

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS SEMI-VOLATILE ORGANICS

PROJECT NAME: FORMER SCHLUMBERGER SITE PRINCETON NJ

JACOBS ENGINEERING GROUP, INC.

412 Mt. Kemble Ave

Downtown Building

Morristown, NJ - 07960

Phone No: 9732670555

ORDER ID: P3657

ATTENTION: Mary I. Murphy

Table Of Contents for P3657

I) S	Signature Page	3
2) C	Case Narrative	5
	2.1) VOCMS Group6- Case Narrative	5
	2.2) SVOCMS Group3- Case Narrative	7
	2.3) SVOCMS Group6- Case Narrative	9
	2.4) Metals-MS- Case Narrative	11
	2.5) Genchem- Case Narrative	13
3) G	Qualifier Page	14
1) G	QA Checklist	16
5) V	VOCMS Group6 Data	17
S) S	SVOCMS Group3 Data	24
7) S	SVOCMS Group6 Data	29
3) N	Metals-MS Data	34
9) (Genchem Data	38
(0)	Shipping Document	41
	10.1) CHAIN OF CUSTODY	42
	10.2) Lab Certificate	47
	10.3) Internal COC	48

P3657 **2 of 48**

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labora	atory Name :	Alliance Technical Group LLC	Client :	JACOBS Engin	eering	Group	p, Inc.		
Projec	ct Location:	Princeton Junction, NJ	Project Number :	D3779922					
Labora	atory Sample ID	0(s): <u>P3657</u>	Sampling Date(s):	8/16/2024					
List DI	KQP Methods L	Jsed (e.g., 8260,8270, et Cetra) 6	6020B,7196A,7470A,8260-	Low,8270-Modif	fied,82	270E			
1	specified QA/C explain any cri	rtical method referenced in this labo QC performance criteria followed, in teria falling outside of acceptable g f Known Quality performance stand	cluding the requirement to uidelines, as specified in the		V	Yes		No	
1A	Were the meth	nod specified handling, preservation	n, and holding time requiren	nents met?	V	Yes		No	
1B		Was the EPH method conducted wi f respective DKQ methods)	ithout significant modification	ons (see		Yes		No	✓ N/A
2		les received by the laboratory in a che associated chain-of-custody doc		at	V	Yes		No	
3	Were samples	received at an appropriate tempera	ature (4±2° C)?		Ø	Yes		No	□ N/A
4	Were all QA/Q standards ach	C performance criteria specified in nieved?	the NJDEP DKQP			Yes	$\overline{\checkmark}$	No	
5		ng limits specified or referenced on I to the laboratory prior to sample re			V	Yes		No	
	b)Were these	reporting limits met?			V	Yes		No	□ N/A
6	results reporte	rtical method referenced in this labored for all constituents identified in the DKQP documents and/or site-sp	ne method-specific analyte		V	Yes		No	
7	Are project-spe	ecific matrix spikes and/or laborator	y duplicates included in thi	s data set?		Yes	V	No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

P3657 3 of 48

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Cover Page

P3657 Order ID:

Project ID: Former Schlumberger Site Princeton NJ

Client: JACOBS Engineering Group, Inc.

Lab Sample Number

Client Sample Number

P3657-01 917-J-WS-081624 P3657-02 TB-01-081624

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:

By Nimisha Pandya QA/QC Supervisor at 9:11 am, Sep 06, 2024

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

P3657 4 of 48

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger Site Princeton NJ

Project # N/A

Chemtech Project # P3657 Test Name: VOCMS Group6

A. Number of Samples and Date of Receipt:

2 Water samples were received on 08/16/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for VOCMS Group6.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column RXI-624SIL MS 30m 0.25mm 1.4 um. Cat#13868.The analysis of VOCMS Group6 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

P3657 **5 of 48**

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature N. N. Pandya

APPROVED

By Nimisha Pandya QA/QC Supervisor at 9:11 am, Sep 06, 2024

P3657 6 of 48

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger Site Princeton NJ

Project # N/A

Chemtech Project # P3657 Test Name: SVOCMS Group3

A. Number of Samples and Date of Receipt:

2 Water samples were received on 08/16/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for SVOCMS Group3.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_N using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOCMS Group3 was based on method 8270-Modified and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

P3657 **7 of 48**

For sample # 917-J-WS-081624 some compounds below Method detection limits, therefore it is not reported as Hit in Form-1.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature__

N. N. Pandya

APPROVED

By Nimisha Pandya QA/QC Supervisor at 9:12 am, Sep 06, 2024

P3657 **8 of 48**

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger Site Princeton NJ

Project # N/A

Chemtech Project # P3657 Test Name: SVOCMS Group6

A. Number of Samples and Date of Receipt:

2 Water samples were received on 08/16/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for SVOCMS Group6.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOCMS Group6 was based on method 8270E and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for 917-J-WS-081624 [2,4 and6-Tribromophenol - 119%]. these compound did not meet the NJDKQP criteria but met the in-house criteria, Therefor no corrective action was required.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD for {PB162822BSD} with File ID: BP021569.D met criteria except for Benzaldehyde[24%], Due to result difference between BS and BSD, therefor no corrective action was required.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

P3657 9 of 48

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

The Continuous Calibration File ID BP021566.D met the requirements except for Pentachlorophenol, Failed high side and a sample does not have hit for this compound, therefor no corrective action was required.

The Continuous Calibration File ID BP021575.D met the requirements except for Pentachlorophenol . Failed high side and samples does not have hit for this compound, Therefor no corrective action was required.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature___ N. N. Pandya

APPROVED

By Nimisha Pandya QA/QC Supervisor at 9:12 am, Sep 06, 2024

P3657 **10 of 48**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger Site Princeton NJ

Project # N/A

Chemtech Project # P3657

Test Name: Metals Group4, Mercury

A. Number of Samples and Date of Receipt:

2 Water samples were received on 08/16/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for Metals Group4, Mercury.

C. Analytical Techniques:

The analysis of Metals Group4 was based on method 6020B, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (918-J-WS-081324-FDDUP) analysis met criteria for all samples except for Arsenic due to sample matrix interference.

The Matrix Spike (1027MS) analysis met criteria for all samples except for Mercury due to sample matrix interference. The Matrix Spike (918-J-WS-081324-FDMS) analysis met criteria for all samples except for Molybdenum and Silver due to Chemical Interference during Digestion Process.

The Matrix Spike Duplicate (1027MSD) analysis met criteria for all samples except for Mercury due to sample matrix interference. The Matrix Spike Duplicate (918-J-WS-081324-FDMSD) analysis met criteria for all samples except for Molybdenum and Silver due to Chemical Interference during Digestion Process.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution (918-J-WS-081324-FDL) met criteria for all samples except for Aluminum, Iron, and Manganese due to sample matrix interference.

E. Additional Comments:

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

P3657 11 of 48

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature N. N. Pandya

APPROVED

By Nimisha Pandya QA/QC Supervisor at 9:12 am, Sep 06, 2024

P3657 **12 of 48**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger Site Princeton NJ

Project # N/A

Chemtech Project # P3657

Test Name: Hexavalent Chromium

A. Number of Samples and Date of Receipt:

2 Water samples were received on 08/16/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Hexavalent Chromium, Mercury, Metals Group4, SVOCMS Group3, SVOCMS Group6 and VOCMS Group6. This data package contains results for Hexavalent Chromium.

C. Analytical Techniques:

The analysis of Hexavalent Chromium was based on method 7196A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____N. N. Pandya

APPROVED

By Nimisha Pandya QA/QC Supervisor at 9:13 am, Sep 06, 2024

P3657 13 of 48

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

- J Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates the analyte was analyzed for, but not detected.
- ND Indicates the analyte was analyzed for, but not detected
- E Indicates the reported value is estimated because of the presence of interference
- M Indicates Duplicate injection precision not met.
- N Indicates the spiked sample recovery is not within control limits.
- S Indicates the reported value was determined by the Method of Standard Addition (MSA).
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for the MSA is less than 0.995.
- D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- M Method qualifiers
 - **"P"** for ICP instrument
 - "PM" for ICP when Microwave Digestion is used
 - "CV" for Manual Cold Vapor AA
 - "AV" for automated Cold Vapor AA
 - "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi –Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - **"T"** for Titrimetric
 - "NR" for analyte not required to be analyzed
- OR Indicates the analyte's concentration exceeds the calibrated range of the
 - instrument for that specific analysis.
- Q Indicates the LCS did not meet the control limits requirements
- H Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. " 10U ". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

iance

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: P3657

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u>√</u> <u>√</u> <u>√</u>
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>'</u> <u>'</u> <u>'</u> <u>'</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	\frac{}{} \frac{}{}
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

1st Level QA Review Signature:

SOHIL JODHANI

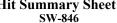
APPROVED

2nd Level QA Review Signature:

By Nimisha Pandya QA/QC Supervisor at 9:13 am, Sep 06, 2024

Date: 09/05/2024

P3657 **16 of 4**


284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: P3657

Client: JACOBS Engineering Group, Inc.

Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID:	917-J-WS-081624						
P3657-01	917-J-WS-081624	Water	Acetone	7.30	1.40	5.00	ug/L
			Total Voc:	7.30			
			Total Concentration:	7.30			

P3657 17 of 48

Λ

D

SAMPLE DATA

P3657 **18 of 48**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

SDG No.:

P3657

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Lab Sample ID: P3657-01 Matrix: Water

917-J-WS-081624

Analytical Method: SW8260 % Solid: 0

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group6

GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Method:

Client Sample ID:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN083379.D 1 08/19/24 17:53 VN081924

1111111111						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.21	U	0.21	1.00	ug/L
74-87-3	Chloromethane	0.35	U	0.35	1.00	ug/L
75-01-4	Vinyl Chloride	0.34	U	0.34	1.00	ug/L
74-83-9	Bromomethane	1.40	U	1.40	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.25	U	0.25	1.00	ug/L
67-64-1	Acetone	7.30		1.40	5.00	ug/L
75-15-0	Carbon Disulfide	0.32	U	0.32	1.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.16	U	0.16	1.00	ug/L
75-09-2	Methylene Chloride	0.32	U	0.32	1.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
110-82-7	Cyclohexane	1.60	U	1.60	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	5.00	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
67-66-3	Chloroform	0.26	U	0.26	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.19	U	0.19	1.00	ug/L
108-87-2	Methylcyclohexane	0.19	U	0.19	1.00	ug/L
71-43-2	Benzene	0.16	U	0.16	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	1.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	1.00	ug/L
75-27-4	Bromodichloromethane	0.24	U	0.24	1.00	ug/L
108-88-3	Toluene	0.18	U	0.18	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
124-48-1	Dibromochloromethane	0.18	U	0.18	1.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	1.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	1.00	ug/L
100-41-4	Ethyl Benzene	0.16	U	0.16	1.00	ug/L
179601-23-1	m/p-Xylenes	0.31	U	0.31	2.00	ug/L
1330-20-7	Total Xylenes	0.45	U	0.45	3.00	ug/L
95-47-6	o-Xylene	0.14	U	0.14	1.00	ug/L

P3657 19 of 48

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected:

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

Lab Sample ID: P3657-01 Matrix: Water

Analytical Method: SW8260 % Solid: 0

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group6

GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN083379.D 1 08/19/24 17:53 VN081924

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
98-82-8	Isopropylbenzene	0.13	U	0.13	1.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.27	U	0.27	1.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.19	U	0.19	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.3		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	48.9		70 (75) - 130 (124)	98%	SPK: 50
2037-26-5	Toluene-d8	48.9		70 (86) - 130 (113)	98%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.3		70 (77) - 130 (121)	103%	SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	139000	8.224			
540-36-3	1,4-Difluorobenzene	273000	9.106			
3114-55-4	Chlorobenzene-d5	284000	11.865			
3855-82-1	1.4-Dichlorobenzene-d4	127000	13.794			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

P3657 **20 of 48**

TB-01-081624

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

SDG No.:

P3657

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Date Collected: 08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Lab Sample ID: P3657-02 Matrix: Water

Analytical Method: SW8260 % Solid: 0

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group6

GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Method:

Client Sample ID:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN083378.D 1 08/19/24 17:29 VN081924

AS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.21	U	0.21	1.00	ug/L
74-87-3	Chloromethane	0.35	U	0.35	1.00	ug/L
75-01-4	Vinyl Chloride	0.34	U	0.34	1.00	ug/L
74-83-9	Bromomethane	1.40	U	1.40	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.25	U	0.25	1.00	ug/L
67-64-1	Acetone	1.40	U	1.40	5.00	ug/L
75-15-0	Carbon Disulfide	0.32	U	0.32	1.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.16	U	0.16	1.00	ug/L
75-09-2	Methylene Chloride	0.32	U	0.32	1.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
110-82-7	Cyclohexane	1.60	U	1.60	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	5.00	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.25	U	0.25	1.00	ug/L
67-66-3	Chloroform	0.26	U	0.26	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.19	U	0.19	1.00	ug/L
108-87-2	Methylcyclohexane	0.19	U	0.19	1.00	ug/L
71-43-2	Benzene	0.16	U	0.16	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	1.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	1.00	ug/L
75-27-4	Bromodichloromethane	0.24	U	0.24	1.00	ug/L
108-88-3	Toluene	0.18	U	0.18	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
124-48-1	Dibromochloromethane	0.18	U	0.18	1.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	1.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	1.00	ug/L
100-41-4	Ethyl Benzene	0.16	U	0.16	1.00	ug/L
179601-23-1	m/p-Xylenes	0.31	U	0.31	2.00	ug/L
1330-20-7	Total Xylenes	0.45	U	0.45	3.00	ug/L
95-47-6	o-Xylene	0.14	U	0.14	1.00	ug/L

P3657 **21 of 48**

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected:

mL

08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: TB-01-081624

P3657 SDG No.:

Lab Sample ID: P3657-02 Analytical Method: SW8260

Matrix: Water

Sample Wt/Vol: 5 Units: % Solid:

Final Vol:

Soil Aliquot Vol: uL

Test: VOCMS Group6

5000

RXI-624 ID: 0.25 GC Column:

Level: LOW

Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN083378.D 1

08/19/24 17:29 VN081924

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
98-82-8	Isopropylbenzene	0.13	U	0.13	1.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.27	U	0.27	1.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.19	U	0.19	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.1		70 (74) - 130 (125)	106%	SPK: 50
1868-53-7	Dibromofluoromethane	48.6		70 (75) - 130 (124)	97%	SPK: 50
2037-26-5	Toluene-d8	46.7		70 (86) - 130 (113)	93%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.7		70 (77) - 130 (121)	99%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	134000	8.224			
540-36-3	1,4-Difluorobenzene	268000	9.106			
3114-55-4	Chlorobenzene-d5	272000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	120000	13.794			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

P3657 22 of 48

LAB CHRONICLE

OrderID: P3657

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 8/16/2024 2:45:00 PM

Project: Former Schlumberger Site Princeton NJ

Location: G11,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3657-01	917-J-WS-081624	Water			08/16/24			08/16/24
			VOCMS Group6	8260-Low			08/19/24	
P3657-02	TB-01-081624	Water			08/16/24			08/16/24
			VOCMS Group6	8260-Low			08/19/24	

P3657 **23 of 48**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: P3657

Client: JACOBS Engineering Group, Inc.

Sample ID	Client ID		Parameter	Concentration	C	MDL	RDL	Units
Client ID:	917-J-WS-081624							
P3657-01	917-J-WS-081624	WATER	Fluorene	0.070	J	0.02	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Phenanthrene	0.050	J	0.02	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Fluoranthene	0.090	J	0.02	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Pyrene	0.060	J	0.02	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Benzo(a)anthracene	0.050	J	0.02	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Chrysene	0.080	J	0.03	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Benzo(b)fluoranthene	0.070	J	0.03	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Benzo(k)fluoranthene	0.050	J	0.04	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Indeno(1,2,3-cd)pyrene	0.050	J	0.04	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Dibenzo(a,h)anthracene	0.040	J	0.04	0.1	ug/L
P3657-01	917-J-WS-081624	WATER	Benzo(g,h,i)perylene	0.050	J	0.04	0.1	ug/L
			Total Svoc :		0.	66		

Total Svoc: 0.66
Total Concentration: 0.66

P3657 **24 of 48**

6

Α

C

SAMPLE DATA

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24 Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

Lab Sample ID: P3657-01 Matrix: Water Analytical Method: % Solid: 0 SW8270SIM

Sample Wt/Vol: 960 Units: mLFinal Vol: 1000 uL Test: SVOCMS Group3

Extraction Type: Decanted: N Level: LOW

uL

GPC Factor: 1.0 GPC Cleanup: PH: Injection Volume: Ν

Prep Method: SW3510C

Soil Aliquot Vol:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BN033501 D 08/19/24 09:50 08/20/24 12:11 PB162821

91-20-3 Naphthalene 91-57-6 2-Methylnaphthalene 208-96-8 Acenaphthylene 83-32-9 Acenaphthene	0.030 0.030 0.020 0.020 0.070 0.050 0.030 0.090 0.060	Qualifier U U U U J J	MDL 0.030 0.030 0.020 0.020 0.020 0.020	0.10 0.10 0.10 0.10 0.10 0.10	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L
91-57-6 2-Methylnaphthalene 208-96-8 Acenaphthylene 83-32-9 Acenaphthene	0.030 0.020 0.020 0.070 0.050 0.030 0.090	U U J J U	0.030 0.020 0.020 0.020 0.020	0.10 0.10 0.10 0.10 0.10	ug/L ug/L ug/L ug/L
91-57-6 2-Methylnaphthalene 208-96-8 Acenaphthylene 83-32-9 Acenaphthene	0.030 0.020 0.020 0.070 0.050 0.030 0.090	U U J J U	0.030 0.020 0.020 0.020 0.020	0.10 0.10 0.10 0.10 0.10	ug/L ug/L ug/L ug/L
208-96-8 Acenaphthylene 83-32-9 Acenaphthene	0.020 0.020 0.070 0.050 0.030 0.090	U U J J	0.020 0.020 0.020 0.020	0.10 0.10 0.10 0.10	ug/L ug/L ug/L
83-32-9 Acenaphthene	0.020 0.070 0.050 0.030 0.090	U J J U	0.020 0.020 0.020	0.10 0.10 0.10	ug/L ug/L
·	0.070 0.050 0.030 0.090	J J U	0.020 0.020	0.10 0.10	ug/L
06.72.7	0.050 0.030 0.090	J U	0.020	0.10	
86-73-7 Fluorene	0.030 0.090	U			11σ/Ι
85-01-8 Phenanthrene	0.090		0.000		u _E /L
120-12-7 Anthracene		T	0.030	0.10	ug/L
206-44-0 Fluoranthene	0.060	J	0.020	0.10	ug/L
129-00-0 Pyrene	0.000	J	0.020	0.10	ug/L
56-55-3 Benzo(a)anthracene	0.050	J	0.020	0.10	ug/L
218-01-9 Chrysene	0.080	J	0.030	0.10	ug/L
205-99-2 Benzo(b)fluoranthene	0.070	J	0.030	0.10	ug/L
207-08-9 Benzo(k)fluoranthene	0.050	J	0.040	0.10	ug/L
50-32-8 Benzo(a)pyrene	0.060	U	0.060	0.10	ug/L
193-39-5 Indeno(1,2,3-cd)pyrene	0.050	J	0.040	0.10	ug/L
53-70-3 Dibenzo(a,h)anthracene	0.040	J	0.040	0.10	ug/L
191-24-2 Benzo(g,h,i)perylene	0.050	J	0.040	0.10	ug/L
123-91-1 1,4-Dioxane	0.070	U	0.070	0.21	ug/L
SURROGATES					an
7297-45-2 2-Methylnaphthalene-d10	0.31		30 (20) - 150 (139)	77%	SPK: 0.4
93951-69-0 Fluoranthene-d10	0.37		30 (30) - 150 (150)	93%	SPK: 0.4
4165-60-0 Nitrobenzene-d5	0.29		30 (27) - 130 (123)	73%	SPK: 0.4
321-60-8 2-Fluorobiphenyl	0.31		30 (34) - 130 (132)	78%	SPK: 0.4
1718-51-0 Terphenyl-d14	0.46		30 (35) - 130 (157)	115%	SPK: 0.4
INTERNAL STANDARDS					
3855-82-1 1,4-Dichlorobenzene-d4	7400	7.552			
Naphthalene-d8	19900	10.314			
15067-26-2 Acenaphthene-d10	10400	14.189			
1517-22-2 Phenanthrene-d10	21000	16.942			
3657		26 of 48			

Test:

SVOCMS Group3

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

Lab Sample ID: P3657-01 Matrix: Water
Analytical Method: SW8270SIM % Solid: 0

Sample Wt/Vol: 960 Units: mL Final Vol: 1000 uL

Extraction Type: Decanted: N Level: LOW

uL

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

Prep Method: SW3510C

Soil Aliquot Vol:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BN033501.D
 1
 08/19/24 09:50
 08/20/24 12:11
 PB162821

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
1719-03-5	Chrysene-d12	13100	21.148			
1520-96-3	Pervlene-d12	12700	23 323			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: P3657

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 8/16/2024 2:45:00 PM

Project: Former Schlumberger Site Princeton NJ

Location: G11,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3657-01	917-J-WS-081624	Water			08/16/24			08/16/24
			SVOCMS Group3	8270-Modifie		08/19/24	08/20/24	
			SVOCMS Group6	d 8270E		08/19/24	08/21/24	

P3657 **28 of 48**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: P3657

Client: JACOBS Engineering Group, Inc.

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

0.000

Total Svoc: 0.00
Total Concentration: 0.00

P3657 **29 of 48**

В

В

C

SAMPLE DATA

P3657 **30 of 48**

Water

Lab Sample ID:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Matrix:

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Date Received: 08/16/24 Former Schlumberger Site Princeton NJ

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

SW8270 % Solid: 0 Analytical Method:

Sample Wt/Vol: 960 Units: mL Final Vol: 1000 uL

SVOCMS Group6 Soil Aliquot Vol: uL Test:

Level: LOW Extraction Type: Decanted: Ν

GPC Cleanup: PH: Injection Volume: GPC Factor: 1.0 Ν

SW3510C Prep Method:

P3657-01

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 1 BP021589.D 08/19/24 09:40 08/21/24 02:44 PB162822

CAS Number	Parameter	Conc.	Qualifier MDL		LOQ / CRQL	Units	
TARGETS							
110-86-1	Pyridine	1.60	U	1.60	5.20	ug/L	
100-52-7	Benzaldehyde	4.20	U	4.20	10.4	ug/L	
95-48-7	2-Methylphenol	1.20	U	1.20	5.20	ug/L	
98-86-2	Acetophenone	1.10	U	1.10	5.20	ug/L	
65794-96-9	3+4-Methylphenols	1.20	U	1.20	10.4	ug/L	
98-95-3	Nitrobenzene	1.30	U	1.30	5.20	ug/L	
120-83-2	2,4-Dichlorophenol	0.92	U	0.92	5.20	ug/L	
91-20-3	Naphthalene	1.10	U	1.10	5.20	ug/L	
87-68-3	Hexachlorobutadiene	1.30	U	1.30	5.20	ug/L	
91-57-6	2-Methylnaphthalene	1.20	U	1.20	5.20	ug/L	
88-06-2	2,4,6-Trichlorophenol	0.93	U	0.93	5.20	ug/L	
95-95-4	2,4,5-Trichlorophenol	1.10	U	1.10	5.20	ug/L	
208-96-8	Acenaphthylene	1.10	U	1.10	5.20	ug/L	
83-32-9	Acenaphthene	0.84	U	0.84	5.20	ug/L	
132-64-9	Dibenzofuran	0.97	U	0.97	5.20	ug/L	
86-73-7	Fluorene	1.00	U	1.00	5.20	ug/L	
118-74-1	Hexachlorobenzene	1.20	U	1.20	5.20	ug/L	
87-86-5	Pentachlorophenol	1.90	U	1.90	10.4	ug/L	
85-01-8	Phenanthrene	0.93	U	0.93	5.20	ug/L	
86-74-8	Carbazole	1.20	U	1.20	5.20	ug/L	
84-74-2	Di-n-butylphthalate	1.50	U	1.50	5.20	ug/L	
206-44-0	Fluoranthene	1.30	U	1.30	5.20	ug/L	
129-00-0	Pyrene	1.10	U	1.10	5.20	ug/L	
56-55-3	Benzo(a)anthracene	0.98	U	0.98	5.20	ug/L	
218-01-9	Chrysene	0.90	U	0.90	5.20	ug/L	
117-81-7	Bis(2-ethylhexyl)phthalate	2.00	U	2.00	5.20	ug/L	
205-99-2	Benzo(b)fluoranthene	1.20	U	1.20	5.20	ug/L	
207-08-9	Benzo(k)fluoranthene	1.20	U	1.20	5.20	ug/L	
50-32-8	Benzo(a)pyrene	1.70	U	1.70	5.20	ug/L	

P3657 31 of 48

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

Lab Sample ID: P3657-01 Matrix: Water Analytical Method: SW8270 % Solid: 0

Final Vol: 1000 uL Sample Wt/Vol: 960 Units: mL

Soil Aliquot Vol: uL Test: SVOCMS Group6

Level: Extraction Type: Decanted: Ν LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

SW3510C Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BP021589.D 1 08/19/24 09:40 08/21/24 02:44 PB162822

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
193-39-5	Indeno(1,2,3-cd)pyrene	1.10	U	1.10	5.20	ug/L
53-70-3	Dibenzo(a,h)anthracene	1.20	U	1.20	5.20	ug/L
191-24-2	Benzo(g,h,i)perylene	1.20	U	1.20	5.20	ug/L
123-91-1	1,4-Dioxane	1.30	U	1.30	5.20	ug/L
90-12-0	1-Methylnaphthalene	0.90	U	0.90	5.20	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	52.1		15 (10) - 110 (139)	35%	SPK: 150
13127-88-3	Phenol-d6	32.9		15 (10) - 110 (134)	22%	SPK: 150
4165-60-0	Nitrobenzene-d5	82.0		30 (49) - 130 (133)	82%	SPK: 100
321-60-8	2-Fluorobiphenyl	76.3		30 (52) - 130 (132)	76%	SPK: 100
118-79-6	2,4,6-Tribromophenol	179	*	15 (44) - 110 (137)	119%	SPK: 150
1718-51-0	Terphenyl-d14	96.0		30 (48) - 130 (125)	96%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	353000	7.805			
1146-65-2	Naphthalene-d8	1460000	10.599			
15067-26-2	Acenaphthene-d10	957000	14.457			
1517-22-2	Phenanthrene-d10	2100000	17.269			
1719-03-5	Chrysene-d12	1960000	21.727			
1520-96-3	Perylene-d12	2260000	25.168			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: P3657

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 8/16/2024 2:45:00 PM

Project: Former Schlumberger Site Princeton NJ

Location: G11,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3657-01	917-J-WS-081624	Water			08/16/24			08/16/24
			SVOCMS Group6	8270E		08/19/24	08/21/24	

P3657 **33 of 48**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet SW-846

Order ID: SDG No.: P3657 P3657

Client:	Client: JACOBS Engineering Group, Inc.) :	Former Schlumberger Site Princeton NJ			
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units	
Client ID:	917-J-WS-081624								
P3657-01	917-J-WS-081624	Water	Aluminum	92.1		1.98	20.0	ug/L	
P3657-01	917-J-WS-081624	Water	Antimony	0.23	J	0.11	2.00	ug/L	
P3657-01	917-J-WS-081624	Water	Arsenic	1.85		0.090	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Barium	58.0		0.30	10.0	ug/L	
P3657-01	917-J-WS-081624	Water	Calcium	19400		62.5	500	ug/L	
P3657-01	917-J-WS-081624	Water	Chromium	1.48	J	0.40	2.00	ug/L	
P3657-01	917-J-WS-081624	Water	Cobalt	0.60	J	0.062	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Copper	2.68		0.40	2.00	ug/L	
P3657-01	917-J-WS-081624	Water	Iron	3070		9.60	50.0	ug/L	
P3657-01	917-J-WS-081624	Water	Lead	1.67		0.11	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Magnesium	3500		26.6	500	ug/L	
P3657-01	917-J-WS-081624	Water	Manganese	362		0.24	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Nickel	2.83		0.18	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Potassium	2760		46.1	500	ug/L	
P3657-01	917-J-WS-081624	Water	Tin	0.23	J	0.12	5.00	ug/L	
P3657-01	917-J-WS-081624	Water	Sodium	72200		85.8	500	ug/L	
P3657-01	917-J-WS-081624	Water	Vanadium	0.94	J	0.072	5.00	ug/L	
P3657-01	917-J-WS-081624	Water	Zinc	11.7		0.56	5.00	ug/L	
P3657-01	917-J-WS-081624	Water	Strontium	133		0.35	1.00	ug/L	
P3657-01	917-J-WS-081624	Water	Titanium	1.91	J	0.26	5.00	ug/L	
								-	

P3657 34 of 48

8

С

D

SAMPLE DATA

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24 Project: Date Received: 08/16/24 Former Schlumberger Site Princeton NJ Client Sample ID: 917-J-WS-081624 SDG No.: P3657 Lab Sample ID: P3657-01 Matrix: Water Level (low/med): % Solid: 0 low

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	92.1		1	1.98	20.0	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-36-0	Antimony	0.23	J	1	0.11	2.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-38-2	Arsenic	1.85	*	1	0.090	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-39-3	Barium	58.0		1	0.30	10.0	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-41-7	Beryllium	0.16	U	1	0.16	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-43-9	Cadmium	0.30	U	1	0.30	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-70-2	Calcium	19400		1	62.5	500	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-47-3	Chromium	1.48	J	1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-48-4	Cobalt	0.60	J	1	0.062	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-50-8	Copper	2.68		1	0.40	2.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7439-89-6	Iron	3070		1	9.60	50.0	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7439-92-1	Lead	1.67		1	0.11	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7439-95-4	Magnesium	3500		1	26.6	500	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7439-96-5	Manganese	362		1	0.24	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7439-97-6	Mercury	0.081	UN	1	0.081	0.20	ug/L	08/21/24 15:15	08/22/24 15:53	SW7470A	
7439-98-7	Molybdenum	0.93	UN	1	0.93	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-02-0	Nickel	2.83		1	0.18	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-09-7	Potassium	2760		1	46.1	500	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7782-49-2	Selenium	1.38	U	1	1.38	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-22-4	Silver	0.077	UN	1	0.077	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-23-5	Sodium	72200		1	85.8	500	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-24-6	Strontium	133		1	0.35	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-28-0	Thallium	0.085	U	1	0.085	1.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-31-5	Tin	0.23	J	1	0.12	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-32-6	Titanium	1.91	J	1	0.26	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-62-2	Vanadium	0.94	J	1	0.072	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A
7440-66-6	Zinc	11.7		1	0.56	5.00	ug/L	09/04/24 12:30	09/04/24 16:16	SW6020	3010A

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Mercury

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

P3657

LAB CHRONICLE

OrderID: P3657

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 8/16/2024 2:45:00 PM

Project: Former Schlumberger Site Princeton NJ

Location: G11,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3657-01	917-J-WS-081624	Water			08/16/24			08/16/24
			Mercury Metals Group4	7470A 6020B		08/21/24 09/04/24	08/22/24 09/04/24	

P3657 **37 of 48**

SAMPLE DATA

9

Α

P3657 **38 of 48**

0

Chromium

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

% Solid:

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 08/16/24 09:30

Project: Former Schlumberger Site Princeton NJ Date Received: 08/16/24

Client Sample ID: 917-J-WS-081624 SDG No.: P3657

Lab Sample ID: P3657-01 Matrix: WATER

Parameter	Conc. Qua.	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Dissolved Hexavalent	0.0030 U	1 0.0030	0.010	mg/L		08/16/24 17:34	1 7196A

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

LAB CHRONICLE

OrderID: P3657

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 8/16/2024 2:45:00 PM

Project: Former Schlumberger Site Princeton NJ

Location: G11,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P3657-01	917-J-WS-081624	WATER			08/16/24			08/16/24
			Hexavalent Chromium	7196A	09:30		08/16/24	
							17:34	

P3657 **40 of 48**

SHIPPING DOCUMENTS

P3657 **41 of 48**

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. PS

F3657

10

coc Number 2041316

						00000	v.GilGii	ILCUI	iiiiGt							4	204	1316	6
	CLIENT INFORMATION			11		CLIENT F	ROJECT II	NFORM	ATION	A STATE	111	rice;			CLIEN	IT BILLI	NG INF	ORMATION	
OMPANY: Ja	REPORT TO BE SENT TO:		PROJE	ECT	NAM	E: STO	PTC					BILL	то: 🏴	lary	Mo	rphy		PO#:	
DDRESS: 412	Mt lamble Are So	ite # 100					122 LOC/	ATION:	Princel	an Ten	bun		RESS:	1		1 1		1 0 % 1	
	Shows STATE: N						lary a					CITY					STAT	TE:	ZIP:
TTENTION: \mathcal{J}_{ϵ}	ohy Yntante						hy@ J			Ų.		ATTE	NTION:				PHO	DNE:	
HONE: (281) 4/	14-1719 FAX:					36-05										ANA	ALYSIS		MEDIO
	A TURNAROUND INFORMATI			11]	DAT	A DELIVE	RABLE IN												
X (RUSH) <u> </u>	Standard TAT PACKAGE:	DAYS* DAYS*					Level 4 (QC NJ Reduce		Raw Data IS EPA C	a) LP 🎿	/	14 4	COLON 5	TUR-	/			//	
DD:OBE APPROVED		DAYS*	★ Leve	l 3 (R	esults	+QC 🗆	NYS ASP A	N D	/S ASP E	154	100	3/6	July	1000 F		/	/	//	
	OPY TURNAROUND TIME IS 10	BUSINESS DAYS	+R				Other		/	10/2	SWH3	4	5	6	/7	/8	/9		
HEMTECH					/IPLE		MPLE	LES	NAME OF TAXABLE PARTY.	100	T	PRE	SERVA	TIVES			18	_	OMMENTS
SAMPLE	PROJECT SAMPLE IDENTIFICA	TION	SAMPLE MATRIX		/PE		ECTION	OF BOTTLES	A/E	E	BE	E						A-HCI	ify Preservatives D-NaOH
			a in	8	GRAB	DATE	TIME	44:	1	2	3	4	5	6	7	8	9	B-HN03 C-H2SO4	E-ICE F-OTHER
	117-J-WS-081624		WS			8-16-24		8	2	4	-	1							
	B-01-08 1624		DI		X	8-16-24	1055	1	1									TBisu	in preserved!
									-			-							
									-										
					_														
									 										
							Α						4						
LOUIS TO THE TOTAL PROPERTY OF THE PARTY OF	SAMPLE CUSTOD		JMENTE	BE	LOW													THE P	8
NQUISHED BY SAM	DATE/TIME: 1245	RECEIVED BY	m			Conditi	ons of bottles	or cools	rs at receip	ible 1	COMPLIAN	T D NO	NCOMPLIA	anali	COOLER TE	S.Ł	2.1	9	°C
NQUISHED BY SAM		RECEIVED BY:				1—						-			1.0				
IOLIIOUER BY 8	10.50	2.																	
IQUISHED BY SAM	/IPLER: DATE/TIME:	RECEIVED BY: 3.				Page	l of		CLIENT		Hand D	elivered	□ 01				_	Shipmen	t Complete
						1 aye		U I		TLUM'	CHEN IC	ran i In		id Samn	lina		1	THE VIEW	D NO

10

REL

REL

REL

Page 1 of 4

Table 3. Surface Water Target Analytes, Methods, Action Levels, and Control Limits Site Sampling Plan for Ecological Evaluation

Princeton Technology Center, West Windsor Township, New Jersey

Method	Analyte	CAS Number	Units	PQL and Ground Water Quality Criterion ³	Surface Water Chronic NJDEP Ecological
ECO-SVOCs					
SW8270E	1,4-Dioxane	123-91-1	µg/L	0.4	;
SW8270E	1-Methylnaphthalene	90-12-0	mg/L	1	
SW8270E	2,4,5-Trichlorophenol	95-95-4	Hg/L	700	
SW8270E	2,4,6-Trichlorophenol	88-06-2	hg/L	20	
SW8270E	2,4-Dinitrotoluene	121-14-2	hg/L	10	
SW8270E	2-Methylnaphthalene	91-57-6	Hg/L	30	
SW8270E	2-Methylphenol	95-48-7	hg/L	i	
SW8270E	3 & 4-Methylphenol (m,p-Cresols)	65794-96-9	Hg/L	1	
SW8270E	Acenaphthene	83-32-9	hg/L	400	
SW8270E	Acenaphthylene	208-96-8	µg/L	ı	
SW8270E	Anthracene	120-12-7	µg/L	2000	
SW8270E	Benzaldehyde	100-52-7	1/8H	1	
SW8270E	Benzo(a)anthracene	56-55-3	hg/L	1	
SW8270E	Benzo(a)pyrene	50-32-8	hg/L	0.1	
SW8270E	Benzo(b)fluoranthene	205-99-2	µg/L	0.5	
SW8270E	Benzo(g,h,i)perylene	191-24-2	µg/L	+	
SW8270E	Benzo(k)fluoranthene	207-08-9	µg/L	0.5	
SW8270E	Bis (2-ethylhexyl) phthalate	117-81-7	µg/L	1	
SW8270E	Carbazole	86-74-8	ng/L	1	
SW8270E	Chrysene	218-01-9	hg/L	5	
SW8270E	Dibenzo(a,h)anthracene	53-70-3	hg/L	0.3	
SW8270E	Dibenzofuran	132-64-9	hg/L	1	
SW8270E	Di-N-Butylphthalate	84-74-2	µg/L	**	
SW8270E	Fluoranthene	206-44-0	µg/L	300	
SW8270E	Fluorene	86-73-7	µg/L	300	
SW8270E	Hexachlorobenzene	118-74-1	hg/L	0.02	
SW8270E	Hexachlorobutadiene	87-68-3	µg/L	1	
SW8270E	Hexachloroethane	67-72-1	hg/l	7	
SW8270E	Indeno(1,2,3-Cd)Pyrene	193-39-5	hg/L	0.2	
SW8270E	Naphthalene	91-20-3	µg/L	300	
SW8270E	Nitrobenzene	98-95-3	µg/L	9	
SW8270E	Pentachlorophenol	87-86-5	µg/L	0.3	
SW8270E	Phenanthrene	85-01-8	µg/L	ı	
SW8270E	Pyrene	129-00-0	µg/L	200	
SW8270E	Pyridine	110-86-1	ng/L	1	
ECO-VOCs					
SW8260D	1,1.1-Trichloroethane	71-55-6	1/611	30	32

Table 3. Surface Water Target Analytes, Methods, Action Levels, and Control Limits

Site Sampling Plan for Ecological Evaluation

Princeton Technology Center, West Windsor Township, New Jersey

SWR2500 1,1,2-Trichloroethane 79-00-5 µg/L 50 SWR2500 1,1-Dichloroethane 75-34-3 µg/L 50 - SWR2500 1,1-Dichloroethane 75-35-4 µg/L 50 - SWR2500 1,2-Dichloroethane 95-50-1 µg/L 600 1 SWR2500 1,2-Dichloroethane 107-06-2 µg/L 2 9 SWR2500 1,2-Dichloroethane 107-06-2 µg/L 50 9 SWR2500 1,4-Dichloroethane 107-06-2 µg/L 75 9 SWR2500 2-Buranone 106-46-7 µg/L 75 9 SWR2500 Acetone 67-64-1 µg/L 70 -4 SWR2500 Grabon letrachloride 75-15-0 µg/L 70 -4 SWR2500 Carbon disvolride 75-15-0 µg/L 70 -4 SWR2500 Carbon disvolride 75-05-3 µg/L 70 -4 SWR2500 Chloroberraene 1	Method	Analyte	CAS	Units	PQL and Ground Water Quality Criterion ^a	Water Chronic NJDEP Ecological Criterion ^b
1,1-Dichloroethane 75-34-3 µg/L 50 1,1-Dichloroethane 75-35-4 µg/L 1 1,2-Dichloroethane 95-50-1 µg/L 1 1,2-Dichloroethane 107-06-2 µg/L 2 1,2-Dichloroethane 106-46-7 µg/L 75 2-Butanone 78-39-3 µg/L 75 2-Butanone 78-39-3 µg/L 1 Bernzene 78-39-3 µg/L 1 Bernzene 78-39-3 µg/L 1 Bromodichloromethane 78-64-1 µg/L 1 Carbon disulfide 75-27-4 µg/L 1 Chlorobenzene 108-90-7 µg/L 1 Chlorobenzene 108-90-7 µg/L 70 Chlorobenzene 75-66-3 µg/L 70 Chlorobenzene 75-68-3 µg/L 70 Chlorobenzene 75-08-3 µg/L 70 Chlorotethane 75-08-3 µg/L 70 Gyclohexane	SW8260D	1,1,2-Trichloroethane	79-00-5	Hg/L	m	200
1,1-Dichloroethene 75-35-4 µg/L 1 1,2-Dichloroethene 95-50-1 µg/L 600 1,2-Dichloroethene 107-06-2 µg/L 600 1,2-Dichloroethene (Total) 540-59-0 µg/L 75 1,4-Dichlorobenzene 106-46-7 µg/L 75 2-Butanone 78-93-3 µg/L 75 Benzene 78-33-3 µg/L 1 Benzene 77-43-2 µg/L 1 Bromodichloromethane 78-37-4 µg/L 1 Carbon disulfide 75-15-0 µg/L 1 Carbon disulfide 75-15-0 µg/L 1 Chlorobenzene 108-90-7 µg/L 1 Chlorobenzene 108-90-7 µg/L 7 Chlorotethane 75-03-3 µg/L 7 Chlorotethane 106-48-3 µg/L 7 Chlorotethane 106-48-3 µg/L 7 Chlorotethane 106-48-3 µg/L 7 Cycl	SW8260D	1,1-Dichloroethane	75-34-3	hg/L	50	1
1,2-Dichlorobenzene 95-50-1 µg/L 600 1,2-Dichloroethane 107-06-2 µg/L 2 1,2-Dichloroethane (104-67-7 µg/L 75 2-Butanone 106-46-7 µg/L 75 2-Butanone 106-46-7 µg/L 75 Acetone 67-64-1 µg/L 1 Benzene 78-93-3 µg/L 1 Benzene 77-64-1 µg/L 1 Bromomethane 77-5-74 µg/L 1 Carbon disulfide 77-15-0 µg/L 70 Carbon disulfide 75-12-0 µg/L 70 Chlorobenzene 108-90-3 µg/L 70 Chlorobenzene 108-80-3 µg/L 70 Chlorobenzene 108-80-3 µg/L 70 Chlorobenzene 108-80-3 µg/L 70 Chlorobenzene 106-65-3 µg/L 70 Chlorobenzene 106-60-3 µg/L 70 Chlorobenzene <td< td=""><td>SW8260D</td><td>1,1-Dichloroethene</td><td>75-35-4</td><td>Hg/L</td><td>1</td><td>65</td></td<>	SW8260D	1,1-Dichloroethene	75-35-4	Hg/L	1	65
1,2-Dichloroethane 107-06-2 µg/L 2 1,2-Dichloroethane (Total) 540-59-0 µg/L 75 2-Butanone 78-93-3 µg/L 75 2-Butanone 78-93-3 µg/L 75 Benzene 78-93-3 µg/L 1 Bromomethane 77-6-41 µg/L 1 Bromomethane 77-13-2 µg/L 1 Carbon tetrachloride 75-15-0 µg/L 70 Carbon tetrachloride 75-12-0 µg/L 70 Chlorobenzene 108-90-7 µg/L 70 Chlorothane 75-03-3 µg/L 70 Chlorothane 75-03-3 µg/L 70 Chlorothane 108-90-7 µg/L 70 Chlorothane 108-80-3 µg/L 70 Cyclohexane 106-41-4 µg/L 700 Ethylbenzene 106-41-4 µg/L 700 Ethylbenzene 106-41-4 µg/L 700 Ethylbenzene	SW8260D	1,2-Dichlorobenzene	95-50-1	hg/L	909	14
1,2-Dichloroethene (Total) 540-59-0 µg/l 75 1,4-Dichlorobenzene 106-46-7 µg/l 75 2-Butanone 78-93-3 µg/l 75 Acetone 67-64-1 µg/l 1000 Benzene 77-43-2 µg/l 1 Bromonichlane 75-27-4 µg/l 1 Bromonicthane 75-27-4 µg/l 1 Carbon disulfide 75-27-4 µg/l 700 Carbon disulfide 75-27-4 µg/l 700 Chloroethane 75-27-5 µg/l 70 Chloroethane 75-00-3 µg/l 70 Chloroethane 75-03-3 µg/l 70 Chloroethane 75-03-3 µg/l 70 Chloroethane 75-71-8 µg/l 70 Chloroethane 110-82-7 µg/l 70 Chloroethane 110-82-7 µg/l 70 Freon TF 76-13-4 µg/l 700 Ingb-ryklene	SW8260D	1,2-Dichloroethane	107-06-2	hg/L	2	910
1,4-Dichlorobenzene 106-46-7 µg/L 75 2-Butanone 78-93-3 µg/L 300 Acetone 67-64-1 µg/L 10 Benzene 77-43-2 µg/L 1 Bromonichane 75-27-4 µg/L 1 Bromonichane 75-27-4 µg/L 1 Carbon disulfide 75-27-4 µg/L 1 Carbon disulfide 75-27-4 µg/L 700 Carbon disulfide 75-27-4 µg/L 700 Chlorobenzene 75-00-3 µg/L - Chloromethane 75-00-3 µg/L - Chloromethane 75-00-3 µg/L - Cyclohexane 110-82-7 µg/L - Dichlorodifiloromethane 75-71-8 µg/L - Ethylbenzene 100-41-4 µg/L 700 Freon TF 76-13-1 µg/L 700 Isopropylbenzene 102-82-2 µg/L 700 Isopropylbenzene	SW8260D	1,2-Dichloroethene (Total)	540-59-0	hg/L		
2-Butanone 78-93-3 μg/L 300 Acetone 67-64-1 μg/L 1 Benzene 71-43-2 μg/L 1 Bromodichloromethane 75-27-4 μg/L 1 Bromodichloromethane 75-27-4 μg/L 10 Carbon tetrachloride 75-23-5 μg/L 700 Chlorobenzene 108-90-7 μg/L 70 Chloromethane 75-00-3 μg/L - Chloromethane 77-00-3 μg/L - Cyclohexane 110-82-7 μg/L - Cyclohexane 110-82-7 μg/L - Cyclohexane 110-82-7 μg/L - Dibromochloromethane 124-48-1 μg/L 700 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 70 Isopropylbenzene 100-41-4 μg/L 70 Isopropylbenzene 108-87-2 μg/L 70 O-Xylene	SW8260D	1,4-Dichlorobenzene	106-46-7	Hg/L	75	9.4
Acetone 67-64-1 µg/L 6000 Benzene 71-43-2 µg/L 1 Bromondthloromethane 75-27-4 µg/L 1 Bromondthloromethane 75-15-0 µg/L 10 Carbon tetrachloride 56-23-5 µg/L 10 Chlorobenzene 108-90-7 µg/L 1 Chlorothane 75-10-3 µg/L 70 Chlorothane 75-00-3 µg/L 70 Chlorothane 75-00-3 µg/L 70 Chlorothane 75-00-3 µg/L 70 Chlorothane 110-82-7 µg/L 70 Cyclohexane 110-82-7 µg/L 70 Ethylbenzene 100-41-4 µg/L 700 Ethylbenzene 179-13-1 µg/L 700 Isopropylbenzene 179-61-3 µg/L 70 Isopropylbenzene 179-61-4 µg/L 70 Methylcrolohexane 179-61-3 µg/L 70 O-Xylene	SW8260D	2-Butanone	78-93-3	hg/L	300	!
Benzene 71-43-2 µg/L 1 Bromodichloromethane 75-27-4 µg/L 1 Bromomethane 77-15-0 µg/L 1 Carbon disulfide 75-15-0 µg/L 1 Carbon tetrachloride 56-23-5 µg/L 7 Chlorobenzene 108-90-7 µg/L - Chloroform 67-66-3 µg/L - Chloromethane 75-00-3 µg/L - Chloromethane 10-82-7 µg/L - Cyclohexane 10-82-7 µg/L - Dibromochloromethane 75-71-8 µg/L 1 Ethylbenzene 100-41-4 µg/L 1 Pichlorodifluoromethane 75-71-8 µg/L 7 Isportopylbenzene 106-41-4 µg/L 7 Isportopylbenzene 106-41-4 µg/L 7 Isportopylbenzene 106-41-4 µg/L 7 Methylene Chloride 108-87-2 µg/L 7 O-Xylen	SW8260D	Acetone	67-64-1	Hg/L	0009	1
Bromodichloromethane 75-27-4 µg/L 1 Bromomethane 74-83-9 µg/L 10 Carbon disulfide 75-15-0 µg/L 700 Carbon tetrachloride 56-23-5 µg/L 70 Chlorobenzene 108-90-7 µg/L - Chloropethane 75-00-3 µg/L - Chloropethane 75-59-2 µg/L - Chloromethane 110-82-7 µg/L - Cyclohexane 110-82-7 µg/L - Dibromochloromethane 124-48-1 µg/L - Dishorodifiluoromethane 124-48-1 µg/L 1000 Ethylbenzene 100-41-4 µg/L 1000 Freon TF 76-13-1 µg/L 1000 Inspropylbenzene 179601-23-1 µg/L - Inspropylbenzene 155-60-2 µg/L 1 Methylene Chloride 75-01-4 µg/L 1 O-Xylene 120-18-4 µg/L 1	SW8260D	Benzene	71-43-2	1/8H	-	114
Bromomethane 74-83-9 µg/L 10 Carbon disulfide 75-15-0 µg/L 700 Carbon tetrachloride 56-23-5 µg/L 10 Chlorobenzene 108-90-7 µg/L 1 Chlorobenzene 108-90-7 µg/L 50 Chlorobenzene 75-00-3 µg/L 70 Chloromethane 76-65-3 µg/L 70 Chloromethane 156-59-2 µg/L 70 Cyclohexane 110-82-7 µg/L 70 Dichlorodifluoromethane 75-71-8 µg/L 700 Ethylbenzene 100-41-4 µg/L 700 Sopropylbenzene 98-82-8 µg/L 70 Isopropylbenzene 108-87-2 µg/L 70 Methylcyclohexane 108-87-2 µg/L 70 Methylchochokane 15-09-2 µg/L 70 O-Xylene 127-18-4 µg/L 70 O-Xylene 127-18-4 µg/L 70 O-Xyl	SW8260D	Bromodichloromethane	75-27-4	hg/L	1	1
Carbon disulfide 75-15-0 μg/L 700 Carbon tetrachloride 56-23-5 μg/L 1 Chlorobenzene 108-90-7 μg/L 50 Chlorotethane 75-00-3 μg/L - Chloromethane 74-87-3 μg/L - Cyclohexane 110-82-7 μg/L - Cyclohexane 110-82-7 μg/L - Dibromochloromethane 124-48-1 μg/L 700 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 700 Isopropylbenzene 98-82-8 μg/L 70 Methylene Chloride 75-03-2 μg/L 70 Methylene Chloride 75-09-2 μg/L 70 O-Xylene 1000 1 75-09-2 μg/L 70 I clarachloroethene 108-87-2 μg/L 70 70 O-Xylene 100-1-6 μg/L 1000 1 I clarachloroethene 100-41-4 </td <td>SW8260D</td> <td>Bromomethane</td> <td>74-83-9</td> <td>Hg/L</td> <td>10</td> <td>1</td>	SW8260D	Bromomethane	74-83-9	Hg/L	10	1
Carbon tetrachloride 56-23-5 μg/L 1 Chlorobenzene 108-90-7 μg/L 50 Chloroethane 75-00-3 μg/L - Chloroethane 76-66-3 μg/L - Chloromethane 156-59-2 μg/L - Cyclohexane 110-82-7 μg/L - Dichlorodifluoromethane 124-48-1 μg/L 1 Dichlorodifluoromethane 75-71-8 μg/L 1000 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 700 Isopropylbenzene 98-82-8 μg/L 700 Methylcyclohexane 108-87-2 μg/L 70 Methylene Chloride 75-09-2 μg/L 70 O-Xylene 127-18-4 μg/L 70 Tetrachloroethene 127-18-4 μg/L 100 Trichloroethene 156-60-5 μg/L 100 Trichloroethene 75-01-4 μg/L 10	SW8260D	Carbon disulfide	75-15-0	Hg/L	700	ŀ
Chlorobenzene 108-90-7 μg/L 50 Chloroethane 75-00-3 μg/L - Chloroform 67-66-3 μg/L - Chloromethane 74-87-3 μg/L - Cyclohexane 110-82-7 μg/L - Dibromochloromethane 124-48-1 μg/L - Dichlorodifluoromethane 75-71-8 μg/L 700 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 700 Isopropylbenzene 98-82-8 μg/L 700 Methylcyclohexane 108-87-2 μg/L 700 Methylcyclohexane 108-87-2 μg/L 70 Methylcyclohexane 108-87-2 μg/L 70 O-Xylene 98-82-8 μg/L 70 O-Xylene 95-47-6 μg/L 1000 Itarachloroethene 127-18-4 μg/L 100 Itarachloroethene 156-60-5 μg/L 100 Ir	SW8260D	Carbon tetrachloride	56-23-5	hg/t	1	240
Chloroethane 75-00-3 μg/L - Chloroform 67-66-3 μg/L 70 Chloromethane 74-87-3 μg/L - cis-1,2-Dichloroethene 156-59-2 μg/L - Cyclohexane 110-82-7 μg/L - Dichlorodifluoromethane 124-48-1 μg/L 1000 Ethylbenzene 75-71-8 μg/L 1000 Freon TF 76-13-1 μg/L 700 Methylcyclohexane 178-01-23-1 μg/L 700 Methylene Chloride 75-09-2 μg/L 70 MTBE 168-87-2 μg/L 70 O-Xylene 15-47-6 μg/L 70 I ctrachloroethene 15-47-6 μg/L 100 I richloroethene 15-60-5 μg/L 100 I richloroethene 15-01-6 μg/L 100 I richloroethene 15-01-6 μg/L 1 I richloroethene 1330-20-7 μg/L 1 I	SW8260D	Chlorobenzene	108-90-7	hg/L	20	47
Chloroform 67-66-3 µg/L 70 Chloromethane 74-87-3 µg/L Cis-1,2-Dichloroethene 156-59-2 µg/L Cyclohexane 110-82-7 µg/L Dibromochloromethane 124-48-1 µg/L 1 Dichlorodifluoromethane 75-71-8 µg/L 1000 Ethylbenzene 100-41-4 µg/L 1000 Isopropylbenzene 98-82-8 µg/L 700 Nethylcholexane 108-87-2 µg/L Methylcholexane 108-87-2 µg/L Methylcholexane 108-87-2 µg/L 70 Arylene 103-40-4 µg/L 70 O-Xylene 15-09-2 µg/L 1 Toluene 127-18-4 µg/L 100 trans-1,2-Dichloroethene 156-60-5 µg/L 100 trans-1,2-Dichloroethene 75-01-4 µg/L 1 Vinyl chloride 75-01-4 µg/L 1 <tr< td=""><td>sw8260D</td><td>Chloroethane</td><td>75-00-3</td><td>µg/L</td><td>ı</td><td>1</td></tr<>	sw8260D	Chloroethane	75-00-3	µg/L	ı	1
Chloromethane 74-87-3 µg/L cis-1,2-Dichloroethene 156-59-2 µg/L 70 Cyclohexane 110-82-7 µg/L Dibromochloromethane 124-48-1 µg/L 1 Dichlorodifluoromethane 75-71-8 µg/L 1000 Ethylbenzene 75-71-8 µg/L 700 Freon TF 76-13-1 µg/L 700 Isopropylbenzene 98-82-8 µg/L 700 Methylcyclohexane 108-87-2 µg/L Methylcyclohexane 108-87-2 µg/L Methylchoethene 15-09-2 µg/L 70 O-Xylene 1634-04-4 µg/L 70 Tetrachloroethene 127-18-4 µg/L 100 trans-1,2-Dichloroethene 156-60-5 µg/L 100 trans-1,2-Dichloroethene 79-01-6 µg/L 1 Vinyl chloride 75-01-4 µg/L 1 Vinyl chloride 75-01-4 µg/L 1	SW8260D	Chloroform	67-66-3	hg/L	70	140
cis-1,2-Dichloroethene 156-59-2 µg/L Cyclohexane 110-82-7 µg/L Dibromochloromethane 124-48-1 µg/L 1 Dichlorodifluoromethane 75-71-8 µg/L 1000 Ethylbenzene 100-41-4 µg/L 700 Freon TF 76-13-1 µg/L 700 Isopropylbenzene 98-82-8 µg/L 700 MRp-Xylene 179601-23-1 µg/L 70 Methylcyclohexane 178-87-2 µg/L 1000 Methylene Chloride 75-09-2 µg/L 70 MTBE 163-47-6 µg/L 70 O-Xylene 95-47-6 µg/L 100 Tetrachloroethene 127-18-4 µg/L 100 trans-1,2-Dichloroethene 79-01-6 µg/L 1 Vinyl chloride 75-01-4 µg/L 1 Vinyl chloride 75-01-4 µg/L 1 Vinyl chloride 75-01-4 µg/L 1	SW8260D	Chloromethane	74-87-3	Hg/L	ı	1
Cyclohexane 110-82-7 μg/L Dibromochloromethane 75-71-8 μg/L 1000 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 700 Isopropylbenzene 98-82-8 μg/L 700 Methylcyclohexane 179601-23-1 μg/L 70 Methylcyclohexane 108-87-2 μg/L Methylchne Chloride 75-09-2 μg/L 70 O-Xylene 95-47-6 μg/L 100 Tetrachloroethene 127-18-4 μg/L 100 Trichloroethene 156-60-5 μg/L 100 Trichloroethene 75-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vylenes, Total 1330-20-7 μg/L 1	SW8260D	cis-1,2-Dichloroethene	156-59-2	µg/L	70	1
Dibromochloromethane 124-48-1 μg/L 1000 Dichlorodifluoromethane 75-71-8 μg/L 1000 Ethylbenzene 100-41-4 μg/L 700 Freon TF 76-13-1 μg/L 700 Isopropylbenzene 98-82-8 μg/L 700 M&P-Xylene 179601-23-1 μg/L 700 Methylcyclohexane 108-87-2 μg/L Methylene Chloride 75-09-2 μg/L MTBE 1634-04-4 μg/L 70 O-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 108-88-3 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Cyclohexane	110-82-7	µg/L	I	1
Dichlorodifluoromethane 75-71-8 µg/L 1000 Ethylbenzene 100-41-4 µg/L 700 Freon TF 76-13-1 µg/L 700 Isopropylbenzene 98-82-8 µg/L 700 Methylcyclohexane 179601-23-1 µg/L 700 Methylene Chloride 75-09-2 µg/L Methylene Chloride 1634-04-4 µg/L 70 O-Xylene 95-47-6 µg/L 1000 Tetrachloroethene 127-18-4 µg/L 100 Trichloroethene 156-60-5 µg/L 100 Trichloroethene 79-01-6 µg/L 1 Vinyl chloride 75-01-4 µg/L 1 Xylenes, Total 1330-20-7 µg/L 1	W8260D	Dibromochloromethane	124-48-1	hg/L	1	ł
Ethylbenzene 100-41-4 μg/L 700 Isopropylbenzene 98-82-8 μg/L 700 m&p-Xylene 179601-23-1 μg/L 700 Methylcyclohexane 108-87-2 μg/L 700 Methylene Chloride 75-09-2 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 100 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	W8260D	Dichlorodifluoromethane	75-71-8	hg/L	1000	1
Freon TF 76-13-1 μg/L 20000 Isopropylbenzene 98-82-8 μg/L 700 m&p-Xylene 179601-23-1 μg/L 1000 Methylcyclohexane 108-87-2 μg/L MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 100 trans-1,2-Dichloroethene 75-60-5 μg/L 1 Trichloroethene 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	W8260D	Ethylbenzene	100-41-4	µg/L	700	14
Isopropylbenzene 98-82-8 μg/L 700 m&p-Xylene 179601-23-1 μg/L Methylcyclohexane 108-87-2 μg/L Methylene Chloride 75-09-2 μg/L MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Trichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	3W8260D	Freon TF	76-13-1	µg/L	20000	1
m&p-Xylene 179601-23-1 μg/L Methylcyclohexane 108-87-2 μg/L Methylcyclohexane 75-09-2 μg/L 3 MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 100 trans-1,2-Dichloroethene 75-60-5 μg/L 1 Trichloroethene 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Isopropylbenzene	98-82-8	µg/L	700	1
Methylcyclohexane 108-87-2 μg/L Methylene Chloride 75-09-2 μg/L 3 MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 100 trans-1,2-Dichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	m&p-Xylene	179601-23-1	µg/L	1000	27
Methylene Chloride 75-09-2 μg/L 3 MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 600 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Methylcyclohexane	108-87-2	hg/L	:	1
MTBE 1634-04-4 μg/L 70 o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 1 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Methylene Chloride	75-09-2	µg/L	33	940
o-Xylene 95-47-6 μg/L 1000 Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 600 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	MTBE	1634-04-4	µg/L	70	51000
Tetrachloroethene 127-18-4 μg/L 1 Toluene 108-88-3 μg/L 600 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	o-Xylene	95-47-6	hg/L	1000	27
Toluene 108-88-3 μg/L 600 trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Tetrachloroethene	127-18-4	µg/L	1	45
trans-1,2-Dichloroethene 156-60-5 μg/L 100 Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	SW8260D	Toluene	108-88-3	µg/L	009	253
Trichloroethene 79-01-6 μg/L 1 Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L 1	3W8260D	trans-1,2-Dichloroethene	156-60-5	µg/L	100	970
Vinyl chloride 75-01-4 μg/L 1 Xylenes, Total 1330-20-7 μg/L	3W8260D	Trichloroethene	79-01-6	µg/L	1	47
Xylenes, Total 1330-20-7	3W8260D	Vinyl chloride	75-01-4	hg/L	1	930
:CO-PAHS	W8260D	Xylenes, Total	1330-20-7	hg/L		
	CO-PAHS					

Table 3. Surface Water Target Analytes, Methods, Action Levels, and Control Limits Site Sampling Plan for Ecological Evaluation

Princeton Technology Center, West Windsor Township, New Jersey

thod SIM 2-Methylnaphtl SIM Acenaphthene SIM Acenaphthylene SIM Anthracene SIM Benzo(a)anthra SIM Benzo(b)fluoro SIM Benzo(b)fluoro SIM Benzo(k)fluoro SIM Benzo(k)fluoro SIM Benzo(k)fluoro SIM Benzo(k)fluoro SIM Benzo(k)fluoro SIM Chrysene SIM Chrysene SIM Phenanthrene SIM Indeno[1,2,3-cc SIM Naphthalene SIM Phenanthrene SIM Phenanthrene SIM Aduminum Antimony Arsenic Beryllium Calcium Calcium Cobalt Copper Iron Lead		er Units 6 µg/L 9 µg/L -7 µg/L 3 µg/L 8 µg/L 6 µg/L -7 µg/L 9 µg/L -2 µg/L	Ground Ground Ground Criterion Criterion L 30 L 400 L 2000	Water Chronic NJDEP
SIM				Chronic
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				NJDEP
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				The same of the last
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				Ecological Criterion ^b
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				330
SIM				38
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				4840
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM				0.035
SIM			L 0.1	0.025
SIM SIM SIM SIM SIM SIM SIM SIM SIM SIM			ا 0.1	0.014
SIM SIM SIM SIM SIM SIM SIM SIM Vis SIM Vis Vita			L 0.2	9.07
SIM SIM SIM SIM SIM SIM SIM SIM 14s				7.64
SIM SIM SIM SIM SIM SIM VIS SIM VIS V7196A			L 0.5	
SIM SIM SIM SIM SIM SIM Vis		-9 µg/L	L 5	
SIM SIM SIM SIM SIM 45 77196A		3 µg/L	L 0.3	1
SIM SIM SIM SIM 14s 77196A		-0 µg/L	L 300	1.9
SIM SIM IIS IIA 77196A		7 µg/L	300	19
SIM SIM Ils 77196A	91-20	-5 µg/L	L 0.2	4.31
SIM #\$ 7196A		3 µg/L	300	13
1196A (7196A)	85-01-8	8 µg/L		3.6
7196A	129-00-0	-0 µg/L	L 200	0.3
/7196A				
	mium 18540-29-9	1/8m 6-6		10
	7439-97-6	7-6 µg/L	٦ 2	0.77
	7429-90-5)-5 µg/L	-	1
	7440-36-0	5-0 µg/L	9 7	80
	7440-38-2	3-2 µg/L	3	150
	7440-39-3	1-3 µg/l.	0009	220
	7440-41-7	7 µg/L	1	3.6
	7440-43-9	1/Bri 6-9	4	1
	7440-70-2	1-2 µg/L		
	7440-47-3	3 µg/L	****	42
	7440-48-4		100	24
	7440-50-8	1-8 µg/L	1300	
	7439-89-6	1/Br 9-1	-	-
	7439-92-1	:-1 µg/L	5	5.4
SW6020B Magnesium	7439-95-4	-4 µg/L	1	ı
SW6020B Manganese	7439-96-5	-5 μg/L	-	1
SW6020B Nickel	7440-02-0	-0 µg/L	100	1
SW6020B Potassium	7440-09-7	-7 µg/L	a de la composição de l	1
SW6020B Selenium	7782-49-2		40	2
EPA 200.7 Silica	7631-86-9	1/8H 6-	ī	1

Table 3. Surface Water Target Analytes, Methods, Action Levels, and Control Limits

Site Sampling Plan for Ecological Evaluation

Princeton Technology Center, West Windsor Township, New Jersey

Method	Analyte	CAS	Units	Higher of PQL and Ground Water Quality Criterion ^a	Fresh Surface Water Chronic NJDEP Ecological Criterion ^b
SW6020B	Silver	7440-22-4	hg/L	40	0.12
SW6020B	Sodium	7440-23-5	µg/t	1	
SW6020B	Thallium	7440-28-0	hg/L	1	10
SW6020B	Vanadium	7440-62-2	hg/L	1	12
SW6020B	Zinc	7440-66-6	hg/L	2000	1
Notes:					

^a New Jersey Department of Environmental Protection (NJDEP) Ground Water Quality Standards - Class IIA by Constituent. May 2021. New Jersey Administration Code 7:9C-1.4: Remediation Standards.

Remediation Standards. NJDEP Ecological Surface Water SSLs. March 2009.

Bold = MDL and RL exceed screening criteria.

- = not available (no standard)

 $\mu g/L = microgram(s)$ per liter

CAS = Chemical Abstracts Service

Freon TF = 1,1,2-Trichloro-1,2,2-trifluoroethane

MDL = method detection limit

MTBE = methyl tert butyl ether

NJDEP = New Jersey Department of Environmental Protection

PAH = polycyclic aromatic hydrocarbon

PQL = Practical Quantitation Level as defined in N.J.A.C. 7:9C-1.4

RL = reporting limit

SIM = selected ion method

SVOC = semivolatile organic compound

VOC = volatile organic compound

^b NJDEP Ground Water Quality Standards - Class IIA by Constituent. May 2021. New Jersey Administration Code 7:9C-1.4:

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (L-A-B)	L2219
Maine	2024021
Maryland	296
New Hampshire	255423
New Jersey	20012
·	
New York	11376
Pennsylvania	68-00548
•	
Soil Permit	525-24-234-08441
Texas	T104704488

QA Control Code: A2070148

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: P3657

JACO05

Order Date: 8/16/2024 2:45:00 PM

Project Mgr:

Client Name: JACOBS Engineering Grou

Project Name: Former Schlumberger Site I

Report Type: Level 4

Client Contact: Mary I. Murphy

Receive DateTime: 8/16/2024 12:00:00 AM

EDD Type: CH2MHILL

Invoice Name: JACOBS Engineering Grou

Purchase Order:

12:45

Hard Copy Date:

Invoice Contact: Mary I. Murphy

Date Signoff:

LAB ID	CLIENT ID	MATRIX SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
P3657-01	717 -J-WS-O81624 917	Water 08/16/2024	09:30						
	727			VOCMS Group6		8260-Low	10 Bus. Days		
P3657-02	TB-01-081624	Water 08/16/2024	10:55						
				VOCMS Group6		8260-Low	10 Bus. Days		

Relinguished By:

Received By:

Storage Area: VOA Refridgerator Room

Page 1 of 1

P3657