

Prep Standard - Chemical Standard Summary

Order ID : P4877

Test : Mercury

Prepbatch ID : PB165276,

Sequence ID/Qc Batch ID: LB133633,

Standard ID :

MP83207,MP83208,MP83209,MP83210,MP83377,MP83378,MP83379,MP83380,MP83381,MP83382,MP83383,MP83384,MP83385,MP83386,MP83387,MP83391,

Chemical ID :

M4371,M4465,M4916,M5062,M5673,M5882,M5884,M5953,M6119,M6121,M6124,W3112,

Recipe ID 3965	NAME 2:1 H2SO4 : HNO3	<u>NO.</u> MP83207	Prep Date 11/11/2024	Expiration Date 05/09/2025	Prepared By Mohan Bera	<u>ScaleID</u> None	<u>PipetteID</u> None	Sarabjit Jaswal
FROM	1600.00000ml of M5673 + 800.0000	Dml of M611	9 = Final Qua	antity: 3200.000) ml			

<u>Recipe</u> <u>ID</u> 65	NAME POTASSIUM PERMANGANATE	<u>NO.</u> MP83208	<u>Prep Date</u> 11/11/2024	Expiration Date 05/11/2025	Prepared By Mohan Bera	ScaleID METALS_SCA	<u>Supervised By</u> Sarabjit Jaswal
FROM	SOLUTION 5 % 100.00000gram of M4916 + 2000.00	000ml of W3	3112 = Final (Quantity: 2000.	000 ml	LE_3 (M SC-3)	11/11/2024

Recipe ID 66	NAME POTASSIUM PERSULFATE SOLUTION 5 %	<u>NO.</u> MP83209	Prep Date 11/11/2024	Expiration Date 05/11/2025		<u>ScaleID</u> METALS_SCA LE_3 (M SC-3)	Sarabjit Jaswal
FROM	100.00000ml of M4465 + 2000.0000	Oml of W311	2 = Final Qu	antity: 2000.000	D ml		

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Sarabjit Jaswal
67	SODIUM CHLORIDE - HYDROXYL- CHLORIDE	<u>MP83210</u>	11/11/2024	05/11/2025	Mohan Bera	METALS_SCA LE_3 (M SC-3)		11/11/2024
FROM	SOLUTION 2000.00000ml of W3112 + 240.0000	Dgram of M ²	1371 + 240.00	000gram of Mt	5884 = Final Qu	uantity: 2000.00	0 ml	

Recipe ID 871	NAME MERCURY INTERMEDIATE B 250PPB WORKING STD.	<u>NO.</u> MP83377	Prep Date 11/26/2024	Expiration Date 11/27/2024	Prepared By Mohan Bera	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_5 (HG	Sarabjit Jaswal
FROM	1.00000ml of M6124 + 2.50000ml of	M5062 + 96	5.50000ml of V	V3112 = Final	Quantity: 100.00	00 ml	<u>A)</u>	

<u>Recipe</u> <u>ID</u> 1340	NAME Hg 0.00 PPB STD	<u>NO.</u> <u>MP83378</u>	Prep Date 11/26/2024	Expiration Date 11/27/2024	<u>Prepared</u> <u>By</u> Mohan Bera	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP ETTE_5 (HG	Sarabjit Jaswal
FROM	2.50000ml of M6124 + 247.50000ml	l of W3112 =	l Final Quantit	l ty: 250.000 ml			<u>A)</u>	11/2//2024

Recipe ID 1341 FROM	NAME Hg 0.2 PPB STD 2.50000ml of M6124 + 247.30000ml	<u>NO.</u> MP83379 of W3112 +	Prep Date 11/26/2024 0.20000ml of	Expiration Date 11/27/2024 MP83377 = F	Prepared By Mohan Bera inal Quantity: 25	ScaleID None	PipetteID METALS_PIP ETTE_5 (HG A)	Sarabjit Jaswal 11/27/2024
<u>Recipe</u> <u>ID</u> 1342	NAME Hg 2.5 PPB STD	<u>NO.</u> MP83380	<u>Prep Date</u> 11/26/2024	Expiration Date 11/27/2024	<u>Prepared</u> <u>By</u> Mohan Bera	<u>ScaleID</u> None	PipetteID METALS_PIP ETTE_5 (HG	Sarabjit Jaswal
FROM	2.50000ml of M6124 + 245.00000ml	of W3112 +	2.50000ml of	MP83377 = F	inal Quantity: 25	50.000 ml	A)	

Recipe ID 1343 FROM	NAME Hg 5.0 PPB STD 2.50000ml of M6124 + 242.50000ml	<u>NO.</u> MP83381 of W3112 +	Prep Date 11/26/2024 5.00000ml of	Expiration Date 11/27/2024 MP83377 = F	Prepared By Mohan Bera inal Quantity: 25	ScaleID None	PipetteID METALS_PIP ETTE_5 (HG A)	Sarabjit Jaswal 11/27/2024
Recipe ID 1344 FROM	NAME Hg 7.5 PPB STD 2.50000ml of M6124 + 240.00000ml	<u>NO.</u> MP83382 of W3112 +	Prep Date 11/26/2024 7.50000ml of	Expiration Date 11/27/2024 MP83377 = F	Prepared By Mohan Bera inal Quantity: 25	<u>ScaleID</u> None 50.000 ml	PipetteID METALS_PIP ETTE_5 (HG A)	Sarabjit Jaswal

FROM

ETTE_5 (HG

A)

11/27/2024

Metals STANDARD PREPARATION LOG

Recipe ID 1345	NAME Hg 10.0 PPB STD	<u>NO.</u> MP83383	Prep Date 11/26/2024	Expiration Date 11/27/2024	Prepared By Mohan Bera	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_5 (HG A)	Sarabjit Jaswal
<u>FROM</u>	2.50000ml of M6124 + 237.50000ml	of W3112 +	10.00000ml c	of MP83377 =	Final Quantity: 2	250.000 ml	.,	
Recipe ID 1346	NAME Hg ICV SOLUTION	<u>NO.</u> MP83384	Prep Date 11/26/2024	Expiration Date 11/27/2024	Prepared By Mohan Bera	<u>ScaleID</u> None	<u>PipetteID</u> METALS_PIP	<u>Supervised By</u> Sarabjit Jaswal

2.50000ml of M5953 + 2.50000ml of M6124 + 245.00000ml of W3112 = Final Quantity: 250.000 ml

<u>Recipe</u> <u>ID</u> 1351	NAME ICB (Hg 0.00 PPB SOLUTION)	<u>NO.</u> MP83385	<u>Prep Date</u> 11/26/2024	Expiration Date 11/27/2024	Prepared By Mohan Bera	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_5 (HG	
<u>FROM</u>	2.50000ml of M6124 + 247.50000ml	of W3112 =	Final Quantit	y: 250.000 ml			A)	
Recipe	NAME	NO	Dren Dete	Expiration	Prepared	CastalD	DinettelD	Supervised By

	Recipe				Expiration	Prepared			Supervised By
	<u>ID</u>	NAME	<u>NO.</u>	Prep Date	Date	<u>By</u>	<u>ScaleID</u>	PipettelD	Sarabjit Jaswal
	1358	CCV (Hg 5.0 PPB SOLUTION)	<u>MP83386</u>	11/26/2024	11/27/2024	Mohan Bera	None	METALS_PIP	
L								ETTE_5 (HG A)	11/27/2024
	FROM	485.00000ml of W3112 + 5.00000ml	of M6124 +	10.00000ml c	of MP83377 =	Final Quantity: 8	500.000 ml	A)	

Recipe ID 1352	NAME CCB (Hg 0.00 PPB SOLUTION)	<u>NO.</u> <u>MP83387</u>	Prep Date 11/26/2024	Expiration Date 11/27/2024	Prepared By Mohan Bera	<u>ScaleID</u> None	PipettelD METALS_PIP ETTE_5 (HG	
<u>FROM</u>	495.00000ml of W3112 + 5.00000ml	of M6124 =	Final Quantit	ry: 500.000 ml			A)	
Recipe				Expiration	<u>Prepared</u>			Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Sarabjit Jaswal
68	STANNOUS CHLORIDE SOLUTION	<u>MP83391</u>	11/26/2024	11/27/2024		METALS_SCA LE_3 (M SC-3)		11/27/2024
FROM	450.00000ml of W3112 + 50.00000g	ram of M588	32 + 50.00000	ml of M6121 =	Final Quantity:	500.000 ml		

Т

т

CHEMICAL RECEIPT LOG BOOK

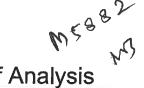
Т

т

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-2196-01 / Hydroxylamine Hydrochloride, Crystal (cs/4x500g)	0000215387	06/25/2025	07/01/2019 / RICHARD	06/07/2019 / RICHARD	M4371
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3238-05 / Potassium Persulfate (2.5kg)	0000234156	08/06/2025	07/23/2019 / mohan	07/25/2019 / manojkumar	M4465
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3227-05 / Potassium Permanganate (2.5kg)	210800	03/31/2026	11/30/2022 / mohan	07/28/2021 / mohan	M4916
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	MSHG-10PPM / MERCURY HCI 125mL 10ug/mL	S2-HG709270	09/22/2026	05/28/2022 / mohan	01/27/2022 / mohan	M5062
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

••			Date	Opened By	Received By	Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	23D2462010	03/20/2028	09/21/2023 / mohan	09/05/2023 / mohan	M5673
				-		

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3980-01 / Stannous Chloride (cs/4x500g)	232820	08/31/2028	04/30/2024 / mohan	04/25/2024 / mohan	M5882



CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3624-05 / Sodium Chloride, Crystal (cs/4x2.5kg)	0000281938	07/06/2026	04/30/2024 / mohan	04/25/2024 / mohan	M5884
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-5 / ICV (HG)STOCK SOLN	ICV5-0415	01/01/2025	07/01/2024 / mohan	03/30/2023 / mohan	M5953
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24B1362001	05/09/2025	11/09/2024 / Janvi	10/09/2024 / Janvi	M6119
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	0000275677	05/13/2025	11/13/2024 / Eman	10/13/2024 / Eman	M6121
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	05/22/2025	11/22/2024 / Janvi	10/22/2024 / Janvi	M6124

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

Certificate of Analysis Thermo Fisher SCIENTIFIC

Page 1 of 1

Certificate of Analysis 1 Reagent Lane Fair Lawn, NJ 07410 Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System 201,796,7100 tel Standard ISO9001:2015 by SAI Global Certificate Number CERT - 0120633 201.796.1329 fax

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

Catalog Number	T142	Quality Test / Release Date	08/17/2023		
Lot Number	232820				
Description	STANNOUS CHLORIDE, DIH	YDRATE CERTIFIED ACS (Suitable for Me	ercury Determination)		
Country of Origin	United States	Suggested Retest Date	Aug/2028		
Chemical Origin	Inorganic-non animal				
BSE/TSE Comment	No animal products are used as starting raw material ingredients, or used in processing, including lubricants, processing aids, or any other material that might migrate to the finished product.				

N/A				
Result Name	Units	Specifications	Test Value	
APPEARANCE		REPORT	Clear crystals	
ASSAY	%	Inclusive Between 98 - 103	100.65	
CALCIUM	%	<= 0.005	0.0017	
IDENTIFICATION	PASS/FAIL	= PASS TEST	PASS TEST	
IRON (Fe)	%	<= 0.003	0.0011	
LEAD (Pb)	%	<= 0.01	0.0006	
MERCURY (Hg)	ppm	<= 0.05	<0.05	
POTASSIUM (K)	%	<= 0.005	0.0001	
SODIUM (Na)	%	<= 0.01	<0.01	
SOLUBILITY IN HCL	PASS/FAIL	= PASS TEST	PASS TEST	
SULFATE (SO4)	PASS/FAIL	= P.T. (ABOUT 0.003%)	P.T. (ABOUT 0.003%)	

ut Sabyr

Harout Sahagian - Quality Control Supervisor - Fair Lawn

Note: The data listed is valid for all package sizes of this lot of this product, expressed as an extension of this catalog number listed above. If there are any questions with this certificate, please call at (800) 227-6701.

*Based on suggested storage condition.

M4371

Hydroxylamine Hydrochloride, Crystal BAKER ANALYZED® A.C.S. Reagent Suitable for Mercury Determination (hydroxylammonium chloride)

Rec - 06.07.12

avantor

Material No.: 2196-01 Batch No.: 0000215387 Manufactured Date: 2018/06/27 Retest Date: 2025/06/25 Revision No: 1

Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

Test	Specification	Result
ssay (NH₂OH · HCl) (by KMnO₄ titrn)	>= 96.0 %	99.1
larity of Alcohol Solution	Passes Test	PT
esidue after Ignition	<= 0.050 %	0.017
itrable Free Acid (meq/g)	<= 0.25	0.19
mmonium (NH4)	Passes Test	РТ
ulfur Compounds (as SO4)	<= 0.005 %	< 0.003
race Impurities – ACS – Heavy Metals (as Pb)	<= 5 ppm	4
race Impurities – Iron (Fe)	<= 5 ppm	< 3
race Impurities – Mercury (Hg)	<= 0.050 ppm	< 0.005

For Laboratory, Research or Manufacturing Use

Country of Origin: CN Packaging Site: Paris Mfg Ctr & DC

Phillipsburg, NJ 9001:2015, FSSC22000 Paris, KY 9001:2008 Mexico City, Mexico 9001:2008 Gliwice, Poland 9001:2015, 13485:2012 Selangor, Malaysia 9001:2008 Dehradun, India, 9001:2008, 14001:2004, 13485:2003 Mumbai, India, 9001:2015, 17025:2005 Panoli, India 9001:2015

James Techie

Jamie Ethier Vice President Global Quality

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700 Certificate of Analysis **ThermoFisher** S C I E N T I F I C

M4913-16

Page 1 of 1

Certificate of Analysis

1 Reagent Lane Fair Lawn, NJ 07410 201.796.7100 tel 201.796.1329 fax Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System Standard ISO9001:2015 by SAI Global Certificate Number CERT – 0120632

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

Catalog Number	P279	Quality Test / Release Date	01/12/2021	
Lot Number	210306			
Description	POTASSIUM PERMANGANATE, A.C.S.			
Country of Origin	United States	Suggested Retest Date	Jan/2026	

N/A				
Result Name	Units	Specifications	Test Value	
APPEARANCE		REPORT	Dark purple to purple green crystals	
ASSAY	%	>= 99	99.3	
CHLORIDE & CHLORATE	%	<= 0.005	<0.005	
IDENTIFICATION	PASS/FAIL	= PASS TEST	pass test	
INSOLUBLE MATTER	%	<= 0.2	<0.2	
MERCURY (Hg)	ppm	<= 0.05	<0.004	
SULFATE (SO4)	%	<= 0.02	<0.02	

Julian Buston

Julian Burton - Quality Control Manager - Fair Lawn

Note: The data listed is valid for all package sizes of this lot of this product, expressed as an extension of this catalog number listed above. If there are any questions with this certificate, please call at (800) 227-6701. *Based on suggested storage condition.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:	Single Analyte Mass Spec Solution			
Catalog Number:	MSHG-10PPM			
Lot Number:	S2-HG709270			
Matrix:	10% (v/v) HCI			
Value / Analyte(s):	10 µg/mL ea: Mercury			
Starting Material:	Hg metal			
Starting Material Lot#:	1959			
Starting Material Purity:	99.9994%			
CERTIFIED VALUES AND UNCERTAINTIES				

Certified Value:	10.001 ± 0.053 μg/mL
Density:	1.020 g/mL (measured at 20 \pm 4 °C)

Assay Information:

3.0

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
Hg	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods	Characterization of CRM/RM by One Method
Certified Value, X _{CRM/RM} , where two or more methods of characterization are used is the weighted mean of the results:	Certified Value, X _{CRWRM} , where one method of characterization is used is the mean of individual results:
$X_{CRM/RM} = \Sigma(w_i) (X_i)$	$X_{CRM/RM} = (X_a) (u_{char a})$
X _i = mean of Assay Method i with standard uncertainty u _{char i}	X _a = mean of Assay Method A with
w_i = the weighting factors for each method calculated using the inverse square of the variance. $w_i = (1/u_{char} i)^2 / (\Sigma(1/(u_{char} i)^2))$	uchar a = the standard uncertainty of characterization Method A
CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k (u ² _{char} + u ² _{bb} + u ² _{lts} + u ² _{ts}) ^{1/2}	CRM/RM Expanded Uncertainty (±) = U _{CRM/RM} = k $(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$
k = coverage factor = 2	k = coverage factor = 2
$u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method	uchar a = the errors from characterization
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty
u _{lts} = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)
uts = transport stability standard uncertainty	uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm.

0	Ag		0.000011	M	Eu	<	0.000201	0	Na		0.000004	М	Se	<	0.015915	0	Zn	<	0.001510
0	AI		0.000001	0	Fe		0.000001	Μ	Nb	<	0.000201	0	Si		0.000005	М	Zr	<	0.000201
М	As	<	0.000402	Μ	Ga	<	0.000201	Μ	Nd	<	0.000201	М	Sm	<	0.000201				
М	Au	<	0.003631	М	Gd	<	0.000201	M	Ni	<	0.000402	M	Sn	<	0.001007				
Μ	В	<	0.001208	М	Ge	<	0.000201	М	Os	<	0.000605	М	Sr	<	0.000201				
Μ	Ba	<	0.000201	Μ	Hf	<	0.000201	0	Ρ	<	0.032370	Μ	Та	<	0.000201				
Μ	Be	<	0.000201	s	Hg	<		Μ	Pb	<	0.000201	M	Tb	<	0.000201				
Μ	Bi	<	0.000201	М	Ho	<	0.000201	Μ	Pd	<	0.000403	М	Te	<	0.002216				
0	Ca		0.000007	Μ	In	<	0.000201	Μ	Pr	<	0.000201	М	Th	<	0.000201				
M	Cd	<	0.000201	М	lr	<	0.000201	Μ	Pt	<	0.000402	M	Ti	<	0.000402				
Μ	Ce	<	0.000201	0	Κ		0.000020	М	Rb	<	0.000201	0	ΤI	<	0.016508				
M	Co	<	0.000201	М	La	<	0.000201	Μ	Re	<	0.000201	Μ	Tm	<	0.000201				
0	Cr	<	0.003021	0	Li	<	0.000107	М	Rh	<	0.000201	М	U	<	0.008058				
М	Cs	<	0.001208	М	Lu	<	0.000201	Μ	Ru	<	0.000201	Μ	V	<	0.000201				
М	Cu	<	0.000402	0	Mg		0.000001	0	S	<	0.053950	М	W	<	0.000604				
M	Dy	<	0.000201	M	Mn	<	0.000604	М	Sb	<	0.001208	М	Y	<	0.000201				
Μ	Er	<	0.000201	М	Мо		0.000009	Μ	Sc	<	0.000201	М	Yb	<	0.000201				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° - 30° C while in sealed TCT bag.

- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.

- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between $4^{\circ} - 24^{\circ}$ C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 200.59 +2 4 Hg(OH)(aq) 1+ Chemical Compatibility - Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water.

Stability - 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container.

Hg Containing Samples (Preparation and Solution) - Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation guestions in further detail.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe
ICP-MS 202 amu	9 ppt	n/a	186W16O
ICP-OES 184.950 nm	0.03 / 0.005 µg/mL	1	
ICP-OES 194.227 nm	0.03 / 0.005 µg/mL	1	V
ICP-OES 253.652 nm	0.1 / 0.03 µg/mL	1	Ta, Co, Th ,Rh , Fe,
			U

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 22, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 22, 2026

- The date after which this CRM/RM should not be used.

- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong Supervisor, Product Documentation

Ulya new

Certificate Approved By:

Michael Booth Director, Quality Control

Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Paul R Laine

Sulfuric Acid BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Low Selenium

MS693-

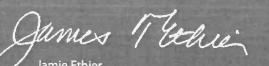
Material No.: 9673-33 Batch No.: 23D2462010 Manufactured Date: 2023-03-22 Retest Date: 2028-03-20 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS – Assay (H2SO4)	95.0 - 98.0 %	96.1 %
Appearance	Passes Test	Passes Test
ACS – Color (APHA)	≤ 10	5
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm
ACS – Substances Reducing Permanganate (as SO2)	≤ 2 ppm	< 2 ppm
Ammonium (NH4)	≤ 1 ppm	1 ppm
Chloride (Cl)	≤ 0.1 ppm	< 0.1 ppm
Nitrate (NO3)	≤ 0.2 ppm	< 0.1 ppm
Phosphate (PO4)	≤ 0.5 ppm	< 0.1 ppm
Trace Impurities – Aluminum (AI)	≤ 30.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 4.0 ppb	< 2.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	8.5 ppb
Trace Impurities – Cadmium (Cd)	≤ 2.0 ppb	< 0.3 ppb
Trace Impurities – Chromium (Cr)	≤ 6.0 ppb	< 0.4 ppb
Trace Impurities - Cobalt (Co)	≤ 0.5 ppb	< 0.3 ppb
Trace Impurities – Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gold (Au)	≤ 10.0 ppb	0.5 ppb
Heavy Metals (as Pb)	≤ 500.0 ppb	< 100.0 ppb
Trace Impurities - Iron (Fe)	≤ 50.0 ppb	1.3 ppb
Trace Impurities - Lead (Pb)	≤ 0.5 ppb	< 0.5 ppb
Trace Impurities – Magnesium (Mg)	≤ 7.0 ppb	0.8 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities – Nickel (Ni)	≤ 2.0 ppb	0.3 ppb
Trace Impurities – Potassium (K)	≤ 500.0 ppb	< 2.0 ppb
Trace Impurities – Selenium (Se)	≤ 50.0 ppb	< 0.1 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	31.5 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb

>>> Continued on page 2 >>>

Sulfuric Acid BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis Low Selenium



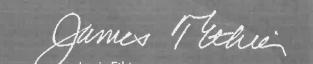
Material No.: 9673-33 Batch No.: 23D2462010

Test	Specification	Result
Trace Impurities – Sodium (Na)	≤ 500.0 ppb	5.4 ppb
Trace Impurities – Strontium (Sr)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.8 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.4 ppb

For Laboratory, Research, or Manufacturing Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Ethier Vice President Global Quality Sodium Chloride, Crystal BAKER ANALYZED® A.C.S. Reagent



Material No.: 3624-01 Batch No.: 0000281938 Manufactured Date: 2021-06-07 Retest Date: 2026-06-07 Revision No.: 1

Certificate of Analysis

Test	Specification	Result
Assay (NaCl) (by Ag titrn)	≥ 99.0 %	100.0 %
pH of 5% Solution at 25°C	5.0 - 9.0	6.3
Insoluble Matter	≤ 0.005 %	0.003 %
lodide (I)	≤ 0.002 %	< 0.002 %
Bromide (Br)	≤ 0.01 %	< 0.01 %
Chlorate and Nitrate (as NO ₃)	≤ 0.003 %	< 0.001 %
ACS - Phosphate (PO ₄)	≤ 5 ppm	< 5 ppm
Sulfate (SO ₄)	≤ 0.004 %	< 0.004 %
Barium (Ba)	Passes Test	Passes Test
ACS - Heavy Metals (as Pb)	≤ 5 ppm	< 5 ppm
Iron (Fe)	≤ 2 ppm	< 1 ppm
Calcium (Ca)	≤ 0.002 %	< 0.001 %
Magnesium (Mg)	≤ 0.001 %	< 0.001 %
Potassium (K)	≤ 0.005 %	0.001 %

For Laboratory,Research,or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs Country of Origin: USA Packaging Site: Paris Mfg Ctr & DC

Jamie Ethier Vice President Global Quality

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Mansford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone 610.386.1700

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

These instructions are for advisory purposes only. If any apparent conflict exists between these NOTE: instructions and the analytical protocol or your contract, disregard these instructions.

- **APPLICATION:** For use with the CLP SFAM01.0 SOW and revisions.
 - CAUTION: Read instructions carefully before opening bottle(s) and proceeding with $\frac{1}{2}$ M5528 - 3 M5528 - 3 M553 - 3130 123 the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014 For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric

RMs ICV 1, 5, 6 SFAM (1)

Page 1 of 2

QATS Form 20-007F188R00, 04-19-2021

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

APTIM	Instructions for a reason
ICV1-1014	Instructions for QATS Reference Material: Inorganic ICV Solutions
	For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.
ICV5-0415	For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K ₂ Cr ₂ O ₇ and 5% (v/v) nitric acid.
	For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from $K_3Fe(CN)_6$, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014	
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L)
AI	2500	(after 50-fold dilution)
Sb	1000	500
As	1000	200
Ba	520	200
Be	510	100
Cd	510	100
Ca	10000	100
Cr	520	2000
Co	520	100
Cu	510	100
Fe	10000	100
Pb	1000	2000
Mg	6000	200
Mn	520	1200
Ni	530	100
K	9900	110
Se	1000	2000
Ag	250	200
Na	10000	50
TI	1000	2000
V	500	210
2n	1000	100
	1000	200

	ICV5-0415		ICVIC DADD
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	ICV6-0400 Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN [.]	99

Recieve -> 10/9/24 Met dig

Material No.: 9606-03 Batch No.: 24B1362001 Manufactured Date: 2024-01-25 Retest Date: 2029-01-23 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO3)	69.0 – 70.0 %	69.6 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	< 1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO4)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities - Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	< 0.2 ppb
Trace Impurities – Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Frace Impurities – Germanium (Ge)	≤ 20 ppb	< 10 ppb
Frace Impurities – Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Frace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Frace Impurities – Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
race Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
race Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
race Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
race Impurities – Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24B1362001

Test	Specification	Result
Trace Impurities – Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	< 10 ppb
Trace Impurities – Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities – Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	3 par/ml
Particle Count – 1.0 µm and greater	≤ 10 par/ml	l par/mi

>>> Continued on page 3 >>>

Material No.: 9606-03 Batch No.: 24B1362001

Test	Specification	Result	

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Kennetskel.

Ken Koehnlein Sr. Manager, Quality Assurance

1 010 300 1700

Hydrochloric Acid, 36.5–38.0% BAKER INSTRA-ANALYZED® Reagent

For Trace Metal Analysis

R->10/13/24

Met dig

Material No.: 9530–33 Batch No.: 0000275677 Manufactured Date: 2020/12/16 Retest Date: 2025/12/15 Revision No: 1

M6121

Test Specification Result ACS - Assay (as HCl) (by acid-base titrn) 36.5 - 38.0 % 37.6 ACS - Color (APHA) <= 10 5 ACS - Residue after Ignition <= 3 ppm 1 ACS - Specific Gravity at 60°/60°F 1.185 - 1.192 1.190 ACS - Bromide (Br) <= 0.005 % < 0.005 ACS - Extractable Organic Substances <= 5 ppm 1 ACS - Free Chlorine (as Cl₂) <= 0.5 ppm < 0.5 Phosphate (PO₄) <= 0.05 ppm < 0.03 Sulfate (SO4) <= 0.5 ppm < 0.3 Sulfite (SO₃) <= 0.8 ppm 0.3 Ammonium (NH4) <= 3 ppm < 1 Trace Impurities - Arsenic (As) <= 0.010 ppm < 0.003 Trace Impurities - Aluminum (Al) <= 10.0 ppb < 0.2 Arsenic and Antimony (as As) <= 5 ppb < 3 Trace Impurities - Barium (Ba) <= 1.0 ppb < 0.2 Trace Impurities - Beryllium (Be) <= 1.0 ppb < 0.2 Trace Impurities - Bismuth (Bi) <= 10.0 ppb < 1.0 Trace Impurities - Boron (B) <= 20.0 ppb < 5.0 Trace Impurities - Cadmium (Cd) <= 1.0 ppb < 0.3 Trace Impurities - Calcium (Ca) <= 50.0 ppb 29.7 Trace Impurities - Chromium (Cr) <= 1.0 ppb < 0.4 Trace Impurities - Cobalt (Co) <= 1.0 ppb < 0.3 Trace Impurities - Copper (Cu) <= 1.0 ppb < 0.1 Trace Impurities - Gallium (Ga) <= 1.0 ppb < 0.2

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700

Certificate of Analysis

Material No.: 9530-33 Batch No.: 0000275677

Specification	Result
	< 2.0
	< 0.2
	< 50
	<]
	< 0.5
	0.2
	0.4
•••	< 0.4
	0.1
	< 5.0
• •	< 0.3
• •	< 0.2
	< 2.0
	1.0
	< 10.0 < 0.3
h h a	< 5.0 < 0.2
	< 0.9
	< 2.0
	< 0.8
	0.2
	< 0.2
	0.3
<= 1.0 ppb	< 0.1
	Specification <= 3.0 ppb <= 4.0 ppb <= 100 ppb <= 15.0 ppb <= 1.0 ppb <= 1.0 ppb <= 1.0 ppb <= 0.5 ppb <= 10.0 ppb <= 1.0 ppb <= 1.0 ppb <= 9.0 ppb ppb <= 100.0 ppb <= 1.0 ppb <= 1.0 ppb <= 1.0 ppb <= 1.0 ppb <= 1.0 ppb <= 5.0 ppb <= 5.0 ppb <= 1.0 ppb <= 5.0 ppb <= 1.0 ppb

For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications

Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC

James Techie Jamie Ethier Vice President Global Quality

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700

M6124

Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO3)	69.0 - 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	ן ו ppm
Chloride (CI)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO4)	≤ 0.10 ppm	
Sulfate (SO4)	≤ 0.2 ppm	< 0.03 ppm < 0.2 ppm
Trace Impurities – Aluminum (Al)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	
Trace Impurities – Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 1.0 ppb < 10.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	
Trace Impurities – Cadmium (Cd)	≤ 50 ppb	< 5.0 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	< 1 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	2.3 ppb
Trace Impurities - Cobalt (Co)	_ 2000 μpb dqq 0.01 ≥	< 1.0 ppb
Trace Impurities – Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Germanium (Ge)	≤ 20 ppb	< 1.0 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 10 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 5 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	100 ppb
Trace Impurities – Lead (Pb)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1.0 ppb
Trace Impurities – Manganese (Mn)	≤ 100 ppb	< 1 ppb
Trace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 1.0 ppb
• • •	⇒ 50.0 hhn	< 5.0 ppb

>>> Continued on page 2 >>>

Wavantor^{**}

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	16 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities – Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	10 par/ml
Particle Count – 1.0 µm and greater	≤ 10 par/ml	3 par/ml

Material No.: 9606-03 Batch No.: 24D1062002

Task			
Test	Specification	Result	

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

