

d. Acid Fraction

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

NEW JERSEY LAB ID#:20012 : NEW YORK LAB ID#: 11376

GC/MS SEMI-VOLATILE ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY

CHEMTECH PROJEC	T NUMBER:	BF112024			
SequenceID:	BF112024		NA	NO	YES
1. Chromatograms Lab	eled/Compounds Ide	entified. (Field samples and Method Blanks)			_
2. GC/MS Tuning Spe (NOTE THAT THERE		Meet Criteria Criteria CRITERIA FOR NY ASP CLP, CLP AND NJ)			_
3. GC/MS Tuning Frequencies	uency - Performed 6	every 24 hours for 600 series and 12 hours for 8000			_
	ing calibration perfo	performed within 30 days before sample rmed within 24 hours of sample analysis es			_
5. GC/MS Calibration	Met:				✓
a. Initial calibration If not met, list those co		ecoveries which fall outside the acceptable range.			
b. Continuous Calibr If not met, list those co	, ,	riteria ecoveries which fall outside the acceptable range.		<u> </u>	
•		in SSTDCCC(BF140501.D). Benzaldehyde is biased C(BF140501.D), if any samples are found with hit of	•		
6. Blank Contamination	n - If yes, list compo	unds and concentrations in each blank:		✓	
a. B/N Fraction					

7. Surrogate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside the acceptable ranges.		<u> </u>
a. B/N Fraction		
d. Acid Fraction		
8. Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside the acceptable range.		
a. B/N Fraction Recovery and RPD failed for some compound in P4892-02MS/MSD due to matrix interference. Benzaldehyde being compound, its recovery is biased low in P4892-02MS. No corrective action is required.	a poor recovery	<u>'</u>
d. Acid Fraction		
9. Internal Standard Area/Retention Time Shift Meet Criteria Comments:		
Internal standard failed in P4768-05, P4910-05, P4822-02,04, P4887-05, P4860-02,03,07, P4916-01,05. Internal standard failed in the sample P4768-05 due to oily matrix and the presence of nontargeted hydrocarbons which can be observed by the abnormal chromatogram. Hence no corrective action is required. Internal standard failed in the sample P4910-05 due to 10. Extraction Holding Time Met viscous matrix. Hence no corrective action required. In the diluted sample of P4822-10, internal standard failed due to the If not met list number of days exceeded for each sample presence of nontargeted hydrocarbons which can be observed by the abnormal chromatogram. Hence, no corrective action required.		<u> </u>
11. Analysis Holding Time Met If not met, list number of days exceeded for each sample: ———		_
ADDITIONAL COMMENTS:		

 $\frac{krunal}{Analyst}$

11/21/2024

Date

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

NEW JERSEY LAB ID#:20012 : NEW YORK LAB ID#: 11376

GC/MS SEMI-VOLATILE ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY

CHEMTECH PROJECT NUMBER:		BF112024				
SequenceID:	BF112024			NA	NO	YES