

SDG NARRATIVE

USEPA SDG # MYDAE7 CASE # 51772 CONTRACT # 68HERH20D0011 SOW# SFAM01.1 LAB NAME: Alliance Technical Group, LLC LAB CODE: ACE LAB ORDER ID # P4303 MODIFIED ANALYSIS #3225.1, 3226.1

A. Number of Samples and Date of Receipt

20 Soil samples were delivered to the laboratory intact on 10/04/2024.

B. Parameters

Test requested for Metals CLP FULL = Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc.

Test requested for Metals CLP MS FULL = Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc.

C. Cooler Temp

Indicator Bottle: Presence/Absence

Cooler: 24.1°C

D. Detail Documentation (related to Sample Handling Shipping, Analytical Problem, Temp of Cooler etc):

Issue: A "P" or "M" prefix was listed at the beginning of a CLP sample ID.

E. Corrective Action taken for above:

Resolution: To maintain COC integrity, ASB requests no changes to the Sample IDs. The laboratory will note the issue in the SDG Narrative and proceed with the analysis of the samples.

F. Analytical Techniques:

All analyses were based on CLP Methodology by method SFAM01.1.

Inter Element correction factors (IECs) are determined annually and correction factor are applied during ICP-AES analysis.

G. Calculation:

Calculation for ICP-AES Soil Sample:

Conversion of Results from mg/L or ppm to mg/kg (Dry Weight Basis):

Concentration (mg/kg) = $C \times \frac{Vf}{W \times S} \times DF$

Where,

C = Instrument value in ppm (The average of all replicate exposures)
Vf = Final digestion volume (mL)
W = Initial aliquot amount (g) (Sample amount taken in prep)
S = % Solids / 100 (Fraction of Percent Solids)
DF = Dilution Factor

Example Calculation For Sample MYDAE7 For Antimony:

= 0.94274 mg/kg

= 0.94 mg/kg (Reported Result with Signification)

Calculation for ICP-MS Soil Sample:

Conversion of Results from μg /L or ppb to mg/kg :

Concentration (mg/kg) = $C \times \frac{Vf}{W \times S} \times DF / 1000$

Where,

C = Instrument value in ppb (The average of all replicate integrations) Vf = Final digestion volume (mL)

W = Initial aliquot amount (g) (Fraction of Sample amount taken in prep) S = % Solids / 100 (Fraction of Percent Solids) DF = Dilution Factor

Example Calculation For Sample MYDAE7 For Antimony:

If C = 2.14 ppb Vf = 500 ml W = 1.42 g S = 0.993(99.3/100) DF = 1 Concentration (mg/kg) = 2.14 x $\frac{500}{1.42 \times 0.993}$ x 1 / 1000 = 0.7588 mg/kg = 0.76 mg/kg (Reported Result with Signification)

H. QA/QC

Calibrations met requirements. Interference check met requirements. Blank analyses did not indicate any presence of contamination. Laboratory Control sample was within control limits. AES Spike sample did meet requirements except for Antimony, Selenium. Spike sample(MYDAE7SRE) did meet requirements except for Lead. Spike sample(MYDAE7S) did meet requirements except for Beryllium & Zinc. Duplicate sample did meet requirements. Serial Dilution did meet requirements.

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

Target Analyte	Associated Internal Standard				
Antimony	159Tb				
Arsenic	89Y				
Barium	159Tb				
Beryllium	6Li				
Cadmium	159Tb				
Chromium	45Sc				

Internal Standard Association for ICP-MS analysis.

Cobalt	45Sc
Copper	45Sc
Lead	209Bi
Nickel	45Sc
Selenium	89Y
Silver	159Tb
Thallium	209Bi
Vanadium	45Sc
Zinc	45Sc

I certify that the data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Signature_____

Name: Nimisha Pandya

Date

Title: Document Control Officer

	MA: 3225.1	Title: ICP-MS with Modified Preparation Method and Analysis of Soils with Additional Laboratory QC			
Method Source: SFAM01.1	Method: ICP-MS				
Matrix: Soil/Sediment					
Summary of Modification					
with additional modified LCS and Unless specifically modified by th	Matrix Spikes and an is modification, all an	nples by EPA Draft Method 3050C (see below) alyze for the scheduled target analytes by ICP-MS. alyses, Quality Control (QC), and reporting ant EPA agreement remain unchanged and in full			
I. Analyte Modifications		Not applicable 🔀			
II. Calibration and QC Requirem	ents	Not applicable			
Recovery limits do NOT aPrepare a Matrix Spike sp	pply to this LCS and n piked at three times the dditional Matrix Spike	Control Sample (LCS) spiked at the CRQL. Percent to corrective actions are required. he levels specified in the SOW. e sample spiked at five times the levels specified			
 Post-Digestion Spike corr 		e 5x Matrix Spike only.			
Post-Digestion Spike corr Ill. Preparation and Method Mod	ective actions apply t	e 5x Matrix Spike only.			

IV. Special Reporting Requirements

The Laboratory shall:

- Ensure the SDG Narrative is updated as stated in the SOW, including any technical and administrative problems encountered and the resolution or corrective actions taken. These problems may include interference problems encountered during analysis, dilutions, re-analyses and/or re-preparations performed, and problems with the analysis of samples. Also include a discussion of any SOW Modified Analyses, including a copy of the approved modification form with the SDG Narrative.
- Initial analysis data are reported with a dilution factor of 1.0 and a final volume of 500 mL, per the SOW.
- Report the additional LCS as "LCSD" in the raw data and in the EDD with QCType "Laboratory_Control_Sample_Duplicate".
- Report the additional Matrix Spike with an "SRE" suffix in the raw data and EDD.
- Report any Post-Digestion Spike of the additional 5x Matrix Spike with an "ARE" suffix.

Date: 09/11/2024	MA: 3226.1	Title: ICP-AES with Modified Preparation Method and Analysis of Soils with Additional
		Laboratory QC
Method Source: SFAM01.1	Method: ICP-AES	
Matrix: Soil/Sediment		
Summary of Modification		
with additional modified LCS a AES. Unless specifically modified	nd Matrix Spikes and a ed by this modificatior	amples by EPA Draft Method 3050C (see below) analyze for the scheduled target analytes by ICP- n, all analyses, Quality Control (QC), and reporting rent EPA agreement remain unchanged and in full
I. Analyte Modifications		Not applicable 🔀
II. Calibration and QC Require	ements	Not applicable
 for Draft Method 3050 Prepare and analyze and Recovery limits do NO Prepare a Matrix Spike Post-Digestion Spike recovery 	C. n additional Laborator T apply to this LCS and spiked at two times t equirements apply to t	•
Post-Digestion Spike co	· · · ·	
III. Preparation and Method N The Laboratory shall:	lodifications	Not applicable
 Mix sample the Add 10 mL 1:1 minutes. Add 5 mL conc digestion complete 	oroughly and transfer HNO ₃ and 5 mL 1:1 H centrated HNO ₃ and re	t Method 3050C as follows: 1.00 – 1.50 g to a digestion vessel. Cl, heat the sample at 95°C (±3°C) and reflux 10 -15 flux for 30 minutes at 95°C (±3°C), repeat until

• Method Blanks, both LCS, and all instrument QC are to be analyzed undiluted.

IV. Special Reporting Requirements

The Laboratory shall:

- Ensure the SDG Narrative is updated as stated in the SOW, including any technical and administrative problems encountered and the resolution or corrective actions taken. These problems may include interference problems encountered during analysis, dilutions, re-analyses and/or re-preparations performed, and problems with the analysis of samples. Also include a discussion of any SOW Modified Analyses, including a copy of the approved modification form with the SDG Narrative.
- Initial analysis data are reported with a dilution factor of 2.0 and a final volume of 100 mL, per the SOW.
- Report the additional LCS as "LCSD" in the raw data and in the EDD with QCType "Laboratory_Control_Sample_Duplicate".
- Ensure that up-to-date Interelement Correction Factors (IECs) are provided with the data package.

v	Element, Vavelength and Order	Use?	# IECs	IEC	k1	K2	Calc-in-fit
A	s 189.042 {479}	\boxtimes	1	Fe	-0.000064	0.000000	No
TI	190.856 {477}		5	Мо	-0.002450	0.000000	No
Ī				Co	0.002248	0.000000	No
			····	Ti	-0.000500	0.000000	No
				Mn	0.000370	0.000000	No
1				V	-0.012340	0.000000	No
Pt	220.353 {453}	M	6	Мо	-0.001480	0.000000	No
1				Al	-0.000075	0.000000	No
				Cu	0.001400	0.000000	No
1		••••••		Fe	0.000030	0.000000	No
1				Mn	0.000340	0.000000	No
				Ni	0.000630	0.000000	No
Se	196.090 {472}		3	Fe	-0.000308	0.000000	No
	1001000 (112)		1	Mn	0.000470	0.000000	No
			•	Co	-0.000630	0.000000	No
Sh	206.833 {463}	\boxtimes	4	Cr	0.010700	0.000000	No
	200.000 (100)			V	-0.001168	0.000000	No
				Mo	-0.002850	0.000000	No
				Ni	-0.002850		
Δ1	396.152 { 85}		4	å		0.000000	No
	493.409 { 68}		Nono	Мо	0.037230	0.000000	No
	234.861 {144}		None	Ma	0.000000	0.000000	
De	234.001 {144}	X	3	Mo	-0.000320	0.000000	No
				Fe	0.000010	0.000000	No
	214 420 (457)	57		Mn	-0.000047	0.000000	No
**********	214.438 {457}	<u> </u>	1	Fe	0.000040	0.000000	No
*****	373.690 { 90}		None				
****	267.716 {126}	<u>¤</u>	1	Mn	0.000160	0.000000	No
Co	228.616 {448}		2	Ti	0.001840	0.000000	No
				Мо	-0.001230	0.000000	No
Cu	324.754 {104}		4	Co	-0.000796	0.000000	No
ļ				Fe	-0.000100	0.000000	No
				Mn	0.000345	0.000000	No
				Ni	0.000895	0.000000	No
	259.837 {130}		None				
Mn	257.610 {131}		1	Ni	0.000897	0.000000	No
	279.079 {121}		None		[
Ni 2	31.604 {446}		None		I		1
Ag	328.068 {103}	\boxtimes	3	Fe	-0.000100	0.000000	No
				Mn	0.000146	0.000000	No
1				V	-0.000889	0.000000	No
Nat	318.326 { 41}		None			1	
V 29	92.402 {115}		2	Мо	-0.008480	0.000000	No
Î				Cr	-0.002220	0.000000	No
Zn 2	06.200 {464}		None				
	13.856 {158}		1	Ni	0.007280	0.000000	No
·	9.896 { 44 }		None			1	1
	7.495 {490}		2	Ni	0.001640	0.000000	No
1			_	Cu	-0.012530	0.000000	No
B 24	9.678 {135}		3	Co	0.002880	0.000000	No
17				V	-0.002000	0.000000	No
1			<u>i</u>	Fe	-0.002000	0.000000	No
Mo	202.030 {467}		None	16	-0.001300	0.000000	INU
	2.034 {485}		None	Mo	0.000000	0.000000	No
10 10	007 [100]		2	Mo	-0.008000	0.000000	No
1	1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			Mn	0.002700	0.000000	No

	Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
	Si 251.611 {134}	\boxtimes	2	Мо	0.010520	0.000000	No
				Ti	0.005650	0.000000	No
	Sn 189.989 {478}		None		<u> </u>		
	Ti 336.121 {100}		1	Ni	-0.001000	0.000000	No
	Li 670.784 { 50}		None			1	110
	Y 224.306 {450}*		None				
I	Y 360.073 { 94}*		None				÷
Î	Y 371.030 { 91}*		None				
Ī	Y 224.306 {150}*		None				<u> </u>
	In 230.606 {446}*		None				
	Sr 407.771 { 83}		None				[[

~