

Prep Standard - Chemical Standard Summary

Order ID : P4314

Test : Metals CLP MS FULL

Prepbatch ID : PB164269,

Sequence ID/Qc Batch ID: LB133179,LB133196,

Standard ID :

MP81119,MP82127,MP82568,MP82569,MP82570,MP82571,MP82572,MP82573,MP82574,MP82575,MP82576,MP82577,MP82578,MP82579,MP82580,MP82581,MP82583,MP82585,MP82586,MP82587,MP82908,MP82960,

Chemical ID :

M5192,M5288,M5289,M5295,M5304,M5390,M5473,M5476,M5498,M5513,M5515,M5519,M5565,M5634,M5657,M5658 ,M5697,M5698,M5739,M5768,M5769,M5798,M5799,M5800,M5801,M5802,M5806,M5815,M5816,M5817,M5818,M581 9,M5820,M5873,M5874,M5935,M5961,M5962,M5976,M5978,M5981,M5982,M5983,M6021,M6023,M6025,M6026,M60 28,M6030,M6033,M6037,M6040,M6055,M6088,W2606,W3112,

Metals STANDARD PREPARATION LOG

Recipe ID 169	NAME 1:1HNO3	<u>NO.</u> MP81119	<u>Prep Date</u> 06/21/2024	Expiration Date 04/24/2025	<u>Prepared</u> <u>By</u> Al-Terek Isaac	<u>ScaleID</u> METALS_SCA LE_2 (M SC-2)	ETTE_1 (ICP	Sarabjit Jaswal
<u>FROM</u>	1250.00000ml of M5935 + 1250.000	00ml of W26	606 = Final Q	uantity: 2500.0			A)	
Recipe				Expiration	Prepared			Supervised By

<u>Recipe</u> <u>ID</u> 170	NAME 1:1HCL	<u>NO.</u> MP82127	<u>Prep Date</u> 09/03/2024	Expiration Date 02/08/2025	<u>Prepared</u> <u>By</u> Janvi Patel	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
FROM	1250.00000ml of M6040 + 1250.0000	l 00ml of W31	l 12 = Final Qi	uantity: 2500.00	00 ml			09/03/2024

Recipe ID 1122	NAME ICPMS CALIB BLANK(S0/ICB/CCB)	<u>NO.</u> MP82568	Prep Date 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Mohan Bera 09/30/2024
FROM	25.00000ml of M6040 + 4925.00000r	ml of W3112	2 + 50.00000m	nl of M6037 = 1	Final Quantity: 5	000.000 ml		
<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Mohan Bera

FROM

2902

S8 ICPMS

<u>DM</u> 1.00000ml of M6033 + 2.50000ml of M5288 + 2.50000ml of M5515 + 5.00000ml of M5498 + 5.00000ml of M5768 + 5.00000ml of M5806 + 79.00000ml of MP82568 = Final Quantity: 100.000 ml

10/31/2024 Sarabjit Jaswal

None

METALS_PIP ETTE_3 (A)

09/30/2024

MP82569 09/28/2024

Recipe ID 3947	<u>NAME</u> S7(SFAM,6020,200.8)	<u>NO.</u> MP82570	<u>Prep Date</u> 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	Supervised By Mohan Bera 09/30/2024
FROM	1.00000ml of M5818 + 1.00000ml of 10.00000ml of M5978 + 10.00000ml 4.00000ml of M5390 + 4.00000ml of of M5304 + 829.10000ml of W3112 + + 9.90000ml of M5768 + 9.90000ml of	of M6037 + M6025 + 4.9 9.00000ml	2.00000ml of 90000ml of M of M5697 + 9	M5815 + 2.000 5515 + 4.90000 .00000ml of M	000ml of M5817 0ml of M5519 + 5698 + 9.00000r	+ 2.50000ml of 5.00000ml of N	f M5476 + 16040 + 50.000	

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By
3948	S6(SFAM,6020,200.8)	<u>MP82571</u>	09/28/2024		Sarabjit Jaswal	None	METALS_PIP	
FROM	0.50000ml of M6040 + 1.00000ml of	<u> </u> M6037 + 88	8.50000ml of V		000ml of MP825	70 = Final Qua	ETTE_3 (A)	09/30/2024 ml
<u> </u>								

<u>Recipe</u> <u>ID</u> 3949	NAME S5(SFAM,6020,200.8)	<u>NO.</u> MP82572	Prep Date 09/28/2024	Expiration Date 10/31/2024	Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_3 (A)	
<u>FROM</u>	0.50000ml of M6040 + 1.00000ml of	M6037 + 73	50000ml of V	W3112 + 25.00	000ml of MP825	70 = Final Qua	antity: 100.000	ml
Recipe ID 3954	<u>NAME</u> S4(SFAM,6020,200.8)	<u>NO.</u> <u>MP82573</u>	Prep Date 09/28/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_3 (A)	<u>Supervised By</u> Mohan Bera 09/30/2024

FROM 0.50000ml of M6040 + 1.00000ml of M6037 + 88.50000ml of W3112 + 12.50000ml of MP82570 = Final Quantity: 100.000 ml

Recipe ID 3951	<u>NAME</u> S3(SFAM, 6020,200.8)	<u>NO.</u> MP82574	Prep Date 09/28/2024		Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_3 (A)	09/30/2024
<u>FROM</u>	0.50000ml of M6040 + 1.00000ml of	M6037 + 88	3.50000ml of V	V3112 + 10.000	000ml of MP825	71 = Final Qua	antity: 100.000	ml
<u>Recipe</u> <u>ID</u> 3955	<u>NAME</u> S2CONC(SFAM,6020,200.8)	<u>NO.</u> MP82575	<u>Prep Date</u> 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	Supervised By Mohan Bera 09/30/2024

 FROM
 0.05000ml of M5698 + 0.05000ml of M5798 + 0.05000ml of M5800 + 0.05000ml of M5801 + 0.05000ml of M5961 + 0.05000ml of M5981 + 0.05000ml of M5982 + 0.05000ml of M5983 + 0.05000ml of M6023 + 0.05000ml of M6025 + 0.05000ml of M6038 + 0.05000ml of M6030 + 0.10000ml of M5658 + 0.10000ml of M5697 + 0.10000ml of M5802 + 0.10000ml of M6033 + 0.25000ml of M5515 + 0.25000ml of M5799 + 0.25000ml of M5819 + 0.25000ml of M5962 + 0.25000ml of M5976 + 0.25000ml of M5978 + 0.25000ml of M6021 + 0.50000ml of M5390 + 0.50000ml of M5818 + 1.25000ml of M5815 + 1.25000ml of M5817 + 2.50000ml of M5498 + 2.50000ml of M5519 + 2.50000ml of M5769 + 2.50000ml of M5806 + 2.50000ml of M6040 + 226.25000ml of W3112 + 5.0000ml of M6037 = Final Quantity: 250.000 ml

Recipe ID 3956	NAME S2(SFAM,6020,200.8)	<u>NO.</u> MP82576	<u>Prep Date</u> 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	Supervised By Mohan Bera 09/30/2024
<u>FROM</u>	0.50000ml of M6040 + 1.00000ml of	M6037 + 88	8.50000ml of V	V3112 + 0.500	00ml of MP8257	5 = Final Quar	ntity: 100.000 r	nl
Recipe ID 3957	NAME S1(SFAM,6020,200.8)	<u>NO.</u> MP82577	Prep Date	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP	<u>Supervised By</u> Mohan Bera

3957	S1(SFAM,6020,200.8)	<u>MP82577</u>	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024
<u>FROM</u>	0.50000ml of M6040 + 1.00000ml of	M6037 + 88	3.50000ml of \	W3112 + 10.00	000ml of MP825	76 = Final Qua	antity: 100.000	ml

Recipe ID 3958	NAME ICV(SFAM)	<u>NO.</u> <u>MP82578</u>	Prep Date 09/28/2024		Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_3 (A)	
FROM	2.00000ml of M5295 + 98.00000ml o	I MP82568	= Finai Quan	αιι y: 100.000 h	11			
Recipe ID 3961	NAME CCV	<u>NO.</u> MP82579	Prep Date 09/28/2024		Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_3 (A)	

 FROM
 0.20000ml of M5513 + 0.50000ml of M5799 + 0.50000ml of M5818 + 0.50000ml of M5981 + 0.50000ml of M5983 + 1.00000ml of M5815 + 1.00000ml of M5817 + 1.25000ml of M5473 + 10.00000ml of M6037 + 12.45000ml of M5515 + 12.45000ml of M5519 + 2.00000ml of M5390 + 24.95000ml of M5498 + 24.95000ml of M5769 + 24.95000ml of M5806 + 25.00000ml of M5304 + 4.50000ml of M5697 + 4.50000ml of M5698 + 4.50000ml of M5819 + 4.95000ml of M6033 + 5.00000ml of M5976 + 5.00000ml of M5978 + 5.00000ml of M6040 + 824.35000ml of W3112 = Final Quantity: 1000.000 ml

<u>Recipe</u> <u>ID</u> 1142	NAME ICSA ICPMS	<u>NO.</u> MP82580	Prep Date 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	
<u>FROM</u>	10.00000ml of M5873 + 90.00000ml	of MP82568	3 = Final Qua	ntity: 100.000	ml			
<u>Recipe</u> ID	NAME	NO.	Prep Date	Expiration Date	<u>Prepared</u> By	ScaleID	PipettelD	Supervised By

<u>Recipe</u>				Expiration	Prepared			<u>Supervised By</u>
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Mohan Bera
1143	ICSAB ICPMS	<u>MP82581</u>	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024
FROM	10.00000ml of M5873 + 10.00000ml	of M5874 +	80.00000ml c	of MP82568 =	Final Quantity: 1	00.000 ml		

Т

Metals STANDARD PREPARATION LOG

Recipe ID 3964	NAME CONC.LCSS SPIKE	<u>NO.</u> MP82583	Prep Date 09/28/2024	Expiration Date 10/30/2024	Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	Supervised By Mohan Bera 09/30/2024
FROM	0.25000ml of M5698 + 0.25000ml of of M5981 + 0.25000ml of M5982 + 0. 0.25000ml of M6030 + 0.50000ml of of M5192 + 1.25000ml of M5799 + 1. + 12.50000ml of M5519 + 12.50000ml 2.50000ml of M5818 + 2.50000ml of of M5820 = Final Quantity: 250.000	25000ml of M5289 + 0. 25000ml of nl of M5769 M6040 + 5.	M5983 + 0.25 50000ml of M M5819 + 1.25 + 12.50000m	5000ml of M602 5658 + 0.50000 5000ml of M590 I of M5806 + 1	23 + 0.25000ml 0ml of M5697 + 62 + 1.25000ml 58.75000ml of V	of M6025 + 0.2 0.50000ml of M of M6021 + 12. V3112 + 2.5000	5000ml of M60 15802 + 1.2500 50000ml of M5 0ml of M5390	228 + 10ml 5498 +

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	Mohan Bera
3962	MG 10PPM FOR TUNE	<u>MP82585</u>	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP	
							ETTE_3 (A)	09/30/2024
FROM	0.01000ml of M5768 + 9.99000ml of	MP82568 =	Final Quanti	ty: 100.000 ml				

Т

Т

Т

Т

Т

Т

Т

<u>Recipe</u> <u>ID</u> 3894	NAME TUNE 200PPB	<u>NO.</u> <u>MP82586</u>	Prep Date 09/28/2024	Expiration Date 10/31/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD METALS_PIP	Supervised By Mohan Bera
<u>FROM</u>	2.00000ml of M6055 + 2.00000ml of	MP82585 +	96.00000ml c	of MP82568 =	Final Quantity: 1	00.000 ml	ETTE_3 (A)	09/30/2024
<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Mohan Bera
3903	ISS 3PPM	<u>MP82587</u>	09/28/2024	10/31/2024	Sarabjit Jaswal	None	METALS_PIP ETTE_3 (A)	09/30/2024
<u>FROM</u>	5.00000ml of M6037 + 75.00000ml o	f M5739 + 1	70.00000ml o	f MP82568 =	Final Quantity: 2	50.000 ml		

Recipe ID 1060	NAME AG 1.0PPM	<u>NO.</u> MP82908	Prep Date 10/24/2024	Expiration Date 10/30/2024	<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Mohan Bera 10/25/2024
FROM	0.01000ml of M6030 + 9.99000ml of	MP82568 =	Final Quanti	ty: 10.000 ml				
Recipe				Expiration	<u>Prepared</u>			Supervised By

Recipe				Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Mohan Bera
1051	TL 1PPM	<u>MP82960</u>	10/29/2024	10/31/2024	Sarabjit Jaswal	None	None	
								10/29/2024
FROM	0.01000ml of M6023 + 9.99000ml of	MP82568 =	Final Quanti	ty: 10.000 ml				

-

-

CHEMICAL RECEIPT LOG BOOK

Т

-

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	051722	05/17/2025	07/01/2022 / bin	06/17/2022 / jaswal	M5192
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	071122	07/11/2025	09/01/2022 / jaswal	07/21/2022 / jaswal	M5288
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Aluminum (Al) 10,000PPM	070622	07/06/2025	09/02/2022 / jaswal	07/12/2022 / jaswal	M5289
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-1 / ICV (ICP/ICPMS) STOCK SOLN	ICV-1014	02/05/2025	08/07/2024 / jaswal	02/20/2020 / bin	M5295
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	6020CAL-1 / Calibration Standard Method 6020	S2-MEB711244	10/20/2026	08/07/2024 / jaswal	04/01/2022 / jaswal	M5304
Quantian	theme Conder / Herm Norme	1 -4 #	Expiration	Date Opened /	Received Date /	Chemtech

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	072122	07/21/2025	08/07/2024 / jaswal	09/18/2022 / bin	M5390

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/29/2025	03/16/2023 / jaswal	03/16/2023 / jaswal	M5473
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/09/2025	07/29/2024 / jaswal	03/16/2023 / jaswal	M5476
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml	031523	03/15/2026	08/15/2023 / jaswal	03/17/2023 / bin	M5498
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 125 ml	061522	06/15/2025	03/19/2023 / bin	03/17/2023 / bin	M5513
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	092122	09/21/2025	08/01/2024 / Jaswal	03/17/2023 / bin	M5515
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57119 / Potassium (K) 10,000PPM	120822	12/08/2025	01/08/2024 / bin	03/17/2023 / bin	M5519

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-SPK-1 / SOIL/WATER SPIKE SOLN 1, 125mL	T2-MEB721963	07/27/2027	05/30/2023 / jaswal	05/26/2023 / jaswal	M5565
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1403 / Hydrogen Peroxide, 30% 1 gal	820803	02/03/2025	04/18/2024 / jaswal	08/03/2022 / Al-Terek	M5634
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-SPK-4 / SOIL/WATER SPIKE SOLN 4, 125mL	T2-MEB721144	07/07/2027	08/23/2023 / jaswal	08/29/2023 / jaswal	M5657
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	102523	10/25/2026	04/03/2024 / jaswal	10/27/2023 / jaswal	M5697
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58025 / Mn, 1000 PPM, 500 ml	102623	10/26/2026	04/18/2024 / jaswal	10/27/2023 / jaswal	M5698

Т

т

CHEMICAL RECEIPT LOG BOOK

Т

т

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	6020ISS / 6020ISS, 10 ug/ml, Bi, Ho, In, 6Li, Rh, Sc, TB, Y	T2-MEB709511	09/03/2026	08/07/2024 / jaswal	04/11/2022 / jaswal	M5739
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	01/08/2024 / bin	01/03/2024 / bin	M5768
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	05/24/2024 / Jaswal	01/03/2024 / bin	M5769
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57033 / As, 1000 PPM, 125 ml	111323	11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	120523	12/05/2026	08/07/2024 / jaswal	01/03/2024 / jaswal	M5802
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58111 / Na, 10000 PPM, 500 ml	122223	12/22/2026	08/01/2024 / Jaswal	01/03/2024 / jaswal	M5806
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57115 / P, 10000 PPM, 125 ml	041723	04/17/2026	05/21/2024 / Jaswal	02/09/2024 / jaswal	M5815
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57016 / S, 1000 PPM, 125 ml	122923	12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57116 / S, 10000 PPM, 125 ml	071123	07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57014 / Si, 1000 PPM, 125 ml	122023	12/20/2026	03/06/2024 / jaswal	02/09/2024 / jaswal	M5818	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	111623	11/16/2026	03/20/2024 / jaswal	02/09/2024 / jaswal	M5819	
Supplier	ItemCode / ItemName	Lot #	Expiration	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
AL		004400					

			Duic		Received by	
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART A / ICSA (ICPMS) STOCK SOLN	CP-MS ICSA-0803	04/30/2025	04/17/2024 / jaswal	07/14/2022 / jaswal	M5873

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
EPA	PART B / ICSB (ICPMS) STOCK SOLUTION	CP-MS ICSB-0803	04/30/2025	04/17/2024 / jaswal	07/14/2022 / jaswal	M5874	

ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
9598-34 / Nitric Acid, ra-Analyzed (cs/4x2.5L)	24D1062002	12/08/2024	06/21/2024 / Al-Terek	06/07/2024 / Al-Terek	M5935
9	598-34 / Nitric Acid,	598-34 / Nitric Acid, 24D1062002	ItemCode / ItemName Lot # Date 598-34 / Nitric Acid, 24D1062002 12/08/2024	ItemCode / ItemName Lot # Date Opened By 598-34 / Nitric Acid, 24D1062002 12/08/2024 06/21/2024 /	ItemCode / ItemName Lot # Date Opened By Received By 598-34 / Nitric Acid, 24D1062002 12/08/2024 06/21/2024 / 06/07/2024 /

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57028 / Ni, 1000 PPM, 125 ml	041124	04/11/2027	07/02/2024 / Jaswal	06/11/2024 / Jaswal	M5961	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.			06/06/2027	07/02/2024 / Jaswal	06/14/2024 / Jaswal	M5962	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	CGMO1-1 / MOLYBDENUM 125mL 1000ug/mL	T2-MO720876	07/17/2027 08/07/2024 / jaswal		02/22/2024 / Jaswal	M5976	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	CGTI1-1 / TITANIUM 125mL 1000ug/mL	T2-TI719972	06/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5978	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57092 / U, 1000 PPM, 125 ml	060724	06/07/2027	07/29/2024 / Jaswal	06/11/2024 / Jaswal	M5981	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute 57038 / Sr, 1000 PPM, Standards, Inc. 125 ml		031524	03/15/2027	07/01/2024 / Jaswal	06/11/2024 / Jaswal	M5982	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57040 / Zr, 1000 PPM, 125 ml	071423	07/14/2026	07/29/2024 / Jaswal	06/11/2024 / Jaswal	M5983	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57023 / V, 1000 PPM, 125 ml	062424	06/24/2027	09/28/2024 / jaswal	08/05/2024 / Jaswal	M6021	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57081 / TI, 1000 PPM, 125 ml	0624724	06/27/2027			M6023	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute 57082 / Pb, 1000 PPM, Standards, Inc. 125 ml		061224	06/12/2027	08/05/2024 / Jaswal	08/05/2024 / Jaswal	M6025	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 125 ml	110923	11/09/2026	05/05/2024 / jaswal	08/05/2024 / Jaswal	M6026

ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57048 / Cd, 1000 PPM, 125 ml	070124	07/01/2027	08/05/2024 / kareem	01/25/2019 / Jaswal	M6028
	7048 / Cd, 1000 PPM,	7048 / Cd, 1000 PPM, 070124	ItemCode / ItemName Lot # Date 7048 / Cd, 1000 PPM, 070124 07/01/2027	ItemCode / ItemName Lot # Date Opened By 7048 / Cd, 1000 PPM, 070124 07/01/2027 08/05/2024 /	ItemCode / ItemName Lot # Date Opened By Received By 7048 / Cd, 1000 PPM, 070124 07/01/2027 08/05/2024 / 01/25/2019 /

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57047 / Ag, 1000 PPM, 125 ml	122823	12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Al, 10000 PPM, 500 ml	011623	01/16/2026	08/07/2024 / Jaswal	01/03/2024 / Jaswal	M6033
Supplier	er ItemCode / ItemName Lot #		Received Date / Received By	Chemtech Lot #		
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	02/02/2025	08/24/2024 / Janvi	08/01/2024 / Janvi	M6037
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	24D1562005	02/08/2025	08/09/2024 / jaswal	08/01/2024 / Janvi	M6040
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	IV-STOCK-12 / ICP-MS TUNING SOLUTION, 125mL	U2-MEB734294	06/21/2028	08/21/2024 / Jaswal	08/19/2024 / Jaswal	M6055
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical			09/10/2024 /	M6088		

Janvi

Janvi

Instra-Analyzed (cs/4x2.5L)

Supplier	ItemCode / ItemName Lot # Expiration Date Opened / Date Opened By		/ ItemName lot # ' ' ' '		Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606
		ii		-		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

m/z->	1.067	m/z-> 2.0€7	5.014	m/z-> 1.0E5	2.5 E 4	5. 0 114	1. Cadmium nitrate tetrahydrate (Cd)	Compound	Weight shov	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):		CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
		 0		0 ⁶		[1] Spectrum No.1		RM#	Weight shown below was dliuted to (mL):	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	PORT:	1s, Inc. om
		120		20		-	IN024 CDM092021A1	Lot Number	6UTB uted to (mL):	070127 Ambient (20 °C) 1000	<u>57048</u> <u>070124</u> Cadmium (Cd)		
		130		30		12.514 800	1000 99.	Nominal Pu Conc. (µg/mL) (1	2000.07 0.1		(Cd)		R
200		140		\$		12.514 sec]:58148.D# [Count] [Linear]	99.999 0.10 36.5	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.100 Flask Uncertainty		Solvent: 2%		Certified R
		1 () ()		ő		Count] [Line	.5 5.4797	say Target 6) Weight (g)	ţ		ent: 24002546 2% 40.0	Lot #	Certified Reference Material CRM S 15 12 4
		160		0 O		ar]	5.4804	Actual Actual Weight (g) Conc. (µg/mL)			Nitric Acid		terial CRM
		170		70			1000.1	11	Re	5	5		M6028
		-1 2 C		BO			10022-68-1	Expanded Uncertainty (Solvent +/- (µg/mL) CAS# 0	Reviewed By: Ped	\$	Alloch & B		-
		190 200		90 100				SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD51	Pedro L. Rentas	ento	Brack		ANAB IS AR-153 https://Ab
				-			orl-rat 60.2mg/kg 3108	ned pg.) NIST LD50 SRM	070124		070194		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

1 of 2

Part # 57048

Lot # 070124

Printed: 8/1/2024, 2:13:25 PM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	F	₽	B	DC		Ŗ	AS		Sb	A		-	
	10.04	200	<0.02	<0.01		3	202		40.02	<0.02	200		
	<u>_</u>	2	ଚ	5	<u>ې</u>	ç	ŝ		ç	ğ			
	70.02	3	40.02	<0.02	10.02	33	20.02		3	Т	ALC: NOT THE REAL OF THE REAL		
	- AU		Ş	Ga	n g	5	Ē	1	Ę	Dy			
	20.02		3	<0.02	SU.UZ	3	<0.02	10.02	3	40.02	and the second second second		
	1-3	2	2	2	-	r!	b	110	Ş	Hf	Constant of		_
	20.02	20.02	55	<0.2	20.02	3	A).02	20.02	3	40.02	And a subscription	Ŀ	N OUK
	Nd	UTAT	Ş	Hg	MIN		Mg	Ę		E	C. NTALITY		Aptalo
(T) = Target analyte	<0.02	20.02	200	40 i2	<0.02	2	40 .01	70.05	5	<0.02	ALC: NO ALC: NO		Varifics
yet anal	×	2	2	٣	Pd	!	õ	NO	f.	Ŋ	The state		tion
vte	40 2	20.02	5	<0.02	<0.02		<0.02	<0.02		<0.02	一般的なもの		
	sc	ND ND	2	Ru	Rb		Rh	Ke	1	Ŗ			NC L
	40.02	20.02		<0.02	<0.02		A0 03	<0.02		40.02		agrint)	
	Ta	s.	, ;	ş	Na	9	Ao	S		Se	SOME NUMBER		
	<0.02	<0.02		20.03	<0.2	10.01	88	<0.02		c (12	ENVERTOR		
	H	Sa		j	ľ		3	Te		77			
	<0.02	<0.02	10.0#	-0 N3	<0.02	10.02	3	<0.02	10.01	SUP	The state was a state of the		
	27	2	*	<	4	~	<	d		W	N-SNO-N		
	<0.02	<0.02	70.02	3	<0.02	20.02	3	40.02	20:01		Providential of the		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. S.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

e24

N30 250 250	N N N O	5.0 E5 277 277 277 277 277 277 277 277 277 27
		0
140	120	m/z-≫ 110
		1.0回6
40 50	N O	m/z-> 10 2.0≣6
		5.OE6
sec]:58182.D# [Count] [Linear]	-	[1] Spectrum No.1 1.0E7
99.999 0.10 62.5 32.0006 32.0040	11	1. Lead(II) nitrate (Pb)
Purity Uncertainty Assay Target Actual nL) (%) Purity (%) (%) Weight (g) Weight (<u>c</u>	Lot Nomin RM# Number Conc. (µg	Compound
2 0.058 Flask Uncertainty		Weight shown below was diluted to (mL):
5E-05 Balance Uncertainty	6UTB	NIST Test Number:
(mL)	110926 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
40.0	<u>Lead (Pb)</u>	Lot Number: Description:
Lot # Solvent: 24002546 Nitric	57182	GEHTIFIED WEIGHT REPORT: Part Number:
2 8 15 12 H		
Certified Reference Material		Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
	Certified Reference Material CR Lot # Lot # Solvent: 24002546 Nitric Aci 2° 0.058 Flask Uncertainty 2% 40.0 Nitric Aci 2° 0.058 Flask Uncertainty a Nitric Aci 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty Actual a 2° 0.10 62.5 32.0006 32.0040 0 98.999 0.10 62.5 32.0040 4 secc]1:561 182. D# [Count] [Linesar] 4 secc]1:561 182. D# [count] [count] 30 40 50 60 60	Certified Reference Mati R: Six124 Lot# Solvent: 24002546 2% 40.0 2000.02 0.058 5E-05 Balance Uncertainty 2000.02 0.058 10000 98.999 10000 98.999 17284 sec1]:56162. D# [Count] [Lines 17284 sec1]:56162. D# [Count] [Lines 17394 sec1]:56162. D# [Count] [Lines

1

 $\leq \infty$

https://Absolutestandards.com ANAB ISO 17034 Accreditec AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			and the second second				TI acci ilio	Cais	VCITICA			C IA	HALLIN'						
AI	Am	3	AB	7	3	цг	33	:	3	NE	2		200	2					
3		1		1				ţ	10.02	3	10.02	1.1	20.02	ő	70>	01	20.02	¥	<0.02
S	4 0.02	ß	<0.2	ц,	<0.02	Но	40.02	E	<0.02	Å	<0.02	Re	<0.02	Si	A0.02	P	<0.02	9	40.02
As	4 0.2	ĉ	<0.02	E	<0.02	6	<0.02	Mg	<0.01	õ	<0.02	R	<0.02	Ag	40.02	H	40.02	<	20.02
Ba	40.02	S	40.02	ନ୍ଥ	<0.02	7	40.02	5	30	¥	3	Ŗ	3	ξ,	5	7	5	\$	
5	2	2		2						1					10.00	***	70.02	77	10.02
Ве	10.05	۵ ۵	<0.02	Ga	<0.02	F	40,2	ЯH	40.2	٩	<0.02	Ru	<0.02	ş	⊲ 0.02	F	<0.02	~	A0.02
B	A0.02	S	<0.02	ନ୍ନ	<0.02	5	<0.02	Mo	<0.02	7	<0.02	Sm	<0.02	60	40.02	5	<0.02	Zn	Ang N
₿	<0.02	Q	40.02	Au	<0.02	\$	т	M	<0.02	ĸ	<0.2	Sc	<0.02	Ţ	40,02	3	40.02	2	20.02

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shirt

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Weight shown below was diluted to (mL): 2000.02 0.058 Flax Uncertainty Asay Compound Intel (Pb) IN029 Resizented Conc. (ug/mL) Puity (N0) Puity (N0)	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Expiration Date: Recommended Storage: Nominal Concentration (µg/mL); NIST Test Number:
IN029 PBD/IZ01641 10000 99.999 10 20 30 30 30 30 110 120 30 30 210 120 130 130 130	NIST Test Number: Weight shown below wa
EG 10 20 30 40 EG 130 140 EG 20 220 230 240	N
E6 10 20 30 40	5.OE6
E E E E E E E E E E E E E E E E E E E	
E E E E E E E E E E E E E E E E E E E	1.000
270 220 230 240	
210 220 230 240	5. OE5

1

Lot # 110923

Printed: 8/1/2024, 2:13:36 PM

 $\leq \infty$

https://Absolutestandards.com ANAB ISO 17034 Accreditec AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			and the second second				TI acci ilio	Cais	VCITICA			C IA	HALLIN'						
AI	Am	3	AB	7	3	цг	33	:	3	NE	2		200	2					
3		1		1				ţ	10.02	3	10.02	1.1	20.02	ő	70>	01	20.02	¥	<0.02
S	4 0.02	ß	<0.2	ц,	<0.02	Но	40.02	E	<0.02	Å	<0.02	Re	<0.02	Si	A0.02	P	<0.02	9	40.02
As	4 0.2	ĉ	<0.02	E	<0.02	6	<0.02	Mg	<0.01	õ	<0.02	R	<0.02	Ag	40.02	H	40.02	<	20.02
Ba	40.02	S	40.02	ନ୍ଥ	<0.02	7	40.02	5	30	¥	3	Ŗ	3	ξ,	5	7	5	\$	
5	2	2		2						1					10.00	***	70.02	77	10.02
Ве	10.05	۵ ۵	<0.02	Ga	<0.02	F	40,2	ЯH	40.2	٩	<0.02	Ru	<0.02	ş	⊲ 0.02	F	<0.02	~	A0.02
B	A0.02	S	<0.02	ନ୍ନ	<0.02	5	<0.02	Mo	<0.02	7	<0.02	Sm	<0.02	60	40.02	5	<0.02	Zn	Ang N
₿	<0.02	Q	4 0.02	Au	<0.02	\$	т	M	<0.02	ĸ	<0.2	Sc	<0.02	Ţ	40,02	3	40.02	2	20.02

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shirt

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

m/z->	1.0E6	2.0E6	m/z->	1000	2000	1.0E5	2.0E5	1. Ammonium molybdate (Mo)	Compound	Volume show	NIST Tes	Recommended Storage: Nominal Concentration (µg/mL):	Expire	Part Lot Des	CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
210			110		đ		[1] Spectrum No.1		Nur	vn below was o	NIST Test Number:	d Storage: n (µg/mL):	Expiration Date:	Part Number: Lot Number: Description:		s, Inc.
2			120		N		No.1	58142 022222	Part Lot Number Number	Volume shown below was diluted to (mL):	6UTB	Ambient (20 °C) 1000	051725	57042 051722 Molybde		-
							[8.594	0.1000	Dilution Factor	3000.41		20 °C)		<u>57042</u> <u>051722</u> Molybdenum (Mo)		
			130		G		sec]:5704	300.0	Initial Un Vol. (mL) Pip	0.058 Flas	5E-05 Bala					M.S.
			140		40 0		8.594 sec]:57042.D# [Count] [Linear]	0.084	Uncertainty N Pipette (mL) Conc	Flask Uncertainty	Balance Uncertainty			MKE	_	Certified Rep M.5192
			150		50		unt] [Líne	1000	Nominal Conc. (µg/mL) Co				0.5%	MKBQ8597V Am	Lot #	ference M.
			160		60)ar]	10001.0	Initial Conc. (µg/mL) C				15.0 ×	Ammonium hydroxide		Certified Reference Material CRM いちいのえいたいのんりはてい
			170		70			1000.0	Final Conc. (µg/mL)	Г			Ammonium hydroxide	æ	-	M 172
								2.1	Expanded Uncertainty +/- (µg/mL)		Reviewed By:	N's	Formulated By:	A		
			180		80			13106-76-8	(Solve CAS#			to I		deronce		•
			190		90			5 mg(Mo)/m3	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Pedro L. Rentas	era	Lawrence Barry	An		nt 、
			200		100			13 orl-rat 333 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50		s 051722	/	rry 051722	Ψ		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								kg 3134	NIST		722		722			4 Accredite ate Numbe ndards.com

Part # 57042 Lot # 051722

1 of 2

Printed: 6/16/2022, 1:36:08 PM

vww.absc	100-368-1
vww.absolutestandards.com	0-368-1131
com	rds, I
	Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	letals	Verifica	ition	by ICP-N	IS (µ	g/mL)						
A	<0.02	ß	40.02	Dv	20.02	Ηŕ	3	1		1									
SP SP	A).02	Ĵ,	2.0	7 5	10.02	1	<0.02	' E	20.02	N	<0.02	P	<0.02	Se	<0.2	4L	<0.02	W	<0.02
<u>,</u>		<u>م</u>	10.2	5	20.02	Ho	<0.02	Lu	<0.02	ß	<0.02	Re	<0.02	Si	40.02	5	<0.02	11	4000
2	202	ŝ	20.02	E	<0.02	h	<0.02	Mg	<0.01	ò	<007	Rh	50	۸,	2003	3	3	: (
Ba	40.02	S	<0.02	3	300	7	3	ξ,	2	2			10.02	26	70.02		20.02	<	20.02
Be	5	?	3	2	20.02	l =	70.02	UTAT	20.02	Pd	<0.02	Rb	<0.02	Na	40.2	Ъ	<0.02	ΥЪ	<0.02
	-	2	70.02	Ca	<0.02	He	<02	Hg	40.2	P	<0.02	Ru	<0.02	S	40.02	J	300	<	2003
Id	20.02	6	40.02	ଜ	<0.02	5	40.02	Mo	÷	¥	2003	ŝ	202	0	5	>		1,	10104
ω	40.02	6	<0.02	An	3	ş	3	E		; ;	TO'NE	UH	70.02	0	20.02	Sn	20.02	5	<0.02
					10.01	0.1	20.05	ING	20.02	~	40.2	Sc	<0.02	Ta	<0.02	Т	<0.02	72	<0.02
																			Non- Non- of Concession, Name of Concession, N

(T)= Target analyte

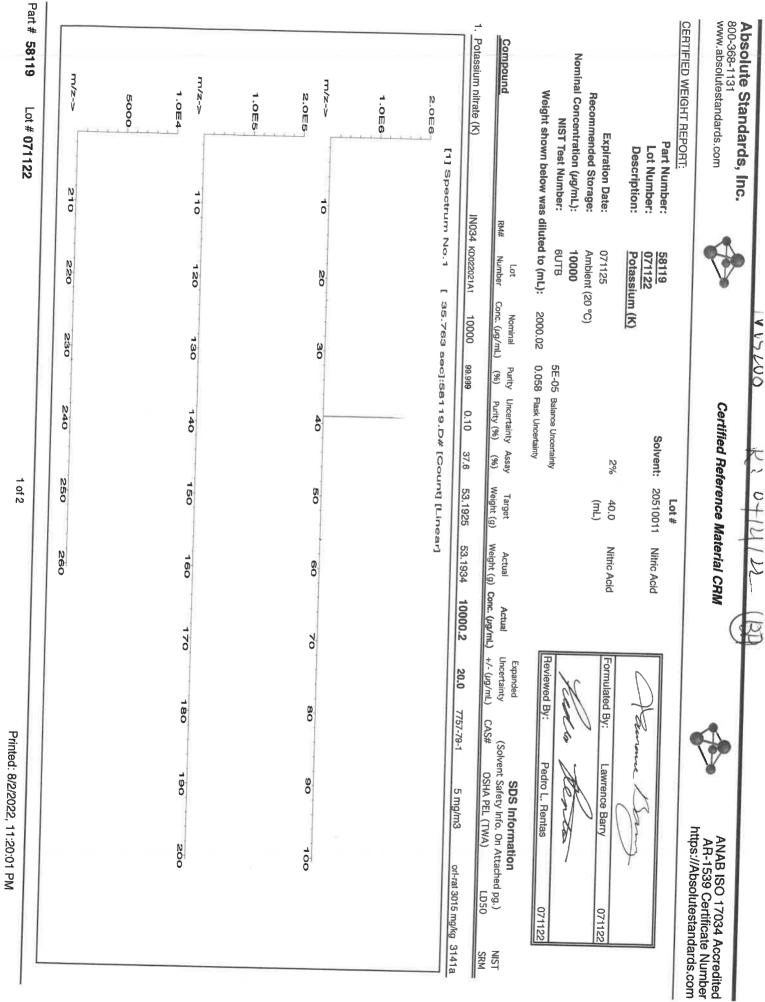
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son 1. S

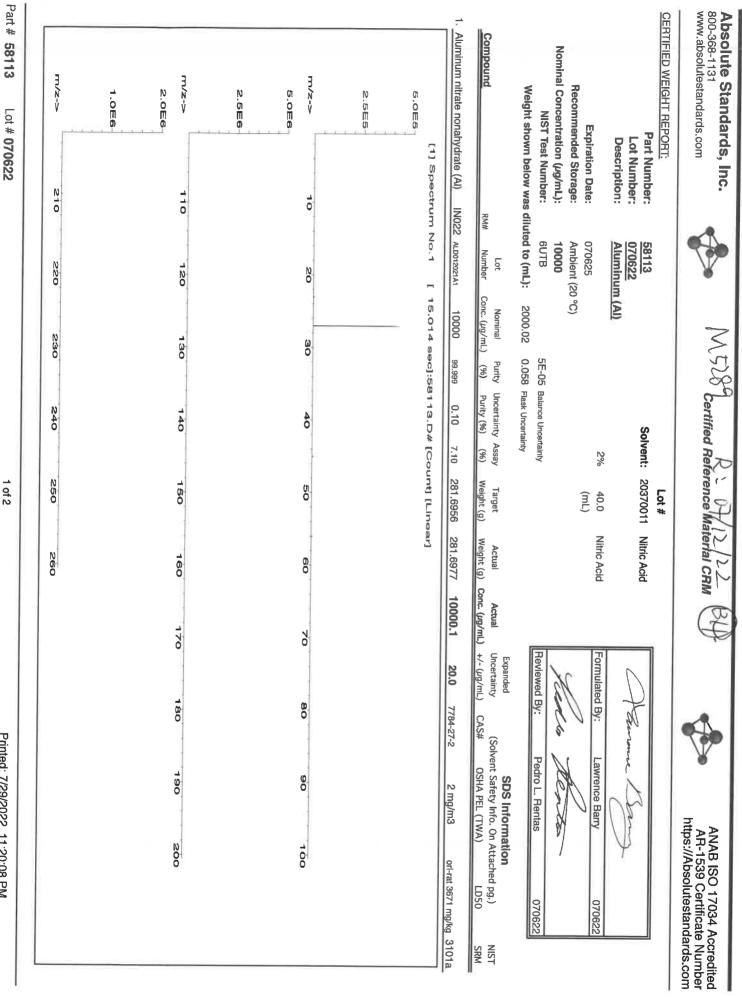
Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57042 Lot # 051722

1 of 2

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Certified Reference Material CRM	*	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Indu	Mass Spec		
<0.02	Trace Metals V		
40.02 40.02 40.02 Ca 40.02 Ca	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.2	$\begin{array}{c c} W & < 0.02 \\ U & < 0.02 \\ V & < 0.02 \\ Y & < 0.02 \\ Y & < 0.02 \\ Z n & < 0.02 \\ \end{array}$
Physical Characterization:	(T)= Target analyte		1 10.02
Homogeneity: No heterogeneity was ob	Homogeneity: No heterogeneity was observed in the preparation of this standard.	Ce	Certified by:
		()	sold and a second
	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in All standard containers are meticulously cleaned prior to use	ated. ed in	
 Standards are prepared gravimetriculously cleaned prior to use. Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under apping the uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Govern 	Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result." NIST Technical Note 1305		
	This is the second		
	D.C. (1994).		

1 of 2

Printed: 7/29/2022, 11:20:08 PM

800-368-1131	Absolute Standards, II
	Inc.
	800-368-1131

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	etais	Verifica	TION	by ICP-	MC (hg/mr)						
							-0110-												
Al	Т	G	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	N	<0.02	P	<0.02	Se	<0.2	Тb	<0.02	W	<u>6</u> .0
Sр	<0.02	ß	<0.2	막	<0.02	Но	<0.02	Ŀ	<0.02	NЪ	<0.02	Re	<0.02	ŝ	<0.02	Te	A0.02		<0.02
As	<0.2	င့	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	^S O	<0.02	Rh	<0.02	Ag	<0.02	3	<0.02	V	4
Ba	<0.02	ß	<0.02	Gd	<0.02	١r	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	þ	<0.02	Υ γ	4
Be	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	ş	40.02	j	<0.02	¥	6
B:	<0.02	S	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	₽	<0.02	Sm	<0.02	s	<0.02	3	<0.02	7	4
B	<0.02	С ¹	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	×	<0.2	sc	<0.02	Ta	<0.02	Ţ	<0.02	27	A)

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Certified by:

In P. Mr.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" R : 以120 2 [

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in $\mu g/L$ (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014 For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

RMs ICV 1, 5, 6 SFAM.docx

Page 1 of 2

QATS Form 20-007F188R00, 04-19-2021

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

AP11MInstructions for QATS Reference Material: Inorganic ICV SolutionsICV1-1014For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate
into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.ICV5-0415For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting
1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume
with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K2Cr2O7
and 5% (v/v) nitric acid.ICV6-0400For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6
concentrate into a 100 mL volumetric flask and dilute to volume with Type II water.
Distill this solution along with the samples before analysis. The cyanide concentrate
is prepared from K3Fe(CN)6, Type II water, and 0.1 % sodium hydroxide, and will
decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014			
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)		
AI	2500	500		
Sb	1000	200		
As	1000	200		
Ba	520	100		
Be	510	100		
Cd	510	100		
Ca	10000	2000		
Cr	520	100		
Co	520	100		
Cu	510	100		
Fe	10000	2000		
Pb	1000	200		
Mg	6000	1200		
Mn	520	100		
Ni	530	110		
K	9900	2000		
Se	1000	200		
Ag	250	50		
Na	10000	2000		
TI	1000	210		
V	500	100		
Zn	1000	200		

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN [.]	99

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Multi Analyte Custom Grade Solution	n
Catalog Number:	6020CAL-1	
Lot Number:	S2-MEB711244	
Matrix:	5% (v/v) HNO3 tr. HF	
Value / Analyte(s):	20 µg/mL ea: Silver, Arsenic, Beryllium, Cadmium, Chromium, Iron, Magnesium, Sodium, Lead, Selenium, Vanadium,	Aluminum, Barium, Calcium, Cobalt, Copper, Potassium, Manganese, Nickel, Antimony, Thallium, Zinc

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 20.01 ± 0.08 µg/mL	ANALYTE Antimony, Sb	CERTIFIED VALUE 20.01 ± 0.12 µg/mL
Arsenic, As	20.01 ± 0.18 μg/mL	Barium, Ba	20.01 ± 0.11 μg/mL
Beryllium, Be	20.01 ± 0.14 μg/mL	Cadmium, Cd	20.01 ± 0.11 μg/mL
Calcium, Ca	20.01 ± 0.10 μg/mL	Chromium, Cr	20.01 ± 0.16 μg/mL
Cobalt, Co	20.01 ± 0.11 μg/mL	Copper, Cu	20.01 ± 0.10 μg/mL
Iron, Fe	20.01 ± 0.09 μg/mL	Lead, Pb	20.01 ± 0.11 μg/mL
Magnesium, Mg	19.99 ± 0.10 μg/mL	Manganese, Mn	20.01 ± 0.10 μg/mL
Nickel, Ni	20.01 ± 0.11 μg/mL	Potassium, K	20.01 ± 0.10 μg/mL
Selenium, Se	20.02 ± 0.14 μg/mL	Silver, Ag	20.02 ± 0.09 μg/mL
Sodium, Na	20.01 ± 0.10 μg/mL	Thallium, Tl	20.01 ± 0.13 μg/mL
Vanadium, V	20.01 ± 0.11 μg/mL	Zinc, Zn	20.01 ± 0.11 μg/mL

1.026 g/mL (measured at 20 \pm 4 °C)

Density:

Density:	1.026 g/mL (measi	ared at 20 ± 4 °C)	
Assay Informatio	n:		
ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
AI	ICP Assay	3101a	140903
AI	EDTA	928	928
As	ICP Assay	3103a	100818
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Са	ICP Assay	3109a	130213
Са	EDTA	928	928
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Fe	Calculated		See Sec. 4.2
К	ICP Assay	3141a	140813
К	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	3152a	120715
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
Se	Calculated		See Sec. 4.2
TI	ICP Assay	3158	151215
ТІ	Calculated		See Sec. 4.2
V	ICP Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	u _{char} a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² char a + u ² bb + u ² lts + u ² ts) ¹
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	u _{bb} = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at 20° \pm 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

October 20, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- October 20, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Line

1 023 Multed to (2 072 1 1000 1000 1000 1000 1000 1000 1000 1
Expiration Dete: 072125 2% 40.0 Nithic Add neradid Storage: Ambient (20 °C) SE-05 Baaroe Uncertainty (mL) Nithic Add ST Test Number GUTB SE-05 Baaroe Uncertainty SE-05 Baaroe Uncertainty Actual Number Actual
NIST fest Number: 6UTB SE-05 Bance Unordary Lot Nominal Purity Uncertainty Assy Taget Actual Bance Intrate (Ba) IN023 excame 1000 99.99 0.10 E23 3.82417 3.82426 1:0E8 [1] Spectrum No.1 [1] 12.514 sec):69156.0/f [Count] [Linear] 2:0E8 11.0E8 11.0E8 1 20 30 40 50 60 2:0E8 10 120 130 140 150 160 50
Compound New Number Core: (up/m.) (%) Parity (%) (%) Weight (0) Weight (0)
[1] Spectrum No.1 [12.514 sec]:58156.D# [Count] [Linear] E8 E5 E5 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 120 120 130 140 150
,
m/z-> 210 220

Printed: 10/27/2022, 4:11:20 PM

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

					Children -									a the second sec					
<0.02		.p.	<0.02	Dy	<0.02	Hf	<0.02	E	<0.02	ž	<0.02	Ŀ	000	100	c 07		W V	1 111	0000
\$0.0P		Ğ	<0.2	눱	<0.02	Ho	<0.02	Lu	<0.02	ęz.	<0.02	- d	200	3 0	1 200	2	20.02	A :	
02		,ei	<0.02	Бu	<0.02	ŗ	<0.07	ŷ	1002	č	000	24	1000	5	70.02	5	20.05	2	40.02
F		0	000	3			1010	9.1	TO'O'	ŝi	70.02	2	70.02	A0	<0.02	F	<0.02	>	<u>6.02</u>
+ .	-	3	70'N2	3		늭	<0.02	MN	<0.02	Ъ	<0.02	RЪ	<0.02	Na	40.2	Ē	<0 UD	42	0007
0.0		1	<0.02	Ga	<0.02	Че	<0.2	Hg	<0.2	۵.	<0.02	Ru	<0.02	2	007	Ę		; >	1000
20.0>		0	<0.02	e	<0.02	La	<0.02	Mo	<0.02	å	2007			5 0			70.02	-	20.02
<0.02	1	jă,	<0.02	An	000	á	2007	PIN I		: >	20.00		70.02	0	70'02	цо	<0.U2	U 7	<0.02
	1			mL	TRA	2	20.02	DNT	ZUNZ	2	202	ŝ	<0.02	E	<0.02	i	2002	7,	2007

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

ar R

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	031523	on ttached pg.) NIST LD50 SRM ont-rat >2000mo/kg 3109a	Ő	O O N
ARA	Ped X Gio	SDS Information (Solvent Safety Info. On Attached pg.) CSHA PEL (TWA) LD5C C	-0 0	190
MUXCITI	Formulated By: Reviewed By:	Expanded Uncertainty +/- (µg/mL) CAS: 20.0 471-34	Q R	170
170		Actual Actual Weight (g) Conc. (ug/mL) 75.2093 10001.4	So	1900 1900 1900
Certified Reference Material CRM	Lot # Solvent: 21110221 2% 60.0 (mL) Uncertainty sentainty	Uncertainty Assay Target Purity (%) (%) Weight (g) 0.10 38.9 75.1990	0.D# [Count] [Line	140 150 240 250
NV5497	5E-05 Balance 00.41 0.058 Flask Un	Nominal Purity Uncertainty Conc. (<i>ug/m</i> L) (%) Purity (%) 10000 99.999 0.10	30 30	- 30 5 7 30 7 30 7 30
	58120 031523 031526 031526 Ambient (20 10000 6UTB 6UTB 6UTB	Lot A RM# Number Con	10 To 1 12	220
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: 58120 Lot Number: 031523 Description: 031526 Expiration Date: 031526 Recommended Storage: Ambient (2 Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Compound 1. Calcium carbonate (Ca)	2.0E4 1.0E4 3.0E4 5.0E4 2.5E4	T.OES 1.0ES 5.0E4 m/2-> 2 m/2-> 2 Part # 58120 Lot # 031523

_

Absolute Standards, inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	<0.02	3	<0.02	ĥ	<0.02	Hf	<0.02	Ц	<0.02	z	<0.02	Ł	<0.02	ŝ	<0.2	£	<0.02	×	<0.02
_	<0.02	లి	٣	固	40.02	Bo	40.02	3	<u>60.05</u>	ź	<0.02	Se	<0.02	ŝ	<0.02	Te	<0.02	Þ	40.02
	40 12	ථ	40.02	a	40.02	h	<0.02	Mg	±0.01	ő	<u>60</u> .02	2	<0.02	Ag	<0.02	F	<0.02	>	<0.02
_	€0.05	ඊ	<0.02	3	40.02	놰	<0.02	Å	€0.02	æ	<0.02	å	<0.02	Na	<0.2	Ę	<0.02	ይ	40.02
	<0.01	q	<0.02	g	40.02	Ę	402	Hg	<0.2	۵.	<0.02	Ru	<0.02	S	€0.02	Ę	<0.02	×	<0.02
	≤0.02	გ	<u>60.02</u>	ප්	40.02	3	0.02	Mo	<0.02	æ	<0.02	Sn	<0.02	S	<0.02	Sn	<0.02	Ŋ	<0.02
	≤0.02	ð	<u>60.05</u>	Au	000	£	<0.02	PN	<u>40.02</u>	Å	40.2	ŝ	<0.02	T.	≤0.02	Ę	<0.02	2	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58120 Lot # 031523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com				Certified R	Certified Reference Material CRM	aterial CRI	R 103/17	H/2		AN AF https	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Accredited ate Number ndards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	r: <u>57182</u> r: <u>061522</u> n: <u>Lead (Pb</u>)	-		Solvent:	Lot # It: 20510011	Nitric Acid		Lievannie	/ nui E	apertite		
Expiration Date:061525Recommended Storage:Ambient (2)Nominal Concentration (ug/mL):10000NIST Test Number:6UTBWeight shown below was diluted to (mL):	e: 061525 e: Ambient (20 °C)): 10000 n: 6UTB rs diluted to (mL): 20	0 °C) 2000.02	5E-05 B 0.058 F	2% 5E-05 Balance Uncertainty 0.058 Flask Uncertainty	2% 40.0 mty (mL)	Nitric Acid		Formulated By:		Giovanní Esposito	061522	য় য
Compound	Lot RM# : Number	Nominal Conc. (µg/mL)	Purity (%)	Uncertainty Assay Purity (%) (%)	ay Target) Weight (g)	Actual Weight (g)	Actual Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL) C	Solvent S CAS# 0S	SDS information (Solvent Safety Info. On Attached pg.) COHA PEL (TWA)	tion Attached pg.) LD50	NIST
1. Lead(II) nitrate (Pb)	IN029 PBD122016A1	10000	99,999	0.10 62.5	5 32.0006		10001.1		φ	0.05 ma/m3	introne	
[1] Speci	[1] Spectrum No.1 [17.284 s	90]:58	85.D#	17.284 sec]:58182.D# [Count] [Linear]	(upe						11
ສ ອ ອ												
7.2-> 2.0E6	20	O.		40	80	Co	20	Ö Ø	0	*	100	
1.0E6												
rn/z->	110	130		140	150	160	170	180		0	002	
ы С. С. Ш. С.												
R A E	210 220	530		N 0	250	260						
Part # 57182 Lot # 061522					1 of 2				Printed: 3	Printed: 3/16/2023, 1:45:32 PM	45:32 PM	

-

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

F																	
	d <0.02	Ŋ	<0.02	Hf	<0.02	Li	<0.02	in in	<0.02	đ	4000	3	C.04	14	WWV	-	000
		d	000	14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			;		:		2	10	10	70.02	*	ZULUS
_		đ	20.02	2		3	<0.02	q	<0.02	g	40.02	ŝ	<u>60.05</u>	Te	\$0.02	Ŋ	≤0.02
02 ₹07	` 	đ	<0.02	9	0.02	Mg	<0.01	ő	<0.02	4a	<0.02	Åø	2007	F	200	1	Ş
_	_	5	2007	1	200	1	000	i				9		17	70.02	>	70702
		3	70.70	4		UIW	20'02	P2	<0.02	2	40.02	Ra	5 9 9	đ	≤0.02	\$	20.02
	_	g	0.02	Ъ.	€02	Нg	<0.2	9	2002	n d	2007	2	2007	e	000		
	_	Ċ		,		0		•			70.00	5	70.02	111	70.02	H	20102
		5		ġ	<0.02	Wo	<0.02	Z .	<u>6</u> .62	SB	40.02	s	<0.02	Sn	<000>	Zn	2007
		Au	<0.02	£	F	72	2007	2	500	0	~~~~	ŧ				1	10.01
							70.00	4	10	20	20.02	13		q	8.U2	3	808

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

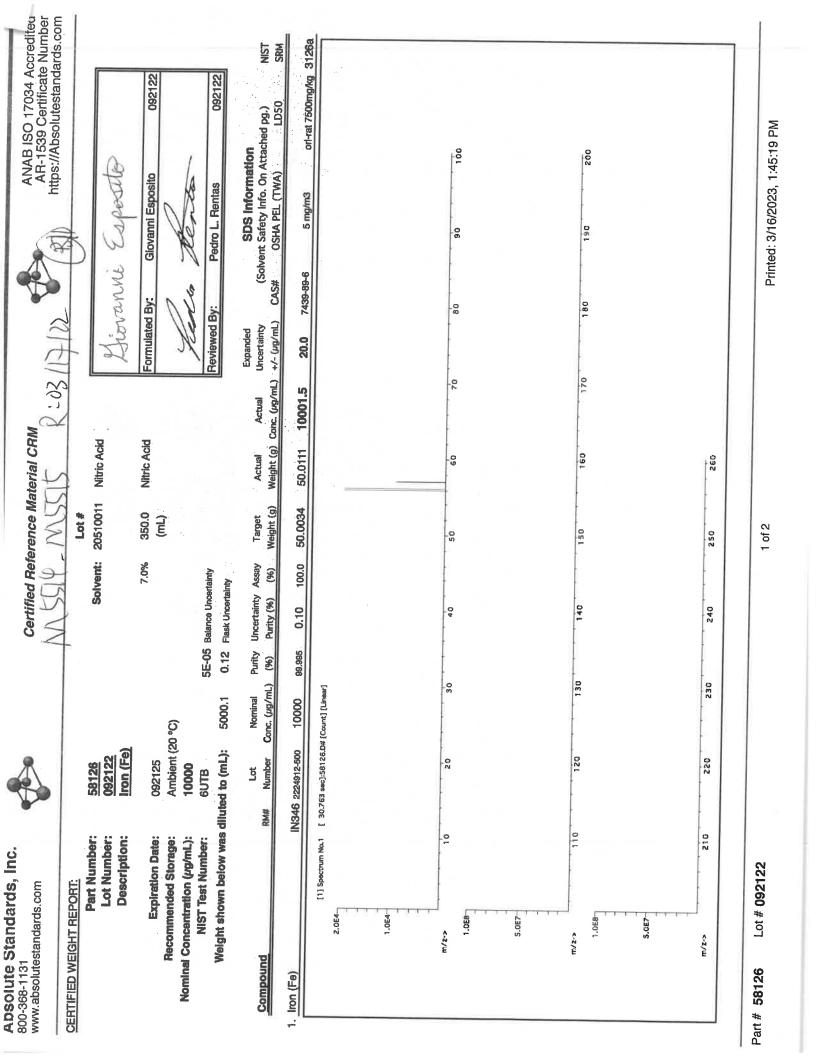
In P M.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.


Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57182 Lot # 061522

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

E	<0.02	G	<0.02	Ŋ	<0.02	Hf	<0.02	п	<0.02	ÿ	<0.10	놊	<0.02	Se	40.2	4	<0.02	M	<0.02
_	<0.02	ථ	40.2	斑	40:02	Но	40.02	3	≤0.02	ĝ	<0.02	Re	<0.02	ន	<0.02	Ъ.	€0.05	D	<0.02
As	Ø2	ථ	<0.02	a	<0.02	a	<0.02	Mg	€0,01	ő	€0.02	Rh	≤0.02	Ag	40.02	F	<0.0>	>	<0.02
_	≤0.02	ඊ	40.02	3	≤0:02	н	6 003	Mn	<0.10	R	<u>60.02</u>	Rb	≤0.02	R	40.2	f	<0.02	۹۶ ۲	≤0.02
	40.01	Ċ	<0.05	3	<0.02	Ъ.	402	Hg	<02	الم	<0.02	Ru	<0.02	S.	<0.02	Ę	40,02	۲	≤0.02
_	40.02	රී	<0.10	පී	0.10	La	<0.02	Mo	<u>40.02</u>	æ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Z	<0.05
	<0.02	8	<0.10	Au	<0.02	£	<0.02	PN	20.02	M	402	3	40.02	f	<0.02	F	<0.02	77	<000×

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Lot # 092122 Part # 58126

m/z->	5 0 0 0	m/z-> 1.0⋿4	1.065	m/z-> 2.065	1.000	N.OE	1. Potassium nitrate (K)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Part I Lot I Des	800-368-1131 www.absolutestandards.com
210 220		110 120		10		[1] Spectrum No.1 [IN034 KD022021A1	RM# Number	Expiration Date:120825Recommended Storage:Ambient (20 °C)Il Concentration (µg/mL):10000NIST Test Number:6UTBWeight shown below was diluted to (mL):30	<u>PORT:</u> Part Number: <u>58119</u> Lot Number: <u>120822</u> Description: <u>Potassium (K)</u>	om
230		130		۵ O			10000 . 9	Nominal P Conc. (µg/mL)	20 °C) 3000.4	am (K)	
240		140		4. 0.		35.763 sec]:58119.D# [Count] [Linear]	99.999 0.10 37.6	Purity Uncertainty Assay (%) Purity (%) (%)	29 5E-05 Balance Uncertainty 0.06 Flask Uncertainty	Solvent:	Certified R
N U U		150		ທ. ດັ		čount] [Line	.6 79.7990	ay Target 5) Weight (g)	2% 60.0 (mL)	Lot # nt: 20510011	Certified Reference Material CRM
N 20		160		0		er)		Actual / Weight (g) Conc	Nitric Acid	Nitric Acid	terial CRM
		170		70			10001.1 20.0	Expanded Actual Uncertainty Conc. (µg/mL) +/- (µg/mL)	Revie	re	R R: 0
		180		8 O			.0 7757-79-1	CAS	Formulated By:	tovanni	RIN
		190		8 0			5 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD5(Giovanni Esposito	Especito	at v
		200		10.00		·	orl-rat 3015 mg/kg	mation On Attached pg.) (A) LD50	120822	Ğ	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
							lei I	NIST			4 Accredite cate Numb andards.co

Part # 58119 Lot # 120822

1 of 2

Printed: 3/16/2023, 1:45:22 PM

	Printed: 3/16/2023, 1:45:22 PM	Printed: 3						2 of 2							0822	Lot # 120822		Part # 58119	Par
				above) of NIS	to NIST (see above). 9 Uncertainty of NIST 9.C. (1994).	le to N the Ur 1, D.C.	Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	weight d. ry cond i and E: fice, W	ated with ise state laborator valuating rinting Of	e calibr: otherw opriate es for E ment P	Standards are prepared gravimetrically using balances that are calibrated with weights trace Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressi Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washing	balance ed valu t and u it, C.E., 297, U.	Insignation of the standard for the stan	metrica 0.5% of d with (r, B.N. echnica	Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Govern	e prepa e certifi should leferend t Result	idards an Idards an Idards an Itandards ertainty F Isuremen	* Star * All s Mea	
			tated. sed in	rwise s Is are u	s unless otherwise stated. raw materials are used in	ents ur rity rav	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohim deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.	the hi	ind volum sware and	netric a A glas:	om gravir Ited Class	lated fr , calibra	ion calcu ed water	centrat deioniz ds.	The certified value is the concert Purified acids, 18.2 megohim deic the preparation of all standards. All the preparation of all standards.	value is 18.2 I ion of a	certified fied acids preparat	* The * Puri-	
	s.																		
							:	:					÷						
	in P. M.	1								ndard.	Homogeneity: No heterogeneity was observed in the preparation of this standard.	paration	d in the pr	observe	eneity was	heterog	geneity: No	Homo	
	Certified by:														ation:	acteriz	Physical Characterization:	Phys	
					, B		ulyte	(T) = Target analyte	(T) = Ta						œ				
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40,02 40,02 40,02 40,02 V 40,02 V V 60,02 V V 60,02 V V S Cr	ᅻᇟᆋᇽᇽᆇᇽ	4000 12 10 10 10 10 10 10 10 10 10 10 10 10 10	Ta Sr Na Sr Sr	44444 88888888888888888888888888888888	Sch Rate Street	T 22 22 22 22 22 22 22 22 22 22 22 22 22	K J P Z Q J N	4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	Mo Nd	4 4 4 4 4 4 4 8 8 8 8 8 8 8 8	월 27 월 4 월 8 표	888888888	<u>ት</u> ዓ ያ ያ ዋ ካ	40.02 40.020	58558 <u>5</u> 5	40.02 40.020	Al Sb Ba Be Bi Bi	
				[]	(µg/mL)	S	Verification by ICP-M	ation		Metals	Trace M								
							(S):	ICP-M	ometry (Spectr	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ed Plas	y Couple	uctive	is by Ind	Analys	umental	Instr	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB IS AR-1539 https://Abs	V				CRM	Certified Reference Material CRM	rence	fied Refe	Certi			V		, inc.	dards.con	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute : 800-368-1131 www.absolute	

Printed: 3/16/2023, 1:45:22 PM

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Multi Analyte Cu	stom Grade Solut	tion
Catalog Number:	CLPP-SPK-1		
Lot Number:	T2-MEB721963		
Matrix:	7% (v/v) HNO3		
Value / Analyte(s):	2 000 µg/mL ea: Aluminum,		Barium,
	1 000 µg/mL ea: Iron,		
	500 μg/mL ea: Manganese, Vanadium, Cobalt,		Nickel, Zinc,
	250 μg/mL ea: Copper,		
	200 µg/mL ea: Chromium,		
CERTIFIED VALUE	50 µg/mL ea: Beryllium, ES AND UNCERTAI	NTIES	Silver
Aluminum, Al	2 000 ± 7 µg/mL	ANALYTE Barlum, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Chromium, Cr	200.0 ± 1.1 µg/mL
Cobalt, Co	500.0 ± 2,4 μg/mL	Copper, Cu	250.0 ± 1.0 µg/mL
lron, Fe	1 000 ± 4 µg/ml.	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 µg/mL	Silver, Ag	50.00 ± 0.22 μg/mL
Vanadium, V	500.0 ± 2.2 µg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density:

3.0

1.070 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Ag	Calculated		See Sec. 4.2
Al	ICP Assay	3101a	140903
AI	EDTA	928	928
Ba	ICP Assay	3104a	140909
Ba	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Со	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i)(X_i)$

- $X_i =$ mean of Assay Method i with standard uncertainty u_{char} i $w_i \approx$ the weighting factors for each method calculated using the inverse square of the variance:
 - $w_{i} = (1/u_{char})^{2} / (\Sigma(1/(u_{char})^{2})$

CRM/RM Expanded Uncertainty (2) = U_{CRM/RM} = k $(u^2_{char} + u^2_{bb} + u^2_{ta} + u^2_{ta})^{ta}$

k = coverage factor = 2

- $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty
- uits = long term stability standard uncertainty (storage)
- uts = transport stability standard uncertainty

4.0 **TRACEABILITY TO NIST**

Characterization of CRM/RM by One Method Certified Value, $\mathbf{X}_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$ Xa = mean of Assay Method A with Uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (2) = U_{CRM/RM} = k $(u^2_{chara} + u^2_{bb} + u^2_{lb} + u^2_{bb})^{\frac{1}{2}}$ k = coverage factor = 2 uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

- uite = long term stability standard uncertainty (storage)
- uts = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; into@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified,

11.2 Lot Expiration Date

- July 27, 2027
- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

DOJ781.

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

CORCO CHEMICAL CORPORATION

Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

CERTIFICATE OF ANALYSIS

Date: 8/3/2022

M5631 M5632 M5633 M5634 Lot No 820803

Hydrogen Peroxide, ACS Reagent Grade

TEST	MAXIMUM LIMITS	RESULT
Appearance	Colorless and free from suspended matter or sediment	Pass
Assay	29-32%	31.4%
Color (APHA)	10	5
Residue after Evaporation	0.002%	.0001%
Titratable Acid	0.0006 meq/g	< .0006 meq/g
Chloride (Cl)	2 ppm	< 1 ppm
Nitrate (NO ₃)	2 ppm	< 1 ppm
Phosphate	2 ppm	< 1 ppm
Sulfate (SO ₄)	5 ppm	< .5 ppm
Ammonium (NH4)	5 ppm	< 1 ppm
Heavy Metals (as Pb)	1 ppm	< .1 ppm
lron (Fe)	0.5 ppm	< .1 ppm
Sodium Stannate	200 – 300 ppb	Pass

***Our Hydrogen Peroxide is considered un-stabilized because it is very slightly stabilized with Sodium Stannate, 500 ppb maximum, just for safety purposes.

Date of MFG: 8/2022 Retest date: 8/2024

Gína M. Rambo Office Manager

CORCO CHEMICAL CORPORATION. 299 CEDAR LANE. FAIRLESS HILLS, PA 19030. 215-295-5006. FAX 215-295-0781

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

R: 8/29/22 M5657

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Cu	stom Grade Sol	ution
Catalog Number:	CLPP-SPK-4		
Lot Number:	T2-MEB721144		
Matrix:	3% (v/v) HNO3		
Value / Analyte(s):	100 µg/mL ea: Antimony,		
	50 μg/mL ea: Cadmium,		Thallium,
	40 µg/mL ea: Arsenic,		
	20 µg/mL ea: Lead,		
	10 µg/mL ea: Selenium		
CERTIFIED VALU	ES AND UNCERTA	INTIES	
ANALYTE	CERTIFIED VALUE	ANALYTE	CERTIFIED VA

3.0

ANALYTE Antimony, Sb	CERTIFIED VALUE 99.9 ± 0.8 μg/mL	ANALYTE Arsenic, As	CERTIFIED VALUE 40.00 ± 0.25 µg/mL
Cadmium, Cd	49.96 ± 0.22 μg/mL	Lead, Pb	19.99 ± 0.10 µg/mL
Selenium, Se	10.00 ± 0.06 µg/mL	Thallium, Tl	49.96 ± 0.32 μg/mL

Density:

1.014 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
ANALITE	ICP Assay	traceable to 3103a	R2-AS691113
	•		RZ-A3091113
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Cd	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
Sb	ICP Assay	3102a	140911
Se	ICP Assay	3149	100901
Se	Calculated		See Sec. 4.2
ТІ	ICP Assay	3158	151215
ТІ	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRWRM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRMRM} , where one method of characterization is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	$X_{CRM/RM} = (X_a) (u_{char a})$
X _i = mean of Assay Method i with standard uncertainty uchar i	X _a = mean of Assay Method A with
w_j = the weighting factors for each method calculated using the inverse square of the variance: $w_j = (1/u_{char} j)^2 / (\Sigma(1/(u_{char} j)^2)$	uchar a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{ts})^{\frac{1}{2}}$	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² char a + u ² bb + u ² ts + u ² ts) ^{1/3}
k = coverage factor = 2	k = coverage factor = 2
$u_{char} = [\Sigma((w_j)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method	uchar a = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	uits = long term stability standard uncertainty (storage)
u _{ts} = transport stability standard uncertainty	uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL.

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 07, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 07, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

DD9781. Paul R Laina

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

m/z->	N.5 6	m/z-≯ 5.0E5	ភ. ០ ពេស	m/z-> 1.0≣6	5000	1.0트4	1. Chromium(III) nitrate nonahydrate (Cr)	Compound	Volume sho	Expiration Date: Recommended Storage: Nominal Concentration (ug/mL):	Par De	CERTIFIED WEIGHT REPORT:	www.absolutestandards.com
N 10		110		1		[1] Spectrum No.1		Pa	Volume shown below was diluted to (mL):	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	0	3
220		120		N. O		-	58124 071122	Part Lot Number Number	filuted to (mL):	060526 Ambient (20 °C) 1000	<u>58024</u> 060523 Chromium (Cr)		A
230		130		ů. O		31,393 80	0.1000	Dilution Factor	2000.02		1 (Cr)		MS
240		140				c]:57024.	200.0 0.084	Initial Uncertainty Vol. (mL) Pipette (mL)	0.058 Flask U				MS658
				ð.		31,393 sec]:57024.D# [Count] [Línear]	084 1000	Uncertainty Nominal Pipetta (mL) Conc. (µg/mL)	Flask Uncertainty		21110221 2.0%	Lot #) A
N 50		」 () () () () () () () () () ()		S		t] [Linear]	10 10000.1	nał Initial g/mL) Conc. (µg/mL)		(mL)	221 Nitric Acid % 40.0	# Solvent:	
200		160		0		ş	0.1 1000.0	al Final rg/mL) Conc. (µg/mL)		Ľ	Acid .0 Nitric Acid	ent:	123
		170		70			0.0 2.2	Expanded al Uncertainty ig/mL) +/- (µg/mL)	Lineviewed by.	X	Acid Formulated By:		1
		180		8- 0-		1	7789-02-8) CAS		a la	Horner		
		190		Ŷ				jolvent Os		ten	Lawrence Barry		Y
		20- 00-		100			0.5 mg(Cr)/m3 ort-	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Ø	nce Barry		AH-15: https://Ab
		0		o			ort-rat 3250 mg/kg	ched pg.) LDS0	00000	00050	060523		AH-1539 Certificate Number https://Absolutestandards.com
							g 3112a	NIST		٥ <u> </u>	[ω]	1	te Numbe dards.com

Part # 58024 Lot # 060523

1 of 2

Printed: 8/24/2023, 4:18:27 PM

Absolute Standards, Inc. Certified Reference 800-368-1131 Image: Certified Reference www.absolutestandards.com Image: Certified Reference Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	andards.cor	s by Indu	ictive	y Coupled	Plasn	na Mass S	Spectr C	Certified Reference Material Ci	ICP-M	IS):	ateria	I CRM					¥	크	ANAB AR-11 ttps:///	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	034 Acc lificate N standar	lumbe ds.corr
the stype of the style						Trace N	Metals	s Verification	ation	হ	ICP-MS		/g/mL)									
AI <0.02		40,02	Dv	40.02	H	<0.02	E	40.02	- N	- -	20		A) 02	8	a)	-	-			3		
		40.02	Er Dy	<0.02	Ho	<0.02	달드	4)02 4)02	N N	A0.02	88	<u>ም</u> ፡	40.02 0.02	<u>8</u> %	40.02 00.02	ਜ ਸ	4 4	c ¥		<0.02		
	_	<0.02	말	<0.02	5	<0.02	Mg	<0.01	² 0	<0.02	.02	Rh	40.02	Ag	<0.02	1	<0.02			<0.02		
Ba 40.02	ନ ଜ	-T -T	ନ୍ଦ୍ର ହ	A 0.02	₹ ¹ =="	4. 6. B	H. Ma	A. A.	P P	A A 3 3	38	장	A A 3 3	ç N	A A 1	13	A.2	4 15		0.02 0		
		40.02	2 ଜ ା	40.02	363	4 4 A	N M ;	8 8 8	× 77 ·	A 40 12	រ ន រ	Sc Sm	40.02 2002	Ta s	4 4 A A	11 S 🔒						
								(T)=	(T)= Target analyte	anatyte												
Physical Characterization:	aracteriz	ation:															C	Certified by:	by:		a	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	No heteroge	meity was o	observe	d in the preps	aration (of this stand	lard.										1	14	1		ľ	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	ad value is ds, 18.2 n ation of all are prepar are prepar are certife ds should ds should ent Result.	he conc megohm d Ill standarc are me ars are me are are are me ars are me ars are me ars are me ars are me ars are me are are are me are are are me are	entrat leioniz ls. sticulou etrica .5% of .5% of .5	ed water, c ed water, c usly cleane ully using ba f the state f the state f the state and Kuyat, a Note 122	ted fro calibrat d prior alanced d value and un and un 97, U.S	red Class, ted Class, that are that are that are der appro Guideline Guideline	A glass A glass calibra priate s for E nent P	nd volume sware and ited with ites stated laborator, ivaluating vinting Off	the hi weight cond y cond fice, W	ighest p ighest p is trace itions. xpressir /ashingt	ments ourity able tr able the ton, D.	unless raw m raw m NIST 0 NIST 0. C. (19	materials are used in Materials are used in ST (see above). ertainty of NIST 1994).	se stat re usec vve). NIST	n .							

Part # 58024 Lot # 060523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		Ex	Recommended Storage: Nominal Concentration (µg/mL):	NIST	Volume s	Compound	1. Copper(II) nitrate trihydrate (Cu)	1.0E8	5.0E5	m/z->	2.5E7	m/z-≻ 2.0€7	1.0€7	m/z->
om as, Inc.		Part Number: Lot Number: Description:	Expiration Date:	Recommended Storage: Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):	z				10		110		2
-		58029 102523 Copper (Cu)	102526	Ambient (20 °C) 1000	6UTB	t diluted to (mL)	Part Lot Number Number	58129 100223			N		120		
		(Cu)		20 °C)		2000.02	Dilution Factor	0.1000			30		130		
Certif					5E-05 Balance	0.058 Flask U	Initial Uncertainty Vol. (mL) Pipette (mL)	200.0 0.084			4°		140		
ified Referen M569子	Lot #	24002546	2.0%		Balance Uncertainty	Flask Uncertainty	Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL)	84 1000			50		150		
Certified Reference Material CRM M 56 G子 R いり0/2	Solve	46 Nitric Acid	40.0 (mL)				Initial nL) Conc. (µg/mL)	10000.1			80		0 160		
1 CRM 10 27 23		L	Nitric Acid				Final L) Conc. (µg/mL)	1000.0	894	tinna an	paine dissipsion of the design		0 170		
			Formulated By:	Mg .	Reviewed By:		cxpanoed Uncertainty +/- (µg/mL)	2.2			70				
-		and and		to the	-70		(Solven CAS# C	10031-43-3			8 0		180		
http:			Benson Chan	and a	Pedro L. Rentas		(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	1 mg/m3			90		190		
ANAB ISO 17034 Accreditec AR-1539 Certificate Number https://Absolutestandards.com			102523	,	102523		Attached pg.)	ori-rat 794 mg/kg			100		N 0		
Accredite ate Numbe Idards.com	4		23		ដ្រ		NIST	3114							

www.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace M	etals	; Verifica	ition	by ICP-N	r) SI	g/mL)						
	3	2	2	7			2	and the second		Sale Con	Constraint for the		Sector Sector Sector	March	Contraction of the other				The second second
A	40.02	8	20,02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	Pr	<0.02	Se.	<0.2	5	<0.02	W	<0.02
SB	40.02	ß	<0.2	Ę	<0.02	Ho	<0.02	Ŀ	<0.02	ß	<0.02	Re	<0.02	2	<0.02	ī	<0.02	c	<0.02
As	40.2	ů	<0.02	F	<0.02	F	<0.02	Mg	<0.01	õ	A0.02	Rb	A0.02	Ag	40.02	3	40.02	<	4002
Ba	<0.02	S	<0.02	ନ୍ଥ	<0.02	5	40.02	Mb	<0.02	Pd	<0.02	Rb	A).02	Na	40 i2	đ	40.02	\$	40.02
Be	<0.01	ዮ	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	'n	<0.02	Ru	<0.02	Sr	40.02	j	<0.02	ĸ	40.02
Bi	<0.02	S	<0.02	ĉ	<0.02	La	40.02	Mo	<0.02	¥	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	2	40.02
œ	<0,02	ß	-1	Au	<0.02	3	<0.02	Nd	<0.02	ĸ	<0.2	8	<0.02	Ta	<0.02	Н	<0.02	2	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

in politic

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

urt # 58029 Lot # 102523

800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		ņ	Recomme	Nominal Concentration (µg/mL):	NIST	Volume		Compound	1. Manganese(II) nitrate tetrahydrate (Mn)	Сл. О ПП Ф	N.5 6		1.088	0. 0 M7	1.0E8	5.0篇7	m/z->
om	Ð	Part Number: Lot Number: Description:	Expiration Date:	Recommended Storage	ration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):		Nu		[1] Speatrum No.1					110)
		<u>58025</u> 102623 Manganese (Mn)	100808	Amhient (20 °C)	1000	6UTB	diluted to (mL):	Part Lot	N N	58125 071123	-					120		
		(Mn)		Ċ,	ç	5E-05	3000.41 0.058	Dilution Initial		0.1000 300.0	34.243 sec]:57025.D# [Count] [Linear]		2			130		
Certified Rei M.5-6 4 8						05 Balance Uncertainty	58 Flask Uncertainty	lal Uncertainty	Pipette (mL)	0.084	7025,D# [C		5			140		
ference A	Lot #	24002546	2.0%			ainty	ų	Nominal	Ĉ	1000	ount] [Lines					150		
Material CRM	Solvent:	Nitric Acid	60.0 Nitr					Initial	m	10000.1 10	ŗ					160		
			Nitric Acid Formulated By:	\$	X	Reviewed By:		Expanded Final Lincertainty	mL)	1000.0 2.1						170		
			ited By:		erthe 1	ed By:) CAS	20694-39-7						180		
http		-	Benson Chan	A	Vento	Pedro L. Rentas		(Solvent Safety Info. On Attached no.)	OSHA PEL (TWA)	7 5 mg/m3						160		
AR-1539 Certificate Number https://Absolutestandards.com		,	102623		/	102623		nation On Attached no.)	A) LD50	ort-rat >300mg/kg						200		
e Numbe	l							NIST	SRM	3132								

Part # 58025 Lot # 102623

1 of 2

Printed: 10/26/2023, 1:20:32 PM

vww.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

23	r,	40.02	3	40.02	Ta	<0.02	s	<0.2	ĸ	<0.02	Nd	<0.02	Рв	40.02	Au	<0.02	ß	40.02	₿
A0.02	Zn	<0.02	S	40.02	ŝ	<0.02	Sm	40,02	7	<0.02	Mo	<0.02	5	<0.02	ĉ	<0.02	S	<0.02	Bi
<0.02	Y	<0.02	Tm	<0.02	ş	<0.02	Ru	<0.02	'n	<0.2	ВĦ	40.2	Fe	<0.02	G	<0.02	Ω	<0.01	Be
40.02	٩,	<0.02	11	40.2	Na	<0.02	RЬ	<0.02	Pd	H	Mn	<0.02	. H	<0.02	ନ୍ଥ	<0.02	S	40.02	Ba
A0.02	<	40.02	H	<0.02	Ag	<0.02	R }	<0.02	8	<0.01	Mg	40.02	la	<0.02	臣	<0.02	ĉ	40.2	As
40.02	٩	40.02	Те	<0.02	Si	<0.02	Re	<0.02	ß	40.02	Ľ	A0.02	Ho	<0.02	Ę	<0.2	ß	<0.02	SP
40.02	W	<0.02	1	<0.2	8	<0.02	P	<0.02	N	<0.02	E	<0.02	Hf	<0.02	Dy	<0.02	ß	A0.02	A
					Section of the sectio	State of the state	MASSON IN	ALCONT DOD TOTAL		Statistic States	A LOCATION		Concession of the local division of the loca		-				100
								DY ICP-N		Verifica	letais	I race M							

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In 1. Sli

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above). * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

art # 58025 Lot # 102623

2 of 2

Printed: 10/26/2023, 1:20:32 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	M5768 11 Certilled	M5768 INS769 (B) R:1/3/24 Certified Reference Material CRM	インイ ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	<u>58112</u> 091823 Magneslum (Mg)	Lot # Solvent: 24002546 Nitric Acid	Alerone Bring
Expiration Date: 091826 Recommended Storage: Ambient (Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	2% 091826 Ambient (20 °C) MJJB, MJJB 6UTB 5E-05 Balance Uncertainty iluted to (mL): 2000.02 0.058 Flask Uncertainty	40.0 Nitric Acid (mL) (DFP) R V3/20	Formulated By: Lawrence Barry 091823
Compound	Lot Nominal Purity Uncertainty Assay RM# Number Conc. (ug/mL) (%) Purity (%) (%)	Assay Target Actual Actual (%) Weight (g) Weight (g) Conc. (ug/mL)	Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) NIST +/- (µg/mL) CAS# OSHA PEL (TWA) LDSO SRM
1. Magnesium nitrate hexahydrate (Mg) IN030 маюзаал	1030 MGD052023A1 . 10000 89.399 0.10		20.0 13446-18-9 NA orl-rat 5440 mg/kg 3
[1] Spectrum No.1 1.0E6	n No.1 [19.923 sec]:58112.D# [Count] [Linear]	[Count] [Linear]	
5. O M G			
m/z-≻ 10	30 40	50 50 70	80 80 100
1000 -			×
110 2.0≣4	120 130 140	150 160 170	180 190 200
1.0E4 m/z-> 210	220 230 240	250 280	723
Part # 58112 Lot # 091823		1 of 2	Printed: 12/29/2023, 2:56:15 PM

1 of 2

3

Printed: 12/29/2023, 2:56:15 PM

/ww.absolutestandards.com	00-368-1131	Absolute Standards, I
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace Mo	etals	Verifica	tion	by ICP-N	n) SI	g/mL)						
									1100 100 100 100					1000	And a				
A	<0.02	Q	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	P	<0.02	Se	40.2	Чľ	<0.02	W	<0.02
SP	<0.02	ß	<0.2	E.	<0.02	Но	<0.02	L	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	<0.02	Ч	<0.02
As	<0.2	ĉ	-00.02	E	<0.02	In	<0.02	Mg]	20 20	<0.02	Rh	<0.02	Ag	<0.02	E	<0.02	V	40.02
Ba	<0.02	ß	<0.02	ନୁ	<0.02	F	<0.02	Mn	<0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	ТЪ	<0.02	Υð	<0.02
Ве	<0.01	ទ	<0.02	Ga	<0.02	Fe	40.2	Hg	<0.2	0-	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	ĸ	<0.02
B	<0.02	S	40.02	Ģ	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	CM	<0.02	Sn	<0.02	Z	<0.02
5	40.02	5	40.02	Au	<0.02	P	<0.02	Nd	<0.02	ĸ	<0.2	ŝ	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58112 Lot # 091823

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	M5768 11 Certilled	M5768 INS769 (B) R:1/3/24 Certified Reference Material CRM	インイ ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	<u>58112</u> 091823 Magneslum (Mg)	Lot # Solvent: 24002546 Nitric Acid	Alerone Bring
Expiration Date: 091826 Recommended Storage: Ambient (Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	091826 2% Ambient (20 °C) MJJKS, MJTKG 10000 5E-05 6UTB 5E-05 Balance Uncertainty Iluted to (mL): 2000.02 0.058 Flask Uncertainty	40.0 Nitric Acid (mL) (DF) R V3/20	Formulated By: Lawrence Barry 091823
Compound	Lot Nominal Purity Uncertainty Assay RM# Number Conc. (ug/mL) (%) Purity (%) (%)	Assay Target Actual Actual (%) Weight (g) Weight (g) Conc. (ug/mL)	Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) NIST +/- (µg/mL) CAS# OSHA PEL (TWA) LDSO SRM
1. Magnesium nitrate hexahydrate (Mg) IN030 маюзаал	1030 MGD052023A1 . 10000 89.399 0.10		20.0 13446-18-9 NA orl-rat 5440 mg/kg 3
[1] Spectrum No.1 1.0E6	n No.1 [19.923 sec]:58112.D# [Count] [Linear]	[Count] [Linear]	
5. O M G			
m/z-≻ 10	30 40	50 50 70	80 80 100
1000 -			×
110 2.0≣4	120 130 140	150 160 170	180 190 200
1.0E4 m/z-> 210	220 230 240	250 280	723
Part # 58112 Lot # 091823		1 of 2	Printed: 12/29/2023, 2:56:15 PM

1 of 2

3

Printed: 12/29/2023, 2:56:15 PM

/ww.absolutestandards.com	00-368-1131	Absolute Standards, I
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace Mo	etals	Verifica	tion	by ICP-N	n) SI	g/mL)						
									1100 100 100 100					1000	and the second s				
A	<0.02	Q	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	P	<0.02	Se	40.2	Чľ	<0.02	W	<0.02
SP	<0.02	ß	<0.2	E.	<0.02	Ho	<0.02	L	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	<0.02	Ч	<0.02
As	<0.2	ĉ	-00.02	E	<0.02	In	<0.02	Mg]	20 20	<0.02	Rh	<0.02	Ąg	<0.02	E	<0.02	V	40.02
Ba	<0.02	ß	<0.02	ନୁ	<0.02	F	<0.02	Mn	<0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	ТЪ	<0.02	Υð	<0.02
Ве	<0.01	ទ	<0.02	Ga	<0.02	Fe	40.2	Hg	<0.2	0-	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	ĸ	<0.02
B	<0.02	S	40.02	Ģ	<0.02	La	<0.02	Mo	<0.02	P	<0.02	Sm	<0.02	CM	<0.02	Sn	<0.02	Z	<0.02
5	40.02	5	40.02	Au	<0.02	P	<0.02	Nd	<0.02	ĸ	<0.2	ŝ	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T) = Target analyte

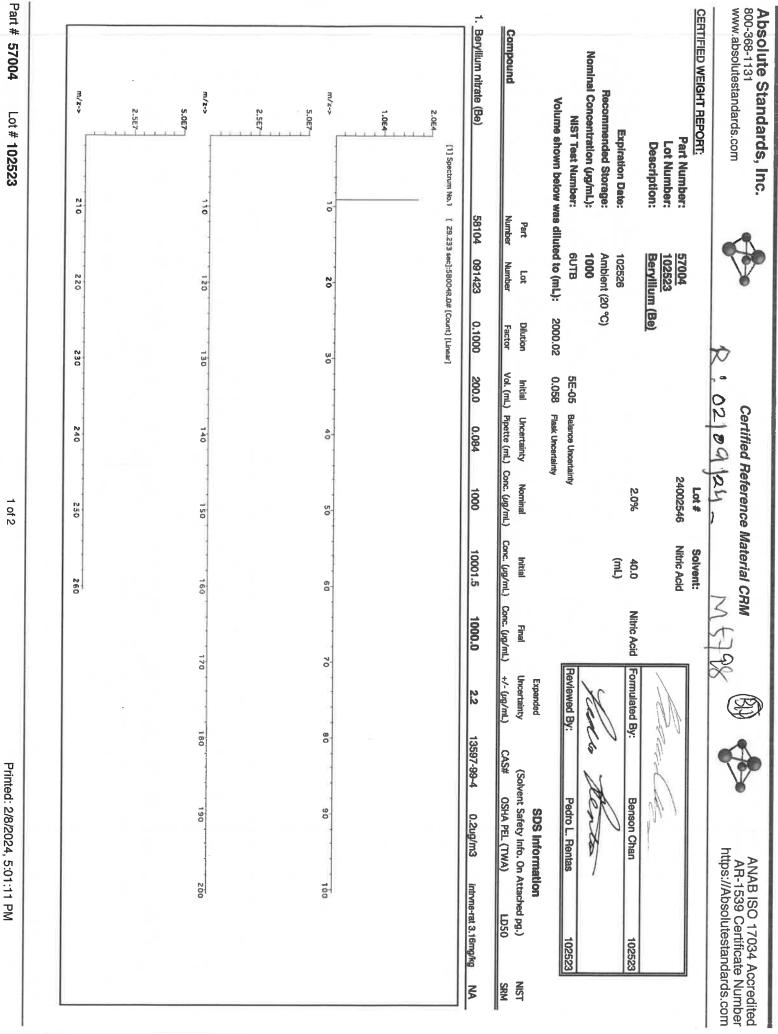
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58112 Lot # 091823

1 of 2

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

							Trace M	letals	Verification	Ition	by ICP-MS		(ng/mL)						
		and a second sec	State of the state				State State and	All and a state	Total a loss of the last	The second s	AND STREET	None of			and a state of the second				and the second second
R	<0.02	3	<0.02	5 D	<0.02	Hf	<0.02	Ц	<0.02	N	<0.02	Ł	<0.02	Se	<0.2	176	<0.02	M	<0.02
Sb	<0.02	J	40.2	卤	40.02	Ho	₹0.02	3	<0.02	£	<0.02	Re	<0.02	ŝ	≤0.02	Je T	40.02	þ	<0.02
As	<02	ථ	<0.02	nE	¢0.02	ч	Ø.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	≤0.02	>	<0.02
Ba	<0.02	ő	<0.02	3	40.02	Ч	Ø.02	Ma	<0.02	R	40.02	ВЪ	\$0.02	Na Na	40.2	f	\$0.02	Å	<0.02
Be	F	5	40.02	ç	<0.02	£	<02	Hg	<02	۵.	<0.02	Ru	≤0.02	š	<0.02	Tm	€0.02	×	<0.02
Bi	40.02	රී	<0.02	පී	<0.02	4	<0.02	Mo	<0.02	۶,	40.02	Sm	≤0.02	s	<0.02	rs.	<0.02	Zu	<0.02
æ	<0.02	ð	<0.02	Au	<0.02	£	40.02	PN	<0.02	Ж	<0.2	Sc	40.02	Ta	<0.02	F	40.02	N	<0.02
									(T) = Tarr	pet analy	yte								A second s

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed ($\frac{1}{4}$) 0.5% of the stated value, unless otherwise stated.
- All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot #	m/z->	N 55 M 4	m/2-> 5.0E4	1.0E5	m/≥-> 2.0E5	N G M G	。 0 而 5	1. Ammonium hexatluorostannate(IV) (Sn)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below w	<u>CERTIFIED WEIGHT REPORT</u> Part N Lot N Desc	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Lot # 071122	210		110 120		10 No		[1] Spectrum No.1	(W) (Sn) INO10 SND042023A1	RM# Number	Expiration Date: 071126 Pecommended Storage: Ambient (20 °C) Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	<u>PORT:</u> Part Number: <u>57050</u> Lot Number: <u>071123</u> Description: <u>Tin (Sn)</u>	s.com
	230		130		e e		[15.034 sec]:	1000	Nominal Conc. (µg/mL)	0 °C) 499.93	2	
	240		140		ð		15.034 sec]:58150.D# [Count] [Linear]	99.999 0.10 44.2	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty	Solvents:	Certifi
	N 80 260		150 160		8		unt) [Linear]	1.13107	r Target Actual Weight (g) Weight (g)	(mL)	Lot # 21110221 22D0562008	Certified Reference Material
			0 170		70			1001.6	Actual Conc. (µg/mL)	ric acid	ric acid	CRM
			180		e			16919-	Expanded Uncertainty (Solv +/- (µg/mL) CAS#	Formulated By:		PPFP M
			190 200		90 100			7 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	Benson Chan		R
			ō		ŏ			NA 3161a		071123 071123		ANAB ISO AR-1539 (https://Abso
												ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	•	Cei	Certified Reference Material CRM	ial CRM		ANAB ISO 17034 Accredited
www.absolutestandards.com	5				V	AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ductively Coupled	Plasma Mass Spec	trometry (ICP-MS):			
		Trace Metals	Is Verification by ICP-MS	P-MS (µg/mL)		
AI <0.02 Cd <0.02	Dy <0.02	4003				
A)2 C C		2 2 2 2 2 2 2	40.02 Ni		Se <0.2 Tb Si <0.02 Te	40.02 W 40.02
2 2 2 2 2 2 2 2			<0.01 Os <0.02 Pd	Rb Rb		\$ < c
	Ge 40.02	Fe 40.2 Hg	40.2 P 40.02 Pt	Ru Sm		_
			(T) = Target	4	ZITAS	<0.02 Zr <0.02
Physical Characterization:						Certified by:
Homogeneity: No heterogeneity was observed in the preparation of this standard.	observed in the prepa	ration of this standard.				//
ŝ	9					mr P All
		9 4			20	
					÷	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are politoriated with using balances. 	centration calculat deionized water, ca ds. eticulously cleaned	d from gravimetric librated Class A gla prior to use.	and volumetric measurer ssware and the highest p	nents unless otherwise stated. writy raw materials are used in	ie stated. 'e used in	

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
 All standards should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot # 071123

2 of 2

Printed: 2/8/2024, 5:01:38 PM

redited Jumber ds.com	NIST SRM	3113		
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Formulated By: Lawrence Barry 091923 Formulated By: Lawrence Barry 091923 Reviewed By: Pedro L. Rentas 091923 Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) N +/- (ug/mL) CAS# 0SHA PEL (TWA) LD50 S	ng/kg	180 B0 190 200 200 200	Printed: 2/8/2024, 5:01:14 PM
AM I'U (fru (Nitric Acid	1000.0		
Certified Reference Material CRM 02109124	Solvent: Nttric Acid 40.0 (mL) httal bittal Conc. (ug/mL)	10000.0		
artified Réference l 0 2 0 9 1 2 4	Lot # C 24002546 2.0% 2.0% Nominat Nominat Conc. (rg/mL)	1000	34.243 eec]:58027.D# [Count] [Linear] 30 40 50 130 140 150 230 240 250	1 of 2
Certified F		0.084	240 240 240	
Å	5E-05 02 0.058 on Initial or Vol. (mL)	00 200.0	3 eec]:55 230 30 23 130	
	57027 091923 Cobait (Co) 091926 Ambient (20 °C) 1000 6UTB 6UTB 6UTB d to (mL): 2000.02 Lot Dilution Lot Dilution	23 0.1000		
	57027 091923 Cobalt (Cobalt (Ambient Ambient 1000 6UTB ss diluted to (mL Part Lot	58127 050923		
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Cobait (C Cobait (C Cobait (C 091926 Recommended Storage: Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): COTB NIST Test Number: COTB CODAIT (C) Part (C) CODAIT (C) C) CODAIT (C) C) C) C) C) C) C) C) C) C)	1. Cobatt(II) nitrate hexahydrate (Co) 58		<pre>Part # 57027 Lot # 091923</pre>

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

L	200	10	2 Contraction	4	2000		400			-		4							
	20.05	3	20.05	5	20.02	Ħ	40.02	3	<0.02	ż	40.02	£	40.02	8	40.2	f	₹0.02	M	40.02
_	40.02	లి	4 02	山	€0.02	Ho	40.02	5	<0.02	Ż	<u>40.02</u>	Re	<0.02	3	≤0.02	Le	€0.02	D	<0.02
_	402	ථ	€0.05	圕	40.02	Ч	40'02	Mg	10 ⁰ ⊳	ő	≤0.02	붭	<0.02	Ag	40.02	F	<0.02	Ż	<0.02
_	40.02	చి	≤0.02	ઝ	600	ы	<0.02	Mn	<0.02	P	40,02	ßb	<0.02	Na	40.2	đ	<0.02	Ŗ	<0.02
_	10.05	ບັ	≤0.02	g	20.0 2	ङ	402	Hg	40.2	۵.	€0.02	Ru	<0.02	ي.	≪0.02	Ta	≤0.02	Y	€0.02
_	<0.02	ථ	£-	ö	40.02	Ľ	0 02	Mo	<u>60.02</u>	æ,	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	6 .02
_	40.02	ට්	<0.02	Au	40.02	£	40.02	PN	40.02	м	4 02	8	40.02	£	40.02	Ë	40.02	72	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Printed: 2/8/2024, 5:01:04 PM	1 of 2	Part # 57033 Lot # 111323
ő	230 240 250 26	m/z-> 210 220 2
		0 0 0
160 170 180 190 200	130 140 150 1	m/≥-> 110 120 1
		N m 4
80 70 80 100	90 40 50	5.0E4
		- 1 0 0 0 0
	34.433 seo]:57033.D# [Count] [Linear]	[1] Spectrum No.1 [34.433 2.0E5
1000.0 2.0 7440-38-2 0.5 mg/m3 orl-rat	400.0 0.084 1000	1. Arsenic (As) 58133 020522 0.1000
Expanded SDS Information Final Uncertainty (Solvent Safety Info. On Attached pg.) <u>nL) Conc. (ug/mL) +/- (ug/mL) CAS</u> # OSHA PEL (TWA) LD50	11	Part Lot Dilution Compound Number Number Factor
Reviewed By: Pedro L. Rentas 111323	0.06 Flask Uncertainty	Volume shown below was diluted to (mL): 4000.0
Hedre Fenter		
Id Acid Formulated By: Lawrence Barry 111992	24002546 Nitric Acid 2.0% 80.0	Description: <u>Arsenic (As)</u>
п (Lot # Solvent:	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

< 00 **N**

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Low P. S.

Certified by:

 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033 Lot # 111323

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m/z->	2500	m/z->	500	m/z->-	2.5 114	5.OE4	1. Ammonium dihydrogen phosphate (P)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Par Lo De	www.absolutestandards.com
R I D 2 M 4 C 1 M 52 15 Interview Lat* Solvent: 2111021 Nitric Acid Provide (P) 2% 40.0 Nitric Acid 2000/2 0.058 Failure inventienty Environmenty 2000/2 0.058 Failure inventienty Environmenty Environmenty Nominia Party Uncertainty Assay Target Actual Actual Commutated By: Perford L Ren 10000 ease 0.10 27.5 72.7287 72.7287 72.7284 10000.0 30.0 772.751 5mg/r 12.074 aeoc)15891 16. D/r Country [Linear) Status Stat	N O		110		10		[1] Spectrum			Expiration Date: Recommended Storage: I Concentration (µg/mL): NIST Test Number: Weight shown below was d	DRT: Part Number: Lot Number: Description:	om
RICZINGLA MITELS Bolvent: 21110221 Nitric Acid IDP 2% 40.0 Nitric Acid SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Formulated Br. SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Source It Mitels Acid Formulated Br. Lawrence Balance (ML) Source It Mitels Acid Formulated Br. Lawrence Balance (ML) Source It Mitels Acid Formulated Br. Formulated Br	2220		120		N. O				Lot Number	041726 Ambient (20 10000 6UTB 6UTB	57115 041723 Phosphore	5
Hric Acid Iric Acid Iric Acid Iric Acid Iric Acid Actual Actual Actual Expanded Expanded Expanded SDS Inf Expanded SDS Inf Solvent Safety Inf eight (g) Conc. (ug/mL) · (AS# OSHA PEL) 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 20.0 7722-76-1 5 mg/m 150 170 180 190 190 190	230		130		ຜ. ວ		2.074 sec]:58			00.02	us (P)	R
Hric Acid Frite Acid Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded Actual Uncertainty (Solvent Safety Inf eight (g) Conc. (ug/mL) - 4/- (ug/mL) CAS# OSHA PEL 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 1722-76-1 5 mg/m 160 170 180 190 190	240		140		4		3115.D# [Cot		Uncertainty Assay Purity (%) (%)	2% Balance Uncertainty Flask Uncertainty	Solvent:	22/09/12
Formulated By: Lawrence Ba Formulated By: Lawrence Ba Reviewed By: Pedro L. Ren Conc. (ug/m), -/- (ug/m), CAS# OSHA PEL 10000.0 20.0 7722-76-1 5 mg/m 10000.0 20.0 7722-76-1 5 mg/m 10000.0 eio eio	250		150		S O		ınt] [Linear]					
Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded SDS Inf Uncertainty (Solvent Safety Inf +/- (ug/mL) CAS# OSHA PEL (20.0 7722-76-1 5 mg/m 20.0 7722-76-1 5 mg/m 20.0 190 90	260							2.7289 10000.	Actual Actual sight (g) Conc. (µg/1	rric Acid	tric Acid	15815
22-76-1 5 mg/m					1			20.0		Formulated B	Q	
o 200			4						SC (Solvent Saf CAS# OSH/	Ped	Gerence /	
.hed pg.) LbS0 LbS0									DS Information fety Info. On Attac A PEL (TWA)	L. Rentas	Jan	https://At
g 3186 SRM			9		J				0	041723 041723		tps://Absolutestandards.com

Abs	Absolute (800-368-1131 www.absolute	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	lards , ds.com	Inc.	-				ĉ	rtified Re	eren	Certified Reference Material CRM	ial CR	M					https AF	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	4 Accredited cate Number andards.com
-	nstrum	iental A	nalysi	s by Indi	uctive	ły Coupl	ed Pla	Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);	s Spec	troscopy	(ICP	-MS):									
_								Trace Metals	etals	Verifica	Ition	Verification by ICP-MS	1.00	(µg/mL)							
-	A	40.02	8	40,02	Ą	40.02	H	40.02	E	A) ()2	Z	A)22	7	A).02	Se	A 2	ŧ	AB	W		
		A.22	5 2	A0.2	ម្មា	40.02	Но	40.02	Ŀ	40.02	NB	<0.02	Re	40.02	ŝ	40.02	Te	40.02	c :	40.02	
	Ba		<mark>ዮ</mark> የ	8 8 8 8	<u>ନ</u> ଜ	40.02 20	부 부	40.02 20	Mg	40.01 002	r S	A A 3 2	₽ ₽	A A 3 S	Å.	A0.02	1 11	A 600	\$ <	8 8	
		10.0>	ព្	<0.02	ណ្ឌ	<0.02	장	<0.2	Hg	40.2	שי	T	R Q	40.02	K 2	8.8		<0.02	4 'B	60.02 20.02	
	B	8 8 22 22	5 S	8 8 22 22	ନ ବ	40.02 20	32	4 4 A	N W	4 4 8 8	* 7	A0.02	s s	A A 3 S	, s	88	1 S	A A A A	2 B	88	
										(T)= Ta	(T)= Target analyte	alyte			ĺ						
hand	hysical	Physical Characterization:	cteriza	ution:														Cer	Certified by:	y:	
-	Iomogen	eity: No I	heteroge	neity was	observ	ed in the pr	eparati	Homogeneity: No heterogeneity was observed in the preparation of this standard.	ındard.								(h	J.	Ŵ	
* *	The cel Purified	rtified va l acids,	alue is 18.2 m	The certified value is the concen Purified acids, 18.2 megohm dei the menaration of all standards	centrat deioniz	tion calcul red water,	lated f	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all etandarde	metric s A gla	and volu	metric nd the	measure highest p	nents Jurity r	unless oth aw mater	nerwisc ials are	e stated. 9 used in					
* * * * *	All star Standa Standa All Star Uncerta Measur	ndard co rds are rds are ndards s ainty Re rement	ntaine prepare certife hould I ference Result,	rs are me ad gravin d (+/-) 0 es storec e: Taylor " NIST Te	eticulo netrica).5% o d with r, B.N. echnic	ally using the stat caps tigh and Kuya al Note 1;	hed pri balanc iced val it and it, C.E. 297, L	 * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	e calit other ropriat nes for nment	brated wit wise stat te laborat Evaluatir Printing (h weig ed. ory co Office,)hts trace onditions. Expressir Washingt	able to og the l on, D.(to NIST (see above). e Uncertainty of NIST D.C. (1994).	e abov ty of N	e). IIST					
														·							
										8											
Part #	57115		Lot # 041723	1723							2 of 2	of 2					Print	Printed: 2/8/2024, 5:01:22 PM	24, 5:0)1:22 PM	

Printed: 2/8/2024, 5:01:22 PM

m/z->	N. 01 00	5. O M 8	m/z->	5.0E7	1.0E8	m/z->	N. 00 10 10	5.0E5	Ammonium sulfate (S)	Compound	NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	Part Number: Lot Number: Description:	800-368-1131 www.absolutestandards.com
210			110			10		[1] Spectrum No.1	IN117	RM#	umber: low was dilute	n Date: lorage: lg/mL):	<u>Part Number:</u> Lot Number: Description:	
220			120			NO		-	IN117 SLBR7225V	Lot Number C	GUTB d to (mL):	122926 Ambient (20 °C) 1000	<u>57016</u> 122923 Sulfur (S)	
230			130		9	30		33.603 80	1000	Nominal F Conc. (µg/mL)	4000.0 5	ĉ		<i>b</i>
N 40			140			b	den gegen og gener første kommen och som en forse og	33.603 sec]:57016.D# [Count] [Linear]	99.9 0.10 24.3	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.06 Flask Uncertainty		Solvent:	Certified Re
N 80			100			50		Count] [Lin	.3 16.4979	say Target 6) Weight (g)	Y		Lot # 122923	fere 12
N80			0			8		9 9 7	16.4980	Actual Weight (g)			ASTM Type 1 Water	aterial CRM
			170			70			1000.0	Actual (Conc. (µg/mL)	5		1	rm 167816-
			180			80			2.0 77	Expanded Uncertainty +/- (µg/mL)	Reviewed By:	M	Formulated By:	
						 Complete and complete 			7783-20-2	(Solvent : CAS# 05	Pedr	\$	a and a second sec	
			190			0			NA	SDS Information It Safety Info. On Attac OSHA PEL (TWA)	Pedro L. Rentas	e la	Benson Chan	http
			2000			100			ort-rat 4250mg/kg 3181	SDS Information (Solvent Safety Info. On Attached pg.) * OSHA PEL (TWA) LD50	122923	7	100002	AR-1539 Certificate Number https://Absolutestandards.com

Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	 * All standard containers are meticulously cleaned prior to use. * All standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST 	 The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the measurement of all standards 		Homogeneity: No heterogeneity was observed in the preparation of this standard.	Physical Characterization:	(T) = Target analyte	AI A002 Cd A002 Pr A002 Pr	Trace Metals Verification by ICP-MS (µg/mL)	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
30) 			5 2	I She	Certified by:		MI MI MI 40.02			ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Printed: 2/8/2024, 5:01:28 PM

	-	260	250	240	230		220	210	m/z->
									1.0巨5。
									2.0厘5
180 190 200	170	160	150	140	130	р. 9	120	110	m/z->
									2,5E
									5.0E5
80 80 100	70	eo	50	40	8	magan Raji Anana ya Anany	N	10	m/z->
									1000
		ear)	ount] [Lin	24.004 sec];58116,D# [Count] [Linear]	¢ sec];58	[24.00		[1] Spectrum No.1	2000
20.0 7763-20-2 NA orf-rat 4250mg/kg 3181	10000.1	82,4682	82.4675	0.10 24.3	99,9	10000	IN117 SLBR7225V	IN11	1. Ammonium sulfate (S)
Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) NIST +/- (ug/mL) CAS# OSHA PEL (TWA) LDSO SRM	(g) Conc. (Jg/mL)	Actual Weight (g)	Target Weight (g)	Uncertainty Assay Purity (%) (%)	Purity (%)	Nominal Conc. (µg/mL)	Lot. Number	RM#	Compound
i By: Ped	[F			Balance Uncertainty Flask Uncertainty	0.058	1999.48	led to (mL):	Weight shown below was diluted to (mL):	Weight show
Lawrence barry	1 1					20 °C)	071126 Ambient (20 °C) 10000 Sum	Expiration Date: nended Storage: htration (µg/mL): %T Test Number:	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Teet Number
around Bring	Type 1 Water	ASTM Ty	Lot# 071123	Solvent:		E)	57116 071123 Sulfur (S)	<u>PORT:</u> Part Number: Lot Number: Description:	CERTIFIED WEIGHT REPORT: Part N Lot N Desc
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	CRM		ference M	Certified Reference Material	R a			om	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
								And in case of the local division of the loc	

800-368-1131 www.absolutestandards.com		0	Certified Reference Material CRM	nce Material C	RM			•	ANAB ISO 1: AR-1539 Ce https://Absolut	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ictively Coupled	Plasma Mass Sp	ectrometry (IC	P-MS):						
		Trace Metals		Verification by ICP-MS	IS (µg/mL)					
AI <0.02 Cd <0.02	Dv 40.02	A M	-12			a dista div.	ALL MERIC		A STREET STREET STREET	
40.02 Ca		40.02	40.02 40.02	Ni <0.02 Nb <0.02	Pr <0.02 Re <0.02	Si Se				A 6.3
50 C C	Gd <0.02	In <0.02 N	Mg <0.01 C						< 0	<0.02
40.02	Ga 40.02	Fe <0.2 Hg	A A 3 12	8 8			12 1		40.02 Y 40.02	40.02 20.02
B (UUZ CI 40,02	Au <0.02	<0.02	<0.02		Sc <0.02	Ta o	<0.02		40.02 21 21 40	40.02
Physical Characterization:			(T)= Target analyte	alyte				۲ ۲	Certified by:	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	oserved in the prepa	ation of this standard								1
							(the second	P.S.	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity in the preparation of all standards. * All standard containers are meticulously cleaned prior to use the preparation of the preparation of all standards. 	ntration calculate ionized water, ca	d from gravimetri librated Class A g	c and volumetric lassware and the	c measurement highest purity	s unless otherwise stated. raw materials are used in	ise state are used i	5.6			
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.	trically using bala % of the stated	value, unless othe	brated with weighwise stated.	phts traceable :	to NIST (see ab	ove).				
* Uncertainty Reference: Taylor, Measurement Result," NIST Tec	vith caps tight ar B.N. and Kuyat, (hnical Note 1297	id under appropria 2.E., "Guidelines fc , U.S. Governmen	ite laboratory co r Evaluating and t Printing Office,	I Expressing the Washington, D	⁹ Uncertainty of NIST).C. (1994).	F NIST				
	·									
		ð								
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.	itrically using bails bails of the stated with caps tight ar B.N. and Kuyat, C hnical Note 1297	prior to use. ances that are cali value, unless othe d under appropria 2.E., "Guidelines fo , U.S. Governmen	brated with weig rwise stated. re laboratory co or Evaluating and t Printing Office, t Printing Office,	ghts traceable . onditions. I Expressing the Washington, D	to NiST (see ab 3 Uncertainty o).C. (1994).	ove). F NIST				

2 of 2

Printed: 2/8/2024, 5:01:31 PM

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m/z>	ζι Ο Μ Ο	m/z-> 1.0E6	m/≥-> 2.0E6 1.0E6	5000 2500	Compound 1. Ammonium hexafluorosilicate (Si)	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	<u>CERTIFIED WEIGHT REPORT:</u> Part Nu Lot Nu Descri	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Certified Reference Material CRM A: 12: p 4: 2.4 Ph/SI R Solvent: 24002546 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 1140 1140 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.9 111 12.9 111 12.9 111 13.865 111 14.0 111 14.0 111 14.0 111 11.9 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Lot RM# Number IN009 SID082022A1</th> <th>s dilute</th> <th>mber: mber: ption:</th> <th>, Inc.</th>						Lot RM# Number IN009 SID082022A1	s dilute	mber: mber: ption:	, Inc.
Instant Image: Constraint of the con	≥40		140	4	1.393 sec]:58014.D# [Count]	Purity Uncertainty Assay (%) Purity (%) (%) 99.999 0.10 14.4	2% 5E-05 Balance Uncertainty 99.48 0.058 Flask Uncertainty		Certified Reference
v: Aleah O'Brady V: Aleah O'Brady CAS# OSHA PEL (TM 919-19-0 2.5 mg/m: 919-19-0 150	N		160	0- 	Linear]	Actual Actual Weight (g) Conc. (Jy/mL) 13.8855 1000.0	Nitric Acid	Nitric A	182
			(*)			(Solvent S CAS# () 18919-19-0	Ped Ped	ha	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

≤ % >

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verifica	ition	by ICP-N	E S	ia/mL)						
				A COLUMN TO A COLUMN			Contraction of the local distance of the loc		Contraction of the						No. of Concession, Name	distant and	A REAL PROPERTY AND INCOME.	No. of Concession, Name	STOLEN STOLEN
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	Ľ	<0.02	N	40.02	Pr	<0.02	Se	<0.2	7	4) 02	W	AND
S	40.02	ç	e,	Į	3	ç	3	-	3	r i		1				•0	1000	-	70.02
: 8) <u>(</u>	101	R	20.02	OL	<0.02	Ę	<0.02	ß	<0.02	Re	<0.02	ŝ	ч	ē	<0.02	q	<0.02
25	202	ຣ	<0.02	5	40.02	F	40.02	Mg	<0.01	ç	40.02	R	A).02	Ag	40.02	1	4033	<	3
Ba	40.02	ຊ	<0.02	ନ୍ଥ	40,02	- -1'	3	\$	3	ž	23	P	3	4		1			
đ	5	2	5	>		1						200	20.00	TAG.	101	10	20.02	10	20.02
Į	TOTON	5	<0.02	G	20.02	re	40.2	Нg	40.2	'n	40.02	Ru	<0.02	\$	A 0.02	ľ	40.02	~	4) M
Bl	40.02	S	<0.02	ନ୍ନ	A)02	5	40.02	Mo	40.02	¥	40.03	2	2002	2	3	2	3	2	3
7	33	2	3	Å.,	3	Ż	3		2	1 ;				,	10.02	22	10.04		20.02
F	-UNE	2	10.02	70	20.02	10	20.02	Nd	AU.U2	×	40.2	8	<0.02	Ta	40.02	H	40.02	2	<0.02

(T) = Target analyte

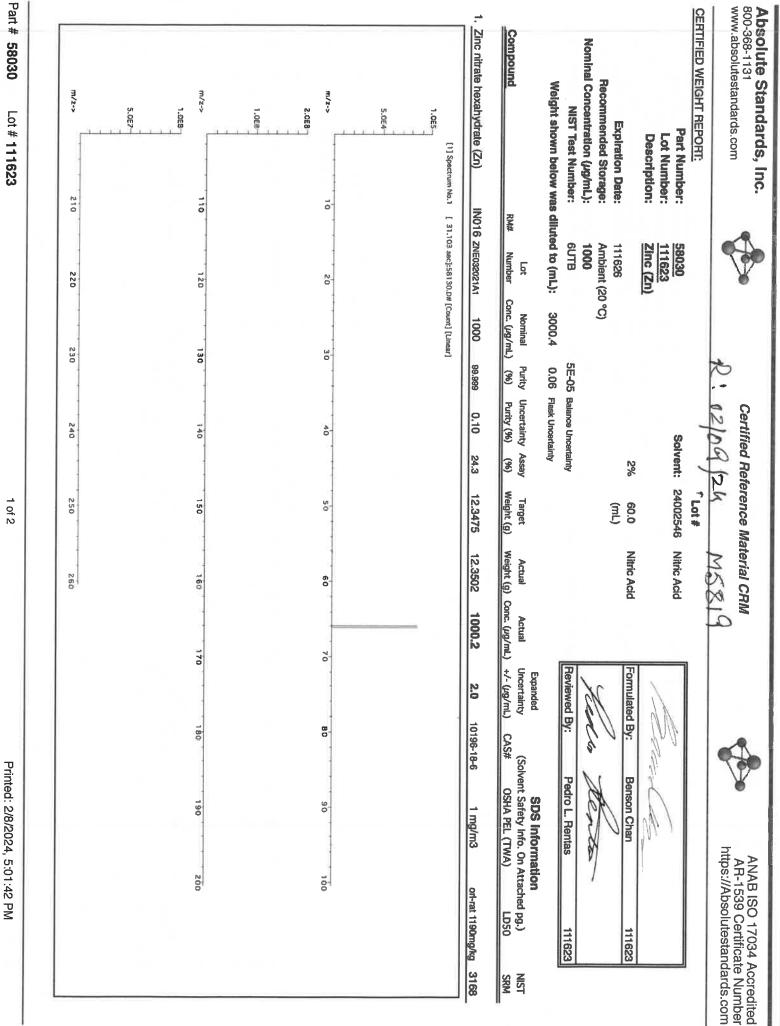
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shr

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

, '

Part # 57014 Lot # 122023

ww.a	0-36	bsc
bsol	-368-11	<i><u>N</u></i>
/w.absolutestandards.c	131	
and		Stan
ards		dal
ŝ		rds.
		Inc

\$8⊳

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Al 40.02 Sb 40.02 As 40.02 Ba 40.02 Ba 40.02 Be 40.01 Bi 40.02 B 40.02	
402 402 402 402	
5 S S S S S S S	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
토 양 양 당 탑 백 것	
4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2	
法門站卢可知用	
40.22 40.22 40.22 40.22 40.22 40.22 40.22 40.22	
40.02 40.02 40.02 40.02 40.02 40.02 40.02	
Pd Pd R	
402 402 402 402 402 402	
S 문 문 문 문 동 S 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문	
(µg/mL 402 402 402 402 402 402	
) Ag Sr Ag	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
김징별러덕역	
4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
这说 ~ 있 ~ c 《	
6 - 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	

(T) = Target analyte

Physical Characterization:

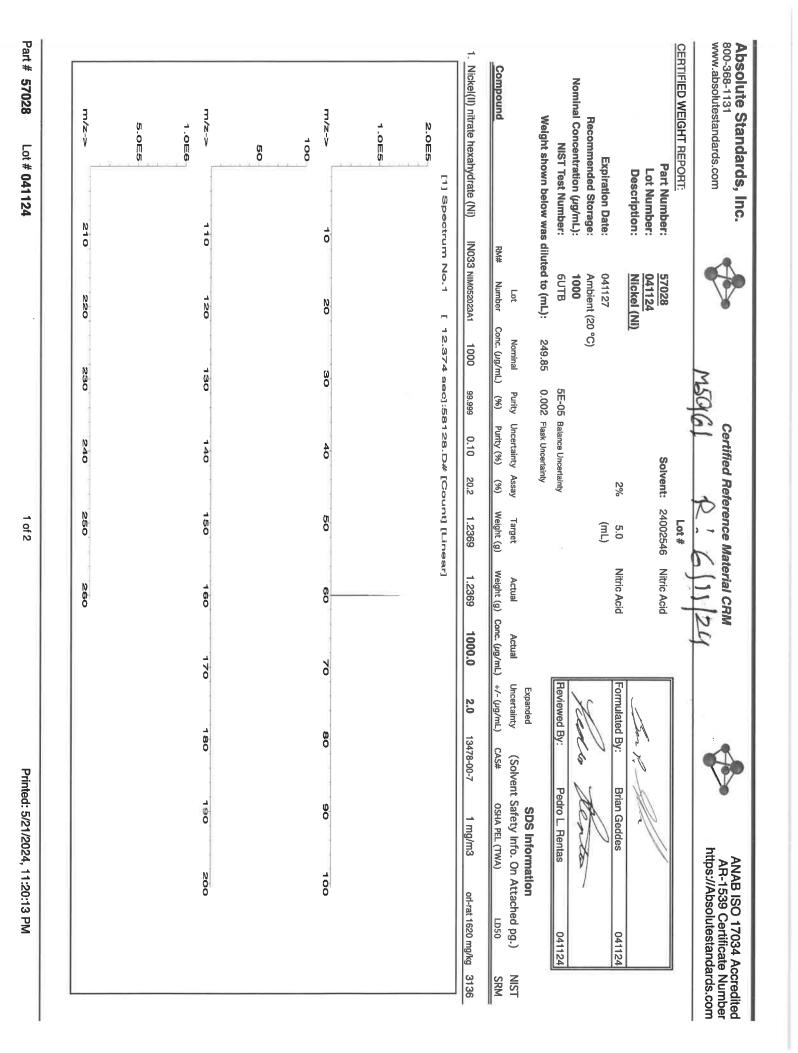
Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58030 Lot # 111623

Image:	TT/Z->	2500	5000	m/z->	500	 1000	N.00 M.4	5.0E4	1. Ammonium dihydrogen phosphate (P) IN008 PvœzoisAi	Compound	Weight shown below was diluted to (mL):	NIST Test Number:	Recommended Storage: Nominal Concentration (ug/mL):	Expiration Date:	Lot Number: Description:	CERTIFIED WEIGHT REPORT: Part Number:	www.absolutestandards.com
ric Acid Fic Acid Formulated By: Formulated				120		20				Lot Number							R
ric Acid Fic Acid Formulated By: Formulated	240			140		40			89.899 0.10 27.5 7.275	Purity Uncertainty Assay (%) Purity (%) (%)	0.058 Flask Uncertainty	5E-05 Balance Uncertainty					00
Prieved By: Programity Procertainty Procentainty Processory P									.2730	Actual Actual Weight (g) Conc. (µg/mL)				Nitric Acid			M5820
				180					7722-76-1) CAS			Here ten	Lawrence	forme (٩

	01:19 PM	024, 5:C	Printed: 2/8/2024, 5:01:19 PM	Print						2 of 2							123	Lot # 091123	Lot	57015	Part #
											2			5		· · ·		Ð			
					e). IST	rials are e abov ity of N	ity raw materials are us le to NIST (see above). the Uncertainty of NIST , D.C. (1994).	able to g the l on, D.(highest p ts trace; ditions. Xpressin Vashingt	id the f id. yry con y and E ffice, V	sware ar ated with ise state laborate ivaluation rinting O	A glas calibr otherw opriate is for E ment P	ed Class to use. that are , unless (der appro Guideline Governr	calibrat ad prior alances d value and un , C.E., " 97, U.S	d water, sly clean y using b y using b the state the state hps tight nd Kuyat Note 12	eionize Is. ticulou: ticulou: 5% of 1 S% of 1 B.N. a chnical	 Purmed acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	8.2 me of all s repared ertifed ertifed prence: esult,"	acids, 1 aration s are pi s are ci ards sh nent Refe	 Purmed acids, 18.2 meg the preparation of all si All standard containers Standards are prepared Standards are certifed (All Standards should be Uncertainty Reference: Measurement Result," Measurement Result, " Measurement Result," 	* * * * * *
·	A.	1º	in the second second	(stated	henwise	inless of	nents	neasurer	netric n	nd volur	letric a	m gravim	ted fro	n calcula	intratio	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated	ue is th	fied val	he certi	+ + 7
	y:	Certified by:	Ca									wland	of this stan	paration	in the pre	observed	r nysical Unaracterization: Homogeneity: No heterogeneity was observed in the preparation of this standard	Sterrizal eterogen	y: No he	r nysical Characterization: Homogeneity: No heterogeneity	Ho
									alyte	(T) = Target analyte	() = ()										Į
	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 × 2 × C ×	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	ෘ망칰랔극 乌 역	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ta Sr Nage Sc	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Sc Sm	40.22 	* * * * \$ Q N N	400 400 400 400 400 400 400 400 400 400	LL Mg Mg Nd	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	******	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A C C C E F	4 4 8 8 4 4 8 8 4 4 8 8 8 8 8 8 8 8 8 8	5 S S S S S S S			B B B B A S A
							(µg/mL)	1	Y ICP-N	tion b	Verification by ICP-MS	tals V	Trace Metals	글							
									MS):	(ICP-)	rometry	Spect	na Mass	d Plası	Couple	ıctively	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	nalysis	ntal Ar	strume	=
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	VAB ISO 17(R-1539 Certi s://Absolutes	http: A					2	ial CRM	e Mater	ferenc	Certified Reference Material	Cert			V		Inc.	ards, Is.com	standard	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute 800-368-1131 www.absolute

	Ho	Ph		B Bi B	As Ba	2	1 5	Absc 800-36 www.at
The cer Purified the pre All stan Standar Standar Standar Jncerta	mogene	ıysical					strum	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
acids, paratic dard co dard co dard sare dards are dards s dards s	ity: No]	Physical Characterization:		<0.01 <0.02	<0.02 <0.2 <0.02	40.02	ental A	Absolute Standards 800-368-1131 www.absolutestandards.com
alue is 18.2 n n of al prepar certife certife ferenc ferenc	heteroge	octeriz		5 S S	ଦୁ ଦୁ ଦୁ	Ca	nalysi	ds.com
The certified value is the concen Purified acids, 18.2 megohm deio the preparation of all standards. All standard containers are metic Standards are prepared gravimet Standards are certifed (+/-) 0.59 Standards should be stored w All standards should be stored w Uncertainty Reference: Taylor, E Measurement Result," NIST Tech	neity was	ation:		40.02 40.02	<0.2 <0.02	A.2	s by Indi	, Inc.
entrati deionize ds. ds. sticulou netrical netrical i with c f with c f with c	observed			A Ga	운 딸 탁 J	Dv	uctivel	
The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Clas the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	l in the prep			<0.02 <0.02 <0.02	<0.02	A) 02	y Couple	
calibra calibra ed prio palance and ur and ur c, C.E., c, C.E.,	paration			Fe La	F F H		d Plas	
The certified value is the concentration calculated from gravimetric and volumetric measury Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights trac Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Express Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washing	Homogeneity: No heterogeneity was observed in the preparation of this standard			<0.2 <0.02	40.02 20.02		Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	
A glass A glass calibra calibra s for E s for E s for E	lard.			Hg Mo Nd	Mn Mn	Metals	Spectr	Certif
nd volume ware and ted with se stated laborator valuating Valuating Of			(T) = Ta	<0.2 <0.02	<0.02 <0.02	Verific	ometry ()	ied Refe
etric m I the hi weight I. y cond and Ex and Ex			(T) = Target analyte	х P P	Pd Os Nb	ation	ICP-M	rence
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 			ılyte	<0.02 <0.02 <0.2	<0.02	Ann I Ni T I P. I	IS):	Certified Reference Material CRM
to NIS b.C. (Ru Sm Sc	Rb Rb	MS (CRM
ertainty of NIST 1994).				40.02 40.02		Jg/mL)		
are use ove). f NIST				Sr Ta	Ag Si	2		
3d in				40.02 40.02	40.02 10 10	Ĵ.		•
				T Sn Tm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		× ×
	ar 1	Certified by:		<0.02 <0.02	<pre><0.02</pre>	6		http://
	M	by:		Zn Zr	५ २दः	w		NAB IS R-1530 s://Abs
	.ll					3		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								Accredit te Numb dards.co
								1 3 6 8

	m/z-> 210	1.0E8	N. O E B	m/z-≻ 110	-1 -0 	m/z-> 10 2.0E8	1.0 [[]4	[1] Spectrum No.1 2.0E4	1. Selenium (Se)	Compound	Volume shown below was diluted to (mL):	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	Lot Number: Description:	CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
	0			0		J.		um No	58134	Part Number	6 as diluted			л	
220				120		12 0		-	071223	Lot Number	ed to (mL):	060627 Ambient (20 °C) 1000	<u>060624</u> Selenium (Se)	7024	V
	N			4		ω		33.702	0.1000	Dilution Factor	2000.07	ĉ	(Se)		
	230			130		80		90c]:58	200.0	Initial Vol. (mL)	5E-05 0.100				
	240			140		4 0		034.D#	0.084	Initial Uncertainty Vol. (mL) Pipette (mL)	Balance Uncertainty Flask Uncertainty				Sertified Referen
	250			150		. (л О		33.702 sec]:58034.D# [Count] [Linear]	1000	Nominal Conc. (µg/mL)	rtainty nty		2.0%	Lot #	Reference 162.
	260			160		60		inear]	10002.5	Initial Conc. (µg/mL)		(mL)	40.0	Solvent:	Certified Reference Material CRM からすチェート・アンの
				170		70			1000.0	Final Conc. (ug/mL)	11		Nitric Acid		114
				ŏ		0			2.2	Expanded Uncertainty +/- (µg/mL)	Reviewed By:	<i>M</i>	Formulated By:		24
				180		80			7782-49-2	0	×	20	BY		
				190		90			0.2 mg/m3	SDS Information nt Safety Info. On Att: OSHA PEL (TWA)	Pedro L. Rentas		Benson Chan		ਤ
				200		100			3 orl-rat 6700 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) AS# OSHA PEL (TWA) LDS0	1tas 060624	,	n 060624		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
									3149	NIST	24	I	24		Accreditec ate Number Idards.com

															1
	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise st. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are us the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	rements t purity r ceable to s. s. sing the l ngton, D.0	highes highes tra ndition: Expres Washir	volumetric re and the i with weij stated. stated. oratory cc uating and ing Office.	ric and glasswa glasswa alibratec nerwise riate lab for Evalu nt Print	 * The certified value is the concentration calculated from gravimetric and volumetric measurements unlee * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw n the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIS * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Unce Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1 	ed fron alibrate alibrates lances l value, l value, C.E., "Q C.E., "Q C.E., "Q	The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Class the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	ntratio sionized s. etrically etrically 5% of t 5% of t B.N. a B.N. a	he conce egohm de standardd s are met d gravim (+/-) 0. e stored : Taylor, NIST Tev	alue is t 1 8.2 me n of all : ntainer: orepare certifed bould bu ference ference Result,"	The certified value is the concen Purified acids, 18.2 megohm dei the preparation of all standards. All standard containers are meti Standards are prepared gravime Standards are certifed (+/-) 0.5 All standards should be stored w Uncertainty Reference: Taylor, E Measurement Result," NIST Tech	* The c * Purifie the purifie * All stand * Stand * All stand Measu	
In P. Ar						ġ.	Homogeneity: No heterogeneity was observed in the preparation of this standard.	ration of	n the prepa	bserved	eity was ol	eterogen	neity: No h	Homoge	
Certified by:			lyte	(T) = Target analyte	(T) = T						lion:	cterizat	Physical Characterization:	Physic	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Se T Si <0.02	Pr 40.02 Re 40.02 Rh 40.02 Rh 40.02 Rb 40.02 Sc 40.02 Sc 40.02	 40.02 <	PP PP K	40.02 40.02 40.02 40.02 40.02 40.02	Li Lu Mg Mn Hg Nd	40.02 40.02 40.02 40.02 40.02	HH Fr Fr Fr Fr Fr	40.02 40.02 40.02 40.02 40.02	Dy Er Eu Ga Ga	40.2 40.2 40.2 40.2 40.2	5 6 6 8 6 6 5	40.02 40.02 40.02 40.02 40.02 40.02	Al As Ba Bi Bi	
		(µg/mL)	ICP-MS	-MS): on by	metry (ICP-MS): Verification by ICP-MS	s Spectrom Metals V	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Trace Metals Verification by	Plasma	Coupled	ctively	by Indu	nalysis	nental A	Instru	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com		₽M	terial Cl	nce Ma	Certified Reference Material CRM	Certifie					Inc.		Absolute Standards, 800-368-1131 www.absolutestandards.com	Absolute 800-368-1131 www.absolute	800-

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

Certificate of Analysis M5936, M5933 R: 02/22/24 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Single Analyte Custom Grade Solution
Catalog Number:	CGMO1
Lot Number:	T2-M0720876
Matrix:	H2O
	tr. NH4OH
Value / Analyte(s):	1 000 μg/mL ea:
	Molybdenum
Starting Material:	Ammonium Molybdate
Starting Material Lot#:	2361
Starting Material Purity:	99.9893%
CEPTIEIED VALUES	

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:	998 ± 7 μg/mL
Density:	1.000 g/mL (measured at 20 ± 4 °C)

Assav Information:

Assay Method #1	998 ± 4 µg/mL
	ICP Assay NIST SRM 3134 Lot Number: 130418

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRWRM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRWRM} , where one method of characterization is used is the mean of individual results:
$\begin{split} & \textbf{X}_{CRM/RM} \equiv \boldsymbol{\Sigma}(\textbf{w}_i) \left(\textbf{X}_i \right) \\ & \textbf{X}_i = \text{mean of Assay Method : with standard uncertainty u_{char i} \\ & \textbf{w}_i = \text{the weightling factors for each method calculated using the inverse square of the variance.} \\ & \textbf{w}_i = (1/k_{ohar})^2 / (\boldsymbol{\Sigma}(1/(u_{char}))^2) \end{split}$	$X_{CRM/RM} = (X_a) (u_{cher, a})$ $X_a = mean of Assay Method A withu_{cher, a} = the standard uncertainty of characterization Method A$
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k ($u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{cs}$) ^{1/5} k = coverage factor = 2 $u_{char} = [\Sigma(w_p)^2 (u_{char}; p^2)]^{1/2}$ where u_{char} are the errors from each characterization method $u_{bb} = $ bottle to bottle homogeneity standard uncertainty $u_{lts} = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty$	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char a} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{y₅} k = coverage factor = 2 u _{char a} = the errors from characterization u _{bb} = bottle to bottle homogeneity standard uncertainty u _{lts} = long term stability standard uncertainty (storage) u _{lts} = transport stability standard uncertainty
Page 1 of 4	

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Μ	Ag	<	0.000590	Μ	Eu	<	0.000300	М	Na		0.000879	М	Se	<	0.008000	М	Zn		0.000598
М	A		0.000563	Μ	Fe	<	0.006500	М	Nb	<	0.029000	i	Si	<		М	Zr	<	0.001800
Μ	As	<	0.002100	Μ	Ga	<	0.000300	i	Nd	<		Μ	Sm	<	0.000300				
Μ	Au	<	0.000300	Μ	Gd	<	0.000300	Μ	Ni	<	0.008000	M	Sn	<	0.008900				
Μ	В	<	0.003300	М	Ge	<	0.000300	Μ	Os	<	0.000590	Μ	Sr		0.000175				
Μ	Ba		0.001689	Μ	Hf	<	0.001800	i –	P	<		Μ	Та	<	0.004200				
М	Be	<	0.000890	Μ	Hg	<	0.003300	Μ	Pb	<	0.000300	Μ	Tb	<	0.000300				
М	Bi	<	0.000890	Μ	Но	<	0.000300	Μ	Pd	<	0.001800	М	Те	<	0.021000				
0	Ca		0.006334	M	In	<	0.032000	Μ	Pr	<	0.013000	М	Th	<	0.000300				
0	Cd	<	0.026000	Μ	-Ir	<	0.000300	Μ	Pt	<	0.000300	0	TI	<	0.032000				
Μ	Се	<	0.008300	Μ	ĸ		0.130213	М	Rb		0.004575	Μ	TI		0.001266				
М	Co		0.000598	М	La	<	0.000300	М	Re	<	0.000300	М	Tm	<	0.000300				
Μ	Cr		0.000527	0	Li		0.000059	Μ	Rh	<	0.000300	M	U	<	0.005300				
М	Cs		0.000527	М	Lu	<	0.000300	М	Ru	<	0.079000	M	V	<	0.000890				
Μ	Cu		0.002252	M	Mg		0.000563	i	S	<		M	W		0.087982				
М	Dy	<	0.000300	Μ	Mn	<	0.005900	М	Sb		0.001513	М	Y	<	0.000300				
Μ	Er	<	0.000300	s	Мо	<		Μ	Sc	<	0.001200	М	Yb	<	0.000300				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliguots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94 +6 6,7,8,9 [MoO4]-2(chemical form as received)

Chemical Compatibility -Mo is received in a NH4OH matrix giving the operator the option of using HCI or HF to stabilize acidic solutions. The [MoO4]-2 is soluble in concentrated HCI [MoOCI5]-2, dilute HF / HNO3 [MoOF5]-2 and basic media [MoO4]-2. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO4]-2 chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF5]-2 for months in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the [MoO4]-2 chemically stable for years in 1% NH4OH in a LDPE container.

Mo Containing Samples (Preparation and Solution) -Metal (Soluble in HF / HNO3 or hot dilute HCI); Oxide (soluble in HF or NH4OH); Organic Matrices (Dry ash at 450EC in Pt0 and dissolve oxide with HF or HCI). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 95 amu	3 ppt	n/a	40Ar39K16O,79Br1
			60,1900s2+,190Pt
			2+
ICP-OES 202.030 nm	0.008 / 0.0002 µg/mL	1	Os, Hf
ICP-OES 203.844 nm	0.012 / 0.002 μg/mL	1	
ICP-OES 204.598 nm	0.012 / 0.001 µg/mL	1	Ir, Ta

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRWRM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 17, 2022

- The certification is valid within the measurement uncertainty specified provided the CRW/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 17, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Prepared By:**

Uyen Truong Supervisor, Product Documentation

Michael 2 Booth

Certificate Approved By:

Michael Booth **Director**, Technical

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Laine

Page 1 of 4

ក⁰⁸ = ក្រុងអាស់ ដែល ភ្លេង ភ្ល

Z = 1000BL = $\sup_{x \in \mathcal{A}} (\pi_x) = O_{CRM/RM} = k \left(u^2_{Char} + u^2_{T}_{bb} + u^2_{T}_{bb} + u^2_{T}_{bb} + u^2_{Cb} \right)^{1/2}$ $\mathsf{M}^{i} = (1/\mathsf{n}^{\mathsf{clust}\,i})^{\Sigma} \setminus (\Sigma(1/(\mathsf{n}^{\mathsf{clust}\,i})_{\Sigma})$

nieneity standard uncertain ucherts mort arone enti = a fanta lienegomori etitod,ot etitod = dd^u adria = nost grind = dd^u erita $\label{eq:spinor} \min \left\{ x \right\} = U_{CRM/RM} = k \left\{ u^2_{char} * u^2_{bb} + u^2_{bb} + u^2_{bb} + u^2_{bb} \right\}^{4}$

$$\begin{split} \chi_{CRM,FRM} = & (\chi_{o}) \; (u_{char, o}) \\ \chi_{a} = mean of Assay Method A with ut and a charter of the standard uncertainty of uncertainty of the standard uncertainty$$

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

Certified Value, X_{CRMMM}, where two or more methods of characterization are used is the weighted mean of the results: Characterization of CRM/RM by One Method Characterization of CRM/RM by Two or More Methods

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent to following equations are used in the calculate/K=2.

traceability. - The Calculated Value is a value calculated from the weight of a starting material that has been cartified idrectly vs. A National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance starting.

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 hg/mL

F# bodteM vssA

g = Jojoej

un pepuedra w

(1x) (1w) = X(wi) (xi)

:noiternotnl ysseA

1.012 g/mL (measured at 20 ± 4 °C) Density: 1002 ± 5 µg/mL sulsV beitified

 $\chi_q = mean of Assay Method I with standard uncertainty updat 1$ w₁ = the weighting factors for each method calculated using the tothe weighting and the standard uncertainty updat 1

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Starting Material Purity: 99.9975% Starting Material Lot#: 2094 Starting Material: In Metal unineti T 1 000 hg/mL ea: :(s)ətylanA \ əulsV :xinteM

tr. HF 2% (v/v) HNO3 27991717-2T Lot Number: **LITED** Catalog Number: Product Code:

Single Analyte Custom Grade Solution

PRODUCT DESCRIPTION 0.S

Number QSR-1034).

the Competence of Reference Material Producers" and ISO/IEC 17025, "Ceneral Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Vantures is also an ISO 9001 registered manufacturer (QSR Certificate Inorganic Manuel 2014) INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

ACCREDITATION / REGISTRATION 0.r

300 Technology Drive Christiansburg, VA 24073 USA Christiansburg, VA 24073

R:2/22/24

info@inorganicventures.com E: 240-282-3015 E: 240-282-3030

Refine your results. Redefine your industry. Certificate of Analysis 6657 'SLEST

4.0 TRACEABILITY TO NIST

sbecueq. - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMRM uncertainty error and the measurement, weighing and volume dilutiton errors. In rare cases where no NIST SRMRM are available, the term "in-house std.' is a provided.

4.1 Thermometer Calibration

laboratory. - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

.my €.0 a2 M 0732£0.0 > ⊨N O 832000.0 > ⊔∃ M 8€2000.0 > ⊵A M ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to CRMRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS, were analyzed in an up of the method for each element of the property effection of the method for the met

											-				•				
			9	0:000536	>	٩٨	Μ	0.004900	>	эS	0	¢77000.0		oM	Μ	892000.0	>	ΞL	Μ
			9	941200.0	>	×	Μ	926900.0	>	qs	Μ	0.003267	>	υM	0	892000.0	>	DÀ	M
			1	0.000473		M	Μ		>	S	- į	0.005445	>	БM	0	068010.0	>	ng	0
			9	98610.0	>	Λ	Μ	0.000269	>	nЯ	Μ	0.000268	>	nŋ	Μ	0.000268	>	sÖ	M
			8	0.000268	>	Π	Μ	0.000268	>	ЧЫ	Μ	0.027225	>	П	0	297000.0		CL	M
			8	0.000268	>	шŢ	M	89Z000.0	>	əЯ	W	0.000268	>	F۵	W	0.004293	>	00	W
			5	0.000268	>	Ш	Μ	0.000268	>	ЧЯ	Μ	271100.0		К	W	0.000268	>	9 <u>0</u>	W
					>	Ш	S	0.000536	>	Ъł	Μ	692000.0	>	4	Μ	892000.0	>	PO	M
			8	0.053663	>	41	Μ	0.000268	>	Ч	Μ	0.002683	>	uj	Μ	929000.0		сa	0
				\$£100.0	>	θT	Μ	0.000268	>	Pd	Μ	0.000268	>	ен	Μ	609100.0	>	B	M
				92000.0	>	ЧT	Μ	£70100.0	>	ЬΡ	Μ	0.003231	>	бн	Μ	0.005366	>	вe	M
				0.01056(БT	Μ	0.054450.0	>	d	0	191200.0		łΗ	Μ	0.002683	>	Вa	M
			ę	60000.0		٦S	0	0.000269	>	sO	Μ	0.002146	>	99	Μ	0.008929	>	В	0
			-	60000.0		us	Μ	068010.0	>	!N	0	0.000268	>	ΡÐ	M	778400.0	>	nΨ	W
			8	0.00026	>	шS	Μ	0.000268	>	PN	Μ	0.000268	>	БÐ	M	986800.0	>	sA	M
0.043560	>	۶Z		67400.0		!S	0	0.043560	>	٩N	0	0.003225		θ٦	0	278000.0		IA	0
792600.0	>	uΖ	0 \$	0.00120		əS	Μ	0.032670	>	вN	0	0.000268	>	nΞ	Μ	0.000536	>	₿¥	M

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

- For the calibration of analytical instruments and validation of analytical methods as appropriate. 9.0 INTENDED USE

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

Page 2 of 4

Page 3 of 4

- Chemical Testing - Accredited / A2LA Certificate Number 883.01 "serveter of the second sec

- QSR Certificate Number QSR-1034

nottertizigeA metevs inemegeneM villsuD 100e OSI 1.01

WOITATNEMUDOD GRADNATS YTILAUD

0.01

Homogeneity data indicate that the end user should take a minimum server of 0.2 m L or 2.0 m L or 2 - This solution was more according to the superior superior of the form as the solution of the homogeneous. المستحدم المرابعة الم .viienegeneity.

Please refer to the Safety Data Sheet for information regarding this CRMRM. HOMOGENEITY 0'6

NOITAMAORNI SUOGAASAH 0.8

۲۹۸۱۵۵۲۹۵۵) ۱۹۸۱۶۵۶ ۲۲۵۶۵ (۱۹۹۵۶۵ ۲۲۵۶۵ ۱۹۵۱ ۱۹۵٫۱۶۵۲۵۵ ۱۹۵٫۱۶۵٬۵۲۱	.sselo n r r r	0.0054 / 0.00052 µg/mL 0.0054 / 0.00038 µg/mL 0.0053 / 0.00034 µg/mL 10 not be prepared or stored ir 10N	CP-OES 323.452 nm (CP-OES 334.941 nm (CP-OES 334.941 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm)
SET Interferences (underlined indicates severe) 32S160, 32S14N,	Orde A/N	14 pt	ICP-MS 48 amu

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): **Technique/Line**

1:1:1 H2O / HF / H2SO4 or fuse ash with pyrosultate it oxide is as plastic pigment and likely in prookite Notentity: Oxde - low temperature history and sortanty - ineer (sortant in 122) in source heads Notentity: Oxde - low temperature history (-800EC) brookite (fuse in Pto with KS2207); Ores (f TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts violentino: Ovide , Iour Inergene , or entile (Discoluted by Inergene) and Ferdinal Market (Soluble In 1997).

HINGS / LOPE corporations of an LOPE contained, while all solutions as the TI(F)6-2 chemically stable for years in HNOS / Lope container. 1-10,000 ppm single element solutions as the TI(F)6-2 chemically stable for years in TI Containing American and Solutions. 1-Metal (Solution in 2000) the solution and Solutions are the TI(F)6-2 chemically stable for years in 1.000 ppm single element solutions. 1-Metal (Solution in 2000) the solution and Solutions are the TI(F)6-2 chemically stable for years in 1.000 ppm single element solutions. 1-Metal (Solution in 2000) the solution and solutions. 1-Metal (Solution in 2000) the solution and solutions are the solution and solutions. with a fendency to hydrolyze forming the hydrafied oxide in all dilute acids except HF. **Stability -** 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1% HNO3 / LDPE container. 1-10.000 point and element solutions as the Ti(F)6-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F- away (i.e. Do not mix with Alkaline or Rare Earths or high levels of thansition elements unless they are fluorinated). Stable with more inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute acids except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HVO3. Avoid neutral to basic S-8(T)T 6 4+ 78.74 - noiluite in Solution (Chemical Form in Solution - 47.74 6 T(F)6-5-- For more information, visit www.inorganicventures.com/TCT Afomic Weinher Valence: Coordination Winnher: Chemical Equa

reported density. Do not pipette from the container. Do not return removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the renorted density. To not other from the container. To not return removed alternots to container.

Page some more served to the served to the served to the organization of the concentration(s). It is be the responsibility of the user to account for this effect. When the bottle is weighed both before and after being the responsibility of the user to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is the active the bottle is the rescaled to the test to account for the test to account to the test to account the test to account to test to account to account to the test to test to acc - While stored in the sealed TCT bag, transpiration of this CRAWRM is negligible. After opening the sealed TCT had transmission of the CDMMAN will occur recutification increase in the source concentration of the is

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Certifying Officer:

Chairman / Senior Technical Director

NOS Paulo 182

Paul Gaines

-

Thomas Kozikowski Manager, Quality Control

Certificate Approved By:

0.2r

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7,1.

- Sealed TCT Bag Open Date:

11.3 Period of Validity stability studies conducted on property stored and handled CR/WRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

- The lot expiration date reflects the period of time that the stability of a CRMMM can be supported by long term

- The date after which this CRM/RM should not be used.

- June 17, 2027

11.2 Lot Expiration Date

The cartification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

June 17, 2022

11.1 Certification Issue Date

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY 0.11

norganic Ventures, 300 Technicky Drive, Christianeburg, Ve. 24073, USA; Telephone: 800,669,678; 540,585,3030, Fax: 540,562,5015; Innegan

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

ADSOIUTE STANDARDS, INC. 800-368-1131 www absolutestandards com	P			0	ertified R	eference	Material CF				AR	ANAB ISO 17034 Accredited AR-1539 Certificate Number	ocredited Number
			X	6	-	ž	K5981 R:61	1	124	6	https	https://Absolutestandards.com	ards.com
CERTIFIED WEIGHT REPORT:						Lot #	Solvent:						
Part Number: Lot Number:		57092 060724				24002546	Nitric Acid		Phina R	1° man Mr. 9	ARector		
Description:		Uranium (U)	ົ						252				
						2.0%	40.0	Nitric Acid	Formulated By:	2	Giovanni Esposito	060724	
Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):		060727 Ambient (20 °C) 1000	0 °C)				(mL)		Jus	42 . A	enter		
NIST Test Number:		GUTB		5E-05	Balance Uncertainty	inty			Reviewed By:		Pedro L. Rentas	060724	
Volume shown below was diluted to (mL):	was dilute	d to (mL):	2000.07	0.100	Flask Uncertainty								-
	Part	Lot	Dilution	Initial	Uncertainty	Nominal	Initial	Final	Expanded Uncertainty	(Solven	SDS Information (Solvent Safety Info. On Attached pg.)	tion Attached po.)	NIST
Compound	Number	Number	Factor	Vol. (mL)	Vol. (mL) Pipette (mL) (Conc. (µg/mL)	Conc. (ug/mL)	Conc. (µg/mL)	+/- (ug/ml.)	CAS#	OSHA PEL (TWA)	LD50	SRM
1. Uranyl nitrate hexahydrate (U)	58192	041524	0.1000	200.0	0.084	1000	10001.5	1000.0	2.2	13520-83-7	0.05 mg/m3	orl-rat 1040 mg/kg	3164
[1] Spectrum No.1	trum No	а <u>н</u>	23.254 sec]:57092.D# [Count] [Linear]	9c]:570	092.D#[0	ini) [mino	near]						F
1.0E6) 1							
5.0E8													
	10	0	30		40	50	00	20		80	08	100	_
5.0E4													
0.0 7 4													
m/z->	0	120	130	0	440	150	160	021		081	Cer	000	
										0			_
9 1 0					46468								
6.0E5													
m/z->	810	520	530	0	240	250	260						
]
Part # 57092 Lot # 060724						1 of 2				Printe	Printed: 6/7/2024, 3:58:45 PM	8:45 PM	

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

<0.02 Cd <0.02 Dy <0.02 Hf <0.02 Li <0.02		The factor of the second se					
Cd <0.02 Dy <0.02 Hf <0.02 Li		and the second se	A number of state of	Statistical and a statistical statisticae statisticae statisticae statisticae statisticae statisticae	の日本の日本の		
	_	Ľ		507	ŧ		AV I
Ca <0.2 Er <0.02 Ha <0.02 Ha <0.02 I.a	Nh				2 6	70.02	*
بن المراجع (1993) 1933 - 1933 - 1933 1933 - 1935 -					e.	40.02	D
		•		<u>60.0</u> 5	Ę	20.02	>
Cs <0.02 Gd <0.02 If <0.02 Mn		_		ŝ	4		
Cr <0.02 Ga <0.07 Fe <0.7 He				707	111	70'05	Q X
				<0.02	ЦШ	<u>60.02</u>	¥
CU 2012 UE 2012 La 2012 Mo				<0.02	Sn	000	7
Cii <0.02 Au <0.02 Pb <0.02 Nd	K 402						1

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

1 هي الالي الالي 5 1 ×., -

Printed: 6/7/2024, 3:58:45 PM

ADSOIUTE STANDARDS, INC. 800-368-1131 www.absolutestandards.com			U	ertified I	Referen	ce Mate	Certified Reference Material CRM	C	1117		•	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB ISO 17034 Accredited AR-1539 Certificate Number ttps://Absolutestandards.com	ccredited Number ards.com
הבמדובובה אובותווד מרמסמד.							4		20	2				
CENTIFIED WEIGHT NET ON	<u>57038</u> 031524			Solvent:		24002546	Nitric Acid				1			
Description:	Strontium (Sr)	(Sr)			700		Nitrio Acid		Comulated Bur	N Dr.	Boncon Chan	to manual state	031504	
Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	031527 Ambient (20 °C) 1000	ŝ					Nume Acid			apy.	Denson crian	La	120100	
NIST Test Number:	6UTB		5E-05 B	5E-05 Balance Uncertainty	uinty				Reviewed By:	By:	Pedro L. Rentas	as	031524	
Weight shown below was diluted to (mL): Lot <u>Compound</u> RM# Number	Is diluted to (mL): Lot RM# Number	2000.07 Nominal Conc. (µg/mL)	0.100 Purity (%)	0.100 Flask Uncertainty Purity Uncertainty Assay (%) Purity (%) (%)	say ()	Target Weight (g) V	Actual Weight (g) C	Actual Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL)	CAS	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LDS	SDS Information Safety Info. On Attachee SHA PEL (TWA)	d pg.) LDSO	NIST SRM
1. Strontium nitrate (Sr)	IN017 SRZ022018A1	1000	68.997	0.10	41.2 4.8	4.85470	4.85502	1000.1	2.0	10042-76-9	NA	orl-ra	ori-rat >2000mg/kg 3153a	3153a
5.0E6	-	14.495 sec]:58138.D# [Count] [Linear]	ec]:581	38.D#[Count	[Linear								
9 9 9 9											1997 mar Rossenar van sonar kar kar kar ka			
m/z->-	10 20	0		40	20	0	80	20		80	- O 0	100		
6.0局														
		5. 	1								÷			
5.0E6	110 120	130	0	40	150	Q	160	170		180	180	000		
2.02 2.02														
m/z->- 21	210 220	230	0	240	550	0	260							
oart # 57038 Lot # 031524					Ť	1 of 2				Pri	Printed: 6/7/2024, 3:58:42 PM	4, 3:58:42 F	Wo	

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	letals	Verification	ation	by ICP-MS		(ng/mL)						
			四本派出出建	ALCON ST	The second second	A COLUMN TO A	and states in the		Man Landson Martin		A DAMAGE AND	MARCE	A NUTLE STORE	Contraction of the local division of the loc	United in the second	Self-pice	Compare and the second s		States and the
N	≪0.02	3	<0.02	Â	<0.02	Hf	<0.02	Ľ	<0.02	ī	<0.02	Ł	<0.02	Se	⊲0.2	P.	40.02	M	2002
Sb	<0.02	ű	<0.2	田	€0.02	Ho	<0.02	Ľ	<0.02	q	<0.02	Re	<0.02	Si	<0.02	Je	<0.02	=	200
As	<0.2	ථ	<0.02	Ē	<0.02	ä	<0.02	Mg	±0.0	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0 0>	>	89
Ba	<0.02	ű	<0.02	3	€0.02	ч	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	ž	<0.2	É	2007	- 5	
Be	<0.01	ບັ	<0.02	පී	<0.02	Ъе	40.2	Не	<0.2	Þ	20.02	Ř	20.02	5	ļ F	ļ	10.02	2 >	
Bi	<0.02	රී	<0.02	ථ	€0.02	La	<0.02	Mo	40.02	ġ.	2000			5 0				- 6	20.02
æ	<0.02	õ	<0.02	Au	40.02	å	<0.02	PZ	<0.02	ž	202	3	10.02	¢ ا		5 F		5	20.05
													1000	-	70.02	Ŧ	70.02	5	20.02
										1000 400									
									(1) = 1 and $e(1)$	get ana.	iyre								

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Sur ?

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

- E. 5 * 1982 246 146 **4**• . 12 M 8: 2 r¹a€¹# *:

-3

Luts Solvent: 2110021 Ninic Acid 2.0% 40.0 Ninic Acid 2.0% 40.0 Ninic Acid 2.0% 40.0 Ninic Acid mininy Final Emmoded By: Beneon Chen mininy minish Expanded SDS Information v Nominal Intel Expanded SDS Information v 1000 1000.0 22 1050-034 Pictor 1000 1000.0 22 1500-03-0 IOO 1000 1000 22 1500-03-0 IOO 1000 100 100 100 100 100 1000 23 1500-03-0 N 100 100 100 100 100	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com			X	MS982	rtified Re	ference A	Certified Reference Material CRM	11/2	5		AL	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Accredited ate Number ndards.com
Epinitum Dist. Epinitation Dist. Other Abold and concentration Dist. Other Abold and concentration Dist. Other Abold and concentration Dist. Other Abold and concentration Dist. Epine List of the Abold and concentration Dist. Epine Dist.	CERTIFIED WEIGHT REPORT: Part Numbe Lot Numbe Description		23 23 nium (Zr)				Lot # 21110221	Solvent: Nitric Acid						
NIST Test Number: Othome of the wave situation E::05 Balance of minute situation E::00: Dots in the mean situation E::00: Distribution E::00: Distribution E::00: Distribution E::00: Distribution E::00: Distribution Distri	Expiration Dat Recommended Storag Nominal Concentration (µg/ml		16 Int (20 °C)	J			2.0%	40.0 (mL)		ormulated By		Benson Chan	071423	8
Image: marker Test of	NIST Test Numbe Volume shown below	er: 6UTB v was diluted to (i				alarce Uncertair ask Uncertainty	ytr			leviewed By:		Pedro L, Rentas	071423	23
Indecenting (n) Statut Order Otder	Compound				hritial (/ol. (mL) Pi		Nomina! onc. (µg/mL)	Initial Conc. (µg/mL) (Final Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL)	(Solv∉ CAS#	SDS Inform int Safety Info. Or OSHA PEL (TWA)	ation Attached pg.) LD50	NIST SRM
1.1 Spectrum No.1 [1.1.163 esc)[s7040.DM [Count] [Linear] 1.0E6 10 20 30 40 60 70 80 3c=b 10 20 30 40 60 70 80 4.0E8 1.0E 10 120 130 140 160 170 160 4.0E8 210 130 140 160 160 170 160 4.0E8 210 230 230 240 260 260 100 160	1. Zirconyl chloride octahydrate (Zr)				200.0	0.084	1000	10000.3	1000.0			NA		NA
6:0EC 1:0 20 30 40 60 70 80 1:0E3	-	atru No.	4	000	c]:670		T) [tunes	inearj						
10 20 30 40 60 70 60 1-0E8 1 1 1 1 1 1 1 6-0E7 1 1 1 1 1 1 1 0-0 1 1 1 1 1 1 1 0-0 1 1 1 1 1 1 1 0-0 1 1 1 1 1 1 1 0-0 20 20 20 20 20 20 10	ອ ພ ຍ													
5.0E7 110 120 130 140 160 160 170 180 1.0E8 1.0E8 120 120 130 140 160 170 160 1.0E8 1.0E8 210 230 230 240 250 260 100 1.0E4/071423 10f4/071423 10f2 10f2 10f2 10f2 10f2 10f2 10f2	۵ 11		0	0		6 0	0	D Ø	02		Q	O	000	
10 120 130 140 160 170 180 1.0E8 1.0E8 1.00 1.00 1.00 1.00 1.00 5.0E7 210 220 230 240 260 260 Iot# 071423 Iot# 07142	£.0E ₹													
6.0€7 1/2-3 210 230 240 250 260 Lot # 071423 1012	Ø		Q	130		041	160	100	5		Ca	190	200	
1/2 210 220 230 250 260 Lot # 071423 1 of 2	6.0E7													
Lot # 071423 1 of 2			0	530		240	580	260						
							1 of 2				Printe	d: 6/7/2024, 3:	58:47 PM	

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

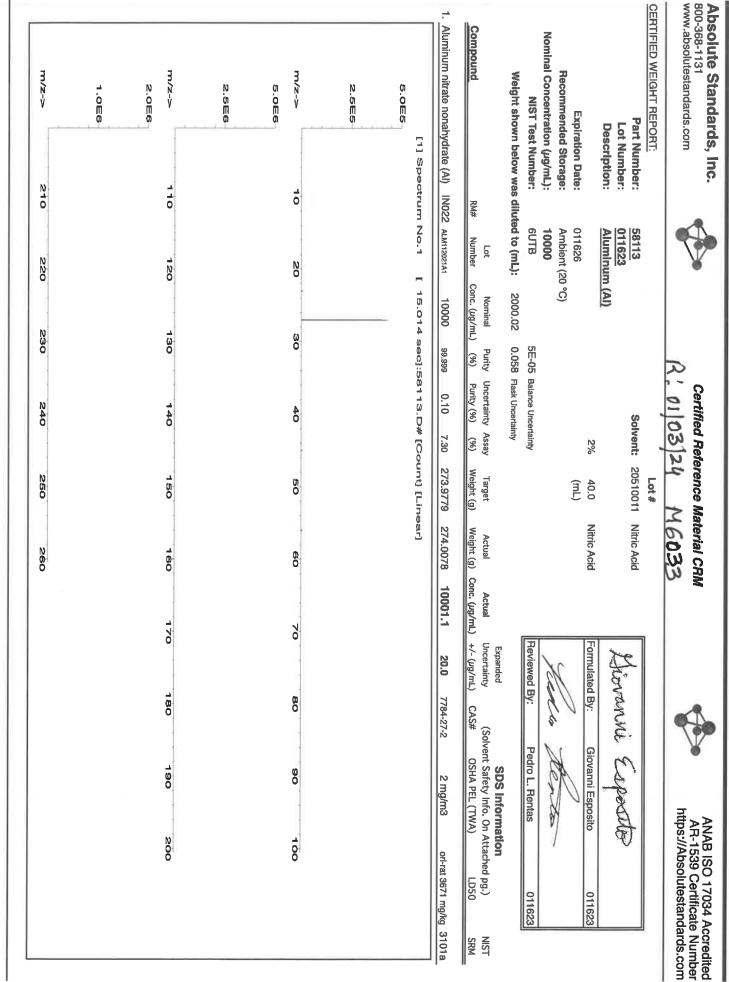
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							I race N	letals	Verificat	tion b	y ICP-M	or) SN	/mL)						
	000			11 - 21 28 12	A COLUMN TO A	Station of the		1011		ALL DOUDE	No. No. A. State of	Contraction of							
₹	20.02	3	<0.02	à	€0.02	Hf	<0.02	E	<0.02	ž	000	4			e				A DOLLAR STATES
Sb	<0.02	Ő	602	ģ	5007	11	200	,				TT I		8	202	2	<0.02	M	5
		}	+ ~	3	7000	24	70'05	5	20:02	q	€0.02	Re	_	57	<0.02	f	5007	1	
As	Q 12	లి	40.02	đ	<0.02	ų	<0.00 20.00	Mo	100	ð	ŝ	ć	_	5.	70.04	2	70'05	>	_
R.	0007	ć	200	č	00 0	,		Ser	10-05	5	70.02	2		Ag	<u>60.02</u>	F	<0.02	>	
5		3	70.02	5		5	60.09 60.09	Mn	60.02	Pd	<0.02	Rh	_	ŝ	5	Ę	000		_
ഷ്	<u>60.01</u>	ප්	<0.02	ő	<0.02	ų	۶	-0		¢					707	пт		Υ.	_
ä	2007	ć	ŝ			2		20	7.07	4	20.02	ž	<0.02	ъ	0.02	ц,	<0.02	>	2002
គឺ ៖	70.02	3	70.02	3	20:02	5	<u>60.02</u>	Wo	<u>60.02</u>	đ.	<u>40.02</u>	Ę		v	W Vr	z		' 1	_
8	<u>6.02</u>	ð	<0.02	An	<002	á	2007	M	5	: >			_	n	20,02	Ë	<0.02	5	_
	And a state of the second s				and		70:02	IN	20.02	4	202	Sc		Ta	<0.02	F	<0.02	7-	_
													and the second se					3	

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.


Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards
 - * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.
- - * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

-¥. . . . 1 . .

Lot # 071423 Part # 57040

Nitric Acid 69%

CMOS Decu, 1. - OSIO14025 Decu, 1. - OSIO14025 Decu, 1. - OSIO14025 M6034, M6034 M6034, M6034 M6035, M6038, M6036, Certificate of Analysis

Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 **Revision No.: 0**

Test	Specification	Result
Assay (HNO3)	69.0 - 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO4)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities ~ Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities - Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities – Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Гrace Impurities – Manganese (Мп)	≤ 10.0 ppb	< 1.0 ppb
Frace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

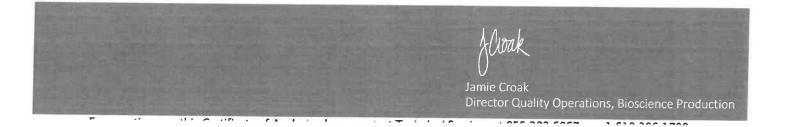
Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities – Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count - 0.5 μm and greater	≤ 60 par/ml	10 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	3 par/ml

>>> Continued on page 3 >>>

Nitric Acid 69% CMOS



Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result	

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 24D1562005 Manufactured Date: 2024-03-18 Retest Date: 2029-03-17 Revision No.: 0

Merenvez - 08/01/2024 Pater m 6039 m 6039 Certificate of Analysis

Test	Specification	Result
ACS – Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6 %
ACS – Color (APHA)	≤ 1 0	5
ACS - Residue after Ignition	≤ 3 ppm	< 1 mgg 1 >
ACS - Specific Gravity at 60°/60°F	1.185 - 1.192	1.192
ACS – Bromide (Br)	≤ 0.005 %	< 0.005 %
ACS – Extractable Organic Substances	≤ 5 ppm	< 1 ppm
ACS Free Chlorine (as Cl2)	≤ 0.5 ppm	< 0.5 ppm
Phosphate (PO4)	≤ 0.05 ppm	0.03 ppm
Sulfate (SO4)	≤ 0.5 ppm	< 0.3 ppm
Sulfite (SO3)	≤ 0.8 ppm	0.3 ppm
Ammonium (NH4)	≤ 3 ppm	< 1 ppm
Trace Impurities ~ Arsenic (As)	≤ 0.010 ppm	< 0.003 ppm
Trace Impurities – Aluminum (Al)	≤ 10.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities ~ Barium (Ba)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities – Beryllium (Be)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities ~ Boron (B)	≤ 20.0 ppb	2.2 ppb
Trace Impurities – Cadmium (Cd)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	31.0 ppb
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	0.5 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	0.2 ppb
Trace Impurities – Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Trace Impurities – Gold (Au)	≤ 4.0 ppb	< 0.2 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Trace Impurities - Iron (Fe)	≤ 15 ppb	3 ppb

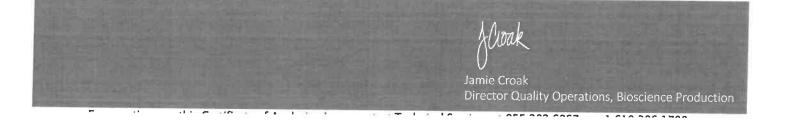
>>> Continued on page 2 >>>

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 24D1562005

Test	Specification	Result
Trace Impurities - Lead (Pb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities - Lithium (Li)	\leq 1.0 ppb	< 0.1 ppb
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	2.2 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Nickel (Ni)	≤ 4.0 ppb	0.2 ppb
Trace Impurities – Niobium (Nb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Potassium (K)	≤ 9.0 ppb	< 1.0 ppb
Trace Impurities – Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.0 ppb
Trace Impurities - Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	< 0.9 ppb
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities - Tin (Sn)	≤ 5.0 ppb	< 0.4 ppb
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Zirconium (Zr)	≤ 1.0 ppb	< 0.1 ppb

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis



Material No.: 9530-33 Batch No.: 24D1562005

Test	Specification	Result	
	specification	Result	

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Multi Analyte Custom Grade Solution	
Catalog Number:	IV-STOCK-12	
Lot Number:	U2-MEB734294	
Matrix:	5% (v/v) HNO3	
Value / Analyte(s):	10 µg/mL ea:	
	Barium,	Beryllium,
	Bismuth,	Cerium,
	Cobalt,	Indium,
	Lithium,	Nickel,
	Lead,	Uranium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Barium, Ba	CERTIFIED VALUE 10.01 ± 0.04 µg/mL	ANALYTE Beryllium, Be	CERTIFIED VALUE 10.01 ± 0.05 µg/mL
Bismuth, Bi	10.01 ± 0.06 µg/mL	Cerium, Ce	10.01 ± 0.04 µg/mL
Cobalt, Co	10.01 ± 0.05 µg/mL	Indium, in	10.01 ± 0.04 μg/mL
Lead, Pb	10.00 ± 0.04 µg/mL	Lithium, Li	10.01 ± 0.04 µg/mL
Nickel, Ni	10.01 ± 0.04 µg/mL	Uranium, U	10.01 ± 0.05 µg/mL

Density:

1.025 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ва	ICP Assay	3104a	140909
Ва	Calculated		See Sec. 4.2
Ва	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Bi	ICP Assay	3106	180815
Ce	ICP Assay	3110	160830
Ce	EDTA	928	928
Ce	Calculated		See Sec. 4.2
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Co	Calculated		See Sec. 4.2
In	ICP Assay	3124a	110516
In	EDTA	928	928
In	Calculated		See Sec. 4.2
Li	ICP Assay	3129a	100714
Lí	Calculated		See Sec. 4.2
Li	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
Ni	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
U	ICP Assay	traceable to 3164	R2-U689597
U	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRWRM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRWRM} , where one method of characterization is used is the mean of individual results:
$\mathbf{x}_{\mathbf{CRM/RM}} = \Sigma(\mathbf{w}_i) (\mathbf{x}_i)$	$X_{CRM/RM} = (X_{a}) (u_{char a})$
X _i = mean of Assay Method I with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_j = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$	$\boldsymbol{u}_{char,a}$ = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$	CRM/RM Expanded Uncertainty (1) = U _{CRM/RM} = k (u ² _{char a} + u ² _{bb} + u ² _{fts} + u ² _{ts}) [%]
k = coverage factor = 2	k = coverage factor = 2
$u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method	uchar a = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
uts = transport stability standard uncertainty	uts = transport stability standard uncertainty
Certified Abundance:	
IV's Certified Abundance	

Isotope	Atom %
Uranium 238U	99.8 ± 0.1
Uranium 235U	0.19 ± 0.05

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale. <u>https://www.inorganicventures.com/terms-and-conditions-sale</u>. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 **CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY**

11.1 Certification Issue Date

June 21, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- June 21, 2028
- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

SD9781. Paul R Saine

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Nitric Acid 69% CMOS

R: 9/10/24

Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

	M6088, M6089 M6090, M6	091 M6092, M6093
Test	Specification	
Assay (HNO3)	69.0 - 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO4)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

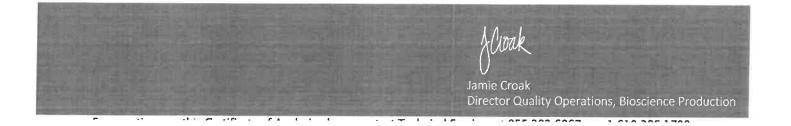
For questions on this Certificate of Analysis please contact Technical Services at 855 282 6867 or +1 610 386 1700

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities – Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities – Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities – Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	10 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	3 par/ml

>>> Continued on page 3 >>>

Nitric Acid 69% CMOS



Material No.: 9606-03 Batch No.: 24D1062002

Test Specifica	ation Result	
----------------	--------------	--

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

_				/			1. Sodium nitrate (Na)	Compound	Description: Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Part Numbei Lot Numbei	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
m/z->	N 0 11 0	m/z-≻ 5.0E6	N.5 6	m/z-> 5.0∈6	2.5E5	5.0E5	trate (Na)	đ	Description: Sodium (Expiration Date: 12226 Recommended Storage: Ambient (2 I Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was dliuted to (mL):	<u>VEIGHT RE</u> Part I Lot I	standards.c
						[1] Spec	=		Description: Expiration Date: nended Storage: ntration (µg/mL): htration (µg/mL): T Test Number: ST Test Number:	HT REPORT: Part Number: Lot Number:	om
0		110		10		[1] Spectrum No.1	IN036 NAV01201511	Lot RM# Number	Sodiur 12226 Ambien 10000 6UTB 6UTB	<u>58111</u> 122223	
N N O		120		N. O		-				23	V
230		130		а О			10000 99.999	Nominal Purity Conc. (µg/mL) (%)	5) 3000.4 0.06		RIO
		and here and a starting				8.935 sec]:58111.D# [Count] [Linear]	999 0.10	ity Uncertainty) Purity (%)	2% 5E-05 Balance Uncertainty 0.06 Flask Uncertainty		Certi
240		140		6		.D# [Cot	26.9	Assay (%)	2% ncertainty ertainty	Solvent:	ified Refu
N U O		150		Ö		unt) [Line	111.5406	Target Weight (g)	60.0 (mL)	Lot # 24002546	erence Mi MSR 0
280		160		0 O		ar]	111.5479	Actual Weight (g)	Nitric Acid	Nitric Acid	Certified Reference Material CRM 5 124 MSR06 MS
				N			10000.7	Actual Conc. (µg/mL)		3	RM 5807
		170		70			20.0	Expanded Uncertainty +/- (µg/mL)	Formulated By:	Allea	
		180		80			7631-99-4	0	By:	aha	
		190		80			5 mg/m3	SUS information (Solvent Safety Info. On Attached pg.) AS# OSHA PEL (TWA) LD50	Aleah O'Brady	Brad	×
		200		100				SUS Information afety Info. On Atta OSHA PEL (TWA)	ady C	All I	ANAB AR-1 https:///
		ŏ		ŏ			orl-rat 3430 mg/kg	ached pg.) سەءە	122223		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
							9/kg 3152a	NIST	223		4 Accred cate Num andards.c

-

Printed: 12/29/2023 2:56:20 PM	Printed: 12/2					2 of 2							2223	Lot # 122223		# 58111	Part #
	r sed in	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	nts unless oth ity raw materi e to NIST (see the Uncertaint , D.C. (1994).	ements purity ; eable to ing the gton, D.	The certified value is the concentration calculated from gravimetric and volumetric measureme Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest puri the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing t Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington,	and the and the ith weig ated. atory co atory co flice,	The certified value is the concentration calculated from gravimetric and volume Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with w Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating a Measurement Result," NIST Technical Note 1297, U.S. Government Printing Offi	avimetri ass A g are cali are cali ppropria ernmen	from gra rated Cl ior to us ces that lue, unle under a J.S. Gov	ulated er, calib er, calib er, calib er, calib g baland g baland g baland ght and ght and 1297, L	tion calc zed wat ally usin ally usin of the st and Ku al Note	ncentra ards. meticule 0.5% c 0.5% c lor, B.N Technic	The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Clas the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All Standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	value i s, 18.2 ion of e prepa e certifi e certifi Referen it Result	certified preparat preparat dards ar dards ar dards ar tandards suremen	* The * Purif * All s * Stan Mea:	
Certified by:	e e							standard.	on of this	reparati	ed in the j	ts observ	Physical Characterization: Homogeneity: No heterogeneity was observed in the preparation of this standard.	o heterog	Physical Characterization: Homogeneity: No heterogeneity v	Physi Homog	
	+				alyte	(T) = Target analyte	= (T)										
2 2 × 3 < c *	40.02 40.02 17 40.02 17 17 17 17 17 17 17 17 17 17	Ta Sr			402 402 402 402 402 402 402 402 402 402	P P OS NN		Man Lu Mag	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	양 다 다 타 H H	4 4 4 4 4 4 5 8 8 8 8 8 8	e e e e e e e	40.02 40.02 40.02 40.02	5 S C C S S S	40.02 40.02 40.02 40.02	Bi Bi	
			(ua/ml)	ומ	rometry (ICP-MS): Verification by ICP-M	ry (ICP		ass Spect Metals	asma Ma Trace	pled Pla	aly Cou	ductiv	sis by In	Analys	umenta	Instra	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	*			al CRM	Certified Reference Material C	ference	tified Re	Cen					s, Inc.	ards.con	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute (800-368-1131 www.absolute	800 WWW

Certificate of Analysis M5738 M&739 M5740 MS741 M5742 Refine your results. Redefine your industry.

VENTURES

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M5743

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

A: 4/11/22

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custom Grade Soluti	on
Catalog Number:	6020ISS	
Lot Number:	\$2-MEB709511	
Matrix:	7% (v/v) HNO3	
Value / Analyte(s):	10 μg/mL ea:	
	Bismuth,	Holmium,
	Indium,	6-Lithium,
	Rhodium,	Scandium,
	Terbium,	Yttrium

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE 6-Lithium, Li6	CERTIFIED VALUE 10.00 ± 0.03 µg/mL	ANALYTE Bismuth, Bi	CERTIFIED VALUE 10.00 ± 0.05 µg/mL
Holmium, Ho	10.00 ± 0.05 µg/mL	Indium, In	10.00 ± 0.04 µg/mL
Rhodium, Rh	10.00 ± 0.07 µg/mL	Scandlum, Sc	10.00 ± 0.04 µg/mL
Terbium, Tb	10.00 ± 0.04 µg/mL	Yttrium, Y	10.00 ± 0.04 µg/mL

Density:

1.035 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE Bi	METHOD ICP Assay	NIST SRM# 3106	SRM LOT# 180815
Bi	Calculated		See Sec. 4.2
Но	ICP Assay	3123a	090408
Но	EDTA	928	928
In	ICP Assay	3124a	110516
In	EDTA	928	928
In	Calculated		See Sec. 4.2
Li6	Gravimetric		See Sec. 4.2
Rh	ICP Assay	3144	070619
Sc	ICP Assay	3148a	100701
Sc	EDTA	928	928
Тb	ICP Assay	3157a	100518
Tb	EDTA	928	928
Тb	Calculated		See Sec. 4,2
Y	ICP Assay	3167a	120314
Y	EDTA	928	928
Y	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRWRM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRMRM} , where one method of characterization is used is the mean of individual results:
X _{CRM/RM} = Σ(w _i) (X _i) X _i = mean of Assay Method I with standard uncertainty u _{char} i w _i ≃ the weighting factors for each method calculated using the inverse square of the variance: w _i = (1/u _{char}) ² / (Σ(1/u _{char}) ²)	$X_{CRM/RM} = \{X_a\} (u_{cher} a)$ $X_a = mean of Assay Method A withu_{cher} a = the standard uncertainty of characterization Method A$
$w_{1} = (1)^{1/2} char i^{1/2} (2(1)^{1/2} char i^{1/2})$ CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2} k = coverage factor = 2 u _{char} = (E((w)) ² (u _{char}) ²)] ^{1/2} where u _{char} i are the errors from each characterization method u _{bb} = bolte to bottle homogeneity standard uncertainty u _{lts} = long term stability standard uncertainty u _{bb} = transport stability standard uncertainty	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k ($u^2_{char a} + u^2_{bb} + u^2_{fts} + u^2_{ts}$) ^{1/2} k = coverage factor = 2 u _{char a} = the encus from characterization u _{bb} = bottle to bottle homogeneity standard uncertainty u _{fts} = long term stability standard uncertainty (storage) u _{tts} = transport stability standard uncertainty
ertified Abundance:	
We Certified Abundance	

	1.4	э	CEI	unea	Moundance	
te	m					Δt.

Isotope	Atom %
Lithium Li6	95.6 ± 0.3
Lithium Li7	4.4 ± 0.1

4.0 **TRACEABILITY TO NIST**

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 03, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 03, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Bath

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Laine

RD: 07/14/2022

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-MS (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of an Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-0803" and for the ICSAB mixture use "ICSA-0803+ICSB-0803".

<u>CAUTION</u>: The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to the Contracting Officer, Ross Miller at <u>miller.ross@epa.gov</u>. If directed by Ross Miller, return the chain of custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

This interference check sample set is to be used to verify elemental isobaric correction factors of inductively coupled plasma-mass spectrometers (ICP-MS). This reference material set consists of two (2) concentrated solutions. The ICSA solution contains several interferent elements and species; for a complete listing refer to the CLP SOW. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, TI, Se, V, and Zn. This instruction sheet provides the nominal values for the ICP-MS ICS Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

Page 1 of 2

ICSB: M5874

ICSA-0803, Inferferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this solution by ICP-MS.

ICSB-0803, Analytes, mixed with ICSA-0803, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this ICSAB solution by ICP-MS.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-MS ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

	Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-MS ICSA-0803, AND ICSA-0803 MIXED WITH ICSB-0803							
Element	CRQL	Part A (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	Part A +Part B (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	
AI	20.0	[100000]			[100000]			
Sb	2.0	(1.5)	-2.5	5.5	(22.0)	18.0	26.0	
As	1.0	(0.1)	-1.9	2.1	19.0	16.2	21.9	
Ba	10.0	(1.2)	-18.8	21.2	(22.0)	2.0	42.0	
Be	1.0	(0)	-2.0	2.0	19.0	16.2	21.9	
Cd	1.0	(0.7)	-1.3	2.7	20.0	17.0	23.0	
Ca	500	[100000]			[100000]			
С		[200000]			[200000]			
CI		[1000000]			[1000000]			
Cr	2.0	(21.0)	17.0	25.0	40.0	34.0	46.0	
Co	1.0	(1.0)	-1.0	3.0	20.0	17.0	23.0	
Cu	2.0	(8.0)	4.0	12.0	(25.0)	21.0	29.0	
Fe	200	[100000]			[100000]			
Pb	1.0	(4.0)	2.0	6.0	25.0	21.3	28.8	
Mg	500	[100000]			[100000]			
Mn	1.0	(7.0)	5.0	9.0	27.0	23.0	31.1	
Мо		[2000]			[2000]			
Ni	1.0	(6.0)	4.0	8.0	24.0	20.4	27.6	
Р		[100000]			[100000]			
K	500	[100000]			[100000]			
Se	5.0	(0.3)	-9.7	10.3	(19.0)	9.0	29.0	
Ag	1.0	(0)	-2.0	2.0	18.0	15.3	20.7	
Na	500	[100000]			[100000]			
S		[100000]			[100000]			
TI	1.0	(0)	-2.0	2.0	21.0	17.9	24.2	
Ti		[2000]			[2000]			
V	5.0	(0.5)	-9.5	10.5	(19.0)	9.0	29.0	
Zn	5.0	(11.0)	1.0	21.0	(29.0)	19.0	39.0	

[] Indicates analytes that do not require ICP-MS determination in the ICS.

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 2 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

ICSA: M5873

RD: 07/14/2022

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-MS ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-MS (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of an Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-0803" and for the ICSAB mixture use "ICSA-0803+ICSB-0803".

<u>CAUTION</u>: The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to the Contracting Officer, Ross Miller at <u>miller.ross@epa.gov</u>. If directed by Ross Miller, return the chain of custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

This interference check sample set is to be used to verify elemental isobaric correction factors of inductively coupled plasma-mass spectrometers (ICP-MS). This reference material set consists of two (2) concentrated solutions. The ICSA solution contains several interferent elements and species; for a complete listing refer to the CLP SOW. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, TI, Se, V, and Zn. This instruction sheet provides the nominal values for the ICP-MS ICS Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

Page 1 of 2

ICSB: M5874

ICSA-0803, Inferferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this solution by ICP-MS.

ICSB-0803, Analytes, mixed with ICSA-0803, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 1% v/v HNO₃. Analyze this ICSAB solution by ICP-MS.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-MS ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

	Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-MS ICSA-0803, AND ICSA-0803 MIXED WITH ICSB-0803							
Element	CRQL	Part A (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	Part A +Part B (µg/L)	Lower Limit (µg/L)	Upper Limit (µg/L)	
AI	20.0	[100000]			[100000]			
Sb	2.0	(1.5)	-2.5	5.5	(22.0)	18.0	26.0	
As	1.0	(0.1)	-1.9	2.1	19.0	16.2	21.9	
Ba	10.0	(1.2)	-18.8	21.2	(22.0)	2.0	42.0	
Be	1.0	(0)	-2.0	2.0	19.0	16.2	21.9	
Cd	1.0	(0.7)	-1.3	2.7	20.0	17.0	23.0	
Ca	500	[100000]			[100000]			
С		[200000]			[200000]			
CI		[1000000]			[1000000]			
Cr	2.0	(21.0)	17.0	25.0	40.0	34.0	46.0	
Co	1.0	(1.0)	-1.0	3.0	20.0	17.0	23.0	
Cu	2.0	(8.0)	4.0	12.0	(25.0)	21.0	29.0	
Fe	200	[100000]			[100000]			
Pb	1.0	(4.0)	2.0	6.0	25.0	21.3	28.8	
Mg	500	[100000]			[100000]			
Mn	1.0	(7.0)	5.0	9.0	27.0	23.0	31.1	
Мо		[2000]			[2000]			
Ni	1.0	(6.0)	4.0	8.0	24.0	20.4	27.6	
Р		[100000]			[100000]			
K	500	[100000]			[100000]			
Se	5.0	(0.3)	-9.7	10.3	(19.0)	9.0	29.0	
Ag	1.0	(0)	-2.0	2.0	18.0	15.3	20.7	
Na	500	[100000]			[100000]			
S		[100000]			[100000]			
TI	1.0	(0)	-2.0	2.0	21.0	17.9	24.2	
Ti		[2000]			[2000]			
V	5.0	(0.5)	-9.5	10.5	(19.0)	9.0	29.0	
Zn	5.0	(11.0)	1.0	21.0	(29.0)	19.0	39.0	

[] Indicates analytes that do not require ICP-MS determination in the ICS.

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 2 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

ICSA: M5873

	1.057	2.0年7	m/z->	р. С. С. С.	5.0 E	7/2->	N 0 0	5.0E5	1. Antimony (Sb)	Compound	Volume shown below was diluted to (mL):	NIST Test Number:	Recommended Storage: Nominal Concentration (µg/mL):	Expiration Date:	Part Number: Lot Number: Description:	CERTIFIED WEIGHT REPORT:	800-368-1131 www.absolutestandards.com
)			110			10		[1] Spectrum No.1	58151	Part Number	lip sam mo	ber	nL):	ate:	on:		
			12.			NO		40.1	1 100923	Lot r Number	uted to (mL)	6UTB	Ambient (20 °C) 1000	120526	57051 120523 Antimony (Sb)		
									0.1000	Dilution Factor	: 3000.41		20 °C)		w (Sb)		Ri
			130			30		39C]:58	300.0	Initial Vol. (mL)		5E-05					Certifi (0 1) 03 (2 4
:			140			4 0		051.D#	0.084	Uncertainty) Pipette (mL)		Balance Uncertainty				ł	Certified
			1 80			50		17.964 sec]:58051.D# [Count] [Línear]	1000	Nominal	unty	rteintv		2.0%	24002546	Lot #	Certified Reference Material CRM (芝り MS802 Mら
						Ö		_(near]	10001.4	Initial) Conc. (µg/ml				(mL)	Nitric Acid	Solvent:	nce Material
			180			80			1000.0	Final nL) Conc. (µg/mL)				Nitric Acid			CRM
			170			70			0 2.1	Expanded Uncertainty mL) +/- (µg/mL)		Reviews	K	id Formulated By:			UU UU
			180			80			7440-36-0	Ĕ	an of		20	ited By:	Ferre		
			190			0				Solvent Sa CAS# OSH/		Pertr	the second	Lawr	and b		V
						A. and A. and A. and A.			0.5 mg/m3	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		o I Rentas	SA)	Lawrence Barry	De		Alv AR https
			200			100			orl-rat 7000 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50							ANAB ISO 1:/034 Accreated AR-1539 Certificate Number https://Absolutestandards.com
) mg/kg 3102a) NIST	120020	120523		120523			tificate l standar

www.absolutestandards.com 800-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							HACE M	etais	Verifica	CION	פא וכוי-א	2 6	g/mL)						
2	4002	24	20.02	2	000	117						10000					ALL MARKEN	1000	No. of Concession, Name
2	2010	5	20.02	Ŋ	20.02	H	40.02	5	<0.02	N	40.02	7	6,02	ŝ	40.2	Ţ	000	W	88
Sb	-	ç	3	Ţ	3	u,	3	4	2	1		1	and the second		10.4	10	20.02	W	20.02
•	1	ş	10.5	1	20.02	0FL	2002	L	20.02	NB	40.02	R	200	5	40.02	7	200	=	3
AS	6	ç	40.02	E	40.02	5		Ņ	100	?	3	į							
D,	3	Ş	5	2				Gwan C	two	Ş	2000	N	20.02	Ag	<0.02	T	40.02	<	A.02
ţ	10.02	ç	20.02	g	20.02	-	40.02	Mn	40.02	Z	40.02	2	40.02	N ²	3	ţ	3	5	3
Be	<u>80</u>	ç	A .22	3	3	ţ1	2	9	2	,		1		1		101	20.02	11	20.05
ą	\$	2		1	and the second		101	Sar	6.4	•	20.05	Ku	<0.02	ģ	<0.02	þ	40.02	Y	202
101	20.02	S	20,02	ନ୍ତ	40.02	5	40.02	Mo	4022	7	2003	Â	3	0	-	2	2	1	
B	402	6	8	An	23	Ż	3			;		-	10 Mar	0	20.02	20	20.02	20	40.02
F	to to the		TURN	1	70.02	10	20.02	NQ	20.02	K	A 012	8	40.02	Ţ	40.02	3	20.02	2	3

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

In P. S.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57051 Lot # 120523

N 55 10 0	m/z-> 110 5.0E6	រា .0 ៣ ភា	m/≥-> 10	ហ .0 ៣ ៥	[1] Spectrum No.1 1.0E7	1. Silver nitrate (Ag)	Compound	Part Number: 57047 Lot Number: 122823 Description: Silver (A Description: Silver (A Expiration Date: 122826 Recommended Storage: Ambient (; Nominal Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:
	120		N.		-	5 J0612AGA1	Lot Nor RM# Number Conc. (57047 122823 Silver (Ag) 122826 Ambient (20 Ambient (20 1000 6UTB 6UTB	*
	130 140		90 40		14.044 sec]:58147.D# [Count] [Linear]	88.8988 0.10	Nominal Purity Uncertainty Assay Conc. (Jug/mL) (96) Purity (96) (96)	*C) 5E-05 Balance Uncertainty	Certified I R 1 8 5 2 4
	1 ភូ- O		50		[Count] [Linear]	6.27992	Target Weight (g)	n t: 24002546 2% 80.0 (mL)	Certified Reference Material
	160 170		60 70			1000.0	Actual Actual U Weight (g) Conc. (µg/mL) +	Nitric Acid	rial CRM M6030
	180		80			2.0 7761-88-8	Expanded Uncertainty (Solv +/- (µg/mL) CAS#	ad By:)30
	190 200		90 100			10 ug/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD51	Benson Chan Pedro L. Rentas	http
	ŏ		ŏ				n ached pg.) NIST LD50 SRM	122823	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part # 57047 Lot # 122823

1 of 2

Printed: 8/1/2024, 2:13:15 PM

≤ ∞

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							I ACE ME	VIELAIS	Venilcau		DY ICP-I	NO (hg/mL)						
			The station		Contraction in the second		12 3 2 201	18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		2 KU 1	With a light of the light	1.12	140 10 10 10 10 10 10 10 10 10 10 10 10 10	No.		No.	State - State		
A	<0.02	Q	<0.02	Dy	<0.02	Hf	<0.02	Γ.	<0.02	N	<0.02	7	<0.02	Se	<0.2	ТЪ	<0.02	W	<0.02
SP	<0.02	Q	<0.2	막	40.02	Но	<0.02	Lu	<0.02	Ŋ	<0.02	Re	<0.02	<u>[2</u>	<0.02	F	<0.02	d	<0.02
As	40.2	ĉ	<0.02	臣	<0.02	In	<0.02	Mg	<0.01	<u></u>	<0.02	Rh	<0.02	Å	Т	H	<0.02	<	<0.02
Ba	<0.02	S	<0.02	R	<0.02	Ħ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	ħ	<0.02	YЪ	<0.02
Be	<0.01	Ω	<0.02	ନ୍ମ	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	ş	<0.02	Tæ	<0.02	¥	<0.02
Bi	<0.02	S	<0.02	ନ୍ଚ	<0.02	5	<0.02	Mo	<0.02	P	<0.02	Sm	<0.02	Ś	<0.02	Sn	<0.02	7	<0.02
8	<0.02	5	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	K	<0.2	%	<0.02	Ta	<0.02	Ð	<0.02	27	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

In & She

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Printed: 9/21/2022, 11:20:01 PM	1 of 2			Part # 56138 Lot # 082922
0	250	240	220 230	m/z-> 210
				N 0 5 0 П П 0 б
160 170 180 190 200	150 1	0 140	120 130	m/z-> 110
				5. 0 E 5
60 70 80 90 100	50	40	20 30	m/z-> 10
				N.5E6
	unt] [Linear]	14.495 sec]:58138.D# [Count] [Linear]	_	[1] Speatrum No.1 5.0E6
10000.1 20.0 10042-76-9 NA orf-rat >2000mg/kg 3		99.997 0.10	7 SRZ022018A1	trate (Sr)
Expanded SDS Information Actual Actual Uncertainty (Solvent Safety Info. On Attached pg.) NIST Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM	Target Weight (g)		Lot Nominal RM# Number Conc. (µg/mL)	Compound
Reviewed By: Pedro L. Rentas 082922		5E-05 Balance Uncertainty 0.058 Flask Uncertainty	6018 diluted to (mL): 1000.12	Weight shown below was diluted to (mL):
Nuic Acid Formulated by: Lawrence barry 082922	(mL)	6 1	082925 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
Advance Bary	20510011	Solvent:	<u>56138</u> <u>082922</u> <u>Strontium (Sr)</u>	Part Number: Lot Number: Description:
I CRM ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM いままのション	Certified Ref এ৯।।১।২३ শ	R:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:

vww.absolutestandards.com	300-368-1131	Absolute Standards,
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	tais	Verifica	TION	by ICP-	MC (hd/mr)						
					10-31										10 T		1012 101		No. of Concession, No. of Conces
AI	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Ε.	<0.02	<u>N</u>	<0.02	Pr	<0.02	Se	<0.2	Tb	<0.02	W	<0.02
SР	<0.02	Ca	<0.2	막	<0.02	Но	<0.02	Lu	<0.02	ß	<0.02	Re	<0.02	ŝ	<0.02	Te	A0.02	ď	<0.02
As	<0.2	ĉ	<0.02	F	<0.02	ľ	<0.02	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	Ц	<0.02	<	<0.02
Ba	<0.02	ß	<0.02	ନ୍ଦ	<0.02	F	<0.02	M'n	< 0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	Ţ	<0.02	ΥЪ	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	F	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	Ţ	Tm	<0.02	Y	<0.02
Bi	<0.02	ĉ	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	ĸ	<0.2	Sc	<0.02	Ta	<0.02	H	<0.02	Zr	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

Sur & Sur

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138 Lot # 082922

2 of 2

Printed: 9/21/2022, 11:20:01 PM	1 of 2			Part # 56138 Lot # 082922
0	250	240	220 230	m/z-> 210
				N 0 5 0 П П 0 б
160 170 180 190 200	150 1	0 140	120 130	m/z-> 110
				5. 0 E 5
60 70 80 90 100	50	40	20 30	m/z-> 10
				N.5E6
	unt] [Linear]	14.495 sec]:58138.D# [Count] [Linear]	_	[1] Speatrum No.1 5.0E6
10000.1 20.0 10042-76-9 NA orf-rat >2000mg/kg 3		99.997 0.10	7 SRZ022018A1	trate (Sr)
Expanded SDS Information Actual Actual Uncertainty (Solvent Safety Info. On Attached pg.) NIST Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM	Target Weight (g)		Lot Nominal RM# Number Conc. (µg/mL)	Compound
Reviewed By: Pedro L. Rentas 082922		5E-05 Balance Uncertainty 0.058 Flask Uncertainty	6018 diluted to (mL): 1000.12	Weight shown below was diluted to (mL):
Nuic Acid Formulated by: Lawrence barry 082922	(mL)	6 1	082925 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
Advance Bary	20510011	Solvent:	<u>56138</u> <u>082922</u> <u>Strontium (Sr)</u>	Part Number: Lot Number: Description:
I CRM ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM いままのション	Certified Ref এ৯।।১।২३ শ	R:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:

vww.absolutestandards.com	300-368-1131	\bsolute Standards,
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	tais	Verifica	TION	by ICP-	MC (hd/mr)						
					10-31										10 T		101000		No. of Concession, No. of Conces
AI	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Ε.	<0.02	<u>N</u>	<0.02	Pr	<0.02	Se	<0.2	Tb	<0.02	W	<0.02
SР	<0.02	Ca	<0.2	막	<0.02	Но	<0.02	Lu	<0.02	ß	<0.02	Re	<0.02	ŝ	<0.02	Te	A0.02	ď	<0.02
As	<0.2	ĉ	<0.02	F	<0.02	ľ	<0.02	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	Ц	<0.02	<	<0.02
Ba	<0.02	ß	<0.02	ନ୍ଦ	<0.02	F	<0.02	M'n	< 0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	Ţ	<0.02	ΥЪ	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	F	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	Ţ	Tm	<0.02	Y	<0.02
Bi	<0.02	ĉ	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	РЪ	<0.02	Nd	<0.02	ĸ	<0.2	Sc	<0.02	Ta	<0.02	H	<0.02	Zr	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

Sur & Sur

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138 Lot # 082922

2 of 2

800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:	Par Loi De	Expiration Date: Recommended Storage:	NIST Tex	Weight showr		Compound		N. O	1.000	m/z->	1.0E4	5 0 0	m/z->-	1.0世8	5. 0 8	ITVZ->
	E	Part Number: Lot Number: Description:	Expiration Date: nended Storage:	NIST Test Number:	Weight shown below was diluted to (mL):		VIMH.	[1] Spectrum No.1			10			110			012
		<u>57081</u> 062724 Thalllum (TI)	062727 Ambient (20 °C)	6UTB	ed to (mL):	Lot	Number	-			N			120			220
			°C)	58	2000.1 0	Nominal Pi	Conc. (J/g/mL)	14.044 sec			a o			130			230
Certified Refi R ! 8]5]24		Š		5E-05 Balance Uncertainty	0.10 Flask Uncertainty	Purity Uncertainty Assay	(%) PUTTY (%)	14.044 sec]:57081.D# [Count] [Linear]			4. 0			140			240
Certified Reference Material CRM とという		Solvent: 2400	2% 40 (m	pertainty	ainty	y Assay Target	(%) Weight (g)	₩ [Count] [Li			01			150			250
e Material		24002546 Nitric Acid	40.0 Nitric Acid (mL)			get Actual		[Linear]									
СRМ М6023		Acid	cid			Actual	Weight (g) Conc. (µg/mL)				8			160			260
23		Alea	Formulated By:	Reviewed By:		Expanded Uncertainty	L) +/- (µg/mL)				70			170			
		20	8			(Solvent	CAS#				80			180			
http		Grandly	Aleah O'Brady	Pedro L. Rentas		SDS Information Safety Info. On Atta	OSHA PEL (TWA)				8			190			
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com			062724	062724		SDS Information (Solvent Safety Info. On Attached pg.)	DSG1				100			200			
Accredite te Numbe dards.con	٤		4	4	l	NIST	SKM										

Part # 57081 Lot # 062724

1 of 2

Printed: 8/1/2024, 2:13:42 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	E	χđ	10	i ș	Re	Ba	2	>	Sb	2		ſ			
		<002	20.02	0.01	100-	40.02	20.2	2	2002	20.02					
		2	S	2	ç	ĉ	Ę	? (ç	5					
	10.01	50	<0.02	70.02	200	<0.02	20.05		502	<0.02					
	20	<u>۸.</u>	ନ୍ଚ	Ga	?	ଜୁ	E	1 [ų	Dy					
	70.07	<0.02				20.02	3	40.02	20.02	20.02	500	<0.02	The second se		
	10	Рb		a Fe		7	In	DIT.	5	Hf					
	20.02	3	A0.02	<0.2	10101	2003	<0.02	20.05	3	<0.02		1 :	TYPE Me		
	ING		Mo	âн		Ş	Mg	74	•	5	Superior of	, caio	Apto lo		
	20.02		A0.03	<0.2	10.02	505	<0.01	<0.02	3	<0.02	WINDER HURST	V CI IIICO	Varifics		
	Ĕ	1;	Ş	ď	2	2	õ	No	í	N					
	40.2	10.01	30	<0.02	20.02	2	<0.02	20.02		40.02	100 m 100 m	by icr-			
	Sc		2	Ru	20	2	R	Re		Ţ		D CIM	No 1		
	<0.02	10.04	5	<0.02	20.02	2	<0.02	<0.02	10101	3002					
	Ta	G	0	Sr	Na	5	Ag	S	Ş	2	And a state of the				
	<0.02	20.05	3	<0.02	202		40.03	40.02	10.4	c (h					
	E	SII	2	ī	Π.		-	Te	10						
	40.02	20.02	2	40.02	<0.02	Þ	-1	<0.02	70.02	co c	COLUMN TWO AND ADDRESS OF THE OWNER.				
	27	20	1	×	Υ ^β	-	<	С	44	W					
	40.02	40.02		40.02	40,02	10.02	3	40.02	<0.02	2					

(I) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Ser P. S.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

*^

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:	Part Number: 57023 Lot Number: 062424 Description: Vanadium (V)	Expiration Date: 062427			Volume shown below was diluted to (mL): 2000.3	Part Lot Dilution	Compound Number Number Factor	1. Ammonium metavanadate (V) 58123 021224 0.1000	[1] Spectrum No.1 [34.243 2.0E6		m/z->- 10 20	2.067	1.0巨7	m/z 110 120 1	2.588	
8:81 Ce					5E-05	0.06	Initial		200.0	sec]:58		30			190		200
Certified Reference Material CRM 冬」 シート					Balance Uncertainty	Flask Uncertainty	Uncertainty		0.084	34.243 sec]:58023.D# [Count] [Linear]		4			140		240
eference l	Lot #	24002546	2,0%		inty		Nominal	Conc. (µg/mL)	1000	žount) [Lin		5 0			- 50		2000
Naterial Cl	Solvent:	Nitric Acid	40.0 (mL)				Initial	Conc. (µg/mL)	10000.3	1⊖ar]		60			160		260
MF M6021			Nitric Acid				Final	Con	1000.0						j.		•
21		Alla	Formulated By:	M	Reviewed By:		Expanded		2.2			70			170		
		Alleah & Brack	J By:	2 l	y:		(Solve)		7803-55-6			80			180 0		
ht		Garan	Aleah O'Brady	ento	Pedro L. Rentas		SDS Information It Safety Info. On Atta	OSHA PEL (TWA)	0.05 mg/m3			90			190		
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com			062424	/	s 062424		SDS Information (Solvent Safety Info. On Attached pg.)	(A) LD50	3 ort-rat 58.1mg/kg			100			200		
Accreditec te Numbe dards.con	1		<u> </u>			ļ	NIST	SRM	3165								

1 of 2

Printed: 8/1/2024, 2:13:49 PM

Lot # 062424

Part # 57023

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		-	IG	<u>.</u>	Be	U4	5	202	A =	S		≥				
		93	20.05	3	<u>0</u> 0	20.02	3	202	5	A0.02		40.02				
		2	S) 	ፍ	ç	?	5	>	ي ۵	1	5				
	areas	3	20.02		<0.02	20.05	2	20.02	2	4012	10100	ann	and the second se			
	200	Ån	ç		<u></u>	ç	2	13	' 1	막	5	٦ . .				
	70.02	3	<0.02		303	20.02	2	A0.02		2002	10.04	con				
	1 50	ģ	5		ţ,	q	•	þ		H	m	5	Cardinal and			
	20.02	3	A0.02	1.01	5	40.02	2	A.02	-01-01-	33	20.02	200	Contraction of the local distance		Trace M	
	Na		Mo	28	Ş	Mn	6	Mg	Ę		L	T	Constant in the second		etals	•
(T) = Targ	20.02	2	40.02	202	Ś	40.02		2001	70.02	53	20.02	222	SCHOOL STORE		Verifica	
Target analyte	ŗ	:	7	٦	3	Pd	;	ò	UNI	ł	N		1 10 1 10 10 10 10 10 10 10 10 10 10 10		tion	
e	40.2		40.02	20.02	2	A 22	10100	403	20.05	5	A0.02		のないのであるので	101		
	Sc	i	Sm	Ku	,	Rb	1111	Ŗ	Xe	3	1					
	40.02		33	<0.02		40.02	10.06	33	20.02	3	<0.02	and the second se		/ min_/		
	Ta	<	<i>^</i>	St		z	26	A.	Ľ	;	Ş					
	<0.02	10.01	3	40.02		<n.2< td=""><td>70.02</td><td>3</td><td><0.02</td><td></td><td>40.2</td><td>and the second se</td><td></td><td></td><td></td><td></td></n.2<>	70.02	3	<0.02		40.2	and the second se				
	П	QH	ç	Tm		ł	11	ł	Te	3	Ţ					
	<0.02	20.02	3	<0.02	10.04	3	20:05	2	40.02	10101	2003					
	Zr	211	1	¥	, L	ş	<		q	:	W	A DESCRIPTION OF				
	<0.02	20.02	3	40.02	70.07	3	-	3	40.02	20.02	Solution	A DESCRIPTION OF THE PARTY OF T				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. Sur

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

.