

Prep Standard - Chemical Standard Summary

Order ID : P4317

Test : Metals CLP Full

Prepbatch ID : PB164272,

Sequence ID/Qc Batch ID: LB133105,

Standard ID :

MP81119,MP82127,MP82441,MP82442,MP82443,MP82444,MP82445,MP82446,MP82450,MP82451,MP82452,MP824 53,MP82455,MP82456,MP82568,MP82589,MP82590,MP82631,MP82632,MP82731,MP82731,

Chemical ID :

M4960,M5130,M5192,M5218,M5223,M5288,M5289,M5295,M5296,M5390,M5394,M5429,M5467,M5473,M5498,M5513 ,M5515,M5519,M5634,M5658,M5697,M5698,M5747,M5748,M5769,M5798,M5799,M5800,M5801,M5802,M5806,M581 4,M5815,M5816,M5817,M5818,M5819,M5820,M5875,M5935,M5961,M5962,M5970,M5976,M5978,M5982,M5984,M59 90,M5999,M6021,M6023,M6025,M6028,M6030,M6033,M6037,M6040,M6090,W2606,W 3112,

<u>Recipe</u> <u>ID</u> 169	NAME 1:1HNO3	<u>NO.</u> MP81119	Prep Date 06/21/2024	Expiration Date 10/24/2024	<u>Prepared</u> <u>By</u> Al-Terek Isaac	<u>ScaleID</u> METALS_SCA LE_2 (M SC-2)	ETTE_1 (ICP	Sarabjit Jaswal
FROM	1250.00000ml of M5935 + 1250.0000	00ml of W26	606 = Final Q	uantity: 2500.0			A)	

<u>Recipe</u> <u>ID</u> 170	NAME 1:1HCL	<u>NO.</u> <u>MP82127</u>	<u>Prep Date</u> 09/03/2024	Expiration Date 02/08/2025	<u>Prepared</u> <u>By</u> Janvi Patel	<u>ScaleID</u> None	PipettelD None	Sarabjit Jaswal
FROM	1250.00000ml of M6040 + 1250.000	00ml of W31	112 = Final Q	uantity: 2500.00	n ni			

Recipe ID 902	NAME ICP AES CAL BLK (SO/ICB/CCB)	<u>NO.</u> MP82441	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
<u>FROM</u>	125.00000ml of M6040 + 2350.00000	I Dml of W311	2 + 25.00000	ml of M6037 =		2500.000 ml		00/24/2024
Desine				Funination	Dremonad			Currentia e d. Du

Recipe	NAME	NO	Bron Data	Expiration	Prepared By	ScalolD	BinottolD	Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Sarabjit Jaswal
2480	ICP AES STD 6 ISM01.3	<u>MP82442</u>	09/23/2024	10/30/2024	Kareem	None	None	
					Khairalla			09/24/2024
FROM	4.00000ml of M5289 + 4.00000ml of of MP82441 = Final Quantity: 50.000		00000ml of M	5515 + 4.00000	0ml of M5769 +	4.00000ml of M	5806 + 30.000	000ml

Т

Recipe ID 1004	NAME ICPAES ISM01.2 (S5)	<u>NO.</u> MP82443	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
FROM	0.25000ml of M5798 + 0.50000ml of of M5519 + 12.50000ml of M5698 + M5515 + 14.50000ml of M5658 + 14. + 5.00000ml of M5296 + 5.00000ml of 303.50000ml of MP82441 = Final Q	12.50000ml 50000ml of of M5394 +	of M5806 + 1 M6033 + 2.00 5.00000ml of	2.50000ml of M 0000ml of M551	15819 + 13.750 13 + 22.50000m	00ml of M5697 I of M5498 + 22	+ 14.50000ml 2.50000ml of N	of

Recipe		NO	Dren Data	Expiration	Prepared	SeelalD	DinettelD	<u>Supervised By</u>
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Sarabjit Jaswal
1005	ICPAES ISM01.2(S4)	<u>MP82444</u>	09/23/2024	10/30/2024	Kareem	None	None	
					Khairalla			09/24/2024
FROM	250.00000ml of MP82441 + 250.000	00ml of MPa	82443 = Fina	l Quantity: 500.	000 ml			

<u>Recipe</u> <u>ID</u> 1007	NAME ICPAES ISM01.2(S3)	<u>NO.</u> MP82445	Prep Date 09/23/2024	Expiration Date 10/30/2024	<u>Prepared</u> <u>By</u> Kareem Khairalla	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
FROM	25.00000ml of MP82443 + 75.00000	ml of MP824	441 = Final Q	uantity: 100.00	0 ml			

<u>Recipe</u> <u>ID</u> 1008	NAME ICPAES ISM01.2(S2)	<u>NO.</u> MP82446	<u>Prep Date</u> 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
<u>FROM</u>	12.50000ml of MP82443 + 87.50000	ml of MP824	1 441 = Final Q	uantity: 100.00	0 ml			

Recipe ID 2054	NAME ICV-ICPAES	<u>NO.</u> MP82450	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
FROM	0.50000ml of M5218 + 0.50000ml of of M5295 + 87.50000ml of MP82441				Iml of M5970 +	0.50000ml of M	5982 + 10.000	00ml

<u>Recipe</u> <u>ID</u> 904	NAME ICP AES ICSA SOLN	<u>NO.</u> <u>MP82451</u>	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
FROM	25.00000ml of M5130 + 225.00000m	L I of MP8244	L = Final Qu	antity: 250.000				

Recipe ID 905	NAME ICP AES ICSAB SOLN	<u>NO.</u> MP82452	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
FROM	25.00000ml of M5130 + 25.00000ml	of M5223 +	200.00000ml	of MP82441 =	Final Quantity:	250.000 ml		

<u>Recipe</u> <u>ID</u> 1119	NAME ICPAES ISM01.2(CCV)	<u>NO.</u> <u>MP82453</u>	<u>Prep Date</u> 09/23/2024	Expiration Date 10/30/2024	<u>Prepared</u> <u>By</u> Kareem Khairalla	<u>ScaleID</u> None	<u>PipetteID</u> None	<u>Supervised By</u> Sarabjit Jaswal 09/24/2024
<u>FROM</u>	0.75000ml of M5498 + 0.75000ml of of MP82441 + 25.00000ml of MP824)ml of M5515 +	1.25000ml of M	5806 + 19.775	

<u>Recipe</u> <u>ID</u> 919	NAME ICP AES INTERNAL STD	<u>NO.</u> MP82455	Prep Date 09/23/2024	Expiration Date 10/30/2024	Prepared By Kareem Khairalla	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
FROM	1.00000ml of M5984 + 10.00000ml o	f M4960 + 1	969.00000ml	of W3112 + 20	.00000ml of M6	037 = Final Qu	antity: 2000.00	00 ml
Basing				Expiration	Proposed			Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Sarabjit Jaswal
903	ICP AES RINSE SOLN	<u>MP82456</u>	09/23/2024	10/30/2024	Kareem	None	None	2
					Khairalla			09/24/2024
FROM	200.00000ml of M6037 + 9800.0000	0ml of W311	2 = Final Qua	antity: 10000.00	00 ml			
				·				

EROM 25.00000ml of M6040 + 4925.00000ml of W3112 + 50.00000ml of M6037 = Final Quantity: 5000.000 ml	Recipe ID 1122	NAME ICPMS CALIB BLANK(S0/ICB/CCB)	<u>NO.</u> MP82568	<u>Prep Date</u> 09/28/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	PipetteID None	Supervised By Mohan Bera 09/30/2024
	<u>FROM</u>		nl of W3112	<u>1</u> 2 + 50.00000m	nl of M6037 = I	Final Quantity: 5	000.000 ml	<u> </u>	

<u>Recipe</u>				Expiration	Prepared			<u>Supervised By</u>
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Mohan Bera
3747	SB 10PPM	<u>MP82589</u>	09/28/2024	10/26/2024	Sarabjit Jaswal	None	None	
								09/30/2024
FROM	0.10000ml of M5802 + 9.90000ml of	MP82568 =	Final Quanti	ty: 10.000 ml				

Recipe ID 1883 FROM	NAME SE 10PPM 0.10000ml of M5962 + 9.90000ml of	<u>NO.</u> <u>MP82590</u> MP82568 =	Prep Date 09/28/2024 Final Quanti		Prepared By Sarabjit Jaswal	<u>ScaleID</u> None	PipettelD None	Supervised By Mohan Bera 09/30/2024
Recipe ID 994 FROM	NAME ICPAES ISM01.2 S1 (CONC.) 0.02000ml of M5815 + 0.03000ml of of M5473 + 0.20000ml of M5515 + 0. 0.20000ml of M6025 + 0.20000ml of of M6023 + 0.70000ml of M5962 + 0. 1.20000ml of M5819 + 10.00000ml o 10.00000ml of M5818 + 2.00000ml o	20000ml of M6030 + 0.3 80000ml of f M5498 + 1	M5658 + 0.20 30000ml of M M5961 + 1.00 0.00000ml of	0000ml of M580 5698 + 0.40000 0000ml of M580 M5519 + 10.00	01 + 0.20000ml 0ml of M6033 + 00 + 1.00000ml 0000ml of M576	of M5817 + 0.2 0.50000ml of M of M6021 + 1.2 9 + 10.00000ml	0000ml of M59 5697 + 0.5000 0000ml of M58 of M5806 +	976 + 90ml 902 +

Recipe ID 1003 FROM	NAME ICPAES ISM01.2 S1 0.50000ml of MP82631 + 87.50000m	<u>NO.</u> <u>MP82632</u> Il of MP8244	Prep Date 10/02/2024 11 = Final Qu	Expiration Date 10/30/2024 antity: 100.000	Prepared By Kareem Khairalla	<u>ScaleID</u> None	PipettelD None	Sarabjit Jaswal 10/02/2024
Recipe ID 2950	NAME ICP AES S1/CRI STOCK STD	<u>NO.</u> <u>MP82711</u>	Prep Date 10/07/2024	<u>Expiration</u> <u>Date</u> 10/23/2024	<u>Prepared</u> <u>By</u> Kareem Khairalla	<u>ScaleID</u> None	PipettelD None	Sarabjit Jaswal

 FROM
 0.00300ml of M6028 + 0.03000ml of M5798 + 0.05000ml of M5515 + 0.05000ml of M5658 + 0.05000ml of M6030 + 0.05000ml of M6033 + 0.06000ml of M5747 + 0.10000ml of M5697 + 0.10000ml of M5698 + 0.10000ml of M5801 + 0.10000ml of M5820 + 0.10000ml of M5962 + 0.10000ml of M5970 + 0.10000ml of M5982 + 0.15000ml of M5800 + 0.20000ml of M5748 + 0.20000ml of M5799 + 0.20000ml of M5819 + 0.20000ml of M6021 + 0.20000ml of M6023 + 0.25000ml of M5467 + 0.25000ml of M5802 + 0.50000ml of M5390 + 0.50000ml of M5814 + 1.00000ml of M5192 + 1.00000ml of M5288 + 1.00000ml of M5498 + 1.00000ml of M5769 + 1.00000ml of M5806 + 1.00000ml of M5978 + 2.00000ml of M5816 + 2.00000ml of M5818 + 77.68000ml of MP82441 = Final Quantity: 100.000 ml

Recipe ID 921	NAME ICPAES SPIKE SOL#6	<u>NO.</u> MP82731	Prep Date 10/04/2024		<u>Prepared</u> <u>By</u> Sarabjit Jaswal	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_3 (A)	
FROM	2.50000ml of M5962 + 50.00000ml o	f M5990 + 5	0.00000ml of	M5999 + 147.	50000ml of MP8	2441 = Final G	Quantity: 250.00	00 ml

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGIN10-5 / INDIUM 1 x 500 ml	100721	10/07/2024	10/09/2021 / jaswal	10/08/2021 / jaswal	M4960
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART A / ICSA (ICP) STOCK SOLN	ICSA-1211	11/19/2024	05/20/2024 / jaswal	04/20/2021 / bin	M5130
			Expiration	Date Opened /	Received Date /	Chemtech
Supplier	ItemCode / ItemName	Lot #	Date	Opened By	Received By	Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	051722	05/17/2025	07/01/2022 / bin	06/17/2022 / jaswal	M5192

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CHEM-QC-4 / CHEM-QC-4, Second Source, 1000 ug/ml, B, Mo, Si, Sn, Ti	S2-MEB711674	11/02/2026	07/01/2022 / bin	09/10/2021 / bin	M5218

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART B / ICSAB (ICP) STOCK SOLN	ICSB-0710	11/19/2024	05/20/2024 / jaswal	04/20/2021 / bin	M5223

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	071122	07/11/2025	09/01/2022 / jaswal	07/21/2022 / jaswal	M5288

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Aluminum (Al) 10,000PPM	070622	07/06/2025	09/02/2022 / jaswal	07/12/2022 / jaswal	M5289
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-1 / ICV (ICP/ICPMS) STOCK SOLN	ICV-1014	02/05/2025	08/07/2024 / jaswal	02/20/2020 / bin	M5295
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	Z9651Q / CHEM-CLP-4/.25L	S2-MEB711673	11/02/2026	09/19/2022 / jaswal	08/20/2022 / jaswal	M5296
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	072122	07/21/2025	08/07/2024 / jaswal	09/18/2022 / bin	M5390
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-3 / CLP CAL SOLUTION #3, 125mL	T2-MEB714159	01/13/2027	11/28/2022 / bin	09/19/2022 / bin	M5394
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57103 / Li, 10000 PPM, 125 ml	070622	07/06/2025	01/30/2023 / bin	01/26/2023 / bin	M5429

bin

bin

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57058 / Cerium, 1000PPM, 100ML	020623	02/06/2026	03/06/2023 / bin	03/01/2023 / bin	M5467
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/29/2025	03/16/2023 / jaswal	03/16/2023 / jaswal	M5473
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml	031523	03/15/2026	08/15/2023 / jaswal	03/17/2023 / bin	M5498
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 125 ml	061522	06/15/2025	03/19/2023 / bin	03/17/2023 / bin	M5513
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	092122	09/21/2025	08/01/2024 / Jaswal	03/17/2023 / bin	M5515
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1403 / Hydrogen Peroxide, 30% 1 gal	820803	02/03/2025	04/18/2024 / jaswal	08/03/2022 / Al-Terek	M5634
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	102523	10/25/2026	04/03/2024 / jaswal	10/27/2023 / jaswal	M5697
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58025 / Mn, 1000 PPM, 500 ml	102623	10/26/2026	04/18/2024 / jaswal	10/27/2023 / jaswal	M5698
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Lead (Pb) 1000PPM	100923	10/09/2026	05/20/2024 / Jaswal	12/20/2023 / jaswal	M5747
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Nickel (Ni) 1000PPM	091223	09/12/2026	01/02/2024 / bin	12/20/2023 / jaswal	M5748

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	05/24/2024 / Jaswal	01/03/2024 / bin	M5769
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57033 / As, 1000 PPM, 125 ml	111323	11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801
		-		•	•	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	120523	12/05/2026	08/07/2024 / jaswal	01/03/2024 / jaswal	M5802

Т

CHEMICAL RECEIPT LOG BOOK

т

ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
58111 / Na, 10000 PPM, 500 ml	122223	12/22/2026	08/01/2024 / Jaswal	01/03/2024 / jaswal	M5806
ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57005 / B, 1000 PPM, 125 ml	071123	07/11/2026	03/26/2024 / Sohil	01/03/2024 / jaswal	M5814
ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57115 / P, 10000 PPM, 125 ml	041723	04/17/2026	05/21/2024 / Jaswal	02/09/2024 / jaswal	M5815
ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57016 / S, 1000 PPM, 125 ml	122923	12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816
ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57116 / S, 10000 PPM, 125 ml	071123	07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817
ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
57014 / Si, 1000 PPM, 125 ml	122023	12/20/2026	03/06/2024 /	02/09/2024 / jaswal	M5818
	58111 / Na, 10000 PPM, 500 ml itemCode / ItemName 57005 / B, 1000 PPM, 125 ml itemCode / ItemName 57115 / P, 10000 PPM, 125 ml itemCode / ItemName 57016 / S, 1000 PPM, 125 ml itemCode / ItemName 57016 / S, 1000 PPM, 125 ml itemCode / ItemName itemCode / ItemName 57116 / S, 10000 PPM, 125 ml itemCode / ItemName itemCode / ItemName itemCode / ItemName	S8111 / Na, 10000 PPM, 500 ml 122223 ItemCode / ItemName Lot # 57005 / B, 1000 PPM, 125 ml 071123 ItemCode / ItemName Lot # 57115 / P, 10000 PPM, 125 ml 041723 ItemCode / ItemName Lot # 57016 / S, 1000 PPM, 125 ml 122923 ItemCode / ItemName Lot # 57016 / S, 1000 PPM, 125 ml 071123 ItemCode / ItemName Lot # 57016 / S, 10000 PPM, 125 ml 071123 ItemCode / ItemName Lot # 57116 / S, 10000 PPM, 125 ml 071123 ItemCode / ItemName Lot # 57014 / Si, 10000 PPM, 125 122023	ItemCode / ItemName Lot # Date 58111 / Na, 10000 PPM, 500 ml 122223 12/22/2026 ItemCode / ItemName Lot # Expiration Date 57005 / B, 1000 PPM, 125 071123 07/11/2026 ItemCode / ItemName Lot # Expiration Date 57005 / B, 1000 PPM, 125 071123 07/11/2026 ItemCode / ItemName Lot # Expiration Date 57115 / P, 10000 PPM, 125 ml 041723 04/17/2026 ItemCode / ItemName Lot # Expiration Date 57016 / S, 1000 PPM, 125 122923 12/29/2026 ItemCode / ItemName Lot # Expiration Date 57116 / S, 10000 PPM, 125 ml 071123 07/11/2026 ItemCode / ItemName Lot # Expiration Date 57116 / S, 10000 PPM, 125 ml 071123 07/11/2026 ItemCode / ItemName Lot # Expiration Date 57014 / Si, 1000 PPM, 125 122023 12/20/2026	ItemCode / ItemName Lot # Date Opened By 58111 / Na, 10000 PPM, 500 ml 122223 12/22/2026 08/01/2024 / Jaswal ItemCode / ItemName Lot # Expiration Date Date Opened / Opened By 57005 / B, 1000 PPM, 125 ml 071123 07/11/2026 03/26/2024 / Sohil ItemCode / ItemName Lot # Expiration Date Date Opened / Opened By 57115 / P, 10000 PPM, 125 ml 041723 04/17/2026 05/21/2024 / Jaswal S7016 / S, 1000 PPM, 125 ml Lot # Expiration Date Date Opened / Opened By 57016 / S, 1000 PPM, 125 ml 122923 12/29/2026 05/20/2024 / Jaswal ItemCode / ItemName Lot # Expiration Date Date Opened / Opened By 57016 / S, 1000 PPM, 125 122923 12/29/2026 05/20/2024 / Jaswal 57116 / S, 10000 PPM, 125 07/1123 07/11/2026 03/01/2024 / Jaswal 57016 / S, 10000 PPM, 125 122023 12/20/2026 03/00/2024 / Jaswal	ItemCode / ItemName Lot # Date Opened By Received By 58111 / Na, 10000 PPM, 500 ml 122223 12/22/2026 08/01/2024 / Jaswal 01/03/2024 / jaswal ItemCode / ItemName Lot # Expiration Date Date Opened / Opened By Received Date / Received Date / Sohil 57005 / B, 1000 PPM, 125 ml 071123 07/11/2026 Date Opened / Sohil Received Date / Pened By 57105 / B, 1000 PPM, 125 ml Lot # Expiration Date Date Opened / Opened By Received Date / Received Date / Received By 57115 / P, 10000 PPM, 125 ml 041723 04/17/2026 05/21/2024 / Jaswal 02/09/2024 / jaswal ItemCode / ItemName Lot # Expiration Date Date Opened / Opened By Received Date / Received Date / Received Date / Opened By Received Date / Received Date / Received Date / Received Date / Received By 57016 / S, 1000 PPM, 125 122923 12/29/2026 Date Opened / Opened By Received Date / Received Date / Re

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	111623	11/16/2026	03/20/2024 / jaswal	02/09/2024 / jaswal	M5819
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-1 / CLP CAL SOLUTION #1, 125mL	T2-MEB714417	01/27/2027	04/19/2024 / jaswal	02/22/2024 / jaswal	M5875
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	12/08/2024	06/21/2024 / Al-Terek	06/07/2024 / Al-Terek	M5935

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57028 / Ni, 1000 PPM, 125 ml	041124	04/11/2027	07/02/2024 / Jaswal	06/11/2024 / Jaswal	M5961

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57034 / Se, 1000 PPM, 125 ml	060624	06/06/2027	07/02/2024 / Jaswal	06/14/2024 / Jaswal	M5962

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57003 / Li, 1000 PPM, 125 ml	061224	06/21/2027	07/01/2024 / Jaswal	07/01/2024 / Jaswal	M5970
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGMO1-1 / MOLYBDENUM 125mL 1000ug/mL	T2-MO720876	07/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5976
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

Supplier	ItemCode / ItemName	LOT #	Date	Opened By	Received By	Lot #	
Inorganic Ventures	CGTI1-1 / TITANIUM 125mL 1000ug/mL	T2-TI719972	06/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5978	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57038 / Sr, 1000 PPM, 125 ml	031524	03/15/2027	07/01/2024 / Jaswal	06/11/2024 / Jaswal	M5982

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGY10-1 / YTTRIUM 125mL 10,000ug/mL	V2-Y740548	02/20/2029	08/05/2024 / kareem	06/14/2024 / Jaswal	M5984

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-SPK-5 / CLP Spike Standard 5	V2-MEB742037	03/12/2029	10/04/2024 / Jaswal	02/22/2024 / Jaswal	M5990

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	CLPP-SPK-1 / SOIL/WATER SPIKE SOLN 1, 125mL	T2-MEB721963	07/27/2027	09/04/2024 / Jaswal	02/22/2024 / kareem	M5999	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57023 / V, 1000 PPM, 125 ml			09/28/2024 / jaswal	08/05/2024 / Jaswal	M6021	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57081 / TI, 1000 PPM, 125 ml	0624724	06/27/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6023	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57082 / Pb, 1000 PPM, 125 ml	061224	06/12/2027	08/05/2024 / Jaswal	08/05/2024 / Jaswal	M6025	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57048 / Cd, 1000 PPM, 125 ml	070124	07/01/2027	08/05/2024 / kareem	01/25/2019 / Jaswal	M6028	
			Expiration		Pacaivad Data /	Chamtach	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57047 / Ag, 1000 PPM, 125 ml	122823	12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Al, 10000 PPM, 500 ml	011623	01/16/2026	08/07/2024 / Jaswal	01/03/2024 / Jaswal	M6033
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	02/02/2025	08/24/2024 / Janvi	08/01/2024 / Janvi	M6037
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	Chemical BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)		02/08/2025	08/09/2024 / jaswal	08/01/2024 / Janvi	M6040
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	03/25/2029	10/18/2024 / Janvi	09/10/2024 / Janvi	M6090
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

Certificate of Analysis ME986 ME987 MEGRA R: 02 22 24

Refine your results. Redefine your industry.

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

M5989-M5990

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custor	n Grade Solution	
Catalog Number:	CLPP-SPK-5		
Lot Number:	V2-MEB742037		
Matrix:	5% (v/v) HNO3		
Value / Analyte(s):	100 μg/mL ea: Antimony,		
	50 µg/mL ea: Selenium, Cadmium,		Thallium,
	40 µg/mL ea: Arsenic,		
	20 µg/mL ea: Lead		
CERTIFIED VALUES	AND UNCERTAINTIES	3	
		ANALNEE	055

ANALYTE	CERTIFIED VALUE	ANALYTE	CERTIFIED VALUE
Antimony, Sb	100.0 ± 0.7 µg/mL	Arsenic, As	40.00 ± 0.26 μg/mL
Cadmium, Cd	49.99 ± 0.22 μg/mL	Lead, Pb	19.99 ± 0.09 µg/mL
Selenium, Se	50.00 ± 0.23 µg/mL	Thailium, Ti	50.00 ± 0.22 µg/mL
Density:	1.025 g/mL (meas	ured at 20 ± 4 °C)	

3.0

Assay Information:

Page 1 of 4

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Cd	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
Sb	ICP Assay	3102a	140911
Se	ICP Assay	3149	100901
Se	Calculated		See Sec. 4.2
ТІ	ICP Assay	3158	151215
ті	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

Xi = mean of Assay Method i with standard uncertainty uchar i wi = the weighting factors for each method calculated using the inverse square of the variance:

 $w_{i} = (1/u_{char\,i})^{2} / (\Sigma(1/(u_{char\,i})^{2})$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{1b}^2 + u_{1b}^2)^{1/2}$

k = coverage factor = 2

 $u_{char} \simeq [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty

4.0 **TRACEABILITY TO NIST**

Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results: X_{CRM/RM} = (X_a) (u_{char a})

Xa = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²chara + u²bb + u²ts + u²ts)^{1/2} k = coverage factor = 2

uchar a = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty uits = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

INTENDED USE 6.0

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>. <u>https://www.inorganicventures.com/terms-and-conditions-sale</u>. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

March 12, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- March 12, 2029

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns **Custom VS Manager**

Paul R Laine

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

m/z->	1.067	m/z-> 2.0€7	5.014	m/z-> 1.0E5	2.5E4	5. 0 114	1. Cadmium nitrate tetrahydrate (Cd)	Compound	Weight shov	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):		CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
		 		0 0		[1] Spectrum No.1		RM#	Weight shown below was dliuted to (mL):	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	PORT:	15, Inc. om
		120		20		-	IN024 CDM092021A1	Lot Number	6UTB uted to (mL):	070127 Ambient (20 °C) 1000	<u>57048</u> <u>070124</u> Cadmium (Cd)		
		130		30		12.514 800	1000 99.	Nominal Pu Conc. (µg/mL) (1	2000.07 0.1		(Cd)		R
200		140		\$		12.514 sec]:58148.D# [Count] [Linear]	99.999 0.10 36.5	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.100 Flask Uncertainty		Solvent: 2%		Certified R
		1 () ()		ő		Count] [Line	.5 5.4797	say Target 6) Weight (g)	ţ		ent: 24002546 2% 40.0	Lot #	Certified Reference Material CRM 3 15 12 4
		160		0 O		ar]	5.4804	Actual Actual Weight (g) Conc. (µg/mL)			Nitric Acid		terial CRM
		170		70			1000.1	11	Re	5	5		M6028
		-1 2 C		BO			10022-68-1	Expanded Uncertainty (Solvent +/- (µg/mL) CAS# 0	Reviewed By: Ped	\$	Alloch & B		-
		190 200		90 100				SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD51	Pedro L. Rentas	ento	Brack		ANAB IS AR-153 https://Ab
				-			orl-rat 60.2mg/kg 3108	ned pg.) NIST LD50 SRM	070124		070194		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

1 of 2

Part # 57048

Lot # 070124

Printed: 8/1/2024, 2:13:25 PM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	F	₽	B	DC		Ŗ	AS		Sb	A		-	
	10.04	200	<0.02	<0.01		3	202		40.02	<0.02	200		
	<u>_</u>	2	ଚ	5	<u>ې</u>	ç	ŝ		ç	ğ			
	70.02	3	40.02	<0.02	10.02	33	20.02		3	Т	ALC: NOT THE REAL PROPERTY OF		
	- AN		Ş	Ga	n g	5	Ē	1	Ę	Dy			
	20.02		3	<0.02	SU.UZ	3	<0.02	10.02	3	40.02	and the second second second		
	1-3	2	2	2	-	r!	b	110	Ş	Hf	Constant of		_
	20.02	20.02	55	<0.2	20.02	3	A).02	20.02	3	40.02	And a subscription	Ŀ	N OUK
	Nd	UTAT	Ş	Hg	MIN		Mg	Ę		E	C. NTALITY		Aptalo
(T) = Target analyte	<0.02	20.02	3	40 i2	<0.02	2	40 .01	70.05	5	<0.02	ALC: NO ALC: NO		Varifics
yet anal	×	2	2	٣	Pd	!	õ	NO	f.	Ŋ	The state		tion
vte	40 2	20.02	5	A0.02	<0.02		<0.02	<0.02		<0.02	一般的なもの		
	sc	ND ND	2	Ru	Rb		Rh	Ke	1	Ŗ			NC L
	40.02	20.02		<0.02	<0.02		A0 03	<0.02		40.02		agrint)	
	Ta	s.	, ;	ş	Na	9	Ao	S		Se	SOME NUMBER		
	<0.02	<0.02		20.03	<0.2	10.01	88	<0.02		c (12	E DATE AND A DATE		
	H	Sa		j	ľ		3	Te		77			
	<0.02	<0.02	10.0#	-0 N3	<0.02	10.02	3	<0.02	10.01	SUP	The state was a state of the		
	27	2	*	<	4	~	<	d		W	N-SAMPAN		
	<0.02	<0.02	70.02	3	<0.02	20.02	3	40.02	20:01		Providential of the		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. S.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

e24

M5296 OP: 09/19/2022 BH

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custom Grade Solution	n
Catalog Number:	CHEM-CLP-4	
Lot Number:	S2-MEB711673	
Matrix:	3% (v/v) HNO3 3% (v/v) HF	
Value / Analyte(s):	1 000 μg/mL ea: Boron, Silicon, Titanium	Molybdenum, Tin,

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Boron, B	CERTIFIED VALUE 1 000 ± 6 μg/mL	ANALYTE Molybdenum, Mo	CERTIFIED VALUE 1 000 ± 6 μg/mL	
Silicon, Si	1 000 ± 7 μg/mL	Tin, Sn	1 000 ± 6 µg/mL	
Titanium, Ti	1 000 ± 7 μg/mL			
Density:	1.030 g/mL (meas	sured at 20 ± 4 °C)		
Assay Information:				
ANALYTE	METHOD	NIST SRM#		SRM LOT#
B	ICP Assav	3107		110830

В	ICP Assay	3107	110830
Мо	ICP Assay	3134	130418
Si	ICP Assay	3150	130912
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	3162a	130925

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	$\mathbf{u}_{char \ a}$ = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- November 02, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Line

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

3.0

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

	-		
Product Code:	Multi Analyte Custom Grade Solution		
Catalog Number:	CLPP-CAL-1		
Lot Number:	T2-MEB714417		
Matrix:	5% (v/v) HNO3		
Value / Analyte(s):	5 000 μg/mL ea: Calcium, Magnesium,	Potassium, Sodium,	
	2 000 µg/mL ea: Aluminum,	Barium,	
	1 000 μg/mL ea: Iron,		
	500 μg/mL ea: Nickel, Zinc, Manganese,	Vanadium, Cobalt,	
	250 μg/mL ea: Silver,	Copper,	
	200 μg/mL ea: Chromium,		
	50 μg/mL ea: Beryllium		
CERTIFIED VALUES	S AND UNCERTAINTIES		

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 μg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 μg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Calcium, Ca	5 000 ± 22 μg/mL
Chromium, Cr	200.0 ± 1.0 μg/mL	Cobalt, Co	500.0 ± 2.4 μg/mL
Copper, Cu	250.0 ± 1.0 μg/mL	Iron, Fe	1 000 ± 4 μg/mL
Magnesium, Mg	5 000 ± 20 μg/mL	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Potassium, K	5 000 ± 19 μg/mL
Silver, Ag	250.0 ± 1.1 μg/mL	Sodium, Na	5 000 ± 18 μg/mL
Vanadium, V	499.7 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density:

1.118 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE Ag	METHOD ICP Assay	NIST SRM# 3151	SRM LOT# 160729
Ag	Volhard	999c	999c
AI	ICP Assay	3101a	140903
AI	EDTA	928	928
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Ве	ICP Assay	3105a	090514
Ве	Calculated		See Sec. 4.2
Са	ICP Assay	3109a	130213
Са	EDTA	928	928
Со	ICP Assay	3113	190630
Со	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cr	Calculated		See Sec. 4.2
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
К	ICP Assay	3141a	140813
К	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	3152a	120715
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	$\mathbf{u}_{char \ a}$ = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at 20° \pm 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

 This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 27, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

SD978Ci Paul R Saines

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Multi Analyte Custom Grade Solution		
Catalog Number:	CLPP-CAL-3		
Lot Number:	T2-MEB714159		
Matrix:	7% (v/v) HNO3		
Value / Analyte(s):	1 000 μg/mL ea: Arsenic, Selenium,	Lead, Thallium,	
	500 μg/mL ea: Cadmium		

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Arsenic, As	CERTIFIED VALUE 1 000 ± 8 µg/mL	ANALYTE Cadmium, Cd	CERTIFIED VALUE 500.0 ± 2.1 μg/mL
Lead, Pb	1 000 ± 5 μg/mL	Selenium, Se	1 000 ± 8 μg/mL
Thallium, Tl	1 000 ± 7 μg/mL		

Density:

1.043 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
ТІ	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	u _{char} a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² char a + u ² bb + u ² lts + u ² ts) ¹
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	u _{bb} = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 13, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

SD978Ci Paul R Saines

N30 250 250	N N N O	5.0 E5 277 277 277 277 277 277 277 277 277 27
		0
140	120	m/z-≫ 110
		1.0回6
40 50	N O	m/z-> 10 2.0≣6
		5.OE6
sec]:58182.D# [Count] [Linear]	-	[1] Spectrum No.1 1.0E7
99.999 0.10 62.5 32.0006 32.0040	11	1. Lead(II) nitrate (Pb)
Purity Uncertainty Assay Target Actual nL) (%) Purity (%) (%) Weight (g) Weight (<u>c</u>	Lot Nomin RM# Number Conc. (µg	Compound
2 0.058 Flask Uncertainty		Weight shown below was diluted to (mL):
5E-05 Balance Uncertainty	6UTB	NIST Test Number:
(mL)	110926 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
40.0	<u>Lead (Pb)</u>	Lot Number: Description:
Lot # Solvent: 24002546 Nitric	57182	GEHTIFIED WEIGHT REPORT: Part Number:
2 8 15 12 H		
Certified Reference Material		Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
	Certified Reference Material CR Lot # Lot # Solvent: 24002546 Nitric Aci 2° 0.058 Flask Uncertainty 2% 40.0 Nitric Aci 2° 0.058 Flask Uncertainty a Nitric Aci 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty a a 2° 0.058 Flask Uncertainty Actual a 2° 0.10 62.5 32.0006 32.0040 0 98.999 0.10 62.5 32.0040 4 secc]1:561 182. D# [Count] [Linesar] 4 secc]1:561 182. D# [count] [count] 30 40 50 60 60	Certified Reference Mati R: Six124 Lot# Solvent: 24002546 2% 40.0 2000.02 0.058 5E-05 Balance Uncertainty 2000.02 0.058 10000 98.999 10000 98.999 17284 sec1]:56162. D# [Count] [Lines 17284 sec1]:56162. D# [Count] [Lines 17394 sec1]:56162. D# [Count] [Lines

1

 $\leq \infty$

https://Absolutestandards.com ANAB ISO 17034 Accreditec AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			and the second second				TI acci ilio	Cais	VCITICA			C IA	HALLIN'						
AI	Am	3	AB	7	3	цг	33	:	3	NE	2		200	2					
3		1		1				ţ	10.02	3	10.02	1.1	20.02	ő	70>	01	20.02	¥	<0.02
S	4 0.02	ß	<0.2	ц,	<0.02	Но	40.02	E	<0.02	Å	<0.02	Re	<0.02	Si	A0.02	P	<0.02	9	40.02
As	4 0.2	ĉ	<0.02	E	<0.02	6	<0.02	Mg	<0.01	õ	<0.02	R	<0.02	Ag	40.02	H	40.02	<	20.02
Ba	40.02	S	40.02	ନ୍ଥ	<0.02	7	40.02	5	30	¥	3	Ŗ	3	ξ,	5	7	5	\$	
5	2	2		2						1					10.00		70.02	77	10.02
Ве	10.05	۵ ۵	<0.02	Ga	<0.02	F	40,2	ЯH	40.2	٩	<0.02	Ru	<0.02	ş	⊲ 0.02	F	<0.02	~	A0.02
B	A0.02	S	<0.02	ନ୍ନ	<0.02	5	<0.02	Mo	<0.02	7	<0.02	Sm	<0.02	60	40.02	5	<0.02	Zn	Ang N
₿	<0.02	Q	4 0.02	Au	<0.02	\$	т	M	<0.02	ĸ	<0.2	Sc	<0.02	Ţ	40,02	3	40.02	2	20.02

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shirt

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

m/z->	N. 55 100	m/z-≻ 5.0E6	1.006	11/2-2 2.0E6	2.5E7	5.0E7	1. Indium Oxide (In)	Compound	Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	Expi	CERTIFIED WEIGHT REPORT: Part Lot	www.absolutestandards.com
210		110		10		[1] Spectrum No.1	IN086	RM#	Recommended Storage: Ambient (J Il Concentration (Jug/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Expiration Date:	<u>ORT:</u> Part Number: Lot Number:	п
220		120		NO		-	86 W1096A		Ambient (20 °C) 10000 6UTB uted to (mL): 50	100724	58149 100721 Indium (In)	
230		130		30		12.965 sec]	10000 99.999	Nominal Purity Conc. (µg/mL) (%)	0.06		-	NAGIO
240		140		4 0		12.965 sec]:57049.D# [Count] [Linear]	0.10	Uncertainty Purity (%)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty		Solvent:	R: 10/08
250		150		50		[Count] [Lin	82.6 6.05408	Assay Target (%) Weight (g)	inty Y	5% 25.0 (mL)	Lot # ent: 20370011	121
260		160		0		ear]	6.05441	Actual Weight (g)		Nitric Acid	Nitric Acid	Ð
		170		70			10000.6 2	Exp Actual Unce Conc. (µg/mL) +/- (Revi	Form	re	
		180		80			20.1 1312-43-2	Expanded Uncertainty (Sol +/- (µg/mL) CAS#	Reviewed By:	Formulated By:	fioranci	
		190		00			NA	SDS Informa olvent Safety Info. On OSHA PEL (TWA)	Pedro L. Rentas	Giovanni Esposito	Cape	
		200		100			NA	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50			A	https://Absolutestandards.com
	n an						3124a	NIST	100721	100721		tandards.co

1 of 2

Part # 58149

Lot # 100721

Printed: 10/7/2021, 2:18:03 PM

www.absolutestandards.com	800-368-1131	Absolute Standards,
		Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace Me	etals	Verificat	ion b	y ICP-MS	(hð	/mL)	-					
2	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	N.	<0.02	- PA	<0.02	Se	<0.2	1 11 1	40.02	W	40.02
Sb	<0.02	Ca	<0.2	Ę	<0.02	Но	<0.02	L	<0.02	Nb	<0.02	Re	<0.02	S	<0.02	Te	<0.02	с	<0.02
As	<0.2	Ce	<0.02	E	<0.02	In	Т	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	Н	<0.02	<	<0.02
Ba	<0.02	Cs	<0.02	Gd	<0.02	Ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	40.2	Th	<0.02	ΥЪ	<0,02
Be	<0.01	Ç	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	C ₀	<0.02	ଜୁ	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	2	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	РЬ	<0.02	Nd	<0.02	~	<02	Sc	<0.02	Ta	<0.02	Н	<0.02	Z	<0.02

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

the lite

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- **APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: AI, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

RM ICP-AES ICSA-1211 B-0710 SFAM.docx

Page 1 of 2

QATS Form 20-007F189R01, 01-17-2023

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

ICSA

M5126

M5127

M5128

M5129

M5130

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1.	"CERTIFIE			ERENCE CH	IECK SAMPL CSB-0710	E ICP-AES IO	CSA-1211,
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
AI	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Са	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

m/z->	1.0E6	2.0E6	m/z->	1000	2000	1.0E5	2.0E5	1. Ammonium molybdate (Mo)	Compound	Volume show	NIST Tes	Recommended Storage: Nominal Concentration (µg/mL):	Expire	Part Lot Des	CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
210			110		đ		[1] Spectrum No.1		Nur	vn below was o	NIST Test Number:	d Storage: n (µg/mL):	Expiration Date:	Part Number: Lot Number: Description:		s, Inc.
2			120		N		No.1	58142 022222	Part Lot Number Number	Volume shown below was diluted to (mL):	6UTB	Ambient (20 °C) 1000	051725	57042 051722 Molybde		-
							[8.594	0.1000	Dilution Factor	3000.41		20 °C)		<u>57042</u> <u>051722</u> Molybdenum (Mo)		
			130		G		sec]:5704	300.0	Initial Un Vol. (mL) Pip	0.058 Flas	5E-05 Bala					M.S.
			140		40 0		8.594 sec]:57042.D# [Count] [Linear]	0.084	Uncertainty N Pipette (mL) Conc	Flask Uncertainty	Balance Uncertainty			MKE	_	Certified Rep M.5192
			150		50		unt] [Líne	1000	Nominal Conc. (µg/mL) Co				0.5%	MKBQ8597V Am	Lot #	ference M.
			160		60)ar]	10001.0	Initial Conc. (µg/mL) C				15.0 » (mL)	Ammonium hydroxide		Certified Reference Material CRM いちいのえいたいのんりはてい
			170		70			1000.0	Final Conc. (µg/mL)	Г			Ammonium hydroxide	æ	-	M 172
								2.1	Expanded Uncertainty +/- (µg/mL)		Reviewed By:	N's	Formulated By:	A		
			180		80			13106-76-8	(Solve CAS#			to I		deronce		•
			190		90			5 mg(Mo)/m3	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Pedro L. Rentas	era	Lawrence Barry	An		nt 、
			200		100			13 orl-rat 333 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50		s 051722	/	rry 051722	Ψ		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								kg 3134	NIST		722		722			4 Accredite ate Numbe ndards.com

Part # 57042 Lot # 051722

1 of 2

Printed: 6/16/2022, 1:36:08 PM

vww.absc	100-368-1
vww.absolutestandards.com	0-368-1131
com	rds, I
	Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	letals	Verifica	ition	by ICP-N	IS (µ	g/mL)						
A	<0.02	ß	40.02	Dv	20.02	Ηŕ	3	1		1									
SP SP	A).02	Ĵ,	2.0	7 5	10.02	1	<0.02	' E	20.02	N	<0.02	P	<0.02	Se	<0.2	4L	<0.02	W	<0.02
<u>,</u>		<u>م</u>	10.2	5	20.02	Ho	<0.02	Lu	<0.02	ß	<0.02	Re	<0.02	Si	40.02	5	<0.02	11	4000
2	202	ŝ	20.02	E	<0.02	h	<0.02	Mg	<0.01	ò	<007	Rh	50	۸,	2003	3	3	: (
Ba	40.02	S	<0.02	3	300	7	3	ξ,	2	2			10.02	26	70.02		20.02	<	20.02
Be	5	?	3	2	20.02	l =	70.02	UTAT	20.02	Pd	<0.02	Rb	<0.02	Na	40.2	Ъ	<0.02	ΥЪ	<0.02
	-	2	70.02	Ca	<0.02	He	<02	Hg	40.2	P	<0.02	Ru	<0.02	S	40.02	J	2002	<	2003
Id	20.02	6	40.02	ଜ	<0.02	5	40.02	Mo	÷	¥	2003	ŝ	202	0	5	>		1,	10104
ω	40.02	6	<0.02	An	3	ş	3	E		; ;	TO'NE	UH	70.02	0	20.05	Sn	20.02	5	<0.02
					10.01	0.1	20.05	ING	20.02	~	40.2	Sc	<0.02	Ta	<0.02	Т	<0.02	72	<0.02
																			Non- Non- of Concession, Name of Concession, N

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Sor 1. S

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57042 Lot # 051722

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

130925

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Ti

Product Code:	Multi Analyte Custom Grade Solution	on
Catalog Number:	CHEM-QC-4	
Lot Number:	S2-MEB711674	
Matrix:	3% (v/v) HNO3 3% (v/v) HF	
Value / Analyte(s):	1 000 μg/mL ea: Boron, Silicon, Titanium	Molybdenum, Tin,

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ICP Assay

ANALYTE Boron, B	CERTIFIED VALUE 1 000 ± 7 μg/mL	ANALYTE Molybdenum, Mo	CERTIFIED VALUE 1 000 ± 5 μg/mL	
Silicon, Si	1 000 ± 7 μg/mL	Tin, Sn	1 000 ± 5 μg/mL	
Titanium, Ti	1 001 ± 6 μg/mL			
Density:	1.032 g/mL (meas	sured at 20 ± 4 °C)		
Assay Information	ו:			
ANALYTE	METHOD	NIST SRM#		SRM LOT#
В	ICP Assay	3107		110830
Мо	ICP Assay	3134		130418
Si	ICP Assay	3150		130912
Sn	ICP Assay	3161a		140917

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3162a

Characterization of CRM/RM by Two or More Methods Certified Value, X _{CRM/RM} , where two or more methods of characterization are	Characterization of CRM/RM by One Method Certified Value, X _{CRM/RM} , where one method of characterization
used is the weighted mean of the results:	is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	X _{CRM/RM} = (X _a) (u _{char a})
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{chari})^2 / (\Sigma(1/(u_{chari})^2)$	u _{char} a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² char a + u ² bb + u ² lts + u ² ts) ¹
k = coverage factor = 2	k = coverage factor = 2
$\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}})^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}$ are the errors from each characterization method	u _{char a} = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	u _{bb} = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
u _{te} = transport stability standard uncertainty	ute = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

4.0

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- November 02, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Line

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- **APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: AI, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

RM ICP-AES ICSA-1211 B-0710 SFAM.docx

Page 1 of 2

QATS Form 20-007F189R01, 01-17-2023

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

ICSA

M5126

M5127

M5128

M5129

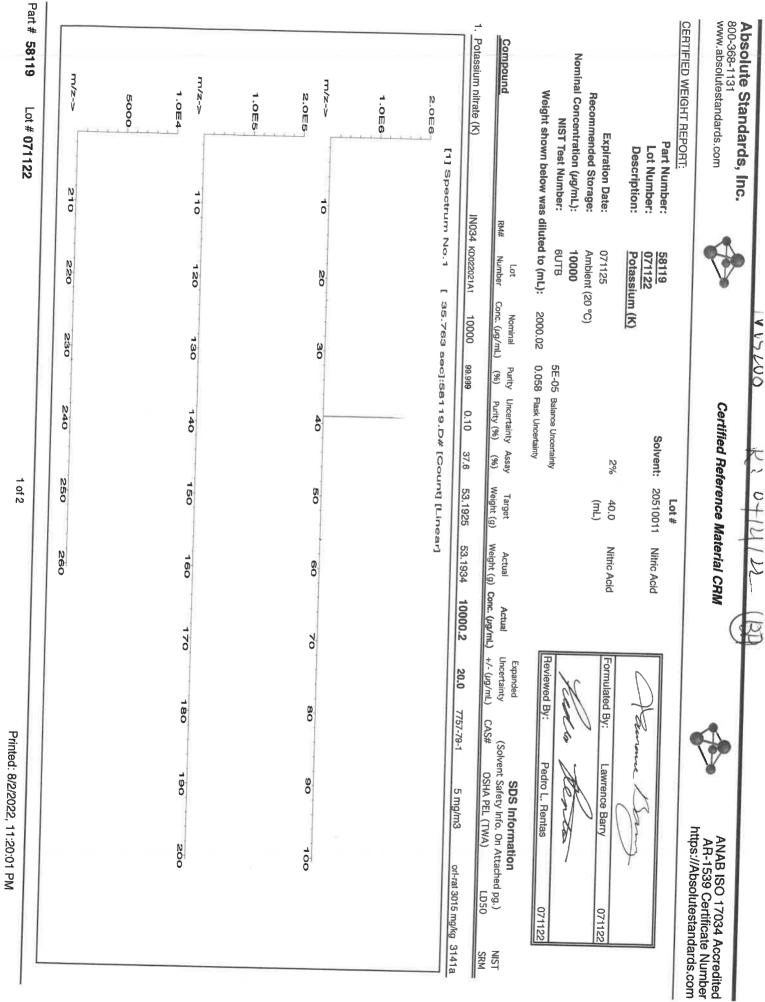
M5130

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

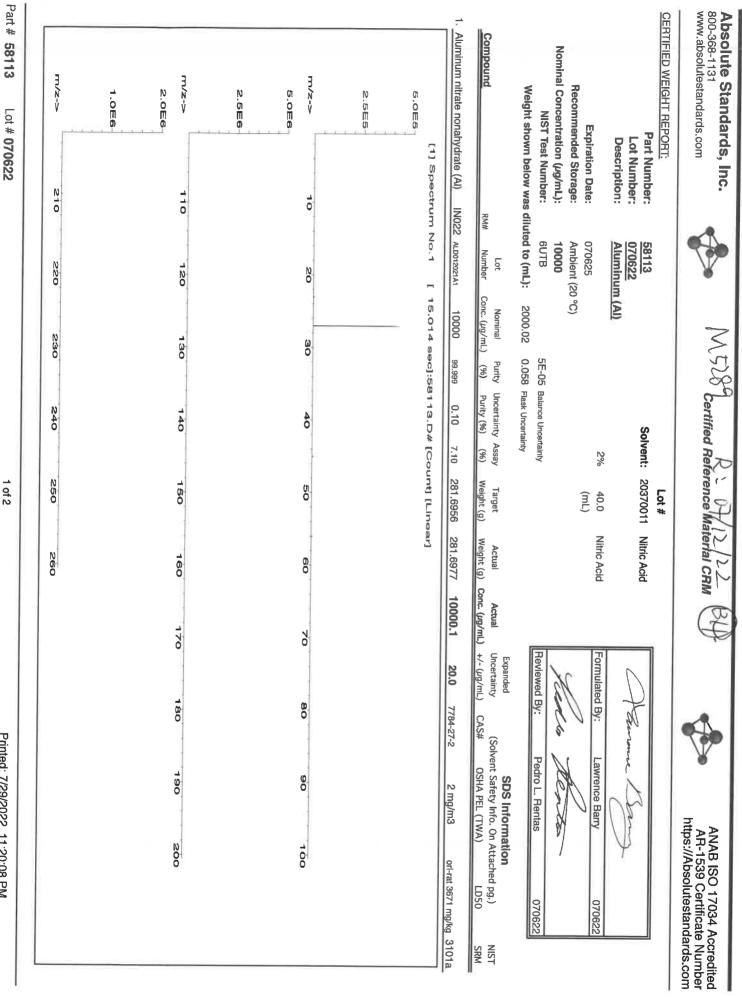
Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.


ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.


Table 1.	"CERTIFIE			ERENCE CH	IECK SAMPL CSB-0710	E ICP-AES IO	CSA-1211,
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
AI	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Са	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

1 of 2

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Certified Reference Material CRM	*	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Indu	Mass Spec		
<0.02	Trace Metals V		
40.02 40.02 40.02 Ca 40.02 Ca	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.2	$\begin{array}{c c} W & < 0.02 \\ U & < 0.02 \\ V & < 0.02 \\ Y & < 0.02 \\ Y & < 0.02 \\ Z n & < 0.02 \\ \end{array}$
Physical Characterization:	(T)= Target analyte		1 10.02
Homogeneity: No heterogeneity was ob	Homogeneity: No heterogeneity was observed in the preparation of this standard.	Ce	Certified by:
		()	sold and a second
	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in All standard containers are meticulously cleaned prior to use	ated. ed in	
 Standards are prepared gravimetriculously cleaned prior to use. Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under apping the uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Govern 	Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result." NIST Technical Note 1305		
	This is the second		
	D.C. (1994).		

1 of 2

Printed: 7/29/2022, 11:20:08 PM

800-368-1131	Absolute Standards, II
	Inc.
	800-368-1131

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	etais	Verifica	ation	by ICP-	MC (hg/mr)						
							-01110-												
Al	Т	G	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	77	<0.02	Se	<0.2	Ъ	<0.02	W	<u>6</u> .0
Sр	<0.02	ß	<0.2	막	<0.02	Но	<0.02	Ŀ	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	40.02		<0.02
As	<0.2	င့	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	^S 0	<0.02	Rh	<0.02	Ag	<0.02		40.02	V	4
Ba	<0.02	ß	<0.02	Gd	<0.02	١r	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Þ	<0.02	Υ γ	4
Be	<0.01	Ω	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	ş	40.02	Jm	40.02	¥	
B:	<0.02	S	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	₽	<0.02	Sm	<0.02	s	<0.02	2	<0.02	7	4
B	<0.02	С ¹	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	×	<0.2	Ş	<0.02	Ta	<0.02	Ţ.	<0.02	27	A)

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Certified by:

In P. Mr.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" R : 以120 2 [

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

- APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.
 - **<u>CAUTION</u>**: Read instructions carefully before opening bottle(s) and proceeding with the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in $\mu g/L$ (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014 For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

RMs ICV 1, 5, 6 SFAM.docx

Page 1 of 2

QATS Form 20-007F188R00, 04-19-2021

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

AP11MInstructions for QATS Reference Material: Inorganic ICV SolutionsICV1-1014For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate
into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.ICV5-0415For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting
1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume
with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K2Cr2O7
and 5% (v/v) nitric acid.ICV6-0400For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6
concentrate into a 100 mL volumetric flask and dilute to volume with Type II water.
Distill this solution along with the samples before analysis. The cyanide concentrate
is prepared from K3Fe(CN)6, Type II water, and 0.1 % sodium hydroxide, and will
decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014	
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)
AI	2500	500
Sb	1000	200
As	1000	200
Ba	520	100
Be	510	100
Cd	510	100
Ca	10000	2000
Cr	520	100
Co	520	100
Cu	510	100
Fe	10000	2000
Pb	1000	200
Mg	6000	1200
Mn	520	100
Ni	530	110
K	9900	2000
Se	1000	200
Ag	250	50
Na	10000	2000
TI	1000	210
V	500	100
Zn	1000	200

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN [.]	99

1 023 Multed to (2 072 1 1000 1000 1000 1000 1000 1000 1000 1
Expiration Dete: 072125 2% 40.0 Nithic Add neradid Storage: Ambient (20 °C) SE-05 Baaroe Uncertainty (mL) Nithic Add ST Test Number GUTB SE-05 Baaroe Uncertainty SE-05 Baaroe Uncertainty Actual Number Actual
NIST fest Number: 6UTB SE-05 Bance Unordary Lot Nominal Purity Uncertainty Assy Taget Actual Bance Intrate (Ba) IN023 excame 1000 99.99 0.10 E23 3.82417 3.82426 1:0E8 [1] Spectrum No.1 [1] 12.514 sec):69156.0/f [Count] [Linear] 2:0E8 11.0E8 11.0E8 1 20 30 40 50 60 2:0E8 10 120 130 140 150 160 50
Compound New Number Core: (up/m.) (%) Parity (%) (%) Weight (0) Weight (0)
[1] Spectrum No.1 [12.514 sec]:58156.D# [Count] [Linear] E8 E5 E5 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6 E6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 120 120 130 140 150
,
m/z-> 210 220

Printed: 10/27/2022, 4:11:20 PM

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

					Children -									a the second sec					
<0.02		p,	<0.02	Dy	<0.02	Hf	<0.02	E	<0.02	ž	<0.02	Ŀ	000	100	c 07		W V	1 111	0000
\$0.0P		Ğ	<0.2	눱	<0.02	Ho	<0.02	Lu	<0.02	ęz.	<0.02	- d	2007	3 0	1 200	2	20.02	A :	
02		,ei	<0.02	Бu	<0.02	ŗ	<0.07	ŷ	1002	č	000	24	1000	5	70.02	5	20.05	2	40.02
F		0	000	3			1010	9.1	TO'O'	ŝi	70.02	2	70.02	A00	<0.02	F	<0.02	>	<u>6.02</u>
+ .	-	3	70'N2	3		늭	<0.02	MN	<0.02	Ъ	<0.02	RЪ	<0.02	Na	40.2	Ē	<0 UD	42	0007
0.0		1	<0.02	Ga	<0.02	Че	<0.2	Hg	<0.2	۵.	<0.02	Ru	<0.02	2	007	Ę		; >	1000
20.0>		0	<0.02	e	<0.02	La	<0.02	Mo	<0.02	å	2007			5 0			70.02	-	20.02
<0.02	1	jă,	<0.02	An	000	á	2007	PIN I		: >	20.00		70.02	0	70'02	цо	<0.U2	U 7	<0.02
	1			mL	TRA	2	20.02	DNT	ZUNZ	2	202	ŝ	<0.02	E	<0.02	i	2002	7,	2007

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

ar R

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

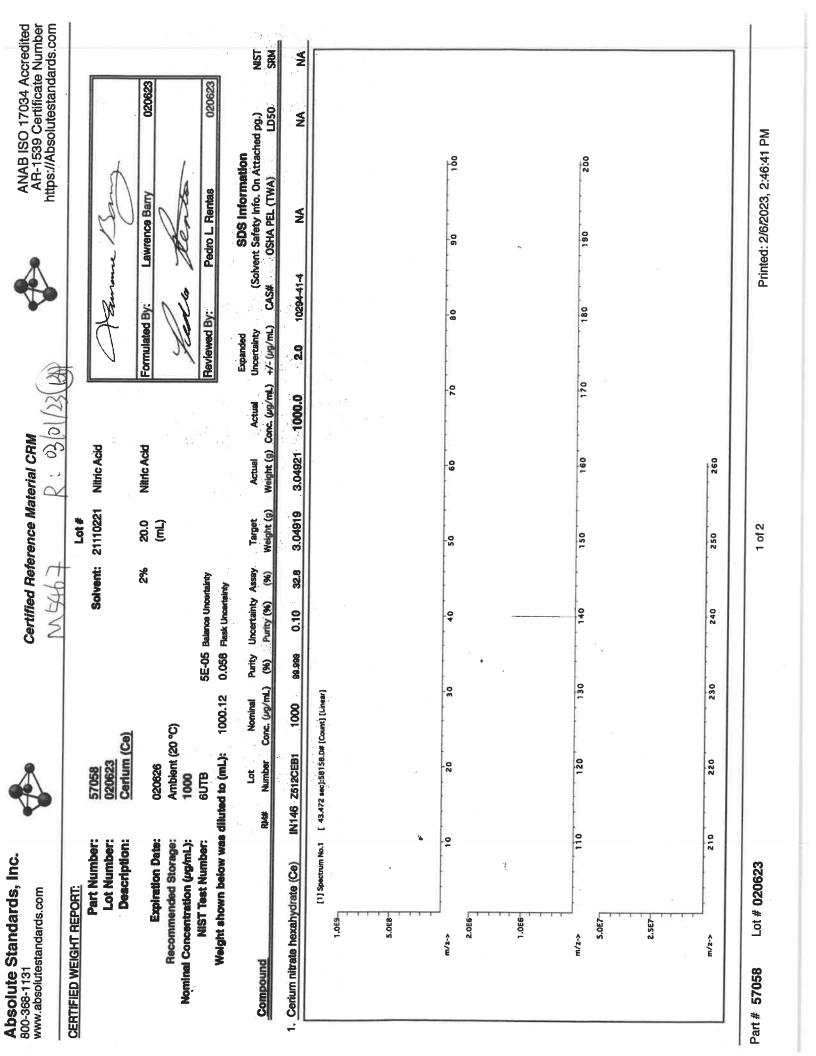
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	By: Lawrence Barr By: Lawrence Barr Jy: Pedro L. Renta SDS Info. (Solvent Safety Info.	7790-69-4		Printed: 1/18/2023, 4:01:43 PM
A	Formulated Formulated Reviewed E Actual Uncertainty	-H - H	۶ <u>۲</u>	
aterial CRM	Nitric Acid Nitric Acid Actual Actual		ar] 160 280	
leference M	20510011 20.0 (mL) (mL) Target	100.0134	0 0 0 0 220 0 220 0 220 0 220 0 220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 of 2
Certified Reference Material CRW	Solvent: Solvent: Solvent: 2% 5E-05 Balance Uncertainty 0.058 Rask Uncertainty Purity Uncertainty Assay (%) Purity (%) (%)	10.0	8103:D#[C 240 240 240 240	
	C) C) 5E-05 B 1000.12 0.058 F Nominal Purity t no. (ug/mL) (%)	88.999	9.619 sec]:58103: 30 130 14 230 24 14	
		l _ l		
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Lot Number: Description: Expiration Date: Thilum (070622 Recommended Storage: Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): Neight shown below was diluted to (mL): Compound RM# Number	1. Lithium nitrate (Li) IN01	[1] Spectrum No.1 1.0E6 5.0E5 m/z-> 10 500 500 500 10 10 10 10 10 10 10 10 10	

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

												and the second se	and		The state of the s				
-	<0.02	3	<0.02	Dy	<0.02	Hf	<0.02	E	Ŧ	N	<0.02	占	<0.02	Se	₫02	e.	<0.02	M	000>
Sb	<0.02	లి	⊲0.2	Ъ	<0.02	Ho	<0.02	La L	≤0.0>	ź	≤0:0>	Re	<0.0>	3	€0.02	e H	<0.02	Þ	4002
S	₫2	ථ	<0.02	픱	<0.02	H	0.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0.02	>	
	<0.02	ర	<0.02	3	<0.02	h	40.02	Wa	<0.02	Pd	<0.02	Rb.	40.02	Z	202	Ē	CU CU	5	
ė	≤0.01	ර	<0.02	පී	<0.02	£	<02	He	<02	Δ.	<0,00	Ru	89	3	200	Ę	200	2 >	70.00
	<0.02	ථ	<0.02	ප	<0.02	el	A002	Ň	20.02	Å	200	, e	200	5 0	100	1 5		- I	70105
6	<0.02	õ	<0.02	Au	<0.02	i de	0.02	PN	<0.02	×	<02	3		ρĘ		i F		5 4	


Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). All Standards should be stored with caps tight and under appropriate laboratory conditions.

Lot # 070622 Part # 57103

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

	402 Tb 4002 W	Si <0.02 Te <0.02 U <0.02	<0.02 TI <0.02 V	<02 Th <0.02 Yb	<0.02 Tm <0.02 Y	<0.02 Sn <0.02 Zn	<0.02 Ti <0.02 Zr
/mr)	<0.02	<0.02	<0.02	20:02	≪0.02	<0.02	<0.02
Br) o	4	Re	Rh	Rb	Ru	Sm	8
V ILP-MS	€0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<02
	iù	qN	0s	ЪЧ	2	揻	ж
ventication by I	<0.02	<0.02	<0.01	<0.02	⊲02	<0.02	<0.02
Metals	n	Lu	Mg	Mn	Hg	Mo	PN
I Face Me	<0.02	<0.02	<0.02	<0.02	402	<0.02	<0.02
	Hf	Ho	IJ	Ч	Fe	La	£
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	Ď	بت ا	Ē	в	G	ප	Au
	≪0.02	<0.2	T	<0.02	<0.02	<0.02	<0.02
	R	ర	ඊ	ő	ç	ර	ð
	<0.02	<0.02	<0.2	<0.02	€0.01	<0.02	<0.02
	AI	Sb	As	Ba	Be	盗	12

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Ser P

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	031523	on tached pg.) NIST LD50 SRM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5:15 PM
ANA AR-	Ped X Gio	SDS Information (Solvent Safety Info. On Attached pg.) Colvent Safety Info. On Attached pg.) Colvent Safety Info.		Printed: 3/16/2023, 1:45:15 PM
	Hioramui Formulated By: Reviewed By:	Expanded Uncertainty +/- (ug/mL) CAS: 20.0 471-34		- Li
170		Actual Actual Weight (g) Conc. (µg/mL) 75.2093 10001.4	ar] 60 70 260 170	
Certified Reference Material CRM	Lot # Solvent: 21110221 2% 60.0 (mL) Incertainty	ty Assay Target) (%) Weight (g) 38.9 75.1990	D* [Count] [Line 50 150 250	1 of 2
N15697 I	k Und	Nominal Purity Uncertainty Assay Conc. (µg/mL) (%) Purity (%) (%) 10000 99.999 0.10 39.9	12.514 sec]:68120.D# [Count] [Linear] 30 40 50 130 140 150 230 240 250	
	30(Ca)	Lot No RM# Number Conc. NO14 cAD072022A1 10		
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: 58120 Lot Number: 031523 Description: 031526 Expiration Date: 031526 Recommended Storage: Ambient (2 Nominal Concentration (<i>ug</i> /mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Compound 1. Calcium carbonate (Ca)	[1] Spectrum No.1 2.0E4 1.0E4 5.0E4 2.5E4 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5	Part # 58120 Lot # 031523

_

Absolute Standards, inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	<0.02	3	<0.02	ĥ	<0.02	Hf	<0.02	Ц	<0.02	z	<0.02	Ł	<0.02	ŝ	<0.2	£	<0.02	×	<0.02
_	<0.02	లి	٣	固	40.02	Bo	40.02	3	<u>60.05</u>	ź	<0.02	Se	<0.02	ŝ	<0.02	Te	<0.02	Þ	40.02
	40 12	ථ	40.02	a	40.02	h	<0.02	Mg	±0.01	ő	20 .0>	2	<0.02	Ag	<0.02	F	<0.02	>	<0.02
_	<0.02	ඊ	<0.02	3	40.02	놰	<0.02	Å	€0.02	æ	<0.02	å	<0.02	Na	<0.2	Ę	<0.02	ይ	40.02
	<0.01	q	<0.02	g	40.02	Ę	402	Hg	<0.2	۵.	<0.02	Ru	<0.02	S	€0.02	Ę	<0.02	×	<0.02
	≤0.02	გ	<u>60.02</u>	ප්	40.02	3	0.02	Mo	<0.02	æ	<0.02	Sn	<0.02	S	<0.02	Sn	<0.02	Ŋ	<0.02
	<0.02	ð	<u>60.05</u>	Au	000	£	<0.02	PN	<u>40.02</u>	Å	40.2	ŝ	<0.02	T.	≤0.02	Ę	<0.02	2	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58120 Lot # 031523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com			0	Certified Re	Certified Reference Material CRM	aterial CRI	R 103/17	12		AN/ AR- https:	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Accredited ate Number ndards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	n: <u>57182</u> n: <u>061522</u> n: <u>Lead (Pb</u>)	-		Solvent:	Lot #	Nitric Acid		Lievannie	wie E	spectite		
Expiration Date:061525Recommended Storage:Ambient (2)Nominal Concentration (ug/mL):10000NIST Test Number:6UTBWeight shown below was diluted to (mL):	e: 061525 e: Ambient (20 °C) .): 10000 n: 6UTB vas diluted to (mL): 20	0 °C) 2000.02	5E-05 B 0.058 F	2% 5E-05 Balance Uncertainty 0.058 Flask Uncertainty	40.0 (mL)	Nitric Acid		Formulated By:	Cioval Pedro	Giovanni Esposito	0615/2	
Compound	Lot RM# : Number	Nominal Conc. (µg/mL)	Purity (%)	Uncertainty Assay Purity (%) (%)	y Target) Weight (g)	Actual Weight (g) (Actual Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL) CA	SI (Solvent Sa CAS# 0SH	SDS information (Solvent Safety Info. On Attached pg.) COHA PEL (TWA)	lon Attached pg.) LD50	LSIN NIST
1. Lead(II) nitrate (Pb)	IN029 PBD122016A1	10000	39.998	0.10 62.5	32.0006		10001.1		φ	0.05 ma/m3	introme-rat 83 mol/co	
[1] Speci	[1] Spectrum No.1	17.284 86	sc]:581	85.0*	17.284 sec]:58182.D# [Count] [Linear]	arj						11
ສ ອ ອ												_
2.0E6	20	OE		4	20	B	20	8	0	*	100	
1.056												
rn/z->	110	1 30		140	150	160	170	180	1 80		500	
ы С. С. Ш. С.												
K.	210 220	530		240	260	560						
Part # 57182 Lot # 061522					1 of 2				Printed: 3/	Printed: 3/16/2023, 1:45:32 PM	5:32 PM	1

-

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

<0.02		I NOTE AND INCOME.		No. of the local division of the local divis		REAL TAL ARCH		States of the second states	ALC: NOT THE OWNER OF				1	2						
<0.02 Er <0.02 Ho <0.02 Ho <0.02 Ho <0.02 Re <0.02 Si <0.02 Na <0.02 Na <th>AI</th> <th><0.02</th> <th>3</th> <th><0.02</th> <th>Dy</th> <th><0.02</th> <th>Hf</th> <th><0.02</th> <th>Li</th> <th><0.02</th> <th>ïŻ</th> <th><0.02</th> <th>ł</th> <th>4002</th> <th>3</th> <th>C.04</th> <th>14</th> <th>A CO</th> <th>472</th> <th>2000</th>	AI	<0.02	3	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	ïŻ	<0.02	ł	4002	3	C.04	14	A CO	472	2000
4012 Ca 4012 Nb 4012 Nb 4012 Si 4012 4012 Ca 4012 Fa 4012 Nb 4012 Re 4012 Si 4012 4012 Ca 4012 Ea 4012 Na 4012 Re 4012 Si 4012 4012 Ca 4012 Ea 4012 Na 4012 Re 4012 Ag 4012 Sr 4012 Sr <t< td=""><td>47</td><td>2002</td><td>Ĉ</td><td>600</td><td>þ</td><td>0000</td><td>112</td><td>200</td><td></td><td></td><td>1</td><td></td><td>:</td><td></td><td>2</td><td>10</td><td>10</td><td>70.02</td><td>*</td><td>70.02</td></t<>	47	2002	Ĉ	600	þ	0000	112	200			1		:		2	10	10	70.02	*	70.02
402 Ce 4002 Bu 4002 In 4002 Rh 4002 Ag 4002 Na 40		20.00	5	707	3	20.02	2		3	<0.112	q	<0.02	å	40.02	3	0.02	Te	\$0.02	n	≤0.02
<0.02	S	40.2	ථ	<0.02	ß	<u>60.02</u>	4	0.02	Mg	10.0>	ර	<0.02	4a	<002	Å¢	2007	F	2007	1	5
COUNT CT CT COUNT CT CT COUNT CT CT COUNT CT CT CT COUNT CT	Ba	<0.02	Č	2002	3	897	1	200		200	Ē		1		9	10.01	17	70.02	>	7000
40.01 Cr 40.02 Ga 40.02 Fe <0.02 Hg <0.02 P <0.02 Ru <0.02 Sr <0.02 <0.02			3 1		3	TU-N	=	20.02	INIT	20.02	2	20.02	2	€0,02	Na	97	đ	<u>60</u> 02	Ŗ	<u>40.02</u>
<0.02 Co <0.02 Ge <0.02 La <0.02 Pi <0.02 Pi <0.02 Sin <0.0	ş	10.0>	5	<0.02	රී	0.02	æ	6 02	Hg	<0.2	ρ.	4002	n d	2002	2	2007	f	200	>	
Curr Curr <th< td=""><td></td><td>2007</td><td>ξ</td><td>000</td><td>ć</td><td>200</td><td>•</td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td>10.00</td><td>5</td><td>70.07</td><td>THIT</td><td>20.02</td><td>I</td><td></td></th<>		2007	ξ	000	ć	200	•		•		•			10.00	5	70.07	THIT	20.02	I	
avioz Cu «0.02 Au «0.02 Pb T Nd «0.02 K «0.2 Sc «0.02 Ta «0.02 Ta	5 6	70.07	3	70.05	5	70702	9	20.02	Wo	<0.02	Z .	60.02	Sa	0.02	s	<0.02	Sn	<0.02	7.0	2002
	2	<0.02	3	<0.02	Au	40.02	£	F	PN	≤0.02	×	< U2	3	899	É	200	ŧ		1	10.01
													3	TUNE	24	70102	17	20.02	5	20.02
										The Taroet	anahhe									

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

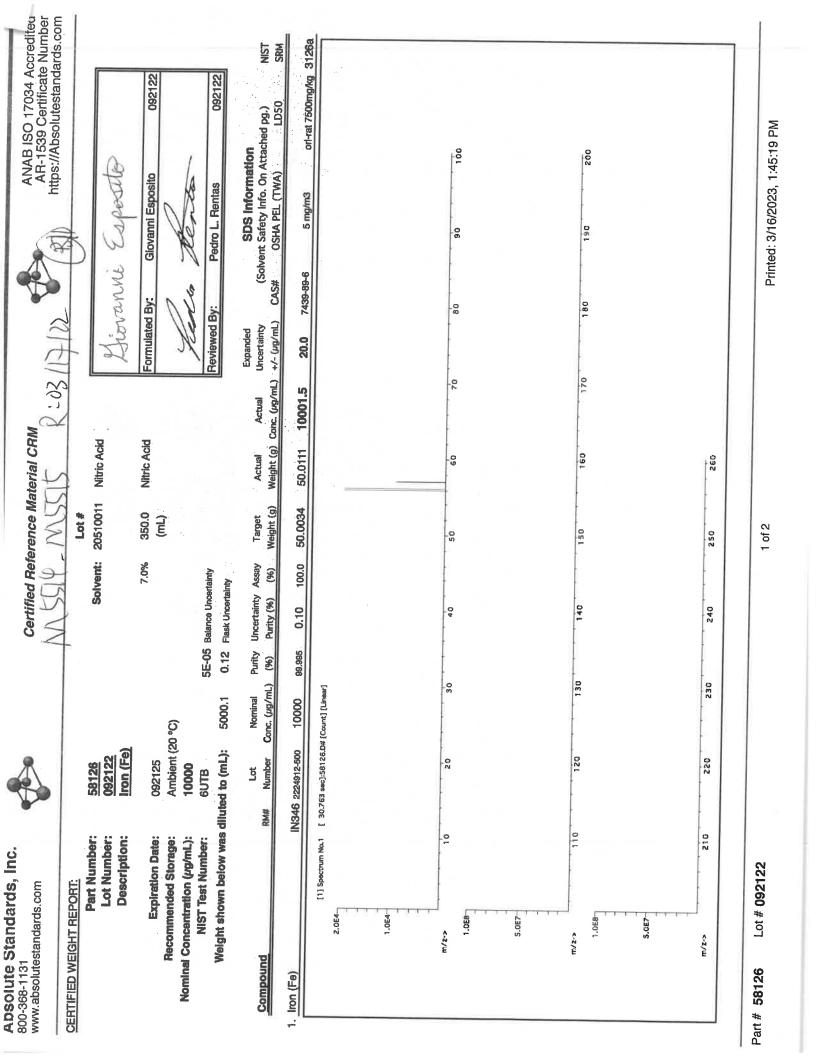
In P M.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.


Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57182 Lot # 061522

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

E	<0.02	G	<0.02	Ŋ	<0.02	Hf	<0.02	п	<0.02	ž	<0.10	놊	<0.02	Se	40.2	4	<0.02	M	<0.02
_	<0.02	ථ	40,2	」	<0.02	Ho	40.02	3	≤0.02	ĝ	<0.02	Re	<0.02	ß	<0.02	Ъ.	<0.02	D	<0.02
As	02	ප	<0.02	na	<0.02	ч	<0.02	Mg	€0,01	ő	<0.02	Rh	<0.02	Ag	40.02	F	<0.02	>	<0.02
_	<0.02	ර	40.02	3	≤0.02	н	60 102	Mn	<0.10	P	0.02	Rb	≤0.02	BN	402	Ē	<0.02	٩X	≤0.02
	40.01	ඊ	≤0.05	ß	<0.02	Ł	402	Hg	<02	d,	<0.02	Ru	<0.02	Ŷ	<0.02	Ę	<0.02	Y	≤0.02
_	€0:02	රී	<0.10	ප්	€0.10	La	<0.02	Mo	<u>40.02</u>	z	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.05
	<0.02	8	<0.10	Au	<0.02	ż	40.02	PN	20.02	M	<02	3	<0.02	f	<0.02	F	<0.02	77	000

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Lot # 092122 Part # 58126

m/z->	5 0 0 0	m/z-> 1.0E4	1.0	m/z-> 2.065	1.000	N. O M Ø	1. Potassium nitrate (K)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below was	CERTIFIED WEIGHT REPORT: Part I Lot I Des	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
210 220		110 120		10 20		[1] Spectrum No.1 [IN034 KD022021A1	RM# Number	Expiration Date:120825Recommended Storage:Ambient (20 °C)Il Concentration (µg/mL):10000NIST Test Number:6UTBWeight shown below was diluted to (mL):30	<u>PORT:</u> Part Number: <u>58119</u> Lot Number: <u>120822</u> Description: <u>Potassium (K)</u>	om om
200		130		ŵ			10000 . 8	Nominal Conc. (µg/mL)	000,4	m (K)	
v. 0		140		4. 0		35.763 sec]:58119.D# [Count] [Linear]	99.999 0.10 37.6	Purity Uncertainty Assay (%) Purity (%) (%)	29 5E-05 Belance Uncertainty 0.06 Flask Uncertainty	Solvent:	Certified R
N U		1- 0		S.		čount] [Line	6 79.7990	ay Target 5) Weight (g)	2% 60.0 (mL)	Lot #	Certified Reference Material CRM
2		160		<u>e</u>		ar]		Actual Weight (g) Co	Nitric Acid	Nitric Acid	NUCO
		170		70			10001.1	Expanded Actual Uncertainty Conc. (µg/mL) +/- (µg/mL)	2 S		(B)
		180		Ø			20.0 7757-79-1	CAS	Formulated By:	Giovanni	RIANU
		190		8 0			5 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD5(Giovanni Esposito	L'Especite	₹.
		200		100			orl-rat 3015 mg/kg	mation On Attached pg.) (A) LD50	120822	B	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
							lei I	NIST			4 Accredite ate Numb indards.co

Part # 58119 Lot # 120822

1 of 2

Printed: 3/16/2023, 1:45:22 PM

	Printed: 3/16/2023, 1:45:22 PM	Printed: 3						2 of 2							0822	Lot # 120822		Part # 58119	Pan
				above) of NIS	to NIST (see above). 9 Uncertainty of NIST 9.C. (1994).	le to N the Ur 1, D.C.	Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	weight d. ry cond i and E: fice, W	ated with ise stated laborator valuating rinting Of	e calibr: otherw opriate es for E ment P	Standards are prepared gravimetrically using balances that are calibrated with weights trace Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressi Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washing	balance ed valu t and u it, C.E., 297, U.	Insignation of the standard for the stan	metrica 0.5% of d with (r, B.N. echnica	Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Govern	e prepa e certifi should leferend t Result	idards an Idards an Idards an Itandards ertainty F Isuremen	* Star * All s Mea	
			tated. sed in	rwise s Is are u	s unless otherwise stated. raw materials are used in	ents ur rity rav	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohim deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.	the hi	ind volum sware and	netric a A glas:	om gravir Ited Class	lated fr , calibra	ion calcu ed water	centrat deioniz ds.	The certified value is the concert Purified acids, 18.2 megohim deic the preparation of all standards. All the preparation of all standards.	value is 18.2 I ion of a	certified fied acids preparat	* The * Puri-	
	s.																		
							:	:					÷						
	in P. M.	1								ndard.	Homogeneity: No heterogeneity was observed in the preparation of this standard.	paration	d in the pr	observe	eneity was	heterog	geneity: No	Homo	
	Certified by:														ation:	acteriz	Physical Characterization:	Phys	
					. Þ		ulyte	(T) = Target analyte	(T) = Ta						æ				
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40,02 40,020 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,00000000	극R 및 크 딕 쏙 곀	4000 10 10 10 10 10 10 10 10 10 10 10 10	Ta Sr Na Sr Sr	888888888	Sen Rb Rb Pr		x p p g g N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ndo H Mg L: L:	4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	29년 31 부 55 표	888888888	A.G. G. G. H. H. J.	40.02 40.02 20 20 20 20 20 20 20 20 20 20 20 20 2	5 S S S S S S S	40.02 40.02 40.02 40.02 40.02 40.02	Al Sb Ba Be Bi Bi	
				[]	(µg/mL)	S	Verification by ICP-M	ation		Metals	Trace M								
							(S):	ICP-M	ometry (Spectr	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ed Plas	y Couple	uctive	is by Ind	Analys	umental	Instr	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB IS AR-1539 https://Abs	V				CRM	Certified Reference Material CRM	rence	fied Refe	Certi			V		, inc.	dards.con	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute : 800-368-1131 www.absolute	₹ 88 ≥

Printed: 3/16/2023, 1:45:22 PM

CORCO CHEMICAL CORPORATION

Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

CERTIFICATE OF ANALYSIS

Date: 8/3/2022

M5631 M5632 M5633 M5634 Lot No 820803

Hydrogen Peroxide, ACS Reagent Grade

TEST	MAXIMUM LIMITS	RESULT
Appearance	Colorless and free from suspended matter or sediment	Pass
Assay	29-32%	31.4%
Color (APHA)	10	5
Residue after Evaporation	0.002%	.0001%
Titratable Acid	0.0006 meq/g	< .0006 meq/g
Chloride (Cl)	2 ppm	< 1 ppm
Nitrate (NO ₃)	2 ppm	< 1 ppm
Phosphate	2 ppm	< 1 ppm
Sulfate (SO ₄)	5 ppm	< .5 ppm
Ammonium (NH4)	5 ppm	< 1 ppm
Heavy Metals (as Pb)	1 ppm	< .1 ppm
lron (Fe)	0.5 ppm	< .1 ppm
Sodium Stannate	200 – 300 ppb	Pass

***Our Hydrogen Peroxide is considered un-stabilized because it is very slightly stabilized with Sodium Stannate, 500 ppb maximum, just for safety purposes.

Date of MFG: 8/2022 Retest date: 8/2024

Gína M. Rambo Office Manager

CORCO CHEMICAL CORPORATION. 299 CEDAR LANE. FAIRLESS HILLS, PA 19030. 215-295-5006. FAX 215-295-0781

m/z->	N.5 6	m/z-≯ 5.0E5	ភ. ០ ពេស	m/z-> 1.0≣6	5000	1.0트4	1. Chromium(III) nitrate nonahydrate (Cr)	Compound	Volume sho	Expiration Date: Recommended Storage: Nominal Concentration (Jug/mL):	Par De	CERTIFIED WEIGHT REPORT:	www.absolutestandards.com
N 10		110		1		[1] Spectrum No.1		Pa	Volume shown below was diluted to (mL):	Expiration Date: nended Storage: ntration (µg/mL):	Part Number: Lot Number: Description:	0	3
220		120		N. O		-	58124 071122	Part Lot Number Number	filuted to (mL):	060526 Ambient (20 °C) 1000	<u>58024</u> 060523 Chromium (Cr)		A
230		130		ů. O		31,393 80	0.1000	Dilution Factor	2000.02		1 (Cr)		MS
240		140				c]:57024.	200.0 0.084	Initial Uncertainty Vol. (mL) Pipette (mL)	0.058 Flask U				MS658
				ð.		31,393 sec]:57024.D# [Count] [Línear]	084 1000	Uncertainty Nominal Pipetta (mL) Conc. (µg/mL)	Flask Uncertainty		21110221 2.0%	Lot #) B
N 50		」 () () () () () () () () () ()		S		t] [Linear]	10 10000.1	nał Initial g/mL) Conc. (µg/mL)		(mL)	221 Nitric Acid % 40.0	# Solvent:	
200		160		0		ş	0.1 1000.0	al Final rg/mL) Conc. (µg/mL)		Ľ	Acid .0 Nitric Acid	ent:	123
		170		70			0.0 2.2	Expanded al Uncertainty ig/mL) +/- (µg/mL)	Lineviewed by.	X	Acid Formulated By:		1
		180		8- 0-		1	7789-02-8) CAS		a la	Horner		
		190		Ŷ				jolvent Os		ten	Lawrence Barry		Y
		20- 00-		100			0.5 mg(Cr)/m3 ort-	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		Ø	nce Barry		AH-15: https://Ab
		0		o			ort-rat 3250 mg/kg	ched pg.) LDS0	00000	00050	060523		AH-1539 Certificate Number https://Absolutestandards.com
							g 3112a	NIST		٥ <u> </u>	[ω]	1	te Numbe dards.com

Part # 58024 Lot # 060523

1 of 2

Printed: 8/24/2023, 4:18:27 PM

Absolute Standards, Inc. Certified Reference 800-368-1131 Image: Certified Reference www.absolutestandards.com Image: Certified Reference Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	andards.cor	s by Indu	ictive	y Coupled	Plasn	na Mass S	Spectr C	Certified Reference Material Ci	ICP-M	IS):	ateria	I CRM					¥	크	ANAB AR-11 ttps:///	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	034 Acc lificate N standar	lumbe ds.corr
the stype of the style						Trace N	Metals	s Verification	ation	হ	ICP-MS		/g/mL)									
AI <0.02		40,02	Dv	40.02	H	<0.02	E	40.02	- N	- -	20		A) 02	8	a)	-	-			3		
		40.02	Er Dy	<0.02	Ho	<0.02	달드	4)02 4)02	N N	A0.02	88	~ 7	40.02 0.02	<u>8</u> %	40.02 00.02	ਜ ਸ	4 4	c ¥		<0.02		
	_	<0.02	말	<0.02	5	<0.02	Mg	<0.01	² 0	<0.02	.02	Rh	40.02	Ag	<0.02	1	<0.02			<0.02		
Ba 40.02	ନ ଜ	-T -T	ନ୍ଦ୍ର ହ	A 0.02	₹ ¹ =="	4. 6. B	H. Ma	A. A.	P P	A A 3 3	38	장	A A 3 3	ç N	A A 1	13	A.2	4 15		0.02 0		
		40.02	2 ଜ ା	40.02	363	4 4 A	N M ;	8 8 8	× 77 ·	A 40 12	រ ន រ	Sc Sm	40.02 2002	Ta s	4 4 A A	11 S 🔒						
								(T)=	(T)= Target analyte	anatyte												
Physical Characterization:	aracteriz	ation:															C	Certified by:	by:		a	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	No heteroge	meity was o	observe	d in the preps	aration (of this stand	lard.										1	14	1		ľ	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	ad value is ds, 18.2 n ation of all are prepar are prepar are certife ds should ds should ent Result.	he conc megohm d Ill standarc are me ars are me are are are me ars are me ars are me ars are me ars are me ars are me are are are me are are are me are	entrat leioniz ls. sticulou etrica .5% of .5% of .5	ed water, c ed water, c usly cleane ully using ba f the state f the state f the state and Kuyat, a Note 122	ted fro calibrat d prior alanced d value and un and un 97, U.S	red Class, ted Class, that are that are that are der appro Guideline Guideline	A glass A glass calibra priate s for E nent P	nd volume sware and ited with ites stated laborator, ivaluating vinting Off	the hi weight cond y cond fice, W	ighest p ighest p is trace itions. xpressir /ashingt	ments ourity able tr able the ton, D.	unless raw m raw m NIST 0 NIST Uncer	materials are used in Materials are used in ST (see above). ertainty of NIST 1994).	se stat re usec vve). NIST	n .							

Part # 58024 Lot # 060523

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		Ex	Recommended Storage: Nominal Concentration (µg/mL):	NIST	Volume s	Compound	1. Copper(II) nitrate trihydrate (Cu)	1.0E8	5.0E5	m/z->	2.5E7	m/z-≻ 2.0€7	1.0€7	m/z->
om as, Inc.		Part Number: Lot Number: Description:	Expiration Date:	Recommended Storage: Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):	z				10		110		2
-		58029 102523 Copper (Cu)	102526	Ambient (20 °C) 1000	6UTB	t diluted to (mL)	Part Lot Number Number	58129 100223			N		120		
		(Cu)		20 °C)		2000.02	Dilution Factor	0.1000			30		130		
Certif					5E-05 Balance	0.058 Flask U	Initial Uncertainty Vol. (mL) Pipette (mL)	200.0 0.084			4°		140		
ified Referen M569子	Lot #	24002546	2.0%		Balance Uncertainty	Flask Uncertainty	Initial Uncertainty Nominal Vol. (mL) Pipette (mL) Conc. (µg/mL)	84 1000			50		150		
Certified Reference Material CRM M 56 G子 R いり0/2	Solve	46 Nitric Acid	40.0 (mL)				Initial nL) Conc. (µg/mL)	10000.1			80		0 160		
1 CRM 10 27 23		L	Nitric Acid				Final L) Conc. (µg/mL)	1000.0	894	ting and a state and a state of a	paine dissipsion of the design		0 170		
			Formulated By:	Mg .	Reviewed By:		cxpanoed Uncertainty +/- (µg/mL)	2.2			70				
-		and and		to the	-70		(Solven CAS# C	10031-43-3			8 0		180		
http:			Benson Chan	and a	Pedro L. Rentas		(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50	1 mg/m3			90		190		
ANAB ISO 17034 Accreditec AR-1539 Certificate Number https://Absolutestandards.com			102523	,	102523		Attached pg.)	ori-rat 794 mg/kg			100		N 0		
Accredite ate Numbe Idards.com	4		23		ដ្រ		NIST	3114							

www.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace M	etals	; Verifica	ition	by ICP-N	r) SI	g/mL)						
	3	2	22	7			2	and the second		Sale Con	Constraint for the		Sector Sector Sector	March	Contraction of the other				The second second
A	40.02	8	20,02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	Pr	<0.02	Se.	<0.2	5	<0.02	W	<0.02
SB	40.02	ß	<0.2	Ę	<0.02	Ho	<0.02	Ŀ	<0.02	Ŗ	<0.02	Re	<0.02	2	<0.02	ī	<0.02	c	<0.02
As	40.2	ů	<0.02	F	<0.02	F	<0.02	Mg	<0.01	õ	A0.02	Rb	40.02	Ag	40.02	3	40.02	<	4002
Ba	<0.02	S	<0.02	ନ୍ଥ	<0.02	5	40.02	Mb	<0.02	Pd	<0.02	Rb	A).02	Na	40 i2	đ	40.02	\$	40.02
Be	<0.01	ዮ	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	'n	<0.02	Ru	<0.02	Sr	40.02	j	<0.02	ĸ	40.02
Bi	<0.02	S	<0.02	ĉ	<0.02	La	40.02	Mo	<0.02	¥	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	2	40.02
œ	<0,02	ß	-1	Au	<0.02	3	<0.02	Nd	<0.02	ĸ	<0.2	8	<0.02	Ta	<0.02	H	<0.02	2	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

in politic

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

urt # 58029 Lot # 102523

800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:		ņ		Recommended Storage: Nominal Concentration (µg/mL):	NIST	Volume		Compound	1. Manganese(II) nitrate tetrahydrate (Mn)	Сл. О ПП Ф	2.5E8	M /2-2	1.008	5.OM7	™/z-> 1.0E8	5.067	m/z->
om	Ð	Part Number: Lot Number: Description:	niration Data.	Expiration Date.	<pre>Hecommended Storage: Concentration (µg/mL):</pre>	NIST Test Number:	Volume shown below was diluted to (mL):		Nu		[1] Speatrum No.1		10			-1 -1-0		
		<u>58025</u> 102623 Manganese (Mn)	100606	Ambiant (on t	Ampient (20 °C) 1000	6UTB	diluted to (mL):	Part Lot	r z	58125 071123	-		20			ן מ ס		
		(Mn)		2	C)	5E-05	3000.41 0.058	Dilution		0.1000 300.0	34.243 sec]:57025.D# [Count] [Linear]		30			130		
Certified Re M5648						05 Balance Uncertainty	58 Flask Uncertainty	lal Uncertainty	Pipette (mL)	0.084	7025,D# [C		40			140		
ference A	Lot #	24002546	2.0%			ainty	ł	Nominal	Ē	1000	ount] [Lines		0			150		
Material CRM	Solvent:	Nitric Acid		(1112)				Initial	m	10000.1 10	ŗ		0			1e0		
			Nitric Acid Formulated By:		X	Reviewed By:		Expanded Final Lincertainty	(mL)	1000.0 2.1			8			170		
			ted By:	0	ed to	ed By:) CAS	20694-39-7			9 0			180		
http		Contraction of the second seco	Benson Chan	Y	tento	Pedro L. Rentas		(Solvent Safety Info. On Attached no.)	OSHA PEL (TWA)	7 5 mg/m3			80			190		
AR-1539 Certificate Number https://Absolutestandards.com		,	102623		/	102623		nation On Attached not)	A) LD50	ort-rat >300mg/kg			100			200		
e Numbe						لت	.,	NIST	SRM	3132								

Part # 58025 Lot # 102623

1 of 2

Printed: 10/26/2023, 1:20:32 PM

vww.absolutestandards.com 300-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited **AR-1539** Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

202	r,	40.02	3	40.02	Ta	<0.02	s	<0.2	ĸ	<0.02	Nd	40.02	РЪ	40.02	Au	<0.02	ß	40.02	₿
20.02	Zn	<0.02	S	40.02	s	<0.02	Sm	40.02	¥	<0.02	Mo	<0.02	La	<0.02	ĉ	<0.02	S	40.02	Bi
<0.02	Y	<0.02	Tæ	<0.02	ş	<0.02	Ru	<0.02	q	<0.2	Нg	40.2	Fe	<0.02	G	<0.02	Ω	<0.01	Be
40,02	41	<0.02	Th	40.2	Na	<0.02	Rb	<0.02	Pd	Ч	Mn	<0.02	. F	<0.02	ନ୍ଥ	<0.02	S	<0.02	Ba
40.02	<	<0.02	H	<0.02	Ag	<0.02	8	<0.02	8	40.01	Mg	<0.02	In	<0.02	臣	<0.02	ĉ	A0.2	As
40.02	٩	<0.02	Te	A0.02	S	<0.02	Re	<0.02	Ŋ	40.02	Ŀ	<0.02	Ho	<0.02	Ę	<0.2	ß	40.02	SP
40.02	W	<0.02	1	<0.2	8	<0.02	P	<0.02	N	<0.02	Ľ	<0.02	Hŕ	<0.02	Dy	<0.02	ß	A0.02	A
					Section 200	A State of the sta	ALC: NO.	A PARTY AND AND AND		Store Manager	State State								100
								DY ICP-N		verifica	etais	I race M							

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

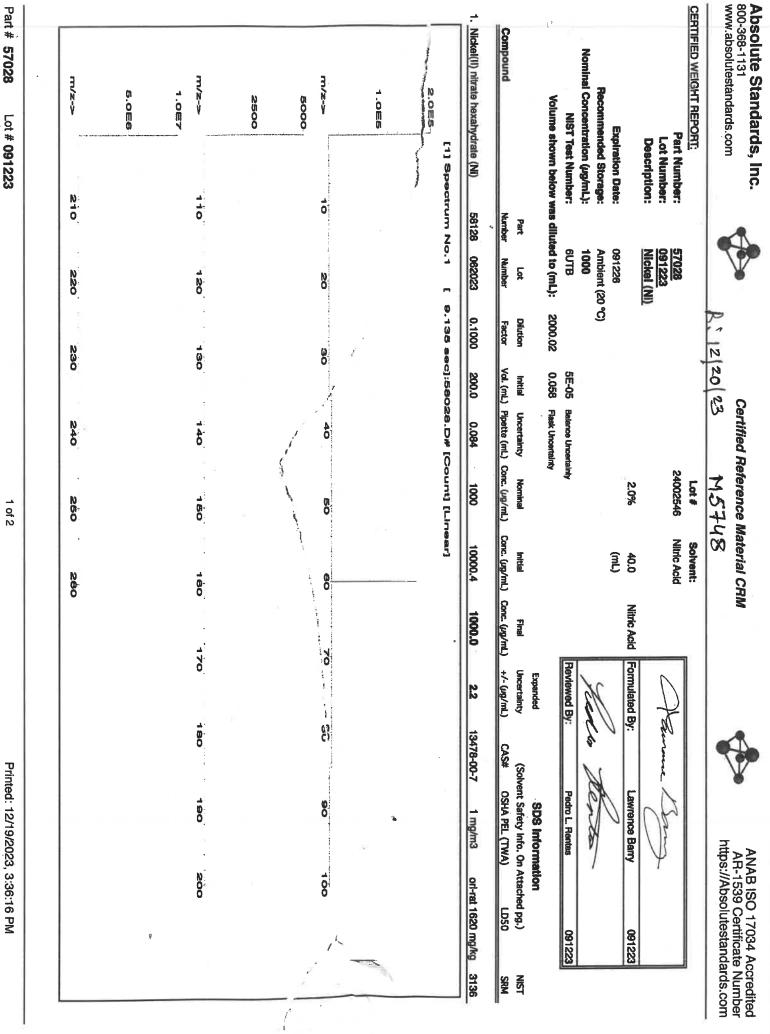
In 1. Sli

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above). * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).


art # 58025 Lot # 102623

2 of 2

Printed: 10/26/2023, 1:20:32 PM

m/z->		2.0E6	m/z->	0.0 П 14	A)]	1.0E5	m/z->	0, 0 11 12 12 12 12 12 12 12 12 12 12 12 12	1.005	1. Lead(II) nitrate (Pb)	Compound	Weight sho	NIST 1	Recommended Storage: Nominal Concentration (µg/mL):	Exc		CERTIFIED WEIGHT REPORT:	ADSOIUTE Standards, Inc. 800-368-1131 www.absolutestandards.com
21 0 220 0			110 120				10 20		[1] Spectrum No.1 [14	IN029 PBD122016A1	Lot M RM# Number Conc	s diluted to (mL):	NIST Test Number: 6UTB		Expiration Date: 100926	Lot Number: 100923 Description: Lead (Pb)		om
230			130 140				30 40		14.144 sec]:58082.D# [Count] [Linear]	1000 93.999 0.10 62.5	Nominal Purity Uncertainty Assay Conc. (µg/mL) (%) Purity (%) (%) V	3000.41 0.06 Flask Uncertainty	5E-05 Balance Uncertainty		2%			Certified Referenc
250 260			150 160 170				50 60 70		tj [Linear]	4.80071 4.80077 1000.0	Target Actual Actual Weight (g) Weight (g) Conc. (µg/mL)			(111)	60.0 Nitric Acid	46 NITHC ACID		Certified Reference Material CRM こして、20123 Mらそれチ
			0 180 190				80			2.0 10099-74-8 0.05 mg/m3	Expanded SDS Informa Uncertainty (Solvent Safety Info. On +/- (µg/mL) CAS# OSHA PEL (TWA)		Reviewed By: Pedro L. Rentas	Kerten Hen	Formulated By: Lawrence Barry	Admine By		*
			2000				100			m3 intrvns-rat 83 mg/kg 3128	SDS Information (Solvent Safety Info. On Attached pg.) NIST # OSHA PEL (TWA) LD50 SRM		tas 100923	Ø	ny 100923	\¥		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

	DELL-10205000					2 of 2							00923	Lot # 100923		Part # 57082
		are used in ove). NIST	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. All standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	ity raw the to Ni the Unc. (The certified value is the concentration calculated from gravimetric and volumetric measurements Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable t Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D	netric d the d. g and I g ffice, V	and volur assware ar vrated with wise state te laborate Printing C Printing C	s A gli re califi ropria nes foi nment	or to use. S. Gover S. Gover	ated f calibr valance t and c t, C.E. 297, U	tion calcu ed water usly clear ally using f the stat and Kuya al Note 1; al Note 1;	sentrat deioniz deioniz deioniz deioniz echnic c, B.N. h S.% o c, B.N. h i. S.% o c, B.N.h h i. S.% o c, B.N.h h h i. S.% o c, B.N.h h h h h h h h h h h h h h h h h h h	The certified value is the concentration calculated from gravimetric and volume Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with w Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating a Measurement Result," NIST Technical Note 1297, U.S. Government Printing Offi	value i ion of a contain e prepa e certif keferen t Result t Result	certified preparat landard a dards ar dards ar tandards tandards suremen suremen	* The * Purifi * Stan * Stan Mea
P. S.	for the second s							ındard.	1 of this sta	paratio	xd in the pre	observe	Homogeneity: No heterogeneity was observed in the preparation of this standard.	o heterog	encity: N	Homog
Certified by:	ې ک				Vte	get anal	(T)= Target analyte						zation:	racteri	Physical Characterization:	Physi
W 40.02 V 40.02 Yb 40.02 Yb 40.02 Zn 40.02 Zn 40.02 Zn 40.02 Zn 40.02	Ть Алл 11 Алл	e 40.2 g 40.02 a 40.02 a 40.02 a 40.02 a 40.02 a 40.02 a 40.02	40.02 Se 40.02 Si 40.02 Ag 40.02 Ag 40.02 Na 40.02 Na 40.02 Si	Rb Sm Sm	40.02 40.02 40.02 40.02 40.02	P P R P	40.02 40.02 40.02 40.02 40.02	Hg Mg	- 40.02 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	요 한 않 날 막 発 표	40.02 40.020	~ Co Co Co 또 편 것	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5	40.02 40.02 40.02 40.02 40.02	Al Sb Ba Bi Bi
			(µg/mL)		by ICP-MS		Verification	Metals	Trace M							
					MS):	(ICP-	trometry	s Spe	sma Mas	ed Pla	ly Couple	uctive	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	Analy	umental	Instru
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com				CRM	Certified Reference Material C	erenc	tified Re	Ce					s, Inc.	ards.co	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	w.absolut

Part # 57028 Lot # 091223 2 of 2		 * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	Homogeneity: No heterogeneity was observed in the preparation of this standard.	(T) = Target aria/vie	AI A02 Cd A02 Dy A02 H A02 N T Pr A02 S A02 C4 A02 E A02 H A02 Li A02 N T Pr A02 S A02 C4 A02 E A02 H A02 Li A02 N T Pr A02 S A02 C4 A02 E A02 H A02 Li A02 N A02 N <t< th=""><th>Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS): Trace Metals Verification by ICP-MS (µg/mL)</th><th>www.absolutestandards.com</th></t<>	Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS): Trace Metals Verification by ICP-MS (µg/mL)	www.absolutestandards.com
			et .	2	Tb 40.02 Te 40.02 TI 40.02 Th 40.02 Sn 40.02 Ti 40.02		
	5 		P. S.	Certified by:	W -0.02 U -0.02 V -0.02 Yb -0.02 Yb -0.02 Yb -0.02 Zn -0.02 Zr -0.02 Zr -0.02		AR-1539 Certificate Number https://Absolutestandards.com

1

æ

1

Printed: 12/19/2023, 3:36:16 PM

Z 01 Z

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	M	M5768 [M5769 (64) Certified Reference Material	ce Material CRM	42/s	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description:	<u>58112</u> 091823 Magneslum (Mg)	Solvent: 24	Lot # 24002546 Nitric Acid	Advenue	Or -
Expiration Date: 091826 Recommended Storage: Ambient (Nominal Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	20 °C)		(mL) (mL) (BF) $R - \frac{1}{3}/2\phi$	Formulated By: Heviewed By:	Lawrence Barry 091823 Pedro L. Rentas 091823
Compound	Lot Nominal I RM# Number Conc. (µg/mL)	Purity Uncertainty Assay T (%) Purity (%) (%) We	Target Actual Actual Weight (g) Weight (g) Conc. (vg/mL)	Expanded Uncertainty +/- (µg/mL) CAS	SDS Information (Solvent Safety Info. On Attached pg.) NIST # OSHA PEL (TWA) LDSO SRM
1. Magnesium nitrate hexahydrate (Mg) IN030 маюзаал	10000	99.999 0.10 8.51 23		20.0 13446-1	ng/kg 3
[1] Spectrum No.1 1.0E6		[19.923 sec]:58112.D# [Count] [Linear]	[Linear]		
5. 0 M 6 7					
m/z-> 10	20	8	ø	70 80	90 100
1000 -		·		4	
₩/z->	120 130	140	150 160	170 180 1	190
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					
Part # 58112 Lot # 091823		-	1 of 2	Drintod	Drintod- 10/00/0000 0.56-15 DM

3

Printed: 12/29/2023, 2:56:15 PM

/ww.absolutestandards.com	00-368-1131	Absolute Standards, I
		Inc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Γ							Trace Mo	etals	Verifica	tion	by ICP-N	IS (µ	g/mL)						
									1100 100 100 100					100	The second second				
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	Ni	<0.02	Ŗ	<0.02	Se	40.2	qI.	<0.02	W	<0.02
SP	<0.02	G	<0.2	E.	<0.02	Ho	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	<0.02	d	<0.02
As	<0.2	ĉ	<0.02	E	<0.02	In	<0.02	Mg]	SO	<0.02	Rh	<0.02	Ag	<0.02	H	<0.02	V	40.02
Ba	<0.02	S	<0.02	ନୁ	<0.02	F	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Ъ	<0.02	Υb	<0.02
Ве	<0.01	Ŷ	<0.02	Ga	<0.02	Fe	40.2	Hg	<0.2	٩	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	ĸ	<0.02
B	<0.02	S	<0.02	Ģ	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	cn	<0.02	Sn	<0.02	6	<0.02
5	40.02	ç	40.02	Au	<0.02	P	<0.02	Nd	<0.02	ĸ	<0.2	S.	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T) = Target analyte

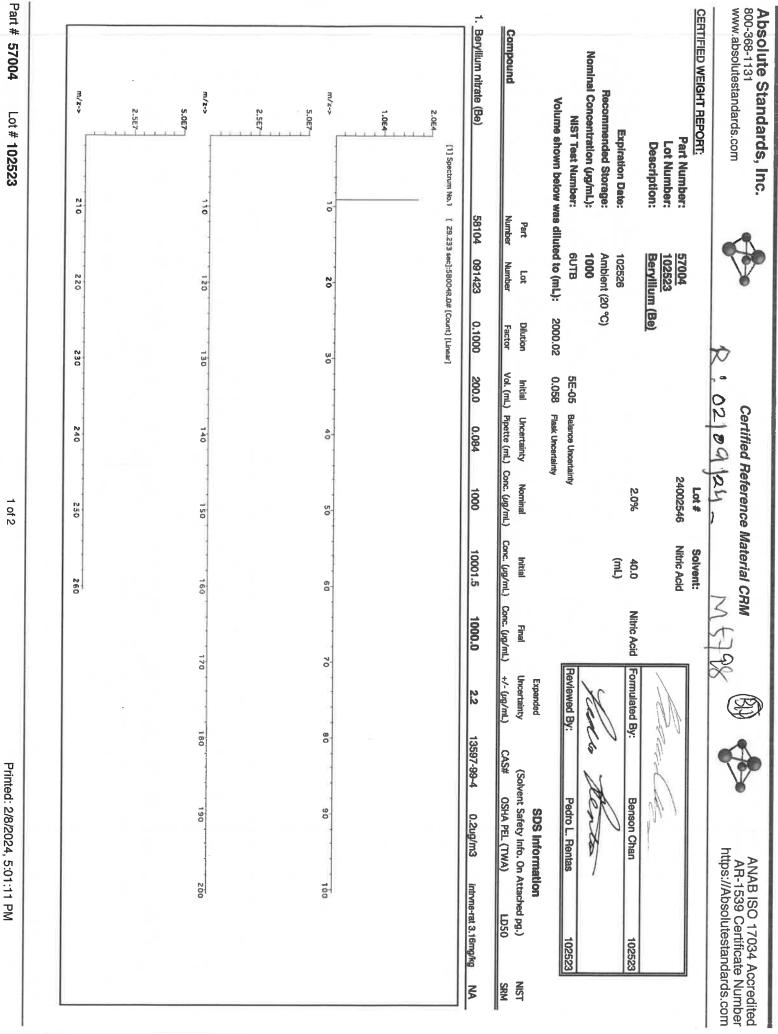
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58112 Lot # 091823

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

							Trace M	letals	Verification	Ition	by ICP-MS		(ng/mL)							_
		and the second se	A CONTRACTOR OF A CONTRACTOR					All and the	TANK ALL STATE	The second s	ALL DESCRIPTION OF THE OWNER OF T	Nonese and			and the second second second				A COLUMN TO A C	10
A	<0.02	3	<0.02	à	<0.02	Hf	<0.02	ГI	<0.02	N	<0.02	Ł	<0.02	Se	<0.2	Trb	<0.02	M	<0.02	-
Sb	<0.02	J	40.2	固	<0.02	Ho	≤0.02	2	<0.02	£	<0.02	Re	<0.02	S	<0.02	Ę	40.02	D	<0.02	_
As	<02	ඊ	<0.02	Eu	40.02	ч	40.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	≤0.02	>	<0.02	-
Ba	<0.02	ű	<0.02	3	40.02	Ц	<0.02	Mn	<0.02	P	€0.02	£	<0.02	Ra	40 12	đ	<0.02	\$	<0.02	-
Be	T	Ċ	0.02	G	<0.02	e.	<02	Hg	<02	۵.	<0.02	Ru	≤0.02	2	<0.02	μ	<0.02	7	<0.02	-
Ä	<0.02	රී	<0.0≥	පී	<0.02	r.	<0.02	Mo	<0.02	đ,	40.02	Sm	≤0.02	s	<0.02	Sn	<0.02	Za	<0.02	-
æ	<0.02	ð	<0.02	Au	<0.02	£	40.02	PN	<0.02	М	<0.2	ŝ	<0.02	Ta	<0.02	F	<0.02	2	40.02	_
									(T) = Tarr	get analy	yte									1

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
 - All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 - Standards are certifed ($\frac{1}{4}$) 0.5% of the stated value, unless otherwise stated.
- All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot #	m/z->	N.01 M.4	m/2->-	1.0E5	177/2-> 2.0E5	N G M G	8. 0 11 15	1. Ammonium hexatluorostannate(IV) (Sn)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (ug/mL): NIST Test Number: Weight shown below w	<u>CERTIFIED WEIGHT REPORT</u> Part N Lot N Desc	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Lot # 071123	210		110 120		0 No		[1] Spectrum No.1	(W) (Sn) INO10 SND042023A1	Lot RM# Number	Expiration Date: 071126 Pecommended Storage: Ambient (20 °C) Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	<u>PORT:</u> Part Number: <u>57050</u> Lot Number: <u>071123</u> Description: <u>Tin (Sn)</u>	s.com
	230		130		e e		[15.034 sec]:	1000	Nominal Conc. (µg/mL)	0 °C) 499.93	2	V
	20		140		ð		15.034 sec]:58150.D# [Count] [Linear]	99.999 0.10 44.2	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.058 Flask Uncertainty	Solvents:	Certifi
	N30 260		150 160		8		unt) [Linear]	1.13107	r Target Actual Weight (g) Weight (g)	(mL)	Lot # 21110221 22D0562008	Certified Reference Material
			170		70			1001.6	Actual Conc. (µg/mL)	ric acid	ric acid	CRM
			180		80			16919-	Expanded Uncertainty (Solv +/- (µg/mL) CAS#	Formulated By:		PPGP M
			190 200		90 100			7 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.))# OSHA PEL (TWA) LD50	Benson Chan		R
			0		ŏ			ω	on tached pg.) NIST LD50 SRM	071123 - 071123		ANAB ISC AR-1539 (https://Abso
												ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	•	Cei	Certified Reference Material CRM	ial CRM		ANAB ISO 17034 Accredited
www.absolutestandards.com	5				V	AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ductively Coupled	Plasma Mass Spec	trometry (ICP-MS):			
		Trace Metals	Is Verification by ICP-MS	P-MS (µg/mL)		
AI <0.02 Cd <0.02	Dy <0.02	4003				
A)2 C C		2 2 2 2 2 2 2	40.02 Ni		Se <0.2 Tb Si <0.02 Te	40.02 W 40.02
2 2 2 2 2 2 2 2			<0.01 Os <0.02 Pd	Rb Rb		\$ < c
	Ge 40.02	Fe 40.2 Hg	40.2 P 40.02 Pt	Ru Sm		_
			(T) = Target	4	ZITAS	<0.02 Zr <0.02
Physical Characterization:						Certified by:
Homogeneity: No heterogeneity was observed in the preparation of this standard.	observed in the prepa	ration of this standard.				//
ŝ	9,					mr P All
		9 4			20	
					÷	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are politoriated with using balances. 	centration calculat deionized water, ca ds. eticulously cleaned	d from gravimetric librated Class A gla prior to use.	and volumetric measurer ssware and the highest p	nents unless otherwise stated. writy raw materials are used in	ie stated. 'e used in	

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
 All standards should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57050 Lot # 071123

2 of 2

Printed: 2/8/2024, 5:01:38 PM

redited Jumber ds.com	NIST SRM	3113		
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Formulated By: Lawrence Barry 091923 Formulated By: Lawrence Barry 091923 Reviewed By: Pedro L. Rentas 091923 Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) N +/- (ug/mL) CAS# 0SHA PEL (TWA) LD50 S	ng/kg	180 B0 190 200 200 200	Printed: 2/8/2024, 5:01:14 PM
AM I'U (fru (Nitric Acid	1000.0		
Certified Reference Material CRM 02109124	Solvent: Nttric Acid 40.0 (mL) httal bittal Conc. (ug/mL)	10000.0		
artified Réference l 0 2 0 9 1 2 4	Lot # C 24002546 2.0% 2.0% Nominat Nominat Conc. (rg/mL)	1000	34.243 eec]:58027.D# [Count] [Linear] 30 40 50 130 140 150 230 240 250	1 of 2
Certified F		0.084	240 240 240	
Å	5E-05 0.058 on Initial or Vol. (mL)	00 200.0	3 eec]:55 230 30 23 130	
	57027 091923 Cobait (Co) 091926 Ambient (20 °C) 1000 6UTB 6UTB 6UTB d to (mL): 2000.02 Lot Dilution Lot Dilution	23 0.1000		
	57027 091923 Cobalt (Cobalt (Ambient Ambient 1000 6UTB ss diluted to (mL Part Lot	58127 050923		
Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: Cobait (C Cobait (C Cobait (C 091926 Recommended Storage: Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): Nominal Concentration (µg/mL): COTB NIST Test Number: COTB CODAIT (C) Part (C) CODAIT (C) C) CODAIT (C) C) C) C) C) C) C) C) C) C)	1. Cobatt(II) nitrate hexahydrate (Co) 58		<pre>Part # 57027 Lot # 091923</pre>

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);

L	200	10	2 Contraction	4	2000		400			-		4							
	20.05	3	20.05	5	20.02	Ħ	40.02	3	<0.02	ż	40.02	£	40.02	8	40.2	f	₹0.02	M	40.02
_	40.02	లి	4 02	山	€0.02	Ho	40.02	5	<0.02	Ż	<u>40.02</u>	Re	<0.02	3	≤0.02	Te	€0.02	D	<0.02
_	402	ථ	€0.05	圕	40.02	Ч	40'02	Mg	10 ⁰ ⊳	ő	≤0.02	붭	<0.02	Ag	40.02	F	<0.02	Ż	<0.02
_	40.02	చి	≤0.02	ઝ	600	ы	<0.02	Mn	<0.02	P	40,02	ßb	<0.02	Na	40.2	đ	<0.02	Ŗ	<0.02
_	10.05	ບັ	≤0.02	g	20.0 2	ङ	402	Hg	40.2	۵.	€0.02	Ru	<0.02	<u>ې</u>	≪0.02	Ta	≤0.02	Y	€0.02
_	<0.02	ථ	£-	ö	40.02	Ľ	0 02	Mo	<u>60.02</u>	æ,	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	6 .02
_	40.02	ට්	<0.02	Au	40.02	£	40.02	PN	40.02	м	4 02	8	40.02	£	40.02	Ë	40.02	72	2002

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified by:

Printed: 2/8/2024, 5:01:04 PM	1 of 2	Part # 57033 Lot # 111323
ő	230 240 250 26	m/z-> 210 220 2
		0 0 0
160 170 180 190 200	130 140 150 1	m/≥-> 110 120 1
		N m 4
80 70 80 100	90 40 50	5.0E4
		- 1 0 0 0 0
	34.433 seo]:57033.D# [Count] [Linear]	[1] Spectrum No.1 [34.433 2.0E5
1000.0 2.0 7440-38-2 0.5 mg/m3 orl-rat	400.0 0.084 1000	1. Arsenic (As) 58133 020522 0.1000
Expanded SDS Information Final Uncertainty (Solvent Safety Info. On Attached pg.) <u>nL) Conc. (ug/mL) +/- (ug/mL) CAS</u> # OSHA PEL (TWA) LD50	11	Part Lot Dilution Compound Number Number Factor
Reviewed By: Pedro L. Rentas 111323	0.06 Flask Uncertainty	Volume shown below was diluted to (mL): 4000.0
Hedre Fenter		
Id Acid Formulated By: Lawrence Barry 111992	24002546 Nitric Acid 2.0% 80.0	Description: <u>Arsenic (As)</u>
п (Lot # Solvent:	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

< 00 **N**

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Low P. S.

Certified by:

 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033 Lot # 111323

N O N O O		
	220 230 240 21	m/z-> 210
		א. 50 ס
		5.068
150 160 170 180 190 200	120 130 140 18	m/z-> 110
		N 07 00
		5. OE6
50 70 80 100	Ю О О	m/z->
		1.0臣4
[Linear]	4o.1 [12.275 sec]:58105.D# [Count] [Linear]	[1] Spectrum No.1 2.0E4
11.55772 11.56201 1000.4 2.0 10043-35-3 2 mg/m3 orl-rat 2660 mg/kg	IN018 BV082016A1 1000 99.9988 0.10 17.3 11.5	1. Boric acid (B) IN018 E
Expanded SDS Information Target Actual Uncertainty (Solvent Safety Info. On Attached pg.) Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50	Nominal Purity Uncertainty Assay Conc. (µg/mL) (%) Purity (%) (%)	Compound RM#
	1000 4R	
Reviewed By: Pedro L. Rentas 071123	6UTB 5E-05 Balance Uncertainty	Nominal Concentration (µg/mL): 1 NIST Test Number: 6
40.0 Ammonium hydroxide Formulated By: Benson Chan 071123	(B) 2.0%	
Solvent: MKBC8597V Ammonium hydroxide	57005 Lo 071123	CERTIFIED WEIGHT REPORT: Part Number: 5
ce Material CRM ANAB ISO 17034 Accredited M 5종14 주가 5종14	Certified Reference Material CRM	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace Me	tals	S Verifica	tion	by ICP-	Ś	(µg/mL)						
S S A	40.02	0 2 2 2 2 2	40.02	Er Dy	<0.02	Ho	4).02	臣	40.02 002	A N	40.02 20.02	R 7	A A 8 8	s: %	A ()	3 3	2 A 3 R	: ¥	40.02
	_	n (1		2 8	A	- 5		Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	40.02	3	6 8 8	< 0	40.02
		다. 	A 0.02	ត្ន ខ្ល	40.02	न ह			20.02	3 R	40.02	R	<0.02	Na	40.2	Ţ	40.02	₽¥	<0.02
_	_	6	<0.02	ନ୍ନ	<0.02	5			3 6	7	20.02	, Ku	40.02	Sr	<0.02	Тв	<0.02	×	<0.02
		¥	<0.02	Au	<0.02	3		N a	32	4 3	<0.02	2	40.02	1 60	40.02	S	-0.02	Za	<0.02
						I		ļ			101	ą	2000	La	20.02	11	20.02	N	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. Str

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part #: 57005 Lot # 071123

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m/z->	2500	m/z->	500	m/z->-	2.5 114	5.OE4	1. Ammonium dihydrogen phosphate (P)	Compound	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Par Lo De	www.absolutestandards.com
R I D 2 M 4 C 1 M 52 15 Interview Lat* Solvent: 2111021 Nitric Acid Provide (P) 2% 40.0 Nitric Acid 2000/2 0.058 Failure inventienty Environmenty 2000/2 0.058 Failure inventienty Environmenty Environmenty Nominia Party Uncertainty Assay Target Actual Actual Commutated By: Perford L Ren 10000 ease 0.10 27.5 72.7287 72.7287 72.7284 10000.0 30.0 772.751 5mg/r 12.074 aeoc)15891 16. D/r Country [Linear) Status Stat	N O		110		10		[1] Spectrum			Expiration Date: Recommended Storage: I Concentration (µg/mL): NIST Test Number: Weight shown below was d	DRT: Part Number: Lot Number: Description:	om
RICZINGLA MITELS Bolvent: 21110221 Nitric Acid IDP 2% 40.0 Nitric Acid SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Formulated Br. SEC5 Balance locentary (mL) Nitric Acid Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Formulated Br. Lawrence Balance (mL) Source Status Source 1 100 27.5 72.7289 10000.0 20.0 77.27.951 Soliver Status (Solvent Status Soliver Solitive (Solvent Status 774 500 50 50 70 60 160	2220		120		N. O				Lot Number	041726 Ambient (20 10000 6UTB 6UTB	57115 041723 Phosphore	5
Hric Acid Iric Acid Iric Acid Iric Acid Iric Acid Actual Actual Actual Expanded Expanded Expanded SDS Inf Expanded SDS Inf Solvent Safety Inf eight (g) Conc. (ug/mL) · (AS# OSHA PEL) 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 20.0 7722-76-1 5 mg/m 150 170 180 190 190 190	230		130		۵. 0		2.074 sec]:58			00.02	us (P)	R
Hric Acid Frite Acid Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded Actual Uncertainty (Solvent Safety Inf eight (g) Conc. (ug/mL) - 4/- (ug/mL) CAS# OSHA PEL 2.7289 10000.0 20.0 7722-76-1 5 mg/m 2.7289 10000.0 1722-76-1 5 mg/m 160 170 180 190 190	240		140		4		3115.D# [Cot		Uncertainty Assay Purity (%) (%)	2% Balance Uncertainty Flask Uncertainty	Solvent:	22/09/12
Formulated By: Lawrence Ba Formulated By: Lawrence Ba Reviewed By: Pedro L. Ren Conc. (ug/m), -/- (ug/m), CAS# OSHA PEL 10000.0 20.0 7722-76-1 5 mg/m 10000.0 20.0 7722-76-1 5 mg/m 10000.0 eio eio	250		150		S O		ınt] [Linear]					
Formulated By: Lawrence Ba Formulated By: Pedro L. Ren Expanded SDS Inf Uncertainty (Solvent Safety Inf +/- (ug/mL) CAS# OSHA PEL (20.0 7722-76-1 5 mg/m 20.0 7722-76-1 5 mg/m 20.0 190 90	260							2.7289 10000.	Actual Actual sight (g) Conc. (µg/1	rric Acid	tric Acid	15815
22-76-1 5 mg/m					1			20.0		Formulated B	Q	
o 200			4						SC (Solvent Saf CAS# OSH/	Ped	Gerence /	
.hed pg.) LbS0 LbS0									DS Information fety Info. On Attac A PEL (TWA)	L. Rentas	Jan	https://At
g 3186 SRM			9		J				0	041723 041723		tps://Absolutestandards.com

Abs	Absolute (800-368-1131 www.absolute	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	lards , ds.com	Inc.	-				ĉ	rtified Re	eren	Certified Reference Material CRM	ial CR	M					https AF	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	4 Accredited cate Number andards.com
-	nstrum	iental A	nalysi	s by Indi	uctive	ły Coupl	ed Pla	Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS);	s Spec	troscopy	(ICP	-MS):									
_								Trace Metals	etals	Verifica	Ition	Verification by ICP-MS	1.00	(µg/mL)							
-	A	40.02	8	40,02	Ą	40.02	H	40.02	E	A) ()2	Z	A)22	7	A).02	Se	A 2	ŧ	AB	W		
		A.22	5 2	A0.2	ម្មា	40.02	Но	40.02	Ŀ	40.02	NB	<0.02	Re	40.02	ŝ	40.02	Te	40.02	c :	40.02	
	Ba		<mark>ዮ</mark> የ	8 8 8 8	<u>ନ</u> ଜ	40.02 20	부 분	40.02 20	Mg	40.01 002	r S	A A 3 2	₽ ₽	A A 3 S	Å.	A0.02	1 11	A 600	\$ <	8 8	
		10.0>	ព្	<0.02	ណ្ឌ	<0.02	장	<0.2	Hg	40.2	שי	T	R Q	40.02	K 2	8.8 2		<0.02	4 'B	60.02 20.02	
	B	8 8 22 22	5 S	8 8 22 22	ନ ବ	40.02 20	32	4 4 A	N W	4 4 8 8	* 7	A0.02	s s	A A 3 S	, s	88	1 S	A A A A	2 B	88	
										(T)= Ta	(T)= Target analyte	alyte			ĺ						
hand	hysical	Physical Characterization:	cteriza	ution:														Cer	Certified by:	y:	
-	Iomogen	eity: No I	heteroge	neity was	observ	ed in the pr	eparati	Homogeneity: No heterogeneity was observed in the preparation of this standard.	ındard.								(h	J.	Ŵ	
* *	The cel Purified	rtified va l acids,	alue is 18.2 m	The certified value is the concen Purified acids, 18.2 megohm dei the menantion of all standards	centrat deioniz	tion calcul red water,	lated f	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all etandarde	metric s A gla	and volu	metric nd the	measure highest p	nents urity r	unless oth aw mater	nerwisc ials are	e stated. 9 used in					
* * * * *	All star Standa Standa All Star Uncerta Measur	ndard co rds are rds are ndards s ainty Re rement	ntaine prepare certife hould I ference Result,	rs are me ad gravin d (+/-) 0 es storec e: Taylor " NIST Te	eticulo netrica).5% o d with r, B.N. echnic	ally using the stat caps tigh and Kuya al Note 1;	hed pri balanc iced val it and it, C.E. 297, L	 * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	e calit other ropriat nes for nment	brated wit wise stat te laborat Evaluatir Printing (h weig ed. ory co Office,)hts trace onditions. Expressir Washingt	able to og the l on, D.(to NIST (see above). e Uncertainty of NIST D.C. (1994).	e abov ty of N	e). IIST					
														·							
										8											
Part #	57115		Lot # 041723	1723							2 of 2	of 2					Print	Printed: 2/8/2024, 5:01:22 PM	24, 5:0)1:22 PM	

Printed: 2/8/2024, 5:01:22 PM

m/z->	N. 01 00	5. O M 8	m/z->	5.0E7	1.0E8	m/z->	N. 00 10 10	5.0E5	Ammonium sulfate (S)	Compound	NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	Part Number: Lot Number: Description:	800-368-1131 www.absolutestandards.com
210			110			10		[1] Spectrum No.1	IN117	RM#	umber: low was dilute	n Date: lorage: lg/mL):	<u>Part Number:</u> Lot Number: Description:	
220			120			NO		-	IN117 SLBR7225V	Lot Number C	GUTB d to (mL):	122926 Ambient (20 °C) 1000	<u>57016</u> 122923 Sulfur (S)	
230			130		2	30		33.603 80	1000	Nominal F Conc. (µg/mL)	4000.0 5	ĉ		<i>b</i>
N 40			140			b	den gegen og gener første kommen och som en forse og	33.603 sec]:57016.D# [Count] [Linear]	99.9 0.10 24.3	Purity Uncertainty Assay (%) Purity (%) (%)	5E-05 Balance Uncertainty 0.06 Flask Uncertainty		Solvent:	Certified Re
N 80			100			50		Count] [Lin	.3 16.4979	say Target 6) Weight (g)	Y		Lot # 122923	fere 12
N80			0			8		9 9 7	16.4980	Actual Weight (g)			ASTM Type 1 Water	aterial CRM
			170			70			1000.0	Actual (Conc. (µg/mL)	5		1	rm 167816-
			180			80			2.0 77	Expanded Uncertainty +/- (µg/mL)	Reviewed By:	M	Formulated By:	
						 Complete and complete 			7783-20-2	(Solvent : CAS# 05	Pedr	\$	a and a second sec	
			190			0			NA	SDS Information It Safety Info. On Attac OSHA PEL (TWA)	Pedro L. Rentas	e la	Benson Chan	http
			2000			100			ort-rat 4250mg/kg 3181	SDS Information (Solvent Safety Info. On Attached pg.) * OSHA PEL (TWA) LD50	122923	7	100002	AR-1539 Certificate Number https://Absolutestandards.com

Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	 * All standard containers are meticulously cleaned prior to use. * All standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST 	 The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the measurement of all standards 		Homogeneity: No heterogeneity was observed in the preparation of this standard.	Physical Characterization:	(T) = Target analyte	AI A002 Cd A002 Pr A002 Pr	Trace Metals Verification by ICP-MS (µg/mL)	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
30			5 2	I She	Certified by:		MI MI<			ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Printed: 2/8/2024, 5:01:28 PM

	-	260	250	240	230		220	210	m/z->
									1.0巨5。
									2.0厘5
180 190 200	170	160	150	140	130	р. 9	120	110	m/z->
									2,5E
									5.0E5
80 80 100	70	eo	50	40	8	magan Raji Anana ya Anany	N	10	m/z->
									1000
		ear)	ount] [Lin	24.004 sec];58116,D# [Count] [Linear]	¢ sec];58	[24.00		[1] Spectrum No.1	2000
20.0 7763-20-2 NA orf-rat 4250mg/kg 3181	10000.1	82,4682	82.4675	0.10 24.3	99,9	10000	IN117 SLBR7225V	IN1	1. Ammonium sulfate (S)
Expanded SDS Information Uncertainty (Solvent Safety Info. On Attached pg.) NIST +/- (ug/mL) CAS# OSHA PEL (TWA) LDSO SRM	(g) Conc. (µg/mL)	Actual Weight (g)	Target Weight (g)	Uncertainty Assay Purity (%) (%)	Purity (%)	Nominal Conc. (µg/mL)	Lot. Number	RM#	Compound
i By: Ped	[F			Balance Uncertainty Flask Uncertainty	0.058	1999.48	led to (mL):	Weight shown below was diluted to (mL):	Weight show
Lawrence barry	1 1					20 °C)	071126 Ambient (20 °C) 10000 Sum	Expiration Date: nended Storage: htration (µg/mL): %T Test Number:	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Teet Number
around Bring	Type 1 Water	ASTM Ty	Lot# 071123	Solvent:		E)	57116 071123 Sulfur (S)	<u>PORT:</u> Part Number: Lot Number: Description:	CERTIFIED WEIGHT REPORT: Part N Lot N Desc
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	CRM		ference M	Certified Reference Material	R a			om	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
								And in case of the local division of the loc	

800-368-1131 www.absolutestandards.com		0	Certified Reference Material CRM	nce Material C	RM			•	ANAB ISO 1: AR-1539 Ce https://Absolut	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	ictively Coupled	Plasma Mass Sp	ectrometry (IC	P-MS):						
		Trace Metals		Verification by ICP-MS	IS (µg/mL)					
AI <0.02 Cd <0.02	Dv 40.02	A M	-12			a dista div.	ALL MERIC		A STREET STREET STREET	
40.02 Ca		40.02	40.02 40.02	Ni <0.02 Nb <0.02	Pr <0.02 Re <0.02	Si Se				A 6.3
50 C C	Gd <0.02	In <0.02 N	Mg <0.01 C						< 0	<0.02
40.02	Ga 40.02	Fe <0.2 Hg	A A 3 12	8 8			12 1		40.02 Y 40.02	40.02 20.02
B (UUZ CI 40,02	Au <0.02	<0.02	<0.02		Sc <0.02	Ta o	<0.02		40.02 21 21 40	40.02
Physical Characterization:			(T)= Target analyte	alyte				۲ ۲	Certified by:	
Homogeneity: No heterogeneity was observed in the preparation of this standard.	oserved in the prepa	ation of this standard								1
							(the second	P.S.	
 * The certified value is the concentration calculated from gravimetric and volumetric measurements * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity in the preparation of all standards. * All standard containers are meticulously cleaned prior to use the preparation of the preparation of all standards. 	ntration calculate ionized water, ca	d from gravimetri librated Class A g	c and volumetric lassware and the	c measurement highest purity	s unless otherwise stated. raw materials are used in	ise state are used i	5.6			
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.	trically using bala % of the stated	value, unless othe	brated with weighwise stated.	phts traceable :	to NIST (see ab	ove).				
* Uncertainty Reference: Taylor, Measurement Result," NIST Tec	vith caps tight ar B.N. and Kuyat, (hnical Note 1297	id under appropria 2.E., "Guidelines fc , U.S. Governmen	ite laboratory co r Evaluating and t Printing Office,	I Expressing the Washington, D	⁹ Uncertainty of NIST).C. (1994).	F NIST				
	·									
		ð								
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.	itrically using bails bails of the stated with caps tight ar B.N. and Kuyat, C hnical Note 1297	prior to use. ances that are cali value, unless othe d under appropria 2.E., "Guidelines fo , U.S. Governmen	brated with weig rwise stated. re laboratory co or Evaluating and t Printing Office, t Printing Office,	ghts traceable . onditions. I Expressing the Washington, C	to NiST (see ab 3 Uncertainty o).C. (1994).	ove). F NIST				

2 of 2

Printed: 2/8/2024, 5:01:31 PM

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m/z>	ζι Ο Μ Ο	m/z-> 1.0E6	₩/z-> 2.0E6	5000 2500	Compound 1. Ammonium hexafluorosilicate (Si)	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	<u>CERTIFIED WEIGHT REPORT:</u> Part Nu Lot Nu Descri	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
Certified Reference Material CRM A: 12: p 4: 2.4 Ph/SI R Solvent: 24002546 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 40.0 2% 1140 1140 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.865 111 12.9 111 12.9 111 12.9 111 13.865 111 14.0 111 14.0 111 14.0 111 11.9 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Lot RM# Number IN009 SID082022A1</th> <th>s dilute</th> <th>mber: mber: ption:</th> <th>, Inc.</th>						Lot RM# Number IN009 SID082022A1	s dilute	mber: mber: ption:	, Inc.
Instant Image: Constraint of the con	≥40		140	4	1.393 sec]:58014.D# [Count]	Purity Uncertainty Assay (%) Purity (%) (%) 99.999 0.10 14.4	2% 5E-05 Balance Uncertainty 99.48 0.058 Flask Uncertainty		Certified Reference
v: Aleah O'Brady V: Aleah O'Brady CAS# OSHA PEL (TM 919-19-0 2.5 mg/m: 919-19-0 150	N		160	0- 	Linear]	Actual Actual Weight (g) Conc. (Jy/mL) 13.8855 1000.0	Nitric Acid	Nitric A	182
			(*)			(Solvent S CAS# () 18919-19-0	Ped Ped	ha	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

≤ % >

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verifica	ition	by ICP-N	E S	ia/mL)						
				A COLUMN TO A COLUMN			Contraction of the local distance of the loc		Contraction of the						No. of Concession, Name	UNIVERSITY	A REAL PROPERTY AND INCOME.	No. of Concession, Name	STOLEN STOLEN
A	<0.02	8	<0.02	Dy	<0.02	Hf	<0.02	Ľ	<0.02	N	40.02	Pr	<0.02	Se	<0.2	7	4) 02	W	AND
S	40.02	ç	e,	Į	3	ç	3	-	3	,		1				•0	1000	-	70.02
: 8) <u>(</u>	101	R	20.02	OL	<0.02	Ę	<0.02	ß	<0.02	Re	<0.02	ŝ	ч	ē	<0.02	q	<0.02
25	202	ຣ	<0.02	5	40.02	F	40.02	Mg	<0.01	ç	40.02	R	A).02	Ag	40.02	1	4033	<	3
Ba	40.02	ຊ	<0.02	ନ୍ଥ	40,02	- -1'	3	\$	3	ž	23	P	3	4		1			
đ	5	2	5	>		1						200	20.00	TAG.	101	10	20.02	10	20.02
Į	TOTON	5	<0.02	G	20.02	re	40.2	Нg	40.2	'n	40.02	Ru	<0.02	\$	A 0.02	5	40.02	~	4) M
Bl	40.02	S	<0.02	ନ୍ନ	A)02	5	40.02	Mo	40.02	¥	40.03	2	2002	2	3	2	3	2	3
7	33	2	3	Å.,	3	Ż	3		2	1 ;				,	10.02	22	10.04		20.02
F	-UNE	2	10.02	70	20.02	10	20.02	Nd	AU.U2	×	40.2	8	<0.02	Ta	40.02	H	40.02	2	<0.02

(T) = Target analyte

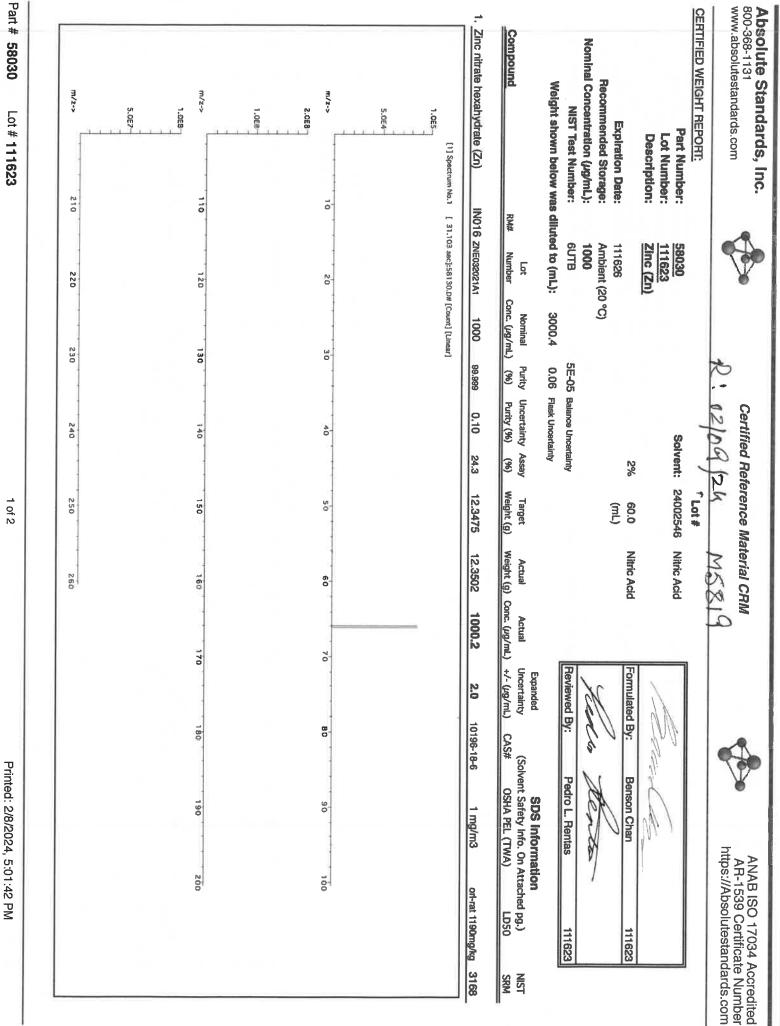
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son P. Shr

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

,•

Part # 57014 Lot # 122023

ww.a	0-36	bsc
bsol	-368-11	X ute
/w.absolutestandards.c	131	
and		Stan
ards		dal
ŝ		rds.
		Inc

\$8⊳

Certified Reference Material CRM

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Al 40.02 Sb 40.02 As 40.02 Ba 40.02 Ba 40.02 Be 40.01 Bi 40.02 B 40.02	
402 402 402 402	
5 S S S S S S S	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
토 양 양 당 탑 백 것	
4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2	
法門站卢可知所	
40.22 40.22 40.22 40.22 40.22 40.22 40.22 40.22	
Hg Mg Link	
40.02 40.02 40.02 40.02 40.02 40.02 40.02	
Pd Pd R	
402 402 402 402 402 402	
S 문 문 문 문 동 S 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문	
(µg/mL 402 402 402 402 402 402	
) Ag Sr Ag	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
김징별러덕역	
4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
这说 ~ 있 ~ c 《	
6 - 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	

(T) = Target analyte

Physical Characterization:

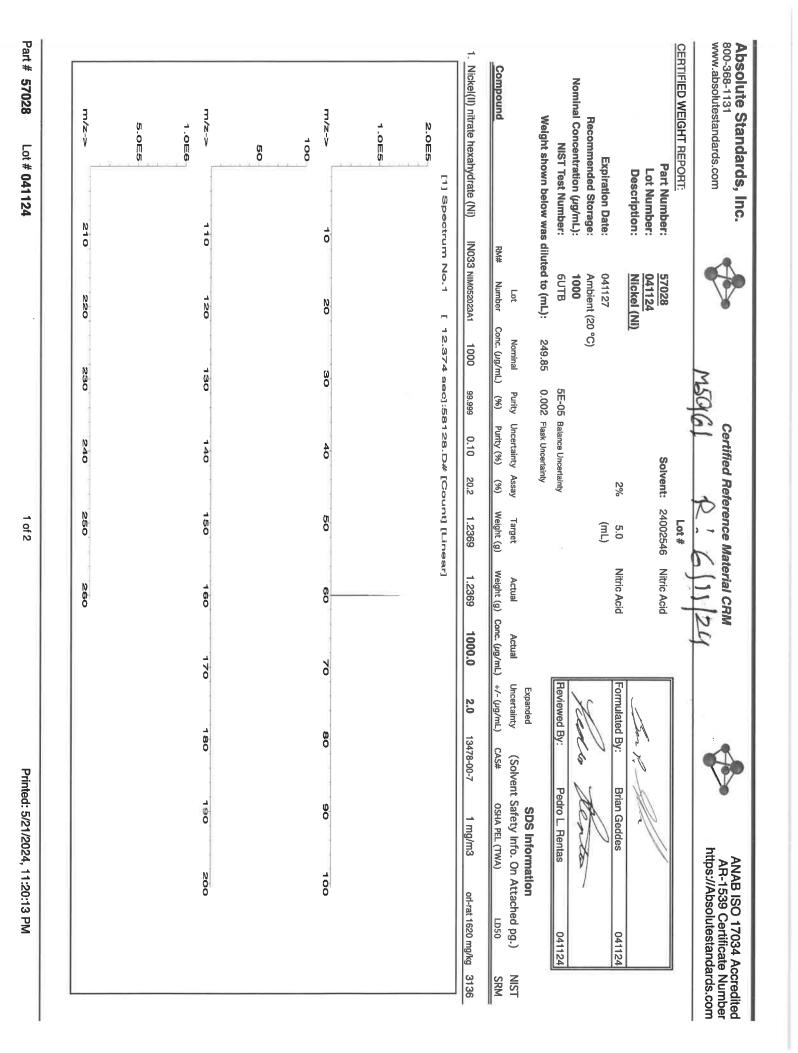
Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

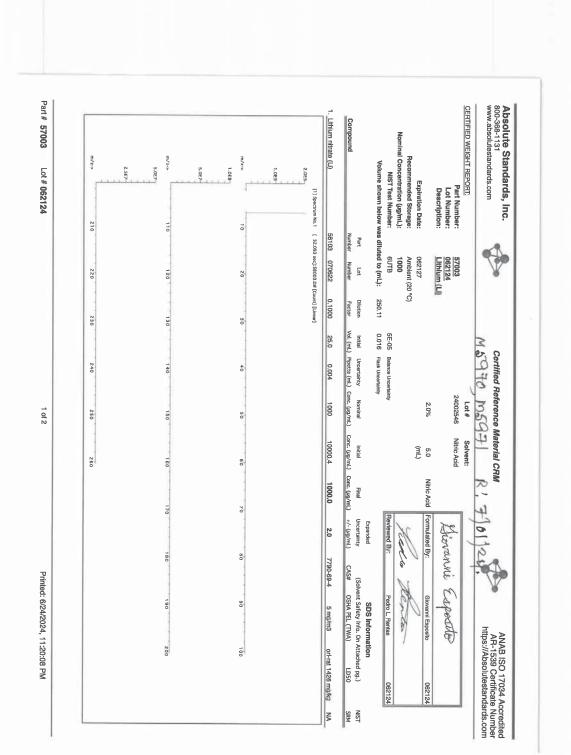
Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58030 Lot # 111623

Image:	TT/Z->	2500	5000	m/z->	500	 1000	N.00 M.4	5.0E4	1. Ammonium dihydrogen phosphate (P) IN008 PvœzoisAi	Compound	Weight shown below was diluted to (mL):	NIST Test Number:	Recommended Storage: Nominal Concentration (ug/mL):	Expiration Date:	Lot Number: Description:	CERTIFIED WEIGHT REPORT: Part Number:	www.absolutestandards.com
ric Acid Fic Acid Formulated By: Formulated				120		20				Lot Number							R
ric Acid Fic Acid Formulated By: Formulated	240			140		40			89.899 0.10 27.5 7.275	Purity Uncertainty Assay (%) Purity (%) (%)	0.058 Flask Uncertainty	5E-05 Balance Uncertainty					00
Prieved By: Programity Procertainty Procentainty Processory P									.2730	Actual Actual Weight (g) Conc. (µg/mL)				Nitric Acid			M5820
				180					7722-76-1) CAS			Here ten	Lawrence	forme (٩


	01:19 PM	024, 5:C	Printed: 2/8/2024, 5:01:19 PM	Print						2 of 2							123	Lot # 091123	Lot	57015	Part #
														5		· · ·		Ð			
					e). IST	rials are e abov ity of N	ity raw materials are us le to NIST (see above). the Uncertainty of NIST , D.C. (1994).	able to g the l on, D.(highest p ts trace; ditions. Xpressin Vashingt	id the f id. yry con y and E ffice, V	sware ar ated with ise state laborate ivaluation rinting O	A glas calibr otherw opriate is for E ment P	ed Class to use. that are , unless (der appro Guideline Governr	calibrat ad prior alances d value and un , C.E., " 97, U.S	d water, sly clean y using b y using b the state the state hps tight nd Kuyat Note 12	eionize Is. ticulou: ticulou: 5% of 1 S% of 1 B.N. a chnical	 Purmed acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	8.2 me of all s repared ertifed ertifed prence: esult,"	acids, 1 aration s are pi s are ci ards sh nent Refe	 Purmed acids, 18.2 meg the preparation of all si All standard containers Standards are prepared Standards are certifed (All Standards should be Uncertainty Reference: Measurement Result," Measurement Result, " Measurement Result," 	* * * * * *
·	A.	1º	in the second se	(stated	henwise	inless of	nents	neasurer	netric n	nd volur	letric a	m gravim	ted fro	n calcula	intratio	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated	ue is th	fied val	he certi	+ + 7
	y:	Certified by:	Ca									wland	of this stan	paration	in the pre	observed	r nysical Unaracterization: Homogeneity: No heterogeneity was observed in the preparation of this standard	Sterrizal eterogen	y: No he	r nysical Characterization: Homogeneity: No heterogeneity	Ho
									alyte	(T) = Target analyte	() = ()										Į
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22 × 2 × 4 × 4 ×	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	ෘ망칰랔극 乌 역	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ta Sr Nage Sc	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Sc Sm	40.22 	* * * * \$ Q N N	400 400 400 400 400 400 400 400 400 400	LL Mg Mg Nd	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	******	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A C C C E F	4 4 8 8 4 4 8 8 4 4 8 8 8 8 8 8 8 8 8 8	5 S S S S S S S			B B B B S S 2
							(µg/mL)	1	Y ICP-N	tion b	Verification by ICP-MS	tals V	Trace Metals	글							
									MS):	(ICP-)	rometry	Spect	na Mass	d Plası	Couple	ıctively	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	nalysis	ntal Ar	strume	=
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	VAB ISO 17(R-1539 Certi s://Absolutes	http: A					2	ial CRM	e Mater	ferenc	Certified Reference Material	Cert			V		Inc.	ards, Is.com	standard	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute 800-368-1131 www.absolute

+ + + + + + + + + + + + + + + + + + +	Ho	Ph		B B	Ba Sb		1 5	Absc 800-36 www.at
The cer Purified the pre All stan Standar Standar Jncerta Measur	mogene	ıysical					strum	Absolute (800-368-1131 www.absolute
tified v acids, paratic dard co ds are ds are dards s dards s	ity: No]	Physical Characterization:		<0.01 <0.02	<0.02 <0.02	2	ental A	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
value is 18.2 n on of al prepar prepar certife should should Result.	heteroge	ıcteriz		ទទទ	2 2 <u>2</u> 2	2	nalysi	ds.com
The certified value is the concen Purified acids, 18.2 megohm deio the preparation of all standards. All standard containers are metic Standards are prepared gravimet Standards are certifed (+/-) 0.59 Standards are certifed (+/-) 0.59 All standards should be stored w Uncertainty Reference: Taylor, E Uncertainty Reference: Taylor, E	neity was o	ation:		4 4 4 0.02 02 02	40.02 40.02	3	s by Indu	, Inc.
entrati deionize ds. eticulou netrica 1.5% of 1 with o 1 with o r, B.N.	observe			A G Ga	85245	2	uctive	
The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Clas the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	1 in the prep			<0.02 <0.02	<0.02 <0.02	5	y Couple	
calibra calibra ed prio valance ed valu and un t, C.E., U.:	paration			망도공	F F H P	- 10 10 10 10	d Plas	
The certified value is the concentration calculated from gravimetric and volumetric measury Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights trac Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Express Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washing	Homogeneity: No heterogeneity was observed in the preparation of this standard			40.02 40.02		Trace M	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	
A glass A glass calibra otherwi s for E s for E	lard.			Hg No		Metals	Spectr	Certii
nd volum ware and ited with ited with se statec laborator laborator valuating valuating Of			(T) = Ta	40.02 40.02	A 0.02	Verific	ometry (ied Refe
l the hi weight and Ey and Ey			(T) = Target analyte	X Y P	r ő ř s	ation	ICP-M	rence
 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 			alyte	<0.02 <0.02 <0.2	<0.02	Verification by ICP-MS (µ	IS):	Certified Reference Material CRM
ty raw ty raw € to Ni be Unc				Sm Ru S	8 8 8 7	MS (CRM
ess otherwise st materials are us ST (see above). ST (see above). 1994).				4 4 4 4 0 0 0 0 0	A A A A A B B B B B			
are use ovve).				Sr Ta	N Ag Ng	-		
ated.				40.02 40.02	A 0.02	5		•
				T S T B	3323			×
	her y	Certified by:		<0.02 <0.02 <0.02	A 0.02			http Al
	M	by:		Zn Y	\$ < द ≼			NAB IS R-1530 s://Abs
	Alp			40.02 40.02	A A A A B B B B			ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
								Accreditu te Numb dards.co
								làđợ

	m/z-> 210	1.0E8	N. O E B	m/z-≻ 110	-1 -0 	m/z-> 10 2.0E8	1.0 [[]4	[1] Spectrum No.1 2.0E4	1. Selenium (Se)	Compound	Volume shown below was diluted to (mL):	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	Lot Number: Description:	CERTIFIED WEIGHT REPORT:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
	0			o		J		um No	58134	Part Number	6 as diluted			л	
220				120		12 0		-	071223	Lot Number	ed to (mL):	060627 Ambient (20 °C) 1000	<u>060624</u> Selenium (Se)	7024	V
	N			4		ω		33.702	0.1000	Dilution Factor	2000.07	ĉ	(Se)		
	230			130		80		90C]:58	200.0	Initial Vol. (mL)	5E-05 0.100				
	240			140		4 0		034.D#	0.084	Initial Uncertainty Vol. (mL) Pipette (mL)	Balance Uncertainty Flask Uncertainty				Sertified Referen
	250			150		. (л О		33.702 sec]:58034.D# [Count] [Linear]	1000	Nominal Conc. (µg/mL)	rtainty nty		2.0%	Lot #	Reference 162.
	260			160		60		inear]	10002.5	Initial Conc. (µg/mL)		(mL)	40.0	Solvent:	Certified Reference Material CRM からすチェート・アンの
				170		70			1000.0	Final Conc. (ug/mL)	11		Nitric Acid		114
				ŏ		0			2.2	Expanded Uncertainty +/- (µg/mL)	Reviewed By:	<i>M</i>	Formulated By:		24
				180		80			7782-49-2	0	×	20	BY		
				190		90			0.2 mg/m3	SDS Information nt Safety Info. On Att: OSHA PEL (TWA)	Pedro L. Rentas		Benson Chan		ਤ
				200		100			3 orl-rat 6700 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) AS# OSHA PEL (TWA) LDS0	1tas 060624	,	n 060624		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
									3149	NIST	24	I	24		Accreditec ate Number Idards.com

															1
	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise st. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are us the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	rements t purity r ceable to s. s. sing the l ngton, D.0	highes highes tra ndition: Expres Washir	volumetric re and the i with weij stated. stated. oratory cc uating and ing Office.	ric and glasswa glasswa alibratec nerwise riate lab for Evalu nt Print	 * The certified value is the concentration calculated from gravimetric and volumetric measurements unlee * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw n the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIS * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Unce Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1 	ed fron alibrate alibrates lances l value, l value, C.E., "Q C.E., "Q C.E., "Q	The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Class the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	ntratio sionized s. etrically etrically 5% of t 5% of t B.N. a B.N. a	he conce egohm de standardd s are met d gravim (+/-) 0. e stored : Taylor, NIST Tev	alue is t 1 8.2 me n of all : ntainer: orepare certifed bould bu ference ference Result,"	The certified value is the concen Purified acids, 18.2 megohm dei the preparation of all standards. All standard containers are meti Standards are prepared gravime Standards are certifed (+/-) 0.5 All standards should be stored w Uncertainty Reference: Taylor, E Measurement Result," NIST Tech	* The c * Purifie the purifie * All stand * Stand * All stand Measu	
In P. Ar						ġ.	Homogeneity: No heterogeneity was observed in the preparation of this standard.	ration of	n the prepa	bserved	eity was ol	eterogen	neity: No h	Homoge	
Certified by:			lyte	(T) = Target analyte	(T) = T						lion:	cterizat	Physical Characterization:	Physic	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Se T Si <0.02	Pr 40.02 Re 40.02 Rh 40.02 Rh 40.02 Rb 40.02 Sc 40.02 Sc 40.02	 40.02 <	PP PP K	40.02 40.02 40.02 40.02 40.02 40.02	Li Lu Mg Mn Hg Nd	40.02 40.02 40.02 40.02 40.02	HH Fr Fr Fr Fr Fr	40.02 40.02 40.02 40.02 40.02	Dy Er Eu Ga Ga	40.2 40.2 40.2 40.2 2 40.2 2	5 6 6 8 6 6 5	40.02 40.02 40.02 40.02 40.02 40.02	Al As Ba Bi Bi	
		(µg/mL)	ICP-MS	-MS): on by	metry (ICP-MS): Verification by ICP-MS	s Spectrom Metals V	Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS): Trace Metals Verification by	Plasma	Coupled	ctively	by Indu	nalysis	nental A	Instru	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com		₽M	terial Cl	nce Ma	Certified Reference Material CRM	Certifie					Inc.		Absolute Standards, 800-368-1131 www.absolutestandards.com	Absolute 800-368-1131 www.absolute	800-

Part# 57003 Lot # 062124	 * The certified value is the concentration calculated from gravimetric and volumer * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and 1 the preparation of all standards. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravinetrically using balances that are calibrated with w * Standards are certified (+/) 0.5% of the stated value, unless otherwise stated. * All Standards should be stored with caps tight and under appropriate iaboratory * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating of Measurement Result," NIST Technical Note 1297, U.S. Government Printing Off 	Homogeneity: No heterogeneity was observed in the preparation of this standard.	Physical Characterization:	Al 40.02 Cid 40.02 Dry 40.02 Hd Sb 40.02 Cic 40.02 Eu 40.02 Hd As 40.2 Cic 40.02 Eu 40.02 In Ba 40.02 Cic 40.02 Gd 40.02 In Bi 40.02 Cic 40.02 Ge 40.02 In Bi 40.02 Cic 40.02 Ge 40.02 La		Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):	Absolute Standards, Inc. 800-368-1131 www.absolutiestandards.com
2 01 2	 * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standard. * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated. * All Standards broud by stoud with cases tight and under appropriate laboratory conditions. * All Standards are prepared with cases tight and under appropriate laboratory conditions. * Mucertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). 	this standard.		40/02 Li T Nh 40/02 Hr 40/02 And 40/02 Li An	-MS (µg/mL)	Mass Spectrometry (ICP-MS):	Certified Reference Material CRM
Printed: 6/24/2024, 11:20:08 PM	Ъ.	Sur P. S.	Certified by:	Site Gall Tite Gall U Gall Site Gall Tite Gall Site Gall Si			ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

Certificate of Analysis M5936, M5933 R: 02/22/24 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:	Single Analyte Custom Grade Solution
Catalog Number:	CGMO1
Lot Number:	T2-M0720876
Matrix:	H2O
	tr. NH4OH
Value / Analyte(s):	1 000 μg/mL ea:
	Molybdenum
Starting Material:	Ammonium Molybdate
Starting Material Lot#:	2361
Starting Material Purity:	99.9893%
CEPTIEIED VALUES	

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:	998 ± 7 μg/mL
Density:	1.000 g/mL (measured at 20 ± 4 °C)

Assav Information:

Assay Method #1	998 ± 4 µg/mL
	ICP Assay NIST SRM 3134 Lot Number: 130418

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRWRM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRWRM} , where one method of characterization is used is the mean of individual results:
$\begin{split} & \textbf{X}_{CRM/RM} \equiv \boldsymbol{\Sigma}(\textbf{w}_i) \left(\textbf{X}_i \right) \\ & \textbf{X}_i = \text{mean of Assay Method : with standard uncertainty u_{char i} \\ & \textbf{w}_i = \text{the weightling factors for each method calculated using the inverse square of the variance.} \\ & \textbf{w}_i = (1/k_{ohar})^2 / (\boldsymbol{\Sigma}(1/(u_{char}))^2) \end{split}$	$X_{CRM/RM} = (X_a) (u_{cher, a})$ $X_a = mean of Assay Method A withu_{cher, a} = the standard uncertainty of characterization Method A$
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k ($u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{cs}$) ^{1/5} k = coverage factor = 2 $u_{char} = [\Sigma(w_p)^2 (u_{char}; p^2)]^{1/2}$ where u_{char} are the errors from each characterization method $u_{bb} = $ bottle to bottle homogeneity standard uncertainty $u_{lts} = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty$	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char a} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{y₅} k = coverage factor = 2 u _{char a} = the errors from characterization u _{bb} = bottle to bottle homogeneity standard uncertainty u _{lts} = long term stability standard uncertainty (storage) u _{lts} = transport stability standard uncertainty
Page 1 of 4	

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Μ	Ag	<	0.000590	Μ	Eu	<	0.000300	М	Na		0.000879	М	Se	<	0.008000	М	Zn		0.000598
М	A		0.000563	Μ	Fe	<	0.006500	М	Nb	<	0.029000	i	Si	<		М	Zr	<	0.001800
М	As	<	0.002100	Μ	Ga	<	0.000300	i	Nd	<		Μ	Sm	<	0.000300				
Μ	Au	<	0.000300	Μ	Gd	<	0.000300	Μ	Ni	<	0.008000	M	Sn	<	0.008900				
Μ	В	<	0.003300	М	Ge	<	0.000300	Μ	Os	<	0.000590	Μ	Sr		0.000175				
Μ	Ba		0.001689	Μ	Hf	<	0.001800	i	P	<		Μ	Та	<	0.004200				
М	Be	<	0.000890	Μ	Hg	<	0.003300	Μ	Pb	<	0.000300	Μ	Tb	<	0.000300				
М	Bi	<	0.000890	Μ	Но	<	0.000300	Μ	Pd	<	0.001800	М	Те	<	0.021000				
0	Ca		0.006334	M	In	<	0.032000	Μ	Pr	<	0.013000	М	Th	<	0.000300				
0	Cd	<	0.026000	Μ	-Ir	<	0.000300	Μ	Pt	<	0.000300	0	TI	<	0.032000				
Μ	Се	<	0.008300	Μ	ĸ		0.130213	М	Rb		0.004575	Μ	TI		0.001266				
М	Co		0.000598	М	La	<	0.000300	М	Re	<	0.000300	М	Tm	<	0.000300				
Μ	Cr		0.000527	0	Li		0.000059	Μ	Rh	<	0.000300	M	U	<	0.005300				
М	Cs		0.000527	М	Lu	<	0.000300	М	Ru	<	0.079000	M	V	<	0.000890				
Μ	Cu		0.002252	M	Mg		0.000563	i	S	<		M	W		0.087982				
М	Dy	<	0.000300	Μ	Mn	<	0.005900	М	Sb		0.001513	М	Y	<	0.000300				
Μ	Er	<	0.000300	s	Мо	<		Μ	Sc	<	0.001200	М	Yb	<	0.000300				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliguots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94 +6 6,7,8,9 [MoO4]-2(chemical form as received)

Chemical Compatibility -Mo is received in a NH4OH matrix giving the operator the option of using HCI or HF to stabilize acidic solutions. The [MoO4]-2 is soluble in concentrated HCI [MoOCI5]-2, dilute HF / HNO3 [MoOF5]-2 and basic media [MoO4]-2. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO4]-2 chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF5]-2 for months in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the [MoO4]-2 chemically stable for years in 1% NH4OH in a LDPE container.

Mo Containing Samples (Preparation and Solution) -Metal (Soluble in HF / HNO3 or hot dilute HCI); Oxide (soluble in HF or NH4OH); Organic Matrices (Dry ash at 450EC in Pt0 and dissolve oxide with HF or HCI). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 95 amu	3 ppt	n/a	40Ar39K16O,79Br1
			60,1900s2+,190Pt
			2+
ICP-OES 202.030 nm	0.008 / 0.0002 µg/mL	1	Os, Hf
ICP-OES 203.844 nm	0.012 / 0.002 μg/mL	1	
ICP-OES 204.598 nm	0.012 / 0.001 µg/mL	1	Ir, Ta

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRWRM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 17, 2022

- The certification is valid within the measurement uncertainty specified provided the CRW/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 17, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Prepared By:**

Uyen Truong Supervisor, Product Documentation

Michael 2 Booth

Certificate Approved By:

Michael Booth **Director**, Technical

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Laine

Page 1 of 4

ក⁰⁸ = ក្រុងអាស់ ដែល ភ្លេង ភ្ល

Z = 1000BL = $\sup_{x \in \mathcal{A}} (\pi_x) = O_{CRM/RM} = k \left(u^2_{Char} + u^2_{T}_{bb} + u^2_{T}_{bb} + u^2_{T}_{bb} + u^2_{C}_{bb} \right)^{1/2}$ $\mathsf{M}^{i} = (1/\mathsf{n}^{\mathsf{clust}\,i})^{\Sigma} \setminus (\Sigma(1/(\mathsf{n}^{\mathsf{clust}\,i})_{\Sigma})$

nieneity standard uncertain ucherts mort arone enti = a fanta lisnegomort ettod,ot ettod = dd^u adnere vitidats mot gnot = _{ad}t $\label{eq:spinor} \min \left\{ x \right\} = U_{CRM/RM} = k \left\{ u^2_{char} * u^2_{bb} + u^2_{bb} + u^2_{bb} + u^2_{bb} \right\}^{4}$

$$\begin{split} \chi_{CRM,FRM} = & (\chi_{o}) \; (u_{char, o}) \\ \chi_{a} = mean of Assay Method A with ut and a charter of the standard uncertainty of uncertainty of the standard uncertainty$$

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

Certified Value, X_{CRMMM}, where two or more methods of characterization are used is the weighted mean of the results: Characterization of CRM/RM by One Method Characterization of CRM/RM by Two or More Methods

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent to following equations are used in the calculate/K=2.

traceability. - The Calculated Value is a value calculated from the weight of a starting material that has been cartified idrectly vs. A National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance starting.

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 hg/mL

Pssay Method #1

BCIOL = 3

un pepuedra w

(1x) (1w) = X(wi) (xi)

:noiternotnl ysseA

1.012 g/mL (measured at 20 ± 4 °C) Density: 1002 ± 5 µg/mL sulsV beitified

 $\chi_q = mean of Assay Method I with standard uncertainty updat 1$ w₁ = the weighting factors for each method calculated using the the transmission of the standard s

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Starting Material Purity: 99.9975% Starting Material Lot#: 2094 Starting Material: In Metal unineti T 1 000 hg/mL ea: :(s)ətytenA \ əulsV :xinteM

tr. HF 2% (v/v) HNO3 27991717-2T Lot Number: **LITED** Catalog Number: Product Code:

Single Analyte Custom Grade Solution

PRODUCT DESCRIPTION 0.S

Number QSR-1034).

the Competence of Reference Material Producers" and ISO/IEC 17025, "Ceneral Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Vantures is also an ISO 9001 registered manufacturer (QSR Certificate Inorganic Manuel 2014) INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

ACCREDITATION / REGISTRATION 0.r

300 Technology Drive Christiansburg, VA 24073 USA Christiansburg, VA 24073

R:2/22/24

info@inorganicventures.com E: 240-282-3015 E: 240-282-3030

Refine your results. Redefine your industry. Certificate of Analysis 6LESH' 8LESH

4.0 TRACEABILITY TO NIST

sbecueq. - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMRM uncertainty error and the measurement, weighing and volume dilutiton errors. In rare cases where no NIST SRMRM are available, the term "in-house std." is approximately and the term and term and term and term and term are cases where no NIST SRMRM are available, the term "in-house std." is a provided.

4.1 Thermometer Calibration

laboratory. - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

.my €.0 a2 M 0732£0.0 > ⊨N O 832000.0 > ⊔∃ M 8€2000.0 > ⊵A M ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to CRMRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS, were analyzed in an up of the method for each element of the property effection of the method for the met

											-				•				
			9	0:000536	>	٩٨	Μ	0.004900	>	эS	0	477000.0		oM	Μ	892000.0	>	ΞL	Μ
			9	941200.0	>	×	Μ	926900.0	>	qs	Μ	0.003267	>	υM	0	892000.0	>	DÀ	M
			1	0.000473		M	Μ		>	S	- į	0.005445	>	БM	0	068010.0	>	ng	0
			9	98610.0	>	Λ	Μ	0.000269	>	nЯ	Μ	0.000268	>	nŋ	Μ	0.000268	>	sÖ	M
			8	0.000268	>	Π	Μ	0.000268	>	ЧЫ	Μ	0.027225	>	П	0	297000.0		CL	M
			8	0.000268	>	шŢ	M	89Z000.0	>	əЯ	W	0.000268	>	гŋ	W	0.004293	>	00	W
			5	0.000268	>	Ш	Μ	0.000268	>	ЧЯ	Μ	271100.0		К	W	0.000268	>	9 <u>0</u>	W
					>	Ш	S	0.000536	>	Ъł	Μ	692000.0	>	4	Μ	892000.0	>	PO	M
			8	0.053663	>	41	Μ	0.000268	>	Ч	Μ	0.002683	>	uj	Μ	929000.0		сa	0
				\$£100.0	>	θT	Μ	0.000268	>	Pd	Μ	0.000268	>	ен	Μ	609100.0	>	B	M
				92000.0	>	ЧT	Μ	£70100.0	>	ЬΡ	Μ	0.003231	>	бн	Μ	0.005366	>	вe	M
				0.01056(БT	Μ	0.054450.0	>	d	0	191200.0		łΗ	Μ	0.002683	>	Вa	M
			ę	60000.0		٦S	0	0.000269	>	sO	Μ	0.002146	>	99	Μ	0.008929	>	В	0
			-	60000.0		us	Μ	068010.0	>	!N	0	0.000268	>	ΡÐ	M	778400.0	>	nΨ	W
			8	0.00026	>	шS	Μ	0.000268	>	PN	Μ	0.000268	>	БÐ	M	986800.0	>	sA	M
0.043560	>	۶Z		67400.0		!S	0	0.043560	>	٩N	0	0.003225		θ٦	0	278000.0		IA	0
792600.0	>	uΖ	0 \$	0.00120		əS	Μ	0.032670	>	вΝ	0	0.000268	>	nΞ	Μ	0.000536	>	₿¥	M

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

- For the calibration of analytical instruments and validation of analytical methods as appropriate. 9.0 INTENDED USE

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

Page 2 of 4

Page 3 of 4

- Chemical Testing - Accredited / A2LA Certificate Number 883.01 "serveter of the second second and the Competence of the Competence of Testing and Calibration Laboratories."

- QSR Certificate Number QSR-1034

nottertizigeA metevs inemegeneM villsuD 100e OSI 1.01

WOITATNEMUDOD GRADNATS YTILAUD

0.01

Homogeneity data indicate that the end user should take a minimum server of 0.2 m L or 2.0 m L or 2 - This solution was more according to the superior superior of the form as the solution of the homogeneous. المستحدم المرابعة الم .viienegeneity.

Please refer to the Safety Data Sheet for information regarding this CRMRM. HOMOGENEITY 0'6

NOITAMAORNI SUOGAASAH 0.8

۲۹۸۱۵۵۲۹۵۵) ۱۹۸۱۶۵۶ ۲۲۵۶ (۱۹۹۵ ۲۲۵۶۶ ۲۲۵۶ ۱۹۵۱ ۱۹۵٫ ۲۶٬۵۲۱ ۱۹۵٫ ۲۶٬۵۲۱	.sselg n r r r	0.0054 / 0.00052 µg/mL 0.0054 / 0.00038 µg/mL 0.0053 / 0.00034 µg/mL 10 not be prepared or stored ir 10N	CP-OES 323.452 nm (CP-OES 334.941 nm (CP-OES 334.941 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm (CP-OES 336.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm) (CP-OES 34.121 nm)
SET Interferences (underlined indicates severe) 32S160, 32S14N,	Orde A/N	14 pt	ICP-MS 48 amu

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): **Technique/Line**

1:1:1 H2O / HF / H2SO4 or fuse ash with pyrosultate it oxide is as plastic pigment and likely in prookite Notentity: Oxde - low temperature history and sortanty - ineer (sortant in 122) in source heads Notentity: Oxde - low temperature history (-800EC) brookite (fuse in Pto with KS2207); Ores (f TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts violentino: Ovide , Iour Inergene , or entile (Discoluted by Inergene) and Ferdinal Market (Soluble In 1997).

HINGS / LDPE compared from and solutions as the TI(F)6-2 chemically stable for years in the solution and the solutions as the TI(F)6-2 chemically stable for years in the solution from and solutions. 1-10,000 ppm aingle element solutions as the TI(F)6-2 chemically stable for years in the solution from and solutions are the transmission from and solutions are the transmission from and solutions are the solutions are the transmission from and solutions are the solutions are the transmission from and solutions are the transmission from and solutions are the solution from and solutions are the transmission from and solutions are the solution from an and solutions are the solution from an and solutions are the solution from an and solutions are the solutions are the solution from an and solutions are the solutions are the solutions are the solution from an an and solutions are the solutions are the solutions are the solutions are the solution from an and solutions are the solutions are the solution from an and solutions are the solutions are the solutions are the solution from an and solutions are the solutions are the solutions are the solution from an and solutions are the solutions are the solutions are the solution from an an an an an an and solutions are the solutions are the solution are the so with a fendency to hydrolyze forming the hydrafied oxide in all dilute acids except HF. **Stability -** 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1% HNO3 / LDPE container. 1-10.000 point and element solutions as the Ti(F)6-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F- away (i.e. Do not mix with Alkaline or Rare Earths or high levels of thansition elements unless they are fluorinated). Stable with more inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute acids except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HVO3. Avoid neutral to basic S-8(T)T 6 4+ 78.74 - noiluite in Solution (Chemical Form in Solution - 47.74 6 T(F)6-5-- For more information, visit www.inorganicventures.com/TCT Afomic Weinher Valence: Coordination Winnher: Chemical Equa

reported density. Do not pipette from the container. Do not return removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the renorted density. To not other from the container. To not return removed alternots to container.

Page some more served to the served to the served to the organization of the concentration(s). It is be the responsibility of the user to account for this effect. When the bottle is weighed both before and after being the responsibility of the user to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is weighed both before and after being the rescaled to the test to account for this effect. When the bottle is the active the bottle is the rescaled to the test to account for the test to account to the test to account the test to account to test to account to account to the test to test to acc - While stored in the sealed TCT bag, transpiration of this CRAWRM is negligible. After opening the sealed TCT had transmission of the CDMMAN will occur recutification increase in the source concentration of the is

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Certifying Officer:

Chairman / Senior Technical Director

201928

Paul Gaines

-

Thomas Kozikowski Manager, Quality Control

Certificate Approved By:

0.2r

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7,1.

- Sealed TCT Bag Open Date:

11.3 Period of Validity stability studies conducted on property stored and handled CR/WRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

- The lot expiration date reflects the period of time that the stability of a CRMMM can be supported by long term

- The date after which this CRM/RM should not be used.

- June 17, 2027

11.2 Lot Expiration Date

The cartification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

June 17, 2022

11.1 Certification Issue Date

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY 0.11

norganic Ventures, 300 Technicky Drive, Christianeburg, Ve. 24073, USA; Telephone: 800,669,678; 540,585,3030, Fax: 540,562,5015; Innegan

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

ADSOIUTE STANDARDS, INC. 800-368-1131 www.absolutestandards.com			U	ertified I	Referen	ce Mate	Certified Reference Material CRM	C	1117		•	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB ISO 17034 Accredited AR-1539 Certificate Number ttps://Absolutestandards.com	ccredited Number ards.com
הבמדובובה אובותווד מרמסמד.							4		20	2				
CENTIFIED WEIGHT NET ON	<u>57038</u> 031524			Solvent:		24002546	Nitric Acid				1			
Description:	Strontium (Sr)	(Sr)			700		Nitrio Acid		Comulated Bur	N Dr.	Boncon Chan	to manual state	031504	
Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):	031527 Ambient (20 °C) 1000	ŝ					Nume Acid			apy.	Denson crian	La	120100	
NIST Test Number:	6UTB		5E-05 B	5E-05 Balance Uncertainty	uinty				Reviewed By:	By:	Pedro L. Rentas	as	031524	
Weight shown below was diluted to (mL): Lot <u>Compound</u> RM# Number	Is diluted to (mL): Lot RM# Number	2000.07 Nominal Conc. (µg/mL)	0.100 Purity (%)	0.100 Flask Uncertainty Purity Uncertainty Assay (%) Purity (%) (%)	say ()	Target Weight (g) V	Actual Weight (g) C	Actual Conc. (µg/mL)	Expanded Uncertainty +/- (µg/mL)	CAS	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LDS	SDS Information Safety Info. On Attachee SHA PEL (TWA)	d pg.) LDSO	NIST SRM
1. Strontium nitrate (Sr)	IN017 SRZ022018A1	1000	68.997	0.10	41.2 4.8	4.85470	4.85502	1000.1	2.0	10042-76-9	NA	orl-ra	ori-rat >2000mg/kg 3153a	3153a
5.0E6	-	14.495 sec]:58138.D# [Count] [Linear]	ec]:581	38.D#[Count	[Linear								
9 9 9 9											1997 mar Rossenar van sonar kar kar kar ka			
m/z->-	10 20	0		40	20	0	80	20		80	- O 0	100		
6.0局														
		5. 	1								÷			
5.0E6	110 120	130	0	40	150	Q	160	170		180	180	000		
2.02 2.02														
m/z->- 21	210 220	230	0	240	550	0	260							
oart # 57038 Lot # 031524					Ť	1 of 2				Pri	Printed: 6/7/2024, 3:58:42 PM	4, 3:58:42 F	Wo	

Absolute Standards, Inc. www.absolutestandards.com 800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	letals	Verification	ation	by ICP-MS		(ng/mL)						
			四本派出出建	ALCON ST	The second second	A COLUMN TO A	and states in the		Man Landson Martin		A DAMAGE AND	MARCE	A NUMBER OF STREET, ST	Contraction of the local division of the loc	United in the second	Self-pice	Compare and the second s		States and the
N	≪0.02	3	<0.02	Â	<0.02	Hf	<0.02	Ľ	<0.02	ī	<0.02	Ł	<0.02	Se	⊲0.2	P.	40.02	M	2002
Sb	<0.02	ű	<0.2	田	€0.02	Ho	<0.02	Ľ	<0.02	q	<0.02	Re	<0.02	Si	<0.02	Je	<0.02	=	200
As	<0.2	ථ	<0.02	Ē	<0.02	ä	<0.02	Mg	±0.0	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0 0>	>	89
Ba	<0.02	ű	<0.02	3	€0.02	ч	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	ž	<0.2	É	2007	- 5	
Be	<0.01	ບັ	<0.02	පී	<0.02	Ъе	40.2	Не	<0.2	Þ	20.02	Ř	20.02	5	ļ F	ļ	10.02	2 >	
Bi	<0.02	රී	<0.02	ථ	€0.02	La	<0.02	Mo	40.02	ġ.	2000			5 0				- 6	
æ	<0.02	õ	<0.02	Au	40.02	å	<0.02	PZ	<0.02	ž	202	3	10.02	¢ ا		5 F		5	20.05
													1000	-	70.02	Ŧ	70.02	5	20.02
										1000 400									
									(1) = 1 and $e(1)$	get ana.	iyre								

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Sur ?

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

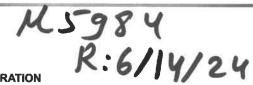
the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

- E. 5 * 1980 246 196 **4**• . 12 M 8: 2 1.481¥ *:


-3

Certificate of Analysis

Refine your results. Redefine your industry.

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Single Analyte Custom Grade Solution
Catalog Number:	CGY10
Lot Number:	V2-Y740548
Matrix:	2% (v/v) HNO3
Value / Analyte(s):	10 000 µg/mL ea: Yttrium
Starting Material:	Yttrium Oxide
Starting Material Lot#:	2661 and 06230520YL
Starting Material Purity:	99.9984%
CERTIFIED VALUES	

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:	10000 ± 30 μg/mL
Density:	1.032 g/mL (measured at 20 \pm 4 °C)

Assay Information:

Assay Method #1	10011 ± 25 μg/mL EDTA NIST SRM 928 Lot Number: 928
Assay Method #2	9997 ± 50 μg/mL ICP Assay NIST SRM 3167a Lot Number: 190730
Assay Method #3	9984 ± 31 µg/mL

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

Calculated NIST SRM Lot Number: See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRWRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

- XI = mean of Assay Method i with standard uncertainty uchar i
- w_i = the weighting factors for each method calculated using the inverse square of the variance:
 - $w_i = (1/u_{char})^2 / (\Sigma (1/(u_{char})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$

- k = coverage factor = 2
- $u_{char} = [\Sigma((w_i)^2 (u_{char} i)^2)]^{1/2}$ where $u_{char} i$ are the errors from each characterization method
- u_{bb} = bottle to bottle homogeneity standard uncertainty u_{its} = long term stability standard uncertainty (storage)
- uts = transport stability standard uncertainty (stor
- als assister subsity surraise atternal

4.0 TRACEABILITY TO NIST

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$ $X_a = mean of Assay Method A with$ $<math>u_{char a} = the standard uncertainty of characterization Method A$

CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k ($u^2_{char a} + u^2_{bb} + u^2_{lts} + u^2_{ts}$)^{1/2} k = coverage factor = 2 u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

М	Ag	<	0.004600	М	Eu		0.009037	М	Na		0.086360	М	Se	<	0.005200	М	Zn		0.030125
М	A		0.014862	0	Fe		0.002410	М	Nb	<	0.000570	ο	Si		0.024100	0	Zr	<	0.002600
М	As	<	0.003500	м	Ga	<	0.000570	м	Nd		0.000923	М	Sm		0.000461				
М	Au	<	0.001700	м	Gd	<	0.003500	М	Ni	<	0.005700	М	Sn	<	0.002300				
0	в		0.002209	м	Ge	<	0.005200	М	Os	<	0.001200	М	Sr	<	0.004600				
0	Ва	<	0.002500	М	Hf	<	0.000570	n	Р	<		М	Та	<	0.000570				
0	Be	<	0.001400	М	Hg	<	0.000570	М	Pb		0.005020	м	Tb		0.001044				
М	Bi	<	0.003500	М	Но		0.009037	М	Pd	<	0.005100	М	Те	<	0.002300				
0	Ca		0.009841	Μ	In	<	0.002300	М	Pr	<	0.002300	М	Th	<	0.000570				
М	Cd	<	0.000570	М	Ir	<	0.000570	М	Pt	<	0.000570	М	Ti	<	0.003500				
М	Се	<	0.002300	0	к		0.018677	м	Rb	<	0.000570	М	TI	<	0.000570				
М	Со	<	0.000570	М	La		0.000461	М	Re	<	0.000570	М	Tm	<	0.003500				
М	Cr	<	0.004000	0	Li	<	0.009300	М	Rh	<	0.008000	М	U	<	0.000570				
М	Cs	<	0.000570	М	Lu		0.000582	М	Ru	<	0.000570	М	V		0.001265				
М	Cu		0.002610	0	Mg		0.001486	n	S	<		М	W	<	0.002300				
М	Dy		0.003815	М	Mn		0.000582	М	Sb		0.005422	s	Y	<					
М	Er		0.003615	М	Мо	<	0.005700	М	Sc	<	0.001200	м	Yb		0.001827				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>. <u>https://www.inorganicventures.com/terms-and-conditions-sale</u>. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^\circ - 24^\circ$ C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.91 +3 6 Y(OH)(H2O)x+2 Chemical Compatibility -Soluble in HCl, H2SO4 and HNO3. Avoid HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids); Oxide (Dissolve by heating in H2O/ HNO3); Ores (Carbonate fusion in Pt0 followed by HCI dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H2O / HCI or HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 89 amu	0.8 ppt	N/A	73Ge16O, 178Hf+2
ICP-OES 360.073 nm	0.005 / 0.000036 µg/mL	1	Ce, Th
ICP-OES 371.030 nm	0.004 / 0.00007 µg/mL	1	Се
ICP-OES 377.433 nm	0.005 / 0.0009 µg/mL	1	Ta, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 20, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 20, 2029
- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Prepared By:**

Uyen Truong **Custom Processing Supervisor**

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Mayn menny Mayyni Kh Paul R Laina

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com R: 2/22/2024 M5999

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Multi Analyte Custom Grade Solution	on
Catalog Number:	CLPP-SPK-1	
Lot Number:	T2-MEB721963	
Matrix:	7% (v/v) HNO3	
Value / Analyte(s):	2 000 µg/mL ea: Aluminum,	Barium,
	1 000 µg/mL ea: Iron,	
	500 μg/mL ea: Manganese, Vanadium, Cobalt,	Nickel, Zinc,
	250 µg/mL ea: Copper,	
	200 μg/mL ea: Chromium,	
	50 µg/mL ea: Beryllium,	Silver

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 µg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.00 ± 0.26 µg/mL	Chromium, Cr	200.0 ± 1.1 µg/mL
Cobalt, Co	500.0 ± 2.4 μg/mL	Copper, Cu	250.0 ± 1.0 µg/mL
Iron, Fe	1 000 ± 4 µg/mL	Manganese, Mn	500.0 ± 2.0 µg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Silver, Ag	50.00 ± 0.22 µg/mL
Vanadium, V	500.0 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

1.070 g/mL (measured at 20 ± 4 °C)

Assay Information:

Density:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Ag	Calculated		See Sec. 4.2
A!	ICP Assay	3101a	140903
Al	EDTA	928	928
Ba	ICP Assay	3104a	140909
Ba	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X _i = mean of Ass	ay Method i with standard uncertainty u _{char i}
	g factors for each method calculated using the inverse square of
the variance	

 $w_i = (1/u_{char_i})^2 / (\Sigma (1/(u_{char_i})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{15} + u^2_{15} \right)^{\gamma_2}$ k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty unts = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a}) Xa = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{tts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty uts = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^\circ \pm 4^\circ$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.869.8799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

Page 3 of 4

11.0 **CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY**

11.1 Certification Issue Date

July 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 27, 2027

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

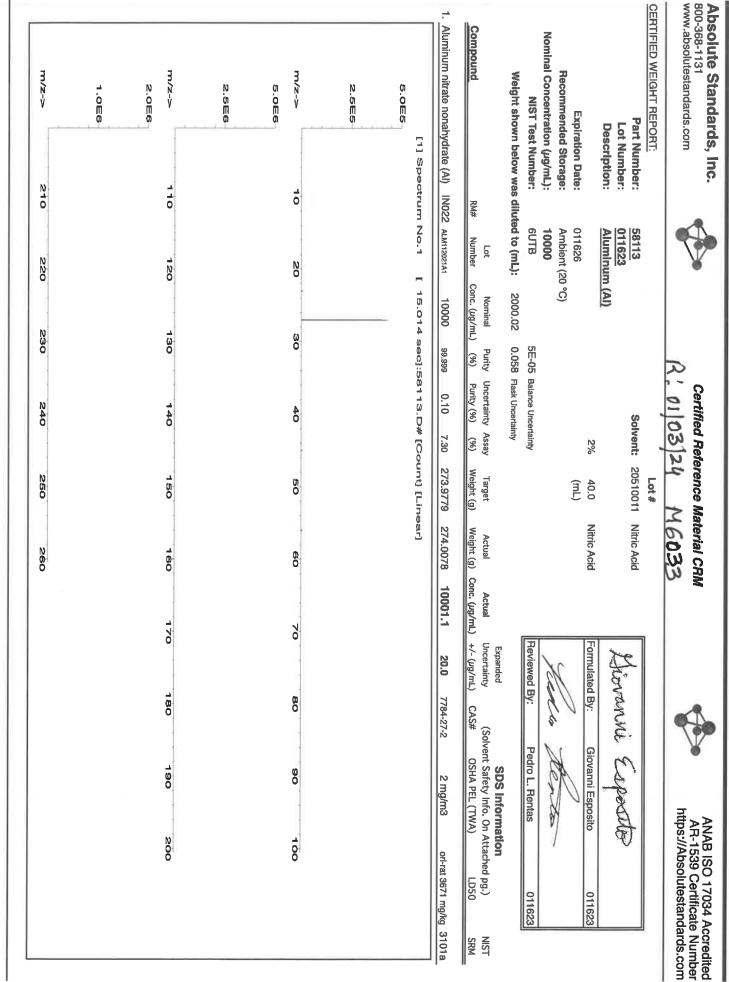
Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control


SD9781.

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

1 of 1

Nitric Acid 69%

CMOS DECN, 1. - OSIO14025 DECN, 1. - OSIO14025 DECN, 1. - OSIO14025 M6034, M6034 M6034, M6034 M6035, M6038, M6036, 1. - Certificate of Analysis

Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 **Revision No.: 0**

Test	Specification	Result
Assay (HNO3)	69.0 – 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO4)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities ~ Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities - Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities – Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Гrace Impurities – Manganese (Мп)	≤ 10.0 ppb	< 1.0 ppb
Frace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

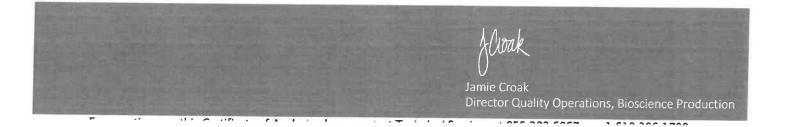
Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities – Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count - 0.5 μm and greater	≤ 60 par/ml	10 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	3 par/ml

>>> Continued on page 3 >>>

Nitric Acid 69% CMOS



Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result	

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 24D1562005 Manufactured Date: 2024-03-18 Retest Date: 2029-03-17 Revision No.: 0

Merenvez - 08/01/2024 Pater m 6039 m 6039 Certificate of Analysis

Test	Specification	Result
ACS – Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6 %
ACS – Color (APHA)	≤ 1 0	5
ACS - Residue after Ignition	≤ 3 ppm	< 1 mgg 1 >
ACS - Specific Gravity at 60°/60°F	1.185 - 1.192	1.192
ACS – Bromide (Br)	≤ 0.005 %	< 0.005 %
ACS – Extractable Organic Substances	≤ 5 ppm	< 1 ppm
ACS Free Chlorine (as Cl2)	≤ 0.5 ppm	< 0.5 ppm
Phosphate (PO4)	≤ 0.05 ppm	0.03 ppm
Sulfate (SO4)	≤ 0.5 ppm	< 0.3 ppm
Sulfite (SO3)	≤ 0.8 ppm	0.3 ppm
Ammonium (NH4)	≤ 3 ppm	< 1 ppm
Trace Impurities ~ Arsenic (As)	≤ 0.010 ppm	< 0.003 ppm
Trace Impurities – Aluminum (Al)	≤ 10.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities ~ Barium (Ba)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities – Beryllium (Be)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities ~ Boron (B)	≤ 20.0 ppb	2.2 ppb
Trace Impurities – Cadmium (Cd)	≤ 1.0 ppb	< 1.0 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	31.0 ppb
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	0.5 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	0.2 ppb
Trace Impurities – Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Trace Impurities – Gold (Au)	≤ 4.0 ppb	< 0.2 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Trace Impurities - Iron (Fe)	≤ 15 ppb	3 ppb

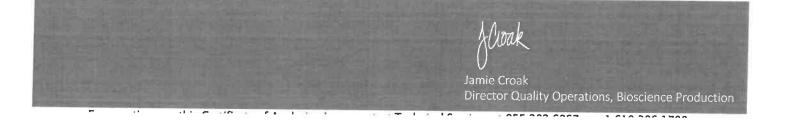
>>> Continued on page 2 >>>

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 24D1562005

Test	Specification	Result
Trace Impurities - Lead (Pb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities - Lithium (Li)	\leq 1.0 ppb	< 0.1 ppb
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	2.2 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Nickel (Ni)	≤ 4.0 ppb	0.2 ppb
Trace Impurities – Niobium (Nb)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Potassium (K)	≤ 9.0 ppb	< 1.0 ppb
Trace Impurities – Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.0 ppb
Trace Impurities - Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	< 0.9 ppb
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities - Tin (Sn)	≤ 5.0 ppb	< 0.4 ppb
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Zirconium (Zr)	≤ 1.0 ppb	< 0.1 ppb

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis



Material No.: 9530-33 Batch No.: 24D1562005

Test	Specification	Result	
	specification	Result	

For Laboratory,Research,or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Nitric Acid 69% CMOS

R: 9/10/24

Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

	M6088, M6089 M6090, M6	091 M6092, M6093
Test	Specification	
Assay (HNO3)	69.0 - 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO4)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

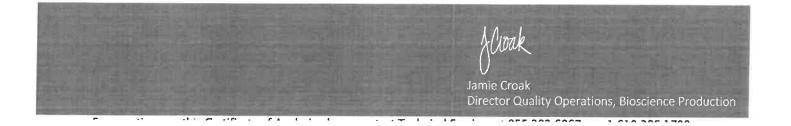
For questions on this Certificate of Analysis please contact Technical Services at 855 282 6867 or +1 610 386 1700

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities – Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities – Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities – Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	10 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	3 par/ml

>>> Continued on page 3 >>>

Nitric Acid 69% CMOS



Material No.: 9606-03 Batch No.: 24D1062002

Test Specifica	ation Result	
----------------	--------------	--

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

_				/			1. Sodium nitrate (Na)	Compound	Description: Expiration Date: Recommended Storage: Nominal Concentration (µg/mL): NIST Test Number: Weight shown below wa	CERTIFIED WEIGHT REPORT: Part Numbei Lot Numbei	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com
m/z->	N 0 11 0	m/z-≻ 5.0E6	N.5 6	m/z-> 5.0∈6	2.5E5	5.0E5	trate (Na)	đ	Description: Sodium (Expiration Date: 12226 Recommended Storage: Ambient (2 I Concentration (µg/mL): 10000 NIST Test Number: 6UTB Weight shown below was dliuted to (mL):	<u>VEIGHT RE</u> Part I Lot I	standards.c
						[1] Spec	=		Description: Expiration Date: nended Storage: ntration (µg/mL): htration (µg/mL): T Test Number: ST Test Number:	HT REPORT: Part Number: Lot Number:	om
0		110		10		[1] Spectrum No.1	IN036 NAV01201511	Lot RM# Number	Sodiur 12226 Ambien 10000 6UTB 6UTB	<u>58111</u> 122223	
N N O		120		N. O		-				23	V
230		130		а О			10000 99.999	Nominal Purity Conc. (µg/mL) (%)	5) 3000.4 0.06		Rin
		and here and a starting				8.935 sec]:58111.D# [Count] [Linear]	999 0.10	ity Uncertainty) Purity (%)	2% 5E-05 Balance Uncertainty 0.06 Flask Uncertainty		Certi
240		140		6		.D# [Cot	26.9	Assay (%)	2% ncertainty ertainty	Solvent:	ified Refu
N U O		150		Ö		unt) [Line	111.5406	Target Weight (g)	60.0 (mL)	Lot # 24002546	erence Mi MSR 0
280		160		0 O		ar]	111.5479	Actual Weight (g)	Nitric Acid	Nitric Acid	Certified Reference Material CRM 5 124 MSR06 MS
				N			10000.7	Actual Conc. (µg/mL)		3	RM 5807
		170		70			20.0	Expanded Uncertainty +/- (µg/mL)	Formulated By:	Allea	
		180		80			7631-99-4	0	By:	aha	
		190		80			5 mg/m3	SUS information (Solvent Safety Info. On Attached pg.) AS# OSHA PEL (TWA) LD50	Aleah O'Brady	Brad	×
		200		100				SUS Information afety Info. On Atta OSHA PEL (TWA)	ady C	All I	ANAB AR-1 https:///
		ŏ		ŏ			orl-rat 3430 mg/kg	ached pg.) سەءە	122223		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com
							9/kg 3152a	NIST	223		4 Accred cate Num andards.c

-

Printed: 12/29/2023 2:56:20 PM	Printed: 12/2					2 of 2							2223	Lot # 122223		# 58111	Part #
	r sed in	The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).	nts unless oth ity raw materi e to NIST (see the Uncertaint , D.C. (1994).	ements purity ; eable to ing the gton, D.	The certified value is the concentration calculated from gravimetric and volumetric measureme Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest puri the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing t Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington,	and the and the ith weig ated. atory co atory co flice,	The certified value is the concentration calculated from gravimetric and volume Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with w Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. All Standards should be stored with caps tight and under appropriate laboratory Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating a Measurement Result," NIST Technical Note 1297, U.S. Government Printing Offi	avimetri ass A g are cali are cali ppropria ernmen	from gra rated Cl ior to us ces that lue, unle under a J.S. Gov	ulated er, calib er, calib er, calib er, calib g baland g baland g baland ght and ght and 1297, L	tion calc zed wat ally usin ally usin araps tio al Note	ncentra ards. meticule 0.5% c 0.5% c lor, B.N Technic	The certified value is the concentration calculated from gravi Purified acids, 18.2 megohm deionized water, calibrated Clas the preparation of all standards. All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that ar Standards are certifed (+/-) 0.5% of the stated value, unless All Standards should be stored with caps tight and under app Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelin Measurement Result," NIST Technical Note 1297, U.S. Gover	value i s, 18.2 ion of e prepa e certifi e certifi Referen it Result	certified preparat preparat tandards ar dards ar dards ar tandards ar	* The * Purif * All s * Stan Mea:	
Certified by:	e e							standard.	on of this	reparati	ed in the j	ts observ	Physical Characterization: Homogeneity: No heterogeneity was observed in the preparation of this standard.	o heterog	Physical Characterization: Homogeneity: No heterogeneity v	Physi Homog	
	-				alyte	(T) = Target analyte	= (T)										
2 2 × 3 < c *	40.02 40.02 17 40.02 17 17 17 17 17 17 17 17 17 17	Ta Sr			402 402 402 402 402 402 402 402 402 402	P P OS NN		Man Lu Mag	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	で で で で で ま ま ま ま ま ま ま ま ま ま ま ま ま	4 4 4 4 4 4 5 8 8 8 8 8 8	e e e e e e e	40.02 40.02 40.02 40.02	5 S C C S S S	40.02 40.02 40.02 40.02	Bi Bi	
			(ua/ml)	ומ	rometry (ICP-MS): Verification by ICP-M	ry (ICP		ass Spect Metals	asma Ma Trace	pled Pla	aly Cou	ductiv	sis by In	Analys	umenta	Instra	
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	*			al CRM	Certified Reference Material C	ference	tified Re	Cen					s, Inc.	ards.con	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	Absolute (800-368-1131 www.absolute	800 WWW

	1.057	2.0年7	m/z->	р. С. С. С.	5.0 E	7/2->	N 0 0	5.0E5	1. Antimony (Sb)	Compound	Volume shown below was diluted to (mL):	NIST Test Number:	Recommended Storage: Nominal Concentration (µg/mL):	Expiration Date:	Part Number: Lot Number: Description:	CERTIFIED WEIGHT REPORT:	800-368-1131 www.absolutestandards.com
)			110			10		[1] Spectrum No.1	58151	Part Number	lip sam mo	ber	nL):	ate:	on:		
			12.			NO		40.1	1 100923	Lot r Number	uted to (mL)	6UTB	Ambient (20 °C) 1000	120526	57051 120523 Antimony (Sb)		
									0.1000	Dilution Factor	: 3000.41		20 °C)		w (Sb)		Ri
			130			30		39C]:58	300.0	Initial Vol. (mL)		5E-05					Certifi (0 1) 03 (2 4
:			140			4 0		051.D#	0.084	Uncertainty) Pipette (mL)		Balance Uncertainty				ł	Certified
			1 80			50		17.964 sec]:58051.D# [Count] [Línear]	1000	Nominal	unty	rteintv		2.0%	24002546	Lot #	Certified Reference Material CRM (芝り MS802 Mら
						Ö		_(near]	10001.4	Initial) Conc. (µg/ml				(mL)	Nitric Acid	Solvent:	nce Material
			180			80			1000.0	Final nL) Conc. (µg/mL)				Nitric Acid			CRM
			170			70			0 2.1	Expanded Uncertainty mL) +/- (µg/mL)		Reviews	K	id Formulated By:			UU UU
			180			80			7440-36-0	Ľ	an of		20	ited By:	Ferre		
			190			0				Solvent Sa CAS# OSH/		Pertr	the second	Lawr	and b		V
						A. and A. and A. and A.			0.5 mg/m3	SDS Information nt Safety Info. On Attac OSHA PEL (TWA)		o I Rentas	SA)	Lawrence Barry	De		Alv AR https
			200			100			orl-rat 7000 mg/kg	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD50							ANAB ISO 1:/034 Accreated AR-1539 Certificate Number https://Absolutestandards.com
) mg/kg 3102a) NIST	120020	120523		120523			tificate l standar

www.absolutestandards.com 800-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							I race M	etals	Verifica	tion	by ICP-N	IS (II)	g/mL)						
A	B	2	202	2	-	1	MILLION CONTRACTOR	Manual	AND IN THE OWNER.			No. of Lot, No.			Contraction of the local division of the loc	CONTRACTO	AL INCOME		
2	20.02	5	20.02	Dy	40.02	Hf	40.02	E	<0.02	Ni	40.02	7	20.02	Se	<0.2	7	400	W	200
SB		ۍ	4	ដ	2003	Ľ,	ŝ	4	2	1		1			1012		10.02	**	20.02
	5,			1	20.00	CR1	70.02	L	20.02	NP	40.02	Re	40.02	2	40.02	P	20102	9	4000
au.	202	ß	20.02	ñ	40.02	5	A ,92	M	40,01	õ	4002	R.	23	A.	2003	3	3	4	
B	2020	ç	33	5	5	ľ	3	5,		!		-	mot on	9	TNN		20.02	~	20.02
1		u g	10.02	ę	70.02	-	20.05	MD	20.02	Pd	40.02	8	40.02	Za	A	þ	40.02	Ş	3
De	1000	ç	40,02	ନ୍ଥ	40,02	4	402	He	A 12	Ð	300	2	33	n'	3	1	3	: :	
<u>H</u>	43	3	3	P	3	4						1111	700.00	ġ	20.02	101	<u.u2< td=""><td>1</td><td>20.02</td></u.u2<>	1	20.02
		1	20.02	G	20.05	5	20.02	Mo	40.02	7	0 02	S	40.02	6	AN 03	3	33	7	3
G	SUUS	ç	A .02	Au		y	A B	K	200	4	5	2	5	3,			10.00	1	70.02
				I					NAL ON	ļ	44	Ŕ	20.02	12	20.02	11	40.02	2	20.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

In P. S.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57051 Lot # 120523

N 55 10 0	m/z-> 110 5.0E6	រា .0 ៣ ភា	m/≥-> 10	ហ .0 ព	[1] Spectrum No.1 1.0E7	1. Silver nitrate (Ag)	Compound	Part Number: 57047 Lot Number: 122823 Description: Silver (A Description: Silver (A Expiration Date: 122826 Recommended Storage: Ambient (; Nominal Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:
	120		N.		-	5 J0612AGA1	Lot Nor RM# Number Conc. (57047 122823 Silver (Ag) 122826 Ambient (20 Ambient (20 1000 6UTB 6UTB	-
	130 140		90 40		14.044 sec]:58147.D# [Count] [Linear]	88.8988 0.10	Nominal Purity Uncertainty Assay Conc. (Jug/mL) (96) Purity (96) (96)	*C) 5E-05 Balance Uncertainty	Certified I R 1 8 5 2 4
	1 ភូ- O		50		[Count] [Linear]	6.27992	Target Weight (g)	n t: 24002546 2% 80.0 (mL)	Certified Reference Material
	160 170		60 70			1000.0	Actual Actual U Weight (g) Conc. (µg/mL) +	Nitric Acid	rial CRM M6030
	180		80			2.0 7761-88-8	Expanded Uncertainty (Solv +/- (µg/mL) CAS#	ad By:)30
	190 200		90 100			10 ug/m3	SDS Information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LD51	Benson Chan Pedro L. Rentas	http
	ŏ		ŏ				n ached pg.) NIST LD50 SRM	122823	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part # 57047 Lot # 122823

1 of 2

Printed: 8/1/2024, 2:13:15 PM

≤ ∞

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							I ACE IVIE	VICLAIS	Venillaria		by ICP-I	NO (hg/mL)						
			THE PARTY	A DECEMBER OF	Contraction in the second	Store and	12 3 2 201	10 10		2 501.2	With a light of the light	1.12	140 10 10 10 10 10 10 10 10 10 10 10 10 10	No.		No.	and the second second		
A	<0.02	Q	<0.02	Dy	<0.02	Hf	<0.02	5	<0.02	N	<0.02	7	<0.02	Se	<0.2	ТЪ	<0.02	W	<0.02
SP	<0.02	Ca	<0.2	막	40.02	Но	<0.02	Lu	<0.02	Ŋ	<0.02	Re	<0.02	<u>[2</u>	<0.02	F	<0.02	d	<0.02
As	<0.2	ç	<0.02	臣	<0.02	In	<0.02	Mg	<0.01	8	<0.02	Rh	<0.02	Å	T	1	<0.02	<	<0.02
Ba	<0.02	S	<0.02	ନ୍ଥ	<0.02	Ħ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Ţ,	<0.02	YЪ	<0.02
Be	<0.01	Ω	<0.02	ନ୍ମ	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	ş	<0.02	Ta	<0.02	Y	<0.02
Bi	<0.02	S	<0.02	ନ୍ନ	<0.02	La	<0.02	Mo	<0.02	P	<0.02	Sm	<0.02	Ś	<0.02	Sn	<0.02	2	<0.02
6	<0.02	8	40.02	Au	<0.02	РЪ	<0.02	Nd	<0.02	K	<0.2	%	<0.02	Ta	<0.02	Ð	<0.02	2	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

In & She

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Printed: 9/21/2022, 11:20:01 PM	1 of 2			Part # 56138 Lot # 082922
20 0	250	240	220 230	m/z-> 210
				N 07 5 О П П О О
160 170 180 190 200	150 10	0 140	120 130	m/z-> 110
				5. 0 E 5
60 70 80 90 100	50	40	20 30	m/z-> 10
				₽.5E6
	unt] [Linear]	14.495 sec]:58138.D# [Count] [Linear]	_	[1] Speatrum No.1 5.0E6
10000.1 20.0 10042-76-9 NA orf-rat >2000mg/kg 3		99.997 0.10	7 SRZ022018A1	trate (Sr)
Expanded SDS Information Actual Actual Uncertainty (Solvent Safety Info. On Attached pg.) NIST Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50 SRM	Target Weight (g)		Lot Nominal RM# Number Conc. (µg/mL)	Compound
Reviewed By: Pedro L. Rentas 082922		5E-05 Balance Uncertainty 0.058 Flask Uncertainty	6018 diluted to (mL): 1000.12	Weight shown below was diluted to (mL):
Nuic Acid Formulated by: Lawrence barry 082922	(mL)	6 1	082925 Ambient (20 °C) 10000	Expiration Date: Recommended Storage: Nominal Concentration (µg/mL):
Advance Bary	20510011	Solvent:	<u>56138</u> <u>082922</u> <u>Strontium (Sr)</u>	Part Number: Lot Number: Description:
I CRM ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	Certified Reference Material CRM いまま いまま	Certified Ref এ৯।।১।২३ শ	R:	Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com CERTIFIED WEIGHT REPORT:

vww.absolutestandards.com	300-368-1131	\bsolute Standards,
		nc

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							race Me	tais	Verifica	TION	by ICP-	MC (/Jm/b/						
					10-31										10 T		ALC: NO		No. of Concession, No. of Conces
AI	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Ε.	40.02	<u>N</u>	<0.02	Pr	<0.02	Se	<0.2	ТЪ	<0.02	W	<0.02
SР	<0.02	Ca	<0.2	막	<0.02	Но	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	ŝ	<0.02	Te	△ .02	q	<0.02
As	<0.2	ĉ	<0.02	E	<0.02	ľ	<0.02	Mg	<0.01	õ	<0.02	Rh	<0.02	Ag	<0.02	H	<0.02	<	<0.02
Ba	<0.02	ß	<0.02	ନ୍ଦ	<0.02	F	<0.02	M'n	<0.02	Pd	<0.02	RЬ	<0.02	Na	<0.2	Ţ	<0.02	YЪ	<0.02
Be	<0.01	Ω	<0.02	Ga	<0.02	F	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	Ţ	Tm	<0.02	¥	<0.02
Bi	<0.02	ĉ	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Ŗ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
в	<0.02	Cu	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	ĸ	<0.2	Sc	<0.02	Ta	<0.02	E	<0.02	Zr	<0.02

Homogeneity: No heterogeneity was observed in the preparation of this standard.

(T)= Target analyte

Physical Characterization:

Certified by:

Sur & Sur

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138 Lot # 082922

2 of 2

Absolute standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT: Part N Lot N Desc	Expiration Date: Recommended Storage:	NIST Te	Weight showr	Compound		2.0 円の	1.0巨6	TTVZ->>	1.0巨4	0 0 0	m/z->-	1.0匹色	5.0 E5	mvz->
	<u>PORT:</u> Part Number: Lot Number: Description:	Expiration Date: nended Storage:	NIST Test Number:	Weight shown below was diluted to (mL):	RM#				Ó			110			210
	<u>57081</u> 062724 Thalllum (TI)	062727 Ambient (20 °C)	6UTB	ed to (mL): Lot	Number C	110007 BCCF4088			N			120			220
		°C)		2000.1 0 Nominal Pi	Conc. (µg/mL) (88			ක 0			130			230
Certified Refi R ! 8]5]24	ğ			0.10 Flask Uncertainty Purity Uncertainty Assay	(%) Purity (%)	89,889 U.1U			4			140			240
Certified Reference Material CRM とという		2% 40 (m	sertainty	ainty v Assay Target	(%) Weight (g)	0.11			80			150			250
e Material	Lot # 24002546 Nitric Acid	40.0 Nitric Acid (mL)		get Actual		116C'7 CJR									
СRМ М6023	Acid	Acid		Actual	Weight (g) Conc. (µg/mL)	1000.1			8			160			260
23	Ala	Formulated By:	Reviewed By:	Expanded Uncertainty		2.0			70			170			
	20	\$		(Solvent	CAS#	10102-45-1			80			180			
http	Gion El o	Aleah O'Brady	Pedro L. Rentas	SDS Information Safety Info. On Atta	OSHA PEL (TWA)	u.i mg/ma			90			190			
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com		062724	062724	SDS Information (Solvent Safety Info. On Attached pg.)	s) LD50	gy/gmct sum-no			100			200			
Accredite te Numbe dards.con		4		NIST	SRM	9 3158									

Part # 57081 Lot # 062724

1 of 2

Printed: 8/1/2024, 2:13:42 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	E	χđ	10	i ș	Re	Ba	2	>	Sb	2		ſ	
		<002	20.02	0.01	100-	40.02	20.2	2	2002	20.02			
		2	S	2	ç	ĉ	Ę	? (ç	5			
	10.01	50	<0.02	70.02	200	<0.02	20.05		502	<0.02			
	20	<u>۸.</u>	ନ୍ଚ	Ga	?	ଜୁ	E	1 [ų	Dy			
	70.07	23	<0.02	20.02	3	<0.02	20.02	20.02	500	<0.02	The second se		
	10	P	Ľ	не	1	7	In	DIT.	5	Hf			
	20.02	3	A0.02	<0.2	10101	2003	<0.02	20.05	3	<0.02		1 :	TYPE Me
	NO		Mo	ВH		Š	Mg	Ľ	1	5.	Superior of	, caro	Aptolo 1
9	20.02		A0.03	<0.2	10.02	505	<0.01	<0.02	3	<0.02	WINDER HURST	V CI IIICO	Varifics
	Ĕ	1;	Ş	ď	2	2	õ	No	í	N			
	40.2	10.01	30	<0.02	20.02	2	<0.02	20.02		40.02	100 m 100 m	by icr-	
	Sc	011	2	Ru	20	ļ	R	Re	1	Ŗ		D CIM	No 1
	<0.02	20.02	3	<0.02	20.05	2	<0.02	<0.02	a cion	50.02		nav uur)	
	Ta	G	0	Sr	Na	5	Ag	S	Ş	2	And a state of the		
	<0.02	20.02	2	<0.02	202		<0.02	A0.02	101	c (h			
	3	20	2	ī	ЦI,		-	Te					
	40.02	20.02	2	40.02	<0.02	Þ	-1	<0.02	70.02	Such	COLUMN TWO AND ADDRESS OF THE OWNER.		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Zr	20	9	×	Υ _β	-	<	c					
	<0.02	40.02		40.02	40,02	20.02	3	40.02	<0.02	5			

(I) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Ser P. S.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

*^

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com	CERTIFIED WEIGHT REPORT:	Part Number: 57023 Lot Number: 062424 Description: Vanadium (V)	Expiration Date: 062427			Volume shown below was diluted to (mL): 2000.3	Part Lot Dilution	Compound Number Number Factor	1. Ammonium metavanadate (V) 58123 021224 0.1000	[1] Spectrum No.1 [34.243 2.0E6		m/z->- 10 20	2.067	1.0巨7	m/z 110 120 1	2.588	
8:81 Ce					5E-05	0.06	Initial		200.0	sec]:58		30			190		200
Certified Reference Material CRM 冬」 シート					Balance Uncertainty	Flask Uncertainty	Uncertainty		0.084	34.243 sec]:58023.D# [Count] [Linear]		4			140		240
eference l	Lot #	24002546	2,0%		inty		Nominal	Conc. (µg/mL)	1000	žount) [Lin		5 0			- 50		2000
Naterial Cl	Solvent:	Nitric Acid	40.0 (mL)				Initial	Conc. (µg/mL)	10000.3	1⊖ar]		60			160		260
MF M6021			Nitric Acid				Final	Con	1000.0						j.		•
21		Alla	Formulated By:	M	Reviewed By:		Expanded		2.2			70			170		
		Alleah & Brack	J By:	2 l	y:		(Solve)		7803-55-6			80			180 0		
ht		Garan	Aleah O'Brady	ento	Pedro L. Rentas		SDS Information It Safety Info. On Atta	OSHA PEL (TWA)	0.05 mg/m3			90			190		
ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com			062424	/	s 062424		SDS Information (Solvent Safety Info. On Attached pg.)	(A) LD50	3 ort-rat 58.1mg/kg			100			200		
Accreditec te Numbe dards.con	1		<u> </u>			ļ	NIST	SRM	3165								

1 of 2

Printed: 8/1/2024, 2:13:49 PM

Lot # 062424

Part # 57023

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			IG	<u>.</u>	Be	U4	5	202	A =	S		≥				
		93	20.05	3	<u>0</u> 0	20.02	3	202	5	A0.02		40.02				
		2	S) 	ፍ	ç	?	5	>	ي ۵	1	5				
	areas	3	20.02		<0.02	20.05	2	20.02	2	4012	10100	ann	and the second se			
	200	Ån	ç		<u></u>	ç	2	13	' 1	막	5	٦ . .				
	70.02	3	<0.02		303	20.02	2	A0.02		2002	10.04	con				
	1 50	ģ	5		ţ,	q	•	þ		H	m	5	Cardinal and			
	20.02	3	A0.02	1.01	5	40.02	2	A.02	-01-01-	33	20.02	200	Contraction of the local division of the loc		Trace M	
	Na		Mo	28	Ş	Mn	6	Ma	Ę		L	T	Constant in the second		etals	•
(T) = Targ	20.02	2	40.02	202	Ś	40.02		2001	70.02	53	20.02	222	SCHOOL STORE		Verifica	
Target analyte	ŗ	:	7	٦	3	Pd	;	ò	UNI	ł	N		1 10 1 10 10 10 10 10 10 10 10 10 10 10		tion	
e	40.2		40.02	20.02	2	A 22	10100	403	20.05	5	A0.02		のないのであるので	101		
	Sc	i	Sm	Ku	,	Rb	1111	Ŗ	Xe	3	1					
	40.02		33	<0.02		40.02	10.06	33	20.02	3	<0.02	and the second se		/ min_/		
	Ta	<	<i>^</i>	St		z	26	A.	Ľ	;	Ş					
	<0.02	10.01	3	40.02		<n.2< td=""><td>70.02</td><td>3</td><td><0.02</td><td></td><td>40.2</td><td>and the second se</td><td></td><td></td><td></td><td></td></n.2<>	70.02	3	<0.02		40.2	and the second se				
	П	QH	ç	Tm		ł	11	ł	Te	3	Ţ					
	<0.02	20.02	3	<0.02	10.04	33	20:05	2	40.02	10101	2003					
	Zr	211	1	¥	, L	ş	<		q	:	W	A DESCRIPTION OF				
	<0.02	20.02	3	40.02	70.07	3	-	3	40.02	20.02	Solution	A DESCRIPTION OF THE PARTY OF T				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

In P. Sur

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

.