

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID: P4306

Test: Metals CLP MS FULL

Prepbatch ID: PB164169,

Sequence ID/Qc Batch ID: LB133150,LB133170,LB133179,

Standard ID:

MP81119, MP82127, MP82568, MP82569, MP82570, MP82571, MP82572, MP82573, MP82574, MP82575, MP82576, MP82576, MP82578, MP82579, MP82580, MP82581, MP82583, MP82586, MP82587, MP8257, MP8

Chemical ID:

M5192, M5288, M5289, M5295, M5304, M5390, M5473, M5476, M5498, M5513, M5515, M5519, M5565, M5634, M5657, M5658, M5697, M5698, M5739, M5747, M5768, M5769, M5798, M5799, M5800, M5801, M5802, M5806, M5815, M5816, M5817, M5818, M5819, M5820, M5873, M5874, M5935, M5961, M5962, M5976, M5978, M5981, M5982, M5983, M6021, M6023, M6025, M6028, M6030, M6033, M6037, M6040, M6055, M6088, W2606, W3112,

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	PipetteID	Supervised By			
169	1:1HNO3		06/21/2024			METALS_SCA	<u> </u>	Sarabjit Jaswal			
						LE_2 (M SC-2)	ETTE_1 (ICP	06/21/2024			
FDOM	A) A) A) A) A)										

<u>FROM</u>	1250.00000ml of M5935 -	1250.00000mi of W2606	= Final Quantity: 2500.000	mı

Recipe	NAME	No	D D.4.	Expiration	<u>Prepared</u>	0 1 - 10	Disc. 44 - ID	Supervised By
<u>ID</u> 170	NAME 1:1HCL	NO. MP82127	Prep Date 09/03/2024	<u>Date</u> 02/08/2025	<u>By</u> Janvi Patel	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
								09/03/2024

FROM 1250.00000ml of M6040 + 1250.00000ml of W3112 = Final Quantity: 2500.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Mohan Bera
	ICPMS CALIB BLANK(S0/ICB/CCB)	MP82568	09/28/2024	10/31/2024	Sarabjit Jaswal	None	None	09/30/2024

FROM 25.00000ml of M6040 + 4925.00000ml of W3112 + 50.00000ml of M6037 = Final Quantity: 5000.000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
2902	S8 ICPMS	MP82569	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 1.00000ml of M6033 + 2.50000ml of M5288 + 2.50000ml of M5515 + 5.00000ml of M5498 + 5.00000ml of M5768 + 5.00000ml of M5806 + 79.00000ml of MP82568 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	<u>PipetteID</u>	Supervised By
3947	S7(SFAM,6020,200.8)		09/28/2024		Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	Mohan Bera 09/30/2024

FROM

 $1.00000ml\ of\ M5818+1.00000ml\ of\ M5981+1.00000ml\ of\ M5983+1.90000ml\ of\ M6033+10.00000ml\ of\ M5976+10.00000ml\ of\ M5978+10.00000ml\ of\ M6037+2.00000ml\ of\ M5815+2.00000ml\ of\ M5817+2.50000ml\ of\ M5476+4.00000ml\ of\ M5390+4.00000ml\ of\ M6025+4.90000ml\ of\ M5515+4.90000ml\ of\ M5519+5.00000ml\ of\ M6040+50.00000ml\ of\ M5304+829.10000ml\ of\ W3112+9.00000ml\ of\ M5697+9.00000ml\ of\ M5698+9.00000ml\ of\ M5768+9.90000ml\ of\ M5806=Final\ Quantity:\ 1000.000\ ml$

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3948	S6(SFAM,6020,200.8)	MP82571	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 0.50000ml of M6040 + 1.00000ml of M6037 + 88.50000ml of W3112 + 25.00000ml of MP82570 = Final Quantity: 100.000 ml

 ${\tt 284~Sheffield~Street,~Mountainside,~New~Jersey~07092,~Phone:908~789~8900,}\\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3949	S5(SFAM,6020,200.8)	MP82572	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3954	S4(SFAM,6020,200.8)	MP82573	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 0.50000ml of M6040 + 1.00000ml of M6037 + 88.50000ml of W3112 + 12.50000ml of MP82570 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Mohan Bera
3951	S3(SFAM, 6020,200.8)	MP82574	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	09/30/2024

FROM 0.50000ml of M6040 + 1.00000ml of M6037 + 88.50000ml of W3112 + 10.00000ml of MP82571 = Final Quantity: 100.000 ml

Recipe	NAME	NO	Duan Data	Expiration	<u>Prepared</u>	CastalD	DinettelD	Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3955	S2CONC(SFAM,6020,200.8)	MP82575	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	09/30/2024

FROM

 ${\tt 284~Sheffield~Street,~Mountainside,~New~Jersey~07092,~Phone:908~789~8900,}\\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3956	S2(SFAM,6020,200.8)	MP82576	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3957	S1(SFAM,6020,200.8)	MP82577	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 0.50000ml of M6040 + 1.00000ml of M6037 + 88.50000ml of W3112 + 10.00000ml of MP82576 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	ScaleID	<u>PipetteID</u>	Supervised By Mohan Bera
3958	ICV(SFAM)	MP82578	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	

FROM 2.00000ml of M5295 + 98.00000ml of MP82568 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	ScaleID	<u>PipetteID</u>	Supervised By Mohan Bera
3961	ccv	MP82579	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	

FROM

0.20000ml of M5513 + 0.50000ml of M5799 + 0.50000ml of M5818 + 0.50000ml of M5981 + 0.50000ml of M5983 + 1.00000ml of M5815 + 1.00000ml of M5817 + 1.25000ml of M5473 + 10.00000ml of M6037 + 12.45000ml of M5515 + 12.45000ml of M5519 + 2.00000ml of M5390 + 24.95000ml of M5498 + 24.95000ml of M5769 + 24.95000ml of M5806 + 25.00000ml of M5804 + 4.50000ml of M5697 + 4.50000ml of M5698 + 4.50000ml of M5819 + 4.95000ml of M6033 + 5.00000ml of M5976 + 5.00000ml of M5978 + 5.00000ml of M6040 + 824.35000ml of W3112 = Final Quantity: 1000.000 ml

 ${\tt 284~Sheffield~Street,~Mountainside,~New~Jersey~07092,~Phone:908~789~8900,}\\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

ID NAME	
ID NAME NO. Prep Date By	<u>Y ScaleID</u> <u>PipetteID</u> Mohan Bera
1142 ICSA ICPMS MP82580 09/28/2024 10/31/2024 Sarabjit	
	ETTE_3 (A) 09/30/2024

FROM 10.00000ml of M5873 + 90.00000ml of MP82568 = Final Quantity: 100.0	ე00 m	ıl
--	-------	----

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
1143	ICSAB ICPMS	MP82581	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 10.00000ml of M5873 + 10.00000ml of M5874 + 80.00000ml of MP82568 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3964	CONC.LCSS SPIKE	MP82583	09/28/2024	10/26/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM

0.25000 ml of M5698 + 0.25000 ml of M5798 + 0.25000 ml of M5800 + 0.25000 ml of M5801 + 0.25000 ml of M5961 + 0.25000 ml of M5981 + 0.25000 ml of M5982 + 0.25000 ml of M5983 + 0.25000 ml of M6023 + 0.25000 ml of M6025 + 0.25000 ml of M6028 + 0.25000 ml of M6030 + 0.50000 ml of M5289 + 0.50000 ml of M5658 + 0.50000 ml of M5697 + 0.50000 ml of M5802 + 1.25000 ml of M5799 + 1.25000 ml of M5819 + 1.25000 ml of M5962 + 1.25000 ml of M6021 + 12.50000 ml of M5769 + 12.50000 ml of M5806 + 158.75000 ml of M3112 + 2.50000 ml of M5390 + 2.50000 ml of M5818 + 2.50000 ml of M6040 + 5.00000 ml of M5515 + 5.00000 ml of M6037 + 6.25000 ml of M5816 + 6.25000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3962	MG 10PPM FOR TUNE	MP82585	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

FROM 0.01000ml of M5768 + 9.99000ml of MP82568 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3894	TUNE 200PPB	MP82586	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME.	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
3903	ISS 3PPM	MP82587	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024

5.00000ml of M6037 + 75.00000ml of M5739 + 170.00000ml of MP82568 = Final Quantity: 250.000 ml **FROM**

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe <u>ID</u> 1060	NAME AG 1.0PPM	NO. MP82957	Prep Date 10/28/2024		Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipetteID None	Supervised By Mohan Bera 10/28/2024
FROM	0.01000ml of M6030 + 9.99000ml of	 MP82568 =	Einal Quanti	ty: 10.000 ml				10/28/2024

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	051722	05/17/2025	07/01/2022 / bin	06/17/2022 / jaswal	M5192
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	071122	07/11/2025	09/01/2022 / jaswal	07/21/2022 / jaswal	M5288
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Aluminum (AI) 10,000PPM	070622	07/06/2025	09/02/2022 / jaswal	07/12/2022 / jaswal	M5289
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
EPA	ICV-1 / ICV (ICP/ICPMS) STOCK SOLN	ICV-1014	02/05/2025	08/07/2024 / jaswal	02/20/2020 / bin	M5295
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	6020CAL-1 / Calibration Standard Method 6020	S2-MEB711244	10/20/2026	08/07/2024 / jaswal	04/01/2022 / jaswal	M5304
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	072122	07/21/2025	08/07/2024 / jaswal	09/18/2022 / bin	M5390

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/29/2025	03/16/2023 / jaswal	03/16/2023 / jaswal	M5473
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/09/2025	07/29/2024 / jaswal	03/16/2023 / jaswal	M5476
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml	031523	03/15/2026	08/15/2023 / jaswal	03/17/2023 / bin	M5498
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 125 ml	061522	06/15/2025	03/19/2023 / bin	03/17/2023 / bin	M5513
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	092122	09/21/2025	08/01/2024 / Jaswal	03/17/2023 / bin	M5515
	T		Expiration	Date Opened /	Received Date /	Chemtech
Supplier	ItemCode / ItemName	Lot #	Date	Opened By	Received By	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-SPK-1 / SOIL/WATER SPIKE SOLN 1, 125mL	T2-MEB721963	07/27/2027	05/30/2023 / jaswal	05/26/2023 / jaswal	M5565
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1403 / Hydrogen Peroxide, 30% 1 gal	820803	02/03/2025	04/18/2024 / jaswal	08/03/2022 / Al-Terek	M5634
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-SPK-4 / SOIL/WATER SPIKE SOLN 4, 125mL	T2-MEB721144	07/07/2027	08/23/2023 / jaswal	08/29/2023 / jaswal	M5657
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Supplier Absolute Standards, Inc.	ItemCode / ItemName 58029 / Cu, 1000 PPM, 500 ml	Lot #	-			
Absolute	58029 / Cu, 1000 PPM,		Date	Opened By 04/03/2024 /	Received By 10/27/2023 /	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	6020ISS / 6020ISS, 10 ug/ml, Bi, Ho, In, 6Li, Rh, Sc, TB, Y	T2-MEB709511	09/03/2026	08/07/2024 / jaswal	04/11/2022 / jaswal	M5739
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Lead (Pb) 1000PPM	100923	10/09/2026	05/20/2024 / Jaswal	12/20/2023 / jaswal	M5747
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	01/08/2024 / bin	01/03/2024 / bin	M5768
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	05/24/2024 / Jaswal	01/03/2024 / bin	M5769
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57033 / As, 1000 PPM, 125 ml	111323	11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	120523	12/05/2026	08/07/2024 / jaswal	01/03/2024 / jaswal	M5802
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58111 / Na, 10000 PPM, 500 ml	122223	12/22/2026	08/01/2024 / Jaswal	01/03/2024 / jaswal	M5806
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57115 / P, 10000 PPM, 125 ml	041723	04/17/2026	05/21/2024 / Jaswal	02/09/2024 / jaswal	M5815
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57016 / S, 1000 PPM, 125 ml	122923	12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57116 / S, 10000 PPM, 125 ml	071123	07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57014 / Si, 1000 PPM, 125 ml	122023	12/20/2026	03/06/2024 / jaswal	02/09/2024 / jaswal	M5818
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	111623	11/16/2026	03/20/2024 / jaswal	02/09/2024 / jaswal	M5819
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820
		091123 Lot #	09/11/2026 Expiration Date			M5820 Chemtech Lot #
Standards, Inc.	ml		Expiration Date	jaswal Date Opened /	jaswal	Chemtech
Standards, Inc. Supplier	ItemCode / ItemName PART A / ICSA (ICPMS)	Lot #	Expiration Date	Date Opened / Opened By	paswal Received Date / Received By 07/14/2022 /	Chemtech Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	12/08/2024	06/21/2024 / Al-Terek	06/07/2024 / Al-Terek	M5935
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57028 / Ni, 1000 PPM, 125 ml	041124	04/11/2027	07/02/2024 / Jaswal	06/11/2024 / Jaswal	M5961
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57034 / Se, 1000 PPM, 125 ml	060624	06/06/2027	07/02/2024 / Jaswal	06/14/2024 / Jaswal	M5962
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGMO1-1 / MOLYBDENUM 125mL 1000ug/mL	T2-MO720876	07/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5976
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGTI1-1 / TITANIUM 125mL 1000ug/mL	T2-TI719972	06/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5978
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57092 / U, 1000 PPM, 125 ml	060724	06/07/2027	07/29/2024 / Jaswal	06/11/2024 / Jaswal	M5981

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57038 / Sr, 1000 PPM, 125 ml	031524	03/15/2027	07/01/2024 / Jaswal	06/11/2024 / Jaswal	M5982
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57040 / Zr, 1000 PPM, 125 ml	071423	07/14/2026	07/29/2024 / Jaswal	06/11/2024 / Jaswal	M5983
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57023 / V, 1000 PPM, 125 ml	062424	06/24/2027	09/28/2024 / jaswal	08/05/2024 / Jaswal	M6021
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57081 / TI, 1000 PPM, 125 ml	0624724	06/27/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6023
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Supplier Absolute Standards, Inc.	ItemCode / ItemName 57082 / Pb, 1000 PPM, 125 ml	Lot # 061224	I -	-		
Absolute	57082 / Pb, 1000 PPM,		Date	Opened By 08/05/2024 /	Received By 08/05/2024 /	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57047 / Ag, 1000 PPM, 125 ml	122823	12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / AI, 10000 PPM, 500 ml	011623	01/16/2026	08/07/2024 / Jaswal	01/03/2024 / Jaswal	M6033
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	02/02/2025	08/24/2024 / Janvi	08/01/2024 / Janvi	M6037
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	24D1562005	02/08/2025	08/09/2024 / jaswal	08/01/2024 / Janvi	M6040
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Inorganic Ventures	IV-STOCK-12 / ICP-MS TUNING SOLUTION, 125mL	U2-MEB734294	06/21/2028	08/21/2024 / Jaswal	08/19/2024 / Jaswal	M6055
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	03/25/2029	10/15/2024 / Janvi	09/10/2024 / Janvi	M6088

Fax: 908 789 8922

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R 815/24

Solvent:

24002546

Nitric Acid

Lot #

M6028

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

57048 070124

Lot Number: Description:

Cadmium (Cd)

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB

1000

Recommended Storage:

Expiration Date:

070127 Ambient (20 °C)

Weight shown below was dliuted to (mL):

2000.07

0.100 Flask Uncertainty 5E-05 Balance Uncertainty

2%

40.0 (mL) Nitric Acid

Formulated By:

Alban PROBAN

Aleah O'Brady

070124

Reviewed By:

Pedro L. Rentas

070124

Expanded

Weight (g) Conc. (µg/mL) Uncertainty

Cadmium nitrate tetrahydrate (Cd)

IN024 CDM092021A1

1000

99.999

0.10

36.5

5.4797

5.4804

1000.1

2.0

10022-68-1

0.01 mg/m3

orl-rat 60.2mg/kg

3108

RM#

Number Lot

Conc. (µg/mL)

8

8

Weight (g)

Target

Actual

Actual

Nominal

Purity

Uncertainty Assay Purity (%)

+/- (µg/mL)

CAS#

SDS Information

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50

NIST SRM

m/z-> -z/m m/z-> 1.0E7 2.0E7 5.0E4 1.0E5 2.5E4 5.0M4 [1] Spectrum No.1 010 110 0 220 120 20 [12.514 sec]:58148.D# [Count] [Linear] 230 130 30 240 140 40 N00 150 50 2000 160 60 170 70 180 80 061 Ö 200 100

1 of 2

www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	I	₩ !	묤	Ве	ן ל	炗	As	. 0	ç	2		I		
	10.04	200	A (2)	10.02	0.02	3	4	20.02	3	♦ 0.02				
	2	2 8	3	Ţ.) {	,	င္ပ	2	?	2				
	70.02	2 6	3	<0.02	20.02	3	<u>6</u> .02	8	5	Н				
	J.	}	3	G	2	2	달	Ę	, t	Ų				
	20:02	6 6	3	40.02	20.02	3	88	40.02		40.02	TO SECURITION OF THE PARTY OF T			
	70	2 5	,	4	ing.	4	5	HO	:	H		L	4	
	20.02	20.02	3	∆ 0,2	<0.02	3	A Si	40.02		40.02	The State of the S	I de Me	_1	
	20	MIO	5,	He	Mn	, ,	₹	7	1	E	STATE OF THE PARTY	אפרשוט	5	
(T) = Target analyte	40,02	20.02	5	∆ 0.2	<0.02		≙ 01	<0.02		40.02		vernica	17:22	
jet anal	×	7	,	9	Pd		<u>ک</u>	Ş	:	Z.		Con		
yte	40.2	\$0.02		A) (2)	<0.02	10.00	3	<0.02	40.02	2002		יטא וכף-		
	Sc	Sm	•	2	RЪ	1	<u> </u>	Re	1.1	P		MU		
	40.02	40.02		∆	∆ 0,02	20.02	3	40.02	10.02	000		Jg/mL)		
	Ta	ç		ę	Z	30	>	S.	č	2	Spiletolin		ı	
	Ð.02	40.02	40.04	3	40.2	20.02	3	∆ 0.02	7.03	à				
	Ti	Sn	111	1	7	11	3	Te	10					
	<0.02	40.02	20.07	3	₩	20.02	3	<0.02	20.02	500	Age of the owner that the			
	Zt	Zn		<	¥	~	7	d	*					
	<0.02	<0.02	20.02	3	40.02	20.02		40.02	70.02		MATERIAL SECTION AND ADDRESS OF THE PERSON A			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57048

2 of 2

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

R: 8/5/24

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: 57182

Solvent:

24002546

Nitric Acid

Lot#

2%

Nitric Acid

Formulated By:

Lawence Barry

110923

Revenue

1 40.0

Description: Lot Number: 110923 Lead (Pb)

Recommended Storage: **Expiration Date:** 110926 Ambient (20 °C)

Nominal Concentration (µg/mL): NIST Test Number: **6UTB** 10000

Weight shown below was diluted to (mL): Cot 2000.02 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target

IN029 PBD122016A1 RW# Number Conc. (µg/mL) 10000 99.999 38 Purity (%) 0.10 62.5 **3** 32.0006 Weight (g) 32.0040 Weight (g) Conc. (µg/mL) 10001.1 20.0 10099-74-8 0.05 mg/m3 intryns-rat 93 mg/kg 3128

Actual Actual

Uncertainty Expanded

Reviewed By:

Pedro L. Rentas

110923

+/- (µg/mL) CAS#

OSHA PEL (TWA) SDS information

OSHA PEL (TWA) LD50 TSIN SRM

 Lead(II) nitrate (Pb) 1.0E7 [1] Spectrum No.1 [17.284 sec]:58182.D# [Count] [Linear]

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						ı	I race Me	Metals	Verifica	T S	by ICP-	NS (μg/mL)			1			
	40.02	8	40.02	Dy	40.02	Hf	A).02		4 0.02	Z:	∆ 0,02		P	1	<0.02	- d0.02 Se	- d0.02 Se		
S	A).02	ದಿ	40.2	Ē.	40.02	Но	40.02	Ē	40.02	\$	40.02	_	Re	Re		△ 0.02	<0.02 Si <0.02	<0.02 Si <0.02	
S	40.2	င္ပ	40.02	핕	40.02	P.	40.02	Mg	<0.01	ဝွ	<0.02		짪		40.02	<0.02 Ag .	<0.02 Ag <0.02		40.02 Ag 40.02 TI 40.02
Ba	40.02	ಭ	40.02	ନୁ	40,02	F	A0.02	M	<0.02	골	40,02	_	장		40.02	<0.02 Na	<0.02 Na <0.2	<0.02 Na <0.2 Th	<0.02 Na <0.2 Th <0.02
Be	40.01	ភ	A.02	୍ଲ	₩	귡	40.2	9H	∆0.2	שי	40.02	727	<u>~</u>		40,02	40.02 Sr .	40.02 Sr .	<0.02 Sr <0.02 Tm	<0.02 Sr <0.02 Tm
В	A).02	င	40.02	ද	A0.02	2	40.02	Mo	<0.02	≯	40.02	70	B		40.02	40.02 S	40.02 S 40.02	<0.02 S <0.02 Sn	<0.02 S <0.02 Sn <0.02
Œ	40.02	ξ	40.02	Au	40.02	3	T	Z	<0.02	×	40.2	_	જ	Т	<0.02	<0.02 Ta ·	√0.02 Ta √0.02	40.02 Ta 40.02 Ti	40.02 Ta 40.02 Ti

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Sor I Mill

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M.5192 R: 06/17/2

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Ammonium molybdate (Mo) Compound Nominal Concentration (µg/mL): m/z-> M/z-> Recommended Storage: m/z-> Volume shown below was diluted to (mL): 2.0E6 1.0E6 1.0E5 2.0E5 2000 1000 **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 58142 Number Part **BTU9** 1000 57042 Ambient (20 °C) 051722 051725 Molybdenum (Mo) 022222 Fot 120 220 20 [8.594 sec]:57042.D# [Count] [Linear] 3000.41 0.1000 Factor Dilution 130 230 30 5E-05 300.0 Vol. (mL) 0.058 Initial Flask Uncertainty Balance Uncertainty Pipette (mL) Conc. (µg/mL) Uncertainty 0.084 240 140 40 MKBQ8597V Ammonium hydroxide Nominal Lot # 0.5% 1000 250 150 50 Conc. (µg/mL) 10001.0 Initial (III) 15.0 160 260 60 Conc. (µg/mL) Ammonium hydroxide 1000.0 Final 170 70 Formulated By: Reviewed By: Uncertainty +/- (µg/mL) Expanded 2.1 180 80 13106-76-8 (Solvent Safety Info. On Attached pg.) Lawrence Barry OSHA PEL (TWA) Pedro L. Rentas 5 mg(Mo)/m3 190 90 SDS Information 200 100 orl-rat 333 mg/kg 051722 051722 3134 SRM TSIN

Printed: 6/16/2022, 1:36:08 PM

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

		u	-	D.	Ве	Ва		D 6	Sb	A	-		
		-	-		10.0					-			
		.02	70.	3 :	0	22	1	5	8	.02	The second second		
		5	8	,	?	င္ပ	6	,	<u>ٿ</u>	8	The second second		
		40.02	20.02	0 0	3	40.02	20.02	2	402	40.02			
		Au	Ç	2	3 -	වු	ᄪ	į	Ţ.	Dy			
		0.02	<0.02	20.02	3	<0.02	<0.02	20.02	3	<0.02			
		3	7	7	71 1	='	Б	110	F	斯			
	10102	9	∆ 0.02	202	000	9	40.02	20.02	3	40.02		1 000	Trace V
		Ę	Mo	9H		5	Mg	F	1 !	=		וכימוס	otolo otolo
(T)=1	10.07	3	-	40.2	20.02	3	40.01	20.02	000	A) 02			Varifica
(T)= Target analyte	,	۲ :	¥	ď	2	2	ဝွ	8	1 2	N.		בוכו	±.
nalyte	7.05	2 5	3	40.02	20.02	3	40.02	40.02	10.04	A003		DY ICT-IVIC	20 2
	36	3 6	Si .	Ru	KO	2 :	R _r	Re	7	P		in Chi	2
	20.02	10.01	3	<0.02	20.02	000	4000	40.02	20.02	000		9/1111	~ / /
	la	1 6	2	Sr	Na	. 6	Δσ	S:	×	2			
	<0.02	20.02	3	40.02	40.2	20.02	3	40.02	2.0				
	11	JI.	,	Ī	H	=	3	E.	10				
	<0.02	20.02		40.02	40.02	20.02	3	<0.02	<0.02				
	Z	9	1 ,	~	4,4	<	=	_	*				
	<0.02	<0.02		A000	<0.02	20.02	5	40.02	<0.02				The second secon

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

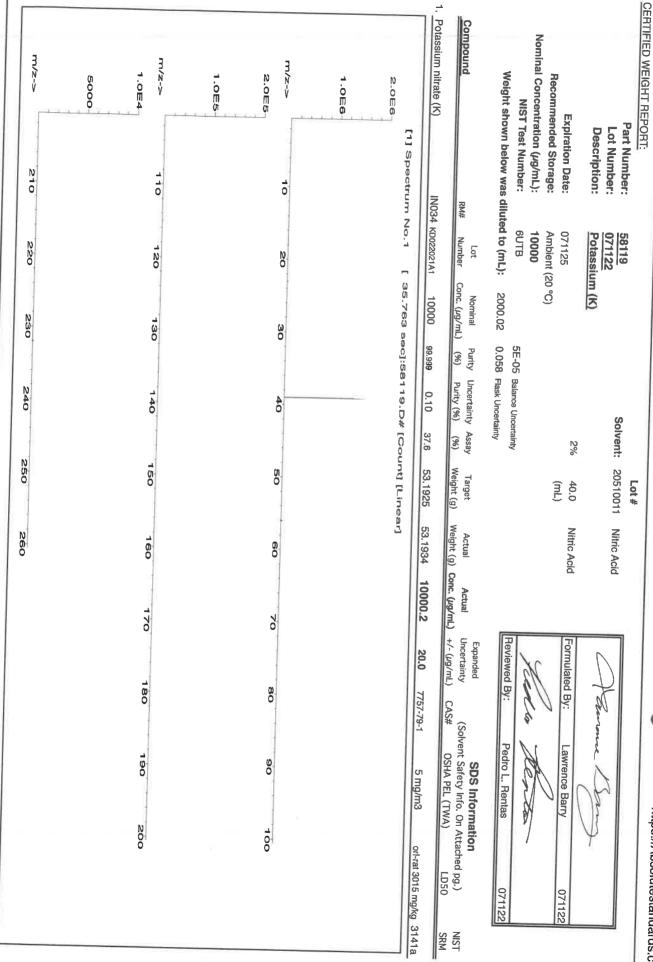
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

3

Certified Reference Material CRM


www.absolutestandards.com

800-368-1131

Absolute Standards, Inc.

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

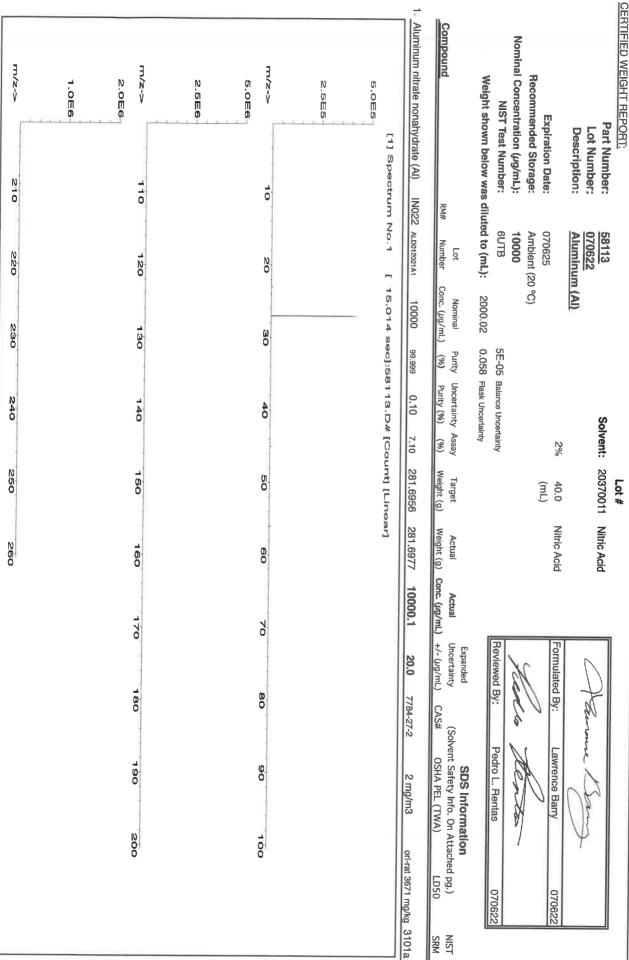
Physical Characterization:	Al <0.02 Cd <0.02 Dy Sb <0.02 Ca <0.2 Er As <0.2 Ce <0.02 En Ba <0.02 Cs <0.02 Gd Be <0.01 Cr <0.02 Ga Bi <0.02 Cu <0.02 Ga Bi <0.02 Cu <0.02 Ga	
11 1002 41	<0.002 Hf <0.002 Li <0.002 Ni <0.002 Pr <0.02 Se <0.2 Tb <0.002 W <0.02 <0.002	Trace Metals Verification by ICP-MS (ug/ml)

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* All standard containers are meticulously cleaned prior to use.


* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58119

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Part # 58113

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

4T	1
_	
	Ti
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	To Te Tim Son

Physical Characterization:

(I)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2

Part # 58113

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" R: 4120/21

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions **HAZARDOUS MATERIAL**

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014". "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

> QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (y/y) nitric acid.

Page 1 of 2

RMs ICV 1, 5, 6 SFAM.docx

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₆, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014	
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)
Al	2500	500
Sb	1000	200
As	1000	200
Ba	520	100
Be	510	100
Cd	510	100
Ca	10000	2000
Cr	520	100
Co	520	100
Cu	510	100
Fe	10000	2000
Pb	1000	200
Mg	6000	1200
Mn	520	100
Ni	530	110
K	9900	2000
Se	1000	200
Ag	250	50
Na	10000	2000
Ti	1000	210
V	500	100
Zn	1000	200

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN-	99

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: 6020CAL-1

Lot Number: S2-MEB711244

Matrix: 5% (v/v) HNO3

tr. HF

Value / Analyte(s): 20 µg/mL ea:

Silver, Aluminum, Arsenic, Barium, Beryllium, Calcium, Cadmium, Cobalt, Chromium, Copper, Potassium, Iron, Magnesium, Manganese, Sodium, Nickel, Lead, Antimony, Selenium, Thallium, Zinc Vanadium,

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 20.01 ± 0.08 μg/mL	ANALYTE Antimony, Sb	CERTIFIED VALUE 20.01 ± 0.12 μg/mL
Arsenic, As	20.01 ± 0.18 μg/mL	Barium, Ba	20.01 ± 0.11 μg/mL
Beryllium, Be	20.01 ± 0.14 μg/mL	Cadmium, Cd	20.01 ± 0.11 μg/mL
Calcium, Ca	20.01 ± 0.10 μg/mL	Chromium, Cr	20.01 ± 0.16 μg/mL
Cobalt, Co	20.01 ± 0.11 μg/mL	Copper, Cu	20.01 ± 0.10 μg/mL
Iron, Fe	20.01 ± 0.09 μg/mL	Lead, Pb	20.01 ± 0.11 μg/mL
Magnesium, Mg	19.99 ± 0.10 μg/mL	Manganese, Mn	20.01 ± 0.10 μg/mL
Nickel, Ni	20.01 ± 0.11 μg/mL	Potassium, K	20.01 ± 0.10 μg/mL
Selenium, Se	20.02 ± 0.14 μg/mL	Silver, Ag	20.02 ± 0.09 μg/mL
Sodium, Na	20.01 ± 0.10 μg/mL	Thallium, Tl	20.01 ± 0.13 μg/mL
Vanadium, V	20.01 ± 0.11 μg/mL	Zinc, Zn	20.01 ± 0.11 μg/mL

Assay Information:

58	say information:			
	ANALYTE	METHOD	NIST SRM#	SRM LOT#
	Ag	ICP Assay	3151 999c	160729
	Ag Al	Volhard		999c 140903
		ICP Assay	3101a	
	Al	EDTA	928	928
	As	ICP Assay	3103a	100818
	Ba	ICP Assay	3104a	140909
	Ba	Gravimetric	2405-	See Sec. 4.2
	Be	ICP Assay	3105a	090514
	Ca	ICP Assay	3109a	130213
	Ca	EDTA	928	928
	Cd	ICP Assay	3108	130116
	Cd	EDTA	928	928
	Co	ICP Assay	3113	190630
	Co	EDTA	928	928
	Cr	ICP Assay	3112a	170630
	Cu	ICP Assay	3114	121207
	Cu	EDTA	928	928
	Fe	ICP Assay	3126a	140812
	Fe	EDTA	928	928
	Fe	Calculated		See Sec. 4.2
	K	ICP Assay	3141a	140813
	K	Gravimetric		See Sec. 4.2
	Mg	ICP Assay	3131a	140110
	Mg	EDTA	928	928
	Mn	ICP Assay	3132	050429
	Mn	EDTA	928	928
	Na	ICP Assay	3152a	120715
	Na	Gravimetric		See Sec. 4.2
	Ni	ICP Assay	3136	120619
	Ni	EDTA	928	928
	Pb	ICP Assay	3128	101026
	Pb	EDTA	928	928
	Se	ICP Assay	3149	100901
	Se	Calculated		See Sec. 4.2
	TI	ICP Assay	3158	151215
	TI	Calculated		See Sec. 4.2
	V	ICP Assay	3165	160906
	V	EDTA	928	928
	Zn	ICP Assay	3168a	120629
	Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

October 20, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- October 20, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date: 	
---	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

Paul R Saines

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

57056

Solvent:

20510011

Nitric Acid

200

40.0

Nitric Acid

Description: Lot Number:

072122 Barium (Ba)

Certified Reference Material CRM

Riograph 33

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Formulated By: Liovannie Giovanni Esposito appeal 2

072122

Reviewed By: Pedro L. Rentas 072122

IN023 BAD022019A1 RM# Number 5 Conc. (µg/mL) Nominal 1000 99.999 Purity 8 Uncertainty Assay Purity (%) 0.10 52.3 <u>8</u> Weight (g) 3.82417 Target Weight (g) Conc. (µg/mL) 3.82426 Actual 1000.0 Actual +/- (µg/mL) Uncertainty Expanded 2.0 10022-31-8 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information 0.5 mg/m3 orl-rat 355 mg/kg 3104a SRM TSIN

1. Barium nitrate (Ba)

Nominal Concentration (µg/mL):

1000

Ambient (20 °C) 072125

NIST Test Number:

Recommended Storage:

Expiration Date:

Weight shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

m/z-> **1/2-**2 17/2-Y 2.5E6 5.0E6 2.0E5 1.0ES 2.0E6 1.OE6 [1] Spectrum No.1 210 110 0 220 120 N O [12.514 sec]:58156.D# [Count] [Linear] 130 230 30 140 240 4 250 150 Ö. 160 260 00 170 8 180 80 190 90 200 100

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						•	Traca M.	otolo	Varifica	+ion	ו מטן ייץ	1 37	1					l	
							1	נמונו	۱^		ביים עמ	2	pg/mr)						
					No. of Lot, House, etc., in case, or window,													ı	
IA IA	<0.02	ొ	<0.02	δ	<0.02	HF	<0.02	ï	<0.02	Z	<0.02	占	<0.05 CO.05	3	25.	É	89	100	000
Sb	<0.02	ටී	<0.2	Ţ,	CD 02	H	2007	1	2000	11.16	000	£		3 8	1	2	70.02	A	70.02
A	4	,	100	i	100	2	70.00	7	70.0>	D.	70.02	2	40.02	2	<0.02	E .	<0.05	ם	<0.02
AS	7.02	3	Z0:02	2	<0.02	드	<0.02	Mg	₹0.07	ő	<0.02	Rh	<0.00	Ag	2007	F	50 9	77	6
Ha	€	ێ	2002	3	5000	,1	000	>	200	i		1	***************************************	0	70.05	1	70.07	>	70:05
	4	3	*0.00	3	7000	=	70.05	IMIM	70:0>	2	<0.02	Rb	Q.02	Z	8	Ę	200	5	2007
Be	<0.01	Ö	<0.02	Ğ	<0.02	Ę.	<0.2	Ho	<0.2	۵	200	å	6	į,	1 6	Ę	0.00	; ;	70:05
ä	200	ځ	0000	Č	000	,		0 ,			10.04	7	70.07	วี	70'05	E	70.05	>-	\$0.05
7	70.07	3	Z0.02	5	20102	2	40.02	Wo	₹0.05	Ž,	<0.02	Sm	<0.02	v.	2002	Ca	2000	7	000
20	Q0.05	Č	<0.00	Ап	200	á	200	FIN	000	2	0	7		,	10:00	2	70:07	77	70.02
1			2010		7000	7 0	70.05	DAT	Z0:0>	4	787	S	<0.02	2	202	Ë	200	,	5000

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com 031523 031523 Giovanni Esposito Pedro L. Rentas Liovanni Formulated By: Reviewed By: Certified Reference Material CRM Nitric Acid Nitric Acid Solvent: 21110221 Lot # 60.0 (mL) % 5E-05 Balance Uncertainty 0.058 Flask Uncertainty 3000.41 Ambient (20 °C) Calcium (Ca) Weight shown below was diluted to (mL): 031523 031526 10000 **6UTB** Recommended Storage: Nominal Concentration (µg/mL): Part Number: Lot Number: Description: **Expiration Date:** NIST Test Number: CERTIFIED WEIGHT REPORT:

Compound	RM#	Lot Number	Nominal Purity Conc. (µg/mL) (%)	Punty (%)	Purity Uncertainty Assay (%) Purity (%) (%)		Target Weight (g)	Actual Weight (g)	Expanded Actual Actual Uncertainty (Sc Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS#	Expanded Uncertainty +/- (ug/mL)	(Solv	SDS Information (Solvent Safety Info. On Attached pg.) NS# OSHA PEL (TWA) LD50	Attached pg.) LD50	NIST
1. Calcium carbonate (Ca)	IN014	INO14 caboragezat	10000 99.999	666.66	0.10	38.9	75.1990	75.2093	10001.4	20.0	471-34-1	5 mg/m3	ort-rat	3109a
[1] S ₁	[1] Spectrum No.1		4.00	8ec]:6	12.514 sec]:58120.D# [Count] [Linear]	<u> </u>	unti (Line	ari						
1.0E4														
m/z->	0	.0		000	.4	400400	0	0	2		0		001	
2. 4 4														
m/z->	0	120		90	140		150	160	071	0	180	190		
6.0E4														
m/z->	019	220		230	240		250	260						

Printed: 3/16/2023, 1:45:15 PM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Trace Me	tals	Verificat	ioi	by ICP-N	MS ($(\mu g/m\Gamma)$		r				
SHEW SHEET	STATE OF THE PARTY OF				SIGNATURE .	STON SAFETY SAGE	S. Parlie	THE SHARE SHARE	Series .		Sec.	STREET, STREET	THE PERSON	THE PERSON NAMED IN	THE PERSON	State of the last		
707	ප	<0.02	δ	40.05	H	<0.02	II.	<0.02	Z	<0.02	ď	<0.02	Se	<0.2	13	<0.02	≥	<0.02
700	రో	H	卢	₹0.02	윒	20.02	3	<0.02	ź	<0.02	2	<0.02	ន	<0.02	Į.	40.02	Þ	₹0.05
07	පී	40.02	超	<0.02	Я	<0.02	Mg	40.01	ő	<0.02	쥪	<0.02	Ag	<0.02	F	<0.02	>	<0.02
707	ర	<0.02	පි	<0.02	片	<0.02	Mn	<0.02	Z	<0.02	2	<0.02	ž	<0.2	Ę	<0.02	¥9	40.02
100	Ö	<0.02	ජි	40.02	Ŗ	<0.2	Hg	40.2	م	<0.02	æ	<0.02	స	<0.02	Ę,	<0.02	¥	₹0.05
707	රි	40.02	පි	₹0.02	3	₹0.02	Wo	<0.02	五	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	₹0.02
707	ਰੋ	<0.02	Αū	<0.02	2	<0.02	PN	<0.02	×	40.2	S	<0.02	Ta	<0.02	Ξ	<0.02	Z	40.02
	6.00 6.00 6.00 6.00 6.00 6.00		3 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Cd	Cd	Cd	Cd	Cd	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ca T En -0.02 Ho -0.02 Li -0.02 Ce -0.02 Eu -0.02 in -0.02 Mg -0.02 Cr -0.02 Gd -0.02 Fe -0.02 Mn -0.02 Co -0.02 Ge -0.02 Fe -0.02 Mo -0.02 Cu -0.02 Au -0.02 Fe -0.02 Mo -0.02	Cd -60.02 Dy -60.02 Hf -60.02 Li -60.02 Ni Ca T En -60.02 Ho -60.02 Lu -60.02 Nh Ca -60.02 Eu -60.02 In -60.02 Mn -60.02 Pd Cr -60.02 Ga -60.02 Fe -60.2 Hg -60.2 Pr Co -60.02 Ga -60.02 La -60.02 Rr -60.02 Rr Cu -60.02 Au -60.02 Pr -60.02 Rr	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Ca T En -6.002 Ho -6.002 Lu -6.002 Nh -6.002 Ce -6.002 Eu -6.002 In -6.002 Mg -6.012 Nh -6.002 Cr -6.002 Gd -6.002 Fe -6.02 Mn -6.02 Pd -6.02 Cr -6.002 Gg -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Cu -6.002 Au -6.002 In -6.002 R -6.002 Cu -6.002 Au -6.002 Ph -6.002 R -6.002	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Pr Ca T Ea -6.002 Ho -6.002 Lu -6.002 Nb -6.002 Rc Ce -6.002 Eu -6.002 Ir -6.002 Mn -6.002 Rb -6.002 Rb Cr -6.002 Ga -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Ru Co -6.002 Ga -6.002 La -6.02 Rr -6.02 Rr -6.02 Rr Co -6.002 Ga -6.002 Ira -6.02 Ng -6.02 Rr -6.02 Sr Cu -6.002 Au -6.002 Pr -6.002 Rr -6.002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Ca T Ba -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Ce -0.02 Bu -0.02 Ir -0.02 Mg -0.01 Os -0.02 Rb -0.02 Cr -0.02 Ga -0.02 Mn -0.02 Pr -0.02 Rb -0.02 Cr -0.02 Ga -0.02 Hg -0.02 Pr -0.02 Ru -0.02 Cr -0.02 Ga -0.02 Hg -0.02 Pr -0.02 Ru -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02	Cd -d002 Dy -d002 Hf -d002 Li -d002 Ni -d002 Re -d002 Si Ca T Ea -d002 Ho -d002 Lu -d002 Nb -d002 Re -d002 Si Ca -d002 Ea -d002 Hr -d002 Mn -d002 Rh -d002 Na Cr -d002 Ga -d002 Hg -d02 Pr -d002 Ru -d002 Na Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Cu -d002 Au -d002 Nd -d002 Rr -d002 Sr -d002 Sr -d002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Se -0.02 Ca T Eu -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Si -0.02 Ce -0.02 Eu -0.02 In -0.02 Mn -0.02 Rb -0.02 Na -0.02 Cr -0.02 Ga -0.02 Ir -0.02 Hg -0.02 Ru -0.02 Na -0.02 Cr -0.02 Ga -0.02 Hg -0.02 Ru -0.02 Sr -0.02 Cr -0.02 Ga -0.02 Hg -0.02 Rr -0.02 Sr -0.02 Cr -0.02 Fr -0.02 Rr -0.02 Sr -0.02 Sr -0.02 Cr -0.02 Fr -0.02 Rr -0.02 Sr	Cd 4002 Dy 4002 H 4002 Li 4002 Ni 4002 Pr 4002 Se 402 Th Ca T Ea 4002 Ha 4002 Lu 4002 Nb 4002 Rb 4002 Tr Ca 4002 Eu 4002 Ha 4002 Pd 4002 Rb 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Sr 4002 Sr 4002 Cr 4002 Au 4002 Rr 4002 Rr 4002 Sr 4002 Sr 4002 Sr

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Printed: 3/16/2023, 1:45:15 PM

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

800-368-1131 www.absolutestandards.com	100	<u> </u>		•	Sertified .	Refere	Since Mai	Certified Reference Material CRM	1/203 (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB ISO 17034 Accredited AR-1539 Certificate Number ttps://Absolutestandards.com	credited Number rds.com
CERTIFIED WEIGHT REPORT:						1	Lot#			る				
Fart Number: Lot Number: Description:		57182 061522 Lead (Pb)			Solvent:		20510011	Nitric Acid		Hieram	ranvie Ed	peate		
Expiration Date:		081525				%	40.0	Nitric Acid		Formulated By:	Giovann	Giovanní Esposito	061522	
Recommended Storage: Nominal Concentration (µg/mL):		Ambient (20 °C) 10000	Ő				(TE)			Ph	May 1	C/S		
NIST Test Number: 6UTB Weight shown below was diluted to (mL):	r: 6U as diluted		2000.02	5E-05 B 0.058 F	5E-05 Balance Uncertainty 0.058 Flask Uncertainty	inty f				Reviewed By:	Pedro L	Pedro L. Rentas	061522	
Compound	RM#	Lot Number C	Lot Nominal Purity Uncertaint Number Conc. (µg/ml.) (%) Purity (%)	Purity (×	- 1	Target Weight (g)	Expanded Actual Actual Uncertainty Weight (g) Conc. (µg/mL) +/- (µg/mL)	Actual	Expanded Uncertainty (4+-(µg/mL) CAS#	SD: (Solvent Safe S# OSHA	SDS information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LDSC	l pg.) LD50	NIST

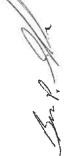
SRM

1. Lead(II) nitrate (Pb)	INO29 PBD122016A1	10000	88.888	0.10	62.5	32.0006	32.0041 10001.1		20.0	10099-74-8	0.05 mg/m3	intryne-rat 83 mo/kg 3128	3128
1.0E7	[1] Spectrum No.1	17.284 sec]:58182.D# [Count] [Linear]	ec]:58	82.D*	Cour	nt] [Line		1				p h	
S.0E8													
m/z->>	0 P	O		.0		0	9	02		08	0	100	
1.0E6													
m/z->	1100	190		04	r P	150	160	170	, T	180	000	000	
5.0ES													
Å	220	230		240		250	260						

Lot # 061522

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com


Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Ī	Trace Me	stals	Verifica	tion	by ICP-	SM	(ma/m)		,				
Section 1	May be seen and	į	WORNING STREET	Name of Street, or other Persons and Street,	3-5-40. 1. 1. 1. 3-2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-	THE PROPERTY OF THE PARTY OF TH	CAMPBELL					2	Commence of the last					
₹	<0.02	ਝ	<0.02	Ď	<0.02	HŁ	<0.02	Ľ	<0.02	ž	<0.02	ď	2002	3	202	4	200		000
Sp	<0.02	ථ	<0.2	ď	200	H	200	ž	969	1	9	è	2000	3	100	2	20.02	*	7mm>
V V	ç	d	1 6	,		2	777	3	70:05	ON T	70.02	2	7070>	7	₹0.02	<u>e</u>	\$0.02	Þ	40.02
ĉ	7.02	3	Z0:02	S S	Q0:05	크	8002	Mg	40.0 1	ර	40.02	Rh	40.02	Ao	CD CD	F	200	2	8
Ba	<0.02	రో	<0.02	3	<0.02	4	<0.02	M	<0.02	Pd	2002	40	8	0 2	6	į	70:00	- E	70.00
Be	<0.01	Ö	<0.02	S	<0.02	Ę,	402	H	5	. 0	600		7000	2 0	707	= 6	20.02	Q.	40.02
ž	2000	S	200	2	8	-	9 6	9	700	- é	20.02	1	70'05	ă	40.002	Ħ	40.02	×	<0.02
i	200	3 6	70.00	5 .	20.02	3	70:05	WIO	<0.02	Σ,	<0.02	SH	<0.02	S	<0.02	Sn	40.02	Z	40.02
	70.02	3	70'02	Au	<0.02	£	T	ž	40.02	×	\$ \$	S	<0.02	Ę	CD 02	Ę	29	2	8

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Lot # 061522

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). All standard containers are meticulously cleaned prior to use.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

www.absolutestandards.com

Certified Reference Material CRM

R : 03 | 17 | 12

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Diovanne

Nitric Acid

Solvent: 20510011

#ioj

Nitric Acid

350.0 (m)

7.0%

092122 092122 Giovanni Esposito Pedro L. Rentas Formulated By: Reviewed By:

٠.						
SDS Information	(Solvent Safety Info, On Attached pg.)	L) CAS# OSHA PEL (TWA) LD50				
Expanded	Actual Actual Uncertainty	1/- (ug/mL)				
	Actual	Conc. (vg/mL)				
		_				
1	arget	Weight (g)				
	Assay	9				
1	Uncertailmy	runty (%)				
Purity Uncertainty Assay (%) Purity (%) (%)						
Nominal	Conc (un/ml)	COLLEG (ARRYTHL)				
ŧ	Number					
	RM#					
	Compound					

5E-05 Balance Uncertainty 0.12 Flask Uncertainty

5000.1

Weight shown below was diluted to (mL):

NIST Test Number:

Ambient (20 °C)

10000 **6UTB**

092125

Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):

Iron (Fe) 092122

Description: Lot Number:

Part Number:

CERTIFIED WEIGHT REPORT:

128 128	orl-rat 7500mg/kg 3126a	no Em/gm c	1409-09-0	Ш										
			20.0 7430.80.6		0.10 100.0 50.0034 50.0111 10001.5	50.0111	50.0034	100.0	0.10	98.985	10000	3 2224912-500	IN34	Iron (Fe)
SKE	LUSO	COLOR FEET (TWA)	L COLON											
2	(34)	OCHA DEI (TAKA)	CAC#	(m/m/) -/+	Conc. (vo/ml.)	Weight (g)	Weight (g)	(%)	Purity (%)	<u>8</u>	Conc. (µg/mL)	Number	KMH	
Į.	7 00 00	Uncertainty Assay Target Actual Actual Uncertainty (Solvient Safesy Info On Actual	(Soh	Uncertainty	Actual	Actual	y Uncertainty Assay Target	Assay	Uncertainty	Purity	Nominal	5		Compound
										-	-	- made		

		110-10 SEE4912-000	2000	99.985	0.10	100.0	50.0034	50.0111 10001.5	10001.5	20.0	7439-89-6	5 mg/m3	orl-rat 7500mg/kg 3126a
2.064	1) Spectrum No.1	[1] Spectrum No.1 [30.763 sec]:58126.D# [Count] [Linear]	[Count] [Linear]					_					
1.054								_					
m/z->	10-1	50	0 8		-6		.00	-09	02		08	06	100
5.0E7	110	120	130		140		150	160	170		180	0 61	500
S.0E7	0.6												
	1	220	230		240		250	260					

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace Me	stals	Verificat	ion b	y ICP-MS	gu)	/mL)						
STORY .	000				200		404				NAME OF TAXABLE PARTY.								
æ	40.02	3	70.05	ŝ	70'0>	Ē	70102	3	Z0702	ž	<0.10	£	₹0.02	š	402	e	40.02	*	40.02
S.	<0.02	రే	4 02	山	<0.02	He	40.02	3	<0.02	ź	<0.02	Re	<0.02	ૹ	40.02	<u>1</u>	<0.02	n	<0.02
As	Ø.2	ප	<0.02	큡	<0.02	멸	<0.02	Mg	<0.01	ő	<0.02	꿆	<0.02	Ag	<0.02	F	<0.02	>	<0.02
Ba	40.02	ඊ	Ø.02	3	<0.02	ㅂ	40.02	Ma	<0.10	몺	<0.02	8	<0.02	Š	40.2	Ē	<0.02	χ.	<0.02
Be	₩	ŏ	40.05	පී	<0.02	£	40.2	Hg	40.2	Δ.	<0.02	Ru	<0.02	Ŗ	<0.02	뎚	<0.02	٨	<0.02
Ä	40.02	රි	Ø.10	ප	40.10	ጟ	40.02	Mo	40.02	£	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	Zu	<0.05
В	<0.02	ರ	<0.10	ΑΠ	<0.02	£	<0.02	R	<0.02	M	<0.2	ß	<0.02	Ta	<0.02	F	<0.02	Z	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

2 of 2

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

Description: Lot Number:

58119 120822 Potassium (K)

Solvent: 20510011 Nitric Acid

Lot #

Javanva

アムママムマ

60.0 <u>a</u>

2%

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Ambient (20 °C) 120825

Recommended Storage:

Expiration Date:

Weight shown below was diluted to (mL):

3000.4

5E-05 Belance Uncertainty

0.06 Flask Uncertainty

Nitric Acid

Formulated By:

Giovanni Esposito

120822

Reviewed By:

Pedro L. Rentas

120822

12 [1]	Potassium nitrate (K)	Compound
[1] Spectrum No.1 [35.763 sec]:58119 D# (Count II Insert	IN034 KD022021A1 10000 99.989 0.10 37.6 79.7990 79.8075	Lot Nominal Purity Uncertainty Assay Target Actual RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Weight (g) C
35.763 se	10000	Nominal Purity Uncertainty Assay Conc. (µg/ml.) (%) Purity (%) (%)
9C]:58	99.999	Purity (%)
119.0	0.10	Uncertainty Purity (%)
* 0	37.6	Assay (%)
inti II ina	79.7990	Target Weight (g)
	79.8075	Actual Weight (g)
	10001.1	Actual Conc. (µg/mL
	10001.1 20.0 7757-79-1	Expanded Uncertainty +/- (µg/mL)
	7757-79-1	(Solv
	5 mg/m3	Expanded SDS Information Actual Uncertainty (Solvent Safety Info. On Attached pg.) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50
	orl-rat 3015 mg/kg 314	n tached pg.) LD50
	kg 3141a	NIST

m/z-y	5000	m/z->	1.0E5	m/z->	1.000	2.016
whiteless was commented about	and distinct manage gaps game in the six strending means a			, , , , , , , , , , , , , , , , , , ,		
210		110		ō		
J		0				
220		ก		N.		
230		130		3		
N 4 0		4.		4		
N U		3-00		Ø.		
				-		
20 0		160		0		
		170		8		
		180		Ö		
		190		0		
		A.				
		200		100		,

Lot # 120822

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Bi Be	
	4000 4000 4000 4000 4000	
	585888 8	
Œ	40.02 40.02 40.02 40.02 40.02 40.02	
	등 유 명 전 함 표 것	
	\$	
	3234483	1.
	402 402 402 402 402	Trace Me
	NA BA BA L L	etals
(T) = Tar	40.00 40.00 40.00 40.00 40.00 40.00 40.00	Verifica
Target analyte	K P P Z O K N	ation
alyte	4022 4022 4022 4022 7	by ICP-
	S B B B B B	SW
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(Jm/gu)
	Ja Sr Na Se Se	
	402 402 402 402 402 402 402 402 402 402	
	计划证证证证	
	4000 4000 4000 4000 4000	
	55~\$<□≤	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Lot # 120822

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CLPP-SPK-1

Lot Number:

T2-MEB721963

Matrix:

7% (v/v) HNO3

Value / Analyte(s):

2 000 µg/mL ea:

Aluminum,

Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Manganese,

Nickel,

Vanadium,

Cabalt

Zinc,

Cobalt,

250 µg/mL ea:

Copper,

200 µg/mL ea: Chromium,

50 µg/mL ea:

Beryllium,

Silver

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 µg/mL	ANALYTE Barlum, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Chromium, Cr	200.0 ± 1.1 μg/mL
Cobalt, Co	500.0 ± 2,4 μg/mL	Copper, Cu	250.0 ± 1.0 µg/mL
Iron, Fe	1 000 ± 4 μg/mL	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Silver, Ag	50.00 ± 0.22 μg/mL
Vanadium, V	500.0 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density:

1.070 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Ag	Calculated		See Sec. 4.2
Al	ICP Assay	3101a	140903
Al	EDTA	928	928
Ва	ICP Assay	3104a	140909
Ba	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i)(X_i)$

 X_i = mean of Assay Method I with standard uncertainty u_{char} i w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char})^2 / (\Sigma (1/(u_{char})^2)$

CRM/RM Expanded Uncertainty (1) = $U_{CRM/RM} \approx k (u^2_{cher} + v^2_{bb} + v^2_{lts} + v^2_{tr})^{1/2}$

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certifled Value, $\mathbf{X}_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_R) (u_{ohar} a)$

X_a = mean of Assay Method A with

Uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (£) = $U_{CRM/RM} = k \left(u^2_{chara} + u^2_{bb} + u^2_{lib} + u^2_{bb}\right)^{1/2}$

k = coverage factor = 2

 $\mathbf{u}_{\mathrm{char}\,\mathbf{u}}$ = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

uite = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800,669,6799; 540,585,3030, Fax: 540,585,3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 27, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date: 	
---	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

Paul R. Lines

CORCO CHEMICAL CORPORATION

Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

CERTIFICATE OF ANALYSIS

Date: 8/3/2022

MS631 MS632 MS633 MS634

Lot No 820803

Hydrogen Peroxide, ACS

Reagent Grade

TEST	MAXIMUM LIMITS	RESULT
Appearance	Colorless and free from suspended matter or sediment	Pass
Assay	29-32%	31.4%
Color (APHA)	10	5
Residue after Evaporation	0.002%	.0001%
Titratable Acid	0.0006 meg/g	< .0006 meq/g
Chloride (CI)	2 ppm	< 1 ppm
Nitrate (NO ₃)	2 ppm	< 1 ppm
Phosphate	2 ppm	< 1 ppm
Sulfate (SO ₄)	5 ppm	<.5 ppm
Ammonium (NH ₄)	5 ppm	< 1 ppm
Heavy Metals (as Pb)	1 ppm	< .1 ppm
Iron (Fe)	0.5 ppm	< .1 ppm
Sodium Stannate	200 – 300 ppb	Pass

^{***}Our Hydrogen Peroxide is considered un-stabilized because it is very slightly stabilized with Sodium Stannate, 500 ppb maximum, just for safety purposes.

Date of MFG: 8/2022 Retest date: 8/2024

Gina M. Rambo-Office Manager

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5657

A: 8/29/22

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CLPP-SPK-4

Lot Number:

T2-MEB721144

Matrix:

3% (v/v) HNO3

Value / Analyte(s):

100 µg/mL ea:

Antimony,

50 μg/mL ea:

Cadmium,

Thallium,

40 µg/mL ea:

Arsenic,

20 µg/mL ea:

Lead,

10 µg/mL ea:

Selenium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Antimony, Sb CERTIFIED VALUE 99.9 ± 0.8 µg/mL

ALUE ANALYTE
L Arsenic, As

CERTIFIED VALUE

40.00 ± 0.25 μg/mL

Cadmium, Cd

49.96 ± 0.22 µg/mL

Lead, Pb

19.99 ± 0.10 µg/mL

Selenium, Se

10.00 ± 0.06 µg/mL

Thallium, TI

49.96 ± 0.32 µg/mL

Density:

1.014 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE As	METHOD ICP Assay	NIST SRM# traceable to 3103a	SRM LOT# R2-AS691113
Cd	ICP Assay	3108	130116
Cu	•		130116
Cd	EDTA	928	928
Cd	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
Sb	ICP Assay	3102a	140911
Se	ICP Assay	3149	100901
Se	Calculated		See Sec. 4.2
TI	ICP Assay	3158	151215
TI	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \sum_{i} (w_i) (X_i)$	$X_{CRM/RM} = (X_a) (u_{char} a)$
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
\mathbf{w}_{i} = the weighting factors for each method calculated using the inverse square of the variance:	uchar a = the standard uncertainty of characterization Method A
$w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$	
CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{ts})^{3/2}$	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/4}$
k = coverage factor = 2	k = coverage factor = 2
$u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method	uchar a = the errors from characterization
u _{bb} = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
ults = long term stability standard uncertainty (storage)	utte = long term stability standard uncertainty (storage)

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

ute = transport stability standard uncertainty

4.1 Thermometer Calibration

uts = transport stability standard uncertainty

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL) N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 07, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 07, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date: 	
---	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control DD978hi.

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: 58024 060523 Chromium (Cr) 21110221 Lot # Nitric Acid Solvent: Lavense

2.0% 40.0 Nitric Acid

(III)

Formulated By:

Lawrence Barry

060523

060523

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 Ambient (20 °C) 060526

Compound Volume shown below was diluted to (mL): NIST Test Number: Number Part **BTU9** Number Lot 2000.02 Factor Dilution Vol. (mL) Pipette (mL) Conc. (µg/mL) 0.058 5E-05 Initial Flask Uncertainty Balance Uncertainty Uncertainty Nominal Conc. (µg/mL) Conc. (µg/mL) Initial Final Reviewed By: +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) Pedro L. Rentas **SDS Information**

P20

TSIN SRM

3112a

 Chromium(III) nitrate nonahydrate (Cr) 58124 071122 0.1000 200.0 0.084 1000 10000.1 1000.0 12 7789-02-8 0.5 mg(Cr)/m3 ort-rat 3250 mg/kg

m/z->	N 5 10	5.0E5	5.0E5	m/z->	5000	1.004
				3		
N 0		110		o .		
h				7		(
N N N		120		N. O		(
230		130		۵. ۵.		
						(
240		140		ò		
N		<u></u>		(h		
250		150		0		
260		160		0		
		170		70		
		380		8 2.		
		0				
		190		90		
		N 0- 0		100		
		Ŏ		0		

Part # 58024

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			_				_			=
	B	ᄧ	Ве	В	As	Sb	Δ	Monthly		
	A).02	4 0.02	40,01	A .02	40.2	△0.02	△0.02			
	δ	පි	Ω	င္တ	දි	ర్జ	Ω			
	40.02	40.02)	40.02	40.02	40,2	△0.02			
	Æ	ဂ္ဂ	වූ	ନ୍ଥ	멸	녆	Dy	80		
	40.02	40.02	40.02	<0.02	40.02	40.02	40.02	mineral differences		
	3	Ľ	स्र	Ħ	ď	ᅜ	Ж	Sheriff tool		
	40.02	40.02	40.2	A).02	<0.02	40.02	40.02		I race M	1
	폺	Мо	В.	Ķ	ВМ	Ē	П	MISSON ISSUE	Metals	1
3	A0.02	40.02	40.2	40.02	40,01	∆ .02	40.02	SI RECEIPTOR	Verification	
Towns and the	~	ን	70	굕	ô	₹	3	SHEWNING.	Clon	-
	∆ 0.2	40.02	40.02	40,02	40.02	40.02	40.02	THE PARTY OF THE P	by ICP-M	
	Sc	Sm	잗	공	Rh	æ	Pr		S (Hi	5
	<0.02	<0.02	<0.02	40.02	40,02	40.02	<0.02		g/mL)	
	Ta	S	ñ	Z.	Ą	Si.	Se			
	40.02	<0.02	40.02	402	40.02	40.02	402			
	==	Sn	Tm	3	ᄇ	급	176			
	40,02	40.02	40,02	40,02	<0.02	40,02	<0.02	Contract Contraction		
	Z	Zn	~	뀱	۷	Ϥ	W	可能を経過		
	<0.02	< 0.02	<0.02	<0.02	40.02	40.02	<0.02	SALES OF SALES		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5697 B: 10/27/23

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:	l=						Lot #	Solvent:						L:
Pe	Part Number: Lot Number: Description:	O look life	58029 102523 Copper (Cu)	9			24002546	Nitric Acid				M		
							2.0%	40.0	Nitric Acid	Formulated By:	šy:	Benson Chan	102523	
Exp	Expiration Date:		102526	2				(mL)		,	0	D		
Nominal Concentration (µg/mL):	ion (µg/mL):	<u></u> >	1000	S						M	N	tento		
NIST T	NIST Test Number:	0	втв		5E-05	Balance Uncertainty	inty			Reviewed By:		Pedro L. Rentas	102523	
Volume sh	Volume shown below was diluted to (mL):	diluted	1 to (mL):	2000.02	0.058	Flask Uncertainty	ч							ū
										Expanded		SDS information	tion	
Compound	Z	Part	Lot	Dilution	Initial Vol. (ml.)	Uncertainty Pipette (ml.)	Nominal	Initial	Final	Uncertainty	(Solv	(Solvent Safety Info. On Attached pg.)	Attached pg.)	NIST
					von (mr.)	son (min) s species (min)	Const. (Agy ann)	Course (Jage cont.)	Course (hgy min.)	the Cash with	COLON	(1117)	E-30	Civia
Copper(II) nitrate trihydrate (Cu)		58129	100223	0.1000	200.0	0.084	1000	10000.1	1000.0	20	10031-43-3	1 mg/m3	ori-rat 794 mg/kg	3114
1.0E6	[1] Spectrum No.1	Z	_	3.422 s	əc]:58)29.D# [C	33.422 sec]:58029.D# [Count] [Linear]	near]	en.					
									The Park of the Art of					
5.OE5									nerhetileren hete ektier vitet hilde vitet hilde fri kengel					
m/z->	10		N O	30	12 12	4	50		7		B)	90	0	
5.0E7														
2.567														
m/z->	110		120	130		140	150	160	170		180	190	200	
2.067														
1.027														
m/z->	210		220	230		240	250	260						

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		_	_			_	_	V - 127	-
	Ľ	<u>в</u>	Ве	Ва	As	Sb	Δ		
	20.02	8.00	10.0	40.02	402	40.02	40.02		
	2	, ზ	υ	င္ပ	ပ္ပ	δ	8		
	-	<0.02	40.02	<0.02	<0.02	40.2	<0.02		
	Au	Š.	Ç	£	멸	य	Dy		
	<0.02	40,02	<0.02	<0.02	<0.02	40.02	40.02		
	3	F	팖	=	Ы	Но	Ħ		
	40.02	40.02	40.2	△0.02	<0.02	<0.02	40.02	1	Trace M
	Nd	Мо	Hg	M	Mgg	Lu	<u> </u>		letals
(T) = Target analyte	A).02	40.02	40.2	<0.02	10.05	40.02	40.02		Verifica
et anal	×	7	ק	Ъ	တ္တ	3	Z		-
vie	40.2	40.02	40.02	40.02	40.02	<0.02	<0.02	27 10	-4-10-14
	&	Sm	Ru	짱	Rh	Re	Pr	Ę	
	40.02	<0.02	40.02	A).02	40.02	6 0.02	40.02	g/ 1111L/	
	Ta	Ø	Sr	Z	Ag	S:	Š	Marchine	
	40,02	<0.02	40.02	40.2	40.02	40.02	40.2		
	11	Sn	ď	₽	∄	Te	급		
	40.02	40.02	40.02	40.02	40.02	<0.02	40.02		
	Zr	25	ĸ	¥	<	ď	W		
	<0.02	∆ 0,02	∆ 0.02	<0.02	∆ 0.02	∆ 0.02	40.02		

1.1

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certifled by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.

 * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ırt # 58029

2 of 2

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M5648 A: 10/23/23

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Manganese(II) nitrate tetrahydrate (Mn) Compound Nominal Concentration (µg/mL): m/z-> m/z-> M/Z-V 5.OE7 1.0≣8 5.0厘7 1,0E8 2.5E6 5.0E6 Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: [1] Spectrum No.1 Lot Number: Description: 110 210 0 58125 Number Part 58025 102623 **BTUB** 1000 Ambient (20 °C) 102626 Manganese (Mn) 071123 120 Number 20 Ĕ [34.243 sec]:57025.D# [Count] [Linear] 3000.41 0.1000 Factor Dilution 130 30 Vol. (mL) Pipette (mL) Conc. (µg/mL) 300.0 0.058 5E-05 Initial Flask Uncertainty Balance Uncertainty 240 140 Uncertainty 40 0.084 24002546 Nominal 2.0% Lot # 1000 250 150 0 Conc. (µg/mL) Conc. (µg/mL) Nitric Acid Solvent: 10000.1 Initial <u>a</u> 60.0 260 160 00 Nitric Acid 1000.0 Final 170 0 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Expanded <u>2</u> 180 80 20694-39-7 CAS# (Solvent Safety Info. On Attached pg.) 190 OSHA PEL (TWA) 90 Pedro L. Rentas Benson Chan SDS Information 5 mg/m3 200 100 ort-rat >300mg/kg P50 102623 102623 3132 SRM

Printed: 10/26/2023, 1:20:32 PM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	4	3	1	3	,	3	2	7	5	3	Z	3	Ş	3	A	3	?	3	7
& 20.02	Zn	40.02	Sa	∆ .02	S	<0.02	Sm	40.02	7	6.02	Mo	6.02	L	<0.02	ද	40.02	S	60.02	Bi
<0.02	×	40.02	Tm	40.02	Sr	<0.02	찙	<0.02	۵,	40.2	ЯН	40.2	Fe	40.02	ဂ္ဂ	40.02	ರ	10.05	Be
A).02	4	40.02	H	D 2	Z,	<0.02	RЬ	<0.02	Pd	Н	Mn	<0.02	. F	40.02	ይ	<0.02	ဂ္ဂ	40.02	Ва
A.02	<	40.02	Ħ	40.02	Ag	<0.02	쫎	40.02	õ	40.01	Mg	A).02	F.	40.02	멸	<0.02	င္ပ	0,2	As
A0,02	u u	40.02	ie	20.0≥	Si	A0.02	₹	40.02	3	40.02	Ē	A).02	Н	40.02	ဌ	<0.2	ប្ច	△0.02	æ
40.02	W	<0.02	41	40.2	8	<0.02	7	<0.02	Z	40.02	E	<0.02	Hf	<0.02	Ų	<0.02	ξ	40.02	≥
		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN COLUMN TWI			SECTION SECTION	Water Company		Remote many series	SEMMENTS	SECTION PARTY	MINNER	STATES OF STATES	0100 mm 550	STATISTICS OF THE PARTY OF THE	MATERIAL STATES	a solution and a			
						J/mL)	in Chi	by ICP-N	נוסח	Verifica	letals	I race N							Γ
								950											

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM MSTHT

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number: R: 12/20/23 Lot #

Nitric Acid

Solvent: 24002546

2%

Nitric Acid

Formulated By:

Lawrence Barry

100923

60.0

Lot Number: Description: 57082 100923 Lead (Pb)

Expiration Date: 100926

Recommended Storage: **NIST Test Number:** BIN9 1000 Ambient (20 °C)

Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): 3000.41 0.06 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Cot

Nominal

Purity

Uncertainty Assay

|--|--|--|

Target Weight (a) Con Actual Actual Uncertainty +/- (ua/mL) Expanded #SAC SDS Information
(Solvent Safety Info. On Attached pg.)
(SONA PEL (TWA) TSIN

Pedro L. Rentas

100923

m/2->	1.0E6	m/z->	5.OE4	m/z->	5.0 M4	1.0E6
Ballimore				2		
		110		ō		
		120		N O		
		Ö		O		
		130		90		
		140		6		
		1 00 0		(M)		•
						1
		160		00		
		170		7		
		_A ;				
		180		89		
		190		9 _		
		ā*				
		200		8		

Part # 57082

www.absolutestandards.com

-	יַ ע	ָבָּי. לָ	# t	ਲੂ ;	As	dS	2			
70.02	3 6	3 5	201	3 6	3	& 20.02	40.02			
1	3 5	3 5) د	3 5	<u>ئ</u>	င္မ	Ω			
20.02	3 8	3 6	3 5	2 6 6	3	402	40.02			
All	ç	2 5	2 8	5 5	i		Дy			
20,02	2002	20.02	20.02	2002	600	A 007	40.02	desire est notes of the		
3	1 5	¹ 'ਫ਼	1 15	' b	1 2	5)H		_	ا
Þ	20.02	A) 12	40,02	20.02	20.02	3	20.02	AND DESCRIPTIONS	race Me	
Z	Mo	H9	M	<u>M</u>	` <u>[</u>	7	Ε	i	tals	-
40,02	40.02	40.2	△0.02	10.0	2002	3	40.02		Verifica	
K	7	7	P	Ç	N	1	Z		tion	١
402	<0.02	40.02	40.02	40.02	20.02		40.02		by ICP-I	
Sc	Sm	R	중	꺔	8	:	P		S S	ı
<0.02	<0.02	<0.02	<0.02	40.02	20.02	000	40.02	ľ	Jig/mL)	
Ta	S	Sr	N	₽	2	2 5	e			ı
40.02	40.02	20.02	402	40.02	40.02	201	A3			
Ti	Sh	Tm	Ħ	Ħ	Te	5				
40.02	40.02	△0.02	₫.02	40.02	40.02	20.02	200			
Zr	Zn	×	44	۷	c	4				
₫,02	40.02	₫.02	△0.02	40.02	40.02	20.02	2003			

Physical Characterization:

(1)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- * All standard containers are meticulously cleaned prior to use.

the preparation of all standards.

- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

M5768 [M576] (B) R:1/3/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Magnesium nitrate hexahydrate (Mg) IN030 маровгозат Compound Nominal Concentration (µg/mL): m/z-> ~-z/m m/z-> Weight shown below was diluted to (mL): Recommended Storage: 2.0≡4 1.0E4 5.0E5 1.0E6 1000 2000 NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 쭕 **BTUB** 58112 091823 10000 Ambient (20°C) (M5+18), (M5+16) 091826 Magnesium (Mg) Number 120 ğ 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.02 0.058 Flask Uncertainty 10000 Nominal 130 230 30 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) (%) 140 0.10 240 40 Solvent: 24002546 Nitric Acid 8.51 150 234.9118 Weight (g) Target Lot # Ē Weight (g) Conc. (µg/mL) 234.9126 Nitric Acid Actual 160 260 0 10000.0 Actual 170 6 +/- (µg/mL) Expanded Uncertainty Reviewed By: Formulated By: 20.0 180 80 13446-18-9 (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Pedro L. Rentas Lawrence Barry 190 **SDS Information** Ö Z 200 100 orl-rat 5440 mg/kg 3131a 091823 091823 SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	[171	<u></u>	(22)	5>	Sb	5>			
	۴	. 22.	<u>ਨੰ</u>	<u>a</u>	- 2	<u> </u>				
	40,02	0.02	10.00	<0.02	402	<0.02	<0.02			
	5	ප	유	Ĉ	ද	ದ್	Ω	i		
	A).02	40.02	40.02	40.02	△0.02	40.2	<0.02			
	Au	ල	Ga	2	E	戽	Dy			
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
	7	La	Fe	F	Б	Но	出			
	<0.02	40.02	40.2	△0.02	<0.02	<0.02	<0.02		Trace Mo	
	æ	Mo	Hg	Mn	Mg	Ę	Ξ:		fetals	
Ì	<0.02	<0.02	40.2	<0.02]	<0.02	<0.02		Verifica	
	×	면	7	Pd	õ	\$	Z		tion	
	40.2	40.02	<0.02	40.02	<0.02	<0.02	<0.02		by ICP-N	
	જ	Sm	Ru	Rb	Rh	Re	P		rl) SV	
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		g/mL)	
	Ta	rs.	Sr	Na	å	ξ;	Se.			l
	<0.02	40.02	<0.02	<0.2	<0.02	<0.02	40.2			
	Ti	Sn	Im	Th	Ħ	Te	σľ.			
	<0.02	40.02	40.02	40.02	40.02	40.02	<0.02			
	Zr	2	×	₩	<	c	¥			
	<0.02	40.02	40.02	△ 0.02	A0.02	♦ 0.02	40.02			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

M5768 [M576] (B) R:1/3/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Magnesium nitrate hexahydrate (Mg) IN030 маровгозат Compound Nominal Concentration (µg/mL): m/z-> ~-z/m m/z-> Weight shown below was diluted to (mL): Recommended Storage: 2.0≡4 1.OE4 5.0E5 1.0E6 1000 2000 NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 쭕 **BTUB** 58112 091823 10000 Ambient (20°C) (M5+18), (M5+16) 091826 Magnesium (Mg) Number 120 ğ 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.02 0.058 Flask Uncertainty 10000 Nominal 130 230 30 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) (%) 140 0.10 240 40 Solvent: 24002546 Nitric Acid 8.51 150 234.9118 Weight (g) Target Lot # Ē Weight (g) Conc. (µg/mL) 234.9126 Nitric Acid Actual 160 260 0 10000.0 Actual 170 6 +/- (µg/mL) Expanded Uncertainty Reviewed By: Formulated By: 20.0 180 80 13446-18-9 (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Pedro L. Rentas Lawrence Barry 190 **SDS Information** Ö Z 200 100 orl-rat 5440 mg/kg 3131a 091823 091823 SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	[171	<u></u>	(22)	5>	Sb	5>			
	۴	. 22.	<u>ਨੰ</u>	<u>a</u>	- 2	<u> </u>				
	40,02	0.02	10.00	<0.02	402	<0.02	<0.02			
	5	ප	유	Ĉ	ද	ದ್	Ω	i		
	A).02	40.02	40.02	40.02	△0.02	40.2	<0.02			
	Au	ල	Ga	2	E	戽	Dy			
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
	7	La	Fe	F	Б	Но	出			
	<0.02	40.02	40.2	△0.02	<0.02	<0.02	<0.02		Trace Mo	
	æ	Mo	Hg	Mn	Mg	Ę	Ξ:		fetals	
Ì	<0.02	<0.02	40.2	<0.02]	<0.02	<0.02		Verifica	
	×	면	7	Pd	õ	\$	Z		tion	
	40.2	40.02	<0.02	40.02	<0.02	<0.02	<0.02		by ICP-N	
	જ	Sm	Ru	Rb	Rh	Re	P		rl) SV	
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		g/mL)	
	Ta	rs.	Sr	Na	å	ξ;	Se.			l
	<0.02	40.02	<0.02	<0.2	<0.02	<0.02	40.2			
	Ti	Sn	Im	Th	Ħ	Te	σľ.			
	<0.02	40.02	40.02	40.02	40.02	40.02	<0.02			
	Zr	2	×	₩	<	c	¥			
	<0.02	40.02	40.02	△ 0.02	A0.02	4 0.02	40.02			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number: 57004 102523 02/09/24 Lot # Solvent:

24002546 Nitric Acid

2.0% (IE)

Nominal Concentration (µg/mL):

NIST Test Number:

BTU₉ 1000

Volume shown below was diluted to (mL):

2000.02

0.058

Flask Uncertainty Balance Uncertainty

5E-05

Number

Part

Lot

58104

Recommended Storage:

Ambient (20 °C) 102526

Expiration Date:

Lot Number: Description:

Beryllium (Be)

40.0

Nitric Acid

Benson Chan

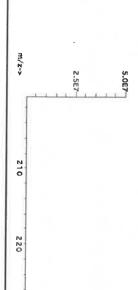
102523

Formulated By:

Reviewed By:

Pedro L. Rentas

102523


(Solvent Safety Info. On Attached pg.) SDS Information

Expanded

091423 Number 0.1000 Dilution Factor Vol. (mL.) 200.0 hitia Pipette (mL) Conc. (µg/mL) Uncertainty 0.084 Nominal 98 Conc. (µg/mL) 10001.5 Conc. (µg/mL) 1000.0 Final +/- (µg/mL) Uncertainty 22 13597-99-4 CAS# OSHA PEL (TWA) 0.2ug/m3 intryns-rat 3.16mg/kg LD50 NIST SRM ₹

m/z-> 1.0E4 2.0€4 [1] Spectrum No.1 [Z9.233 sec]:58004R.D# [Count] [Linear] 70 20 30 40

1. Beryllium nitrate (Be)

230

240

250

260

m/z->

011

120

130

140

051

160

170

180

190

200

2.5E7

5.0E7

50

60

70

80

90

100

Part # 57004

800-368-1131

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verificat	cation	by ICP-M	(J) SI	ua/mL)						
	TATES AND AND		District Color	ACCOUNTS OF		STATE OF	STATISTICS OF THE PARTY.	SOMETHINGS.	STATE OF STATE OF	SAMOOGE STATE	SECOND SPIRES	No. of Concession, Name of Street, or other Persons, Name of Street, or ot	. 18						
F	<0.02	3	<0.02	Ďλ	<0.02	HL	<0.02	Li	<0.02	z	<0.02	Ā	<0.02	Se	<0.2	T.	<0.02	M	<0.02
Sp	<0.02	ථ	40.2	à	₹0.02	He	A0.02	3	<0.02	£	<0.02	Re	<0.02	Š	<0.02	ę	₹0.05	Þ	<0.02
As	<0.7	ඊ	<0.02	립	₩	ម	₹0.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	≪0.02	>	₹0.02
Ba	<0.02	ర	<0.02	3	<0.02	ㅂ	40.02	Mn	<0.02	2	<0.02	8	<0.02	Z	40.2	Ħ	<0.02	2	<0.02
æ	Т	Ç	40.02	Ğ	40.02	2	40 2	Hg	<02	Δ,	<0.02	Ru	<0.02	š	<0.02	Tm	₹0.02	×	<0.02
洒	<0.02	රි	<0.02	පී	<0.02	ឌ	40.02	Mo	<0.02	武	40.02	Sm	<0.02	S	<0.02	S	<0.02	2	<0.02
æ	<0.02	ರೆ	<0.02	Au	<0.02	£	40.02	PK	<0.02	M	<0.2	S	40.02	Ta	<0.02	F	<0.02	Z	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

All standard containers are meticulously cleaned prior to use.

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

1224

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Description: Lot Number: 57050 071123 Tin (Sn)

Salvents: 21110221

Nitric Acid Hydrochloric acid

Lot #

22D0562008

Nominal Concentration (µg/mL): Recommended Storage: **NIST Test Number:** Expiration Date: 1000 Ambient (20 °C) 071126

Weight shown below was diluted to (mL): **BTU9** 499.93

1. Ammonium hexafluorostannate(IV) (Sn)

IN010 SND042023A1

1000

0.10

44.2

1.13107

1.13286

RM#

Number

Conc. (µg/mL) Nominal

(%)

Uncertainty Assay
Purity (%) (%)

Weight (g) Target

Actual

ρţ

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

> 10.0 30.0

3 6%

Nitric Acid

Formulated By:

Benson Chan

071123

Hydrochloric acid

Reviewed By:

071123

Pedro L. Rentas

Expanded

Weight (g) Conc. (ug/ml.) 1001.6 Actual +/- (µg/mL) Uncertainty 2.0 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 7 mg/m3 ₹ SRM

3161a

m/z-> ---x/m --Z/111 2.5E4 5.0E4 1.0ES 2.0E6 2.5E5 S.OEG [1] Spectrum No.1 210 110 0 120 220 N [15.034 sec]:58150.D# [Count] [Linear] 230 130 8 240 140 40 250 150 Ö 160 260 60 170 70 180 80 190 90 200 100

Part # 57050

	AI Sh	I
	4000 4000 4000 4000 4000 4000 4000 400	
	58555	ı
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	A C C C E E P	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	HH Ho In Fe	
	40.02 40.02 40.02 40.02 40.02	Irace N
	Mo Min Li	1etal:
e1 = U	40.02 40.02 40.02 40.02 40.02	s Verific
T) = Tamet anak/a	× 7 × 8 8 8 × 1	ation
	44444	by CP-
	S R R R R P	7) SM
	40.02 40.02 40.02 40.02 40.02	Ja/mL)
	Z S Z Z S	
	40.02 40.02 40.02 40.02 40.02 40.02	
	T T T T T	
	40.02 40.02 40.02 40.02 40.02	
	* * * * * * * * * * * * * * * * * * *	
	000 000 000 000 000 000	

(I) = larget analyte

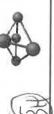
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

R: 02109124

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com 091923 091923 (Solvent Safety Info On Attach SDS Information Pedro L. Rentas Lawrence Barry Formulated By: Reviewed By: Expanded Nitric Acid Final Nitric Acid 40.0 (III) hital 24002546 2.0% Nominal Balance Uncertainty Flask Uncertainty 5E-05 0.058 Initial 2000.02 Dilution Ambient (20 °C) Cobalt (Co) Volume shown below was diluted to (mL): 57027 091923 091926 ĕ 1000 **6UTB** Part Description: **Expiration Date:** Recommended Storage: Nominal Concentration (ug/mL): NIST Test Number: Part Number: Lot Number: CERTIFIED WEIGHT REPORT:

						TANK BURNE	10000	CHICAGO CONTROL CONTRO	URCH LABILLY	ianioc)	(Solvent Safety Into, On Attached pg.)	rttached pg.)	202
Compound	Number	Number	Factor	Vol. (mL)	Pipette (mL) C	conc. (ug/ml.)	Conc. (µg/mL)	Conc. (ug/ml.)	+/- (ng/mL)	CAS#	Number Number Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA)	1050	SRM
Cobatt(II) nitrate hexahydrate (Co) 58127 050923 0.1000 200.0	58127	050923	0.1000		0.084	1000	10000	100001	9.0	10008.000	000	700	
							20000		7:5	100c0-22-9	O.UZ ING/ITI3	STEE 10020-22-9 0.02 mg/ms on-rat 691 mg/kg 3113	3113
2000	Z Ezz	1.0	9 4 0 4 G	Cau. Co	CHARLE WO	[1] Specifical No.1 Cat. 04.04% pool: nacotation of the partition of the p							

1.0E6	5.0E5	m/z->	5.0E7	1.0E8	5.0E7
				F	
		.0		0	
		0		120	
L 34-243 Secj.baok7.D# [Count] [Linear]		Ō		130	
		.0		140	
		.09		150	
		. O		160	
				170	
		02			
		80		160	
		00		180	
		100		200	

Lot # 091923

250

240

230

220

010

W/Z->

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifical	tion	by ICP-M	4S (F	ig/mL)						
1							STREET, STREET	No section lives	ALL DESCRIPTION OF THE PERSON	10.000	Market Mark	MINNSH.	San Salar Salar	NAME OF TAXABLE PARTY.	Service of the last	SECOND STATES		THE PERSON NAMED IN	STREET, SQUARE,
IV	<0.02	ಶ	1	Š	40.02 Dy 40.02	Ħ	<0.02	П	<0.02	Z	<0.02	Æ	<0.02	8	<0.2	£	<0.02	A	<0.02
ౙ	40.02	రే	40 7	占	<0.02	H9	<0.02	.3	₹005	Ź	₹0.02	2	<0.02	Š	40.02	T _e	40.05	ם	40.02
As	Q 5	ප	40.02	呂	40.02	ų	<0.02	Mg	10.05	ő	₹0.02	됩	<0.02	Ag	40.02	F	<0.02	>	Ø.02
쯃	40.02	చ	40.02	3	4002	ㅂ	<0.02	Ma	<0.02	콘	₹000	2	40.02	N _a	40.2	Ę	20:0>	Ŗ	Ø.02
2	¥0.01	ඊ	20.0 2	පී	40.02	હ	40.2	쁀	\$ 20	م	₹0.02	콥	40.02	Şt	40.02	Tm	Ø.02	7	Ø.02
遥	40.02	රි	۳	Ğ,	4002	ដ	<0.02	Mo	40.02	Æ	20'0 >	S	<0.02	S	40.02	Sn	40.02	Zn	Ø.02
æ	<0.02	ට්	<0.02	Αn	<0.02	윤	Z0'0>	P	<0.02	м	40.2	S	<0.02	Fee Fee	40,02	Ħ	Ø.02	72	Ø.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Lot # 091923

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M5801

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Arsenic (As) Compound Nominal Concentration (µg/mL): M/2-> m/z-> -z/m 5.OE4 2.5E4 Recommended Storage: 1.0E5 2.0ES 1000 Volume shown below was diluted to (mL): 500 **NIST Test Number: Expiration Date:** Part Number: Description: Lot Number: [1] Spectrum No.1 210 110 0 58133 Number Part **SUTB** 1000 111326 57033 111323 Ambient (20 °C) Arsenic (As) 020522 Number 120 D D ONN NO [34.433 sec]:57033.D# [Count] [Linear] 0.1000 4000.0 Dilution Factor 230 130 30 Vol. (mL) 5E-05 400.0 initial 0.06 Pipette (mL) Conc. (µg/mL) Flask Uncertainty Balance Uncertainty Uncertainty 240 140 40 0.084 24002546 Nominal 2.0% Lot # 100 250 160 50 Conc. (µg/mL) Conc. (µg/mL) Nitric Acid 10001.0 Solvent: Initial 80.0 260 160 60 Nitric Acid 1000.0 Fina 170 0 Formulated By: Reviewed By: +/- (µg/ml.) Uncertainty Expanded 2.0 180 Thomas 80 7440-38-2 (Solvent Safety Info. On Attached pg.) 190 OSHA PEL (TWA) Pedro L. Rentas Lawrence Barry 90 SDS Information 0.5 mg/m3 100 000 orl-rat 500 mg/kg LD50 111323 111323 3103a NIST SRM

Printed: 2/8/2024, 5:01:04 PM

	- H H H > /0 >	8	-
	AS Sb Ba Bi Bi		
	4002 4002 4002 4002 4002		
	5 8 ជ ង 8 ជ ប		
	402 402 402 402 402 402 402 402 402 402		
	₹ ७८८ = = ⊅		
	6000 6000 6000 6000		
	322428		
	40.02 40.02 40.02 40.02 40.02	Trace N	
	N H M L L	letals	
9	40.2 40.2 40.2 40.2 40.2	Verifica	
= Target	M R P B O R R	E S S	
Target analyte	40.02 40.02 40.02 40.02	by ICP-N	
	S R R R R R	id) St	
R	4444 444 444 444 444 444 444 444 444 4	g/mL)	
	Ta Sr Na Sc		
	40.2 40.2 40.2 40.2 40.2 40.2		
	######################################		
(+)	40.02 40.02 40.02 40.02 40.02 40.02		
	Z Z Y Z < C &		
	40.02 40.02 40.02 40.02 40.02		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R102109124

MURIC

Solvent: 21110221

Nitric Acid

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: **Lot Number:**

57115 041723

Description:

Phosphorous (P)

Expiration Date:

041726

Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: 10000 Ambient (20 °C)

BTUB

5E-05 Balance Uncertainty

Weight shown below was diluted to (mL): 2000.02

Number 5 Conc. (µg/mL) Nominal 0.058 Flask Uncertainty Purity 3 Uncertainty Assay Purity (%) E Target

1. Ammonium dihydrogen phosphate (P)

IN008 PV082019A1

10000

99,999

0.10

27.5

RM#

Compound

22%

40.0

Nitric Acid

Formulated By:

Lawrence Barry

041723

into

Reviewed By:

Pedro L. Rentas

Expanded SDS Information 041723

Weight (g) 72.7287 Weight (g) Conc. (ug/mL) 72.7289 Actual 10000.0 Actual +/- (µg/mL) Uncertainty 20.0 7722-76-1 CAS# (Solvent Safety Info. On Attached pg.)

OSHA PEL (TWA) LD50 5 mg/m3 orl-rat >2000mg/kg 3186 NIST SRM

Part # 57115

1 of 2

	Γ						, .		Г	
	F	3 <u>5</u>	i Re	, 5	AS —	9	# ≥			
	20.02	20.02	10.0	20.02	202	20.02	40.02	A STATE OF THE PERSON NAMED IN		
	2	, S	ť	ů	£	. E	S			
	A),02	A0.02	A)02	40.02	6 002	40.2	40.02	MANAGE SHAFTER		
	æ	ှင့	୍ଷଳ	8	먑	É	Dy	Section 2		
	A0.02	A.02	40.02	∆ 0,02	40.02	40.02	40.02	William Constitution		
	3	5	놂	r r	ıl	H	Hf	1	1	
	∆ 0,02	40,02	6 22	40.02	40.02	40.02	40.02		Trace Me	
	Æ	Mo	Hg	Mn	Mg	Ţ	Е		letals	I
Townst analytic	40.02	A),02	402	40.02	0.01	40.02	<0.02		Verifica	
	~	ጀ	۳	2	ŝ	₹	Z		tion	
	A	40,02	7	40.02	40.02	40.02	40,02		by ICP-N	
	Sc	Sm	R _L	25	R.	æ	27	Į.	E SI	
	40.02	40.02	40.02	40.02	40.02	A 02	40.02	ľ	g/mL)	The second second
	T _B	S	Ş	Z	¥	S	&			
	40.02	∆ .02	6.02	<u>\$</u>	∆ 0,02	40.02	40.2			
	17	Sh	T	₽	ㅂ	Te	4L			
	<0.02	<0.02	<0.02	∆ 0.02	40,02	40,02	40,02	Machine Marie		
	Zr	Zn	Υ.	\$	<	Ϥ	W			
	<0.02	6002	A).02	∆.02	∆ 0.02	A0.02	40.02	TO THE REAL PROPERTY.		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

*All Standards should be stored with caps tight and under appropriate laboratory conditions.
*Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

R1 02/09/124 Certified Reference Material CRM

M5816

CERTIFIED WEIGHT REPORT

Part Number:

Lot Number: Description:

57016 122923

Solvent:

122923

ASTM Type 1 Water

Lot #

Expiration Date: 122926 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 1000

Recommended Storage:

Ambient (20 °C)

Weight shown below was diluted to (mL): 4000.0 5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Nominal

Purity

Uncertainty Assay

Target

Actual

Uncertainty

Expanded

Reviewed By:

Pedro L. Rentas

122923

tento

Formulated By:

Benson Chan

122923

 Ammonium sulfate (S) IN117 SLBR7225V Number Conc. (µg/mL) 1000 99.9 38 Purity (%) 0.10 24.3 38 Weight (g) 16.4979 Weight (g) Conc. (µg/mL) 16.4980 1000.0 +/- (µg/mL) 20 7783-20-2 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 ¥ orl-rat 4250mg/kg 3181 SRM

1/Z-V m/z-> m/z-> N.SES S.OEB 5.OE7 1.0**E**8 N. SES 5.0E5 [1] Spectrum No. 1 210 110 0 120 ななり 0 [33.603 sec]:57016.D# [Count] [Linear] 130 230 30 140 240 40 250 150 000 160 200 00 170 0 180 80 190 00 200 100

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

109/24

M5817

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: 071123 57116

Solvent:

071123

ASTM Type 1 Water

Burense

Formulated By:

Lawrence Barry

071123

Lot #

Expiration Date: Description: 071126 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 10000 Ambient (20 °C)

Recommended Storage:

EU1B

Weight shown below was diluted to (mL): 1999.48 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Pedro L. Rentas SDS Information

 Ammonium sulfate (S) IN117 SLBR7225V 10000 99.9 0.10 24.3 82.4675 82,4682 10000.1 20.0 7783-20-2 Z orl-rat 4250mg/kg 3181

Number Ĕ Conc. (µg/mL) Purity 8 Uncertainty Assay Purity (%) 8 Weight (g) Target Weight (g) Conc. (µg/mL) Actual Actual +/- (µg/mL) OSHA PEL (TWA)

Expanded

071123

Uncertainty (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 SRM NIST

m/z->	1.005	m/z-> 2.0E5	2.5E5	5.0E5	1000	2000
0		110		0		
N N O		120		20		
230		130		3 0		
24		140		40		
250		150		50		
260		190		8		
		170		70		
		180		8.		
		190		90		
		200		100		

	BE BE BE
	002 002 002 002
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
•	594445
	40.22 40.22 40.22 40.22
	≥ 유요요 프 무 ▽
	40.02 40.02 40.02 40.02 40.02
	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	40,02 40,02 40,02 40,02 40,02 40,02
	Li Li Mg Mn Hg
(T)= Tarnet anakre	Verifica
onak.	K P P B S S N
5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	S S S S S S S S S S S S S S S S S S S
	(µg/mL)
	Ta Sr Na Se
	40.22 40.02 40.02 40.02 40.02 7 7 40.02
	To T
	60000000000000000000000000000000000000
	Z
	666666666666666666666666666666666666666

Physical Characterization:

(1)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

109/24

Solvent: 24002546 Nitric Acid

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: M.5818

Part Number: Lot Number: Description: 57014 122023 Silicon (SI)

Expiration Date: 122026

2%

Nitric Acid

Formulated By:

Aleah O'Brady

122023

Areah o Brasky

Reviewed By:

Pedro L. Rentas

122023

SRM

Œ. 40.0

Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: 6UTB 1000 Ambient (20 °C)

Weight shown below was diluted to (mL): 1999.48 5E-05 Balance Uncertainty

0.058 Flask Uncertainty

	11 -
Ammonium hexafluorosilicate (Si)	Compound
10009 :	RM#
SID082022A1	Lot
IN009 SID082022A1 1000 99.999 0.10 14.4 13.8854 13.8855	Lot Nominal Purity Uncertainty Assay Number Conc. (µg/mL) (%) Purity (%) (%) W
99.999	Purity (%)
0.10	Uncertainty Purity (%)
14.4	Assay (%)
13.8854	Target Weight (g)
13.8855	Actual Weight (g)
1000.0	Actual Conc. (µg/mL)
2.0	Expanded Uncertainty +/- (µg/mL)
16919-19-0	(Solven
1000.0 2.0 16919-19-0 2.5 mg/m3	Expanded SDS Information Actual Uncertainty (Solvent Safety Info. On Attached pg.) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50
orl-mus 70 mg/kg	on Attached pg.)

m/z->	5.0E5	m/z->	1.026	m/z->	2500	\$1 0 0
						E 8
210		0		1		[1] Spectrum No.1
						3 2 0.1
220		20		N.		-
N						31.393
230		130		G of .		8ec]:
240		4.0		4		31.393 sec]:58014.D# [Count] [Linear]
0		0:		:		(C)
250		150		Ø.		
						inear]
200		160		0 .		
				.d. .d.		
		170		70		
		, d		0		
		80		80		
		19. O		0		
		NOO		100		

Part # 57014

Lot # 122023

Ţ.	5	B	ķ	7 5	# :	As	30	2	A	i	Ī	
ŀ	_	_	_			_	_	_	1			
70.02	3	<u> 0</u> 02	10.05	20.02	3 1	8	20.02		40.02	The state of the s		
2	?	င	7	, Ç	3 8	<u>ئ</u>	S.	1	2			
\$0.02	3	A).02	<0.02	20:02	3 6	3	40.2	40.04	20.02	技術を表を言いて		
A		ಕ್ಕ ಕಾ	G	ğ	2 5	न इ	Ē,	5	7	2000 mg/mg/		
20.02		A) (2)	A)22	40.52	6.02	3	40.02	20.02	000			
Ğ	! }		'	H	۱ ا	7	픙	111	AB.			٠
40.02	40.0	3	60.2	40.02	20.02	3	∆ .02	20.02	000	SOMEON PROPERTY.	Hace M	,
Nd	10.00	5	8H	Mn	. 00		Ē	E	1		verais	
<0.02	10.07	3	6 02	40,02	10.03	2	∆ 0,02	20.02			Verifica	11
×	2	Ş	٦	Pd	ç	,	\$	2	1		HOD	
40.2	20.02	3	∆0.02	40,02	40.02		8.00	20.02		ŀ	by ICP-I	
જ	300	2	₽	R	2	!	7	7		ļ	E S	
40.02	20.02	3	40.02	20.0≥	40.02		8	<0.02		ľ	g/mL)	
Ta	v	,	S.	Z	A A		2	Se				I
& .02	20.02	3	83.6	40.2	40.02		-1	40.2		-		
Ħ	Sn	,	ď	Ħ	Ħ	,	7	7				
40.02	20.02		20.02	40.02	40.02	20.02	3	40.02		The Real Property lies		
Z	70	,	<u> </u>	\$	<	-	=======================================	¥				
∆ 0.02	40.02	1010	A	40.02	40.02	10.02	3	40.02	O) SOUTHWOOD			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

2 02/na

ング

Solvent: 24002546

Nitric Acid

F Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Part Number: Lot Number: 58030

Description:

111623 Zinc (Zn)

Ambient (20 °C) 111626

Expiration Date:

Nominal Concentration (µg/mL): Recommended Storage:

NIST Test Number:

BTU9 1000

5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Weight shown below was diluted to (mL):

3000.4

5

Nominal

Purity

Uncertainty Assay

Target

Actual

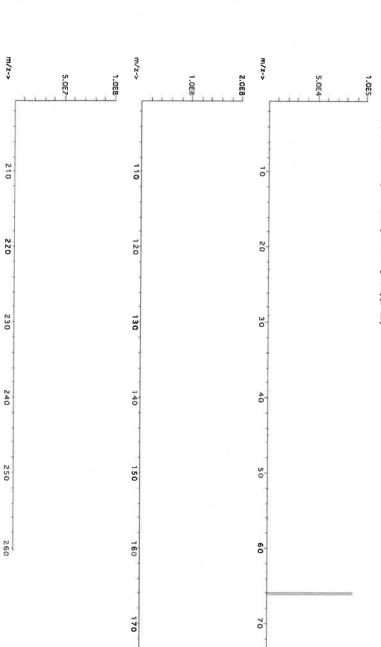
Actual

Uncertainty

Expanded

84 60.0 <u>a</u>

Nitric Acid


Formulated By: Benson Chan

111623

Reviewed By: Pedro L. Rentas

111623

Zinc nitrate hexahydrate (Zn) Compound [1] Spectrum No.1 [31.103 sec]:58130.D# [Count] [Linear] IN016 ZNE032021A1 RM# Number Conc. (µg/ml.) 1 000 99.999 8 Purity (%) 0.10 24.3 3 Weight (g) 12.3475 Weight (g) Conc. (µg/ml.) 12.3502 1000.2 +/- (µg/mL) 2.0 10196-18-6 CAS# OSHA PEL (TWA) orl-rat 1190mg/kg 3168

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 **SDS** Information SRM SRM

200

100

	BE BE S S A	Г	
	4002 4002 4002 4001 4002 4002		
	585855		
	40.02 40.02 40.02 40.02 40.02		
	26 6 5 5 E E D		
	000000000000000000000000000000000000000		
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		
	40.00 40.00 40.00 40.00 40.00 40.00	Trace Me	
	Mo Mg LL	letals	
Threat and the	40.02 40.02 40.02 40.02 40.02	Verifica	
	X Y T R Q S Y X	tion	
	40.22 40.22 40.22 40.22	by ICP-	
	S E E E E F	Š	
	66666666666666666666666666666666666666	(ug/mL)	
	Ta Sr Za Ag		
	402 402 402 402 402		
		1	
	000 000 000 000 000 000 000 000 000		
100	22×2<=		
	\$ 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

^{*} All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Lot #

Part Number: Lot Number: Description: 57015 091123 Phosphorous (P) Solvent: 24002546 2% 40.0 Nitric Acid Nitric Acid

Formulated By:

Lawrence Barry

091123

Pedro L. Rentas

091123

SDS information

rento

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 091126 Ambient (20 °C) (JE)

Weight shown below was diluted to (mL): **NIST Test Number:** BITUB Lot 2000.02 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Uncertainty Reviewed By: Expanded

 Ammonium dihydrogen phosphate (P) IN008 Pvos2018A1 [1] Spectrum No.1 RM# Number [12.074 sec]:58115.D# [Count] [Linear] Conc. (µg/mL) 1000 99.999 3 Purity (%) 0.10 27.5 3 Weight (g) 7.2729 Weight (g) Conc. (µg/mL) 7.2730 1000.0 +/- (µg/mL) 2.0 7722-76-1 CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 5 mg/m3 rl-rat >2000mg/ki 3186 SRM

Part # 57015

--z/m

210

220

230

240

250

260

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ľ	В	<u> </u>	Ħ.	뮸	200	Ę,	3		ş	2	4		
		A 022	20.02	3	- 60 10	70.02	3	70		A	2002	200		
ř.		<u>ნ</u>	8	,	Ω	Ç	?	g		<u>ප</u>	2	2		
		A 23	20705	3	A 20.02	20.02	3	40.02		2	20,02	3		
		A II	Ę	1	ට ව	2	2	달	2	Į,	Ų			
		3	40.02		3	♦0.02)	8	20.02	3	∆ .02			
		ÿ	<u>_</u>		₹1	4		<u> </u>	0.0	F .	H	1		
	2000	3	<u> </u>	4.4	3	∆ 02		6 002	20.02	3	40.02	-		Trace M
	i de	ž	š	200	Ç	¥	9	X	Į,	•	5			<u>P</u>
3	20,02	3	<u>8</u>	7.03	3	∆ 0,02	1000	<u>^</u>	40,02	2	A 0,02			Verifica
Target	ŀ	4	7	7	,	Z	Ş	Ş	S		Z			†:
Target analyte	ê	9	A)	_		8	10:04	3	A0.02		A) (2)		3	אי וכפרו
	Se.	•	S	¥.	,	루	2	P	₽	:	Ŗ	Manager Street	F	100
	40.02		A S	40.02		A	70.05	3	<u>\$</u> 0.02	***************************************	A		g/ IIIL)	7
	Ta	,	^	ş		Z.	A	•	S	ş	ß	SANSON COM		
	40.02	70.02	3	∆ 0,02	Į.	3	20,02	3	∆	ć	3			
	111	ě	?	Ĭ'n	Ē	;	Η	!	7	č				
	40.02	70.02	3	∆0,02	2000	3	∆ 0.02	2	200	20.02	300			
	Zr	2	7	<u>~</u>	16	\$	\ -		9	*				
	40.02	20.02	3	\$00 200 -	70.0>	3	<u>6</u> 0.02		A) (2)	20.02				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Reference Material CRM

Lot #

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

 Nickel(II) nitrate hexahydrate (Ni) Nominal Concentration (µg/mL): m/z-> Weight shown below was diluted to (mL): Recommended Storage: NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 210 110 0 N033 NIM052023A1 RM# 6UTB 57028 041124 1000 Ambient (20 °C) 041127 Nickel (Ni) Number <u>6</u> 220 20 [12.374 sec]:58128.D# [Count] [Linear] Conc. (µg/mL) Nominal 249.85 100 230 130 30 0.002 Flask Uncertainty 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) 0.10 240 140 40 **Solvent:** 24002546 8 2% 250 150 Weight (g) 50 1.2369 Target 1 5.0 Nitric Acid Nitric Acid Weight (g) 1.2369 Actual 260 160 60 Conc. (µg/mL) 1000.0 Actual 170 0 Reviewed By: +/- (µg/mL) Formulated By: Uncertainty Expanded 2.0 180 80 13478-00-7 CAS# (Solvent Safety Info. On Attached pg.) Pedro L. Rentas Brian Geddes 190 90 OSHA PEL (TWA) SDS Information 1 mg/m3 200 100 orl-rat 1620 mg/kg 041124 041124 3136 NIST SRM

								Ггасе Ме	tals	Verifica	tion	by ICP-I	Sh (μg/mL)						
>	1		1	40.02	Dy	<0.02	HH.	<0.02	11	<0.02	Z.	T	Pr	<0.02	Se	<0.2	4T	<0.02	*	<0.02
Sb	6 <0.02	2 Ca		<0.2	퍾	<0.02	Но	<0.02	Ē	<0.02	\$	<0.02	Re	40.02	S:	<0.02	Te	<0.02	ď	40.02
≥			_	<0.02	臣	<0.02	F	<0.02	Mg	40.01	ဝွ	<0.02	R.	<0.02	Ag	<0.02	∄	<0.02	<	40.02
Ba				<0.02	වු	<0.02	۲	<0.02	M	<0.02	Pd	<0.02	RЪ	<0.02	Na.	40.2	Ħ	<0.02	\$	40.02
Ве	_			<0.02	G	<0.02	Fe	<0.2	Hg	40.2	Þ	<0.02	Ru	40.02	S.	<0.02	Tm	<0.02	×	40.02
Bi				<0.02	දු	<0.02	La	<0.02	Mo	<0.02	¥	<0.02	Sm	40.02	S	<0.02	Sn	<0.02	Zn	40.02
В	H		r	<0.02	Au	<0.02	Pв	<0.02	M	<0.02	×	<0.2	Sc	<0.02	Ta	<0.02	11	<0.02	Zr	<0.02
										(T) - Towas analys		that								

= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certified by:

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

^{*} All standard containers are meticulously cleaned prior to use.

^{*} Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

^{*} Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5962 R! 06/14/24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->		i,	m/z->		10 c	÷ is	1. Selenium (Se)	Compound		<		Nominal Co	Re			CERTIFIED WEIGHT REPORT	מדודודה שובום
210	1.008	2.008	110	1.008	/z-> 10	[1] Spectrum No.1				Volume shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	1	Lot Number: Description:	Part Number:	1 11000H
0			0		Ū	Z	58134	Number	Part	as dilute					lie ie ii	_	
220			120		N 0	r.	071223	Number	Lot	d to (mL):	6UTB	1000	Ambient (20 °C)		060624 Selenium (Se)	57034	
Ŋ			<u></u>		ω	3.702	0.1000	Factor	Dilution	2000.07			<u>೦</u>		Se)		
230			130		90	sec]:58	200.0	Val. (mL	Initial	0.100	5E-05						
240			140		40	33.702 sec]:58034.D# [Count] [Linear]	0.084	Vol. (mL) Pipette (mL) Conc. (µg/mL)	Uncertainty	Flask Uncertainty	Balance Uncertainty						
250			150		50	Count) [L	1000	Conc. (µg/mL)	Nominal	ťγ	ainty			2.0%	24007540	24002546	
260			160		. 60	inear 2	10002.5	Conc. (µg/mL	Initial				(mL)	40.0	Zin Zin	Solvent:	
0							1000.0	Conc. (µg/mL) Conc. (µg/mL)	Final					Nitric Acid			(1)
			170		70		2.2	.) +/- (µg/mL)	Uncertainty	Expanded	Reviewed By:	K	N	Formulated By:	M		10
			180		80		7782-49-2	C	(So		y:	200	11	Ву:			
			190		90		2 0.2 mg/m3	OSHA PEL (TWA)	(Solvent Safety Info. On Attached pg.)	SDS Information	Pedro L. Rentas	lenco		Benson Chan	M		
			200		100			NA)). On Atta	rmation	ntas	,	/	5			
			-		J		orl-rat 6700 mg/kg	LDS0	ched pg.)		060624			060624			
							3149	SRM	NIST		4			4-1		_	

							I race M	1etals	Verifica	lion	oy ICP-M	S (1)	g/mL)						
Al	40.02	CG	<0.02	Dγ	<0.02	HH	<0.02	11	<0.02	Z.	<0.02	Pr	<0.02	Se	H	16	40.02	W	40,02
SЪ	<0.02	ದ್ದ	<0.2	퍜	<0.02	н	<0.02	Į.	<0.02	₽	<0.02	Re	<0.02	S:	<0.02	Te	<0.02	U	<0.02
As	<0.2	ಕಿ	<0.02	핃	<0.02	Ħ	<0.02	Mg	<0.01	°	<0.02	Rh	40.02	Ag	<0.02	∄	40.02	۷	<0.02
Ва	<0.02	င္တ	<0.02	æ	<0.02	ŀ	<0.02	Mn	<0.02	Pd	40.02	₽.	<0.02	Na	<0.2	Ħ	<0.02	ታ	<0.02
Ве	40.01	ť	40.02	Ga	<0.02	F	<0.2	Hg	A02	P	<0.02	Ru	40.02	Sr	<0.02	Tm	<0.02	¥	<0.02
Bi	40.02	င္ပ	<0.02	ଦୁ	<0.02	Ľ	<0.02	Mo	<0.02	7	<0.02	Sm	40.02	S	<0.02	Sn	40.02	Zn	<0.02
В	<0.02	Cι	<0.02	Au	<0.02	Рь	<0.02	M	<0.02	×	40.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Z	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Refine your results. Redefine your industry.

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

Certificate of Analysis M5976, M5977 R : 02/22/24 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGMO1

Lot Number:

T2-MO720876

Matrix:

H2O

tr. NH40H

Value / Analyte(s):

1 000 µg/mL ea:

Molybdenum

Starting Material:

Ammonium Molybdate

Starting Material Lot#:

2361

Starting Material Purity: 99.9893%

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Value:

 $998 \pm 7 \, \mu g/mL$

Density:

1.000 g/mL (measured at 20 ± 4 °C)

Assav Information:

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3134 Lot Number: 130418

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRWRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) \{X_i\}$

X_i = mean of Assay Method : with standard uncertainty uchar i

wi = the weighting factors for each method calculated using the inverse square of

 $w_i = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{cs})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

u_{(s} = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results;

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

ucher a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
0.008000 M Zn
M Ag <
          0.000590 M Eu <
                           0.000300 M Na
                                            0.000879 M Se <
                                                                               0.000598
M AI
          0.000563 M Fe <
                          0.006500 M Nb <
                                            0.029000 i
                                                       Si <
                                                                     M Zr <
                                                                               0.001800
M As <
         0.002100 M Ga <
                          0.000300 i
                                     Nd <
                                                   M Sm <
                                                              0.000300
M
   Au <
         0.000300 M Gd <
                          0.000300 M Ni <
                                            0.008000 M Sn <
                                                              0.008900
М
   B <
         0.003300 M
                    Ge <
                          0.000300 M Os <
                                            0.000590 M Sr
                                                              0.000175
                           0.001800 i
М
   Ba
          0.001689 M
                    Hf <
                                     P <
                                                   М
                                                      Ta <
                                                             0.004200
M
  Be <
         0.000890 M Hg <
                          0.003300 M Pb <
                                            0.000300 M
                                                      Tb <
                                                              0.000300
         0.000890 M Ho < 0.000300 M Pd <
M Bi <
                                            0.001800 M
                                                      Te <
                                                             0.021000
  Ca
         0.006334 M In < 0.032000 M Pr <
0
                                            0.013000 M Th <
                                                             0.000300
O Cd <
         0.026000 M Ir < 0.000300 M Pt <
                                            0.000300 O Ti <
                                                             0.032000
M Ce <
         0.008300 M K
                           0.130213 M Rb
                                            0.004575 M TI
                                                             0.001266
M Co
         0.000598 M La < 0.000300 M Re <
                                            0.000300 M Tm <
                                                              0.000300
                           0.000059 M Rh <
M Cr
         0.000527 O Li
                                            0.000300 M U <
                                                             0.005300
M Cs
         0.000527 M Lu <
                           0.000300 M Ru <
                                            0.079000 M V <
                                                             0.000890
М
   Cu
         0.002252 M Mg
                           0.000563 i
                                     S <
                                                   M W
                                                             0.087982
М
   Dy <
         0.000300 M
                    Mn <
                           0.005900 M
                                     Sb
                                            0.001513 M Y <
                                                             0.000300
М
  Er <
         0.000300 s
                    Mo <
                                  M
                                     Sc <
                                            0.001200 M Yb <
                                                             0.000300
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94 +6 6,7,8,9 [MoO4]-2(chemical form as received)

Chemical Compatibility -Mo is received in a NH4OH matrix giving the operator the option of using HCl or HF to stabilize acidic solutions. The [MoO4]-2 is soluble in concentrated HCl [MoOCl5]-2, dilute HF / HNO3 [MoOF5]-2 and basic media [MoO4]-2. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO4]-2 chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF5]-2 for months in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the [MoO4]-2 chemically stable for years in 1% NH40H in a LDPE container.

Mo Containing Samples (Preparation and Solution) -Metal (Soluble in HF / HNO3 or hot dilute HCl); Oxide (soluble in HF or NH4OH); Organic Matrices (Dry ash at 450EC in Pt0 and dissolve oxide with HF or HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 95 amu	3 ppt	n/a	40Ar39K16O,79Br1
			6O,190Os2+,190Pt
			2+
ICP-OES 202.030 nm	0.008 / 0.0002 µg/mL	1	Os, Hf
ICP-OES 203.844 nm	0.012 / 0.002 μg/mL	1	
ICP-OES 204.598 nm	0.012 / 0.001 µg/mL	1	Ir, Ta

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRWRM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

- 10.1 ISO 9001 Quality Management System Registration
 - QSR Certificate Number QSR-1034
- 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"
 - Chemical Testing Accredited / A2LA Certificate Number 883.01
- 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"
 - Reference Material Producer Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 17, 2022

- The certification is valid within the measurement uncertainty specified provided the CRMRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 17, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date: _____
- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong Supervisor, Product Documentation

Meyer Trusing

Certificate Approved By:

Michael Booth Director, Technical Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Saine

Certificate of Analysis 6652M , 8782M

MORGANIC NE NE SE SEGENE YOU TREST

info@inorganicventures.com P: 800-669-6799/540-585-3030 P: 540-585-3030 R:2/22/24

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

ACCREDITATION / REGISTRATION

Number QSR-1034). the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (GSR Certificate INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

PRODUCT DESCRIPTION

Catalog Number:

Single Analyte Custom Grade Solution Product Code:

CGTN

2% (v/v) HNO3 :xintsM T2-TI719972 Lot Number:

muineill 1 000 hg/mL ea: Value / Analyte(s): tr. HF

Starting Material Lot#: 2094 Starting Material: Ti Metal

Starting Material Purity: 99.9975%

1002 ± 5 µg/mL Certified Value: **CERTIFIED VALUES AND UNCERTAINTIES**

1.012 g/mL (measured at 20 \pm 4 °C) Density:

Assay Information:

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 µg/mL Assay Method #1

The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance $\frac{1}{1000}$

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mosn of individual results:

 $(x_{a}) \; (x_{a}) \; (x_{$

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expressed at approximately the 95% confidence level using a coverage factor of $K=\Sigma$.

Characterization of CRM/RM by One Method Characterization of CRM/RM by Two or More Methods

4.0 TRACEABILITY TO NIST

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWIRMs.

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of ore each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of the property of the property

e2 M 078220.0 > gN O 882000.0 > u3 M 8g < 0.000536 M Eu <

ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to

Page 2 of 4

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

> uR M 882000.0

> 9A M 886 0.000.0

> bq M 882000.0 > rq M 888200.0 > rq M 682000.0 > dg M 271100.0

> q O f81200.0 > dq M f82800.0

> iN O 882000.0 > aO M 841200.0

> dN O 322500.0 > N M 862000.0

M - Checked by ICP-MS

Mn < Mg < Li <

> 0H

> 6H

ΉŁ

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

M 976800.0 > 8 | 34500.0 M 576800.0 > 8 M 782600.0

by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

> mT M 882000.0 > U M 882000.0 > V M 682000.0 W M

> 6T M 882000.0 > AT M 882000.0

sT M 034450.0 > dT M E70100.0

s 852000.0 M 882000.0

O.000269 O

O.043560 O

n2 M 068010.0 89Z000.0 > mS M 89Z000.0

> II

JS

674000.0 228610.0

892000.0 892000.0

0.000268

699630.0

0.001341

892000.0

0.010560

960000'0

960000.0

73260.0 > nZ O 402100.0 038540.0 > nZ O 267400.0

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/ml)

7.7 Storage and Handling Recommendations

oM M 882000.0

0.000268 M K 0.000268 M K 0.000268 M K

0.000872 O Fe > 0.008586 M Ga <

O 892000.0

O S37000.0 M 882000.0

M 882000.0

M 603100.0

M 885800.0

M £83200.0 > 00 M GG8020 O.004577 M Gd <

INTENDED USE

W Et < O Cn <

O B <

IA O

4.1 Thermometer Calibration

volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is - This product is traceable to MIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMINM uncertainty error and the measurement, weighing and

Page 3 of 4

- Chemical Testing - Accredited / AZLA Certificate Number 863.01

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- QSR Certificate Number QSR-1034

1.01 ISO 9001 Qualify Management System Registration

MOITATY STANDARD DOCUMENTATION 0.01

Homogeneity data indicate that the end user should take a minimum ample size of 0.0.2 m L to assume

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. The Coth series alongs mirranament to be the Coth of the Coth series alongs mirranament to be the Coth series alongs mirranament.

HOMOGENEITY

Please refer to the Safety Data Sheet for information regarding this CRWRM.

NOITAMROANI SUOGRASAH HF Note: This standard should not be prepared or stored in glass.

Ollinger		C INTOTINATION (ICP_OEC n.	Idoseones	
ss radial/axial view):	are given	Estimated D.L. Estimated D.L.	Technique/Line	
Interferences (Underline 11)	Order	idq 41	ICP-MS 48 amu	
Interferences (underlined indicates severe) 32S16O, 32S14N,	A/N	add		
14N160180,				
14N17N2, 36Ar12C,				
48Ca, [96X=2				
7-Vool (no o				
(where X = Zr, Mo, Ru)]		10000 () 1900 ()	ICP-OES 323.452 nm	
Ce, Ar, Ni		Jm/gu Se000.0 \ +200.0	ICP-0ES 334.941 nm	
		m/pu 820000.0 \ 8500.0	ICP-0ES 336.121 nm	
ла, Та, Сг, U М М9 Ω-	1 1		Mote: This start and F	II-
W, Mo, Co		In/gy 4500000 \ cocos-	nous prepries entre shou	•

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/a

1:1:1 H2O / HF./ H2SO4 or fuse ash with pyrosulfate if oxide is as plastic pigment and likely in brookite Volentily), Oxide - Northere are repetation; and sociation; restore (Dissolved by heating in 1737 HZO / HF / HZSO4); Oxide - Northere history (~800EC) brooklie (fuse in Pt0 with KZSZO7); Ores (fuse in Pt0 with KZZZO7); Ores (fuse in Pt0 with provide it as plastic pigment and likely in brooktie (fuse in Pt0 with provide it as plastic pigment and likely in brooktie TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts

HNO3 / LDPE container. 1-10,000 ppm single element solutions as the Ti(F)6-2 chemically stable for years in 2-5% HNO3 / trace HF in an LDPE container. with a fendency to hydrolyze forming the hydrated oxide in all dilute acids except HE.

Stability - 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1%

HNO3 / LDPE container. 1-10.000 ppm sincle element solutions as the Ti(F)8-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F-away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute adds except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HNO3. Avoid neutral to basic Atomic Weight, Valence; Coordination Number; Chemical Form in Solution - 47.87 +4 6 Ti(F)6-2

- For more information, visit www.inorganicventures.com/TCT

reported density. Do not pipette from the container. Do not refurn removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the renorded density. Do not biselfe from the container. Do not return removed alticular to container.

Twitte sociate in the secied 101 beg, trainspleaded for the orderiver in the shalfy concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - While stored in the sealed TCT bag, transpiration of this CRWRM is negligible. After opening the sealed TCT bag, transpiration in a negligible in the capture managed in the capture

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Chairman / Senior Technical Director

- Sealed TCT Bag Open Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- The date after which this CRM/RM should not be used.

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

norganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.859.5790; 540.855.3030, Fax: 540.555.3012; Inorga - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1.

stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in $Sec\ 7.1$. This certification is nullified if instructions in $Sec\ 7.1$ are not followed or if the CRWRM is damaged, confaminated, or otherwise modified.

Thomas Kozikowski Manager, Quality Control Certificate Approved By:

thibils Validity

- June 17, 2027 11.2 Lot Expiration Date

June 17, 2022 11.1 Certification Issue Date

Paul Gaines Certifying Officer:

0.Sr

0.11

CERTIFIED WEIGHT REPORT:

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

K S98 | Reference Material CRM | /24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

		060724				060724			ached pg.) NIST	LD50 SRM	S S S S S S S S S S S S S S S S S S S	1		
	Capeate	Giovanni Esposito	2	V	lord	Pedro L. Rentas		SDS Information	(Solvent Safety Info. On Attached pg.)	OSHA PEL (TWA)				
	Lievannie		1	!	N. P.				(Solve	CAS#	13520-83-7			
	Lieva	Formulated By:			13	Reviewed By:		Expanded	Uncertainty	+/- (ug/mL)	2.5			
		Nitric Acid				1-	ij		Final	Conc. (ug/mL)	1000.0			
Solvent:	Nitric Acid	40.0	(mf.)						Initial	Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL)	10001.5		near]	
Lot #	24002546	2.0%				sinty			Nominal	Conc. (ug/mL)	1000		2.D# [Count] [Linear]	
0						Balance Uncertainty	Flask Uncertainty		Uncertainty	Pipette (mL)	0.084		92.D# [c	
KI U						5E-05	0.100		Initial	Vol. (mL)	200.0		sec]:570	
	=	31		(၃			2000.07		Dilution	Factor	0.1000		[23.254 sec]:5709	
	57092 060724 Uranium (11)		060727	Ambient (20 °C)	1000	6UTB	d to (mL):		Lot	Number	58192 041524			
			**	- 24	<u></u>	:-	was dilute		Part	Number	58192		trum N	
CERTIFIED WEIGHT REPORT:	Part Number: Lot Number: Description:		Expiration Date:	Recommended Storage:	Nominal Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):			Compound	1. Uranyl nitrate hexahydrate (U)		[1] Spectrum No.1	

1.0E6	5.0E5	m/z-> 5.0E4	2.5E4	m/z->	S.OES	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
[1] Spectrum No.1		0		011		C
		O		120		000
[23.264 sec]:57092.D# [Count] [Linear]		Og		130		.0
7092.D * [C		0		140		
ount] [Line		80		081		
ar]		O e		160		
		, 2		170		
		99		-@ -		
		Oe		081		
		100		200		

Lot # 060724

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Se <0.2
(µg/mL)	Pr
-MS	
by ICP	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ation	Z S S B a K X
Verifica	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
etals	N W E E
Trace M	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
П	35.35日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	දී පී පී පී සී සී
	6.02 6.02 6.02 6.02 6.02 6.02 6.02
	ទី១១១១១១
	40.02 40.02 40.02 40.02 40.02 40.02
	B Ba Ba

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

^{*} Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

CERTIFIED WEIGHT REPORT:

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Mater

fied Refe	rence Mai	fied Reference Material CRM	•		ANAB IS AR-153 https://ab	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	dited
¥	Z #107	7	2	2/11/0	>		
Solvent:	Solvent: 24002546 Nitric Acid	Nitric Acid		A CONTRACTOR OF THE PARTY OF TH			
2%	40.0	Nitric Acid		Formulated By:	Benson Chan	031524	
	(III)			Ja Ja	Hento		
Uncertainty				Reviewed By:	Pedro L. Rentas	031524	

Part Number: Lot Number:		19		Solvei	Solvent: 24002546 Nitric Acid	46 Nitr	ic Acid		A STATE OF THE STA	1		
Description:	Strontium (Sr)	(Sr)		C)	2% 40.0		Nitric Acid	, Itt	Formulated Bv:	Benson Chan	8	031524
Expiration Date:	031527							I	7	1		
Recommended Storage:	Ambient (20 °C)	(2)							1	A Company	1	
Nominal Concentration (µg/mL):	1000								June 1	Kena	΄ Δ	
NIST Test Number:	6UTB		5E-05 Ba	5E-05 Balance Uncertainty	<u>~</u>			Œ	Reviewed By:	Pedro L. Rentas		031524
Weight shown below was diluted to (mL); 2000.07	as diluted to (mL):	2000.07	0.100 Fla	0.100 Flask Uncertainty				I				
									Expanded	SDS Information	mation	
	Lot	Nominal	Purity U	Nominal Purity Uncertainty Assay	say Target		Actual Act	Actual U	Uncertainty	(Solvent Safety Info. On Attached pg.)	On Attached pg.)	TSIN
Compound	RM# Number Conc. (µg/mL) (%) Purity (%) (%)	Conc. (ug/mL)	(%)	urity (%) (9	6) Weight (g)		Weight (g) Conc. (µg/mL) +/- (µg/mL)	ug/mL) +	-/- (ug/mL) CAS#	# OSHA PEL (TWA)	NA) LD50	SRM

1. Strontium nitrate (Sr)		IN017 SHZ022018A1	1000	99.997	0.10	41.2	4.85470	4.85502	1000.1	2.0	10042-76-9	NA	orl-rat >2000mg/kg 3153a
5.0EG	[1] Spect	[1] Spectrum No.1	[14.495 sec]:58138.D# [Count] [Linear]	sec]:581	38.D#	Coun	it] [Linea						
2.5E6												-90-000 Market	
m/z->> 1.0E6	T	10 20		O	0		.00	09	0,		80	. <u>0</u>	100
5.0ES													
m/z-≫ 5.0E6	The second of th	110 120		130	041		150	160	0.71		180	081	200
2.5E6													
V-z/E	i di	220		230	240	14	250	260					

Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	THE REAL PROPERTY.	40.02	20	200	8	200	200	2 6
		M	=	>	- -	; >	Z,	7.
		<0.02	<0.02	<0.02	2002	40.02	200	5 8
	DESCRIPTION OF	9	Te	F	É	Į,	5	E
	Shorty-suggestion	<0.2	<0.02	<0.02	<0.2	ļ F	<0.02	40.0 2
		Se	Si	Ag	Z	Š	V	Ę
(Jm/br/		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
AS (SIMI	놊	Re	묎	8	Ru	Sm	Š
by ICP-I	Market Mallan	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	40.2
etals Verification		ž	£	ő	Pd	Д	ፈ	M
	No. of Persons and	<0.02	<0.02	<0.01	<0.02	<0.2	<0.02	<0.02
		3	5	Mg	Mn	Hg	Wo	ğ
race Me		<0.02	<0.02	<0.02	<0.02	40.2	<0.02	<0.02
 		Hf	유	ä	卢	굕	2.	£
		<0.02	<0.02	<0.02	<0.02	₹0.05	40.02	<0.02
	- Contraction	Ďλ	占	超	3	త్	පී	Αn
		<0.02	Q.2	<0.02	<0.02	<0.02	<0.02	<0.02
	NO SERVICE DE	<u>ਤ</u>	ű	ರೆ	ర	ర్	රි	ರೆ
	THE REAL PROPERTY.	<0.02	<0.02	<0.2	<0.02	<0.01	<0.02	<0.02
	The state of the s	Z	Sp	As	Ba	æ	Ä.	В

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Lot # 031524

1. P

1 #

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

5982 R: 6/11/24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

	The state of the s		Comment of	Nitric Acid Formulated By: Benson Chan 071423			Healto Heato	Reviewed By: Pedro L. Rentas 071423		Expanded SDS Information	Final Uncertainty (Solvent Safety Info. On Attached pg.) NIST	Vol. (ml.) Pipette (ml.) Conc. (µg/ml.) Conc. (µg/ml.) Conc. (µg/ml.) +/- (µg/ml.) CAS# OSHA PEL (TWA) LD50 SRM
Solvent:	Nitric Acid			40.0	(mL)						Initial	Conc. (µg/mL
Lot #	21110221			2.0%				ainty	£,		Nominal	Conc. (µg/mL)
								Balance Uncertainty	Flask Uncertainty		Uncertainty	Pipette (mL)
								5E-05	0.058		Initial	Vol. (mL)
			(Zr)			(2)			2000.02		Dilution	Factor
	57040	071423	Zirconium (Zr)		071426	Ambient (20 °C)	1000	6UTB	d to (mL):		Lot	Number
		į.	::						was dilute		Part	Number
CERTIFIED WEIGHT REPORT:	Part Number:	Lot Number:	Description:		Expiration Date:	Recommended Storage:	Nominal Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):			Compound

1. Zirconyl chloride octahydrate (Zr)	octahydrate (Zr)	58140	58140 070621	0.1000	200.0	0.084	1000	10000.3 1000.0		2.2	13520-92-8	AA	NA	¥ Z
2.	[1] Spectrum No.1	atrum A		[41.153 sec]:57040.D# [Count] [Linear]	ec]:570	40.0*	Count (L	inear]						
6	5,0 EG													
7,4% 1.0E	8	0	O N	00		0	9	0	70	¥	0	0	00	
η̈́	6.0E7													
™.Z~3	0	011	02.0	08		0	180	160	170	100	081	160	000	
9.	5.0E7													
K-2/41		0 0 0	220	230		240	260	260						

Lot # 071423

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		7	91		_	-	_	_		_	-		_
			Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner	2000	7000	₹0.02	5	70.05	200		₹0.02	000	£
			Name of	W	:	>	^	-	Ą.	,	-	Zu	1,2
			No. of Concession, Name of Street, or other Persons and Name of Street, or other Pers	<0.02	000	<0.02	200	70.0	40.02	600	70:05	20'02	2000
				£	É	<u>ല</u>	F	:	F F	Ē	#	Sa	F
				8	8	70.05	900		97	8	70'05	8,02	40.02
		ı	Ì	8	ö	- 5	Ag	9 ;	e Z	5	5 0	2	Ē
	(m)			Z0'02	200	70.0	40.02	9	70:05	200	9	70:02	40.02
	/b//)		ŀ	t	Re	2	2	É	2	R.	5	E	Sc
	V ICP-MS	COLUMN SECTION	8	70.02	€0.0 2		Q.02	5	70.02	₹ 0.02	3	70:05	977
Trace Motals Varification	ion b			<u></u>	ź		5	70	2	Д	đ	17	×
	Verificat		2002	70.04	2 0.05	9	<0.07	200	300	40.2	200	70:05	<0.02
	stals		E	i	2	32	Mg	Ma		Hg	×		DN
	Trace Me		<0.00	-	Ø.02	5	70:07	200		97	20.02		Z0:0>
			Hf		H	<u>,</u>	=		,	말		i	2
		STATE OF THE REAL PROPERTY.	<0.02		Z0702	25	7000	₹0.02	,	70'0>	<0.02	6	20.02
			à	, t	b	Ē	š	3	ć		ප	٧	
		\$150.2 resp. 520 land	<0.02	ç	7.05	<0.02		Q .02	200	70'05	40.02	5	70.02
		Total Control	ප	ć	3	ථ		ű	ځ	; ;	රි	Ĉ	
		THE REAL PROPERTY.	40.05	2000	70:00	40 5	-	Z0.0Z	700	10.00	<0.02	2000	
		STATE STATE OF	₹	ů,	3	As	5	Ra	2	3	Ä	ç	

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated, the preparation of all standards

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Printed: 6/7/2024, 3:58:47 PM

Lot # 071423

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

R; 01/03/24 M6033 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->	1.006	2.016	m/z->	N O	5.0E6	m/z->	2.5E5	6-6	5.0E5	Aluminum nitrate nonahydrate (Al)	Compound	Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Fyniret	Des	Fan Lot	CERTIFIED WEIGHT REPORT:
210			110			10			[1] Spectrum No.1	11	RM#	below was dilut	Number:	(µg/mL):	Storage:	Evniration Data:	Description:	Fart Number:	
220			120			20			_	IN022 ALM112021A1	Lot Number Co		6UTB	10000	Ambient (20 °C)	011636	Aluminum (Al)	011623)
230			130			30			5.014 sec]:	10000 99.999	Nominal Purity Conc. (µg/mL) (%)	2000.02 0.05	5E-0		<u>.</u>				
240			140			40			15.014 sec]:58113.D# [Count] [Linear]	9 0.10 7.30	Purity Uncertainty Assay (%) Purity (%) (%)	0.058 Flask Uncertainty	5E-05 Balance Uncertainty			2%		Solvent:	>
250			150			50			Count] [Line	0 273.9779	ay Target) Weight (g)		y		(1117)			it: 20510011	
260			160			60			»ar]	274.0078 1	Actual Weight (g) Con					Nitric Acid		Nitric Acid	
			170			70				10001.1 2	Actual Unce Conc. (µg/mL) +/- (Revi			Form	7	~e	7
			180			80				20.0 7784-27-2	Expanded (Si Uncertainty (Si +/- (µg/mL) CAS#		Reviewed By:	tach		Formulated By:	200 A contract	L'internation of	
			190			90				2 mg/m3	SUS Information Support Safety Info. On Attacon OSHA PEL (TWA)		Pedro L. Rentas	pena		Giovanni Esposito	(7	
			200			100					Attached		38	8		sito		e de	
										orl-rat 3671 mg/kg 3101a	pg.) NIST LD50 SRM		011623			011623			

Nitric Acid 69%

Rew. 1 — 08/0/12025 Pare 1 — 16034, M6034 m6035, M6038, m6036, Certificate of Analysis

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25 Revision No.: 0

Test	Specification	Result
Assay (HNO ₃)	69.0 - 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities - Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities - Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities ~ Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities - Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities – Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24D1062002

n Result	Result
< 1.0 ppb	< 1.0 ppb
16 ppb	16 ppb
< 10 ppb	< 10 ppb
< 1.0 ppb	< 1.0 ppb
< 5.0 ppb	< 5.0 ppb
< 1.0 ppb	< 1.0 ppb
< 5.0 ppb	< 5.0 ppb
< 5.0 ppb	< 5.0 ppb
< 10.0 ppb	< 10.0 ppb
< 1.0 ppb	< 1.0 ppb
< 1.0 ppb	< 1.0 ppb
< 1.0 ppb	< 1.0 ppb
< 1.0 ppb	< 1.0 ppb
10 par/ml	
3 par/ml	3 par/ml

Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Test Specification Result

For Microelectronic Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Croak
Director Quality Operations, Bioscience Production

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

paper m6039 Certificate of Analysis m6040

Material No.: 9530-33 Batch No.: 24D1562005 Manufactured Date: 2024-03-18 Retest Date: 2029-03-17

Revision No.: 0

Test	Specification	Result
ACS – Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6 %
ACS – Color (APHA)	≤ 10	5
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm
ACS - Specific Gravity at 60°/60°F	1.185 - 1.192	1.192
ACS – Bromide (Br)	≤ 0.005 %	< 0.005 %
ACS - Extractable Organic Substances	≤ 5 ppm	< 1 ppm
ACS Free Chlorine (as Cl2)	≤ 0.5 ppm	< 0.5 ppm
Phosphate (PO ₄)	≤ 0.05 ppm	0.03 ppm
Sulfate (SO ₄)	≤ 0.5 ppm	< 0.3 ppm
Sulfite (SO ₃)	≤ 0.8 ppm	0.3 ppm
Ammonium (NH ₄)	≤ 3 ppm	< 1 ppm
Trace Impurities - Arsenic (As)	≤ 0.010 ppm	< 0.003 ppm
Trace Impurities – Aluminum (AI)	≤ 10.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities – Barium (Ba)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities – Beryllium (Be)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities - Bismuth (Bi)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 20.0 ppb	2.2 ppb
Trace Impurities - Cadmium (Cd)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	31.0 ppb
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	0.5 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities - Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities - Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Trace Impurities - Gold (Au)	≤ 4.0 ppb	< 0.2 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Trace Impurities - Iron (Fe)	≤ 15 ppb	3 ppb

>>> Continued on page 2 >>>

Material No.: 9530-33 Batch No.: 24D1562005

Test	Specification	Result
Trace Impurities - Lead (Pb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities - Lithium (Li)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities - Magnesium (Mg)	≤ 10.0 ppb	2.2 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Nickel (Ni)	≤ 4.0 ppb	0.2 ppb
Trace Impurities – Niobium (Nb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Potassium (K)	≤ 9.0 ppb	< 1.0 ppb
Trace Impurities – Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.0 ppb
Frace Impurities – Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Frace Impurities – Tantalum (Ta)	≤ 1.0 ppb	< 0.9 ppb
Frace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Frace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.4 ppb
race Impurities – Titanium (Ti)	≤ 1.0 ppb	0.2 ppb
race Impurities – Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
race Impurities – Zinc (Zn)	≤ 5.0 ppb	< 0.2 ppb
race Impurities – Zirconium (Zr)	≤ 1.0 ppb	< 0.1 ppb

Hydrochloric Acid, 36.5-38.0%
BAKER INSTRA-ANALYZED® Reagent
For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 24D1562005

Test Specification Result

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

IV-STOCK-12

Lot Number:

U2-MEB734294

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

10 µg/mL ea:

Barium, Bismuth, Cobalt, Lithium.

Lead,

Beryllium, Cerium, Indium,

Nickel. Uranium

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE	CERTIFIED VALUE	ANALYTE	CERTIFIED VALUE
Barium, Ba	10.01 ± 0.04 μg/mL	Beryllium, Be	10.01 ± 0.05 μg/mL
Blsmuth, Bl	10.01 ± 0.06 µg/mL	Cerium, Ce	10.01 ± 0.04 μg/mL
Cobalt, Co	10.01 ± 0.05 μg/mL	Indium, in	10.01 ± 0.04 µg/mL
Lead, Pb	10.00 ± 0.04 μg/mL	Lithium, Li	10.01 ± 0.04 µg/mL
Nickel, Ni	10.01 ± 0.04 µg/mL	Uranium, U	10.01 ± 0.05 µg/mL

Density: 1.025 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ва	ICP Assay	3104a	140909
Ва	Calculated		See Sec. 4.2
Ва	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Bi	ICP Assay	3106	180815
Ce	ICP Assay	3110	160830
Ce	EDTA	928	928
Ce	Calculated		See Sec. 4.2
Со	ICP Assay	3113	190630
Co	EDTA	928	928
Co	Calculated		See Sec. 4.2
In	ICP Assay	3124a	110516
In	EDTA	928	928
In	Calculated		See Sec. 4.2
Li	ICP Assay	3129a	100714
Li	Calculated		See Sec. 4.2
Li	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
Ni	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
U	ICP Assay	traceable to 3164	R2-U689597
U	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

 X_i = mean of Assay Method i with standard uncertainty $u_{char\ i}$

 \mathbf{w}_{\parallel} = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{\text{char }i})^2/\left(\Sigma(1/(u_{\text{char }i})^2)\right)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} \approx k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRWRM} , where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char} a)$

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (2) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{tts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

u_{ts} = transport stability standard uncertainty

Certified Abundance:

IV's Certified Abundance

Isotope	Atom %
Uranium 238U	99.8 ± 0.1
Uranium 235U	0.19 ± 0.05

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

 All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

 https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

June 21, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- June 21, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date 	o:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

Paul R. Simo

R: 9/10/24

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

M6088, M6089, M6090, M6091, M6092, M6093				
Test	Specification	Result		
Assay (HNO ₃)	69.0 - 70.0 %	69.7 %		
Appearance	Passes Test	Passes Test		
Color (APHA)	≤ 10	5		
Residue after Ignition	≤ 2 ppm	1 ppm		
Chloride (CI)	≤ 0.08 ppm	< 0.03 ppm		
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm		
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm		
Trace Impurities - Aluminum (AI)	≤ 40.0 ppb	< 1.0 ppb		
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb		
Trace Impurities - Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb		
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb		
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb		
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	2.3 ppb		
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb		
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb		
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb		
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb		
Trace Impurities - Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb		
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb		
Trace Impurities - Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb		
Trace Impurities - Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb		
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb		

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities ~ Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count - 0.5 µm and greater	≤ 60 par/ml	10 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	3 par/ml

Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Specification Test Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Croak Director Quality Operations, Bioscience Production

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

58111 122223

Sodium (Na)

Lot Number: Description:

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000

Weight shown below was diluted to (mL):

3000.4

0.06 Flask Uncertainty 5E-05 Balance Uncertainty

RW#

Number Lot

Nominal

Purity

Uncertainty Assay Purity (%)

Target

Actual

8

38

Recommended Storage:

Ambient (20 °C)

122226

Expiration Date:

Lot # M5807

Solvent:

24002546 Nitric Acid

2%

60.0 (III)

Nitric Acid

Formulated By: 13827 P Aleah O'Brady Back

Reviewed By: Pedro L. Rentas

122223

22223

Actual Uncertainty Expanded (Solvent Safety Info. On Attached pg.) **SDS Information** TSIN

CAS#

SE

1. Sodium nitrate (Na) IN036 NAV01201511 Conc. (µg/mL) 10000 98.999 0.10 26.9 111.5406 Weight (g) Weight (g) Conc. (µg/mL) 111.5479 10000.7 +/- (µg/mL) 20.0 7631-99-4 OSHA PEL (TWA) 5 mg/m3 ori-rat 3430 mg/kg 3152a

1 m/z-> 17/z-Y m/z-> N.5E6 5.0E6 2.5E6 5.0E6 2.5E5 5.0E5 [1] Spectrum No.1 210 110 0 220 120 NO. [8.935 sec]:58111.D# [Count] [Linear] 130 230 30 140 240 6 150 250 50 160 260 0 170 70 180 80 190 90 100 200

Part # 58111

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	AS BE BE	
	40.2 40.2 40.2 40.0 40.0 40.0 40.0 40.0	
	585855	
	40.02 40.02 40.02 40.02 40.02 40.02	
	₹ 안 안 집 때 다 것	
	4422	
	27. 24 年 27. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Trace M
	Mo Mg Lu	fetals
(T) = Tar	442 442 442 442 442 442 442 442 442 442	Verifica
) = Target analyte	K A A B & A K	ation
ılytе	4000 4000 4000 4000 4000	by ICP-
	S R R R R	NO C
	400000000000000000000000000000000000000	(m/)
	T _a S ₇ S ₈	
	402 402 402 402 402	
	in Signal in the	ı
	40.02 40.02 40.02 40.02	
	* * * * * * * * * * * * * * * * * * *	
	600000000000000000000000000000000000000	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis
M5738 M5739 M5740 M5741 M5742

Refine your results. Redefine your industry.

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

6020ISS

Lot Number:

S2-MEB709511

Matrix:

7% (v/v) HNO3

Value / Analyte(s):

10 µg/mL ea:

Bismuth,

Holmium,

Indium,

6-Lithium.

Rhodium,

Scandium,

Terbium,

Yttrium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE 6-Lithium, Li6 **CERTIFIED VALUE** $10.00 \pm 0.03 \,\mu g/mL$

ANALYTE

CERTIFIED VALUE $10.00 \pm 0.05 \,\mu g/mL$

Bismuth, Bi

Indium, In

10.00 ± 0.04 µg/mL

Holmium, Ho Rhodium, Rh

 $10.00 \pm 0.05 \,\mu g/mL$ 10.00 ± 0.07 µg/mL

Scandlum, Sc

10.00 ± 0.04 µg/mL

Terbium, Tb

10.00 ± 0.04 µg/mL

Yttrium, Y

 $10.00 \pm 0.04 \, \mu g/mL$

Density:

1.035 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Bi	ICP Assay	3106	180815
Bi	Calculated		See Sec. 4.2
Но	ICP Assay	3123a	090408
Но	EDTA	928	928
In	ICP Assay	3124a	110516
In	EDTA	928	928
In	Calculated		See Sec. 4.2
Li6	Gravimetric		See Sec. 4.2
Rh	ICP Assay	3144	070619
Sc	ICP Assay	3148a	100701
Sc	EDTA	928	928
Tb	ICP Assay	3157a	100518
Tb	EDTA	928	928
Tb	Calculated		See Sec. 4,2
Υ	ICP Assay	3167a	120314
Υ	EDTA	928	928
Υ	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

	· ·
Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRM/RM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRWRM} , where one method of characterization is used is the mean of individual results:
$\begin{split} & \textbf{X}_{\text{CRM/RM}} = \Sigma\{w_i\} \{X_i\} \\ & \textbf{X}_i = \text{mean of Assay Method I with standard uncertainty } \textbf{U}_{\text{char I}} \\ & \textbf{w}_i = \text{the weighting factors for each method calculated using the inverse square of the variance:} \\ & \textbf{w}_i = (1/u_{\text{char I}})^2 / (\Sigma(1/u_{\text{char I}})^2) \end{split}$	X _{CRM/RM} = (X _a) (u _{cher a}) X _a = mean of Assay Method A with u _{cher a} = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (\pm) = $U_{CRM/RM}$ = k ($u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ta}$) $^{1/2}$ k = coverage factor = 2 $u_{char} = (2((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} i are the errors from each characterization method u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{tb} = transport stability standard uncertainty	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char\ a} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$ $k = coverage\ factor = 2$ $U_{char\ a} = the\ errors\ from\ characterization$ $U_{bb} = bottle\ to\ bottle\ homogeneity\ standard\ uncertainty$ $U_{tts} = long\ term\ stability\ standard\ uncertainty\ (storage)$ $U_{tts} = transport\ stability\ standard\ uncertainty$

Certified Abundance:

IV's Certified Abundance

<u>Isotope</u>	Atom %
Lithium Li6	95.6 ± 0.3
Lithium Li7	4.4 ± 0.1

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 03, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 03, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date: _____
- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Both

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

RD: 07/14/2022

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-MS (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of an Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-0803" and for the ICSAB mixture use "ICSA-0803+ICSB-0803".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to the Contracting Officer, Ross Miller at miller.ross@epa.gov. If directed by Ross Miller, return the chain of custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

This interference check sample set is to be used to verify elemental isobaric correction factors of inductively coupled plasma-mass spectrometers (ICP-MS). This reference material set consists of two (2) concentrated solutions. The ICSA solution contains several interferent elements and species; for a complete listing refer to the CLP SOW. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for the ICP-MS ICS Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

ICSB: M5874

ICSA-0803, Inferferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this solution by ICP-MS.

ICSB-0803, Analytes, mixed with ICSA-0803, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this ICSAB solution by ICP-MS.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-MS ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

ICSA: M5873

	Table 1.		VALUES" FOI 303, AND ICSA				MS
Element	CRQL	Part A (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	Part A +Part B (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)
Al	20.0	[100000]			[100000]		
Sb	2.0	(1.5)	-2.5	5.5	(22.0)	18.0	26.0
As	1.0	(0.1)	-1.9	2.1	19.0	16.2	21.9
Ba	10.0	(1.2)	-18.8	21.2	(22.0)	2.0	42.0
Be	1.0	(0)	-2.0	2.0	19.0	16.2	21.9
Cd	1.0	(0.7)	-1.3	2.7	20.0	17.0	23.0
Ca	500	[100000]			[100000]		
С		[200000]			[200000]		
CI		[1000000]			[1000000]		
Cr	2.0	(21.0)	17.0	25.0	40.0	34.0	46.0
Co	1.0	(1.0)	-1.0	3.0	20.0	17.0	23.0
Cu	2.0	(8.0)	4.0	12.0	(25.0)	21.0	29.0
Fe	200	[100000]			[100000]		
Pb	1.0	(4.0)	2.0	6.0	25.0	21.3	28.8
Mg	500	[100000]			[100000]		
Mn	1.0	(7.0)	5.0	9.0	27.0	23.0	31.1
Мо		[2000]			[2000]		
Ni	1.0	(6.0)	4.0	8.0	24.0	20.4	27.6
Р		[100000]			[100000]		
K	500	[100000]			[100000]		
Se	5.0	(0.3)	-9.7	10.3	(19.0)	9.0	29.0
Ag	1.0	(0)	-2.0	2.0	18.0	15.3	20.7
Na	500	[100000]			[100000]		
S		[100000]			[100000]		
TI	1.0	(0)	-2.0	2.0	21.0	17.9	24.2
Ti		[2000]			[2000]		
V	5.0	(0.5)	-9.5	10.5	(19.0)	9.0	29.0
Zn	5.0	(11.0)	1.0	21.0	(29.0)	19.0	39.0

[] Indicates analytes that do not require ICP-MS determination in the ICS.

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 2 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

RD: 07/14/2022

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-MS (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of an Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-0803" and for the ICSAB mixture use "ICSA-0803+ICSB-0803".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to the Contracting Officer, Ross Miller at miller.ross@epa.gov. If directed by Ross Miller, return the chain of custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

This interference check sample set is to be used to verify elemental isobaric correction factors of inductively coupled plasma-mass spectrometers (ICP-MS). This reference material set consists of two (2) concentrated solutions. The ICSA solution contains several interferent elements and species; for a complete listing refer to the CLP SOW. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for the ICP-MS ICS Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

ICSB: M5874

ICSA-0803, Inferferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this solution by ICP-MS.

ICSB-0803, Analytes, mixed with ICSA-0803, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this ICSAB solution by ICP-MS.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-MS ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

ICSA: M5873

	Table 1.		VALUES" FOI 303, AND ICSA				MS
Element	CRQL	Part A (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	Part A +Part B (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)
Al	20.0	[100000]			[100000]		
Sb	2.0	(1.5)	-2.5	5.5	(22.0)	18.0	26.0
As	1.0	(0.1)	-1.9	2.1	19.0	16.2	21.9
Ba	10.0	(1.2)	-18.8	21.2	(22.0)	2.0	42.0
Be	1.0	(0)	-2.0	2.0	19.0	16.2	21.9
Cd	1.0	(0.7)	-1.3	2.7	20.0	17.0	23.0
Ca	500	[100000]			[100000]		
С		[200000]			[200000]		
CI		[1000000]			[1000000]		
Cr	2.0	(21.0)	17.0	25.0	40.0	34.0	46.0
Co	1.0	(1.0)	-1.0	3.0	20.0	17.0	23.0
Cu	2.0	(8.0)	4.0	12.0	(25.0)	21.0	29.0
Fe	200	[100000]			[100000]		
Pb	1.0	(4.0)	2.0	6.0	25.0	21.3	28.8
Mg	500	[100000]			[100000]		
Mn	1.0	(7.0)	5.0	9.0	27.0	23.0	31.1
Мо		[2000]			[2000]		
Ni	1.0	(6.0)	4.0	8.0	24.0	20.4	27.6
Р		[100000]			[100000]		
K	500	[100000]			[100000]		
Se	5.0	(0.3)	-9.7	10.3	(19.0)	9.0	29.0
Ag	1.0	(0)	-2.0	2.0	18.0	15.3	20.7
Na	500	[100000]			[100000]		
S		[100000]			[100000]		
TI	1.0	(0)	-2.0	2.0	21.0	17.9	24.2
Ti		[2000]			[2000]		
V	5.0	(0.5)	-9.5	10.5	(19.0)	9.0	29.0
Zn	5.0	(11.0)	1.0	21.0	(29.0)	19.0	39.0

[] Indicates analytes that do not require ICP-MS determination in the ICS.

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 2 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: 57051 120523 BTU9 1000 120526 Ambient (20 °C) Antimony (Sb) 3000.41 0.058 5E-05 Flask Uncertainty Balance Uncertainty 24002546 Lot # 2.0% M.5802 Nitric Acid Solvent: 0.00 MSBOS Nitric Acid Formulated By: Reviewed By: Pedro L. Rentas Lawrence Barry 120523 120523

1. Antimony (Sb)

58151

100923

0.1000

300.0

1000

10001.4

1000.0

7440-36-0

0.5 mg/m3

orl-rat 7000 mg/kg 3102a

Number Part

Number Ď

Vol. (ml.)

Pipette (ml.) Conc. (µg/ml.)

Conc. (µg/mL)

Conc. (µg/ml.)

+/- (µg/mt.) Uncertainty Expanded

CAS#

(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

SRM NIST SDS Information

Final

Dilution Factor

Initial

Uncertainty

Nominal

Compound

-2/m	1.057	m/z-> 2.0E7	2. 6 8	5.0E5	2.0 E	6.OE6
				the state of the s		
210		10		ō		
220		±		N		
0		N		N		
230		130		30		
240		.d.				
		140		ò		
0		180		50		
N O						
0		180		9		
		170		70		
		180		8		
		190		8		
				Constitution or section of the control of the contr		
		200		100		

Part # 57051

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	-	Г	-					_					II	ľ	-	
		0	9	_	8		200	8	<u></u>	9	-	2	ı	I		
		70.0>	2 1	200	10.05		200	6	3	-		8				
		2	2 8	3	ζ.	9	ر ا	ξ	2	ದಿ		2		l		
		20.02	600	3	<u>8</u>	400	3	70.05	3	8	-	40.02				
	Ī	Aμ	. Ç	9	වී	٤	5	E E	1	Ęį.	1	Ž	Target State			
		∆ 022	70.02	3	∆ 002	2000	3	20.02		_ ∆0,02	3000	2002				
		3	2	1	ď,	=	7	5	1	H	111	HF.				
		₽	20.02	3	<u> </u>	20.02	3	A.03	-	200	2000	400		FI GCG IA	7300	
		Z	Mo		T.	MD		Z	l s	=	_			SECON	+2	I
(T) = Tamet analyte		40.00	20.02		<u>A</u>	40.02		<u>0</u> 01	4000	3	20.02	200		ACHILLA		
	Ŀ	~	7		Ð	Pd	!	ဂ္ဂ	M	Z	2			COL)	
akao	20.6	3	40,02	40.00	3	A0.02		2002	20.00	3	20.02			DY ICE-N		
	Ę	ç	Si	M	B	25		굣	700	9	7			S	10	
	20.02	3	20.02	20.02	3	∆ 0,02	40.04	3	20.02	3	8			g/mL)		
	Ē	3	S	IC	2	Z	26	A	2	?	Š		ı			ı
	20.05	3	40.0 2	70.0>	3	<u>A</u>	20.02	3	20.02		02	Section Control Control				
	E	3 1	S	I	1	7	11	3	ie.	į	J					
	20.02	0.00	A 62	40.02		A 83	20.02	3	∆0.02	-	900					
	177	1	7 _n	7	: ;	ş	_	4	9		W	Company				
	40.02	10.01	3	80.02	20.04	3	20.02	3	80.02	20.04	2000					

(1) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Printed: 1/16/2024, 3:48:48 PM

Part # 57051

Lot # 120523

Certified Reference Material CRM

M6030

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

R = 8 | 5 | 24

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

800-368-1131

Absolute Standards, Inc.

Part Number: Solvent: 24002546 Lot # Nitric Acid

Lot Number: Description: 57047 122823 Silver (Ag)

Recommended Storage: **Expiration Date:** 1000 122826

Weight shown below was diluted to (mL): 4000.30

1. Silver nitrate (Ag)

IN035 J0612AGA1

1000.0

0.10

63.7

6.27992

6.27998

1000.0

2.0

7761-88-B

10 ug/m3

Z

3151

Nominal Concentration (µg/mL): NIST Test Number: **6UTB** Ambient (20 °C) 0.058 Flask Uncertainty 5E-05 Balance Uncertainty

2% <u>E</u> 80.0 Nitric Acid

Formulated By:

Benson Chan

122823

122823

Reviewed By: Pedro L. Rentas

Compound RM# Number 헏 Conc. (µg/mL) Nominal Purity Uncertainty Assay 8 Purity (%) 38 Weight (g) Target Weight (g) Conc. (µg/mL) Actual Actual +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) SDS Information NIST SRM

m/z-> m/z-> W-2/m 5.0E6 5.0E5 1.0≡6 2.5E6 5.0E6 1.0€7 [1] Spectrum No.1 210 110 0 120 NNO NO [14.044 sec]:58147.D# [Count] [Linear] 230 130 30 140 240 ò 150 250 50 260 160 00 170 0 180 0 190 000 200 100

www.absolutestandards.com

							race Me	letals	Verificat	tion	by ICP-I	S	ug/mL)						
	The state of the s						The Park of	, j											
A	<0.02	Ω	<0.02	Dy	<0.02	出	<0.02	Ľ	<0.02	Z	<0.02	7	<0.02	Se	<0.2	4	40.02	W	<0.02
4S	40.02	ဂ္ဂ	40.2	덬	40.02	Ж	40.02	Li	<0.02	3	40.02	₽ Re	40.02	S:	40.02	ď	A 0.02	a	\$0.02
As	40.2	Ç	<0.02	땹	<0.02	In	<0.02	Mg	<0.01	တ္တ	40.02	짜	<0.02	Agr	7	∄	<0.02	<	40.02
Ва	<0.02	రి	40,02	82	<0.02	듁	40.02	Mn	<0.02	Pd	<0.02	R.	40.02	N	40.2	∄	<u>\$</u>	상	<0.02
Ве	40.01	Ω	<0.02	හු	<0.02	ਲੋਂ	40.2	Hg	40.2	Þ	40.02	R	A0.02	Ž,	40,02	ď	♦ 0.02	<	40.02
쯨	<0.02	င္ပ	40.02	ନ	40,02	5	< 0.02	Mo	<0.02	77	40.02	Sin	△ 0.02	c/a	40.02	S	A) (2)	7,	40.07
В	<0.02	δ	<0.02	Au	<0.02	광	<0.02	Z	<0.02	*	40.2	Sc	<0.02	ī	<0.02	Ħ	<0.02	2	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R: 03/16/23 MS473 MS474, MS475, MS Lot #

CERTIFIED WEIGHT REPORT:

Part Number:

56138 082922

Solvent: 20510011

Nitric Acid

2% 20.0 Nitric Acid

<u>P</u>

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Recommended Storage:

Ambient (20 °C) 082925

Expiration Date:

Description: Lot Number:

Strontium (Sr)

Weight shown below was diluted to (mL):

1000.12

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

Weight (g) Conc. (µg/mL) +/- (µg/mL)

Uncertainty

Expanded

닭

Nominal

Purity Uncertainty Assay

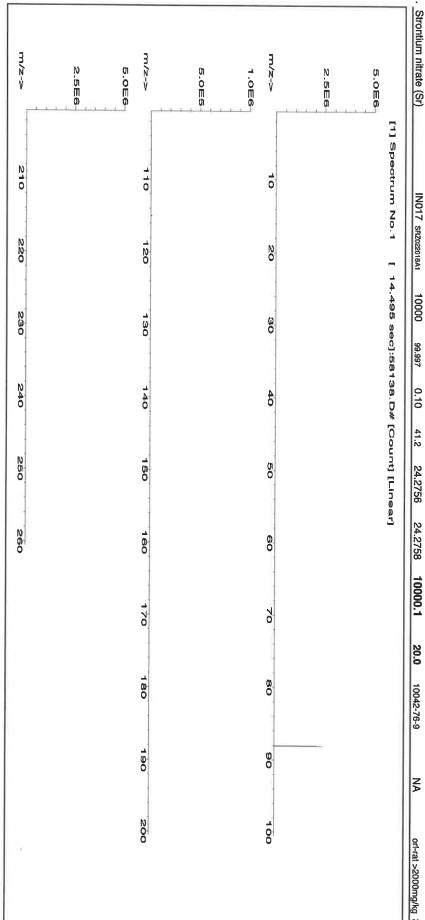
Formulated By: Lawrence Barry

Pedro L. Rentas

Reviewed By:

082922

082922


SDS Information (Solvent Safety Info. On Attached pg.)

OSHA PEL (TWA)

CAS#

LD50 SRM SRM

IN017 SRZ022018A1 10000 99.997 0.10 41.2 24.2756 24.2758 10000.1 20.0 10042-76-9 Ι₹ orl-rat >2000mg/kg 3153a

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

П				П		Ш	Trace Me	tals	Verifica	tion	by ICP-	MS	(µg/mL)	П					
				I		i				ı		ı		ı		۱			No. of the least o
Al	<0.02	ß	<0.02	Дy	<0.02	臣	<0.02	Ε:	40.02	<u>Z</u> .	<0.02	Pr	<0.02	Se	<0.2	J.	<0.02	¥	<0.02
SЬ	<0.02	က္အ	<0.2	缸	△0.02	Но	<0.02	Lu	<0.02	끃	<0.02	Re	40.02	S:	<0.02	Ę	∆ 0.02	Ϥ	<0.02
As	<0.2	င္စ	<0.02	땹	<0.02	F	<0.02	Mg	<0.01	ွ	<0.02	R.	△ 0.02	Ag	<0.02	∄	<0.02	<	<0.02
Ba	<0.02	ဂ္ဂ	<0.02	ନ୍ଦ	<0.02	ī	<0.02	M	<0.02	Pd	△ 0.02	RЪ	<0.02	N ₂	<0.2	∄	<0.02	4,4	<0.02
Be	<0.01	τ	40.02	ନ୍ଥ	<0.02	뜐	<0.2	Нg	<0.2	Ъ	<0.02	Ru	<0.02	S.	Т	Tm	<0.02	~	<0.02
Bi	0.02	င္ပ	<0.02	ဌာ	<0.02	La	<0.02	Μo	<0.02	뫈	<0.02	Sm	<0.02	S	△ 0.02	S	<0.02	Zn	<0.02
В	<0.02	5	<0.02	Au	<0.02	Рь	<0.02	Nd	<0.02	×	<0.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Zr	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R: 03/16/23 MS473 MS474, MS475, MS Lot #

CERTIFIED WEIGHT REPORT:

Part Number:

56138 082922

Solvent: 20510011

Nitric Acid

2% 20.0 Nitric Acid

<u>P</u>

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Recommended Storage:

Ambient (20 °C) 082925

Expiration Date:

Description: Lot Number:

Strontium (Sr)

Weight shown below was diluted to (mL):

1000.12

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

Weight (g) Conc. (µg/mL) +/- (µg/mL)

Uncertainty

Expanded

닭

Nominal

Purity Uncertainty Assay

Formulated By: Lawrence Barry

Pedro L. Rentas

Reviewed By:

082922

082922

OSHA PEL (TWA)

CAS#

LD50

SRM SRM

SDS Information (Solvent Safety Info. On Attached pg.)

Ι₹ orl-rat >2000mg/kg 3153a

Strontium nitrate (Sr m/z-> M/z-> 2.5E6 5.0E6 5.0E5 1.0E6 2.5 € 6 5.0E6 [1] Spectrum No.1 110 10 IN017 SRZ022018A1 120 20 [14.495 sec]:58138.D# [Count] [Linear] 10000 130 30 99.997 140 0.10 40 41.2 150 50 24.2756 24.2758 160 60 10000.1 170 0 20.0 80 10042-76-9 190 90 200 100

m/z->

210

220

230

240

250

260

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

П				П		Ш	Trace Me	tals	Verifica	tion	by ICP-	MS	(µg/mL)	П					
				I		i				ı		ı		ı		۱			No. of the least o
Al	<0.02	ß	<0.02	Дy	<0.02	臣	<0.02	Ε:	40.02	<u>Z</u> .	<0.02	Pr	<0.02	Se	<0.2	J.	<0.02	¥	<0.02
SЬ	<0.02	က္အ	<0.2	缸	△0.02	Но	<0.02	Lu	<0.02	끃	<0.02	Re	40.02	S:	<0.02	Ę	∆ 0.02	Ϥ	<0.02
As	<0.2	င္စ	<0.02	땹	<0.02	F	<0.02	Mg	<0.01	ွ	<0.02	R.	△ 0.02	Ag	<0.02	∄	<0.02	<	<0.02
Ba	<0.02	ဂ္ဂ	<0.02	ନ୍ଦ	<0.02	ī	<0.02	M	<0.02	Pd	△ 0.02	RЪ	<0.02	N ₂	<0.2	∄	<0.02	4,4	<0.02
Be	<0.01	τ	40.02	ନ୍ଥ	<0.02	뜐	<0.2	Нg	<0.2	Ъ	<0.02	Ru	<0.02	S.	Т	Tm	<0.02	~	<0.02
Bi	0.02	င္ပ	<0.02	ဌာ	<0.02	La	<0.02	Μo	<0.02	뫈	<0.02	Sm	<0.02	S	△ 0.02	S	<0.02	Zn	<0.02
В	<0.02	5	<0.02	Au	<0.02	Рь	<0.02	Nd	<0.02	×	<0.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Zr	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M6023

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

		Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Expiration Date:		Description:	Lot Number:	Part Number:	CERTIFIED WEIGHT REPORT:
Lot		ted to (mL):	8TUB	1000	Ambient (20 °C)	062727		Thalllum (TI)	062724	57081	
Nominal		2000.1			၀ (၄)						
Purity Uncertainty Assay		0.10 Flask Uncertainty	5E-05 Balance Uncertainty				2%			Solvent:	
Target						(mL)	40.0			Solvent: 24002546	Lot #
Actual							Nitric Acid			Nitric Acid	
Actual											
Uncertainty	Expanded		Reviewed By:	Juna	1		Formulated By:	4	TO ST	>	
(Solvent Safety Info. On Attached pg.)	SDS Information		Pedro L. Rentas	" human	A A		Aleah O'Brady	0	San O To asign	7	
ched pg.) NIST			062724				062724				
7											

RW#

Number

Conc. (µg/mL) (%)

Purity (%) (%)

Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

-z/m	5.0E5	1.0E6	m/z->	5000	1.0€4	1.0E6	2.OE6	
N			-1				El opegrum No.	
210			10		ö		3	
220			120		N O			
							4 0	
230			130		9		[]4.044 sec]:57081.D# [Count] [Linear]	
240			<u> </u>		4		57081.	
ō			140		40		<u> </u>	
250			1		OI.			
N			160		60			
			4		70			
			170		0			
			180		80			1000
			190		90			or any
			200		100			
			ŏ		ŏ			See all see al
								0

Part # 57081

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		ᄧ	10	Ħ.	Ве	, to	ಸ ತ	AS		Sb		<u>></u>		Ī	_	
		40.02	20.02	3	<u>6</u> .01	70.02	3	4.6	5	<u> </u>		40.02	The Particular Street of the Particular Street			
	ŀ	င္	8)	ç	Ç	3	g	<u> </u>	ري و	-	2				
		40.02	20.02		A).03	20.03	3	40.02		<u>ه</u>	10.01	20.02				
		A	G G	9	<u>.</u>	Ga	2	E E	1 1	Į	5	7	STATE STATES	l		
	20,02	3	40.02	0.01	3	20.02	3	∆ 0.02	6 6 6	A) (2)	10.04	2000	SCP SERVING SHARES			
	1	7	La	,	<u>F</u> 1	=	•	ď	110	드	121	30			-	
	70.02	3	∆ 0.02	ć	2	40.02		∆ .02	20.02	3	20.02	200		ומכב ואונ		
		Ž	Mo	21.1	E .	Mn	q	Mφ	100	Ţ	E			Scalo	7	
(T) = Target analyte	70.02	3	<u>8</u>	7.0	5	40.02		<u>A</u>	70.02	3	20.02			ACHILICA	くいけい	
jet anal	2	4	7	7	,	Pd	- 6	ွ	ONI	ź	2		I)	
yte e	20.2	b	<u>\$</u>	20,02	Š	<0.02	10,01	3	20.02	3	40.02			Dy ICP-	2	
	Sc		S E	č	;	2	Ĭ	P.	Ke	;	-			MU C		
	A0.02	20.02	3	40.02		< 0.02	10.04	3	20,02		<u>ه</u>		ŀ	Jg/mL)		
	Ta	,	,	Si		Z	76	<u> </u>	S	?	ဇ္ဇ		l			
	40,02	40.04	3	∆.02	i	40.2	20.02	3	40.02	1	802					
	Ti	100	?	ď	i	7	П	1	Te		7					
	40.02	70.02	3	40.02	40,04	AD 03	_	3	<u>6</u> ,02	40.00	AD 073					
	Zr	112	7	×	ć	ş	<	ă Y	_ _		W.	THE PERSON NAMED IN				
	40.02	20.02	3	∆ 0.02	70.02	3	∆ .02		A 0.02	20.02	28	THE PERSON NAMED IN			The second secon	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M6021

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT Part Number: Lot Number: 57023 062424 24002546 Nitric Acid Solvent:

Nitric Acid

Ambient (20 °C) 2.0% (III) 40.0

Formulated By:

Aleah O'Brady

062424

ASSET O DE LONG

Recommended Storage:

Expiration Date:

062427

Description:

Vanadium (V)

Nominal Concentration (µg/mL): Volume shown below was diluted to (mL): NIST Test Number: **6UTB** 1000 2000.3 5E-05 0.06 Balance Uncertainty Flask Uncertainty Reviewed By:

Pedro L. Rentas

062424

Ammonium metavanadate (V) Compound 58123 Number Part 021224 Number D D 0.1000 Dilution Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) 200.0 Initial Uncertainty 0.084 Nominal 1000 Conc. (µg/mL) Conc. (µg/mL) 10000.3 nitial 1000.0 Final +/- (µg/mL) Uncertainty Expanded 22 7803-55-6 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) 0.05 mg/m3 **SDS Information** orl-rat 58.1mg/kg LD50 3165 NIST SRM

7 × × × × × × × × × × × × × × × × × × ×	2.588	m/z->- 5.0E8	1.0E7	m/z->	1.006	2.0E6
210		110		ō		
220		, N		N.		
0		0				
200		130		90		
240		140		4.0		
0						
NG0		150		5		
260		160		60		
U						
		170		70		
		180		80		
		G				
		190		90		
		200		100		
		Ü		J		

Part # 57023

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	r	-	_	-	-	-	_	=	7		r-	-
	L	# !	<u> </u>	Ве	Ва	AS		<i>?</i>	≥	Manage		
	2000	A 8	4	40.01	<u>8</u> .63	7.05	20.02	3	<0.02			
	3	3 8	3 1	Ç	చి	٤	٠ <u>۲</u>	?	8			
	20.02	3 8	2 8	3	40.02	20.02	2	5	40.02			
	2	<u> </u>	9 6	ე ე	<u>ද</u>	E	덕	7 .	γ			
	20.02	6.6.6	2 6	3	A (0.02	40.02	<0.02	000	A			
	70	2 5	7 7	57	="	급	Но	1	HF			
(T) = Target analyte	20.02	80.02	3 6	3	8	∆0.02	40.02	40.04	2		Trace M	
	Z	MO	, <u>, , , , , , , , , , , , , , , , , , </u>		<u></u>	M	Ē	, [ı	letals	
	A),02	20.02	2 6	0 00	A 3	10.0	40.02	40.02	200		Verifica	
	E	7	٠,	, ;	2	ဝွ	ş	2			tion D	
	A0.2	40.02	40.02	20.02	3	∆ 0,02	40.02	20.02		l	by ICP-N	
	Sc	Sm	Ru	3	<u> </u>	2	Re	7	1	5		
	40.02	40.02	40.02	20.02	3	A .02	<0.02	40.02		,		
	Ta	s	Sr	N		Ag	Ž.	æ		l		
	<0.02	40,02	A0.02	40.2	5 6	A) (3)	A 0.02	40.2				
	H	Sh	Tm	In	:	i	급	4	THE STREET			
	<0.02	40.02	<0.02	<0.02	0.02	400	40.02	6 .02	STATE OF THE PARTY			
İ	Z	Zn	×	Ϋ́B		<	a	¥	MEASURES			
	<0.02	∆ 0.02	40.02	<0.02	-	-}	A).02	<0.02				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).