

Prep Standard - Chemical Standard Summary

Order ID: Test:	P2734 Metals CLP Full
Prepbatch ID : Sequence ID/Qc Ba	PB161459, tch ID: LB131248,LB131291,
	MP80925,MP80926,MP80927,MP80928,MP80929,MP80930,MP80931,MP80932,MP80933,MP80934, MP80944,MP80955,MP81115,MP81116,
289,M5294,M5296,N	3,M4885,M4888,M4889,M4960,M4961,M5130,M5192,M5200,M5223,M5224,M5227,M5272,M5288,M5 //5298,M5389,M5395,M5429,M5473,M5494,M5498,M5513,M5632,M5658,M5697,M5698,M5735,M5754 99,M5800,M5801,M5815,M5817,M5818,M5819,M5875,M5895,M5915,M5925,M5931,W2606,

<u>Recipe</u> <u>ID</u> 169	NAME 1:1HNO3	<u>NO.</u> MP78706	Prep Date 12/20/2023	Expiration Date 06/12/2024		<u>ScaleID</u> METALS_SCA LE_2 (M SC-2)		
FROM	1250.00000ml of M5735 + 1250.0000	00ml of W26	606 = Final Q	uantity: 2500.0	00 ml			
Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	PipettelD	Supervised By

Recipe				Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	Mohan Bera
902	ICP AES CAL BLK (SO/ICB/CCB)	<u>MP80924</u>	05/30/2024	06/30/2024	Sarabjit Jaswal	None	None	
								06/11/2024
FROM	125.00000ml of M5895 + 2350.0000	0ml of W260)6 + 25.00000	ml of M5915 =	Final Quantity:	2500.000 ml		

Recipe ID 1004	NAME ICPAES ISM01.2 (S5)	<u>NO.</u> MP80925	Prep Date 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
FROM	0.25000ml of M5798 + 0.50000ml of 12.50000ml of M5200 + 12.50000ml 14.50000ml of M5289 + 14.50000ml 22.50000ml of M5769 + 5.00000ml o 5.00000ml of M5875 + 318.50000ml	of M5288 + of M5298 + f M5272 + 5	12.50000ml of No.000000000000000000000000000000000000	of M5698 + 12.9 of M5658 + 2.00 M5296 + 5.0000	50000ml of M58 0000ml of M551 00ml of M5395 +	19 + 13.75000r 3 + 22.50000m	ml of M5697 + l of M5498 +	

<u>Recipe</u> <u>ID</u> 1005	NAME ICPAES ISM01.2(S4)	<u>NO.</u> MP80926	<u>Prep Date</u> 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipettelD</u>	<u>Supervised By</u> Mohan Bera
1005	ICFALS ISM01.2(34)	<u>IVIF 00920</u>	05/50/2024	00/30/2024	Salabjit Jaswal	None	METALS_PIPE TTE_3 (A)	06/11/2024
FROM	50.00000ml of MP80924 + 50.00000	ml of MP809	925 = Final Q	uantity: 100.00	0 ml			

<u>Recipe</u> <u>ID</u> 1007	NAME ICPAES ISM01.2(S3)	<u>NO.</u> MP80927	Prep Date 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
<u>FROM</u>	25.00000ml of MP80925 + 75.00000	ml of MP809	924 = Final Q	uantity: 100.00	1 I I I I I I I I I I I I I I I I I I I			

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By
<u></u> 1008	ICPAES ISM01.2(S2)	<u>MP80928</u>	05/30/2024		<u> </u>			Mohan Bera
1000	10FAL3 131001.2(32)	<u>IVIF 00920</u>	03/30/2024	00/30/2024	Salabjit Jaswal	None	METALS_PIPE TTE_3 (A)	06/11/2024
FROM	12.50000ml of MP80925 + 87.50000	ml of MP809	924 = Final Q	uantity: 100.00	 10 ml		· ·	
				,				

т

<u>Recipe</u> <u>ID</u> 994	NAME ICPAES ISM01.2 S1 (CONC.)	<u>NO.</u> MP80929	Prep Date 05/30/2024	<u>Expiration</u> <u>Date</u> 06/22/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
FROM	0.02000ml of M5815 + 0.03000ml of 0.20000ml of M4881 + 0.20000ml of 0.20000ml of M5658 + 0.20000ml of 0.50000ml of M4889 + 0.50000ml of 1.00000ml of M5800 + 1.20000ml of 10.00000ml of M5498 + 10.00000ml 34.41000ml of MP80924 = Final Qua	M4885 + 0. M5801 + 0. M5697 + 0. M5224 + 1. of M5769 +	20000ml of M 20000ml of M 70000ml of M 20000ml of M 10.00000ml o	5192 + 0.20000 5817 + 0.30000 4883 + 0.80000 5819 + 10.0000	0ml of M5298 + 0ml of M5698 + 0ml of M5494 + 00ml of M5200 +	0.20000ml of N 0.40000ml of N 1.00000ml of N + 10.00000ml o	15473 + 15289 + 15227 + f M5288 +	

<u>Recipe</u> <u>ID</u> 1003	NAME ICPAES ISM01.2 S1	<u>NO.</u> MP80930	<u>Prep Date</u> 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
FROM	l 0.50000ml of MP80929 + 99.50000m	l nl of MP8092	I 24 = Final Qu	l antity: 100.000	l l		11L_3 (A)	00/11/2024

<u>Recipe</u> <u>ID</u> 2054	NAME ICV-ICPAES	<u>NO.</u> MP80931	Prep Date 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
FROM	10.00000ml of M5294 + 90.00000ml	of MP80924	⊧ = Final Qua	ntity: 100.000	nl			

<u>Recipe</u> <u>ID</u> 904	NAME ICP AES ICSA SOLN	<u>NO.</u> MP80932	<u>Prep Date</u> 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIPE	<u>Supervised By</u> Mohan Bera
							TTE_3 (A)	06/11/2024
FROM	10.00000ml of M5130 + 90.00000ml	of MP80924	Final Qua	ntity: 100.000	ml			

<u>Recipe</u> <u>ID</u> 905	NAME ICP AES ICSAB SOLN	<u>NO.</u> MP80933	Prep Date 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
<u>FROM</u>	10.00000ml of M5130 + 10.00000ml	of M5223 +	80.00000ml c	of MP80924 =	Final Quantity: 1	00.000 ml		

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	<u>Prep Date</u>	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Mohan Bera
1119	ICPAES ISM01.2(CCV)	<u>MP80934</u>	05/30/2024	06/30/2024	Sarabjit Jaswal	None	METALS_PIPE	
							TTE_3 (A)	06/11/2024
FROM	12.25000ml of M5289 + 12.50000ml 125.00000ml of MP80925 + 322.750					8 + 7.50000ml	of M5769 +	

Recipe ID 2480	NAME ICP AES STD 6 ISM01.3	<u>NO.</u> MP80935	Prep Date 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIPE TTE_3 (A)	Supervised By Mohan Bera 06/11/2024
FROM	8.00000ml of M5200 + 8.00000ml of 60.00000ml of MP80924 = Final Qua			5298 + 8.0000	0ml of M5498 +	8.00000ml of M	15769 +	

<u>Recipe</u> <u>ID</u> 919	NAME ICP AES INTERNAL STD	<u>NO.</u> MP80942	<u>Prep Date</u> 05/30/2024	Expiration Date 06/25/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD None	Supervised By Mohan Bera 06/11/2024
FROM	1.00000ml of M4961 + 10.00000ml o ml	I f M4960 + 1	ı 969.00000ml	of W2606 + 20	11).00000ml of M5	915 = Final Qu	antity: 2000.00	

<u>Recipe</u> <u>ID</u> 903	NAME ICP AES RINSE SOLN	<u>NO.</u> MP80944	<u>Prep Date</u> 05/30/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipetteID None	Supervised By Mohan Bera 06/11/2024
<u>FROM</u>	200.00000ml of M5915 + 9800.0000	Dml of W260)6 = Final Qu	antity: 10000.0	00 ml			

<u>Recipe</u>				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	Mohan Bera
921	ICPAES SPIKE SOL#6	<u>MP80955</u>	05/30/2024	06/30/2024	Sarabjit Jaswal	None	METALS_PIPE	
							TTE_3 (A)	06/12/2024
FROM	0.25000ml of M4883 + 50.00000ml o	f M5754 + 4	9.75000ml of	MP80924 = F	inal Quantity: 10	0.000 ml		

<u>Recipe</u> <u>ID</u> 3811	NAME SE-10PPM	<u>NO.</u> MP81115	Prep Date 06/17/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Mohan Bera 06/21/2024
FROM	0.10000ml of M4883 + 9.90000ml of	MP80924 =	Final Quantit	ty: 10.000 ml	<u> </u>			
Recipe				Expiration	Prenared			Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Mohan Bera
3816	TL-10PPM	<u>MP81116</u>	06/17/2024	06/30/2024	Sarabjit Jaswal	None	None	
								06/21/2024
FROM	0.10000ml of M4889 + 9.90000ml of	MP80924 =	= Final Quanti	ty: 10.000 ml				

Standards, Inc.

ml

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57048 / Cd, 1000 PPM, 125 ml	072821	07/28/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4877
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57082 / Pb, 1000 PPM, 125 ml	062221	06/22/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4881
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57034 / Se, 1000 PPM, 125 ml	070221	07/02/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4883
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57047 / Ag, 1000 PPM, 125 ml	072921	07/29/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4885
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57022 / Ti, 1000 PPM, 125 ml	070721	07/07/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4888
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57081 / TI, 1000 PPM, 125 ml	073021	07/30/2024	08/06/2021 / jaswal	08/05/2021 / jaswal	M4889

Standards, Inc.

500 ml

jaswal

jaswal

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGIN10-5 / INDIUM 1 x 500 ml	100721	10/07/2024	10/09/2021 / jaswal	10/08/2021 / jaswal	M4960
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute	58139 / Y, 10000 PPM,	052521	06/25/2024	10/09/2021 /	01/25/2019 /	M4961

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART A / ICSA (ICP) STOCK SOLN	ICSA-1211	11/19/2024	05/20/2024 / bin	04/20/2021 / bin	M5130

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	051722	05/17/2025	07/01/2022 / bin	06/17/2022 / jaswal	M5192

Opened By	Received Date / Received By	Chemtech Lot #
06/23/2022 / bin	10/05/2021 / bin	M5200
	06/23/2022 /	06/23/2022 / 10/05/2021 /

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART B / ICSAB (ICP) STOCK SOLN	ICSB-0710	11/19/2024	05/20/2024 / bin	04/20/2021 / bin	M5223

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	101521	10/15/2024	06/29/2022 / bin	10/18/2021 / bin	M5224
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57023 / V, 1000 PPM, 125 ml	100121	10/01/2024	07/01/2022 / bin	10/18/2021 / bin	M5227
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Antimony (Sb)	051822	05/18/2025	05/10/2023 / bin	08/24/2022 / jaswal	M5272
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	071122	07/11/2025	09/01/2022 / jaswal	07/21/2022 / jaswal	M5288
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

			Date	Орепец Бу	Кесетуец Бу	LOL#
Absolute Standards, Inc.	58113 / Aluminum (Al) 10,000PPM	070622	07/06/2025	09/02/2022 / jaswal	07/12/2022 / jaswal	M5289
					-	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-1 / ICV (ICP/ICPMS) STOCK SOLN	ICV-1014	01/01/2025	12/13/2023 / bin	02/20/2020 / bin	M5294

Т

CHEMICAL RECEIPT LOG BOOK

т

т

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	Z9651Q / CHEM-CLP-4/.25L	S2-MEB711673	11/02/2026	09/19/2022 / jaswal	08/20/2022 / jaswal	M5296
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	020422	02/04/2025	05/02/2023 / jaswal	06/15/2022 / jaswal	M5298
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	072122	07/21/2025	04/29/2024 / kareem	09/18/2022 / bin	M5389
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-3 / CLP CAL SOLUTION #3, 125mL	T2-MEB714159	01/13/2027	01/30/2024 / bin	09/19/2022 / bin	M5395
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57103 / Li, 10000 PPM, 125 ml	070622	07/06/2025	01/30/2023 / bin	01/26/2023 / bin	M5429
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/29/2025	03/16/2023 / jaswal	03/16/2023 / jaswal	M5473

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57028 / Ni, 1000 PPM, 125 ml	011223	01/12/2026	01/20/2023 / bin	01/19/2023 / bin	M5494
Supplier	ItemCode / ItemName	Lot #	Expiration	Date Opened /	Received Date /	Chemtech
••	hemoode / hemitanie	L01 #	Date	Opened By	Received By	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 125 ml	061522	06/15/2025	03/19/2023 / bin	03/17/2023 / bin	M5513

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1403 / Hydrogen Peroxide, 30% 1 gal	820803	08/31/2024	01/03/2024 / bin	08/03/2022 / Al-Terek	M5632

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658

ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
3029 / Cu, 1000 PPM, 00 ml	102523	10/25/2026	04/03/2024 / jaswal	10/27/2023 / jaswal	M5697
	029 / Cu, 1000 PPM,	029 / Cu, 1000 PPM, 102523	ItemCode / ItemName Lot # Date D29 / Cu, 1000 PPM, 102523 10/25/2026	ItemCode / ItemName Lot # Date Opened By 029 / Cu, 1000 PPM, 102523 10/25/2026 04/03/2024 /	ItemCode / ItemName Lot # Date Opened By Received By 029 / Cu, 1000 PPM, 102523 10/25/2026 04/03/2024 / 10/27/2023 /

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58025 / Mn, 1000 PPM, 500 ml	102623	10/26/2026	04/18/2024 / jaswal	10/27/2023 / jaswal	M5698
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	23G1262003	06/12/2024	12/19/2023 / jaswal	06/26/2023 / Al-Terek	M5735
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	52166 / ICP-AES Spike sample water matrix (18 comp.)	112823	11/28/2026	05/01/2024 / jaswal	12/15/2023 / jaswal	M5754
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	05/24/2024 / Jaswal	01/03/2024 / bin	M5769
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	02/09/2024 / bin	02/09/2024 / bin	M5800
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57033 / As, 1000 PPM, 125 ml	111323	11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57115 / P, 10000 PPM, 125 ml	041723	04/17/2026	05/21/2024 / Jaswal	02/09/2024 / jaswal	M5815
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57116 / S, 10000 PPM, 125 ml	071123	07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57014 / Si, 1000 PPM, 125 ml	122023	12/20/2026	03/06/2024 / jaswal	02/09/2024 / jaswal	M5818

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	111623	11/16/2026	03/20/2024 / jaswal	02/09/2024 / jaswal	M5819

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-1 / CLP CAL SOLUTION #1, 125mL	T2-MEB714417	01/27/2027	04/19/2024 / jaswal	02/22/2024 / jaswal	M5875
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	240415	11/06/2024	06/04/2024 / Al-Terek	05/07/2024 / Al-Terek	M5895
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	11/29/2024	05/30/2024 / Al-Terek	05/24/2024 / Al-Terek	M5915
			F our institute			Oly surfacely

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	22G2862015	12/08/2024	06/12/2024 / Al-Terek	06/07/2024 / Al-Terek	M5925

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	12/08/2024	06/12/2024 / Al-Terek	06/07/2024 / Al-Terek	M5931

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606

M5296 OP: 09/19/2022 BH

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custom Grade Solution	n
Catalog Number:	CHEM-CLP-4	
Lot Number:	S2-MEB711673	
Matrix:	3% (v/v) HNO3 3% (v/v) HF	
Value / Analyte(s):	1 000 μg/mL ea: Boron, Silicon, Titanium	Molybdenum, Tin,

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Boron, B	CERTIFIED VALUE 1 000 ± 6 μg/mL	ANALYTE Molybdenum, Mo	CERTIFIED VALUE 1 000 ± 6 μg/mL				
Silicon, Si	1 000 ± 7 μg/mL	Tin, Sn	1 000 ± 6 µg/mL				
Titanium, Ti	1 000 ± 7 μg/mL						
Density:	Density: 1.030 g/mL (measured at 20 ± 4 °C)						
Assay Information:							
ANALYTE	METHOD	NIST SRM#		SRM LOT#			
B	ICP Assav	3107		110830			

В	ICP Assay	3107	110830
Мо	ICP Assay	3134	130418
Si	ICP Assay	3150	130912
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	3162a	130925

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	u _{char} a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² char a + u ² bb + u ² lts + u ² ts) ¹
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	u _{bb} = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- November 02, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Line

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

3.0

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Multi Analyte Custom Grade Solution					
Catalog Number:	CLPP-CAL-1					
Lot Number:	T2-MEB714417					
Matrix:	5% (v/v) HNO3					
Value / Analyte(s):	5 000 μg/mL ea: Calcium, Magnesium,	Potassium, Sodium,				
	2 000 μg/mL ea: Aluminum,	Barium,				
	1 000 μg/mL ea: Iron,					
	500 μg/mL ea: Nickel, Zinc, Manganese,	Vanadium, Cobalt,				
	250 μg/mL ea: Silver,	Copper,				
	200 μg/mL ea: Chromium,					
	50 μg/mL ea: Beryllium					
CERTIFIED VALUES AND UNCERTAINTIES						

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 μg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 μg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Calcium, Ca	5 000 ± 22 μg/mL
Chromium, Cr	200.0 ± 1.0 μg/mL	Cobalt, Co	500.0 ± 2.4 μg/mL
Copper, Cu	250.0 ± 1.0 μg/mL	Iron, Fe	1 000 ± 4 μg/mL
Magnesium, Mg	5 000 ± 20 μg/mL	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Potassium, K	5 000 ± 19 μg/mL
Silver, Ag	250.0 ± 1.1 μg/mL	Sodium, Na	5 000 ± 18 μg/mL
Vanadium, V	499.7 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density:

1.118 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE Ag	METHOD ICP Assay	NIST SRM# 3151	SRM LOT# 160729
Ag	Volhard	999c	999c
AI	ICP Assay	3101a	140903
AI	EDTA	928	928
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Ве	ICP Assay	3105a	090514
Ве	Calculated		See Sec. 4.2
Са	ICP Assay	3109a	130213
Са	EDTA	928	928
Со	ICP Assay	3113	190630
Со	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cr	Calculated		See Sec. 4.2
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
К	ICP Assay	3141a	140813
К	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	3152a	120715
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	$\mathbf{u}_{char \ a}$ = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at 20° \pm 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

 This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 27, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

SD978Ci Paul R Saines

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custom Grade Soluti	on
Catalog Number:	CLPP-CAL-3	
Lot Number:	T2-MEB714159	
Matrix:	7% (v/v) HNO3	
Value / Analyte(s):	1 000 μg/mL ea: Arsenic, Selenium,	Lead, Thallium,
	500 μg/mL ea: Cadmium	

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Arsenic, As	CERTIFIED VALUE 1 000 ± 8 µg/mL	ANALYTE Cadmium, Cd	CERTIFIED VALUE 500.0 ± 2.1 μg/mL
Lead, Pb	1 000 ± 5 μg/mL	Selenium, Se	1 000 ± 8 μg/mL
Thallium, Tl	1 000 ± 7 μg/mL		

Density:

1.043 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
ТІ	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	$\mathbf{u}_{char \ a}$ = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 13, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

SD978Ci Paul R Saines

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	*		Certified Reference Material CRM	eference M	Naterial CR	М		\$	AN AF https	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
<u>CERTIFIED WEIGHT REPORT:</u> Part Number: Lot Number: Description:	<u>57048</u> <u>072821</u> Cadmium (Cd)	ğ		Lot # 20370011	Solvent: Nitric Acid		Hind	forannie E	speate	~
Expiration Date:	072824			2.0%	40.0	Nitric Acid	Formulated By:		Giovanni Esposito	072821
Recommended Storage:	Ambient (20 °C)	C)			(111)		Ŋ	e de la construcción de la const		
Nominal Concentration (µg/mL):	611TB	л							India I Donton	862U
Volume shown below was diluted to (mL):		2000.02 0.058	58 Flask Uncertainty	/ 1119		E				01 505 1
	•			•	•	•	Expanded		SDS Information	ation
Compound Nu	Part Lot Number Number	Dilution Initial Factor Vol. (ml	Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL)		Initial Conc. (µg/mL)	Final Conc. (µg/mL)	Uncertainty +/- (µg/mL)	(Solvent CAS#	OSHA PEL (TWA)	AS# OSHA PEL (TWA) LD50
1. Cadmium nitrate tetrahydrate (Cd) 58	58148 010920	0.1000 200.0	0.0 0.084	1000	10000.5		2.2	10022-68-1	0.2 mg/m3	orl-rat 300 mg/kg
[1] Spectrum No.1	-	3.363 sec]::	33.363 sec]:57048.D# [Count] [Linear]	Count] [Lin		1000.0				
1.0E8- -					nearj	1000.0				
m/z->					near]	1000.0				
2.0E4	N 0	8 <u>0</u>	40 0	ы О	10 ar] 60	1000.0 70		8 0	00	100
	N_ 0	<u>a</u> 0	40 0	თ_ 0		1000.0		õ	9 <mark>0</mark>	100
1.0E4	N O	8	4 0	<u>ຮ</u>	•	1000.0		ŏ	Ø O	100
1.0E4- m/z-> 110	120	13- 3-	40 0 0	150 0		1000.0 7 O		180	90 00	
	100 00	130	14 6	ក្ ទ		1000.0		81 Ö	000	

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	letals	Verifica	tion t	oy ICP-N	<u></u> Ω) S	J/mL)						
A1	<0.02	Cd	Т	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	Pr	<0.02	Se	<0.2	Tb	< 0.02	W	<0.02
Sр	<0.02	C_a	<0.2	ĥ	<0.02	Ho	<0.02	Lu	<0.02	Ъ	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	Ч	<0.02
As	<0.2	Ce	<0.02	Eu	<0.02	In	<0.02	Mg	< 0.01	O _s	<0.02	Rh	<0.02	Ag	<0.02	Ц	<0.02	<	<0.02
Ва	<0.02	Cs	<0.02	Gd	<0.02	Ir	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	Чł	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	Р	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	°.	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pŧ	<0.02	\mathbf{Sm}	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
В	<0.02	Ĉ	<0.02	Au	<0.02	РЬ	<0.02	Nd	<0.02	K	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

sold in the second second

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com Absolute Standards, Inc. 800-368-1131 CERTIFIED WEIGHT REPORT: Lead (II) Nitrate (Pb) Compound Nominal Concentration (µg/mL): m/z-> m/z-> m/z-> 2.0E6 5.0E4 Recommended Storage: 5.0E4 1.0E6 1.0E5-1.0E5 Volume shown below was diluted to (mL): **NIST Test Number:** Expiration Date: Part Number: Lot Number: Description: [1] Spectrum No.1 210 110 0 58182 Number Part <u>57082</u> 062221 Lead (Pb) 6UTB 1000 062224 Ambient (20 °C) 032321 Number Lot 120 N20 N_ 0 [14.144 sec]:58082.D# [Count] [Linear] 2000.02 0.1000 Dilution Factor 130 230 β 5E-05 Vol. (mL) 0.058 200.0 Initial **Certified Reference Material CRM** Pipette (mL) Conc. (µg/mL) Balance Uncertainty Flask Uncertainty Uncertainty 40 N 40 0.084 40 20370011 Nominal Lot # 2.0% 1000 N 0 0 150 ທ 0 Conc. (µg/mL) Nitric Acid Solvent: 10000.1 Initial (mL) 40.0 260 160 00 Conc. (µg/mL) Nitric Acid 1000.0 Final 170 0 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Expanded 2.2 Revence 180 0 0 10099-74-8 Ś CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) Pedro L. Rentas ent Lawrence Barry 190 00 0.05 mg/m3 SDS Information 2 https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number 200 100 intrvns-rat 93 mg/kg 3128 LD50 062221 062221 SRM NIST

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifica	tion b	oy ICP-N	<u>μ</u>) Sl	g/mL)						
Al	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	Pr	<0.02	Se	<0.2	ТЪ	<0.02	W	<0.02
Sp	<0.02	Ca	<0.2	Ęŗ	<0.02	Ho	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	U	<0.02
As	<0.2	Ce	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	Os	<0.02	Rh	<0.02	Ag	<0.02	TI	<0.02	V	<0.02
Ва	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	Yb	<0.02
Be	<0.01	Cr	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	Р	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	Co	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	C,	<0.02	Au	<0.02	Рь	Т	Nd	<0.02	Κ	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. Sold

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com Absolute Standards, Inc. 800-368-1131 CERTIFIED WEIGHT REPORT: Selenium(IV) oxide (Se) Compound Nominal Concentration (µg/mL): m/z-> m/z-> m/z-> 2.0E8-2.0E8-**Recommended Storage:** 1.0E8 1.0E8 1.0∏4 2.0E4 Volume shown below was diluted to (mL): **NIST Test Number:** Expiration Date: Part Number: Lot Number: Description: [1] Spectrum No.1 110 N10 1 0 58134 Number Part <u>57034</u> 070221 Selenium (Se) 070224 6UTB 1000 Ambient (20 °C) 021621 Number Lot N20 N<u>.</u> 0 120 [33.702 sec]:58034.D# [Count] [Linear] 2000.02 0.1000 Dilution Factor α<u>.</u> Ο 230 130 5E-05 Vol. (mL) 0.058 200.0 Initial **Certified Reference Material CRM** Pipette (mL) Conc. (µg/mL) Balance Uncertainty Flask Uncertainty Uncertainty N40 40 4 0 0.084 20370011 Nominal Lot # 2.0% 1000 250 150 () 0 Conc. (µg/mL) Nitric Acid Solvent: 10000.2 Initial (mL) 40.0 6<u>.</u> 0 N60 160 Conc. (µg/mL) Nitric Acid 1000.0 Final 170 07 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Expanded Giovannie 2.2 180 80 7446-08-4 ŝ CAS# (Solvent Safety Info. On Attached pg.) Labour OSHA PEL (TWA) Pedro L. Rentas Giovanni Esposito e de 190 0 SDS Information 0.2 mg/m3 https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number 200 100 orl-rat 68 mg/kg LD50 070221 070221 3149 NIST SRM

Part # 57034 Lot # 070221

1 of 2

Printed: 8/19/2021, 11:15:02 PM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	Metals	Verifica	tion	by ICP-N	<u></u> μ) SI	g∕mL)						
	•		0												B				
Al	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	\mathbf{Pr}	<0.02	Se	Т	ТЪ	<0.02	W	<0.02
Sp	<0.02	C_a	<0.2	Ę	<0.02	Ho	<0.02	Lu	<0.02	Np	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	Ц	<0.02
As	<0.2	Ce	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	O_{s}	<0.02	Rh	<0.02	Ag	<0.02	TI	<0.02	V	<0.02
Ва	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	Ч	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	°.	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
В	<0.02	Cu	<0.02	Au	<0.02	Рь	<0.02	Nd	<0.02	Κ	<0.2	Sc	<0.02	Та	<0.02	Ti	<0.02	Zr	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- All

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17 AR-1539 Cer https://Absolute d By: Giovanni Esposito By: Pedro L. Rentas ty (Solvent Safety Info. On Attached pg.) nL) CAS# OSHA PEL (TWA) LD50 7761-88-8 10 ug/m3 N/A
AR-15: https://At Giovanni Esposito Pedro L. Rentas SDS Information ent Safety Info. On Attac OSHA PEL (TWA) 10 ug/m3

1 of 2

Part # 57047

Lot # 072921

Printed: 8/19/2021, 11:15:10 PM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

									analyte	(T)= Target analyte									
<0.02	Zr	<0.02	Ti	<0.02	Та	<0.02	Sc	<0.2	K	<0.02	Nd	<0.02	Рь	<0.02	Au	<0.02	Cu	<0.02	в
<0.02	Zn	<0.02	Sn	<0.02	s	<0.02	Sm	<0.02	Pt	<0.02	Mo	<0.02	La	<0.02	Ge	<0.02	C°	<0.02	Bi
<0.02	Y	<0.02	Tm	<0.02	\mathbf{Sr}	<0.02	Ru	<0.02	P	<0.2	Hg	<0.2	Fe	<0.02	Ga	<0.02	Ç	< 0.01	Be
<0.02	Yb	<0.02	Th	<0.2	Na	<0.02	Rb	<0.02	Pd	<0.02	Mn	<0.02	Ir	<0.02	Gd	<0.02	Cs	<0.02	Ba
<0.02	V	<0.02	Π	Т	Ag	<0.02	Rh	<0.02	$O_{\rm S}$	< 0.01	Mg	<0.02	In	<0.02	Eu	<0.02	Ce	<0.2	As
<0.02	U	<0.02	Te	<0.02	Si	<0.02	Re	<0.02	Nb	<0.02	Lu	<0.02	Ho	<0.02	Er	<0.2	C_a	<0.02	Sp
<0.02	W	<0.02	Ть	<0.2	Se	<0.02	Pr	<0.02	Ni	<0.02	Li	<0.02	Hf	<0.02	Dy	<0.02	Cd	<0.02	Al
						g/mL)	1S (μι	by ICP-N	tion	Verifica	letals	Irace N							
									•		-								

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

n for the

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ADSOLUTE Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number:	Lot Number: Description:	Expiration Date:	Recommended Storage: Nominal Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):		Compound	1. Ammonium hexafluorotitanate (Ti)	1.0E5	0. 0. 1. 	m/z->	2.0E8 	1.0E8- - -	m/z->	5.0E7 - - -	2.5E7	m/z->
· ·	nber:	nber: tion:	Date:	/mL):	nber:	ow was dil	Part	Number) 58122			10			110			210
	57022	<u>070721</u> Titanium (Ti)	070724	Ambient (20 °C) 1000	6UTB	uted to (mL):	Lot	er Number	2 070120			20			120			220
		<u>ii</u>	2	°C)	<u>5</u>	2000.02 0	Dilution	Factor Vc	0.1000 2			30			130			230
Certified					5E-05 Balance Uncertainty	0.058 Flask Uncertainty	Initial Uncertainty	Vol. (mL) Pipette	200.0 0.084			40			140			240
l Reference	Lot # 20370011	2.0%			certainty	tainty	y Nominal	Conc. (µg/mL)	1000			50			150			250
Certified Reference Material CRM	Solvent: Nitric Acid	40.0	(mL)				Initial	Conc. (µg/mL) Conc. (µg/mL)	10000.1			60			160			260
×.		Nitric Acid			R		Final		1000.0			70			170			
		Formulated By:		Kercu	Reviewed By:	-	Uncertainty	+/- (µg/mL)	2.2 16			8.0			180			
		lonce	~	a R	Pedi	ŋ	(Solvent S	CAS# OSH	16962-40-6 2.5			06			190			
ANAE AR-1 https://		Lawrence Barry	\mathcal{O}	à	Pedro L. Rentas		(Solvent Safety Info. On Attached pg.)	OSHA PEL (TWA)	2.5 (F) mg/m3									
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com		070721			070721	i	tached pg.)	LD50	NA			100			200			
Accredite ate Numbe ndards.con		21			721		NIST	SRM	3162a									

Part # 57022 Lot # 070721

1 of 2

Printed: 8/10/2021, 11:15:02 PM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							ITACE M	letais	Verilica		by ICP-M	<u>10 (µy</u>	J/ [[L]					ĺ	
AI	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	Pr	<0.02	Se	<0.2	ТЪ	<0.02	W	<0.02
Sp	<0.02	Ca	<0.2	Er	<0.02	Ho	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	U	<0.02
As	<0.2	ଜ	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	Os	<0.02	Rh	<0.02	Ag	<0.02	TI	<0.02	V	<0.02
Ва	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	Yb	<0.02
Ве	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	Р	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
B:	<0.02	Co	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	РЬ	<0.02	Nd	<0.02	Κ	<0.2	Sc	<0.02	Ta	<0.02	Ti	Т	Zr	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. She

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	*		Certified R	Certified Reference Material CRM	faterial CRI			ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	<u>57081</u> 073021 Thallium (TI)			Lot # 20370011	Solvent: Nitric Acid	Z	Liovannie	Especto
Expiration Date:	073024			2.0%	40.0 (mL)	Nitric Acid Formul	Formulated By:	Giovanni Esposito
Recommended Storage: Nominal Concentration (µq/mL):	Ambient (20 °C) 1000	C)				<u>}(</u>	en la	theres
NIST Test Number:	6UTB	5E-05	05 Balance Uncertainty	linty		Reviewed By:	ed By:	Pedro L. Rentas
Volume shown below was diluted to (mL):	diluted to (mL):	2000.02 0.058	58 Flask Uncertainty	ţy		Expanded	ded	SDS Information
Compound	Part Lot Number Number	Dilution Initial Factor Vol. (mL)		Uncertainty Nominal Pipette (mL) Conc. (ua/mL)	Initial Final Conc. (ua/mL) Conc. (ua/mL)	. –) CAS	(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50
				1000	10001 0		77	
[1] Spectrum No.1	-	14.044 sec]:57081.D# [Count] [Linear]	57081.D# [0	Sount] [Lin	ıear]			
1.0E6 .								
1.0E4	N. O	ω O	4. 0	8	8	70 0	0 0	0 0
	N. O	<u>ω</u> . Ο	6 0	5	<u>8</u>	8	80	9 0
	N O	θ	4 0	8-	8	8	0 0 0	9 0
	120	130	140 0	150 0	1 60 8	170	180 80	90 0
	12 0	130	4 6 0	1 ნი 0		4 6	180 08	100 0000000000000000000000000000000000

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

				-	F				
	В	Bi	Be	Ва	A_S	Sp	AI		
	<0.02	<0.02	<0.01	<0.02	<0.2	<0.02	<0.02		
	Cu	ĉ	Ω	Cs	Ce	Ca	Cd		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02		
	Au	Ge	Ga	Gd	Eu	Er	Dy		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
	Рb	La	Fe	lr	In	Ho	Hf		
	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	Irace M	1
	Nd	Mo	Hg	Mn	Mg	Lu	Li	letais	-
(T)= Target analyte	<0.02	<0.02	<0.2	<0.02	<0.01	<0.02	<0.02	Verifica	:
analyte	K	₽	P	Pd	O _s	Nb	Ni	tion	•
	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	by ICP-N	
	Sc	\mathbf{Sm}	Ru	Rb	Rh	Re	\mathbf{Pr}	15 (<i>µ</i> (5
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	J/mL)	~
	Та	s	Sr	Na	Ag	Si	Se		
	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2		
	Ti	Sn	Tm	Th	TI	Te	Tb		
	<0.02	<0.02	<0.02	<0.02	Т	<0.02	<0.02		
	Zr	Zn	Y	Yь	V	П	W		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02		_

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

n for the second

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- * All standard containers are meticulously cleaned prior to use. the preparation of all standards.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

m/z->	N. 55 100	m/z-≻ 5.0E6	1.006	11/2-2 2.0E6	2.5E7	5.0E7	1. Indium Oxide (In)	Compound	Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	Expi	CERTIFIED WEIGHT REPORT: Part Lot	www.absolutestandards.com
210		110		10		[1] Spectrum No.1	IN086	RM#	Recommended Storage: Ambient (J Il Concentration (Jug/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Expiration Date:	<u>ORT:</u> Part Number: Lot Number:	п
220		120		NO		-	86 W1096A		Ambient (20 °C) 10000 6UTB uted to (mL): 50	100724	58149 100721 Indium (In)	
230		130		30		12.965 sec]	10000 99.999	Nominal Purity Conc. (µg/mL) (%)	0.06		-	NAGIO
240		140		4 0		12.965 sec]:57049.D# [Count] [Linear]	0.10	Uncertainty Purity (%)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty		Solvent:	R: 10/08
250		150		50		[Count] [Lin	82.6 6.05408	Assay Target (%) Weight (g)	inty Y	5% 25.0 (mL)	Lot # ent: 20370011	121
260		160		0		ear]	6.05441	Actual Weight (g)		Nitric Acid	Nitric Acid	Ð
		170		70			10000.6 2	Exp Actual Unce Conc. (µg/mL) +/- (Revi	Form	re	
		180		80			20.1 1312-43-2	Expanded Uncertainty (Sol +/- (µg/mL) CAS#	Reviewed By:	Formulated By:	fioranci	
		190		00			NA	SDS Informa olvent Safety Info. On OSHA PEL (TWA)	Pedro L. Rentas	Giovanni Esposito	Cape	
		200		100			NA	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50			A	https://Absolutestandards.com
	n an						3124a	NIST	100721	100721		tandards.co

1 of 2

Part # 58149

Lot # 100721

Printed: 10/7/2021, 2:18:03 PM

www.absolutestandards.com	800-368-1131	Absolute Standards,
		Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace Me	etals	Verificat	ion b	y ICP-MS	(hð	/mL)	-					
2	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	N.	<0.02	- PA	<0.02	Se	<0.2	1 11 1	40.02	W	40.02
Sb	<0.02	Ca	<0.2	Ę	<0.02	Но	<0.02	L	<0.02	Nb	<0.02	Re	<0.02	S	<0.02	Te	<0.02	с	<0.02
As	<0.2	Ce	<0.02	E	<0.02	In	Т	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	Н	<0.02	<	<0.02
Ba	<0.02	Cs	<0.02	Gd	<0.02	Ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	40.2	Th	<0.02	ΥЪ	<0,02
Be	<0.01	Ç	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	C ₀	<0.02	ଜୁ	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	2	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	РЬ	<0.02	Nd	<0.02	~	<02	Sc	<0.02	Ta	<0.02	Н	<0.02	Z	<0.02

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

the 1. - S

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58139 Lot # (m/z->	1.0E5	m/z-> 2.0E5	2.5E4	m/z-> 5.0E4	1.0E6	2.0E6	1. Yttrium (III) Oxide (Y)	Weight show Compound	NIST T	Recommended Storage: Nominal Concentration (µg/mL):	Π	<u>Ventiried weight her Ont.</u> Lot Des	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Lot # 052521	210		110		10		[1] Spectrum No.1	INOR	Weight shown below was diluted to (mL):	NIST Test Number:	nended Storage: ntration (µg/mL):	-	Part Number: Lot Number: Description:	s, Inc.
	220		120		20		_	IN087 YV012015B1		6UTB	Ambient (20 °C) 10000	0.000	<u>58139</u> 052521 Yttrium (Y)	
	230		130		ů		12.624 sec	10000 99	2000.02 0.0 Nominal PL Conc. (µg/mL) ()	5E	°C)	ŀ		M4961
	240		140		40		12.624 sec]:58139.D# [Count] [Linear]	99.999 0.10	0.058 Flask Uncertainty Purity Uncertainty As (%) Purity (%) (5E-05 Balance Uncertainty			Solvent:	Certified
1 of 2	250		150		თ O		[Count] [Lin	77.9 25.6744	inty Assay Target (%) Weight (g)	ainty	(11)	2% 40.0	Lot # 20370011	Certified Reference Material CRM $\mathcal{R}_{1} = \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \right] \left[\frac{1}{2} \right]$
	260		160		0		ear]	25.6745	Actual Actual) Weight (g) Conc. (µg/mL)			Nitric Acid	Nitric Acid	aterial CRM
			170		70			10000.0		Re		Fo]	
			180		80			20.0 1314-36-9	Expanded Uncertainty (1 +/- (µg/mL) CAS#	Reviewed By:	Herein	Formulated By:	Ada	
Printed: 10/7/2			190		90			6-9 NA	Solvent O	Pedro L. Rentas	ten	Lawrence Barry	une B	
Printed: 10/7/2021, 2:18:04 PM			200		100				SDS Information Safety Info. On Attached SHA PEL (TWA)	ntas	81	arry	Vr.	ANAB ISO AR-1539 (https://Abso
PM	×							NAN	0	052521		052521		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
						an data an		NA	NIST					adited s.com

www.absolutestandards.com	Absolute Standards, 800-368-1131
	Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

<0.02	Zr	<0.02	Ti	<0.02	12	20.02	90	7.0>	2	10.02	210				de la constante de	And the other designs of the o			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE
<0.02	211	10.01	01		1	2	2	5	4	33	N	2002	Ph	<0.02	Au	<0.02	Cu	20.02	B
3	7	200	5	c0 0>	2	<0.02	Sm	<0.02	Pt	<0.02	Mo	<0.02	La	20.02	G	70.02	5	10.01	J !
-	Y	<0.02	Tm	<0.02	Sr	<0.02	Ru	<0.02	7	7.0>	gu	101		0.01	2	202	5	<0.02	<u>R</u> .
20.02	ID	20.02	111	10.2	144	10.01	1	10.01	, ;	3	H,	5	ជ	300	<u>_</u>	40.02	ç	<0.01	Be
	\$	3	ţ	5	Ş	000	R	2002	Pd	<0.02	Mn	<0.02	Ir	<0.02	Gd	20.02	S	20.02	La
<0.02	<	<0.02	П	<0.02	Ag	<0.02	Rh	<0.02	Os	<0.01	Mg	<0.02	III	10.02		0.01	2		ជ
<0.02	0	<0.02	Je	20.02	IC	10.02	20	10.02	110	10.01	1	3	5	502	IJ	c0 0>	C.	<0.2	As
10.01	: :		4	3	2	3	D	200	Ş	c0 0>	In	<0.02	Ho	<0.02	q	<0.2	Ca	20.02	30
ca h	W	<0.02	4L	402	Se	<0.02	P	<0.02	Z	<0.02	5	20.02	111	10.02	5		2	5	7
South and a second second second	and a second	「「ない」というないである										222	1 311	20 02	Dv	20.02	Cd	<0.02	AI
	No. of Concession, name		and the second se								No. of Street, or Stre		Strate and		Constraints and	and the second second	State States		
						Jd/mL)	40 (L	by ICP-I	TION	verifica	clais	I ACE IVIE							T
A REAL PROPERTY AND A REAL		And the second se	and the second se				5	5		Solin I	+>		_						

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son 1. All

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58139 Lot # 052521

3

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- **APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: AI, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

RM ICP-AES ICSA-1211 B-0710 SFAM.docx

Page 1 of 2

QATS Form 20-007F189R01, 01-17-2023

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

ICSA

M5126

M5127

M5128

M5129

M5130

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1.	"CERTIFIE			ERENCE CH	IECK SAMPL CSB-0710	E ICP-AES IO	CSA-1211,
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
AI	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Са	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

m/z->	1.0E6	2.0E6	m/z->	1000	2000	1.0E5	2.0E5	1. Ammonium molybdate (Mo)	Compound	Volume show	NIST Tes	Recommended Storage: Nominal Concentration (µg/mL):	Expire	Part Lot Des	CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
210			110		đ		[1] Spectrum No.1		Nur	vn below was o	NIST Test Number:	d Storage: n (µg/mL):	Expiration Date:	Part Number: Lot Number: Description:		s, Inc.
2			120		N		No.1	58142 022222	Part Lot Number Number	Volume shown below was diluted to (mL):	6UTB	Ambient (20 °C) 1000	051725	57042 051722 Molybde		-
							[8.594	0.1000	Dilution Factor	3000.41		20 °C)		<u>57042</u> <u>051722</u> Molybdenum (Mo)		
			130		G		sec]:5704	300.0	Initial Un Vol. (mL) Pip	0.058 Flas	5E-05 Bala					M.S.
			140		40 0		8.594 sec]:57042.D# [Count] [Linear]	0.084	Uncertainty N Pipette (mL) Conc	Flask Uncertainty	Balance Uncertainty			MKE	_	Certified Rep M.5192
			150		50		unt] [Líne	1000	Nominal Conc. (µg/mL) Co				0.5%	MKBQ8597V Am	Lot #	ference M.
			160		60)ar]	10001.0	Initial Conc. (µg/mL) C				15.0 ×	Ammonium hydroxide		Certified Reference Material CRM いちいのえいたいのんりはてい
			170		70			1000.0	Final Conc. (µg/mL)	Г			Ammonium hydroxide	æ	-	M 172
								2.1	Expanded Uncertainty +/- (µg/mL)		Reviewed By:	N's	Formulated By:	A		
			180		80			13106-76-8	(Solve CAS#			to I		deronce		•
			190		90			5 mg(Mo)/m3	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Pedro L. Rentas	era	Lawrence Barry	An		nt 、
			200		100			13 orl-rat 333 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50		s 051722	/	rry 051722	Ψ		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								kg 3134	NIST		722		722			4 Accredite ate Numbe ndards.com

Part # 57042 Lot # 051722

1 of 2

Printed: 6/16/2022, 1:36:08 PM

vww.absc	100-368-1
vww.absolutestandards.com	0-368-1131
com	rds, I
	Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	letals	Verifica	ition	by ICP-N	IS (µ	g/mL)						
A	<0.02	ß	40.02	Dv	20.02	Ηŕ	3	1	-	1									
SP SP	A).02	Ĵ,	2.0	7 5	10.02	1	<0.02	' E	20.02	N	<0.02	P	<0.02	Se	<0.2	4L	<0.02	W	<0.02
<u>,</u>		<u>م</u>	10.2	5	20.02	Ho	<0.02	Lu	<0.02	ß	<0.02	Re	<0.02	Si	40.02	5	<0.02	11	4000
2	202	ŝ	20.02	E	<0.02	h	<0.02	Mg	<0.01	ò	<007	Rh	50	۸,	2003	3	3	: (
Ba	40.02	S	<0.02	3	300	7	3	ξ,	2	2			10.02	26	70.02		20.02	<	20.02
Be	5	?	3	2	20.02	l =	70.02	UTAT	20.02	Pd	<0.02	Rb	<0.02	Na	40.2	Ъ	<0.02	ΥЪ	<0.02
2	-	2	70.02	Ca	<0.02	He	<02	Hg	40.2	P	<0.02	Ru	<0.02	S	40.02	J	300	<	2003
Id	20.02	6	40.02	ଜ	<0.02	5	40.02	Mo	÷	¥	2003	ŝ	202	0	5	>		1,	10104
ω	40.02	6	<0.02	An	3	ş	3	E		; ;	TO'NE	UH	70.02	0	20.05	Sn	20.02	5	<0.02
					10.01	0.1	20.05	ING	20.02	~	40.2	Sc	<0.02	Ta	<0.02	Т	<0.02	72	<0.02
																			And in the second secon

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Sor 1. S

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57042 Lot # 051722

m/z->	N.5E6	m/z-> 5.0E6	2.5E6	m/z-> 5.0E6	N 5 11 5	5.0E5	1. Sodium nitrate (Na)	Compound	B00-368-1131 WWW.absolutestandards.com CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	Absolute Standards, Inc.
210		1 10		10		[1] Spectrum No.1	INC	R	itandards.com	s, Inc.
220		120		NO		No.1	IN036 NAV01201511	Lot RM# Number	58111 092121 Sodium (Na) 092124 Ambient (20 °C) 10000 6UTB Iuted to (mL): 30	
230	ä	130		a o		8.935 sec	10000 9	Nominal F Conc. (µg/mL)	M /	
240		140		40]:58111.D#	99.999 0.10	Purity Uncertainty (%) Purity (%)	Certified Re Solvent 2% 5E-05 Balance Uncertainty 0.058 Flask Uncertainty	
250		150		თ O		8.935 sec]:58111.D# [Count] [Linear]	27.0 111.1274	Assay Target (%) Weight (g)	Certified Reference Material CRM	
260		160		0		near]	74 111.1433	t Actual (g) Weight (g)	Material CRI	
		170		70				Actual (Conc. (µg/mL))
		180		80			General Content	Expanded Uncertainty +/- (µg/mL) C	Formulated By: Reviewed By:	
		190		80			7631-99-4 5	Solvent Saf CAS# OSH/		D
							5 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LDS(Giovanni Esposito	ΔΝΔ
		00		100			orl-rat 3236 mg/kg	on tached pg.) LD50	AR-1539 Certificate Number https://Absolutestandards.com	ANAR ISO 1703/ Accredited
- M							0	NIST		Annonliton

Part # 58111 Lot # 092121

1 of 2

Printed: 10/4/2021, 3:38:48 PM

www.absolutestandards.com	Absolute Standards, 800-368-1131
	Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifica	ition	by ICP-N	H) SI	g/mL)						
	200																		
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	Pr	<0.02	Se	40.2	41	40.02	W	<0.02
Sb	<0.02	G	<0.2	막	<0.02	Но	<0.02	Ľ	<0.02	Nb	<0.02	Re	<0.02	S	<0.02	Te	<0.02	C	<0.02
As	<0.2	S	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	SO	<0.02	Rh	<0.02	Ag	<0.02	Н	<0.02	V	<0.02
Ba	<0.02	S	<0.02	Gd	<0.02	١٢	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	T	Ц	<0.02	YЪ	<0.02
Be	<0.01	ç	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	S	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Z	<0.02
u.	<0.02	6	<0.02	Au	<0.02	Рb	<0.02	Nd	<0.02	ĸ	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02
													and the second se	State of the second		Contraction of the local division of the loc			

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

She for the

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58111 Lot # 092121

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- **APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: AI, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

RM ICP-AES ICSA-1211 B-0710 SFAM.docx

Page 1 of 2

QATS Form 20-007F189R01, 01-17-2023

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

ICSA

M5126

M5127

M5128

M5129

M5130

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1.	"CERTIFIE			ERENCE CH	IECK SAMPL CSB-0710	E ICP-AES IO	CSA-1211,
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
AI	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Са	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com		•		Certifie	Certified Reference Material CRM	e Materia	I CRM					AR-1 https:///	AR-1539 Certificate Number https://Absolutestandards.com	standar
<u>CERTIFIED WEIGHT REPORT:</u> Part Number: Lot Number: Description:	<u>57051</u> <u>101521</u> Antimo	<u>57051</u> 101521 Antimony (Sb)			Lot # 20370011	Solvent: 1 Nitric Acid	ci Tt:		Giovannie		Espe	posite		
					2.0%	40.0		Nitric Acid For	Formulated By:		Giovanni Esposito	sposito		101521
Expiration Date:	101524 Amhient	4 nt (20 °C)				(mL)				,				
Nominal Concentration (µg/mL):	1000								X	\$. \$.	ten	ð		
NIST Test Number:	6UTB		5E-05	35 Balance Uncertainty	ncertainty			Re	Reviewed By:		Pedro L. Rentas	Rentas		101521
Volume shown below was diluted to (mL):	diluted to (r	nL): 2000.25	.25 0.116	6 Flask Uncertainty	ərtainty			_ [Expanded		SDS I	SDS Information		
Compound	Part Lot Number Number	: Dilution Factor	on Initial or Vol. (mL)	al Uncertainty mL) Pipette (mL)	Uncertainty Nominal Pipette (mL) Conc. (ug/mL)	Initial Conc. (µa/mL	Conc		Uncertainty +/- (µɑ/mL)	(So CAS#	(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	nfo. On Att (TWA)	ached pg.) LD50	NIST SRM
b)				.0 0.084	1000				2.2	7440-36-0	0.5 ma/m3		orl-rat 7000 ma/ka	
Ν. Φ. Φ. Ο Π. Π. Φ. Δ.						17.964 sec]:58051.D# [Count] [Linear]								
m/z-> 10						[Linear]								
		20	ω <u>-</u>	4- 0	<u>ต</u> 0	Cinear	6 <u>.</u>	70	'n	80 O	<u>8</u>	-	100	
5.0E5 -			ω. Ο	4	м.	Cinear ar	0 0	70	m	Ö	ğ		ŏ	
2.5 0 E E5 	N	Ö	β	4. 0	м. М		6 <u>0</u> 0	70	n n n n n n n n n n n n n n n n n n n	Ö	ø.		Ğ'	
5.0E5 2.5E5 m/z-> 2.0E7			1 30	140 ⁴	15-0 0		160 0	170		180	190 0			
			30 0	4- 6-	ซ. ซ.		8	6	- 		e B		ŏ' ŏ'	

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

в	Bi	Be	Ba	As	Sp	AI		
4								
0.02	<0.02	0.01	0.02	0.2	Т	<0.02		
Cu	Co	Ω	Cs	Ce	C_a	Cd		
<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02		
Au	Ge	Ga	Gd	Eu	Er	Dy		
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
Рь	La	Fe	lr	In	Ho	Hf		
<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	Irace M	
Nd	Mo	Hg	Mn	Mg	Lu	Li	recais) -)
<0.02	<0.02	<0.2	<0.02	<0.01	<0.02	<0.02	Verifica	
K	Pt	Р	Pd	Os	Nb	Ni	uon i	
<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	JY ICP-N	
Sc	Sm	Ru	Rb	Rh	Re	Pr		
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	3/ ML)	
Та	s	\mathbf{Sr}	Na	Ag	Si	Se		
<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2		
Ti	Sn	Tm	Th	T	Te	Ть		
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
Zr	Zn	Y	Yb	V	С	W		
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

er f. Sher

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

OCERTIFIED WEIGHT REPORT: CERTIFIED WEIGHT REPORT: CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Lot Number: Lot Number: Valuadium Description: Valuadium Notional Concentration (ug/mL): Notional Concentration (ug/mL): Volume chorent chorent chorent chorent colspan=	57023		č	of Deliver	1	CO Joinetek			4	AP	ANAB ISO 17034 Accredited	Accredited
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number:	57023		C.	runea He	terence l	Certified Reference Material CHM		EF)		http:	AR-1539 Certificate Number https://Absolutestandards.com	te Numbe dards.com
Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Volume shown bolow wee	<u>100121</u> Vanadium (V)	s		5	Lot # 20370011	Solvent: Nitric Acid	L	Hierannie	nni E	aperto		
Nominal Concentration (Jg/mL): NIST Test Number: Volume shown holow was	100124 Ambient (20 °C)	1 0			2.0%	60.0 (mL)	Nitric Acid	Formulated By:	4	Giovanni Esposito	100121	
A DIALITE SHOWIN DELOW WAS	6UTB 6UTB diluted to (mL):	3000.4	5E-05 B 0.06 F	Balance Uncertainty Flask Uncertainty	×			Reviewed By:		Pedro L. Rentas	100121	
Compound	Part Lot Number Number			Uncertainty Pipette (mL) Co	ν Nominal Conc. (μg/mL)	Initial Conc. (µg/mL)	Final Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL)	(Solve CAS#	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	ation Attached pg.) LD50	NIST
1. Ammonium Metavanadate (V) 58	58123 070721	0.1000	300.0	0.084	1000		1000.0	2.1	7803-55-6	1.0 mg/m3	orl-rat 630 mg/kg	3165
2.0E6	-	4.243 se	c]:5802	34.243 sec]:58023.D# [Count] [Linear]	Inne ILL	iear]	۵.					
1.0E6-												
m/2-> 10	20	0		40	20	80	20	W	08	06	100	
1.0E												
m/z->	120	130		140	150	160	170		180	190	200	
а 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8												
m/z-> 210	220	230		240	250	260						

Part # 57023 Lot # 100121

1 of 2

Printed: 11/18/2021, 11:15:07 PM

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

							Trace N	Aetals	S Verification by	tion	by ICP-M	IS (U	g/mL)		and the second second				
																	Sam Providence - An		A lot of the subscription of the subscription of
_	<0.02	Cd	<0.02	Dy	<0.02	JH	<0.02	L:	<0.02	ï	<0.02	Pr	<0.02	Se	<0.2	Tb	<0.02	M	<0.02
~	<0.02	Ca	<0.2	Er	<0.02	Ho	<0.02	Lu	<0.02	ЧN	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	n	<0.02
	<0.2	ပိ	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	Os	<0.02	Rh	<0.02	Ag	<0.02	IT	<0.02	>	F
_	<0.02	Cs	<0.02	Gd	<0.02	Ц	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	ΥР	cu u>
	<0.01	ŋ	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	Д	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	2	20.02
Bi	<0.02	Co	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Ł	<0.02	Sm	<0.02	s	<0.02	Sn S	20.02	7"	70.02
	<0.02	Cu	<0.02	Au	<0.02	Pb	<0.02	PN	<0.02	Х	<0.2	Sc	<0.02	, Ta	<0.02	Ę	20.02	7,	20.02
							and the second se								70.00		70.02	77	20.02
									Toract										
									(1)= Idiger	allalyle									

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Sar P.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

m/z->	1.067	m/z-> 2.0E7	N .01 11 01	5.0百万	N. 01 01 01	5.0ES	1. Antimony (Sb)	Compound	NIST Te Volume shc	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	Contractory Mercons nervors: Lo De	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
1210		110		1.		[1] Spectrum No.1	58	Nup	NIST Test Number: ume shown below was	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	∃ s, Inc.
NNO		120		N. O		-	58151 061021	Part Lot Number Number	NIST Test Number: 6UTB Volume shown below was diluted to (mL):	051825 Ambient (20 °C) 1000	57051 051822 Antimony (Sb)	\$
N 30 0		130		<u>u</u> 0		17.964 sec]	0.1000 30	Dilution Ir Factor Vol	3000.41 0.	°C)	(dS)	R
240		140		<u>4</u>		17.964 sec]:58051.D# [Count] [Linear]	300.0 0.084	Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty			0.9
N G O		150		50		Count] [Line	1000		tainty Ny	2.0%	unde unde	ference M
2 0		100		8 <u>.</u> 0				Initial Conc. (µg/mL) Conc		60.0 Nit (mL)	Solvent: Nitric Acid	aterial CRM
		170		70				Expanded Final Uncertainty Conc. (µg/mL) +/- (µg/mL)	Reviewed By:	Nitric Acid Formulated By:	J.C.	
		180		80			7440-36-0	CAS	ad By:	ated By:	haranni	-
		190		ů O				SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	Pedro L. Rentas	Giovanni Esposito	Esposite	htt
		200		100				mation On Attached pg.) A) LDSO	as 051822	la 051822	V.	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								NIST	322	322		Accredited ate Number ndards.com

Part # 57051 Lot # 051822

1 of 2

Printed: 8/23/2022, 4:16:41 PM

www.absolutestandards.com 800-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.cor ANAB ISO 17034 Accredite AR-1539 Certificate Numbe

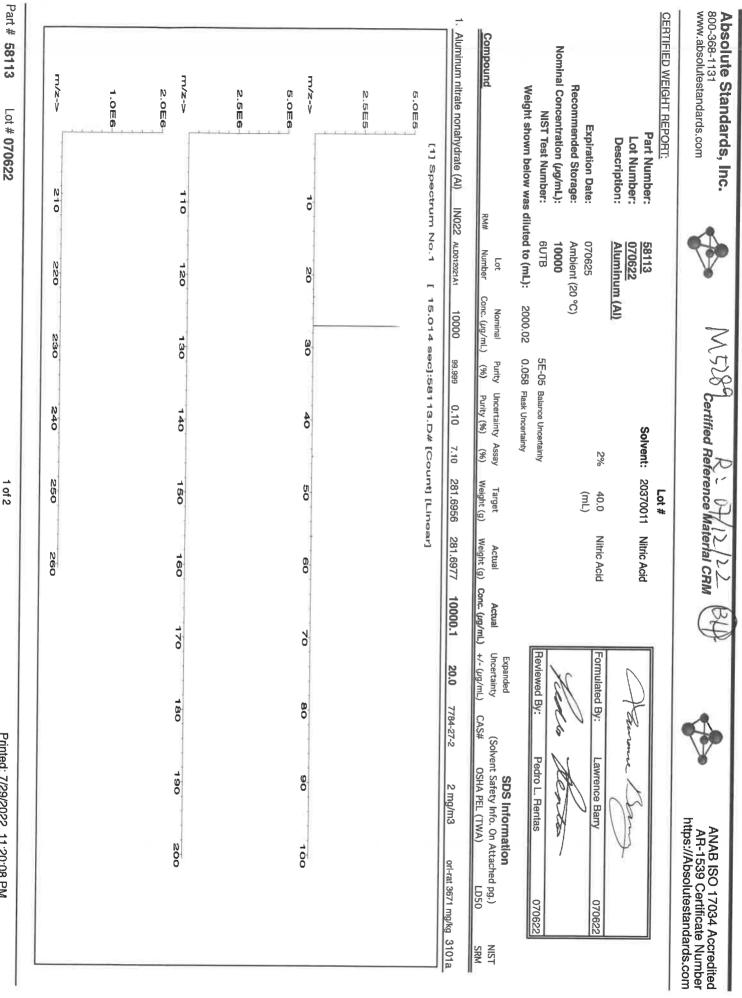
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

2	B B B B B B B B B B B B B B B B B B B	
	40.2 40.2 40.2 5 40.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	5 S C C C C S S	
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	ନ୍ଦୁ କୁ କୁ ଅନ୍ତୁ କୁ କୁ କୁ ସୁ	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	88 15 15 15 15 15 15 15 15 15 15 15 15 15	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Trace M
	Hg Hg Nd	etals
(T)= Target analyte	40.02 40.02 40.02 40.02 40.02 40.02	Verifics
analyte	× 7 P S S N	in
	Rb Sm Sc	
	9/mL)	
ŀ	To St N & Si Se	
L		
	2 S I J J J J J	
40.02	40.02 40.020	
27	Z × X < ⊂ ×	
40.02	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	


Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:


* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
* All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

1 of 2

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Certified Reference Material CRM	*	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Indu	Mass Spec		
<0.02	Trace Metals V		
40.02 40.02 40.02 Ca 40.02 Ca	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.2	W <0.02
Physical Characterization:	(T)= Target analyte		1 10.02
Homogeneity: No heterogeneity was ob	Homogeneity: No heterogeneity was observed in the preparation of this standard.	Ce	Certified by:
		()	sold and a
	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in All standard containers are meticulously cleaned prior to use	ated. ed in	
 Standards are prepared gravimetriculously cleaned prior to use. Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under apping the uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Govern 	Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result." NIST Technical Note 1305		
	This is the second		
	D.C. (1994).		

1 of 2

Printed: 7/29/2022, 11:20:08 PM

800-368-1131	Absolute Standards, II
	Inc.
	800-368-1131

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	etais	Verifica	ation	by ICP-	MC (hg/mr)						
							-0110-												
Al	Т	G	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	77	<0.02	Se	<0.2	Ъ	<0.02	W	<u>6</u> .0
Sр	<0.02	ß	<0.2	막	<0.02	Но	<0.02	Ŀ	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	40.02		<0.02
As	<0.2	င့	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	ŝ	<0.02	Rh	<0.02	Ag	<0.02		40.02	V	4
Ba	<0.02	ß	<0.02	Gd	<0.02	١r	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Þ	<0.02	Υ γ	4
Be	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	ş	40.02	Jm	40.02	¥	
B:	<0.02	S	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	₽	<0.02	Sm	<0.02	s	<0.02	2	<0.02	7	~
B	<0.02	С ¹	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	×	<0.2	Ş	<0.02	Ta	<0.02	Ţ.	<0.02	27	A)

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Certified by:

In P. Mr.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" R : 以120 2 [

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in $\mu g/L$ (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014 For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

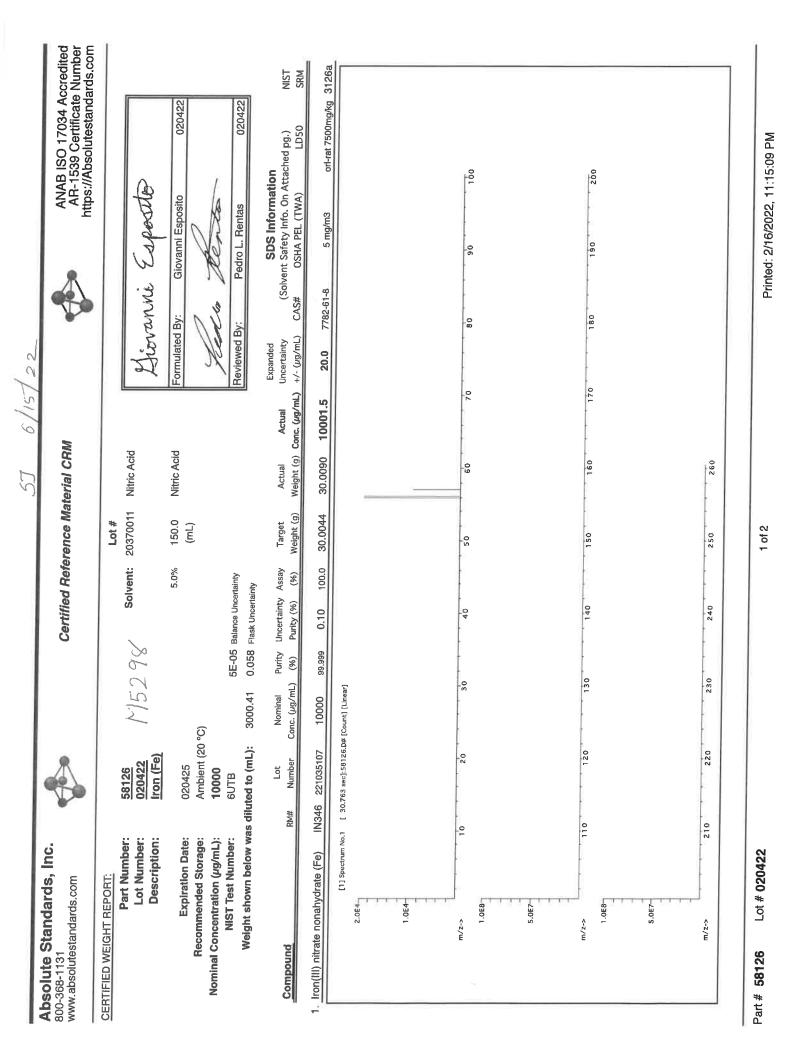
RMs ICV 1, 5, 6 SFAM.docx

Page 1 of 2

QATS Form 20-007F188R00, 04-19-2021

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"


AP11MInstructions for QATS Reference Material: Inorganic ICV SolutionsICV1-1014For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate
into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.ICV5-0415For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting
1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume
with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K2Cr2O7
and 5% (v/v) nitric acid.ICV6-0400For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6
concentrate into a 100 mL volumetric flask and dilute to volume with Type II water.
Distill this solution along with the samples before analysis. The cyanide concentrate
is prepared from K3Fe(CN)6, Type II water, and 0.1 % sodium hydroxide, and will
decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014	
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)
AI	2500	500
Sb	1000	200
As	1000	200
Ba	520	100
Be	510	100
Cd	510	100
Ca	10000	2000
Cr	520	100
Co	520	100
Cu	510	100
Fe	10000	2000
Pb	1000	200
Mg	6000	1200
Mn	520	100
Ni	530	110
K	9900	2000
Se	1000	200
Ag	250	50
Na	10000	2000
TI	1000	210
V	500	100
Zn	1000	200

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN [.]	99

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

000	20	00.00									ALC: NO	LI LI LI LI LI LI		The state of the				
70.07	3	20.02	ĥ	<0.02	Ħ	<0.02	:=	<0.02	ïŻ	<0.10	k	000-	0	00	Ē			
<0.02	S	<0.2	ц,	2002	ЦО	000	F		; ;		* *	70.02	b o	2.0>	19	<0.02	>	<0.0×
507	c	0.00	i,	10.04	2	70.02	T'I	<0.02	٩Ż	<0.02	Re	<0.02	55	<0.02	ť	2007	11	001
7.02	ŋ	<0.02	립	<0.02	In	<0.02	Mo	/0.01	ć	000	ē				2	10.02	>	20.02
<0.02	ڒ	20.02	2	000			9	10.04	ŝ	70.02	2	<0.02	Ag	<0.02	Ħ	≤0.02	>	<0.0>
	3	70.04	3	<0.UZ	4	<0.02	Mn	<0.10	Ρd	<0.02	Rh	<0.02	٩Ŋ	102	É	200		
<0.01	გ	<0.5	g	<0.02	Ц.	C 02	'n,		¢		1	1000	PLT	7.02	97	<0.02	Υb	<0.0≻
<0.07	ξ	010	ç		,	7.02	2112	7.02	<u>ب</u>	<0.02	2	<0.02	S	<0.02	Tm	<0.02	>	100
70.02	3	01.02	35	<0.10	ę	<0.02	мо	<0.02	Ł	<0.02	mS.	2007	U	200	5		۰ I	20.00
<0.02	õ	<0.10	Υn	<0.02	fd	<0.02	NA	20.02	1		5	70.02	2	20.02	Ч	<0.02	Z Z	×0.0
							DLT	20.02	4	202	22	<0.02	<u>e</u>	000	ï	2007	1	ç

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Sur P

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use. *
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
 - * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

1 023 Multed to (2 072 1 1000 1000 1000 1000 1000 1000 1000 1
Expiration Dete: 072125 2% 40.0 Nithic Add neradid Storage: Ambient (20 °C) SE-05 Baaroe Uncertainty (mL) Nithic Add ST Test Number GUTB SE-05 Baaroe Uncertainty SE-05 Baaroe Uncertainty Actual Number Actual
NIST fest Number: 6UTB SE-05 Bance Unordary Lot Nominal Purity Uncertainty Assy Taget Actual Bance Intrate (Ba) IN023 excame 1000 99.99 0.10 E23 3.82417 3.82426 1:0E8 [1] Spectrum No.1 [1] 12.514 sec):69156.0/f [Count] [Linear] 2:0E8 11.0E8 11.0E8 1 20 30 40 50 60 2:0E8 10 120 130 140 150 160 50
Compound New Number Core: (up/m.) (%) Parity (%) (%) Weight (0) Weight (0)
[1] Spectrum No.1 [12.514 sec]:58156.D# [Count] [Linear] E8 E5 E5 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 120 120 130 140 150
,
m/z-> 210 220

Printed: 10/27/2022, 4:11:20 PM

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

					Children -									a the second sec					
<0.02		p,	<0.02	Dy	<0.02	Hf	<0.02	E	<0.02	ž	<0.02	Ŀ	000	100	c 07		W V	1 111	0000
\$0.0P		Ğ	<0.2	눱	<0.02	Ho	<0.02	Lu	<0.02	ęz.	<0.02	- d	2007	3 0	1 200	2	20.02	A :	
02		,ei	<0.02	Бu	<0.02	ŗ	<0.07	ŷ	1002	č	000	24	10.0	5	70.02	5	20.05	2	40.02
F	_	0	000	3			1010	9.1	TO'O'	ŝi	70.02	2	70.02	A0	<0.02	F	<0.02	>	<u>6.02</u>
+ .	-	3	70'N2	3		늭	<0.02	MN	<0.02	Ъ	<0.02	RЪ	<0.02	Na	40.2	Ē	<0 UD	42	0007
0.0		1	<0.02	Ga	<0.02	Че	<0.2	Hg	<0.2	۵.	<0.02	Ru	<0.02	2	007	ł		; >	1000
20.0>		0	<0.02	e	<0.02	La	<0.02	Mo	<0.02	å	2007			5 0			70.02	-	20.02
<0.02	1	jă,	<0.02	An	000	á	2007	PIN I		: >	20.00		70.02	0	70'02	10	<0.U2	U 7	<0.02
	1			mL	TRA	2	20.02	DNT	ZUNZ	2	202	ŝ	<0.02	E	<0.02	i	2002	7,	2007

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

ar R

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	By: Lawrence Barr By: Lawrence Barr Jy: Pedro L. Renta SDS Info. (Solvent Safety Info.	7790-69-4		Printed: 1/18/2023, 4:01:43 PM
A	Formulated Formulated Reviewed E Actual Uncertainty	-H - H	۶ <u>۲</u>	
aterial CRM	Nitric Acid Nitric Acid Actual Actual		ar] 160 280	
leference M	20510011 20.0 (mL) (mL) Target	100.0134	0 0 0 0 220 0 220 0 220 0 220 0 220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 of 2
Certified Reference Material CRW	Solvent: Solvent: Solvent: 2% 5E-05 Balance Uncertainty 0.058 Rask Uncertainty Purity Uncertainty Assay (%) Purity (%) (%)	10.0	8103:D#[C 240 240 240 240	
	C) C) 5E-05 B 1000.12 0.058 F Nominal Purity t no. (ug/mL) (%)	88.999	9.619 sec]:58103: 30 130 14 230 24 14	
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Lot Number: Description: Expiration Date: Thilum (070622 Recommended Storage: Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): Neight shown below was diluted to (mL): Compound RM# Number	1. Lithium nitrate (Li) IN01	[1] Spectrum No.1 1.0E6 5.0E5 m/z-> 10 500 500 500 10 10 10 10 10 10 10 10 10	

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

												and the second se	and		The state of the s				
-	<0.02	3	<0.02	Dy	<0.02	Hf	<0.02	E	Ŧ	N	<0.02	占	<0.02	Se	₫02	e.	<0.02	M	000>
Sb	<0.02	లి	⊲0.2	Ъ	<0.02	Ho	<0.02	La L	≤0.0≥	ź	≤0:0>	Re	<0.0>	3	€0.02	e H	<0.02	Þ	4002
S	₫2	ථ	<0.02	围	<0.02	H	0.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0.02	>	
	<0.02	ర	<0.02	3	<0.02	4	40.02	Wa	<0.02	Pd	<0.02	Rb.	40.02	Z	202	Ē	CU CU	5	
ė	≤0.01	ර	<0.02	පී	<0.02	£	<02	He	<02	۵	<0,00	Ru	89	3	200	Ę	200	2 >	70.00
	<0.02	ථ	<0.02	ප	<0.02	el	A002	Ň	20.02	Å	000	, e	200	5 0	100	1 5		- I	70105
6	<0.02	õ	<0.02	Au	<0.02	i de	0.02	PN	<0.02	×	<02	3		ρĘ		i F		5 4	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). All Standards should be stored with caps tight and under appropriate laboratory conditions.

Lot # 070622 Part # 57103

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	•	NA KAQ/L Certified Reference Material	Certified Re	erence Ma	terial CRM		>		ANAE AR-1	ANAB ISO 17034 Accredited AR-1539 Certificate Number	Accredit te Numb
CERTIFIED WEIGHT REPORT:				Lot #	Solvent:	Vent 10	44	(
Part Number: Lot Number: Description:	57028 011223 Nickel (Ni)			20510011 N	Nitric Acid		Giovanni		Especto		
Expiration Date:	011226			2.0%		Nitric Acid For	Formulated By:	Giova	Giovanni Esposito	011223	ျပဳ
Recommended Storage: Nominal Concentration (µg/mL):	Ambient (20 °C) 1000	Ċ			(111)		N.	er.			
NIST Test Number:	6UTB			thγ		Re	Reviewed By:		Pedro L. Rentas	011223	ω
volume shown below was diluted to (mL):	is diluted to (mL):	2000.02 0.058	B Flask Uncertainty								L
		Dilution Initial	IUncertainty	Nominal	Initial	Final u	Expanded Uncertainty	SI (Solvent Sa	SDS Information (Solvent Safety Info. On Attached pg.)	n ached pg.)	NIST
	Number Number	Factor Vol. (mL)	Pipette (mL)	Conc. (µg/mL) Co	Conc. (µg/mL) Conc. (µg/mL)		+/- (µg/mL)	CAS# OSHA	OSHA PEL (TWA)	LD50	SRM
1. Nickel(II) nitrate hexahydrate (Ni)	58128 033122	0.1000 200.0	0.084	1000	10000.9	1000.0	2.2 13	13478-00-7 1	1 mg/m3 o	orl-rat 1620 mg/kg	3136
[1] Spectrum No.1	-	9.135 sec]:56	sec]:58028.D# [Count] [Linear]	bunt] [Linea	5						- 11
1.0 ጠ											
5000 	NO	30	40 0	50 0	60 0	70	80	90	100	ŏ	
2500-											
1.067	- N C	130	140	150	160	170	180	190	200	Ō	
51, O 田 の											
- E - E - E											
m/z-> 210	N N O	230	240	250	N 0						
Part # 57028 Lot # 011223				1 of 2				Drintad: 0/15/0000 11.00.00 DM			

1 of 2

Printed: 2/15/2023, 11:20:02 PM

≤ 00

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

								5	t onolu	(T) - Tarrat analyta									
<0.02	Zr	<0.02	Ŀ	<0.02	Ta	<0.02	Sc	<0.2	×	<0.02	Nd	<0.02	Pp	20.05	Au	<0.02	5	20.02	Ŀ
<0.02	Z'n	<0.02	Sn	<0.02	s	<0.02	Sm	<0.02	Pt	<0.02	Mo	<0.02	La	<0.02	Ge	<0.02	2 8	<0.02	a þ
<0.02	Y	<0.02	Tm	<0.02	Sr	<0.02	Ru	<0.02	P	<0.2	Hg	<0.2	Fe	<0.02	Ga	<0.02	י כ	<0.01	z bi
<0.02	Υь	<0.02	7	<0.2	Na	<0.02	Rb	<0.02	Pd	<0.02	Mn	<0.02	F	<0.02	a G	<0.02	ي ک	<0.02	D Da
<0.02	<	<0.02	T	<0.02	Ag	<0.02	Rh	<0.02	°0	<0.01	Mg	<0.02	5	20.02	2 8	<0.02	ۍ ۲	5 6	P. AS
<0.02	Ч	<0.02	Te	<0.02	Si	<0.02	Re	<0.02	Nb	<0.02	Lu	<0.02	Но	<0.02	1 E	-0 -2 -0 -2	ς β	<0.02	2 6
<0.02	W	<0.02	Ъ	<0.2	Se	<0.02	Pr	Ţ	N	<0.02	' <u>L</u>	20.02		20.02	ı Ç	10.02	5 5	0.02	<u></u>
								9		2000		3	TTF			20.02	CA	<0 02	A
							5000	JY ICP-M		Verifica	GLAIS								Ι
							2			くういけいう		Trana M							

(1) = 1 anglet at target

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

In P. S.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	031523	on ttached pg.) NIST LD50 SRM ont-rat >2000mo/kg 3109a	Ő	O O N
ARA	Ped X Gio	SDS Information (Solvent Safety Info. On Attached pg.) CSHA PEL (TWA) LD5C C	-0 0	190
MUXCITI	Formulated By: Reviewed By:	Expanded Uncertainty +/- (µg/mL) CAS: 20.0 471-34	Q R	170
170		Actual Actual Weight (g) Conc. (ug/mL) 75.2093 10001.4	So	1900 1900 1900
Certified Reference Material CRM	Lot # Solvent: 21110221 2% 60.0 (mL) Uncertainty sentainty	Uncertainty Assay Target Purity (%) (%) Weight (g) 0.10 38.9 75.1990	0.D# [Count] [Line	140 150 240 250
NV5497	5E-05 Balance 00.41 0.058 Flask Un	Nominal Purity Uncertainty Conc. (<i>ug/m</i> L) (%) Purity (%) 10000 99.999 0.10	30 30	- 30 5 7 30 7 30
	58120 031523 031526 031526 Ambient (20 10000 6UTB 6UTB 6UTB	Lot A RM# Number Con	10 To 1 12	220
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: 58120 Lot Number: 031523 Description: 031526 Expiration Date: 031526 Recommended Storage: Ambient (2 Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Compound 1. Calcium carbonate (Ca)	2.0E4 1.0E4 3.0E4 5.0E4 2.5E4	T.OES 1.0ES 5.0E4 m/2-> 2 m/2-> 2 Part # 58120 Lot # 031523

_

Absolute Standards, inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	<0.02	3	<0.02	ĥ	<0.02	Hf	<0.02	Ц	<0.02	z	<0.02	Ł	<0.02	ŝ	<0.2	£	<0.02	×	<0.02
_	<0.02	లి	٣	固	40.02	Bo	40.02	3	<u>60.05</u>	ź	<0.02	Se	<0.02	ŝ	<0.02	Te	<0.02	Þ	40.02
	40 12	ථ	40.02	a	40.02	h	<0.02	Mg	±0.01	ő	<u>60</u> .02	2	<0.02	Ag	<0.02	F	<0.02	>	<0.02
_	€0.05	ඊ	<0.02	3	40.02	놰	<0.02	Å	€0.02	æ	<0.02	å	<0.02	Na	<0.2	Ę	<0.02	ያ	40.02
	<0.01	q	<0.02	g	40.02	Ę	402	Hg	<0.2	۵.	<0.02	Ru	<0.02	S	€0.02	Ę	<0.02	×	<0.02
	≤0.02	გ	<u>60.02</u>	ප්	40.02	3	0.02	Mo	<0.02	æ	<0.02	Sn	<0.02	s	<0.02	Sn	<0.02	Ŋ	<0.02
	≤0.02	ð	<u>60.05</u>	Au	000	£	<0.02	PN	<u>40.02</u>	Å	40.2	Sc	<0.02	T.	≤0.02	Ę	<0.02	2	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58120 Lot # 031523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com				Certified R	Certified Reference Material CRM	aterial CRI	R 103/17	H/2		AN AF https	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Accredited ate Number ndards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	r: <u>57182</u> rr: <u>061522</u> n: <u>Lead (Pb</u>)	-		Solvent:	Lot # It: 20510011	Nitric Acid		Lievannie	/ nui E	apertite		
Expiration Date:061525Recommended Storage:Ambient (2)Nominal Concentration (ug/mL):10000NIST Test Number:6UTBWeight shown below was diluted to (mL):	e: 061525 e: Ambient (20 °C)): 10000 n: 6UTB rs diluted to (mL): 20	0 °C) 2000.02	5E-05 B 0.058 F	2% 5E-05 Balance Uncertainty 0.058 Flask Uncertainty	2% 40.0 mty (mL)	Nitric Acid		Formulated By:		Giovanní Esposito	061522	য় য
Compound	Lot RM# : Number	Nominal Conc. (µg/mL)	Purity (%)	Uncertainty Assay Purity (%) (%)	ay Target) Weight (g)	Actual Weight (g)	Actual Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL) C	Solvent S CAS# 0S	SDS information (Solvent Safety Info. On Attached pg.) COHA PEL (TWA)	tion Attached pg.) LD50	NIST
1. Lead(II) nitrate (Pb)	IN029 PBD122016A1	10000	99,999	0.10 62.5	5 32.0006		10001.1		φ	0.05 ma/m3	introne	
[1] Speci	[1] Spectrum No.1 [17.284 s	90]:58	85.D#	17.284 sec]:58182.D# [Count] [Linear]	(upe						11
ສ ອ ອ												
7.2-> 2.0E6	20	O.		40	80	Co	20	Ö Ø	0	*	100	
1.056												
rn/z->	110	130		140	150	160	170	180		0	002	
ы С. С. Ш. С.												
R A E	210 220	530		N 0	250	260						
Part # 57182 Lot # 061522					1 of 2				Printed: 3	Printed: 3/16/2023, 1:45:32 PM	45:32 PM	

-

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

F																	
	d <0.02	Ŋ	<0.02	Hf	<0.02	Li	<0.02	in in	<0.02	đ	4000	3	C.04	14	WWV		000
		d	000	14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			;		:		2	10	10	70.02	*	ZULUS
_		đ	20.02	2		3	<0.02	q	<0.02	g	40.02	ŝ	<u>60.05</u>	Te	\$0.02	Ŋ	≤0.02
02 ₹07	·	đ	<0.02	9	0.02	Mg	<0.01	ő	<0.02	4a	<0.02	Åø	2007	F	200	1	Ş
_	_	5	2007	1	200	1	000	i				9		17	70.02	>	70702
		3	70.70	4		UIW	20'02	P2	<0.02	2	40.02	Ra	5 9 9	đ	≤0.02	\$	20.02
	_	g	0.02	Ъ.	€02	Нg	<0.2	9	2002	n d	2007	2	000	e	000		
	_	Ċ		,		0		•			70.00	5	70.02	111	70.02	H	20102
		5		ġ	<0.02	Wo	<0.02	Z .	<u>6</u> .62	SB	40.02	s	<0.02	Sn	<000>	Zn	2007
		Au Au	<0.02	£	F	72	2007	2	500	0	~~~~~	ŧ				1	10.01
							70.00	4	10	20	20.02	13		q	8.U2	3	808

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P M.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57182 Lot # 061522

CORCO CHEMICAL CORPORATION

Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

CERTIFICATE OF ANALYSIS

Date: 8/3/2022

M5631 M5632 M5633 M5634 Lot No 820803

Hydrogen Peroxide, ACS Reagent Grade

TEST	MAXIMUM LIMITS	RESULT
Appearance	Colorless and free from suspended matter or sediment	Pass
Assay	29-32%	31.4%
Color (APHA)	10	5
Residue after Evaporation	0.002%	.0001%
Titratable Acid	0.0006 meq/g	< .0006 meq/g
Chloride (Cl)	2 ppm	< 1 ppm
Nitrate (NO ₃)	2 ppm	< 1 ppm
Phosphate	2 ppm	< 1 ppm
Sulfate (SO ₄)	5 ppm	< .5 ppm
Ammonium (NH4)	5 ppm	< 1 ppm
Heavy Metals (as Pb)	1 ppm	< .1 ppm
lron (Fe)	0.5 ppm	< .1 ppm
Sodium Stannate	200 – 300 ppb	Pass

***Our Hydrogen Peroxide is considered un-stabilized because it is very slightly stabilized with Sodium Stannate, 500 ppb maximum, just for safety purposes.

Date of MFG: 8/2022 Retest date: 8/2024

Gína M. Rambo Office Manager

CORCO CHEMICAL CORPORATION. 299 CEDAR LANE. FAIRLESS HILLS, PA 19030. 215-295-5006. FAX 215-295-0781

m/z->	N.5 6	m/z-≯ 5.0E5	ភ. ០ ពេស	m/z-> 1.0≣6	5000	1.0트4	1. Chromium(III) nitrate nonahydrate (Cr)	Compound	Volume sho	Expiration Date: Recommended Storage: Nominal Concentration (Jug/mL):	Par De	CERTIFIED WEIGHT REPORT:	www.absolutestandards.com
N 10		110		1		[1] Spectrum No.1		Pa	Volume shown below was diluted to (mL):	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	0	3
220		120		N. O		-	58124 071122	Part Lot Number Number	filuted to (mL):	060526 Ambient (20 °C) 1000	<u>58024</u> 060523 Chromium (Cr)		A
230		130		ů. O		31,393 80	0.1000	Dilution Factor	2000.02		1 (Cr)		MS
240		140				c]:57024.	200.0 0.084	Initial Uncertainty Vol. (mL) Pipette (mL)	0.058 Flask U				MS658
				ð.		31,393 sec]:57024.D# [Count] [Línear]	084 1000	Uncertainty Nominal Pipetta (mL) Conc. (µg/mL)	Flask Uncertainty		21110221 2.0%	Lot #) A
N 50		」 () () () () () () () () () ()		S		t] [Linear]	10 10000.1	nał Initial g/mL) Conc. (µg/mL)		(mL)	221 Nitric Acid % 40.0	# Solvent:	
200		160		0		ş	0.1 1000.0	al Final rg/mL) Conc. (µg/mL)		Ľ	Acid .0 Nitric Acid	ent:	123
		170		70			0.0 2.2	Expanded al Uncertainty ig/mL) +/- (µg/mL)	Lineviewed by.	X	Acid Formulated By:		1
		180		8- 0-		1	7789-02-8) CAS		a la	Horner		
		190		Ŷ				jolvent Os		ten	Lawrence Barry		Y
		20- 00-		100			0.5 mg(Cr)/m3 ort-	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Ø	nce Barry		AH-15: https://Ab
		0		o			ort-rat 3250 mg/kg	ched pg.) LDS0	00000	00050	060523		AH-1539 Certificate Number https://Absolutestandards.com
							g 3112a	NIST		٥ <u> </u>	[ω]	1	te Numbe dards.com

Part # 58024 Lot # 060523

1 of 2

Printed: 8/24/2023, 4:18:27 PM

Absolute Standards, Inc. Certified Reference 800-368-1131 Image: Certified Reference www.absolutestandards.com Image: Certified Reference Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	andards.cor	s by Indu	ictive	y Coupled	Plasn	na Mass S	Spectr C	Certified Reference Material Ci	ICP-M	IS):	ateria	I CRM					¥	크	ANAB AR-11 ttps:///	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	034 Acc lificate N standar	lumbe ds.corr
the stype of the style						Trace N	Metals	s Verification	ation	হ	ICP-MS		/g/mL)									
AI <0.02		40,02	Dv	40.02	H	<0.02	E	40.02	- N	- -	20		A) 02	8	a)	-	-			3		
		40.02	Er Dy	<0.02	Ho	<0.02	달드	4)02 4)02	N N	A0.02	88	<u>ም</u> ፡	40.02 0.02	<u>8</u> %	40.02 00.02	ਜ ਸ	4 4	c ¥		<0.02		
	_	<0.02	말	<0.02	5	<0.02	Mg	<0.01	² 0	<0.02	.02	Rh	40.02	Ag	<0.02	1	<0.02			<0.02		
Ba 40.02	ନ ଜ	-T -T	ନ୍ଦ୍ର ହ	A 0.02	₹ ¹ =="	4. 6. B	H. Ma	A. A.	P P	A A 3 3	38	장	A A 3 3	ç N	A A 1	13	A.2	4 15		0.02 0		
		40.02	2 ଜ ା	40.02	323	4 4 A	N M ;	8 8 8	× 77 ·	A 40 12	រ ន រ	Sc Sm	40.02 2002	Ta s	4 4 A 4	11 S 🔒						
								(T)=	(T)= Target analyte	anatyte												
Physical Characterization:	aracteriz	ation:															C	Certified by:	by:		a	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	No heteroge	meity was o	observe	d in the preps	aration (of this stand	lard.										1	14	1		ľ	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	ad value is ds, 18.2 n ation of all are prepar are prepar are certife ds should ds should ent Result.	he conc megohm d Ill standarc are me ars are me are are are me ars are me ars are me ars are me ars are me ars are me are are are me are are are me are	entrat leioniz ls. sticulou etrica .5% of .5% of .5	ed water, c ed water, c usly cleane ully using ba f the state f the state f the state and Kuyat, a Note 122	ted fro calibrat d prior alanced d value and un and un 97, U.S	red Class, ted Class, that are that are that are der appro Guideline Guideline	A glass A glass calibra priate s for E nent P	nd volume sware and ited with ites stated laborator, ivaluating vinting Off	the hi weight cond y cond fice, W	ighest p ighest p is trace itions. xpressir /ashingt	ments ourity able tr able the ton, D.	unless raw m raw m NIST 0 NIST 0. C. (19	materials are used in Materials are used in ST (see above). ertainty of NIST 1994).	se stat re usec vve). NIST	n .							

Part # 58024 Lot # 060523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		Ex	Recommended Storage: Nominal Concentration (µg/mL):	NIST	Volume s	Compound	1. Copper(II) nitrate trihydrate (Cu)	1.0E8	5.0E5	m/z->	2.5E7	m/z-≻ 2.0€7	1.0€7	m/z->
om as, Inc.		Part Number: Lot Number: Description:	Expiration Date:	Recommended Storage: Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):	z				10		110		2
-		58029 102523 Copper (Cu)	102526	Ambient (20 °C) 1000	6UTB	t diluted to (mL)	Part Lot Number Number	58129 100223			N		120		
		(Cu)		20 °C)		2000.02	Dilution Factor	0.1000			30		130		
Certif					5E-05 Balance	0.058 Flask U	Initial Uncertainty Vol. (mL) Pipette (mL)	200.0 0.084			4°		140		
ified Referen M569子	Lot #	24002546	2.0%		Balance Uncertainty	Flask Uncertainty	Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL)	84 1000			50		150		
Certified Reference Material CRM M 56 G子 R いり0/2	Solve	46 Nitric Acid	40.0 (mL)				Initial nL) Conc. (µg/mL)	10000.1			80		0 160		
1 CRM 10 27 23		L	Nitric Acid				Final L) Conc. (µg/mL)	1000.0	894	tinna an	paine dissipsion of the design		0 170		
			Formulated By:	Mg .	Reviewed By:		cxpanoed Uncertainty +/- (µg/mL)	2.2			70				
-		and and		to the	-70		(Solven CAS# C	10031-43-3			8 0		180		
http:			Benson Chan	and a	Pedro L. Rentas		(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	1 mg/m3			90		190		
ANAB ISO 17034 Accreditec AR-1539 Certificate Number https://Absolutestandards.com			102523	,	102523		Attached pg.)	ori-rat 794 mg/kg			100		N 0		
Accredite ate Numbe Idards.com	4		23		ដ្រ		NIST	3114							

www.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace M	etals	; Verifica	ition	by ICP-N	r) SI	g/mL)						
	3	2	22	7			2	and the second		Sale Con	Constraint for the		Sector Sector Sector	March	Contraction of the other				The second second
A	40.02	8	20,02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	Pr	<0.02	Se.	<0.2	5	<0.02	W	<0.02
SB	40.02	ß	<0.2	Ę	<0.02	Ho	<0.02	Ŀ	<0.02	Ŗ	<0.02	Re	<0.02	2	<0.02	ī	<0.02	c	<0.02
As	40.2	ů	<0.02	F	<0.02	F	<0.02	Mg	<0.01	õ	A0.02	Rb	A0.02	Ag	40.02	3	40.02	<	4002
Ba	<0.02	S	<0.02	ନ୍ଥ	<0.02	5	40.02	Mb	<0.02	Pd	<0.02	Rb	A).02	Na	40 i2	đ	40.02	\$	40.02
Be	<0.01	ዮ	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	'n	<0.02	Ru	<0.02	Sr	40.02	j	<0.02	ĸ	40.02
Bi	<0.02	S	<0.02	ĉ	<0.02	La	40.02	Mo	<0.02	¥	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	2	40.02
œ	<0,02	ß	-1	Au	<0.02	3	<0.02	Nd	<0.02	ĸ	<0.2	8	<0.02	Ta	<0.02	H	<0.02	2	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

in politic

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

urt # 58029 Lot # 102523

800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		ņ		Recommended Storage: Nominal Concentration (µg/mL):	NIST	Volume		Compound	1. Manganese(II) nitrate tetrahydrate (Mn)	Сл. О ПП Ф	2.5E8	M /2-2	1.008	5.OM7	™/z-> 1.0E8	5.067	m/z->
om	Ð	Part Number: Lot Number: Description:	niration Data.	Expiration Date.	<pre>Hecommended Storage: Concentration (µg/mL):</pre>	NIST Test Number:	Volume shown below was diluted to (mL):		Nu		[1] Speatrum No.1		10			-1 -1-0		
		<u>58025</u> 102623 Manganese (Mn)	100606	Ambiant (on t	Ampient (20 °C) 1000	6UTB	diluted to (mL):	Part Lot	r z	58125 071123	-		20			ן מ ס		
		(Mn)		2	C)	5E-05	3000.41 0.058	Dilution		0.1000 300.0	34.243 sec]:57025.D# [Count] [Linear]		30			130		
Certified Re M5648						05 Balance Uncertainty	58 Flask Uncertainty	lal Uncertainty	Pipette (mL)	0.084	7025,D# [C		40			140		
ference A	Lot #	24002546	2.0%			ainty	ł	Nominal	Ē	1000	ount] [Lines		0			150		
Material CRM	Solvent:	Nitric Acid		(1112)				Initial	m	10000.1 10	ŗ		0			1e0		
			Nitric Acid Formulated By:		X	Reviewed By:		Expanded Final Lincertainty	(mL)	1000.0 2.1			8			170		
			ted By:	0	ed to	ed By:) CAS	20694-39-7			9 0			180		
http		Contraction of the second seco	Benson Chan	Y	tento	Pedro L. Rentas		(Solvent Safety Info. On Attached no.)	OSHA PEL (TWA)	7 5 mg/m3			80			190		
AR-1539 Certificate Number https://Absolutestandards.com		,	102623		/	102623		nation On Attached no.)	A) LD50	ort-rat >300mg/kg			100			200		
e Numbe						لت	.,	NIST	SRM	3132								

Part # 58025 Lot # 102623

1 of 2

Printed: 10/26/2023, 1:20:32 PM

vww.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

202	r,	40.02	3	40.02	Ta	<0.02	s	<0.2	ĸ	<0.02	Nd	40.02	РЪ	40.02	Au	<0.02	ß	40.02	₿
20.02	Zn	<0.02	S	40.02	s	<0.02	Sm	40.02	¥	<0.02	Mo	<0.02	La	<0.02	ĉ	<0.02	S	40.02	Bi
<0.02	Y	<0.02	Tæ	<0.02	ş	<0.02	Ru	<0.02	q	<0.2	Нg	40.2	Fe	<0.02	G	<0.02	Ω	<0.01	Be
40,02	41	<0.02	Th	40.2	Na	<0.02	Rb	<0.02	Pd	Ч	Mn	<0.02	. F	<0.02	ନ୍ଥ	<0.02	S	<0.02	Ba
40.02	<	<0.02	H	<0.02	Ag	<0.02	8	<0.02	8	40.01	Mg	<0.02	In	<0.02	臣	<0.02	ĉ	A0.2	As
40.02	٩	<0.02	Te	A0.02	S	<0.02	Re	<0.02	Ŋ	40.02	Ŀ	<0.02	Ho	<0.02	Ę	<0.2	ß	40.02	SP
40.02	W	<0.02	1	<0.2	8	<0.02	P	<0.02	N	<0.02	Ľ	<0.02	Hŕ	<0.02	Dy	<0.02	ß	A0.02	A
					Section 200	A CONTRACTOR OF A	ALC: NO.	A PARTY AND AND AND		Store Manager	State State								100
							ST CI	DY ICP-N		verifica	etais	I race M							

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In 1. Sli

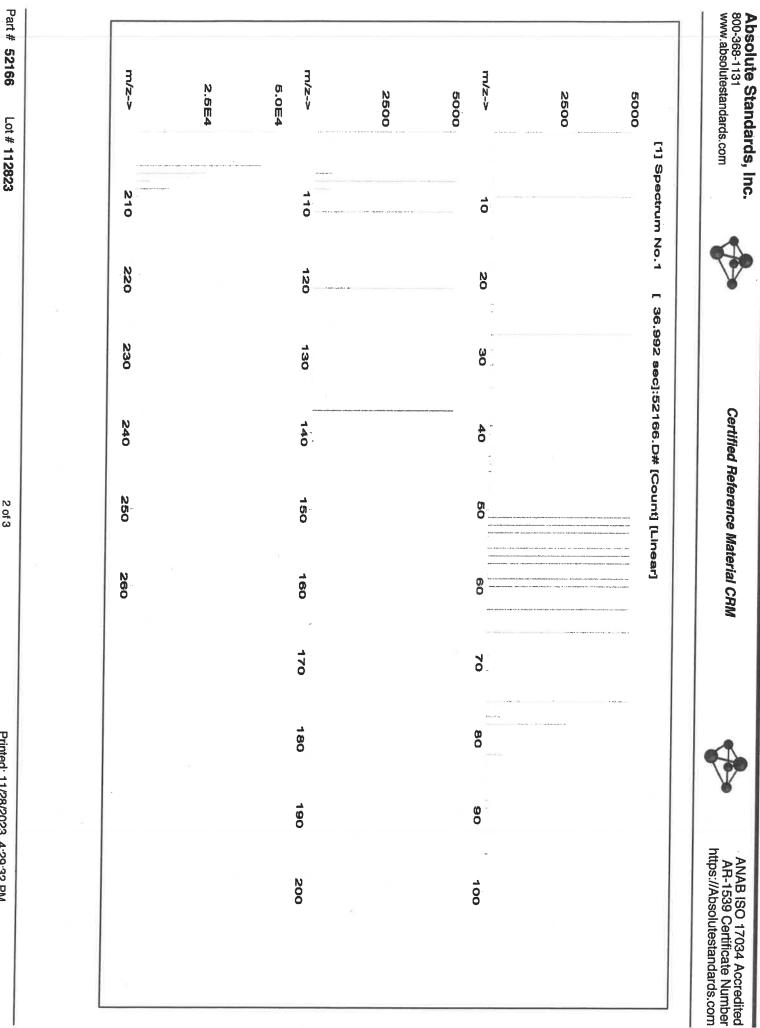
Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above). * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

art # 58025 Lot # 102623


2 of 2

Printed: 10/26/2023, 1:20:32 PM

Part # 52166 Lot # 112823

1 of 3

Printed: 11/28/2023, 4:29:32 PM

Printed: 11/28/2023, 4:29:32 PM

* * * * * * *		Papel	Hard .			WWW	
The c Purifie the purifie All stand All stand Uncer Measu		lomoge	Physical Characterization:	<u>888888888888888888888888888888888888</u>		ADSOLUTE Standards, 800-366-1131 www.absolutestandards.com	
ertified acids reparat indard ar ards ar ards ar indards ar tainty f		neity: N	al Cha	40.02 10 10 10 10 10 10 10 10 10 10 10 10 10		nental	?
value i ion of a contain e prepa e certif shoulc t Resul		o heteroj	racteri	58558 58558		Analy	
The certified value is the concen Purified acids, 18.2 megohm dei the preparation of all standards. All standard containers are meti Standards are prepared gravime Standards are certifed (+/-) 0.5 All standards should be stored w Uncertainty Reference: Taylor, E Measurement Result," NIST Tech		geneity v	zation			Standards, Inc. astandards.com	
oncent m deio dards. metic: avimetr -) 0.5% -) 0.5% -) 7 Fechr	8	vas obse		A Ch Ch E E E DA		nducti	
nized v nized v lously u ically u th caps th caps N. and N. and		rved in 1					
vater, c vater, c cleane sing ba state state tight a kuyat, Kuyat,		he preps		4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	and and a second		
red fror alibrate alibrate d prior lances d value, d value, C.E., " 7, U.S.		uration o		323443343			
The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Class the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelir Measurement Result," NIST Technical Note 1297, U.S. Govern		Homogeneity: No heterogeneity was observed in the preparation of this standard.			race I		
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 		ndard.		Mo Hg Mg L L	Trace Metals Verification by ICP-MS (µg)	Solute Standards, Inc. 368-1131 v.absolutestandards.com	
and voi ssware ssware wise sta e labora Evaluat Evaluat					Verif	Certified Reference Material CRM	
and th and th ith wei ith wei ing and ing and			(T) = Ti		ication	1 Refe	
c meas e highe ghts tr ghts tr d Expre d Expre			(T) = Target analyte	K P P Z OS NN	h by I	rence	
uremer st purit aceable ns. ns. rssing t			alyte	- A 0,02 A 0,02	P-MS	Materi	
nts unk ty raw ty raw be to Nis				Sc S	(µg/	al CRI	
iless oth v materia IIST (see lIST (see (1994).				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	/mL)	A A	
als are als are above of NI				Sr.			
stated in used in).				40.2 T 20 T			
				38233333			
	1			40.02 40.02 40.02 40.02			
	M. L.			おびょびょりゃ			
	the			40.02 40.02 40.02 7 40.02 7 7		IAB IS 3-1539 s://Abs	
		2		2 2 2 2 2		0 170 olutes	
		1				34 Acc licate N tandar	
						ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	

Part # 52166 Lot # 112823

Printed: 11/28/2023, 4:29:32 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	M	M5768 [M5769 (64) Certified Reference Material	ce Material CRM	42/s	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	<u>58112</u> 091823 Magneslum (Mg)	Solvent: 24	Lot # 24002546 Nitric Acid	Advenue	Or -
Expiration Date: 091826 Recommended Storage: Ambient (Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	20 °C)		(mL) (mL) (BF) $R - \frac{1}{3}/2\phi$	Formulated By: Heviewed By:	Lawrence Barry 091823 Pedro L. Rentas 091823
Compound	Lot Nominal I RM# Number Conc. (µg/mL)	Purity Uncertainty Assay T (%) Purity (%) (%) We	Target Actual Actual Weight (g) Weight (g) Conc. (vg/mL)	Expanded Uncertainty +/- (µg/mL) CAS	SDS Information (Solvent Safety Info. On Attached pg.) NIST # OSHA PEL (TWA) LDSO SRM
1. Magnesium nitrate hexahydrate (Mg) IN030 маюзаал	10000	99.999 0.10 8.51 23		20.0 13446-1	ng/kg 3
[1] Spectrum No.1 1.0E6		[19.923 sec]:58112.D# [Count] [Linear]	[Linear]		
5. O M B R					
m/z-> 10	20	8	ø	70 80	90 100
1000 -		·		4	
₩/z->	120 130	140	150 160	170 180 1	190
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					
Part # 58112 Lot # 091823		-	1 of 2	Drintod	Drintod- 10/00/0000 0.56-15 DM

3

Printed: 12/29/2023, 2:56:15 PM

/ww.absolutestandards.com	00-368-1131	Absolute Standards, I
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace Mo	etals	Verifica	tion	by ICP-N	IS (µ	g/mL)						
									1100 100 100 100					100	The second second				
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	Ni	<0.02	Ŗ	<0.02	Se	40.2	qI.	<0.02	W	<0.02
SP	<0.02	G	<0.2	E.	<0.02	Но	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	<0.02	d	<0.02
As	<0.2	ĉ	<0.02	E	<0.02	In	<0.02	Mg]	SO	<0.02	Rh	<0.02	Ag	<0.02	H	<0.02	V	40.02
Ba	<0.02	S	<0.02	ନୁ	<0.02	F	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Ъ	<0.02	Υb	<0.02
Ве	<0.01	Ŷ	<0.02	Ga	<0.02	Fe	40.2	Hg	<0.2	٩	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	ĸ	<0.02
B	<0.02	S	<0.02	Ģ	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	ŝ	<0.02	Sn	<0.02	6	<0.02
5	40.02	ç	40.02	Au	<0.02	P	<0.02	Nd	<0.02	ĸ	<0.2	S.	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T) = Target analyte

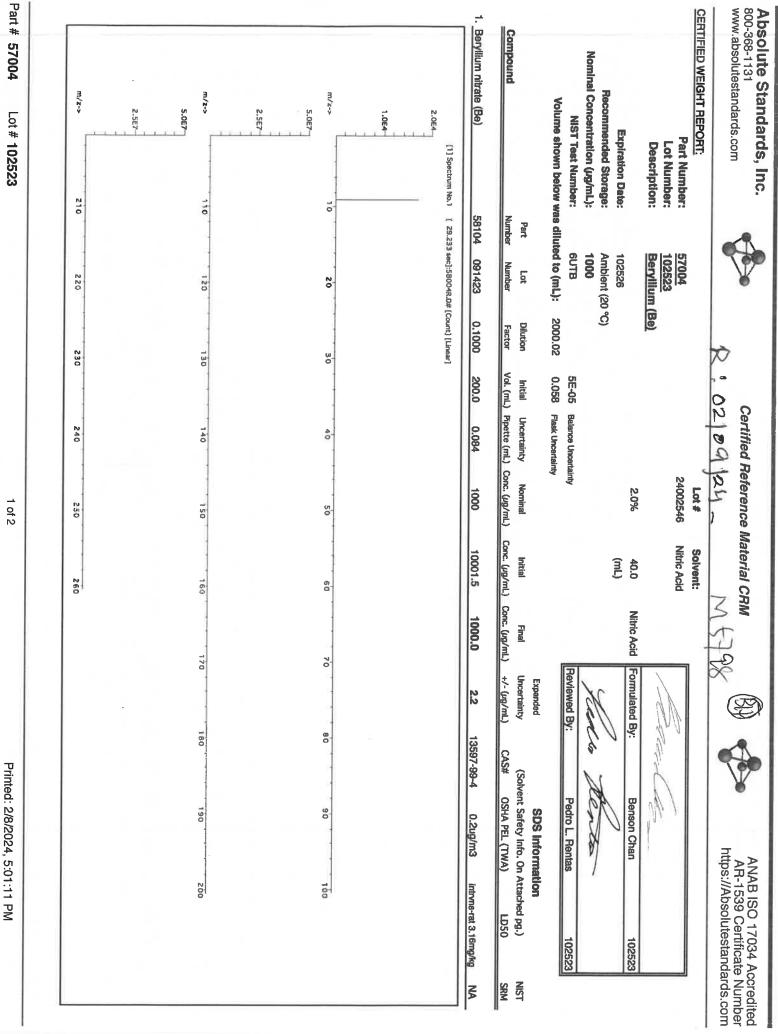
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58112 Lot # 091823

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

							Trace M	letals	Verification	Ition	by ICP-MS		(ng/mL)							_
		and the second se	A CONTRACTOR OF A CONTRACTOR					All and the	TANK ALL STATE	The second s	ALL DESCRIPTION OF THE OWNER OF T	Nonese and			and the second second second				A COLUMN TO A C	10
A	<0.02	3	<0.02	à	<0.02	Hf	<0.02	ГI	<0.02	N	<0.02	Ł	<0.02	Se	<0.2	Trb	<0.02	M	<0.02	-
Sb	<0.02	J	40.2	固	<0.02	Ho	≤0.02	2	<0.02	£	<0.02	Re	<0.02	S	<0.02	Pe L	40.02	D	<0.02	_
As	<02	ඊ	<0.02	Eu	40.02	ч	40.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	≤0.02	>	<0.02	-
Ba	<0.02	ű	<0.02	3	40.02	Ц	40.02	Mn	<0.02	P	≤0.02	£	<0.02	Ra	40 12	đ	<0.02	\$	<0.02	-
Be	T	Ċ	0.02	G	<0.02	e.	<02	Hg	<02	۵.	<0.02	Ru	≤0.02	2	<0.02	μ	<0.02	7	<0.02	-
Ä	<0.02	රී	<0.0≥	පී	<0.02	r.	<0.02	Mo	<0.02	đ,	40.02	Sm	≤0.02	s	<0.02	Sn	<0.02	Za	<0.02	-
æ	<0.02	ð	<0.02	Au	<0.02	£	40.02	PN	<0.02	М	<0.2	ŝ	<0.02	Ta	<0.02	F	<0.02	2	40.02	_
									(T) = Tarr	get analy	yte									1

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed ($\frac{1}{4}$) 0.5% of the stated value, unless otherwise stated.
- All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot #	m/z->	N.01 M.4	m/2->-	1.0E5	177/2-> 2.0E5	N G M G	8. 0 11 15	1. Ammonium hexatluorostannate(IV) (Sn)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below w	<u>CERTIFIED WEIGHT REPORT</u> Part N Lot N Desc	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Lot # 071123	210		110 120		0 No		[1] Spectrum No.1	(W) (Sn) INO10 SND042023A1	Lot RM# Number	Expiration Date: 071126 Pecommended Storage: Ambient (20 °C) Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	<u>PORT:</u> Part Number: <u>57050</u> Lot Number: <u>071123</u> Description: <u>Tin (Sn)</u>	s.com
	230		130		e e		[15.034 sec]:	1000	Nominal Conc. (µg/mL)	0 °C) 499.93	2	V
	20		140		ð		15.034 sec]:58150.D# [Count] [Linear]	99.999 0.10 44.2	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty	Solvents:	Certific
	N30 260		150 160		8		unt) [Linear]	1.13107	r Target Actual Weight (g) Weight (g)	(mL)	Lot # 21110221 22D0562008	Certified Reference Material
			170		70			1001.6	Actual Conc. (µg/mL)	ric acid	ric acid	CRM
			180		80			16919-	Expanded Uncertainty (Solv +/- (µg/mL) CAS#	Formulated By:		PPGP M
			190 200		90 100			7 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.))# OSHA PEL (TWA) LD50	Benson Chan		R
			0		ŏ			ω	on tached pg.) NIST LD50 SRM	071123 - 071123		ANAB ISC AR-1539 (https://Abso
												ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	•	Cei	Certified Reference Material CRM	ial CRM		ANAB ISO 17034 Accredited
www.absolutestandards.com	5				V	AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ductively Coupled	Plasma Mass Spec	trometry (ICP-MS):			
		Trace Metals	Is Verification by ICP-MS	P-MS (µg/mL)		
AI <0.02 Cd <0.02	Dy <0.02	4003				
A)2 C C		2 2 2 2 2 2 2	40.02 Ni		Se <0.2 Tb Si <0.02 Te	40.02 W 40.02
2 2 2 2 2 2 2 2			<0.01 Os <0.02 Pd	Rb Rb		\$ < c
	Ge 40.02	Fe 40.2 Hg	40.2 P 40.02 Pt	Ru Sm		_
			(T) = Target	4	ZITAS	<0.02 Zr <0.02
Physical Characterization:						Certified by:
Homogeneity: No heterogeneity was observed in the preparation of this standard.	observed in the prepa	ration of this standard.				//
ŝ	9,					mr P All
		9 4			20	
					÷	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are politoriated with using balances. 	centration calculat deionized water, ca ds. eticulously cleaned	d from gravimetric librated Class A gla prior to use.	and volumetric measurer ssware and the highest p	nents unless otherwise stated. writy raw materials are used in	ie stated. 'e used in	

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
 All standards should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot # 071123

2 of 2

Printed: 2/8/2024, 5:01:38 PM

redited Jumber ds.com	NIST SRM	3113		
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Formulated By: Lawrence Barry 091923 Formulated By: Lawrence Barry 091923 Reviewed By: Pedro L. Rentas 091923 Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) N +/- (ug/mL) CAS# 0SHA PEL (TWA) LD50 S	ng/kg	180 B0 190 200 200 200	Printed: 2/8/2024, 5:01:14 PM
AM I'U (fru (Nitric Acid	1000.0		
Certified Reference Material CRM 02109124	Solvent: Nttric Acid 40.0 (mL) httal bittal Conc. (ug/mL)	10000.0		
artified Réference l 0 2 0 9 1 2 4	Lot # 24002546 24002546 2.0% 2.0% Nominat Nominat Conc. (rg/mL)	1000	34.243 eec]:58027.D# [Count] [Linear] 30 40 50 130 140 150 230 240 250	1 of 2
Certified F		0.084	240 240 240	
Å	5E-05 0.058 on Initial or Vol. (mL)	00 200.0	3 eec]:55 230 30 23 130	
	57027 091923 Cobait (Co) 091926 Ambient (20 °C) 1000 6UTB 6UTB 6UTB d to (mL): 2000.02 Lot Dilution Lot Dilution	23 0.1000		
	57027 091923 Cobalt (Cobalt (Ambient Ambient 1000 6UTB ss diluted to (mL Part Lot	58127 050923		
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Cobait (C Cobait (C Cobait (C 091926 Recommended Storage: Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): NIST Test Number: COTB NIST Test Number: COTB CODAIT (C) CODAIT (C) C) CODAIT (C) C) C) C) C) C) C) C) C) C)	1. Cobatt(II) nitrate hexahydrate (Co) 58		<pre>Part # 57027 Lot # 091923</pre>

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

L	200	10	2 Contraction	4	2000		400			-		4							
	20.05	3	20.05	5	20.02	Ħ	40.02	3	<0.02	ż	40.02	£	40.02	8	40.2	f	₫.02	M	40.02
_	40.02	లి	4 02	山	€0.02	Ho	40.02	5	<0.02	Ż	<u>40.02</u>	Re	<0.02	3	≤0.02	Te	€0.02	D	<0.02
_	402	ථ	€0.05	圕	40.02	Ч	40'02	Mg	10 ⁰ ⊳	ő	≤0.02	붭	<0.02	Ag	40.02	F	<0.02	Ż	<0.02
_	40.02	చి	≤0.02	ઝ	600	ы	<0.02	Mn	<0.02	P	40,02	ßb	<0.02	Na	40.2	đ	<0.02	Ŗ	<0.02
_	10.05	ບັ	≤0.02	g	20.0 2	ङ	402	Hg	40.2	۵.	€0.02	Ru	<0.02	<u>ې</u>	≪0.02	Ta	≤0.02	Y	€0.02
_	<0.02	ථ	£-	ö	40.02	Ľ	0 02	Mo	<u>60.02</u>	æ,	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	6 .02
_	40.02	ට්	<0.02	Au	40.02	£	40.02	PN	40.02	м	4 02	8	40.02	£	40.02	Ë	40.02	72	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Printed: 2/8/2024, 5:01:04 PM	1 of 2	Part # 57033 Lot # 111323
ő	230 240 250 26	m/z-> 210 220 2
		G O O
160 170 180 190 200	130 140 150 1	m/≥-> 110 120 1
		N m 4
80 70 80 100	90 40 50	5.0E4
		- 1 0 0 0 0
	34.433 sec]:57033.D# [Count] [Linear]	[1] Spectrum No.1 [34.433 2.0E5
1000.0 2.0 7440-38-2 0.5 mg/m3 orl-rat	400.0 0.084 1000	1. Arsenic (As) 58133 020522 0.1000
Expanded SDS Information Final Uncertainty (Solvent Safety Info. On Attached pg.) <u>nL) Conc. (ug/mL) +/- (ug/mL) CAS</u> # OSHA PEL (TWA) LD50	11	Part Lot Dilution Compound Number Number Factor
Reviewed By: Pedro L. Rentas 111323	0.06 Flask Uncertainty	Volume shown below was diluted to (mL): 4000.0
Hedre Fenter		
Id Acid Formulated By: Lawrence Barry 111992	24002546 Nitric Acid 2.0% 80.0	Description: <u>Arsenic (As)</u>
п (Lot # Solvent:	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

< 00 **N**

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Low P. S.

Certified by:

 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033 Lot # 111323

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m/z->	2500	m/z->	500	m/z->-	2.5 114	5.OE4	1. Ammonium dihydrogen phosphate (P)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Par Lo De	www.absolutestandards.com
R I D 2 M 4 C 1 M 52 15 Interview Lat* Solvent: 2111021 Nitric Acid Provide (P) 2% 40.0 Nitric Acid 2000/2 0.058 Failure inventienty Environmenty 2000/2 0.058 Failure inventienty Environmenty Environmenty Nominia Party Uncertainty Assay Target Actual Actual Commutated By: Perford L Ren 10000 ease 0.10 27.5 72.7287 72.7287 72.7284 10000.0 30.0 772.751 5mg/r 12.074 aeoc)15891 16. D/r Country [Linear) Statum Stat	N O		110		10		[1] Spectrum		-	Expiration Date: Recommended Storage: I Concentration (µg/mL): NIST Test Number: Weight shown below was d	DRT: Part Number: Lot Number: Description:	om
RICZINGLA MITELS Bolvent: 21110221 Nitric Acid IDP 2% 40.0 Nitric Acid SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Formulated Br. SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Source It Mitels Acid Formulated Br. Lawrence Balance (ML) Source It Mitels Acid Formulated Br. Lawrence Balance (ML) Source It Mitels Acid Formulated Br. Formulated Br	2220		120		N. O				Lot Number	041726 Ambient (20 10000 6UTB 6UTB	57115 041723 Phosphore	5
Hric Acid Iric Acid Iric Acid Iric Acid Iric Acid Actual Actual Actual Expanded Expanded Expanded SDS Inf Expanded SDS Inf Solvent Safety Inf eight (g) Conc. (ug/mL) · (AS# OSHA PEL) 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 20.0 7722-76-1 5 mg/m 150 170 180 190 190 190	230		130		ຜ. ວ		2.074 sec]:58			00.02	us (P)	R
Hric Acid Frite Acid Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded Actual Uncertainty (Solvent Safety Inf eight (g) Conc. (ug/mL) - 4/- (ug/mL) CAS# OSHA PEL 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 1722-76-1 5 mg/m 160 170 180 190 190	240		140		4		3115.D# [Cot		Uncertainty Assay Purity (%) (%)	2% Balance Uncertainty Flask Uncertainty	Solvent:	22/09/12
Formulated By: Lawrence Ba Formulated By: Lawrence Ba Reviewed By: Pedro L. Ren Conc. (ug/m), -/- (ug/m), CAS# OSHA PEL 10000.0 20.0 7722-76-1 5 mg/m 10000.0 20.0 7722-76-1 5 mg/m 10000.0 eio eio	250		150		S O		ınt] [Linear]					
Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded SDS Inf Uncertainty (Solvent Safety Inf +/- (ug/mL) CAS# OSHA PEL (20.0 7722-76-1 5 mg/m 20.0 7722-76-1 5 mg/m 20.0 190 90	260							2.7289 10000.	Actual Actual sight (g) Conc. (µg/1	rric Acid	tric Acid	15815
22-76-1 5 mg/m					1			20.0		Formulated B	Q	
o 200			4						SC (Solvent Saf CAS# OSH/	Ped	Gerence /	
.hed pg.) LbS0 LbS0									DS Information fety Info. On Attac A PEL (TWA)	L. Rentas	Jan	https://At
g 3186 SRM			9		J				0	041723 041723		tps://Absolutestandards.com

Abs	Absolute (800-368-1131 www.absolute	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	lards , ds.com	Inc.	-				ĉ	rtified Re	eren	Certified Reference Material CRM	ial CR	M					https AF	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	4 Accredited cate Number andards.com
-	nstrum	iental A	nalysi	s by Indi	uctive	ły Coupl	ed Pla	Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);	s Spec	troscopy	(ICP	-MS):									
_								Trace Metals	etals	Verifica	Ition	Verification by ICP-MS	1.00	(µg/mL)							
-	A	40.02	8	40,02	Ą	40.02	H	40.02	E	A) ()2	Z	A)22	7	A).02	Se	A 2	ŧ	AB	W		
		A.22	5 2	A0.2	ម្មា	40.02	Но	40.02	Ŀ	40.02	NB	<0.02	Re	40.02	ŝ	40.02	Te	40.02	c :	40.02	
	Ba		<mark>ዮ</mark> የ	8 8 8 8	<u>ନ</u> ଜ	40.02 20	부 부	40.02 20	Mg	40.01 002	r S	A A 8	₽ ₽	A A 3 S	Å.	A) 02	1 11	A 600	\$ <	8 8	
		10.0>	ព្	<0.02	ណ្ឌ	<0.02	장	<0.2	Hg	40.2	שי	T	R Q	40.02	K 2	8.8 2		<0.02	4 'B	60.02 20.02	
	B	8 8 22 22	5 S	8 8 22 22	ନ ଅ	40.02 20	32	4 4 A	N W	4 4 8 8	* 7	A0.02	s s	A A 3 S	, s	88	1 S	A A A A	2 B	88	
										(T)= Ta	(T)= Target analyte	alyte			ĺ						
hand	hysical	Physical Characterization:	cteriza	ution:														Cer	Certified by:	y:	
-	Iomogen	eity: No I	heteroge	neity was	observ	ed in the pr	eparati	Homogeneity: No heterogeneity was observed in the preparation of this standard.	ındard.								(h	J.	Ŵ	
* *	The cel Purified	rtified va l acids,	alue is 18.2 m	The certified value is the concen Purified acids, 18.2 megohm dei the menantion of all standards	centrat deioniz	tion calcul red water,	lated f	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all etandarde	metric s A gla	and volu	metric nd the	measure highest p	nents Jurity r	unless oth aw mater	nerwisc ials are	e stated. 9 used in					
* * * * *	All star Standa Standa All Star Uncerta Measur	ndard co rds are rds are ndards s ainty Re rement	ntaine prepare certife hould I ference Result,	rs are me ad gravin d (+/-) 0 es storec e: Taylor " NIST Te	eticulo netrica).5% o d with r, B.N. echnic	ally using the stat caps tigh and Kuya al Note 1;	hed pri balanc iced val it and it, C.E. 297, L	 * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	e calit other ropriat nes for nment	brated wit wise stat te laborat Evaluatir Printing (h weig ed. ory co Office,)hts trace onditions. Expressir Washingt	able to og the l on, D.(to NIST (see above). e Uncertainty of NIST D.C. (1994).	e abov ty of N	e). IIST					
														·							
										8											
Part #	57115		Lot # 041723	1723							2 of 2	of 2					Print	Printed: 2/8/2024, 5:01:22 PM	24, 5:0)1:22 PM	

Printed: 2/8/2024, 5:01:22 PM

	-	260	250	240	230		220	210	m/z->
									1.0巨5。
									2.0厘5
180 190 200	170	160	150	140	130	р. 9	120	110	m/z->
									2,5E
									5.0E5
80 80 100	70	eo	50	40	8	magan Raji Anana ya Anany	N	10	m/z->
									1000
		ear)	ount] [Lin	24.004 sec];58116,D# [Count] [Linear]	¢ sec];58	[24.00		[1] Spectrum No.1	2000
20.0 7763-20-2 NA orf-rat 4250mg/kg 3181	10000.1	82,4682	82.4675	0.10 24.3	99,9	10000	IN117 SLBR7225V	IN1	1. Ammonium sulfate (S)
Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) NIST +/- (ug/mL) CAS# OSHA PEL (TWA) LDSO SRM	(g) Conc. (µg/mL)	Actual Weight (g)	Target Weight (g)	Uncertainty Assay Purity (%) (%)	Purity (%)	Nominal Conc. (µg/mL)	Lot. Number	RM#	Compound
i By: Ped	[F			Balance Uncertainty Flask Uncertainty	0.058	1999.48	led to (mL):	Weight shown below was diluted to (mL):	Weight show
Lawrence barry	1 1					20 °C)	071126 Ambient (20 °C) 10000 Sum	Expiration Date: nended Storage: htration (µg/mL): %T Test Number:	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Teet Number
around Bring	Type 1 Water	ASTM Ty	Lot# 071123	Solvent:		E)	57116 071123 Sulfur (S)	<u>PORT:</u> Part Number: Lot Number: Description:	CERTIFIED WEIGHT REPORT: Part N Lot N Desc
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	CRM		ference M	Certified Reference Material	R a			om	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
								And in case of the local division of the loc	

800-368-1131 www.absolutestandards.com		0	Certified Reference Material CRM	nce Material C	RM			•	ANAB ISO 1: AR-1539 Ce https://Absolut	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ictively Coupled	Plasma Mass Sp	ectrometry (IC	P-MS):						
		Trace Metals		Verification by ICP-MS	IS (µg/mL)					
AI <0.02 Cd <0.02	Dv 40.02	A M	-12			a dista div.	ALL MERCY		A STREET STREET STREET	
40.02 Ca		40.02	40.02 40.02	Ni <0.02 Nb <0.02	Pr <0.02 Re <0.02	Si Se				A 6.3
50 C C	Gd <0.02	In <0.02 N	Mg <0.01 C						< 0	<0.02
40.02	Ga 40.02	Fe <0.2 Hg	A A 3 12	8 8			12 1		40.02 Y 40.02	40.02 20.02
B (UUZ CI 40,02	Au <0.02	<0.02	<0.02		Sc <0.02	Ta o	<0.02		40.02 21 21 40	40.02
Physical Characterization:			(T)= Target analyte	alyte				۲ ۲	Certified by:	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	oserved in the prepa	ation of this standard								1
							(the second	P.S.	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity in the preparation of all standards. * All standard containers are meticulously cleaned prior to use the preparation of the preparation of all standards. 	ntration calculate ionized water, ca	d from gravimetri librated Class A g	c and volumetric lassware and the	c measurement highest purity	s unless otherwise stated. raw materials are used in	ise state are used i	5.6			
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.	trically using bala % of the stated	value, unless othe	brated with weighwise stated.	phts traceable :	to NIST (see ab	ove).				
* Uncertainty Reference: Taylor, Measurement Result," NIST Tec	vith caps tight ar B.N. and Kuyat, (hnical Note 1297	id under appropria 2.E., "Guidelines fc , U.S. Governmen	ite laboratory co r Evaluating and t Printing Office,	I Expressing the Washington, D	⁹ Uncertainty of NIST).C. (1994).	F NIST				
	·									
		ð								
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.	itrically using bail trically using bail is of the stated with caps tight ar B.N. and Kuyat, (hnical Note 1297	prior to use. ances that are cali value, unless othe d under appropria 2.E., "Guidelines fo , U.S. Governmen	brated with weig rwise stated. re laboratory co or Evaluating and t Printing Office, t Printing Office,	ghts traceable . onditions. I Expressing the Washington, D	to NiST (see ab 3 Uncertainty o).C. (1994).	ove). F NIST				

2 of 2

Printed: 2/8/2024, 5:01:31 PM

m/z->	បា O ញ បា	m/z->	1.0E6	₩Z->	5000 [1] S	1. Ammonium hexafluorosilicate (Si)	Weight shown bel	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number:	<u>CERTIFIED WEIGHT REPORT:</u> Part Number: Lot Number: Description:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
210 220		110 120		0 0	[1] Spectrum No.1 [31.	RM# Number IN009 SID082022A1	s diluted to (mL):	1 Date: 122026 prage: Ambient (20 °C) g/mL): 1000 umber: 6UTB	mber: <u>57014</u> mber: <u>122023</u> ptlon: <u>Silicon (Si)</u>	ت ب
230 240 250		130 140 150		4 0 8 0	31.393 sec]:58014.D# [Count] [Linear]	Canc. (µg/mL) (%) Purity (%) (%) Weight (g) 1000 99.999 0.10 14.4 13.8854	0.058 Flask Uncertainty Purity Uncertainty Assay	2% 40.0 (mL) 5E-05 Balance Uncertainty	12	Certified Reference Material CRM
N O O		160 170		80		Weight (g) Conc. (µg/mL) 13.8855 1000.0	Actual Actual	Nitric Acid	Nitric A	Material CRM
		180 190		80 00		+/- (µg/mL) CAS# OSHA PEL (TWA) 2.0 16919-19-0 2.5 mg/m3	9,	8	Aleah & Brack	P
		2000		100			Solvent Safety Info. On Attached pg.) NIST		A.	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

≶ % **>**

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS);

							Trace M	etals	Verifica	ition	by ICP-N	E S	ia/mL)						
				A COLUMN TO A COLUMN			Contraction of the local distance of the loc		Contraction of the						No. of Concession, Name	UNIVERSITY	A REAL PROPERTY AND INCOME.	No. of Concession, Name	STOLEN STOLEN
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	Ľ	<0.02	N	40.02	Pr	<0.02	Se	<0.2	7	4) 02	W	AND
S	40.02	ç	e,	Į	3	ç	3	-	3	,		1				•0	1000	-	70.02
: 8) <u>(</u>	101	R	20.02	OL	<0.02	Ę	<0.02	ß	<0.02	Re	<0.02	ŝ	ч	ē	<0.02	q	<0.02
25	202	ຣ	<0.02	5	40.02	F	40.02	Mg	<0.01	ç	40.02	R	A).02	Ag	40.02	1	4033	<	3
Ba	40.02	ຊ	<0.02	ନ୍ଥ	40,02	- -1'	3	\$	3	ž	23	P	3	4		1			
đ	5	2	5	>		1						200	20.00	TAG.	101	10	20.02	10	20.02
Į	TOTON	5	<0.02	G	20.02	re	40.2	Нg	40.2	'n	40.02	Ru	<0.02	\$	A 0.02	5	40.02	~	4) M
Bl	40.02	S	<0.02	ନ୍ନ	A)02	5	40.02	Mo	40.02	¥	40.03	2	2002	2	3	2	3	2	3
7	33	2	3	Å.,	3	Ż	3		2	1 ;				,	10.02	22	10.04		20.05
F	-UNE	2	10.02	70	20.02	10	20.02	Nd	AU.U2	×	40.2	8	<0.02	Ta	40.02	H	40.02	2	<0.02

(T) = Target analyte

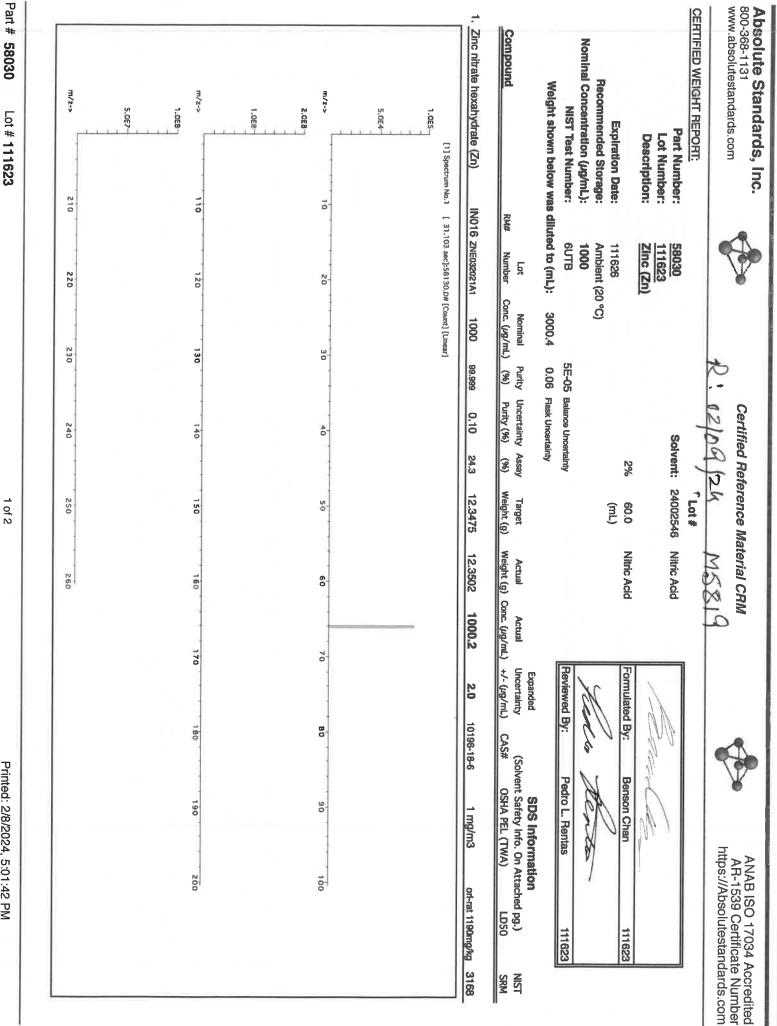
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shr

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

,•

Part # 57014 Lot # 122023

Printed: 2/8/2024, 5:01:42 PM

ww.a	0-36	bsc
bsol	-368-11	X ute
/w.absolutestandards.c	131	
and		Stan
ards		dal
ŝ		rds.
		Inc

\$8⊳

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58030 Lot # 111623

Printed: 9/21/2022, 11:20:01 PM	1 of 2			Part # 56138 Lot # 082922
20 0	250	240	220 230	m/z-> 210
				N 0 5 0 П П 0 б
160 170 180 190 200	150 1	0 140	120 130	m/z-> 110
				5. 0 E 5
60 70 80 90 100	50	40	20 30	m/z-> 10
				N.5E6
	unt] [Linear]	14.495 sec]:58138.D# [Count] [Linear]	_	[1] Speatrum No.1 5.0E6
10000.1 20.0 10042-76-9 NA orf-rat >2000mg/kg 3		99.997 0.10	7 SRZ022018A1	trate (Sr)
Expanded SDS Information Actual Actual Uncertainty (Solvent Safety Info. On Attached pg.) NIST Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM	Target Weight (g)		Lot Nominal RM# Number Conc. (µg/mL)	Compound
Reviewed By: Pedro L. Rentas 082922		5E-05 Balance Uncertainty 0.058 Flask Uncertainty	6018 diluted to (mL): 1000.12	Weight shown below was diluted to (mL):
Nuic Acid Formulated by: Lawrence barry 082922	(mL)	6 1	082925 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
Advance Bary	20510011	Solvent:	<u>56138</u> <u>082922</u> <u>Strontium (Sr)</u>	Part Number: Lot Number: Description:
I CRM ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM いままのション	Certified Ref এ৯।।১।২३ শ	R:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:

vww.absolutestandards.com	300-368-1131	Absolute Standards,
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	tais	Verifica	TION	by ICP-	MC (hd/mr)						
					10-31										10 T		101000		No. of Concession, No. of Conces
AI	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Ε.	<0.02	<u>N</u>	<0.02	Pr	<0.02	Se	<0.2	Tb	<0.02	W	<0.02
SР	<0.02	Ca	<0.2	막	<0.02	Но	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	A0.02	ď	<0.02
As	<0.2	ĉ	<0.02	F	<0.02	ľ	<0.02	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	Ц	<0.02	<	<0.02
Ba	<0.02	ß	<0.02	ନ୍ଦ	<0.02	F	<0.02	M'n	< 0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	Ţ	<0.02	ΥЪ	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	F	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	Ţ	Tm	<0.02	Y	<0.02
Bi	<0.02	ĉ	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	РЪ	<0.02	Nd	<0.02	ĸ	<0.2	Sc	<0.02	Ta	<0.02	H	<0.02	Zr	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

Sur & Sur

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138 Lot # 082922