hg(OH)(aq) 1+ **Chemical Compatibility -** Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water.

Stability - 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container.

Hg Containing Samples (Preparation and Solution) - Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation questions in further detail.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 202 amu	9 ppt	n/a	186W16O
ICP-OES 184.950 nm	0.03 / 0.005 μg/mL	1	
ICP-OES 194.227 nm	0.03 / 0.005 µg/mL	1	V
ICP-OES 253.652 nm	0.1 / 0.03 µg/mL	1	Ta, Co, Th, Rh, Fe,
			U

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 22, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 22, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT	Bag	Open Date	:		

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong
Supervisor, Product Documentation

Mya Truong

Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Laines

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION:

For use with the CLP SFAM01.0 SOW and revisions.

CAUTION:

Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in $\mu g/L$ (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

Page 1 of 2

RMs ICV 1, 5, 6 SFAM (1)

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from $K_3Fe(CN)_6$, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

Element Concentration (μg/L) (after 10-fold dilution) AI 2500 Sb 1000 As 1000	Concentration (µg/L) (after 50-fold dilution) 500 200
Al 2500 Sb 1000	500
Sb 1000	
As 1000	
	200
Ba 520	100
Be 510	100
Cd 510	100
Ca 10000	2000
Cr 520	100
Co 520	100
Cu 510	100
Fe 10000	2000
Pb 1000	200
Mg 6000	1200
Mn 520	1200
Ni 530	110
K 9900	
Se 1000	2000
Ag 250	200
Na 10000	50
TI 1000	2000
V 500	210
Zn 1000	100 200

ICV5-0415		ICV6-0400	
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN-	99