

## **Prep Standard - Chemical Standard Summary**

Order ID : P4721

Test : Diesel Range Organics

Prepbatch ID : PB164744,

Sequence ID/Qc Batch ID: FG110724,

Standard ID :

EP2538,EP2551,PP23454,PP23611,PP23612,PP23613,PP23614,PP23615,PP23616,PP23617,PP23935,

Chemical ID :

E2865,E3551,E3759,E3787,E3793,E3794,E3822,E3823,P11950,P11960,P13103,P13107,P13210,P13211,P13217,P13 218,P13492,P13493,P13494,P13495,



## Extractions STANDARD PREPARATION LOG

| Recipe<br>ID<br>3868 | NAME<br>METHELENE<br>CHLORIDE+ACETONE | <u>NO.</u><br>EP2538 | <b>Prep Date</b><br>09/17/2024 |                 | Prepared<br>By<br>Rajesh Parikh | <u>ScaleID</u><br>None | PipetteID<br>None | Supervised By<br>RUPESHKUMAR<br>SHAH<br>09/17/2024 |
|----------------------|---------------------------------------|----------------------|--------------------------------|-----------------|---------------------------------|------------------------|-------------------|----------------------------------------------------|
| FROM                 | 8000.00000ml of E3793 + 8000.0000     | 00ml of E37          | 94 = Final Qu                  | antity: 1600.00 | 10 ml                           |                        |                   |                                                    |

| <u>Recipe</u><br><u>ID</u><br>3923 | NAME<br>Baked Sodium Sulfate      | <u>NO.</u><br>EP2551 | Prep Date<br>10/18/2024 | Expiration<br>Date<br>01/03/2025 | Prepared<br>By<br>Rajesh Parikh | ScaleID<br>Extraction_SC<br>ALE_2 | <u>PipetteID</u><br>None | Supervised By<br>RUPESHKUMAR<br>SHAH<br>10/18/2024 |
|------------------------------------|-----------------------------------|----------------------|-------------------------|----------------------------------|---------------------------------|-----------------------------------|--------------------------|----------------------------------------------------|
| FROM                               | 4000.00000gram of E3551 = Final C | uantity: 400         | 0.000 gram              |                                  |                                 | (EX-SC-2)                         |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |
|                                    |                                   |                      |                         |                                  |                                 |                                   |                          |                                                    |



| <u>Recipe</u><br><u>ID</u><br>3609 | NAME<br>20 PPM DRO SPIKE SOLUTION<br>(RESTEK) | <u>NO.</u><br>PP23454 | Prep Date<br>06/10/2024 | Expiration<br>Date<br>12/08/2024 | <u>Prepared</u><br><u>By</u><br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | Supervised By<br>Ankita Jodhani<br>06/12/2024 |
|------------------------------------|-----------------------------------------------|-----------------------|-------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------|-----------------------------------------------|
| <u>FROM</u>                        | 1.00000ml of P11950 + 1.00000ml of            | P11960 + 4            | 1<br>18.00000ml of      | E3759 = Fina                     | Quantity: 50.00                              | 00 ml                  |                          |                                               |
|                                    |                                               |                       |                         |                                  |                                              |                        |                          |                                               |
|                                    |                                               |                       |                         |                                  |                                              |                        |                          |                                               |
|                                    |                                               |                       |                         |                                  |                                              |                        |                          |                                               |
|                                    |                                               |                       |                         |                                  |                                              |                        |                          |                                               |

| <u>Recipe</u><br><u>ID</u><br>433 | <u>NAME</u><br>100/100 PPM DRO (Restek) | <u>NO.</u><br>PP23611 | <b>Prep Date</b><br>08/14/2024 | Expiration<br>Date<br>02/13/2025 | Prepared<br>By<br>Yogesh Patel | <u>ScaleID</u><br>None | PipettelD<br>None | Supervised By<br>Ankita Jodhani<br>08/19/2024 |
|-----------------------------------|-----------------------------------------|-----------------------|--------------------------------|----------------------------------|--------------------------------|------------------------|-------------------|-----------------------------------------------|
| <u>FROM</u>                       | 1.00000ml of P13103 + 1.00000ml of      | f P13107 + 1          | 1.00000ml of                   | P13210 + 7.00                    | 000ml of E3787                 | = Final Quanti         | ty: 10.000 ml     |                                               |
|                                   |                                         |                       |                                |                                  |                                |                        |                   |                                               |
|                                   |                                         |                       |                                |                                  |                                |                        |                   |                                               |
|                                   |                                         |                       |                                |                                  |                                |                        |                   |                                               |
|                                   |                                         |                       |                                |                                  |                                |                        |                   |                                               |



| <u>Recipe</u><br><u>ID</u><br>3796 | NAME<br>100/100 PPM DRO STD (CPI)  | <u>NO.</u><br>PP23612 | Prep Date<br>08/14/2024 | Expiration<br>Date<br>02/13/2025 | Prepared<br>By<br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | Supervised By<br>Ankita Jodhani<br>08/19/2024 |
|------------------------------------|------------------------------------|-----------------------|-------------------------|----------------------------------|--------------------------------|------------------------|--------------------------|-----------------------------------------------|
| <u>FROM</u>                        | 1.00000ml of P13211 + 1.00000ml of | P13217 + 7            | 1.00000ml of F          | D<br>D13218 + 7.000              | 000ml of E3787                 | = Final Quantit        | y: 10.000 ml             |                                               |
|                                    |                                    |                       |                         |                                  |                                |                        |                          |                                               |
|                                    |                                    |                       |                         |                                  |                                |                        |                          |                                               |
|                                    |                                    |                       |                         |                                  |                                |                        |                          |                                               |
|                                    |                                    |                       |                         |                                  |                                |                        |                          |                                               |

| <u>Recipe</u> |                                   |            |                | <b>Expiration</b> | Prepared     |                |           | <u>Supervised By</u> |
|---------------|-----------------------------------|------------|----------------|-------------------|--------------|----------------|-----------|----------------------|
| <u>ID</u>     | NAME                              | <u>NO.</u> | Prep Date      | <u>Date</u>       | <u>By</u>    | <u>ScaleID</u> | PipettelD | Ankita Jodhani       |
| 435           | 50 PPM ICC DRO STD (Restek)       | PP23613    | 08/15/2024     | 02/13/2025        | Yogesh Patel | None           | None      |                      |
|               |                                   |            |                |                   |              |                |           | 08/19/2024           |
| FROM          | 0.50000ml of E3787 + 0.50000ml of | PP23611 =  | Final Quantity | /: 1.000 ml       |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |
|               |                                   |            |                |                   |              |                |           |                      |



| Recipe<br>ID<br>437 | NAME<br>20 PPM ICC DRO STD (Restek) | <u>NO.</u><br>PP23614 | Prep Date<br>08/15/2024 | Expiration<br>Date<br>02/13/2025 | Prepared<br>By<br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | Supervised By<br>Ankita Jodhani<br>08/19/2024 |
|---------------------|-------------------------------------|-----------------------|-------------------------|----------------------------------|--------------------------------|------------------------|--------------------------|-----------------------------------------------|
| FROM                | 0.80000ml of E3787 + 0.20000ml of I | PP23611 =             | Final Quantity          | /: 1.000 ml                      |                                |                        |                          |                                               |

| <u>Recipe</u><br><u>ID</u><br>438 | NAME<br>10 PPM ICC DRO STD (Restek) | <u>NO.</u><br>PP23615 | <b>Prep Date</b><br>08/15/2024 | Expiration<br>Date<br>02/13/2025 | <u>Prepared</u><br><u>By</u><br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | <u>Supervised By</u><br>Ankita Jodhani<br>08/19/2024 |
|-----------------------------------|-------------------------------------|-----------------------|--------------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------|------------------------------------------------------|
| FROM                              | 0.90000ml of E3787 + 0.10000ml of l | PP23611 =             | Final Quantity                 | y: 1.000 ml                      | 1                                            |                        |                          | 30,10,2021                                           |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |
|                                   |                                     |                       |                                |                                  |                                              |                        |                          |                                                      |



| Recipe<br>ID<br>439 | NAME<br>5 PPM ICC DRO STD (Restek) | <u>NO.</u><br>PP23616 | Prep Date<br>08/15/2024 | Expiration<br>Date<br>02/13/2025 | Prepared<br>By<br>Yogesh Patel | <u>ScaleID</u><br>None | PipetteID<br>None | Supervised By<br>Ankita Jodhani<br>08/19/2024 |
|---------------------|------------------------------------|-----------------------|-------------------------|----------------------------------|--------------------------------|------------------------|-------------------|-----------------------------------------------|
| FROM                | 0.90000ml of E3787 + 0.10000ml of  | PP23613 =             | Final Quantit           | y: 1.000 ml                      | <u> </u>                       |                        |                   |                                               |
|                     |                                    |                       |                         |                                  |                                |                        |                   |                                               |

| Recipe<br>ID<br>3797 | NAME<br>50 PPM DRO ICV STD (CPI)    | <u>NO.</u><br>PP23617 | <b>Prep Date</b><br>08/15/2024 | Expiration<br>Date<br>02/13/2025 | <u>Prepared</u><br><u>By</u><br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | Supervised By<br>Ankita Jodhani<br>08/19/2024 |
|----------------------|-------------------------------------|-----------------------|--------------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------|-----------------------------------------------|
| FROM                 | 0.50000ml of E3787 + 0.50000ml of I | PP23612 =             | Final Quantit                  | y: 1.000 ml                      |                                              |                        |                          |                                               |
|                      |                                     |                       |                                |                                  |                                              |                        |                          |                                               |
|                      |                                     |                       |                                |                                  |                                              |                        |                          |                                               |
|                      |                                     |                       |                                |                                  |                                              |                        |                          |                                               |
|                      |                                     |                       |                                |                                  |                                              |                        |                          |                                               |



| Recipe<br>ID<br>147 | NAME<br>20 PPM DRO Surrogate Spike<br>Solution            | <u>NO.</u><br>PP23935 | Prep Date<br>11/01/2024 | Expiration<br>Date<br>04/23/2025 | <u>Prepared</u><br><u>By</u><br>Yogesh Patel | <u>ScaleID</u><br>None | <u>PipetteID</u><br>None | Supervised By<br>Ankita Jodhani<br>11/04/2024 |
|---------------------|-----------------------------------------------------------|-----------------------|-------------------------|----------------------------------|----------------------------------------------|------------------------|--------------------------|-----------------------------------------------|
| FROM                | 1.00000ml of P13492 + 1.00000ml o<br>Quantity: 200.000 ml | f P13493 + ·          | 1.00000ml of            | P13494 + 1.000                   | 000ml of P1349                               | 5 + 196.00000n         | nl of E3822 =            | Final                                         |



| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|--------------------------------|-------------------------------------------------------------------|------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical               | BA-3382-05 / Sand,<br>Purified (cs/4x2.5kg)                       | 0000243821 | 12/31/2024         | 04/30/2020 /<br>RAJESH     | 04/28/2020 /<br>RAJESH         | E2865             |
| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| PCI Scientific<br>Supply, Inc. | PC19631-100 / SODIUM<br>SULFATE, ANHYDROUS,<br>PEST GRADE, 1      | 313201     | 01/03/2025         | 01/03/2024 /<br>Rajesh     | 07/20/2023 /<br>Rajesh         | E3551             |
| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical               | BA-9644-A4 / Methylene<br>Chloride,U-Resi,<br>Cycle-Tainer (215L) | 24D1962005 | 12/08/2024         | 06/08/2024 /<br>Rajesh     | 05/31/2024 /<br>Rajesh         | E3759             |
| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical               | BA-9644-A4 / Methylene<br>Chloride,U-Resi,<br>Cycle-Tainer (215L) | 24G0862022 | 02/13/2025         | 08/13/2024 /<br>Rajesh     | 08/07/2024 /<br>Rajesh         | E3787             |
| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical               | 9005-05 / Acetone Ultra<br>(cs/4x4L)                              | 24E0761004 | 03/11/2025         | 09/12/2024 /<br>Rajesh     | 09/11/2024 /<br>Rajesh         | E3793             |
| Supplier                       | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical               | BA-9644-A4 / Methylene<br>Chloride,U-Resi,<br>Cycle-Tainer (215L) | 24G2362009 | 03/17/2025         | 09/17/2024 /<br>Rajesh     | 09/03/2024 /<br>Rajesh         | E3794             |



| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|------------------|-------------------------------------------------------------------|------------|--------------------|----------------------------|--------------------------------|-------------------|
| Seidler Chemical | BA-9644-A4 / Methylene<br>Chloride,U-Resi,<br>Cycle-Tainer (215L) | 2412662006 | 04/23/2025         | 10/24/2024 /<br>Rajesh     | 10/24/2024 /<br>Rajesh         | E3822             |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Seidler Chemical | BA-9644-A4 / Methylene<br>Chloride,U-Resi,<br>Cycle-Tainer (215L) | 2412662006 | 05/03/2025         | 11/03/2024 /<br>Rajesh     | 10/24/2024 /<br>Rajesh         | E3823             |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Restek           | 31266 / Florida TRPH<br>Standard                                  | A0186840   | 12/10/2024         | 06/10/2024 /<br>yogesh     | 07/11/2022 /<br>Yogesh         | P11950            |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Restek           | 31266 / Florida TRPH<br>Standard                                  | A0186840   | 12/10/2024         | 06/10/2024 /<br>yogesh     | 07/11/2022 /<br>Yogesh         | P11960            |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Restek           | 31266 / Florida TRPH<br>Standard                                  | A0204859   | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/12/2024 /<br>Yogesh         | P13103            |
| Supplier         | ItemCode / ItemName                                               | Lot #      | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Restek           | 31266 / Florida TRPH<br>Standard                                  | A0204859   | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/12/2024 /<br>Yogesh         | P13107            |



| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|---------------------------------------------------------------|--------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 72072 /<br>n-Tetracosane-d50, 1000<br>ug/ml                   | 101122 | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/17/2024 /<br>Ankita         | P13210            |
| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 72072 /<br>n-Tetracosane-d50, 1000<br>ug/ml                   | 101122 | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/17/2024 /<br>Ankita         | P13211            |
| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| CPI International           | Z-110400-05-01 / TRPH<br>Standard (C8-C40), 500<br>mg/L, 1 ml | 514983 | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/31/2024 /<br>Ankita         | P13217            |
| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| CPI International           | Z-110400-05-01 / TRPH<br>Standard (C8-C40), 500<br>mg/L, 1 ml | 514983 | 02/14/2025         | 08/14/2024 /<br>yogesh     | 01/31/2024 /<br>Ankita         | P13218            |
| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
| Absolute<br>Standards, Inc. | 72072 /<br>n-Tetracosane-d50, 1000<br>ug/ml                   | 101122 | 05/01/2025         | 11/01/2024 /<br>yogesh     | 07/24/2024 /<br>yogesh         | P13492            |
| Supplier                    | ItemCode / ItemName                                           | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|                             |                                                               |        |                    | 11/01/2024 /               | 07/24/2024 /                   |                   |



| Supplier                    | ItemCode / ItemName                         | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |
|-----------------------------|---------------------------------------------|--------|--------------------|----------------------------|--------------------------------|-------------------|
| Absolute<br>Standards, Inc. | 72072 /<br>n-Tetracosane-d50, 1000<br>ug/ml | 101122 | 05/01/2025         | 11/01/2024 /<br>yogesh     | 07/24/2024 /<br>yogesh         | P13494            |
|                             |                                             |        |                    |                            |                                |                   |
| Supplier                    | ItemCode / ItemName                         | Lot #  | Expiration<br>Date | Date Opened /<br>Opened By | Received Date /<br>Received By | Chemtech<br>Lot # |

Sand Purified Washed and Ignited



Material No.: 3382-05 Batch No.: 0000243821 Manufactured Date: 2018/04/09 Retest Date: 2025/04/07

**Revision No: 1** 

**Certificate of Analysis** 

| Test                      | Specification | Result |
|---------------------------|---------------|--------|
| Substances Soluble in HCI | <= 0.16 %     | 0.01   |

For Laboratory, Research or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs

| Country of Origin: | US                 |
|--------------------|--------------------|
| Packaging Site:    | Paris Mfg Ctr & DC |





For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700



PRODUCTOS QUIMICOS MONTERREY, S.A. DE CY. MIRADOR 201, COL. MIRADOR MONTERREY, N.L. MEXICO CP 64070 TEL +52 81 13 52 57 57 WWW.pqm.com.mx

## **CERTIFICATE OF ANALYSIS**

|                                                                                                                 | RODUCT : SODIUM SULFATE CRYSTALS AN<br>AUALITY : ACS (CODE RMB3375) |                 |                                                   | NA.CO                                          |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------|---------------------------------------------------|------------------------------------------------|
| SPECIFICATION NUMBER :                                                                                          | -                                                                   |                 |                                                   | Na <sub>2</sub> SO <sub>4</sub><br>ABR/21/2023 |
|                                                                                                                 | 3201                                                                | RELEASE DATE:   |                                                   | ADR/2 1/2023                                   |
| TEST                                                                                                            | SPECI                                                               | FICATIONS       | LOT V                                             | ALUES                                          |
| Assay (Na <sub>2</sub> SO <sub>4</sub> )                                                                        | Min. 99                                                             | 1.0%            | 99.7 %                                            |                                                |
| pH of a 5% solution at 25°C                                                                                     | 5.2 - 9.                                                            | 2               | 6.1                                               |                                                |
| Insoluble matter                                                                                                | Max. 0.                                                             | 01%             | 0.005                                             | 1                                              |
| Loss on ignition                                                                                                | Max. 0.                                                             | 5%              | 0.1 %                                             | 16                                             |
| Chloride (Cl)                                                                                                   | Max. 0.                                                             | 001%            | <0.001                                            | 0/                                             |
| Nitrogen compounds (as N)                                                                                       | Max. 5                                                              | ppm             | <0.001<br><5 ppn                                  |                                                |
| Phosphate (PO <sub>4</sub> )                                                                                    | Max. 0.                                                             |                 | <0.001                                            |                                                |
| Heavy metals (as Pb)                                                                                            | Max. S                                                              |                 |                                                   |                                                |
| Iron (Fe)                                                                                                       | Max, 0,                                                             | 9 R ·           | <5 ppn<br><0.001                                  |                                                |
| Calcium (Ca)                                                                                                    | Max. 0.                                                             | 01%             | 0.002 %                                           |                                                |
| Magnesium (Mg)                                                                                                  | Max. 0.                                                             | 005%            | 0.002 9                                           |                                                |
| Potassium (K)                                                                                                   | Max. 0.                                                             |                 | 0.003 %                                           |                                                |
| Extraction-concentration suit                                                                                   | ability Passes                                                      | test            | Passes                                            | *                                              |
| Appearance                                                                                                      | Passes                                                              |                 | Passes                                            |                                                |
| Identification                                                                                                  | Passes                                                              | test            | Passes                                            | test                                           |
| Solubility and foreing matter                                                                                   |                                                                     | test            | Passes                                            | : test                                         |
| Retained on US Standard No.                                                                                     |                                                                     | h               | 0.1 %                                             |                                                |
| Retained on US Standard No.                                                                                     | 60 sieve Min. 94                                                    | a/ <sub>0</sub> | 97.3 %                                            |                                                |
| Through US Standard No. 60                                                                                      | sieve Max. 5%                                                       | 46              | 2.5 %                                             |                                                |
| Through US Standard No. 100                                                                                     | ) sieve Max. 10                                                     | 1%              | 0.1 %                                             |                                                |
| an second a second s | CON                                                                 | MENTS           | ಕ್ಷಿತ್ರಾಲೆಗೂ ಕಾರ್ಯಕ್ರಿ ಕ್ರಿತಿ ನಿರ್ದೇಶಕರ್ಷ ಪ್ರಾರಂಭ |                                                |
| 91 <i>0</i> 91                                                                                                  |                                                                     |                 | n+                                                | 15 HANDOWNI                                    |
|                                                                                                                 |                                                                     |                 | - he "                                            |                                                |
|                                                                                                                 |                                                                     |                 | 1                                                 |                                                |
|                                                                                                                 |                                                                     | QC: Ph          | C Irma Belma                                      | res                                            |

If you need further details, please call our factory or contact our local distributor.

Read. by R: 017/293 E3551

RE-02-01, Ed. 1

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)





Material No.: 9266-A4 Batch No.: 24D1962005 Manufactured Date: 2024-03-16 Expiration Date: 2025-06-15 Revision No.: 0

## **Certificate of Analysis**

| Test                                                                 | Specification | Result   |  |
|----------------------------------------------------------------------|---------------|----------|--|
| FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL  | .) ≤ 5        | < 1      |  |
| ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL  | ) ≤ 10        | 8        |  |
| Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for wate | r) ≥ 99.8 %   | 99.9 %   |  |
| Color (APHA)                                                         | ≤ 10          | 5        |  |
| Residue after Evaporation                                            | ≤ 1.0 ppm     | 0.1 ppm  |  |
| Titrable Acid (µeq/g)                                                | ≤ 0.3         | < 0.1    |  |
| Chloride (Cl)                                                        | ≤ 10 ppm      | < 5 ppm  |  |
| Water (by KF, coulometric)                                           | ≤ 0.02 %      | < 0.01 % |  |
|                                                                      |               |          |  |

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC Manufacturer source batch: MG24C16563

E 3759

Alloak

Jamie Croak Director Quality Operations, Bioscience Production Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)





Material No.: 9266-A4 Batch No.: 24G0862022 Manufactured Date: 2024-06-05 Expiration Date: 2025-09-04 Revision No.: 0


## **Certificate of Analysis**

| Test                                                                   | Specification | Result   |
|------------------------------------------------------------------------|---------------|----------|
| FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)   | ≤ 5           | 3        |
| ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)   | ≤ 10          | 4        |
| Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water) | ≥ 99.8 %      | 100.0 %  |
| Color (APHA)                                                           | ≤ 10          | 5        |
| Residue after Evaporation                                              | ≤ 1.0 ppm     | 0.3 ppm  |
| Titrable Acid (µeq/g)                                                  | ≤ <b>0.3</b>  | < 0.1    |
| Chloride (Cl)                                                          | ≤ 10 ppm      | < 5 ppm  |
| Water (by KF, coulometric)                                             | ≤ 0.02 %      | < 0.01 % |
|                                                                        |               |          |

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC Manufacturer source batch: MG24F05012

E 3787



Acetone CMOS





Material No.: 9005-05 Batch No.: 24E0761004 Manufactured Date: 2024-05-02 Retest Date: 2029-05-01 Revision No.: 0

## Certificate of Analysis

| Test                                                                    | Specification   | Result      |
|-------------------------------------------------------------------------|-----------------|-------------|
| Assay ((CH <sub>3</sub> ) <sub>2</sub> CO) (by GC, corrected for water) | ≥ <b>99.5</b> % | 99.8 %      |
| Color (APHA)                                                            | ≤ 10            | < 5         |
| Residue after Evaporation                                               | ≤ 5 ppm         | < 1 ppm     |
| Titrable Acid (µeq/g)                                                   | ≤ 0.3           | 0.1         |
| Titrable Base (µeq/g)                                                   | ≤ 0.5           | 0.1         |
| Water (H2O)                                                             | ≤ 0.5 %         | 0.1 %       |
| Solubility in H₂O                                                       | Passes Test     | Passes Test |
| Chloride (Cl)                                                           | ≤ 0.2 ppm       | < 0.2 ppm   |
| Phosphate (PO4)                                                         | ≤ 0.05 ppm      | < 0.05 ppm  |
| Trace Impurities – Aluminum (Al)                                        | ≤ 50.0 ppb      | < 5.0 ppb   |
| Arsenic and Antimony (as As)                                            | ≤ 5.0 ppb       | < 5.0 ppb   |
| Trace Impurities – Barium (Ba)                                          | ≤ 20.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Beryllium (Be)                                       | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Bismuth (Bi)                                         | ≤ 20.0 ppb      | < 10.0 ppb  |
| Trace Impurities – Boron (B)                                            | ≤ 10.0 ppb      | < 5.0 ppb   |
| Trace Impurities – Cadmium (Cd)                                         | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Calcium (Ca)                                         | ≤ 25.0 ppb      | 3.6 ppb     |
| Trace Impurities – Chromium (Cr)                                        | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities - Cobalt (Co)                                          | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Copper (Cu)                                          | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Gallium (Ga)                                         | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Germanium (Ge)                                       | ≤ 10.0 ppb      | < 10.0 ppb  |
| Trace Impurities – Gold (Au)                                            | ≤ 20 ppb        | < 5 ppb     |
| Trace Impurities - Iron (Fe)                                            | ≤ 20.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Lead (Pb)                                            | ≤ 10.0 ppb      | < 10.0 ppb  |
| Trace Impurities – Lithium (Li)                                         | ≤ 10.0 ppb      | < 1.0 ppb   |
| Trace Impurities – Magnesium (Mg)                                       | ≤ 20 ppb        | < 1 ppb     |
| Trace Impurities – Manganese (Mn)                                       | ≤ 10.0 ppb      | < 1.0 ppb   |

>>> Continued on page 2 >>>

Recd. by RP cm 9/11/24 E 3793

Acetone CMOS





## Material No.: 9005-05 Batch No.: 24E0761004

| Test                                              | Specification | Result     |
|---------------------------------------------------|---------------|------------|
| Trace Impurities – Molybdenum (Mo)                | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities – Nickel (Ni)                    | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities - Niobium (Nb)                   | ≤ 50.0 ppb    | < 1.0 ppb  |
| Trace Impurities – Potassium (K)                  | ≤ 10.0 ppb    | < 10.0 ppb |
| Trace Impurities – Silicon (Si)                   | ≤ 50 ppb      | < 10 ppb   |
| Trace Impurities – Silver (Ag)                    | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities – Sodium (Na)                    | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities – Strontium (Sr)                 | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Tantalum (Ta)                  | ≤ 50.0 ppb    | < 5.0 ppb  |
| Trace Impurities – Thallium (TI)                  | ≤ 10.0 ppb    | < 5.0 ppb  |
| Trace Impurities – Tin (Sn)                       | ≤ 20.0 ppb    | < 10.0 ppb |
| Trace Impurities – Titanium (Ti)                  | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities – Vanadium (V)                   | ≤ 10.0 ppb    | < 1.0 ppb  |
| Trace Impurities - Zinc (Zn)                      | ≤ 20.0 ppb    | 7.9 ppb    |
| Trace Impurities – Zirconium (Zr)                 | ≤ 10.0 ppb    | < 1.0 ppb  |
| Particle Count – 0.5 µm and greater (Rion KS42AF) | ≤ 100 par/ml  | 8 par/ml   |
| Particle Count – 1.0 µm and greater (Rion KS42AF) | ≤ 8 par/ml    | 2 par/ml   |
|                                                   |               |            |

Acetone CMOS





Material No.: 9005-05 Batch No.: 24E0761004

| Test | Specification | Result |  |
|------|---------------|--------|--|
| 1050 | Specification | Result |  |

For Microelectronic Use

Country of Origin: USA Packaging Site: Paris Mfg Ctr & DC

Muhelle Bales

----

Michelle Bales Sr. Manager, Quality Assurance

1 610 306 1 300

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)





Material No.: 9266-A4 Batch No.: 2412662006 Manufactured Date: 2024-08-29 Expiration Date:2025-11-28 Revision No.: 0

## Certificate of Analysis

| Test                                                                                             | Specification | Result  |
|--------------------------------------------------------------------------------------------------|---------------|---------|
| FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak<br>(ng/mL)                           | <= 5          | 2       |
| ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)                              | <= 10         | 3       |
| Assay (CH <sub>2</sub> Cl <sub>2</sub> ) (by GC, exclusive of preservative, corrected for water) | >= 99.8 %     | 99.9 %  |
| Color (APHA)                                                                                     | <= 10         | 5       |
| Residue after Evaporation                                                                        | <= 1.0 ppm    | 0.2 ppm |
| Titrable Acid (µeq/g)                                                                            | <= 0.3        | <0.1    |
| Chloride (Cl)                                                                                    | <= 10 ppm     | <5 ppm  |
| Water (by KF, coulometric)                                                                       | <= 0.02 %     | <0.01 % |

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC



For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)





Material No.: 9266-A4 Batch No.: 2412662006 Manufactured Date: 2024-08-29 Expiration Date:2025-11-28 Revision No.: 0

## Certificate of Analysis

| Test                                                                   | Specification | Result  |
|------------------------------------------------------------------------|---------------|---------|
| FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak<br>(ng/mL) | <= 5          | 2       |
| ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak<br>(pg/mL) | <= 10         | 3       |
| Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water) | >= 99.8 %     | 99.9 %  |
| Color (APHA)                                                           | <= 10         | 5       |
| Residue after Evaporation                                              | <= 1.0 ppm    | 0.2 ppm |
| Γitrable Acid (μeq/g)                                                  | <= 0.3        | <0.1    |
|                                                                        | <= 10 ppm     | <5 ppm  |
| Vater (by KF, coulometric)                                             | <= 0.02 %     | <0.01 % |

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC

l'ioak Jamie Croak Director Quality Operations, Bioscience Production

| 110 Benner Circle<br>Bellefonte, PA 16823-8812<br>Tel: (800)356-1688<br>Fax: (814)353-1309 | er Circle<br>\ 16823-8812<br>356-1688<br>353-1309            | Certific                                                                                                                                                                                                  | <b>Certificate of Analysis</b>    | nalysi                  |                                         |                                |                                                                                      |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-----------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|
| www.restek.com                                                                             | tek.com                                                      |                                                                                                                                                                                                           |                                   |                         |                                         |                                | ACCREDITED<br>ISO/IEC 17025 Accredited<br>Testing Laboratory<br>Certificate #3222.02 |
|                                                                                            |                                                              | FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.<br>This Reference Material is intended for Laboratory Use Only as a standard<br>the qualitative and/or quantitative determination of the analyte(s) listed | USE ONLY-RE, is intended for Labo | AD SDS PRIO             | E.                                      |                                |                                                                                      |
| Catalog No. :                                                                              | 31266                                                        |                                                                                                                                                                                                           | Lot No.: A0186840                 | 840                     |                                         | -<br>-<br>-<br>-               |                                                                                      |
| )                                                                                          |                                                              |                                                                                                                                                                                                           |                                   |                         | I                                       | t                              | _                                                                                    |
| <b>Description</b> :                                                                       | Florida TRPH Standard                                        | ndard                                                                                                                                                                                                     |                                   |                         |                                         | 210                            | 140/ 2                                                                               |
|                                                                                            | Florida TRPH Sta                                             | Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul                                                                                                                                                         | , 1mL/ampul                       |                         |                                         | r II C                         | 162 /                                                                                |
| <b>Container Size :</b>                                                                    | 2 mL                                                         |                                                                                                                                                                                                           | Pkg Amt: > 1 mL                   |                         |                                         |                                |                                                                                      |
| Expiration Date :                                                                          | July 31, 2029                                                |                                                                                                                                                                                                           | Storage: 25°C r                   | 25°C nominal            | i                                       |                                |                                                                                      |
| Handling:                                                                                  | Sonicate prior to use.                                       | <u>se.</u>                                                                                                                                                                                                | Ship: Ambient                     | nt                      |                                         |                                |                                                                                      |
|                                                                                            |                                                              |                                                                                                                                                                                                           |                                   | CERTI                   | IFIE D                                  | VALUE                          | ш<br>С                                                                               |
| Elution<br>Order                                                                           | Co                                                           | Compound                                                                                                                                                                                                  | Grav. Conc.<br>(weight/volume)    | Conc.<br>volume)        | Expanded Uncertainty<br>(95% C.L.; K=2) | Incertainty<br>(=2)            |                                                                                      |
| 1 n-Octa<br>CAS #<br>Purity                                                                | n-Octane (C8)<br>CAS # 111-65-9<br>Purity 99%                | (Lot SHBN3807)                                                                                                                                                                                            | 505.0                             | μg/mL +/-<br>+/-<br>+/- | 2.9995<br>12.5465<br>15.0390            | baller<br>1. Tw/Bή<br>1. Tw/Bή | Gravimetric<br>Unstressed<br>Stressed                                                |
| 2 n-Decs<br>CAS #<br>Purity                                                                | n-Decane (C10)<br><b>CAS #</b> 124-18-5<br><b>Purity</b> 99% | (Lot SHBN8619)                                                                                                                                                                                            | 503.0                             | μg/mL +/-<br>+/-<br>+/- | - 2.9877<br>- 12.4968<br>- 14.9795      | μg/mL (<br>μg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 3 n-Dode<br>CAS #<br>Purity                                                                | n-Dodecane (C12)<br>CAS # 112-40-3<br>Purity 99%             | (Lot SHBN7174)                                                                                                                                                                                            | 503.5                             | μg/mL +/-<br>+/-<br>+/- | - 2.9906<br>- 12.5092<br>- 14.9944      | μg/mL 1<br>μg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 4 n-Tetra<br>CAS #<br>Purity                                                               | n-Tetradecane (C14)<br>CAS # 629-59-4<br>Purity 99%          | (Lot STBK2282)                                                                                                                                                                                            | 505.0                             | μg/mL +/-<br>+/-<br>+/- | - 2.9995<br>- 12.5465<br>- 15.0390      | hg/mL 1<br>hg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 5 n-Hexa<br>CAS #<br>Purity                                                                | n-Hexadecane (C16)<br>CAS # 544-76-3<br>Purity 98%           | (Lot SHBM4146)                                                                                                                                                                                            | 504.7                             | µg/mL +/-<br>+/-<br>+/- | - 2.9978<br>- 12.5390<br>- 15.0301      | րց/mL<br>կց/mL<br>կց/mL        | Gravimetric<br>Unstressed<br>Stressed                                                |
| 6 n-Octa<br>CAS #<br>Purity                                                                | n-Octadecane (C18)<br>CAS # 593-45-3<br>Purity 97%           | (Lot VZKOJ)                                                                                                                                                                                               | 504.4                             | μg/mL +/-<br>+/-<br>+/- | - 2.9960<br>- 12.5316<br>- 15.0212      | hg/mL<br>hg/mL                 | Gravimetric<br>Unstressed<br>Stressed                                                |
| 7 n-Eico:<br>CAS #<br>Purity                                                               | n-Eicosane (C20)<br>CAS # 112-95-8<br>Purity 99%             | (Lot MKCF7888)                                                                                                                                                                                            | 503.5                             | μg/mL +/-<br>+/-<br>+/- | - 2.9906<br>- 12.5092<br>- 14.9944      | µg/mL<br>µg/mL                 | Gravimetric<br>Unstressed<br>Stressed                                                |

RES

CERTIFIED REFERENCE MATERIAL

ACCREDITED ISO 17034 Accredited Veference Material Producer Certificate #3222.01

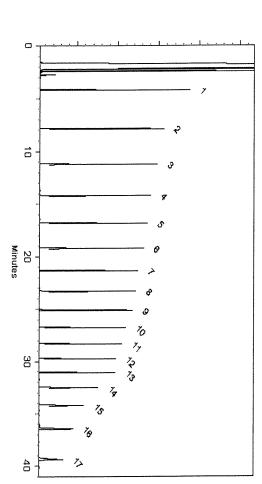
110 Benner Circle Bellefonte, PA 16823-8812

01-Aug-2020 rev.

| Solvent:                      | 17                                                    | 16                                                       | 15                                                      | 14                                                         | 13                                                    | 12                                                  | 11                                                 | 10                                                               | و                                                   | ∞                                                |
|-------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| lt: Hexane<br>CAS #<br>Purity | n-Tetrac<br>CAS #<br>Purity                           | n-Octati<br>CAS #<br>Purity                              | n-Hexat<br>CAS #<br>Purity                              | n-Tetrat<br>CAS #<br>Purity                                | n-Dotria<br>CAS #<br>Purity                           | n-Triacc<br>CAS #<br>Purity                         | n-Octac<br>CAS #<br>Purity                         | n-Hexac<br>CAS #<br>Purity                                       | n-Tetrac<br>CAS #<br>Purity                         | n-Docos<br>CAS #<br>Purity                       |
| 110-54-3<br>99%               | n-Tetracontane (C40)<br>CAS # 4181-95-7<br>Purity 98% | n-Octatriacontane (C38)<br>CAS # 7194-85-6<br>Purity 97% | n-Hexatriacontane (C36)<br>CAS # 630-06-8<br>Purity 99% | n-Tetratriacontane (C34)<br>CAS # 14167-59-0<br>Purity 99% | n-Dotriacontane (C32)<br>CAS # 544-85-4<br>Purity 99% | n-Triacontane (C30)<br>CAS # 638-68-6<br>Purity 99% | n-Octacosane (C28)<br>CAS # 630-02-4<br>Purity 99% | n-Hexacosane (C26)<br><b>CAS #</b> 630-01-3<br><b>Purity</b> 99% | n-Tetracosane (C24)<br>CAS # 646-31-1<br>Purity 99% | n-Docosane (C22)<br>CAS # 629-97-0<br>Purity 99% |
|                               | (Lot PADGI)                                           | (Lot 0000127235)                                         | (Lot U25B014)                                           | (Lot OML4N)                                                | (Lot BCBW0661)                                        | (Lot MKCN9321)                                      | (Lot BCCG0084)                                     | (Lot MKCD4540)                                                   | (Lot MKCN2863)                                      | (Lot MKCL8918)                                   |
|                               | 504.7                                                 | 504.4                                                    | 504.0                                                   | 504.5                                                      | 505.0                                                 | 505.0                                               | 504.5                                              | 504.0                                                            | 503.5                                               | 504.5                                            |
|                               | µg/mL                                                 | µg/mL                                                    | µg/mL                                                   | µg/mL                                                      | µg/mL                                                 | µg/mL                                               | µg/mL                                              | µg/mL                                                            | µg/mL                                               | µg/mL                                            |
|                               | + + +                                                 | +/- +/-                                                  | + + +                                                   | + + +                                                      | + + +                                                 | + + +                                               | + + +                                              | + + +                                                            | + + +                                               | + + +                                            |
|                               | 2.9978<br>12.5390<br>15.0301                          | 2.9960<br>12.5316<br>15.0212                             | 2.9936<br>12.5216<br>15.0093                            | 2.9966<br>12.5340<br>15.0241                               | 2.9995<br>12.5465<br>15.0390                          | 2.9995<br>12.5465<br>15.0390                        | 2.9966<br>12.5340<br>15.0241                       | 2.9936<br>12.5216<br>15.0093                                     | 2.9906<br>12.5092<br>14.9944                        | 2.9966<br>12.5340<br>15.0241                     |
|                               | µg/mL<br>µg/mL                                        | µg/mL<br>µg/mL                                           | µg/mL<br>µg/mL                                          | µg/mL<br>µg/mL                                             | µg/mL<br>µg/mL                                        | µg/mL<br>µg/mL                                      | µg/mL<br>µg/mL                                     | ից/mL<br>կց/mL<br>կց/mL                                          | µg/mL<br>µg/mL                                      | µg/mL<br>µg/mL                                   |
|                               | Gravimetric<br>Unstressed<br>Stressed                 | Gravimetric<br>Unstressed<br>Stressed                    | Gravimetric<br>Unstressed<br>Stressed                   | Gravimetric<br>Unstressed<br>Stressed                      | Gravimetric<br>Unstressed<br>Stressed                 | Gravimetric<br>Unstressed<br>Stressed               | Gravimetric<br>Unstressed<br>Stressed              | Gravimetric<br>Unstressed<br>Stressed                            | Gravimetric<br>Unstressed<br>Stressed               | Gravimetric<br>Unstressed<br>Stressed            |

01-Aug-2020 rev.

| 01-Aug-2020 |  |
|-------------|--|
| ) rev.      |  |


**Column:** 30m x 0.25mm x 0.25µm Rtx-5 (cat.#10223)

Carrier Gas: hydrogen-constant pressure 10 psi.

Temp. Program: 40°C (hold 2 min.) to 330°C @ 10°C/min. (hold 10 min.) Inj. Temp:

250°C **Det. Temp:** 330°C

Det. Type:



This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Attraction Brittany Federinko - Operations Tech I

Date Mixed: 29-Jun-2022 Balance: 1128360905

িক গঠ Christie Mills - Operations Tech II - ARM QC

Date Passed: 01-Jul-2022

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

## **General Certified Reference Material Notes**

## Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

## Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ≻
- Purity of isomeric compounds is reported as the sum of the isomers

# Purity values are rounded to the nearest whole number. Certified Uncertainty Value Notes:

٠ uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed} = k \sqrt{U_{gravimetric}^2 + U_{homogeneity}^2 + U_{storage\ stability}^2 + U_{shipping\ stability}^2}$$

- k is a coverage factor of 2, which gives a level of confidence of approximately 95%.
- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- . Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard

| Label Conditions                                          | Standard Conditions | Non-Standard Conditions |
|-----------------------------------------------------------|---------------------|-------------------------|
| 25°C Nominal (Room Temperature)                           | < 60°C              | ≥ 60°C up to 7 days     |
| 10°C or colder (Refrigerate)                              | < 40°C              | ≥ 40°C up to 7 days     |
| 0°C or colder (Freezer)<br>-20°C or colder (Deep Freezer) | < 25°C              | ≥ 25°C up to 7 days     |

- are available by contacting Restek Technical Service at www.restek.com/Contact-Us. separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- . that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

## Manufacturing Notes:

٠ using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

## Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through

| 110 Benner Circle<br>Bellefonte, PA 16823-8812<br>Tel: (800)356-1688<br>Fax: (814)353-1309 | er Circle<br>\ 16823-8812<br>356-1688<br>353-1309            | Certific                                                                                                                                                                                                  | <b>Certificate of Analysis</b>    | nalysi                  |                                         |                                |                                                                                      |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-----------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|
| www.restek.com                                                                             | tek.com                                                      |                                                                                                                                                                                                           |                                   |                         |                                         |                                | ACCREDITED<br>ISO/IEC 17025 Accredited<br>Testing Laboratory<br>Certificate #3222.02 |
|                                                                                            |                                                              | FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.<br>This Reference Material is intended for Laboratory Use Only as a standard<br>the qualitative and/or quantitative determination of the analyte(s) listed | USE ONLY-RE, is intended for Labo | AD SDS PRIO             | E.                                      |                                |                                                                                      |
| Catalog No. :                                                                              | 31266                                                        |                                                                                                                                                                                                           | Lot No.: A0186840                 | 840                     |                                         | -<br>-<br>-<br>-               |                                                                                      |
| )<br>. (                                                                                   |                                                              |                                                                                                                                                                                                           |                                   |                         | I                                       | t                              | _                                                                                    |
| <b>Description</b> :                                                                       | Florida TRPH Standard                                        | ndard                                                                                                                                                                                                     |                                   |                         |                                         | 210                            | 140/ 2                                                                               |
|                                                                                            | Florida TRPH Sta                                             | Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul                                                                                                                                                         | , 1mL/ampul                       |                         |                                         | r II C                         | 162 /                                                                                |
| <b>Container Size :</b>                                                                    | 2 mL                                                         |                                                                                                                                                                                                           | Pkg Amt: > 1 mL                   |                         |                                         |                                |                                                                                      |
| Expiration Date :                                                                          | July 31, 2029                                                |                                                                                                                                                                                                           | Storage: 25°C r                   | 25°C nominal            | i                                       |                                |                                                                                      |
| Handling:                                                                                  | Sonicate prior to use.                                       | <u>se.</u>                                                                                                                                                                                                | Ship: Ambient                     | nt                      |                                         |                                |                                                                                      |
|                                                                                            |                                                              |                                                                                                                                                                                                           |                                   | CERTI                   | IFIE D                                  | VALUE                          | ш<br>С                                                                               |
| Elution<br>Order                                                                           | Co                                                           | Compound                                                                                                                                                                                                  | Grav. Conc.<br>(weight/volume)    | Conc.<br>volume)        | Expanded Uncertainty<br>(95% C.L.; K=2) | Incertainty<br>(=2)            |                                                                                      |
| 1 n-Octa<br>CAS #<br>Purity                                                                | n-Octane (C8)<br>CAS # 111-65-9<br>Purity 99%                | (Lot SHBN3807)                                                                                                                                                                                            | 505.0                             | μg/mL +/-<br>+/-<br>+/- | 2.9995<br>12.5465<br>15.0390            | baller<br>1. Tw/Bή<br>1. Tw/Bή | Gravimetric<br>Unstressed<br>Stressed                                                |
| 2 n-Decs<br>CAS #<br>Purity                                                                | n-Decane (C10)<br><b>CAS #</b> 124-18-5<br><b>Purity</b> 99% | (Lot SHBN8619)                                                                                                                                                                                            | 503.0                             | μg/mL +/-<br>+/-<br>+/- | - 2.9877<br>- 12.4968<br>- 14.9795      | μg/mL (<br>μg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 3 n-Dode<br>CAS #<br>Purity                                                                | n-Dodecane (C12)<br>CAS # 112-40-3<br>Purity 99%             | (Lot SHBN7174)                                                                                                                                                                                            | 503.5                             | μg/mL +/-<br>+/-<br>+/- | - 2.9906<br>- 12.5092<br>- 14.9944      | μg/mL 1<br>μg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 4 n-Tetra<br>CAS #<br>Purity                                                               | n-Tetradecane (C14)<br>CAS # 629-59-4<br>Purity 99%          | (Lot STBK2282)                                                                                                                                                                                            | 505.0                             | μg/mL +/-<br>+/-<br>+/- | - 2.9995<br>- 12.5465<br>- 15.0390      | hg/mL 1<br>hg/mL 1             | Gravimetric<br>Unstressed<br>Stressed                                                |
| 5 n-Hexa<br>CAS #<br>Purity                                                                | n-Hexadecane (C16)<br>CAS # 544-76-3<br>Purity 98%           | (Lot SHBM4146)                                                                                                                                                                                            | 504.7                             | µg/mL +/-<br>+/-<br>+/- | - 2.9978<br>- 12.5390<br>- 15.0301      | րց/mL<br>կեշր<br>կեշր          | Gravimetric<br>Unstressed<br>Stressed                                                |
| 6 n-Octa<br>CAS #<br>Purity                                                                | n-Octadecane (C18)<br>CAS # 593-45-3<br>Purity 97%           | (Lot VZKOJ)                                                                                                                                                                                               | 504.4                             | μg/mL +/-<br>+/-<br>+/- | - 2.9960<br>- 12.5316<br>- 15.0212      | hg/mL<br>hg/mL                 | Gravimetric<br>Unstressed<br>Stressed                                                |
| 7 n-Eico:<br>CAS #<br>Purity                                                               | n-Eicosane (C20)<br>CAS # 112-95-8<br>Purity 99%             | (Lot MKCF7888)                                                                                                                                                                                            | 503.5                             | μg/mL +/-<br>+/-<br>+/- | - 2.9906<br>- 12.5092<br>- 14.9944      | µg/mL<br>µg/mL                 | Gravimetric<br>Unstressed<br>Stressed                                                |

RES

CERTIFIED REFERENCE MATERIAL

ACCREDITED ISO 17034 Accredited Veference Material Producer Certificate #3222.01

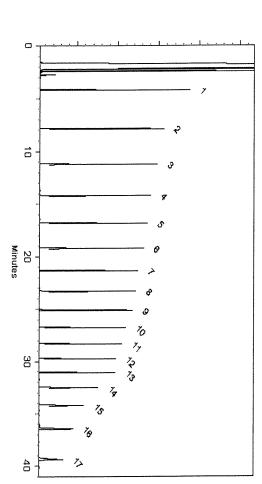
110 Benner Circle Bellefonte, PA 16823-8812

01-Aug-2020 rev.

| Solvent:                      | 17                                                    | 16                                                       | 15                                                      | 14                                                         | 13                                                    | 12                                                  | 11                                                 | 10                                                               | و                                                   | ∞                                                |
|-------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| lt: Hexane<br>CAS #<br>Purity | n-Tetrac<br>CAS #<br>Purity                           | n-Octati<br>CAS #<br>Purity                              | n-Hexat<br>CAS #<br>Purity                              | n-Tetrat<br>CAS #<br>Purity                                | n-Dotria<br>CAS #<br>Purity                           | n-Triacc<br>CAS #<br>Purity                         | n-Octac<br>CAS #<br>Purity                         | n-Hexac<br>CAS #<br>Purity                                       | n-Tetrac<br>CAS #<br>Purity                         | n-Docos<br>CAS #<br>Purity                       |
| 110-54-3<br>99%               | n-Tetracontane (C40)<br>CAS # 4181-95-7<br>Purity 98% | n-Octatriacontane (C38)<br>CAS # 7194-85-6<br>Purity 97% | n-Hexatriacontane (C36)<br>CAS # 630-06-8<br>Purity 99% | n-Tetratriacontane (C34)<br>CAS # 14167-59-0<br>Purity 99% | n-Dotriacontane (C32)<br>CAS # 544-85-4<br>Purity 99% | n-Triacontane (C30)<br>CAS # 638-68-6<br>Purity 99% | n-Octacosane (C28)<br>CAS # 630-02-4<br>Purity 99% | n-Hexacosane (C26)<br><b>CAS #</b> 630-01-3<br><b>Purity</b> 99% | n-Tetracosane (C24)<br>CAS # 646-31-1<br>Purity 99% | n-Docosane (C22)<br>CAS # 629-97-0<br>Purity 99% |
|                               | (Lot PADGI)                                           | (Lot 0000127235)                                         | (Lot U25B014)                                           | (Lot OML4N)                                                | (Lot BCBW0661)                                        | (Lot MKCN9321)                                      | (Lot BCCG0084)                                     | (Lot MKCD4540)                                                   | (Lot MKCN2863)                                      | (Lot MKCL8918)                                   |
|                               | 504.7                                                 | 504.4                                                    | 504.0                                                   | 504.5                                                      | 505.0                                                 | 505.0                                               | 504.5                                              | 504.0                                                            | 503.5                                               | 504.5                                            |
|                               | µg/mL                                                 | µg/mL                                                    | µg/mL                                                   | µg/mL                                                      | µg/mL                                                 | µg/mL                                               | µg/mL                                              | µg/mL                                                            | µg/mL                                               | µg/mL                                            |
|                               | + + +                                                 | +/- +/-                                                  | + + +                                                   | + + +                                                      | + + +                                                 | + + +                                               | + + +                                              | + + +                                                            | + + +                                               | + + +                                            |
|                               | 2.9978<br>12.5390<br>15.0301                          | 2.9960<br>12.5316<br>15.0212                             | 2.9936<br>12.5216<br>15.0093                            | 2.9966<br>12.5340<br>15.0241                               | 2.9995<br>12.5465<br>15.0390                          | 2.9995<br>12.5465<br>15.0390                        | 2.9966<br>12.5340<br>15.0241                       | 2.9936<br>12.5216<br>15.0093                                     | 2.9906<br>12.5092<br>14.9944                        | 2.9966<br>12.5340<br>15.0241                     |
|                               | µg/mL<br>µg/mL                                        | µg/mL<br>µg/mL                                           | µg/mL<br>µg/mL                                          | µg/mL<br>µg/mL                                             | µg/mL<br>µg/mL                                        | µg/mL<br>µg/mL                                      | µg/mL<br>µg/mL                                     | ից/mL<br>կց/mL<br>կց/mL                                          | µg/mL<br>µg/mL                                      | µg/mL<br>µg/mL                                   |
|                               | Gravimetric<br>Unstressed<br>Stressed                 | Gravimetric<br>Unstressed<br>Stressed                    | Gravimetric<br>Unstressed<br>Stressed                   | Gravimetric<br>Unstressed<br>Stressed                      | Gravimetric<br>Unstressed<br>Stressed                 | Gravimetric<br>Unstressed<br>Stressed               | Gravimetric<br>Unstressed<br>Stressed              | Gravimetric<br>Unstressed<br>Stressed                            | Gravimetric<br>Unstressed<br>Stressed               | Gravimetric<br>Unstressed<br>Stressed            |

01-Aug-2020 rev.

| 01-Aug-2020 |  |
|-------------|--|
| ) rev.      |  |


**Column:** 30m x 0.25mm x 0.25µm Rtx-5 (cat.#10223)

Carrier Gas: hydrogen-constant pressure 10 psi.

Temp. Program: 40°C (hold 2 min.) to 330°C @ 10°C/min. (hold 10 min.) Inj. Temp:

250°C **Det. Temp:** 330°C

Det. Type:



This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Attraction Brittany Federinko - Operations Tech I

Date Mixed: 29-Jun-2022 Balance: 1128360905

িক গঠ Christie Mills - Operations Tech II - ARM QC

Date Passed: 01-Jul-2022

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

## **General Certified Reference Material Notes**

## Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

## Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ≻
- Purity of isomeric compounds is reported as the sum of the isomers

# Purity values are rounded to the nearest whole number. Certified Uncertainty Value Notes:

٠ uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed} = k \sqrt{U_{gravimetric}^2 + U_{homogeneity}^2 + U_{storage\ stability}^2 + U_{shipping\ stability}^2}$$

- k is a coverage factor of 2, which gives a level of confidence of approximately 95%.
- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- . Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard

| Label Conditions                                          | Standard Conditions | Non-Standard Conditions |
|-----------------------------------------------------------|---------------------|-------------------------|
| 25°C Nominal (Room Temperature)                           | < 60°C              | ≥ 60°C up to 7 days     |
| 10°C or colder (Refrigerate)                              | < 40°C              | ≥ 40°C up to 7 days     |
| 0°C or colder (Freezer)<br>-20°C or colder (Deep Freezer) | < 25°C              | ≥ 25°C up to 7 days     |

- are available by contacting Restek Technical Service at www.restek.com/Contact-Us. separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- . that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

## Manufacturing Notes:

٠ using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

## Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through



110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

## **CERTIFIED REFERENCE MATERIAL**

## **Certificate of Analysis**

chromatographic plus





## FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.


This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

| Catalog No. :        | 31266                        | Lot No.:            | A0204859     | - P13103 7 Yp      |
|----------------------|------------------------------|---------------------|--------------|--------------------|
| <b>Description</b> : | Florida TRPH Standard        |                     |              |                    |
|                      | Florida TRPH Standard 500µg/ | mL, Hexane, 1mL/amp | ul           | P13112 JO1/12/2024 |
| Container Size :     | 2 mL                         | Pkg Amt:            | > 1 mL       | P1312 J01/12/2024  |
| Expiration Date :    | December 31, 2030            | Storage:            | 25°C nominal |                    |
| Handling:            | Sonicate prior to use.       | Ship:               | Ambient      |                    |

### CERTIFIED VALUES

| Elution<br>Order | Compound                 | CAS #      | Lot #      | Purity | Grav. Conc <i>.</i><br>(weight/volume) | Expanded<br>Uncertainty *<br>(95% C.L.; K=2) |
|------------------|--------------------------|------------|------------|--------|----------------------------------------|----------------------------------------------|
| 1                | n-Octane (C8)            | 111-65-9   | SHBP9758   | 99%    | 504.4 μg/mL                            | +/- 13.0305                                  |
| 2                | n-Decane (C10)           | 124-18-5   | SHBQ1342   | 99%    | 503.6 μg/mL                            | +/- 13.0098                                  |
| 3                | n-Dodecane (C12)         | 112-40-3   | SHBP7054   | 99%    | 503.6 μg/mL                            | +/- 13.0098                                  |
| 4                | n-Tetradecane (C14)      | 629-59-4   | STBK5437   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 5                | n-Hexadecane (C16)       | 544-76-3   | SHBP8192   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 6                | n-Octadecane (C18)       | 593-45-3   | UE5NG      | 98%    | 504.1 μg/mL                            | +/- 13.0230                                  |
| 7                | n-Eicosane (C20)         | 112-95-8   | MKCN8767   | 97%    | 504.0 μg/mL                            | +/- 13.0204                                  |
| 8                | n-Docosane (C22)         | 629-97-0   | MKCQ3882   | 99%    | 503.6 μg/mL                            | +/- 13.0098                                  |
| 9                | n-Tetracosane (C24)      | 646-31-1   | MKCQ8345   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 10               | n-Hexacosane (C26)       | 630-01-3   | MKCQ4814   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 11               | n-Octacosane (C28)       | 630-02-4   | BCCG0084   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 12               | n-Triacontane (C30)      | 638-68-6   | MKCQ9436   | 97%    | 504.0 μg/mL                            | +/- 13.0204                                  |
| 13               | n-Dotriacontane (C32)    | 544-85-4   | BCBW0661   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 14               | n-Tetratriacontane (C34) | 14167-59-0 | OML4N      | 99%    | 504.4 μg/mL                            | +/- 13.0305                                  |
| 15               | n-Hexatriacontane (C36)  | 630-06-8   | Z27H018    | 99%    | 504.0 μg/mL                            | +/- 13.0201                                  |
| 16               | n-Octatriacontane (C38)  | 7194-85-6  | 0000145137 | 96%    | 503.8 μg/mL                            | +/- 13.0152                                  |
| 17               | n-Tetracontane (C40)     | 4181-95-7  | OKEGA      | 99%    | 503.6 μg/mL                            | +/- 13.0098                                  |

Solvent: Hexane CAS# 110-54-3 Purity 99%



This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Dakota Parson - Operations Technician I

Date Mixed:

B442140311

Manufactured under Restek's ISO 9001:2015 **Registered Quality System** Certificate #FM 80397

Gunghe & Billord Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

01-Dec-2023

hydrogen-constant pressure 10 psi. Temp. Program: 40°C (hold 2 min.) to 330°C

@ 10°C/min. (hold 10 min.) Inj. Temp:

250°C

Column: 30m x 0.25mm x 0.25µm Rtx-5 (cat.#10223) **Carrier Gas:** 

Det. Temp: 330°C

Det. Type: FID

**Split Vent:** 2 ml/min.

Inj. Vol 1µl

\_\_\_\_\_

29-Nov-2023

**Balance Serial #** 



## **General Certified Reference Material Notes**

## **Expiration Notes:**

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

## **Purity Notes:**

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
  correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
  parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

## **Certified Uncertainty Value Notes:**

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage stability}^2 + u_{shipping stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

## Manufacturing Notes:

• Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

## Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

\_\_\_\_\_\_



110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

## **CERTIFIED REFERENCE MATERIAL**

## **Certificate of Analysis**

chromatographic plus





## FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.


This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

| Catalog No. :        | 31266                        | Lot No.:            | A0204859     | - P13103 7 Yp      |
|----------------------|------------------------------|---------------------|--------------|--------------------|
| <b>Description</b> : | Florida TRPH Standard        |                     |              |                    |
|                      | Florida TRPH Standard 500µg/ | mL, Hexane, 1mL/amp | ul           | P13112 JO1/12/2024 |
| Container Size :     | 2 mL                         | Pkg Amt:            | > 1 mL       | P1312 J01/12/2024  |
| Expiration Date :    | December 31, 2030            | Storage:            | 25°C nominal |                    |
| Handling:            | Sonicate prior to use.       | Ship:               | Ambient      |                    |

### CERTIFIED VALUES

| Elution<br>Order | Compound                 | CAS #      | Lot #      | Purity | Grav. Conc <i>.</i><br>(weight/volume) | Expanded<br>Uncertainty<br>(95% C.L.; K=2) |
|------------------|--------------------------|------------|------------|--------|----------------------------------------|--------------------------------------------|
| 1                | n-Octane (C8)            | 111-65-9   | SHBP9758   | 99%    | 504.4 µg/mL                            | +/- 13.0305                                |
| 2                | n-Decane (C10)           | 124-18-5   | SHBQ1342   | 99%    | 503.6 μg/mL                            | +/- 13.0098                                |
| 3                | n-Dodecane (C12)         | 112-40-3   | SHBP7054   | 99%    | 503.6 μg/mL                            | +/- 13.0098                                |
| 4                | n-Tetradecane (C14)      | 629-59-4   | STBK5437   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 5                | n-Hexadecane (C16)       | 544-76-3   | SHBP8192   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 6                | n-Octadecane (C18)       | 593-45-3   | UE5NG      | 98%    | 504.1 μg/mL                            | +/- 13.0230                                |
| 7                | n-Eicosane (C20)         | 112-95-8   | MKCN8767   | 97%    | 504.0 μg/mL                            | +/- 13.0204                                |
| 8                | n-Docosane (C22)         | 629-97-0   | MKCQ3882   | 99%    | 503.6 µg/mL                            | +/- 13.0098                                |
| 9                | n-Tetracosane (C24)      | 646-31-1   | MKCQ8345   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 10               | n-Hexacosanc (C26)       | 630-01-3   | MKCQ4814   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 11               | n-Octacosane (C28)       | 630-02-4   | BCCG0084   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 12               | n-Triacontane (C30)      | 638-68-6   | MKCQ9436   | 97%    | 504.0 μg/mL                            | +/- 13.0204                                |
| 13               | n-Dotriacontane (C32)    | 544-85-4   | BCBW0661   | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 14               | n-Tetratriacontane (C34) | 14167-59-0 | OML4N      | 99%    | 504.4 μg/mL                            | +/- 13.0305                                |
| 15               | n-Hexatriacontane (C36)  | 630-06-8   | Z27H018    | 99%    | 504.0 μg/mL                            | +/- 13.0201                                |
| 16               | n-Octatriacontane (C38)  | 7194-85-6  | 0000145137 | 96%    | 503.8 μg/mL                            | +/- 13.0152                                |
| 17               | n-Tetracontane (C40)     | 4181-95-7  | OKEGA      | 99%    | 503.6 μg/mL                            | +/- 13.0098                                |

Solvent: Hexane CAS# 110-54-3 Purity 99%



This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Dakota Parson - Operations Technician I

Date Mixed:

B442140311

Manufactured under Restek's ISO 9001:2015 **Registered Quality System** Certificate #FM 80397

Gunghe & Billord Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

01-Dec-2023

hydrogen-constant pressure 10 psi. Temp. Program: 40°C (hold 2 min.) to 330°C

@ 10°C/min. (hold 10 min.) Inj. Temp:

250°C

Column: 30m x 0.25mm x 0.25µm Rtx-5 (cat.#10223) **Carrier Gas:** 

Det. Temp: 330°C

Det. Type: FID

**Split Vent:** 2 ml/min.

Inj. Vol 1µl

\_\_\_\_\_

29-Nov-2023

**Balance Serial #** 



## **General Certified Reference Material Notes**

## **Expiration Notes:**

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

## **Purity Notes:**

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
  correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
  parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

## **Certified Uncertainty Value Notes:**

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage stability}^2 + u_{shipping stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

## Manufacturing Notes:

• Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

## Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

\_\_\_\_\_\_

| Absolute Standards,<br>800-368-1131<br>www.absolutestandards.com                            | Standards, Inc.<br>I<br>estandards.com                                                                                                                                                                                 | 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      | Certifiec                                                          | ł Refere                                                            | ance Mate                                                                                    | Certified Reference Material CRM                          |                                                              |                                           |                                          | ANAB I<br>AR-15:<br>https://Ak                                                                                                                                                                                                                                                                                                                                                | ANAB ISO 17034 Accredited<br>AR-1539 Certificate Number<br>https://Absolutestandards.com | ccredited<br>Number<br>ards.com |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|
| CERTIFIED WEIGHT REPORT                                                                     |                                                                                                                                                                                                                        | Part Number:<br>Lot Number:<br>Description:                                            | 72072<br>101122<br>n-Tetracosane-d50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | me-d50                                                                           |                                                      |                                                                    | Methyle                                                             | Sotvent(s):<br>Methylene chloride                                                            | Lot#<br>105345                                            |                                                              |                                           | Sol 2                                    | Part Cheuler                                                                                                                                                                                                                                                                                                                                                                  | 101122                                                                                   |                                 |
| Nom<br>Weight(s) sh                                                                         | Expiration Date: 101132<br>Recommended Storage: Amblent (2<br>Nominal Concentration ( <i>ug/mL</i> ): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL):                          | in Date:<br>storage:<br>ug/mL):<br>est ID#:<br>mbined and                              | 101132<br>Amblent (20 °C)<br>1000<br>6UTB<br>diluted to (mL):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 °C)<br>200.0                                                                   | 5E-05<br>0.058                                       | 5E-05 Balance Uncertainty<br>0.058 Flaak Uncertainty               | lainity<br>rity                                                     |                                                                                              |                                                           |                                                              | Formulated By<br>Reviewed By:             | Bi                                       | Prashant Chauhan                                                                                                                                                                                                                                                                                                                                                              | DATE<br>101122<br>DATE                                                                   |                                 |
| Compound                                                                                    |                                                                                                                                                                                                                        | æ                                                                                      | Lot<br>RM# Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal<br>Conc (µg/mL)                                                          | Purity<br>(%)                                        | Uncertainty<br>Purity                                              | Assay<br>(%D)                                                       | Target<br>Weight(g)                                                                          | Actual<br>Weight(g)                                       | Expanded<br>Actual Uncertainty<br>Conc (µg/mL) (+/-) (µg/mL) | Expanded<br>Uncertainty<br>(+/-) (µg/mL)  | (Solvent<br>cas#                         | SDS Information<br>(Solvent Safety Info. On Attached pg.)<br>CAS# 05HA PEL (TWA) LD5                                                                                                                                                                                                                                                                                          | ed pg.)<br>LDSO                                                                          |                                 |
| 1. <u>n-Tetracosane-d50</u><br>Method GC8MSD-3<br>275°C. Solit Ratio =                      | l. <u>n-Tetracosane-d50</u> 2072 PR-26606 1000 98.7 0.<br>Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25µm film thickness)<br>275°C. Solit Ratio = 100:1. Scan Rate = 2 Analysis performed by: Candice Warran | 20<br>1:SPB-5 (30<br>1 Bate = 2                                                        | 2072 PR-26606<br>30m X 0.25mm II<br>2 Analysis perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D X 0.25µm fi                                                                    | 98.7<br>Jim thick                                    | 0.2<br>ness) Tem                                                   | 99.0<br>1p 1 = 50°                                                  | 0.20471<br>°C (1min.), T                                                                     | 0.20482<br>Temp 2 = 30                                    | 1000.6<br>0°C (9min.),                                       | 4.1<br>Rate = 10°C                        | 16416-32-3<br>C/min., Inject             | . <u>n-Tetracosane-d50 2072 PR-26606 1000 98.7 0.2 99.0 0.20471 0.20482 1000.6 4.1 16416-32-3 N/A</u><br>Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25 <i>µ</i> m film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B<br>275°C. Solit Ratio = 100°L. Scan Rate = 2 Analysis conformed hv: Candice Warren | NA<br>r B =                                                                              |                                 |
| A 2 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                   |                                                                                                                                                                                                                        | 2 FC 11                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                |                                                      |                                                                    |                                                                     | ■ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                      |                                                           | S C V R                                                      | 5 c v n 1589 {23.538 m 143:1958 1172072.0 | 10 2 1 2 8 2 1 2 0                       | 172.0                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                 |
| ы на<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со          |                                                                                                                                                                                                                        |                                                                                        | m<br>(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97<br>107<br>101                                                                 |                                                      |                                                                    |                                                                     | \$ 0 0 3 3 0                                                                                 | 8                                                         |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 012705                                                                                   | S                               |
| 9-100-000-00<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6   |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 000008                                                                                       |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 1126                                                                                     | )                               |
| м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 788899                                                                                       |                                                           |                                                              |                                           | $\rangle$                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          | -                               |
| 10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                     |                                                           |                                                              |                                           | <                                        |                                                                                                                                                                                                                                                                                                                                                                               | p13214                                                                                   | 5                               |
| 99 99<br>99 99<br>99 99<br>99 99<br>99 99<br>99<br>99<br>99<br>9                            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 500390                                                                                       |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 4J                                                                                       | 1                               |
|                                                                                             |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1944 - 100 g mbu) - 100 u - 100 g                                                |                                                      |                                                                    |                                                                     | 4 0 0 0 0 0                                                                                  | 90                                                        |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 421211                                                                                   | 421                             |
| n n<br>n n<br>n n<br>n n<br>n n<br>n<br>n n<br>n<br>n<br>n<br>n<br>n<br>n<br>n              |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 30000                                                                                        | ·····                                                     |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                       |                                 |
| ca<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 20000                                                                                        | k +                                                       |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 44<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | , , , , , , , , , , , , , , , , , , ,                     |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| 00<br>00<br>00<br>00<br>00                                                                  |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Augusta 10 - 10 - 10 - 10 - 10                                                   |                                                      |                                                                    |                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3  | 44<br>44                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        | 230 546 362                               | 184 210 326 245                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| T ## e # D                                                                                  | 19,81 08,5                                                                                                                                                                                                             | 後<br>後<br>-<br>5<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 19 (A)<br>19 | 5<br>5<br>5<br>5<br>7<br>7                                                       |                                                      | na ar s e                                                          | No-April American                                                   | ₫ [ 2 · · > ] 3                                                                              | 8.8 6.8 8.8                                               | 203 324 245                                                  | 14                                        | 23.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
|                                                                                             |                                                                                                                                                                                                                        | <ul> <li>The certil</li> <li>Standard</li> <li>Standard</li> <li>Ali Stand</li> </ul>  | <ul> <li>The certified value is the concentration catculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NUST (see above).</li> <li>Standards are exciting (+/-) 0.5% of the stated value, unless otherwise stated.</li> <li>MiStandards, after opening amplite should be stored with cass tight and under appropriate laboratory conditions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | centration calcul<br>vimetrically using<br>0.5% of the state<br>ampule, should I | a balances<br>balances<br>i value, un<br>be stored w | gravimetric :<br>that are call<br>less otherwis<br>fith caps tight | c and volumetr<br>librated with w<br>ise stated.<br>pht and under a | ric measureme<br>veights traceabi<br>appropriate iai                                         | ats unless other<br>le to NIST (see a<br>boratory conditi | wise stated.<br>(bove).<br>ons.                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
|                                                                                             |                                                                                                                                                                                                                        | NIST Te                                                                                | - curculation were ence: 1 ayer, p.v. and Auyar, C.E., 'outgeness or Evantang and Expressing the Uncertainty of MIST Measurement Kesult,'<br>NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | usr, p.v. anu hu<br>U.S. Government                                              | Printing C                                           | u moeunes r<br>Office, Washi                                       | or Evanuatin<br>ngton, DC, (                                        | g and Express<br>1994).                                                                      | ng the Uncertai                                           | ary of NIST Mer                                              | ssurement Kesu                            |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| Dout # 70070                                                                                |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     |                                                                                              |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |

Lot # 101122

1 of 1

Printed: 1/16/2024, 3:48:47 PM

Part # 72072

| Absolute Standards,<br>800-368-1131<br>www.absolutestandards.com                            | Standards, Inc.<br>I<br>estandards.com                                                                                                                                                                                 | 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      | Certifiec                                                          | ł Refere                                                            | ance Mate                                                                                    | Certified Reference Material CRM                          |                                                              |                                           |                                          | ANAB I<br>AR-15:<br>https://Ak                                                                                                                                                                                                                                                                                                                                                | ANAB ISO 17034 Accredited<br>AR-1539 Certificate Number<br>https://Absolutestandards.com | ccredited<br>Number<br>ards.com |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|
| CERTIFIED WEIGHT REPORT                                                                     |                                                                                                                                                                                                                        | Part Number:<br>Lot Number:<br>Description:                                            | 72072<br>101122<br>n-Tetracosane-d50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | me-d50                                                                           |                                                      |                                                                    | Methyle                                                             | Sotvent(s):<br>Methylene chloride                                                            | Lot#<br>105345                                            |                                                              |                                           | Sol 2                                    | Part Cheuler                                                                                                                                                                                                                                                                                                                                                                  | 101122                                                                                   |                                 |
| Nom<br>Weight(s) sh                                                                         | Expiration Date: 101132<br>Recommended Storage: Amblent (2<br>Nominal Concentration ( <i>ug/mL</i> ): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL):                          | in Date:<br>storage:<br>ug/mL):<br>est ID#:<br>mbined and                              | 101132<br>Amblent (20 °C)<br>1000<br>6UTB<br>diluted to (mL):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 °C)<br>200.0                                                                   | 5E-05<br>0.058                                       | 5E-05 Balance Uncertainty<br>0.058 Flaak Uncertainty               | lainity<br>rity                                                     |                                                                                              |                                                           |                                                              | Formulated By<br>Reviewed By:             | Bi                                       | Prashant Chauhan                                                                                                                                                                                                                                                                                                                                                              | DATE<br>101122<br>DATE                                                                   |                                 |
| Compound                                                                                    |                                                                                                                                                                                                                        | æ                                                                                      | Lot<br>RM# Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nominal<br>Conc (µg/mL)                                                          | Purity<br>(%)                                        | Uncertainty<br>Purity                                              | Assay<br>(%D)                                                       | Target<br>Weight(g)                                                                          | Actual<br>Weight(g)                                       | Expanded<br>Actual Uncertainty<br>Conc (µg/mL) (+/-) (µg/mL) | Expanded<br>Uncertainty<br>(+/-) (µg/mL)  | (Solvent<br>cas#                         | SDS Information<br>(Solvent Safety Info. On Attached pg.)<br>CAS# 05HA PEL (TWA) LD5                                                                                                                                                                                                                                                                                          | ed pg.)<br>LDSO                                                                          |                                 |
| 1. <u>n-Tetracosane-d50</u><br>Method GC8MSD-3<br>275°C. Solit Ratio =                      | l. <u>n-Tetracosane-d50</u> 2072 PR-26606 1000 98.7 0.<br>Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25µm film thickness)<br>275°C. Solit Ratio = 100:1. Scan Rate = 2 Analysis performed by: Candice Warran | 20<br>1:SPB-5 (30<br>1 Bate = 2                                                        | 2072 PR-26606<br>30m X 0.25mm II<br>2 Analysis perfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D X 0.25µm fi                                                                    | 98.7<br>Jim thick                                    | 0.2<br>ness) Tem                                                   | 99.0<br>1p 1 = 50°                                                  | 0.20471<br>°C (1min.), T                                                                     | 0.20482<br>Temp 2 = 30                                    | 1000.6<br>0°C (9min.),                                       | 4.1<br>Rate = 10°C                        | 16416-32-3<br>C/min., Inject             | . <u>n-Tetracosane-d50 2072 PR-26606 1000 98.7 0.2 99.0 0.20471 0.20482 1000.6 4.1 16416-32-3 N/A</u><br>Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25 <i>µ</i> m film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B<br>275°C. Solit Ratio = 100°L. Scan Rate = 2 Analysis conformed hv: Candice Warren | NA<br>r B =                                                                              |                                 |
| A 2 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                   |                                                                                                                                                                                                                        | 2 FC 11                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                |                                                      |                                                                    |                                                                     | ■ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                      |                                                           | S C V R                                                      | 5 c v n 1589 {23.538 m 143:1958 1172072.0 | 10 2 1 2 8 2 1 2 0                       | 172.0                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                 |
| ы та<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со<br>со          |                                                                                                                                                                                                                        |                                                                                        | m<br>(*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97<br>147<br>147<br>147                                                          |                                                      |                                                                    |                                                                     | \$ 0 0 3 3 0                                                                                 | 8                                                         |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 012705                                                                                   | S                               |
| 9-100-000-00<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60        |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 000008                                                                                       |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 1126                                                                                     | )                               |
| м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м<br>м |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 788899                                                                                       |                                                           |                                                              |                                           | $\rangle$                                |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          | -                               |
| 10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                     |                                                           |                                                              |                                           | <                                        |                                                                                                                                                                                                                                                                                                                                                                               | p13214                                                                                   | 5                               |
| 99 99<br>99 99<br>99 99<br>99 99<br>99 99<br>99<br>99<br>99<br>9                            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 500390                                                                                       |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 4J                                                                                       | 1                               |
|                                                                                             |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1944 - 100 g mbu) - 100 u - 100 g                                                |                                                      |                                                                    |                                                                     | 4 0 0 0 0 0                                                                                  | 90                                                        |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 421211                                                                                   | 421                             |
| n n<br>n n<br>n n<br>n n<br>n n<br>n<br>n n<br>n<br>n<br>n<br>n<br>n<br>n<br>n              |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 30000                                                                                        | ·····                                                     |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                       |                                 |
| ca<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 20000                                                                                        | k +                                                       |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     | 44<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | , , , , , , , , , , , , , , , , , , ,                     |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| 00<br>00<br>00<br>00<br>00                                                                  |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Augusta 10 - 10 - 10 - 10 - 10                                                   |                                                      |                                                                    |                                                                     | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3  | 44<br>44                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        | 230 546 362                               | 184 210 326 245                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| T ## e # D                                                                                  | 19,81 08,5                                                                                                                                                                                                             | 後<br>後<br>-<br>5<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 19 (P)<br>19 | 5<br>5<br>5<br>5<br>7<br>7                                                       |                                                      | na ar s e                                                          | No-April American                                                   | ₫ [ 2 · · > <sup>1</sup> 3                                                                   | 8.8 6.8 8.8                                               | 203 324 245                                                  | 14                                        | 23.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
|                                                                                             |                                                                                                                                                                                                                        | <ul> <li>The certil</li> <li>Standard</li> <li>Standard</li> <li>Ali Stand</li> </ul>  | <ul> <li>The certified value is the concentration catculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Shandards are prepared gravimetrically using balances that are calibrated with weights traceable to NUST (see above).</li> <li>Shandards, after operating are provide should be stored with cass tight and under appropriate laboratory conditions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | centration calcul<br>vimetrically using<br>0.5% of the state<br>ampule, should I | a balances<br>balances<br>i value, un<br>be stored w | gravimetric :<br>that are call<br>less otherwis<br>fith caps tight | c and volumetr<br>librated with w<br>ise stated.<br>pht and under a | ric measureme<br>veights traceabi<br>appropriate iai                                         | ats unless other<br>le to NIST (see a<br>boratory conditi | wise stated.<br>(bove).<br>ons.                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
|                                                                                             |                                                                                                                                                                                                                        | NIST Te                                                                                | - curculation were ence: 1 ayer, p.v. and Auya, C.L., 'outgeness or Evantang and Expressing the Uncertainty of MIST Measurement Kesult,'<br>NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | usr, p.v. anu hu<br>U.S. Government                                              | Printing C                                           | u moeunes r<br>Office, Washi                                       | or Evanuatin<br>ngton, DC, (                                        | g and Express<br>1994).                                                                      | ng the Uncertai                                           | ary of NIST Mer                                              | ssurement Kesu                            |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |
| Dout # 70070                                                                                |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                                      |                                                                    |                                                                     |                                                                                              |                                                           |                                                              |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                 |

Lot # 101122

1 of 1

Printed: 1/16/2024, 3:48:47 PM

Part # 72072

|                                                                        | Santa R                | 5580 Skylane Blvd<br>Santa Rosa, CA 95403                       | Manufi<br>Ay                                                                                                                                                                            | Manufacturer's Quality System<br>Andited & Registered                                                                                                                                        |
|------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | (707)                  | (707)525-5788                                                   |                                                                                                                                                                                         | by TUV USA to ISO 9001:2015                                                                                                                                                                  |
|                                                                        | (201)8/2               | 00)8/8-/054 1011 Fre<br>(707)545-7901 Fax                       | e<br>Date Received:                                                                                                                                                                     | :pa                                                                                                                                                                                          |
|                                                                        | Certifica              | <b>Certificate of Analysis</b>                                  | <b>JySiS</b> Rev 0                                                                                                                                                                      | Page 1 of 1                                                                                                                                                                                  |
| Catalog No.: Lot No.: Storage:<br>Z-110400-05 514983 <-10 Degrees C    | Solvent: E<br>Hexane 1 | Exp. Date:<br>11/20/2028 TRPH                                   | Exp. Date: Description: Description: 11/20/2028 TRPH Standard (C8-C40), 500 mg/L, 1 ml                                                                                                  | ption:<br>g/L, 1 ml                                                                                                                                                                          |
| Compound                                                               | AS No.                 | Purity (%)                                                      | Compound Lot No.                                                                                                                                                                        | Concentration, mg/L                                                                                                                                                                          |
| decane (C10)                                                           | 124-18-5               | 7.66                                                            | 415.7.2P                                                                                                                                                                                | $498.5 \pm 6.92$                                                                                                                                                                             |
| docosane (C22)                                                         | 629-97-0               | 98.8                                                            | 420.9.1P                                                                                                                                                                                | $499.4 \pm 6.93$                                                                                                                                                                             |
| dodecane (C12)                                                         | 112-40-3               | 7.99                                                            | 416.9.3P                                                                                                                                                                                | <b>5</b> 02 ± <b>6</b> .97                                                                                                                                                                   |
| dotriacontane (C32)                                                    | 544-85-4               | 67                                                              | 425.9.2.2P                                                                                                                                                                              | $499.6 \pm 8.53$                                                                                                                                                                             |
| eicosane (C20)                                                         | 112-95-8               | 8.66                                                            | 419.7.1P                                                                                                                                                                                | $501 \pm 6.95$                                                                                                                                                                               |
| hexacosane (C26)                                                       | 630-01-3               | 6.66                                                            | 422.7.2.1P                                                                                                                                                                              | $501 \pm 6.95$                                                                                                                                                                               |
| hexatriacontane (C36)                                                  | 630-06-8               | 86                                                              | 427.29.1.1P                                                                                                                                                                             | $499.3 \pm 8.53$                                                                                                                                                                             |
| n-hexadecane (C16)                                                     | 544-76-3               | 99.45                                                           | 368.271.1P                                                                                                                                                                              | $498.7 \pm 6.91$                                                                                                                                                                             |
| octacosane (C28)                                                       | 630-02-4               | 99.1                                                            | 423.24.1P                                                                                                                                                                               | $500.5 \pm 6.95$                                                                                                                                                                             |
| n-octadecane (C18)                                                     | 593-45-3               | 99.5                                                            | 418.29.1P                                                                                                                                                                               | $499.5 \pm 6.92$                                                                                                                                                                             |
| octane (C8)                                                            | 111-65-9               | 99.4                                                            | 385.7.2.1P                                                                                                                                                                              | <b>498.5</b> ± 6.92                                                                                                                                                                          |
| octatriacontane (C38)                                                  | 7194-85-6              | 95                                                              | 428.1.2P                                                                                                                                                                                | $500.2 \pm 6.94$                                                                                                                                                                             |
| tetracontane (C40)                                                     | 4181-95-7              | 67                                                              | 429.7.2P                                                                                                                                                                                | $499.6 \pm 6.93$                                                                                                                                                                             |
| n-tetracosane (C24)                                                    | 646-31-1               | 99.5                                                            | 421.7.IP                                                                                                                                                                                | $499.5 \pm 6.93$                                                                                                                                                                             |
| n-tetradecane (C14)                                                    | 629-59-4               | 99.3                                                            | 417.9.IP                                                                                                                                                                                | $500 \pm 6.94$                                                                                                                                                                               |
| tetratriacontane (C34)                                                 | 14167-59-0             | 96.1                                                            | 426.7.2.2P                                                                                                                                                                              | $499.7 \pm 8.53$                                                                                                                                                                             |
| triacontane (C30)                                                      | 638-68-6               | 99.5                                                            | 424.7.1.1P                                                                                                                                                                              | $500 \pm 6.94$                                                                                                                                                                               |
|                                                                        |                        | G                                                               | 212610                                                                                                                                                                                  | II.                                                                                                                                                                                          |
|                                                                        |                        |                                                                 | p 13224                                                                                                                                                                                 | 01   31   24<br>*Not a certified value                                                                                                                                                       |
| Let the standard warm to room temperature and sonicate before opening. | 200<br>200             |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |
|                                                                        |                        |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |
| Oundrea Shrindl                                                        | July                   | All weights are tra<br>Concentration (co<br>listed are determin | All weights are traceable through N. I. S. T. Test No. 822/264157-00.<br>Concentration (correct for purity) and uncertainty (95% confidence) t<br>listed are determined gravimetricIIv. | All weights are traceable through N. I. S. T. Test No. 822/264157-00.<br>Concentration (correct for purity) and uncertainty (95% confidence) values<br>listed are determined gravimetricIIv. |
| Certified By: Andrea Schaible                                          | ole                    |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |

5580 Skylane Blvd

Andrea Schaible Chemist

|                                                                        | Santa R                | 5580 Skylane Blvd<br>Santa Rosa, CA 95403                       | Manufi<br>Ay                                                                                                                                                                            | Manufacturer's Quality System<br>Andited & Registered                                                                                                                                        |
|------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | (707)                  | (707)525-5788                                                   |                                                                                                                                                                                         | by TUV USA to ISO 9001:2015                                                                                                                                                                  |
|                                                                        | (200)878<br>(707)5     | 00)8/8-/054 1011 Fre<br>(707)545-7901 Fax                       | e<br>Date Received:                                                                                                                                                                     | :pa                                                                                                                                                                                          |
|                                                                        | Certifica              | <b>Certificate of Analysis</b>                                  | <b>JySiS</b> Rev 0                                                                                                                                                                      | Page 1 of 1                                                                                                                                                                                  |
| Catalog No.: Lot No.: Storage:<br>Z-110400-05 514983 <-10 Degrees C    | Solvent: E<br>Hexane 1 | Exp. Date:<br>11/20/2028 TRPH                                   | Exp. Date: Description: Description: 11/20/2028 TRPH Standard (C8-C40), 500 mg/L, 1 ml                                                                                                  | ption:<br>g/L, 1 ml                                                                                                                                                                          |
| Compound                                                               | AS No.                 | Purity (%)                                                      | Compound Lot No.                                                                                                                                                                        | Concentration, mg/L                                                                                                                                                                          |
| decane (C10)                                                           | 124-18-5               | 7.66                                                            | 415.7.2P                                                                                                                                                                                | $498.5 \pm 6.92$                                                                                                                                                                             |
| docosane (C22)                                                         | 629-97-0               | 98.8                                                            | 420.9.1P                                                                                                                                                                                | $499.4 \pm 6.93$                                                                                                                                                                             |
| dodecane (C12)                                                         | 112-40-3               | 7.99                                                            | 416.9.3P                                                                                                                                                                                | <b>5</b> 02 ± <b>6</b> .97                                                                                                                                                                   |
| dotriacontane (C32)                                                    | 544-85-4               | 67                                                              | 425.9.2.2P                                                                                                                                                                              | $499.6 \pm 8.53$                                                                                                                                                                             |
| eicosane (C20)                                                         | 112-95-8               | 8.66                                                            | 419.7.1P                                                                                                                                                                                | $501 \pm 6.95$                                                                                                                                                                               |
| hexacosane (C26)                                                       | 630-01-3               | 6.66                                                            | 422.7.2.1P                                                                                                                                                                              | $501 \pm 6.95$                                                                                                                                                                               |
| hexatriacontane (C36)                                                  | 630-06-8               | 86                                                              | 427.29.1.1P                                                                                                                                                                             | $499.3 \pm 8.53$                                                                                                                                                                             |
| n-hexadecane (C16)                                                     | 544-76-3               | 99.45                                                           | 368.271.1P                                                                                                                                                                              | $498.7 \pm 6.91$                                                                                                                                                                             |
| octacosane (C28)                                                       | 630-02-4               | 99.1                                                            | 423.24.1P                                                                                                                                                                               | $500.5 \pm 6.95$                                                                                                                                                                             |
| n-octadecane (C18)                                                     | 593-45-3               | 99.5                                                            | 418.29.1P                                                                                                                                                                               | $499.5 \pm 6.92$                                                                                                                                                                             |
| octane (C8)                                                            | 111-65-9               | 99.4                                                            | 385.7.2.1P                                                                                                                                                                              | <b>498.5</b> ± 6.92                                                                                                                                                                          |
| octatriacontane (C38)                                                  | 7194-85-6              | 95                                                              | 428.1.2P                                                                                                                                                                                | $500.2 \pm 6.94$                                                                                                                                                                             |
| tetracontane (C40)                                                     | 4181-95-7              | 67                                                              | 429.7.2P                                                                                                                                                                                | $499.6 \pm 6.93$                                                                                                                                                                             |
| n-tetracosane (C24)                                                    | 646-31-1               | 99.5                                                            | 421.7.IP                                                                                                                                                                                | $499.5 \pm 6.93$                                                                                                                                                                             |
| n-tetradecane (C14)                                                    | 629-59-4               | 99.3                                                            | 417.9.IP                                                                                                                                                                                | $500 \pm 6.94$                                                                                                                                                                               |
| tetratriacontane (C34)                                                 | 14167-59-0             | 96.1                                                            | 426.7.2.2P                                                                                                                                                                              | $499.7 \pm 8.53$                                                                                                                                                                             |
| triacontane (C30)                                                      | 638-68-6               | 99.5                                                            | 424.7.1.1P                                                                                                                                                                              | $500 \pm 6.94$                                                                                                                                                                               |
|                                                                        |                        | G                                                               | 212610                                                                                                                                                                                  | II.                                                                                                                                                                                          |
|                                                                        |                        |                                                                 | p 13224                                                                                                                                                                                 | 01   31   24<br>*Not a certified value                                                                                                                                                       |
| Let the standard warm to room temperature and sonicate before opening. | 200<br>200             |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |
|                                                                        |                        |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |
| Oundrea Shrindl                                                        | July                   | All weights are tra<br>Concentration (co<br>listed are determin | All weights are traceable through N. I. S. T. Test No. 822/264157-00.<br>Concentration (correct for purity) and uncertainty (95% confidence) t<br>listed are determined gravimetricIIv. | All weights are traceable through N. I. S. T. Test No. 822/264157-00.<br>Concentration (correct for purity) and uncertainty (95% confidence) values<br>listed are determined gravimetricIIv. |
| Certified By: Andrea Schaible                                          | ole                    |                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                              |

5580 Skylane Blvd

Andrea Schaible Chemist

ISO - 17034



**Certificate of Analysis** 



### **Certified Reference Material (CRM)**

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

**Intended Use**: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

**Characterization Values**: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

Homogeneity: Uncertainties that are due to the analytical procedure (s) are within + /-5% unless specifically stated on the Certified Wt. Report.

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

**Stability:** Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

**Uncertainty**: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

**Purity & Identity**: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

**Storage**: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

**Usage:** Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

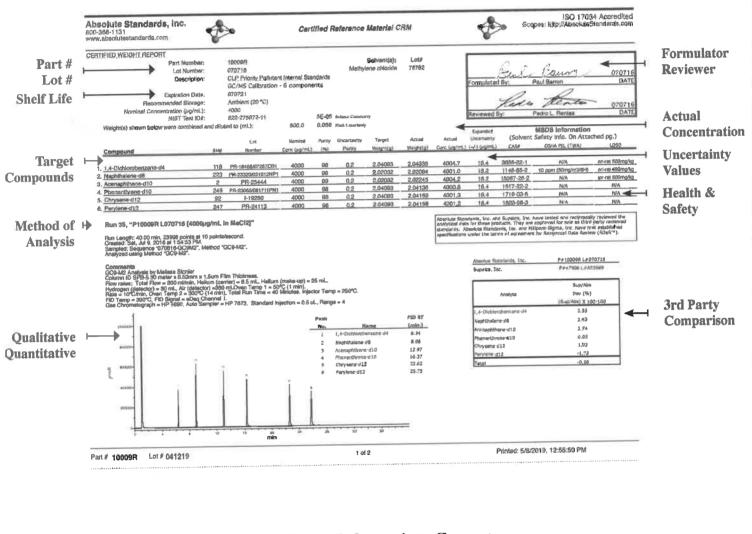
Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2






ISO - 17034



**Understanding the Certified Weight Report** 



Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.



For More Information, Contact:



Page 2 of 2





| <ul> <li><sup>a</sup> All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.</li> <li><sup>b</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).</li> <li><sup>b</sup> Ort # 101122</li> <li><sup>c</sup> Lot # 101122</li> </ul> | <ul> <li>The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).</li> <li>All standards are cortified (4/-) 0.5% of the stated value, unless otherwise stated.</li> </ul> | 1.5 € 1 <sup>8</sup> 5.88 38.80 15.58 23.88 23.82 33.82 33.83 55.88 35.88 (1-5) 0 10 10 10 10 10 10 10 10 10 10 10 10 1 |  | 2 DG 0 0 0 |  | и<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |       | 7 C C C C C C C C C C C C C C C C C C C |       | M 8 77 77 77 77 77 77 77 77 77 77 77 77 7                                       |            | 》《日本元》》(1))<br>《 11)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1 | ), Temp                                        | 10                          | Lot Nominal Purity Uncertainty Assay Target Actual<br>Compound RM# Number Conc (µg/mL) (%) Purity (%D) Weight(g) Weight(g) | Nominal Concentration (µg/mL): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL): 200.0 0.058 Plask Uncertainty | $\frac{72072}{101122}$ $\frac{101122}{n-1etracosane-d50}$ Methylene chloride 10534 $P \mid 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 101132$ |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|------------|--|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------|-------|---------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| and under appropriate laboratory conditions.<br>Evaluating and Expressing the Uncertainty of NIST Measurement Result,"<br>ton, DC, (1994).<br>1 of 1 Printed: 7/22/2024, 11:35:29 AM                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | 40 50 80 100 32                                                                                                         |  | 2 50 6 9 0 |  |                                                                                                  | 50000 | 720200 -                                | 80000 | 9<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 491<br>493 | 5 can 1583 {23.538 jair]; [4581]72072.b                                                                 | 300°C (9min.), Rate = 10°C/min., Injector B= 2 | 2 1000.6 4.1 16416-32-3 N/A | Assay Target<br>(%D) Weight(g)                                                                                             | ltÿ                                                                                                                                                  | )                                                                                                                                                                   | AH-1539 Certificate Number<br>https://Absolutestandards.com |

ISO - 17034



**Certificate of Analysis** 



### **Certified Reference Material (CRM)**

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

**Intended Use**: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

**Characterization Values**: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

Homogeneity: Uncertainties that are due to the analytical procedure (s) are within + /-5% unless specifically stated on the Certified Wt. Report.

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

**Stability:** Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

**Uncertainty**: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

**Purity & Identity**: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

**Storage**: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

**Usage:** Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

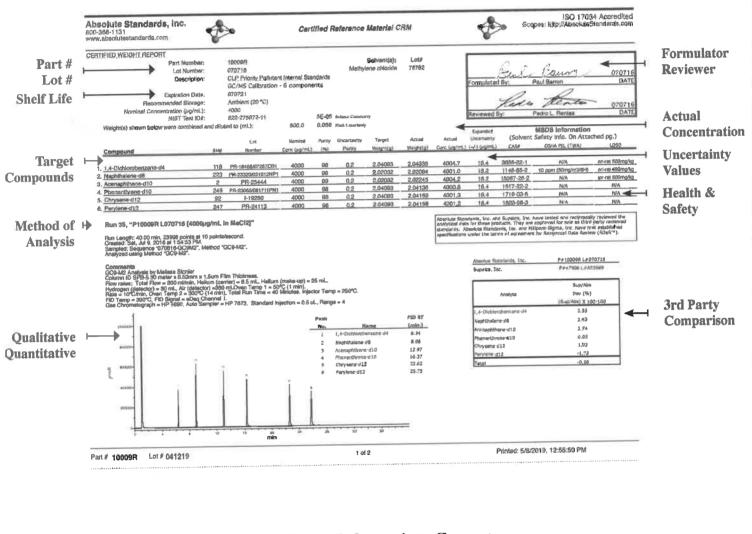
Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2






ISO - 17034



**Understanding the Certified Weight Report** 



Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.



For More Information, Contact:



Page 2 of 2





| <ul> <li><sup>a</sup> All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.</li> <li><sup>b</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).</li> <li><sup>b</sup> Ort # 101122</li> <li><sup>c</sup> Lot # 101122</li> </ul> | <ul> <li>The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).</li> <li>All standards are cortified (4/-) 0.5% of the stated value, unless otherwise stated.</li> </ul> | 1.5 € 1 <sup>8</sup> 5.8 38.8 38.8 15.5 23.88 23.82 33.82 33.83 55.88 35.88 (1-5) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) ( |  | 2 DG 0 0 0 |  | и<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |       | 7 C C C C C C C C C C C C C C C C C C C |       | M 8 77 77 77 77 77 77 77 77 77 77 77 77 7                                       |            | 》《日本元》》(1))<br>《 11)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1)(1):1)(1)(1):1)(1)(1):1)(1)(1):1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)( | ), Temp                                        | 10                          | Lot Nominal Purity Uncertainty Assay Target Actual<br>Compound RM# Number Conc (µg/mL) (%) Purity (%D) Weight(g) Weight(g) | Nominal Concentration (µg/mL): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL): 200.0 0.058 Plask Uncertainty | $\frac{72072}{101122}$ $\frac{101122}{n-1etracosane-d50}$ Methylene chloride 10534 $P \mid 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 101132$ |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|--|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------|-------|---------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| and under appropriate laboratory conditions.<br>Evaluating and Expressing the Uncertainty of NIST Measurement Result,"<br>ton, DC, (1994).<br>1 of 1 Printed: 7/22/2024, 11:35:29 AM                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | 40 50 80 100 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | 2 50 6 9 0 |  |                                                                                                  | 50000 | 720200 -                                | 80000 | 9<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 491<br>493 | 5 can 1583 {23.538 jair]; [4581]72072.b                                                                                        | 300°C (9min.), Rate = 10°C/min., Injector B= 2 | 2 1000.6 4.1 16416-32-3 N/A | Assay Target<br>(%D) Weight(g)                                                                                             | ltÿ                                                                                                                                                  | )                                                                                                                                                                   | AH-1539 Certificate Number<br>https://Absolutestandards.com |

ISO - 17034



**Certificate of Analysis** 



### **Certified Reference Material (CRM)**

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

**Intended Use**: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

**Characterization Values**: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

Homogeneity: Uncertainties that are due to the analytical procedure (s) are within + /-5% unless specifically stated on the Certified Wt. Report.

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

**Stability:** Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

**Uncertainty**: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

**Purity & Identity**: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

**Storage**: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

**Usage:** Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

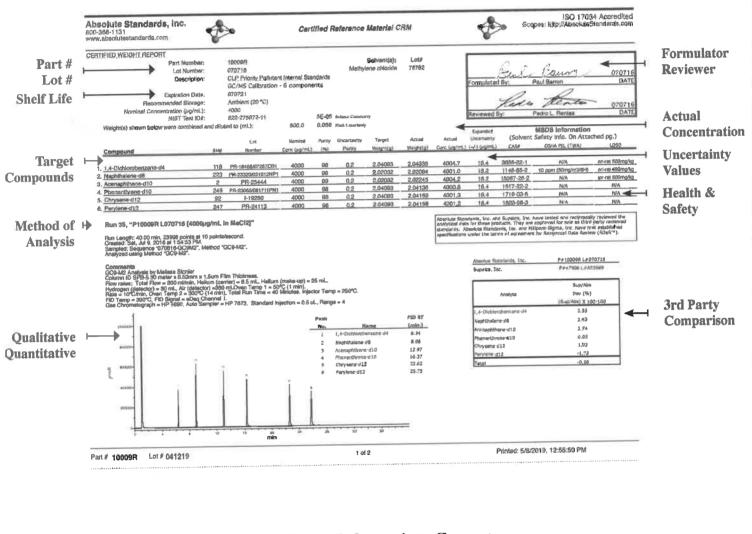
Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2






ISO - 17034



**Understanding the Certified Weight Report** 



Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.



For More Information, Contact:



Page 2 of 2





| <ul> <li><sup>a</sup> All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.</li> <li><sup>b</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).</li> <li><sup>b</sup> Ort # 101122</li> <li><sup>c</sup> Lot # 101122</li> </ul> | <ul> <li>The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).</li> <li>All standards are cortified (4/-) 0.5% of the stated value, unless otherwise stated.</li> </ul> | 1.5 € 1 <sup>8</sup> 5.8 38.8 38.8 15.5 23.88 23.82 33.82 33.83 55.88 35.88 (1-5) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) ( |  | 2 DG 0 0 0 |  | и<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |       | 7 C C C C C C C C C C C C C C C C C C C |       | M 8 77 77 77 77 77 77 77 77 77 77 77 77 7                                       |            | 》《日本元》》(1))<br>《 11)(1):1)(1):1)(1):1)(1):1)(1):1)(1):1)(1)(1):1)(1)(1):1)(1)(1):1)(1)(1):1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)( | ), Temp                                        | 10                          | Lot Nominal Purity Uncertainty Assay Target Actual<br>Compound RM# Number Conc (µg/mL) (%) Purity (%D) Weight(g) Weight(g) | Nominal Concentration (µg/mL): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL): 200.0 0.058 Plask Uncertainty | $\frac{72072}{101122}$ $\frac{101122}{n-1etracosane-d50}$ Methylene chloride 10534 $P \mid 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 101132$ |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|--|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------|-------|---------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| and under appropriate laboratory conditions.<br>Evaluating and Expressing the Uncertainty of NIST Measurement Result,"<br>ton, DC, (1994).<br>1 of 1 Printed: 7/22/2024, 11:35:29 AM                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | 40 50 80 100 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | 2 50 6 9 0 |  |                                                                                                  | 50000 | 720200 -                                | 80000 | 9<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 491<br>493 | 5 can 1583 {23.538 jair]; [4581]72072.b                                                                                        | 300°C (9min.), Rate = 10°C/min., Injector B= 2 | 2 1000.6 4.1 16416-32-3 N/A | Assay Target<br>(%D) Weight(g)                                                                                             | ltÿ                                                                                                                                                  | )                                                                                                                                                                   | AH-1539 Certificate Number<br>https://Absolutestandards.com |

ISO - 17034



**Certificate of Analysis** 



### **Certified Reference Material (CRM)**

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

**Intended Use**: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

**Characterization Values**: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

Homogeneity: Uncertainties that are due to the analytical procedure (s) are within + /-5% unless specifically stated on the Certified Wt. Report.

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

**Stability:** Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

**Uncertainty**: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

**Purity & Identity**: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

**Storage**: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

**Usage:** Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

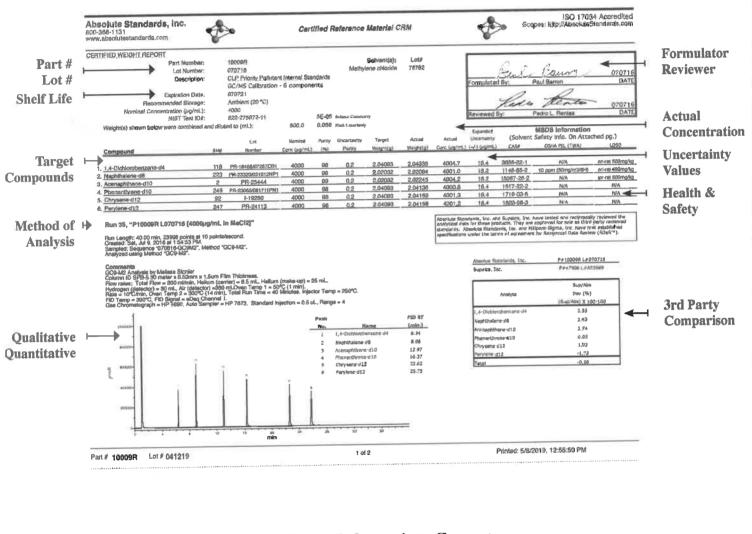
Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2






ISO - 17034



**Understanding the Certified Weight Report** 



Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.



For More Information, Contact:



Page 2 of 2





| <ul> <li><sup>a</sup> All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.</li> <li><sup>b</sup> Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).</li> <li><sup>b</sup> Ort # 101122</li> <li><sup>c</sup> Lot # 101122</li> </ul> | <ul> <li>The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.</li> <li>Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).</li> <li>All standards are cortified (4/-) 0.5% of the stated value, unless otherwise stated.</li> </ul> | 1.5 € 1 <sup>8</sup> 5.8 38.8 38.8 15.5 23.88 23.82 33.82 33.83 55.88 35.88 (1-5) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) (0, 1-1) ( |  | 2 DG 0 0 0 |  | и<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |       | 7 C C C C C C C C C C C C C C C C C C C |       | M 8 77 77 77 77 77 77 77 77 77 77 77 77 7                                       |            | 》《日本元》》(1))<br>《 11)(1))(1))(1))(1))(1))(1))(1))(1))(1)) | ), Temp                                        | 10                          | Lot Nominal Purity Uncertainty Assay Target Actual<br>Compound RM# Number Conc (µg/mL) (%) Purity (%D) Weight(g) Weight(g) | Nominal Concentration (µg/mL): 1000<br>NIST Test ID#: 6UTB<br>Weight(s) shown below were combined and diluted to (mL): 200.0 0.058 Plask Uncertainty | $\frac{72072}{101122}$ $\frac{101122}{n-1etracosane-d50}$ Methylene chloride 10534 $P \mid 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 3 \downarrow 101132$ |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------|--|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------|-------|---------------------------------------------------------------------------------|------------|----------------------------------------------------------|------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| and under appropriate laboratory conditions.<br>Evaluating and Expressing the Uncertainty of NIST Measurement Result,"<br>ton, DC, (1994).<br>1 of 1 Printed: 7/22/2024, 11:35:29 AM                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            | 40 50 80 100 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | 2 50 6 9 0 |  |                                                                                                  | 50000 | 720200 -                                | 80000 | 9<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 491<br>493 | 5 can 1583 {23.538 jair]; [8581]72072.b                  | 300°C (9min.), Rate = 10°C/min., Injector B= 2 | 2 1000.6 4.1 16416-32-3 N/A | Assay Target<br>(%D) Weight(g)                                                                                             | ltÿ                                                                                                                                                  | )                                                                                                                                                                   | AH-1539 Certificate Number<br>https://Absolutestandards.com |