

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS SEMI-VOLATILE ORGANICS

PROJECT NAME : FORMER SCHLUMBERGER SITE PRINCETON NJ

JACOBS ENGINEERING GROUP, INC.

412 Mt. Kemble Ave

Downtown Building

Morristown, NJ - 07960

Phone No: 9732670555

ORDER ID: P3645 ATTENTION: Mary I. Murphy

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	5
2.1) VOCMS Group6- Case Narrative	5
2.2) SVOCMS Group3- Case Narrative	7
2.3) SVOCMS Group6- Case Narrative	9
2.4) Metals-MS- Case Narrative	11
2.5) Genchem- Case Narrative	13
3) Qualifier Page	14
4) QA Checklist	16
5) VOCMS Group6 Data	17
6) SVOCMS Group3 Data	26
7) SVOCMS Group6 Data	33
8) Metals-MS Data	42
9) Genchem Data	48
10) Shipping Document	52
10.1) CHAIN OF CUSTODY	53
10.2) Lab Certificate	54
10.3) Internal COC	55

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

1

Laboratory Name :	Alliance Technical Group LLC	Client :	JACOBS Engineering Group, Inc.
Project Location :	Princeton Junction, NJ	Project Number :	D3779922
Laboratory Sample ID	(s) : <u>P3645</u>	Sampling Date(s) :	8/15/2024

List DKQP Methods Used (e.g., 8260,8270, et Cetra) 6020B,7196A,7470A,8260-Low,8270-Modified,8270E

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	V	Yes		No	
1A	Were the method specified handling, preservation, and holding time requirements met?	V	Yes		No	
1B	EPH Method: Was the EPH method conducted without significant modifications (see Section 11.3 of respective DKQ methods)		Yes		No	☑ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	\Box	Yes		No	
3	Were samples received at an appropriate temperature (4±2° C)?	V	Yes		No	D N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?		Yes	\checkmark	No	
5	a)Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	Ø	Yes		No	
	b)Were these reporting limits met?		Yes		No	□ N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	V	Yes		No	
7	Are project-specific matrix spikes and/or laboratory duplicates included in this data set?		Yes	\checkmark	No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Client Sample Number

2

Cover Page

- Order ID : P3645
- Project ID : Former Schlumberger Site Princeton NJ
 - **Client :** JACOBS Engineering Group, Inc.

Lab Sample Number

P3645-01	914-J-WS-081524
P3645-02	916-J-WS-081524
P3645-03	TB-02-081524

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 9/5/2024

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger Site Princeton NJ Project # N/A Chemtech Project # P3645 Test Name: VOCMS Group6

A. Number of Samples and Date of Receipt:

3 Water samples were received on 08/15/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for VOCMS Group6.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column RXI-624SIL MS 30m 0.25mm 1.4 um. Cat#13868.The analysis of VOCMS Group6 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements .

The Continuous Calibration met the requirements .

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.1

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger Site Princeton NJ Project # N/A Chemtech Project # P3645 Test Name: SVOCMS Group3

A. Number of Samples and Date of Receipt:

3 Water samples were received on 08/15/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for SVOCMS Group3.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_N using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOCMS Group3 was based on method 8270-Modified and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria. The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples. The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements. The Continuous Calibration File ID BN033489.D met the requirements except for 2,4,6-Tribromenhaned and 2 Elysepenhaned. The foilure commons do not acception with the

Tribromophenol and 2-Fluorophenol, The failure compounds not associated with the client parameters list, therefore no corrective action was taken.

The Continuous Calibration File ID BN033507.D met the requirements except for 2,4,6-Tribromophenol and 2-Fluorophenol, The failure compounds not associated with the client parameters list, therefore no corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger Site Princeton NJ Project # N/A Chemtech Project # P3645 Test Name: SVOCMS Group6

A. Number of Samples and Date of Receipt:

3 Water samples were received on 08/15/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for SVOCMS Group6.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOCMS Group6 was based on method 8270E and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination.

The % RSD is greater than 15% in the Initial Calibration (Method 8270-BM081024.M) for Benzaldehyde, this compound is passing on Quadratic regression

The Continuous Calibration File ID BM047273.D met the requirements except for Pyridine, The failure compound not associated with the client parameters list, therefore no corrective action was taken.

The Continuous Calibration File ID BP021592.D met the requirements except for Pentachlorophenol and 2,4,6-Tribromophenol, The associate samples have no positive hit for these compounds therefore no corrective action was taken.

2 2.3

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

24

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger Site Princeton NJ Project # N/A Chemtech Project # P3645 Test Name: Metals Group4,Mercury

A. Number of Samples and Date of Receipt:

3 Water samples were received on 08/15/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for Metals Group4, Mercury.

C. Analytical Techniques:

The analysis of Metals Group4 was based on method 6020B, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (918-J-WS-081324-FDDUP) analysis met criteria for all samples except for Arsenic due to sample matrix interference.

The Matrix Spike (918-J-WS-081324-FDMS) analysis met criteria for all samples except for Molybdenum and Silver due to Chemical interference during Digestion Process. The Matrix Spike Duplicate (918-J-WS-081324-FDMSD) analysis met criteria for all samples except for Molybdenum and Silver due to Chemical interference during Digestion Process.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution (918-J-WS-081324-FDL) met criteria for all samples except for Aluminum, Iron, and Manganese due to sample matrix interference.

E. Additional Comments:

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature
0

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger Site Princeton NJ Project # N/A Chemtech Project # P3645 Test Name: Hexavalent Chromium

A. Number of Samples and Date of Receipt:

3 Water samples were received on 08/15/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for Hexavalent Chromium.

C. Analytical Techniques:

The analysis of Hexavalent Chromium was based on method 7196A.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples. The Matrix Spike analysis met criteria for all samples. The Matrix Spike Duplicate analysis met criteria for all samples. The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
U	Indicates the analyte was analyzed for, but not detected.
ND	Indicates the analyte was analyzed for, but not detected
Ε	Indicates the reported value is estimated because of the presence of interference
Μ	Indicates Duplicate injection precision not met.
Ν	Indicates the spiked sample recovery is not within control limits.
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).
*	Indicates that the duplicate analysis is not within control limits.
+	Indicates the correlation coefficient for the MSA is less than 0.995.
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
M OR	 Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi – Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
Q	Indicates the LCS did not meet the control limits requirements
Н	Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: P3645

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u>✓</u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>✓</u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>✓</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u>✓</u>
Were the samples received within hold time	
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

1st Level QA Review Signature:

SOHIL JODHANI

Date: 09/05/2024

2nd Level QA Review Signature:

Date:

SDG No.:

Hit Summary Sheet SW-846

P3645 **Client:** JACOBS Engineering Group, Inc.

Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID: P3645-01	914-J-WS-081524 914-J-WS-081524	Water	Chloromethane	1.40		0.35	1.00	ug/I
P3645-01	914-J-WS-081524	Water	Acetone	4.20	J	1.40	5.00	ug/L ug/L
			Total Voc :	5.6	C			U
			Total Concentration:	5.60)			

В

С

D

5

A B C D

Date Collected:

Date Received:

SDG No.:

Level :

08/15/24

08/15/24

P3645

LOW

uL

С

D

5

P3645-01 Matrix: Water SW8260 % Solid: 0 Final Vol: 5000 Units: mL uL Test: VOCMS Group6

Report of Analysis

JACOBS Engineering Group, Inc.

914-J-WS-081524

5

RXI-624

Former Schlumberger Site Princeton NJ

ID: 0.25

GC Column: Prep Method :

Client:

Project:

Client Sample ID:

Lab Sample ID: Analytical Method:

Sample Wt/Vol:

Soil Aliquot Vol:

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083380.D	1			08/19/24 18:17	VN081924	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.21	U	0.21	1.00	ug/L
74-87-3	Chloromethane	1.40		0.35	1.00	ug/L
75-01-4	Vinyl Chloride	0.34	U	0.34	1.00	ug/L
74-83-9	Bromomethane	1.40	U	1.40	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.25	U	0.25	1.00	ug/L
67-64-1	Acetone	4.20	J	1.40	5.00	ug/L
75-15-0	Carbon Disulfide	0.32	U	0.32	1.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.16	U	0.16	1.00	ug/L
75-09-2	Methylene Chloride	0.32	U	0.32	1.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
110-82-7	Cyclohexane	1.60	U	1.60	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	5.00	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
67-66-3	Chloroform	0.26	U	0.26	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.19	U	0.19	1.00	ug/L
108-87-2	Methylcyclohexane	0.19	U	0.19	1.00	ug/L
71-43-2	Benzene	0.16	U	0.16	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	1.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	1.00	ug/L
75-27-4	Bromodichloromethane	0.24	U	0.24	1.00	ug/L
108-88-3	Toluene	0.18	U	0.18	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
124-48-1	Dibromochloromethane	0.18	U	0.18	1.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	1.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	1.00	ug/L
100-41-4	Ethyl Benzene	0.16	U	0.16	1.00	ug/L
179601-23-1	m/p-Xylenes	0.31	U	0.31	2.00	ug/L
1330-20-7	Total Xylenes	0.45	U	0.45	3.00	ug/L
95-47-6	o-Xylene	0.14	U	0.14	1.00	ug/L

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24
Client Sample ID:	914-J-WS-081524	SDG No.:	P3645
Lab Sample ID:	P3645-01	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group6
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083380.D	1			08/19/24 18:17	VN081924	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
98-82-8	Isopropylbenzene	0.13	U	0.13	1.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.27	U	0.27	1.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.19	U	0.19	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	52.8		70 (74) - 130 (125)	106%	SPK: 50
1868-53-7	Dibromofluoromethane	49.0		70 (75) - 130 (124)	98%	SPK: 50
2037-26-5	Toluene-d8	48.0		70 (86) - 130 (113)	96%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.5		70 (77) - 130 (121)	103%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	136000	8.224			
540-36-3	1,4-Difluorobenzene	268000	9.1			
3114-55-4	Chlorobenzene-d5	276000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	121000	13.794			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

20 of 55

С

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24
Client Sample ID:	916-J-WS-081524	SDG No.:	P3645
Lab Sample ID:	P3645-02	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group6
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083381.D	1			08/19/24 18:42	VN081924	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.21	U	0.21	1.00	ug/L
74-87-3	Chloromethane	0.35	U	0.35	1.00	ug/L
75-01-4	Vinyl Chloride	0.34	U	0.34	1.00	ug/L
74-83-9	Bromomethane	1.40	U	1.40	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.25	U	0.25	1.00	ug/L
67-64-1	Acetone	1.40	U	1.40	5.00	ug/L
75-15-0	Carbon Disulfide	0.32	U	0.32	1.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.16	U	0.16	1.00	ug/L
75-09-2	Methylene Chloride	0.32	U	0.32	1.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
110-82-7	Cyclohexane	1.60	U	1.60	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	5.00	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
67-66-3	Chloroform	0.26	U	0.26	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.19	U	0.19	1.00	ug/L
108-87-2	Methylcyclohexane	0.19	U	0.19	1.00	ug/L
71-43-2	Benzene	0.16	U	0.16	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	1.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	1.00	ug/L
75-27-4	Bromodichloromethane	0.24	U	0.24	1.00	ug/L
108-88-3	Toluene	0.18	U	0.18	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
124-48-1	Dibromochloromethane	0.18	U	0.18	1.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	1.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	1.00	ug/L
100-41-4	Ethyl Benzene	0.16	Ŭ	0.16	1.00	ug/L
179601-23-1	m/p-Xylenes	0.10	U	0.31	2.00	ug/L
1330-20-7	Total Xylenes	0.45	U	0.45	3.00	ug/L ug/L
95-47-6	o-Xylene	0.14	U	0.14	1.00	ug/L ug/L

5

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24
Client Sample ID:	916-J-WS-081524	SDG No.:	P3645
Lab Sample ID:	P3645-02	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group6
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083381.D	1			08/19/24 18:42	VN081924	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
98-82-8	Isopropylbenzene	0.13	U	0.13	1.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.27	U	0.27	1.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.19	U	0.19	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.8		70 (74) - 130 (125)	102%	SPK: 50
1868-53-7	Dibromofluoromethane	48.6		70 (75) - 130 (124)	97%	SPK: 50
2037-26-5	Toluene-d8	47.7		70 (86) - 130 (113)	95%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.0		70 (77) - 130 (121)	100%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	133000	8.224			
540-36-3	1,4-Difluorobenzene	261000	9.1			
3114-55-4	Chlorobenzene-d5	266000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	116000	13.794			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

22 of 55

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24
Client Sample ID:	TB-02-081524	SDG No.:	P3645
Lab Sample ID:	P3645-03	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group6
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083439.D	1			08/22/24 16:33	VN082224	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.21	U	0.21	1.00	ug/L
74-87-3	Chloromethane	0.35	U	0.35	1.00	ug/L
75-01-4	Vinyl Chloride	0.34	U	0.34	1.00	ug/L
74-83-9	Bromomethane	1.40	U	1.40	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.25	U	0.25	1.00	ug/L
67-64-1	Acetone	1.40	U	1.40	5.00	ug/L
75-15-0	Carbon Disulfide	0.32	U	0.32	1.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.16	U	0.16	1.00	ug/L
75-09-2	Methylene Chloride	0.32	U	0.32	1.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
110-82-7	Cyclohexane	1.60	U	1.60	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	5.00	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
67-66-3	Chloroform	0.26	U	0.26	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.19	U	0.19	1.00	ug/L
108-87-2	Methylcyclohexane	0.19	U	0.19	1.00	ug/L
71-43-2	Benzene	0.16	U	0.16	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	1.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	1.00	ug/L
75-27-4	Bromodichloromethane	0.24	U	0.24	1.00	ug/L
108-88-3	Toluene	0.18	U	0.18	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
124-48-1	Dibromochloromethane	0.18	U	0.18	1.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	1.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	1.00	ug/L
100-41-4	Ethyl Benzene	0.16	U	0.16	1.00	ug/L
179601-23-1	m/p-Xylenes	0.31	U	0.31	2.00	ug/L
1330-20-7	Total Xylenes	0.45	U	0.45	3.00	ug/L
95-47-6	o-Xylene	0.14	U	0.14	1.00	ug/L

5

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24
Client Sample ID:	TB-02-081524	SDG No.:	P3645
Lab Sample ID:	P3645-03	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group6
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN083439.D	1			08/22/24 16:33	VN082224	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
98-82-8	Isopropylbenzene	0.13	U	0.13	1.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.27	U	0.27	1.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.19	U	0.19	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.5		70 (74) - 130 (125)	113%	SPK: 50
1868-53-7	Dibromofluoromethane	49.9		70 (75) - 130 (124)	100%	SPK: 50
2037-26-5	Toluene-d8	48.4		70 (86) - 130 (113)	97%	SPK: 50
460-00-4	4-Bromofluorobenzene	56.8		70 (77) - 130 (121)	114%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	126000	8.224			
540-36-3	1,4-Difluorobenzene	258000	9.1			
3114-55-4	Chlorobenzene-d5	278000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	132000	13.794			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

24 of 55

B

5

С

D

LAB CHRONICLE

OrderID: Client: Contact:	P3645 JACOBS Engineering Group, I Mary I. Murphy	nc.		OrderDate: Project: Location:	8/15/2024 9:40 Former Schlum G21,VOA Ref. ;	berger Site Pri	nceton NJ	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3645-01	914-J-WS-081524	Water	VOCMS Group6	8260-Low	08/15/24		08/19/24	08/15/24
P3645-02	916-J-WS-081524	Water	VOCMS Group6	8260-Low	08/15/24		08/19/24	08/15/24
P3645-03	TB-02-081524	Water	VOCMS Group6	8260-Low	08/15/24		08/22/24	08/15/24

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: P3645

Client: JACOBS Engineering Group, Inc.

Sample ID	Client ID		Parameter	Concentration	С	MDL	RDL	Units
Client ID :	914-J-WS-081524							
P3645-01	914-J-WS-081524	WATER	Naphthalene	0.050	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Acenaphthene	0.190		0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Fluorene	0.180		0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Phenanthrene	0.030	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Anthracene	0.020	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Fluoranthene	0.060	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Pyrene	0.040	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Benzo(a)anthracene	0.040	J	0.02	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Chrysene	0.060	J	0.03	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Benzo(b)fluoranthene	0.060	J	0.03	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Benzo(k)fluoranthene	0.050	J	0.03	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Indeno(1,2,3-cd)pyrene	0.040	J	0.04	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Dibenzo(a,h)anthracene	0.040	J	0.04	0.1	ug/L
P3645-01	914-J-WS-081524	WATER	Benzo(g,h,i)perylene	0.040	J	0.04	0.1	ug/L
			Total Svoc :		0.	.90		
			Total Concentration:		0	.90		
Client ID :	916-J-WS-081524							
P3645-02	916-J-WS-081524	WATER	Naphthalene	0.030	J	0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Acenaphthene	0.090	J	0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Fluorene	0.130		0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Phenanthrene	0.030	J	0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Fluoranthene	0.060	J	0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Pyrene	0.030	J	0.02	0.1	ug/L
P3645-02	916-J-WS-081524	WATER	Chrysene	0.030	J	0.03	0.1	ug/L
			Total Svoc :		0.	.40		
			Total Concentration:		0	.40		

B C

D

6

A B C D

Client:

Project:

Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch: BN033512.D

CAS Number

TARGETS 91-20-3

91-57-6

208-96-8

83-32-9

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

207-08-9

50-32-8

193-39-5 53-70-3

191-24-2

123-91-1

SURROGATES 7297-45-2

93951-69-0

13127-88-3

4165-60-0

321-60-8 118-79-6

1718-51-0

367-12-4

Date Collected:

Date Received:

08/15/24

08/15/24

Report of Analysis

JACOBS Engineering Group, Inc.

Former Schlumberger Site Princeton NJ

	-					
D: 914-J-WS	5-081524			SDG No.	.: P3645	
P3645-01				Matrix:	Water	
od: SW82705	SIM			% Solid:	0	
		T				т
980	Units:	mL		Final Vol		uL
:		uL		Test:	SVOCM	AS Group3
:		Decan	ted : N	N Level :	LOW	
e :		GPC Factor :	1.0	GPC Cle	anup : N	PH :
SW35100	2					
Dilution:		Prep Date		Date Analyzed	Prep Batch	ID
1		08/16/24 10	0:33	08/20/24 18:52	PB162787	
Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
Naphthalene		0.050	J	0.020	0.10	ug/L
2-Methylnaphthalei	ne	0.030	J U	0.020	0.10	ug/L ug/L
Acenaphthylene	ic .	0.020	U	0.020	0.10	ug/L ug/L
Acenaphthene		0.19	0	0.020	0.10	ug/L
Fluorene		0.18		0.020	0.10	ug/L
Phenanthrene		0.030	J	0.020	0.10	ug/L
Anthracene		0.020	J	0.020	0.10	ug/L
Fluoranthene		0.060	J	0.020	0.10	ug/L
Pyrene		0.040	J	0.020	0.10	ug/L
Benzo(a)anthracene	2	0.040	J	0.020	0.10	ug/L
Chrysene		0.060	J	0.030	0.10	ug/L
Benzo(b)fluoranthe	ne	0.060	J	0.030	0.10	ug/L
Benzo(k)fluoranthe		0.050	J	0.030	0.10	ug/L
Benzo(a)pyrene		0.060	U	0.060	0.10	ug/L
Indeno(1,2,3-cd)py	rene	0.040	J	0.040	0.10	ug/L
Dibenzo(a,h)anthra		0.040	J	0.040	0.10	ug/L
Benzo(g,h,i)peryler		0.040	J	0.040	0.10	ug/L
1,4-Dioxane		0.070	U	0.070	0.20	ug/L
2-Methylnaphthaler	ne-d10	0.26		30 (20) - 150 (139)	64%	SPK: 0.4
Fluoranthene-d10		0.28		30 (30) - 150 (150) 30 (30) - 150 (150)	70%	SPK: 0.4
2-Fluorophenol		0.12		15 (10) - 110 (100)	31%	SPK: 0.4
Phenol-d6		0.088		15 (10) - 110 (100) 15 (10) - 110 (100)	22%	SPK: 0.4
Nitrobenzene-d5		0.088		30 (27) - 130 (123)	61%	SPK: 0.4
2-Fluorobiphenyl		0.23		30 (27) - 130 (123) 30 (34) - 130 (132)	69%	SPK: 0.4 SPK: 0.4
	nal			15 (10) - 110 (131)		SPK: 0.4 SPK: 0.4
2,4,6-Tribromopher	101	0.21			53% 80%	
Terphenyl-d14		0.32		30 (35) - 130 (157)	80%	SPK: 0.4

INTERNAL STANDARDS

3855-82-1 1,4-Dichlorobenzene-d4

7.552

7580

28 of 55

JACOBS Engineering Group, Inc.

Units:

914-J-WS-081524

P3645-01

980

SW8270SIM

SW3510C

Former Schlumberger Site Princeton NJ

mL

uL

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type :

Injection Volume :

Prep Method :

<u> </u>

Report of Analysis					
, Inc.	Date Collected:		08/15/24		
inceton NJ	Date Received:		08/15/24		
	SDG No.:		P3645		
	Matrix:		Water		
	% Solid:		0		
	Final Vol:		1000	uL	
	Test:		SVOCMS	Group3	
Decanted : N	Level :		LOW		
C Factor : 1.0	GPC Cleanup :	Ν	F	РН:	

File ID/Qc Batch: BN033512.D	Dilution: 1	Prep Date 08/16/24 1	0:33	Date Analyzed 08/20/24 18:52	Prep Batch ID PB162787	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
1146-65-2 15067-26-2 1517-22-2 1719-03-5 1520-96-3	Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12	20200 10200 20200 12900 12200	10.314 14.189 16.929 21.148 23.315			

GPC Factor : 1.0

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

Client:

Project:

Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch: BN033513.D

CAS Number

TARGETS 91-20-3

91-57-6

208-96-8

83-32-9

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

123-91-1

SURROGATES 7297-45-2

93951-69-0

13127-88-3

4165-60-0

321-60-8

118-79-6

1718-51-0

367-12-4

Date Collected:

Date Received:

08/15/24

08/15/24

Report of Analysis

JACOBS Engineering Group, Inc.

Former Schlumberger Site Princeton NJ

		0					
): 9	916-J-WS-081524				SDG No.:	P3645	
Р	23645-02				Matrix:	Water	
	SW8270SIM				% Solid:	0	
		Ŧ					т
9	090 Units:	mL			Final Vol:	1000	uL
		uL			Test:	SVOCM	S Group3
:		Dec	anted :	Ν	Level :	LOW	
e:		GPC Factor	: 1.0		GPC Cleanup :	Ν	PH :
S	SW3510C						
5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Dil	lution:	Prep Dat	e	Date	Analyzed	Prep Batch	ID
1		08/16/24	10:33	08/20	/24 19:28	PB162787	
Parameter		Conc.	Quali	fier MDL		LOQ / CRQL	Units
Manh (1 - 1	_	0.020	т	0.020		0.10	
Naphthalene 2-Methylna		0.030 0.030	J TI	0.020 0.030		0.10 0.10	ug/L
Acenaphthy		0.030	U U	0.030		0.10	ug/L ug/L
Acenaphthe		0.020	J	0.020		0.10	ug/L ug/L
Fluorene	and the second sec	0.13	5	0.020		0.10	ug/L
Phenanthren	ne	0.030	J	0.020		0.10	ug/L
Anthracene		0.020	U	0.020		0.10	ug/L
Fluoranthen	ne	0.060	J	0.020		0.10	ug/L
Pyrene		0.030	J	0.020		0.10	ug/L
Benzo(a)ant	thracene	0.020	U	0.020		0.10	ug/L
Chrysene		0.030	J	0.030		0.10	ug/L
Benzo(b)flu	oranthene	0.030	U	0.030		0.10	ug/L
Benzo(k)flu	oranthene	0.030	U	0.030		0.10	ug/L
Benzo(a)pyr		0.060	U	0.060		0.10	ug/L
	3-cd)pyrene	0.040	U	0.040		0.10	ug/L
	n)anthracene	0.040	U	0.040		0.10	ug/L
Benzo(g,h,i)		0.040	U	0.040		0.10	ug/L
1,4-Dioxane	e	0.070	U	0.070		0.20	ug/L
2-Methylna	phthalene-d10	0.27		30 (20) -	150 (139)	68%	SPK: 0.4
Fluoranthen		0.33		30 (30) -		83%	SPK: 0.4
2-Fluorophe		0.14		15 (10) -		34%	SPK: 0.4
Phenol-d6		0.089		15 (10) -		22%	SPK: 0.4
Nitrobenzen	ne-d5	0.27		30 (27) -		68%	SPK: 0.4
2-Fluorobip		0.31		30 (34) -		76%	SPK: 0.4
		0.23		15(10)	110 (131)	57%	SPK: 0.4
2,4,6-Tribro	mophenoi	0.25		13(10)-	110(131)	5770	51 K. 0.4

INTERNAL STANDARDS

3855-82-1 1,4-Dichlorobenzene-d4

7.552

7720

30 of 55

JACOBS Engineering Group, Inc.

Units:

916-J-WS-081524

P3645-02

990

SW8270SIM

Former Schlumberger Site Princeton NJ

mL

uL

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type :

Injection Volume :

-

Report of Analysis					
o, Inc.	Date Collected:		08/15/24		ון
rinceton NJ	Date Received:		08/15/24		
	SDG No.:		P3645		
	Matrix:		Water		
	% Solid:		0		
	Final Vol:		1000	uL	
	Test:		SVOCMS	Group3	
Decanted : N	Level :		LOW		
C Factor : 1.0	GPC Cleanup :	N]	PH :	

Prep Method :	SW3510C					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BN033513.D	1	08/16/24 1	0:33	08/20/24 19:28	PB162787	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
1146-65-2	Naphthalene-d8	19600	10.314			
1146-65-2 15067-26-2	Naphthalene-d8 Acenaphthene-d10	19600 9100	10.314 14.188			
	•	-,				
15067-26-2	Acenaphthene-d10	9100	14.188			

GPC Factor : 1.0

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C

D

6

LAB CHRONICLE

OrderID: Client: Contact:	P3645 JACOBS Engineering Group, I Mary I. Murphy	nc.		OrderDate: Project: Location:	8/15/2024 9:40 Former Schlum G21,VOA Ref. :	berger Site Pri	nceton NJ	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3645-01	914-J-WS-081524	Water	SVOCMS Group3	8270-Modifie d	08/15/24	08/16/24	08/20/24	08/15/24
P3645-02	916-J-WS-081524	Water	SVOCMS Group3	8270-Modifie d	08/15/24	08/16/24	08/20/24	08/15/24

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

в	

7

Hit Summary Sheet SW-846

SDG No.:	P3645				
Client:	JACOBS Engine	eering Group, Inc.			
Sample ID Client ID :	Client ID	Matrix	Parameter	Concentration C MDL	RDL Units
				0.000	
			Total Svoc :	0.00	
			Total Concentration:	0.00	

7

A B C D

7

		Repor	t of Anal	lysis			
Client:	JACOBS Engineeri	ng Group, Inc.			Date Collected:	08/15/24	ŀ
Project:	Former Schlumberg	Former Schlumberger Site Princeton NJ Date Received:					1
Client Sample IE	-		SDG No.:			P3645	
Lab Sample ID:	P3645-01				Matrix:	Water	
-							
Analytical Metho	od: SW8270				% Solid:	0	
Sample Wt/Vol:	970 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	SVOCM	IS Group6
Extraction Type		Decar	nted : N	1	Level :	LOW	
Injection Volume	e :	GPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3510C				· · · · · · · · · · · · · · · · · ·		
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
		-	0.22				
BM047280.D	1	08/16/24 1	0.33	08/20	0/24 21:34	PB162788	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
FARGETS 110-86-1	Pyridine	1.60	U	1.60		5.20	ug/L
00-52-7	Benzaldehyde	4.10	U	4.10		10.3	ug/L ug/L
95-48-7	2-Methylphenol	1.20	U	1.20		5.20	ug/L ug/L
98-86-2	Acetophenone	1.10	U	1.20		5.20	ug/L ug/L
55794-96-9	3+4-Methylphenols	1.10	U U	1.10		10.3	ug/L ug/L
98-95-3	Nitrobenzene	1.20	U	1.20		5.20	ug/L ug/L
120-83-2	2,4-Dichlorophenol	0.91	U	0.91		5.20	ug/L
91-20-3	Naphthalene	1.10	U	1.10		5.20	ug/L
87-68-3	Hexachlorobutadiene	1.30	U	1.10		5.20	ug/L ug/L
91-57-6	2-Methylnaphthalene	1.20	U	1.20		5.20	ug/L ug/L
88-06-2	2,4,6-Trichlorophenol	0.92	U	0.92		5.20	ug/L ug/L
95-95-4	2,4,5-Trichlorophenol	1.00	U	1.00		5.20	ug/L ug/L
208-96-8	Acenaphthylene	1.10	U	1.10		5.20	ug/L ug/L
83-32-9	Acenaphthene	0.84	U	0.84		5.20	ug/L ug/L
132-64-9	Dibenzofuran	0.96	U	0.96		5.20	ug/L ug/L
32-04-9 86-73-7	Fluorene	0.90	U	0.90		5.20	ug/L ug/L
18-74-1	Hexachlorobenzene	1.20	U	1.20		5.20	ug/L ug/L
87-86-5	Pentachlorophenol	1.20	U U	1.20		10.3	ug/L ug/L
5-01-8	Phenanthrene	0.92	U U	0.92		5.20	ug/L ug/L
35-01-8 36-74-8	Carbazole	1.20	U U	0.92 1.20		5.20	ug/L ug/L
6-74-8 4-74-2	Di-n-butylphthalate	1.20	U U	1.20		5.20	
4-74-2 06-44-0	Fluoranthene	1.30	U U	1.30		5.20 5.20	ug/L
29-00-0		1.30					ug/L
	Pyrene Ponzo(a) on thracono		U	1.10		5.20	ug/L
56-55-3	Benzo(a)anthracene	0.97	U	0.97		5.20	ug/L
218-01-9	Chrysene	0.89	U	0.89		5.20	ug/L
17-81-7	Bis(2-ethylhexyl)phthalate	1.90	U U	1.90		5.20	ug/L
205-99-2	Benzo(b)fluoranthene	1.20	U	1.20		5.20	ug/L
207-08-9	Benzo(k)fluoranthene	1.20	U	1.20		5.20	ug/L

50-32-8

Benzo(a)pyrene

U

1.70

5.20

ug/L

1.70

7

Report of Analysis Client: JACOBS Engineering Group, Inc. Date Collected: 08/15/24 Project: Former Schlumberger Site Princeton NJ Date Received: 08/15/24 SDG No .: P3645 Client Sample ID: 914-J-WS-081524 Lab Sample ID: P3645-01 Matrix: Water Analytical Method: SW8270 % Solid: 0 970 Final Vol: 1000 uL Sample Wt/Vol: Units: mL uL Test: SVOCMS Group6 Soil Aliquot Vol: Extraction Type : Decanted : Ν Level : LOW Injection Volume : GPC Factor: 1.0 GPC Cleanup : Ν PH : SW3510C Prep Method : Dilution: File ID/Qc Batch: Prep Date Date Analyzed Prep Batch ID BM047280.D 1 08/16/24 10:33 08/20/24 21:34 PB162788 MDL Units CAS Number Qualifier LOQ / CRQL Parameter Conc. 193-39-5 1.10 U 1.10 Indeno(1,2,3-cd)pyrene 5.20 ug/L 53-70-3 Dibenzo(a,h)anthracene 1.20 U 1.20 5.20 ug/L U 191-24-2 Benzo(g,h,i)perylene 1.20 5.20 1.20 ug/L 123-91-1 1,4-Dioxane 1.30 U 1.30 5.20 ug/L U 90-12-0 1-Methylnaphthalene 0.89 0.89 5.20 ug/L SURROGATES 367-12-4 2-Fluorophenol 80.6 15 (10) - 110 (139) 54% SPK: 150 Phenol-d6 49.9 33% 13127-88-3 15 (10) - 110 (134) SPK: 150 4165-60-0 Nitrobenzene-d5 80.5 30 (49) - 130 (133) 81% SPK: 100 87% 321-60-8 2-Fluorobiphenyl 87.1 30 (52) - 130 (132) SPK: 100 118-79-6 2,4,6-Tribromophenol 129 15 (44) - 110 (137) 86% SPK: 150 1718-51-0 Terphenyl-d14 88.3 30 (48) - 130 (125) 88% SPK: 100 INTERNAL STANDARDS 7.357 1,4-Dichlorobenzene-d4 298000 3855-82-1 1146-65-2 Naphthalene-d8 1090000 10.11 15067-26-2 Acenaphthene-d10 684000 14.016 Phenanthrene-d10 1517-22-2 1320000 16.78 1719-03-5 Chrysene-d12 1060000 21.021 1520-96-3 Perylene-d12 1120000 23.715 TENTATIVE IDENTIFIED COMPOUNDS

IENTATIVE IDENTIFIED CONFOUNDS					
000057-10-3	n-Hexadecanoic acid	4.70	J	17.7	ug/L
000057-11-4	Octadecanoic acid	2.90	J	19.0	ug/L
002004-39-9	1-Heptacosanol	2.30	J	20.8	ug/L

7

С

Client:	JACOBS Engineer	ing Group, Inc.		Date Collected:	08/15/24	
Project:	Former Schlumberg	ger Site Princeton N.	J	Date Received:	08/15/24	
Client Sample ID:	914-J-WS-081524			SDG No.:	P3645	
Lab Sample ID:	P3645-01			Matrix:	Water	
Analytical Method:	SW8270			% Solid:	0	
Sample Wt/Vol:	970 Units:	mL		Final Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:	SVOCMS	S Group6
Extraction Type :		Decar	nted : N	Level :	LOW	
Injection Volume :		GPC Factor :	1.0	GPC Cleanup :	Ν	PH :
Prep Method :	SW3510C					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch I	D
BM047280.D	1	08/16/24 1	0:33	08/20/24 21:34	PB162788	
CAS Number P	arameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements
- P3645

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

7

		Repor	t of Ana	lysis			
Client:	JACOBS Engineeri	ng Group, Inc.			Date Collected:	08/15/24	ļ
Project:	Former Schlumberg	er Site Princeton NJ	J		Date Received:	08/15/24	ļ
Client Sample II	-				SDG No.:	P3645	
Lab Sample ID:	P3645-02				Matrix:	Water	
-							
Analytical Metho					% Solid:	0	
Sample Wt/Vol:	970 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	SVOCM	IS Group6
Extraction Type		Decan	nted : N	1	Level :	LOW	
Injection Volume	e :	GPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3510C				· · · · · · · · · · · · · · · · ·		
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
			0.22				<i>.</i>
BM047281.D	1	08/16/24 10	0:33	08/20)/24 22:14	PB162788	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
FARGETS 110-86-1	Pyridine	1.60	U	1.60		5.20	ug/L
.00-52-7	Benzaldehyde	4.10	U U	4.10		10.3	ug/L ug/L
00- <i>32-7</i> 95-48-7	2-Methylphenol	1.20	U U	1.20		5.20	ug/L ug/L
93-48-7 98-86-2	Acetophenone	1.10	U U	1.20		5.20	ug/L ug/L
65794-96-9	3+4-Methylphenols	1.10	U U	1.10		3.20 10.3	ug/L ug/L
98-95-3	Nitrobenzene	1.20	U U	1.20		5.20	ug/L ug/L
20-83-2	2,4-Dichlorophenol	0.91	U U	0.91		5.20	ug/L ug/L
1-20-3	Naphthalene	1.10	U U	1.10		5.20	ug/L ug/L
7-68-3	Hexachlorobutadiene	1.30	U	1.10		5.20	ug/L ug/L
91-57-6	2-Methylnaphthalene	1.20	U	1.20		5.20	ug/L ug/L
88-06-2	2,4,6-Trichlorophenol	0.92	U	0.92		5.20	ug/L ug/L
95-95-4	2,4,5-Trichlorophenol	1.00	U	1.00		5.20	ug/L ug/L
208-96-8	Acenaphthylene	1.10	U	1.10		5.20	ug/L ug/L
33-32-9	Acenaphthene	0.84	U	0.84		5.20	ug/L ug/L
.32-64-9	Dibenzofuran	0.96	U	0.96		5.20	ug/L ug/L
32-04- <i>)</i> 36-73-7	Fluorene	0.99	U	0.99		5.20	ug/L ug/L
18-74-1	Hexachlorobenzene	1.20	U	1.20		5.20	ug/L ug/L
37-86-5	Pentachlorophenol	1.20	U	1.20		10.3	ug/L ug/L
5-01-8	Phenanthrene	0.92	U	0.92		5.20	ug/L ug/L
35-01-8 36-74-8	Carbazole	1.20	U	1.20		5.20	ug/L ug/L
4-74-2	Di-n-butylphthalate	1.50	U	1.20		5.20	ug/L ug/L
4-74-2 06-44-0	Fluoranthene	1.30	U U	1.30		5.20	ug/L ug/L
29-00-0	Pyrene	1.10	U U	1.10		5.20	ug/L ug/L
6-55-3	Benzo(a)anthracene	0.97	U	0.97		5.20	ug/L ug/L
218-01-9	Chrysene	0.89	U U	0.97		5.20	ug/L ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	1.90	U	0.89 1.90		5.20	ug/L ug/L
205-99-2	Benzo(b)fluoranthene	1.20	U	1.30		5.20	ug/L ug/L
205-99-2	Benzo(k)fluoranthene	1.20	U U	1.20		5.20	ug/L ug/L
207-08-9		1.20	U	1.20		5.20	ug/L

50-32-8

Benzo(a)pyrene

U

1.70

5.20

ug/L

1.70

7

В
С
D

Client:	JACOBS Engineer	ing Group, Inc.			Date Collected:	08/15/24	
Project:	Former Schlumber	ger Site Princeton NJ			Date Received:	08/15/24	
Client Sample II	D: 916-J-WS-081524				SDG No.:	P3645	
Lab Sample ID:	P3645-02				Matrix:	Water	
Analytical Meth	od: SW8270				% Solid:	0	
Sample Wt/Vol:	970 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vol	:	uL			Test:	SVOCM	S Group6
Extraction Type	:	Decan	ted : N		Level :	LOW	
Injection Volume	2:	GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3510C						
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch I	D
BM047281.D	1	08/16/24 10):33	08/20/2	24 22:14	PB162788	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
193-39-5	Indeno(1,2,3-cd)pyrene	1.10	U	1.10		5.20	ug/L
53-70-3	Dibenzo(a.h)anthracene	1.20	U	1.20		5.20	ug/L

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
193-39-5	Indeno(1,2,3-cd)pyrene	1.10	U	1.10	5.20	ug/L
53-70-3	Dibenzo(a,h)anthracene	1.20	U	1.20	5.20	ug/L
191-24-2	Benzo(g,h,i)perylene	1.20	U	1.20	5.20	ug/L
123-91-1	1,4-Dioxane	1.30	U	1.30	5.20	ug/L
90-12-0	1-Methylnaphthalene	0.89	U	0.89	5.20	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	72.6		15 (10) - 110 (139)	48%	SPK: 150
13127-88-3	Phenol-d6	45.2		15 (10) - 110 (134)	30%	SPK: 150
4165-60-0	Nitrobenzene-d5	76.9		30 (49) - 130 (133)	77%	SPK: 100
321-60-8	2-Fluorobiphenyl	81.6		30 (52) - 130 (132)	82%	SPK: 100
118-79-6	2,4,6-Tribromophenol	133		15 (44) - 110 (137)	88%	SPK: 150
1718-51-0	Terphenyl-d14	93.5		30 (48) - 130 (125)	94%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	313000	7.357			
1146-65-2	Naphthalene-d8	1140000	10.11			
15067-26-2	Acenaphthene-d10	746000	14.016			
1517-22-2	Phenanthrene-d10	1530000	16.78			
1719-03-5	Chrysene-d12	1310000	21.021			
1520-96-3	Perylene-d12	1290000	23.715			
TENTATIVE ID	ENTIFIED COMPOUNDS					
000057-55-6	Propylene Glycol	2.60	J		3.26	ug/L
000770-35-4	1-Phenoxypropan-2-ol	3.00	J		10.9	ug/L
000629-92-5	Nonadecane	2.30	J		16.6	ug/L
000629-94-7	Heneicosane	3.70	J		17.3	ug/L
000112-39-0	Hexadecanoic acid, methyl ester	2.30	J		17.5	ug/L
000057-10-3	n-Hexadecanoic acid	7.30	J		17.7	ug/L
000112-95-8	Eicosane	4.50	J		18.0	ug/L
000630-02-4	Octacosane	7.00	J		18.7	ug/L
057396-98-2	7-Octadecenoic acid, methyl ester	2.90	J		18.7	ug/L
000112-61-8	Methyl stearate	2.10	J		18.8	ug/L
P3645		3	39 of 55			

7

Report of Analysis Client: JACOBS Engineering Group, Inc. Date Collected: 08/15/24 Project: Former Schlumberger Site Princeton NJ Date Received: 08/15/24 Client Sample ID: 916-J-WS-081524 SDG No .: P3645 Lab Sample ID: P3645-02 Matrix: Water % Solid: Analytical Method: SW8270 0 970 Final Vol: 1000 uL Sample Wt/Vol: Units: mL Soil Aliquot Vol: uL Test: SVOCMS Group6 Extraction Type : Decanted : Ν Level : LOW Injection Volume : GPC Factor : 1.0 GPC Cleanup : Ν PH : SW3510C Prep Method : File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BM047281.D 1 08/16/24 10:33 08/20/24 22:14 PB162788 Oualifier MDL LOO / CROL Units Conc. **CAS Number** Parameter

	CAS Nulliber	T ar ameter	Conc.	Quannel MDE	EOQ / CRQE	Units
1						
	000057-11-4	Octadecanoic acid	3.00	J	19.0	ug/L
	035599-77-0	Tridecane, 1-iodo-	3.30	J	19.2	ug/L
	1000406-31-8	Eicosane, 1-iodo-	2.20	J	19.8	ug/L
	1000351-88-8	Nonadecyl pentafluoropropionate	6.90	J	20.8	ug/L

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C

D

LAB CHRONICLE

OrderID: Client: Contact:	P3645 JACOBS Engineering Group, Inc. Mary I. Murphy						nceton NJ	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3645-01	914-J-WS-081524	Water			08/15/24			08/15/24
			SVOCMS Group3	8270-Modifie d		08/16/24	08/20/24	
			SVOCMS Group6	8270E		08/16/24	08/20/24	
P3645-02	916-J-WS-081524	Water			08/15/24			08/15/24
			SVOCMS Group3	8270-Modifie d		08/16/24	08/20/24	
			SVOCMS Group6	8270E		08/16/24	08/20/24	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

8

B C

D

Hit Summary Sheet SW-846

SDG No.:	P3645			Order ID:		P3645		
Client:	JACOBS Engineering Group, I	nc.		Project ID):	Former Schlumbe	erger Site Princetor	n NJ
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID :	914-J-WS-081524							
P3645-01	914-J-WS-081524	Water	Aluminum	69.1		1.98	20.0	ug/L
P3645-01	914-J-WS-081524	Water	Antimony	0.19	J	0.11	2.00	ug/L
P3645-01	914-J-WS-081524	Water	Arsenic	5.41		0.090	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Barium	87.4		0.30	10.0	ug/L
P3645-01	914-J-WS-081524	Water	Calcium	31600		62.5	500	ug/L
P3645-01	914-J-WS-081524	Water	Chromium	1.74	J	0.40	2.00	ug/L
P3645-01	914-J-WS-081524	Water	Cobalt	4.16		0.062	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Copper	1.19	J	0.40	2.00	ug/L
P3645-01	914-J-WS-081524	Water	Iron	6760		9.60	50.0	ug/L
P3645-01	914-J-WS-081524	Water	Lead	1.39		0.11	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Magnesium	6330		26.6	500	ug/L
P3645-01	914-J-WS-081524	Water	Manganese	1510		0.24	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Nickel	2.23		0.18	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Potassium	4780		46.1	500	ug/L
P3645-01	914-J-WS-081524	Water	Tin	0.23	J	0.12	5.00	ug/L
P3645-01	914-J-WS-081524	Water	Sodium	157000		85.8	500	ug/L
P3645-01	914-J-WS-081524	Water	Vanadium	1.40	J	0.072	5.00	ug/L
P3645-01	914-J-WS-081524	Water	Zinc	52.2		0.56	5.00	ug/L
P3645-01	914-J-WS-081524	Water	Strontium	223		0.35	1.00	ug/L
P3645-01	914-J-WS-081524	Water	Titanium	2.01	J	0.26	5.00	ug/L
Client ID :	916-J-WS-081524							
P3645-02	916-J-WS-081524	Water	Aluminum	50.2		1.98	20.0	ug/L
P3645-02	916-J-WS-081524	Water	Antimony	0.20	J	0.11	2.00	ug/L
P3645-02	916-J-WS-081524	Water	Arsenic	3.44		0.090	1.00	ug/L
P3645-02	916-J-WS-081524	Water	Barium	67.5		0.30	10.0	ug/L
P3645-02	916-J-WS-081524	Water	Calcium	23900		62.5	500	ug/L
P3645-02	916-J-WS-081524	Water	Chromium	1.15	J	0.40	2.00	ug/L
P3645-02	916-J-WS-081524	Water	Cobalt	2.29		0.062	1.00	ug/L
P3645-02	916-J-WS-081524	Water	Copper	1.38	J	0.40	2.00	ug/L
P3645-02	916-J-WS-081524	Water	Iron	4310		9.60	50.0	ug/L
P3645-02	916-J-WS-081524	Water	Lead	0.90	J	0.11	1.00	ug/L
P3645-02	916-J-WS-081524	Water	Magnesium	4760		26.6	500	ug/L
P3645-02	916-J-WS-081524	Water	Manganese	797		0.24	1.00	ug/L
P3645-02	916-J-WS-081524	Water	Nickel	1.62		0.18	1.00	ug/L
P3645-02	916-J-WS-081524	Water	Potassium	3560		46.1	500	ug/L
P3645-02	916-J-WS-081524	Water	Tin	0.16	J	0.12	5.00	ug/L
P3645-02	916-J-WS-081524	Water	Sodium	109000		85.8	500	ug/L

P3645

SDG No.:

Order ID:

P3645

8

B

С

Client:	JACOBS Engineering Group, Inc.			Project ID	Project ID:		erger Site Princeton NJ
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL Units
P3645-02	916-J-WS-081524	Water	Vanadium	0.79	J	0.072	5.00 ug/L
P3645-02	916-J-WS-081524	Water	Zinc	64.2		0.56	5.00 ug/L
P3645-02	916-J-WS-081524	Water	Strontium	166		0.35	1.00 ug/L
P3645-02	916-J-WS-081524	Water	Titanium	0.89	J	0.26	5.00 ug/L

Hit Summary Sheet SW-846

8

A B C D

8

B C

D

Report of Analysis

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24	
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24	
Client Sample ID:	914-J-WS-081524	SDG No.:	P3645	
Lab Sample ID:	P3645-01	Matrix:	Water	
Level (low/med):	low	% Solid:	0	

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	69.1		1	1.98	20.0	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-36-0	Antimony	0.19	J	1	0.11	2.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-38-2	Arsenic	5.41	*	1	0.090	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-39-3	Barium	87.4		1	0.30	10.0	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-41-7	Beryllium	0.16	U	1	0.16	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-43-9	Cadmium	0.30	U	1	0.30	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-70-2	Calcium	31600		1	62.5	500	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-47-3	Chromium	1.74	J	1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-48-4	Cobalt	4.16		1	0.062	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-50-8	Copper	1.19	J	1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7439-89-6	Iron	6760		1	9.60	50.0	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7439-92-1	Lead	1.39		1	0.11	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7439-95-4	Magnesium	6330		1	26.6	500	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7439-96-5	Manganese	1510		1	0.24	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7439-97-6	Mercury	0.081	U	1	0.081	0.20	ug/L	08/18/24 13:50	08/19/24 12:13	SW7470A	
7439-98-7	Molybdenum	0.93	UN	1	0.93	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-02-0	Nickel	2.23		1	0.18	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-09-7	Potassium	4780		1	46.1	500	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7782-49-2	Selenium	1.38	U	1	1.38	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-22-4	Silver	0.077	UN	1	0.077	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-23-5	Sodium	157000		1	85.8	500	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-24-6	Strontium	223		1	0.35	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-28-0	Thallium	0.085	U	1	0.085	1.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-31-5	Tin	0.23	J	1	0.12	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-32-6	Titanium	2.01	J	1	0.26	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-62-2	Vanadium	1.40	J	1	0.072	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A
7440-66-6	Zinc	52.2		1	0.56	5.00	ug/L	09/04/24 12:30	09/04/24 16:10	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	Mercury			
U = Not Detec				J = Estimated Value
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank
MDL = Method	od Detection Limit			* = indicates the duplicate analysis is not within control limits.
LOD = Limit	of Detection			E = Indicates the reported value is estimated because of the presence
D = Dilution				of interference.
Q = indicates	LCS control criteria di	d not meet requirements		OR = Over Range
				N =Spiked sample recovery not within control limits
P3645			45 c	of 55

Client:	JACOBS Engineering Group, Inc.	Date Collected:	08/15/24	
Project:	Former Schlumberger Site Princeton NJ	Date Received:	08/15/24	
Client Sample ID:	916-J-WS-081524	SDG No.:	P3645	
Lab Sample ID:	P3645-02	Matrix:	Water	
Level (low/med):	low	% Solid:	0	

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	50.2		1	1.98	20.0	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-36-0	Antimony	0.20	J	1	0.11	2.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-38-2	Arsenic	3.44	*	1	0.090	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-39-3	Barium	67.5		1	0.30	10.0	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-41-7	Beryllium	0.16	U	1	0.16	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-43-9	Cadmium	0.30	U	1	0.30	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-70-2	Calcium	23900		1	62.5	500	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-47-3	Chromium	1.15	J	1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-48-4	Cobalt	2.29		1	0.062	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-50-8	Copper	1.38	J	1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7439-89-6	Iron	4310		1	9.60	50.0	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7439-92-1	Lead	0.90	J	1	0.11	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7439-95-4	Magnesium	4760		1	26.6	500	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7439-96-5	Manganese	797		1	0.24	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7439-97-6	Mercury	0.081	U	1	0.081	0.20	ug/L	08/18/24 13:50	08/19/24 12:15	SW7470A	
7439-98-7	Molybdenum	0.93	UN	1	0.93	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-02-0	Nickel	1.62		1	0.18	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-09-7	Potassium	3560		1	46.1	500	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7782-49-2	Selenium	1.38	U	1	1.38	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-22-4	Silver	0.077	UN	1	0.077	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-23-5	Sodium	109000		1	85.8	500	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-24-6	Strontium	166		1	0.35	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-28-0	Thallium	0.085	U	1	0.085	1.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-31-5	Tin	0.16	J	1	0.12	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-32-6	Titanium	0.89	J	1	0.26	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-62-2	Vanadium	0.79	J	1	0.072	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A
7440-66-6	Zinc	64.2		1	0.56	5.00	ug/L	09/04/24 12:30	09/04/24 16:13	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	Mercury			
MDL = Methonormal MDL = Limit D = Dilution	of Quantitation od Detection Limit	ot meet requirements		J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range
P3645			46 c	N =Spiked sample recovery not within control limits of 55

B C D

A

D

LAB CHRONICLE

OrderID: Client: Contact:	P3645 JACOBS Engineering Group, In Mary I. Murphy	OrderDate: Project: Location:	Project: Former Schlumberger Site Princeton NJ					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3645-01	914-J-WS-081524	Water			08/15/24			08/15/24
			Mercury	7470A		08/18/24	08/19/24	
			Metals Group4	6020B		09/04/24	09/04/24	
P3645-02	916-J-WS-081524	Water			08/15/24			08/15/24
			Mercury	7470A		08/18/24	08/19/24	
			Metals Group4	6020B		09/04/24	09/04/24	

9

В

Client: Project: Client Sample ID: Lab Sample ID:	JACOBS Engineering Group, Former Schlumberger Site Pri 914-J-WS-081524 P3645-01		Date	e Collected: e Received: 3 No.: rix:	08/15/24 08/15/24 P3645 WATER	13:35
Parameter	Conc. Qua. DF MDL	LOQ / CRQL	% S Units	olid: Prep Date	0 Date Ana.	Ana Met.
Dissolved Hexavalent Chromium	0.0030 U 1 0.0030	0.010	mg/L		08/16/24 10:14	4 7196A

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

9

^{* =} indicates the duplicate analysis is not within control limits.

Client:	JACOBS Engineering Group,	Inc.	Da	ate Collected:	08/15/24	14:25
Project:	Former Schlumberger Site Pri	Former Schlumberger Site Princeton NJ			08/15/24	
Client Sample ID:	916-J-WS-081524		SI	DG No.:	P3645	
Lab Sample ID:	P3645-02		М	latrix:	WATER	
			%	Solid:	0	
Parameter	Conc. Qua. DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Dissolved Hexavalent Chromium	0.0030 U 1 0.0030	0.010	mg/L		08/16/24 10:15	5 7196A

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

9

^{* =} indicates the duplicate analysis is not within control limits.

С

LAB CHRONICLE

OrderID: Client: Contact:	P3645 JACOBS Engineering Group, I Mary I. Murphy	OrderDate: Project: Location:	8/15/2024 9:40:00 PM Former Schlumberger Site Princeton NJ G21,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3645-01	914-J-WS-081524	WATER			08/15/24 13:35			08/15/24
			Hexavalent Chromium	7196A			08/16/24 10:14	
P3645-02	916-J-WS-081524	WATER			08/15/24 14:25			08/15/24
			Hexavalent Chromium	7196A			08/16/24 10:15	

<u>SHIPPING</u> DOCUMENTS

10

P3645

CHE CHAIN OF	284	284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net										0	CHEMTECH PROJECT NO. P3645 QUOTE NO. COC Number 2041326						
	CLIENT INFORMATION		CLIENT PROJECT INFORMATION											CLIENT BILLING INFORMATION					
COMPANY:	Jacobs All ME Kunble Ave Suife # 100		PROJECT NAME: STL PTC BILL TO: Man									lary							
the second se	stand STATE: N.J ZIP: 071		PROJECT NO.: D3774922 LOCATION: Princeten Junchin Address:																
	1 . 1		PROJECT MANAGER: MARY Murphy CITY										STATE: ZIP:						
	John Ynfante		e-mail: Mary, Murphy@Jacobs.com ATTENTION:										PHONE:						
	A HIGH FAX:	PHON			36-058	A CONTRACTOR OF CONTRACTOR OFO	AX:							ANALYSIS					
FAX (RUSH) HARDCOPY (D. EDD: *TO BE APPRO STANDARD HA	NYS* □ Lev NYS* ¥ Lev +	DATA DELIVERABLE INFORMATION Image: Level 1 (Results Only) Image: Level 4 (QC + Full Raw Data) Image: Level 2 (Results + QC) Image: NJ Reduced Image: Level 4 (QC + Full Raw Data) Image: Level 2 (Results + QC) Image: NJ Reduced Image: Level 4 (QC + Full Raw Data) Image: Level 3 (Results + QC) Image: NJS ASP A Image: NJS ASP B How Data) Image: Haw Data) Image: NJS ASP A Image: NJS ASP B How Data) Image: Haw Data) Image: NJS ASP A Image: NJS ASP B How Data Image: Haw Data) Image: NJS ASP A Image: NJS ASP B How Data Image: Haw Data) Image: NJS ASP A Image: NJS ASP A Image: NJS ASP B How Data Image: Haw Data) Image: NJS ASP A Image: NJS ASP																	
CHEMTECH SAMPLE ID	PROJECT SAMPLE IDENTIFICATION	SAMPLI MATRI)	TY	PLE PE 88485		MPLE ECTION TIME	# OF BOTTLES	A/E	2	5∕ € 3	PRE 4	E SERVA	6	7	8	9	and the second s	COMMENTS Cify Preservatives D-NaOH E-ICE F-OTHER	
1.	914-5-WS-081524	WS		X	8-15-21	1335	8	Z	AF	1	1	4							
2.	916-J-WS-081524	WS		7		1425	8	2	NO	-	1	4				1			
З.	TB-02-081524	DI		X	8-15-24		1	Ĩ								1			
4.				-		10.00		1											
5.								1											
6.								-									+		
7.								<u> </u>											
8.																			
9.								-									<u> </u>		
10.			+	_										<u> </u>			1		
	SAMPLE CUSTODY MUST BE	DOCUMENTE	D BEI	OW	FACH TI		LESC	HANGE	POSS				COUR		LUVED		1		
RELINQUISHED BY 1. March By RELINQUISHED BY 2. RELINGUISHED BY	SAMPLER: DATE/TIME: 1710 REFERENCE 8-15-1 1 1 1<	BY: BY: BY: BY: BY: BY: BY: BY: BY: BY:		716	Conditio	ons of bottles ts: Sec	or copies atta	rs at receir chu d	table table	OMPLIANT	requi requi	N COMPLIA	nt o nalyh anoly	COOLER TI	_	5		°C	
ELD	D 0-15-24 3.				Page														

53 of 55

WHITE - CHEMTECH COPY FOR RETURN TO CLIENT

P3645

YELLOW - CHEMTECH COPY PINK - SAMPLER COPY

Picked Up

Field Sampling

U YES U NO

10 10.1

10 10.2

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (L-A-B)	L2219
Maine	2024021
Maryland	296
New Hampshire	255423
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: P3645 JACO05			JACO05		C	Order Date :	8/15/2024 9:40:00 PM		Project Mgr :			
Client Name : Client Contact : Invoice Name : Invoice Contact :		JACOBS Eng	gineering Grou	-			Former Schlumberger Site I		Report Type : L	evel 4		
		Mary I. Murp	ohy				8/15/2024 6:20:00 PM		EDD Type : C	H2MHILL		
		JACOBS Eng	gineering Grou					Ha	ard Copy Date :			
		Mary I. Murphy							Date Signoff :			
LAB ID	CLIEN	T ID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
P3645-01	ç	914-J-WS-08	1524	Water	08/15/2024	13:35						
							VOCMS Group6		8260-Low	10 Bus. Days		
P3645-02	g	916-J-WS-08	1524	Water	08/15/2024	14:25						
							VOCMS Group6		8260-Low	10 Bus. Days		
P3645-03		TB-02-0815	524	Water	08/15/2024	15:30						
							VOCMS Group6		8260-Low	10 Bus. Days		

Relinguished By : Date / Time : 7950

Received By : 8-10-29 09:00 Date / Time :

Storage Area : VOA Refridgerator Room