

Prep Standard - Chemical Standard Summary

Order ID :	P5018
Test :	Cyanide,Cyanide-Amenable,Field pH,Field Temperature,Hexavalent Chromium,Non-Polar Material,TSS
Prepbatch ID :	PB165397,
Sequence ID/Qc Bate	ch ID: LB133639,LB133658,LB133678,LB133772,LB133801,LB133823,LB133824,

Standard ID :

EP2570,WP100827,WP100828,WP108640,WP108658,WP108659,WP109068,WP109325,WP109549,WP110103,WP1 10390,WP110391,WP110826,WP110866,WP110877,WP110882,WP110883,WP110884,WP110885,WP110886,WP1108 87,WP110888,WP110889,WP110899,WP110950,WP110951,WP110952,WP110953,WP110954,WP110955,WP110956,WP110957,WP110957,WP110958,WP9896,

Chemical ID:

E3551,E3657,E3830,M5173,M5673,M5929,M6069,M6121,W2606,W2651,W2652,W2668,W2783,W2845,W2882,W289 8,W2979,W3001,W3011,W3019,W3071,W3079,W3093,W3094,W3101,W3107,W3112,W3138,W3139,W3140,W3153,W3154,

Extractions STANDARD PREPARATION LOG

<u>Recipe</u> <u>ID</u> 3923	NAME Baked Sodium Sulfate	<u>NO.</u> EP2570	Prep Date 12/02/2024	Expiration Date 01/03/2025	<u>Prepared</u> <u>By</u> Rajesh Parikh	ScaleID Extraction_SC ALE_2	<u>PipetteID</u> None	Supervised By RUPESHKUMAR SHAH 12/02/2024
FROM	4000.00000gram of E3551 = Final Q	uantity: 400)0.000 gram			(EX-SC-2)		
Recipe	NAME	NO	Dren Dete	Expiration	Prepared	CastalD	DinettelD	Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	lwona Zarych
114		WP100827	02/02/2023	02/09/2023	Rubina Mughal		None	
	reagent					CALE_5 (WC		02/02/2023
FROM	0.25000gram of W2979 + 50.00000n	nl of W2783	= Final Quar	ntity: 50.000 m	l	SC-5)		

Recipe ID 3456	NAME Cyanide Intermediate Working Std, 5PPM	<u>NO.</u> WP100828	Prep Date 02/02/2023	Expiration Date 02/03/2023	Prepared By Iwona Zarych	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Sohil Jodhani
FROM	0.25000ml of W2898 + 49.75000ml c	f WP99896	= Final Quan	itity: 50.000 ml			(WC)	
Recipe				Expiration	Prenared			Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
11	Sodium hydroxide absorbing solution 0.25 N	<u>WP108640</u>	07/05/2024	01/05/2025	Rubina Mughal	CALE_4 (WC	None	07/08/2024
FROM	21.00000L of W3112 + 210.00000gra	am of E3657	′ = Final Qua	ntity: 21.000 L		SC-4)		

<u>Recipe</u> <u>ID</u> 1993	NAME HEXAVALENTCHROMIUM STOCK STD 1, 50PPM	<u>NO.</u> WP108658	<u>Prep Date</u> 07/09/2024	Expiration Date 01/09/2025	<u>Prepared</u> <u>By</u> Rubina Mughal	CALE_5 (WC	PipettelD None	Supervised By Iwona Zarych 07/09/2024
<u>FROM</u>	0.14140gram of W2651 + 1000.0000	0ml of W31 [·]	12 = Final Qu	antity: 1000.00	0 ml	SC-5)		
Recipe	NAME		Dura Data	Expiration	Prepared	0. skip	DisstalD	Supervised By

Recipe				Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
1994	HEXAVALENTCHROMIUM STOCK STD 2, 50PPM	<u>WP108659</u>	07/09/2024	01/09/2025	Rubina Mughal	WETCHEM_S CALE_5 (WC	None	07/09/2024
						SC-5)		07709/2024
FROM	0.14140gram of W2652 + 1000.0000	0ml of W31 [,]	12 = Final Qu	antity: 1000.00	0 ml	- /		

<u>Recipe</u> <u>ID</u> 607	NAME PYRIDINE-BARBITURIC ACID	<u>NO.</u> WP109068	Prep Date 08/06/2024		<u>Prepared</u> <u>By</u> Niha Farheen Shaik	ScaleID WETCHEM_S CALE_5 (WC	<u>PipetteID</u> None	Supervised By Iwona Zarych 08/07/2024
FROM	145.00000ml of W3112 + 15.00000g ml	ram of W28	82 + 15.00000)ml of M5929 +	75.00000ml of	SC-5) W3019 = Final	Quantity: 250.	000

Recipe ID 922	NAME 0.2N SULFURIC ACID	<u>NO.</u> WP109325	<u>Prep Date</u> 08/19/2024		<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 08/20/2024
FROM	5.60000ml of M5173 + 994.40000ml	of W3112 =	Final Quanti	ty: 1000.000 m	<u>,</u>		(WC) '	

Recipe ID 3371	NAME Cyanide LCS Spike Solution, 5PPM	<u>NO.</u> WP109549	Prep Date 09/06/2024		<u>Prepared</u> <u>By</u> Niha Farheen Shaik	<u>ScaleID</u> None	PipetteID WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 09/06/2024
FROM	1.00000ml of W3138 + 199.00000ml	of WP10864	40 <i>=</i> Final Qu	uantity: 200.000) ml		' (WC) '	

Recipe				Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Iwona Zarych
539	CN BUFFER	<u>WP110103</u>	10/08/2024	04/08/2025	Rubina Mughal		None	-
						CALE_5 (WC SC-5)		10/08/2024
FROM	138.00000gram of W2668 + 862.000	00ml of W3 ⁻	112 = Final Q	uantity: 1000.0	00 ml	30-3)		

Recipe ID 3214	NAME Magnesium Chloride For Cyanide 2.5M(51%W/V)	<u>NO.</u> WP110390	Prep Date 10/24/2024	Expiration Date 04/24/2025	<u>Prepared</u> <u>By</u> Niha Farheen Shaik	ScaleID WETCHEM_S CALE_5 (WC	<u>PipetteID</u> None	Supervised By Iwona Zarych 10/24/2024
FROM	500.00000ml of W3112 + 510.00000	gram of W30	001 = Final Q	Quantity: 1000.0	00 ml	SC-5)		

Recipe ID 1714	NAME	<u>NO.</u> WP110391	Prep Date	Expiration Date 04/24/2025	<u>Prepared</u> <u>By</u> Niha Farheen	<u>ScaleID</u> None	<u>PipetteID</u> None	<u>Supervised By</u> Iwona Zarych
17 14			10/24/2024	04/24/2020	Shaik	None	None	10/24/2024
FROM	1000.00000ml of M5673 + 1000.000	00ml of W31	12 = Final Q	uantity: 2000.0	00 ml			

<u>Recipe</u> <u>ID</u> 229	NAME 1:1 HCL	<u>NO.</u> WP110826	<u>Prep Date</u> 11/22/2024		<u>Prepared</u> <u>By</u> Jignesh Parikh	<u>ScaleID</u> None	PipettelD None	Supervised By Iwona Zarych 11/22/2024
<u>FROM</u>	500.00000ml of M6121 + 500.00000r	ml of W3112	? = Final Qua	ntity: 1.000 L				
<u>Recipe</u> ID	NAME	NO.	Prep Date	Expiration Date	<u>Prepared</u> Bv	ScaleID	PipetteID	Supervised By

Recipe				Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	Date	<u>By</u>	<u>ScaleID</u>	PipettelD	Iwona Zarych
114		<u>WP110866</u>	11/25/2024	12/02/2024	Rubina Mughal			
	reagent					CALE_5 (WC		11/25/2024
FROM	0.25000gram of W2979 + 50.00000n	nl of E3830	= Final Quant	tity: 50.000 ml		SC-5)		
<u></u>	0000g.a 0. 10.0 00.000000							

Recipe ID 1103	NAME HEX CHROME INTERMEDIATE STD SOURCE 1 (5PPM)	<u>NO.</u> WP110877	Prep Date 11/26/2024		<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/02/2024
FROM	9.00000ml of W3112 + 1.00000ml of	WP108658	= Final Quan	tity: 10.000 ml	I		(WC) '	

<u>Recipe</u> <u>ID</u> 110	NAME calibration std. hexchrome 0 ppm	<u>NO.</u> WP110882	<u>Prep Date</u> 11/26/2024	<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	<u>PipetteID</u> None	<u>Supervised By</u> Iwona Zarych
							12/02/2024
<u>FROM</u>	100.00000ml of W3112 = Final Quar	ntity: 100.00	0 ml				

Recipe ID 109	NAME calibration std. hexchrome 0.01 ppm	<u>NO.</u> WP110883	Prep Date 11/26/2024		<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_F IPETTE_3	Supervised By Iwona Zarych 12/02/2024
FROM	99.80000ml of W3112 + 0.20000ml o	f WP110877	7 = Final Qua	ntity: 100.000	mi		(WC)	
Basing				Expiration	Broporod			Supervised By

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Iwona Zarych
3800	Calibration Std Hexachrome 0.025 ppm	<u>WP110884</u>	11/26/2024	11/27/2024	Rubina Mughal	None	WETCHEM_P IPETTE_3	12/02/2024
FROM	99.50000ml of W3112 + 0.50000ml o	of WP110877	7 = Final Qua	ntity: 100.000	ml		- (WC) -	

<u>Recipe</u> <u>ID</u> 108	NAME Calibration Std. hexchrome 0.05 ppm	<u>NO.</u> WP110885	Prep Date 11/26/2024	Expiration Date 11/27/2024	<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_F IPETTE_3	Supervised By Iwona Zarych 12/02/2024
FROM	99.00000ml of W3112 + 1.00000ml o	f WP110877	7 = Final Qua	ntity: 100.000	ml		(WC)	
Basing				Evairation	Bronorod			Supervised By

			Expiration	Prepared			Supervised By
NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	Iwona Zarych
Calibration Std. hexchrome 0.1	WP110886	11/26/2024	11/27/2024	Rubina Mughal	None	WETCHEM_P	
ppm							12/02/2024
99.80000ml of W3112 + 0.20000ml o	of WP108658	8 = Final Qua	intity: 100.000	ml		(000)	
			•				
	Calibration Std. hexchrome 0.1 ppm	Calibration Std. hexchrome 0.1 WP110886	Calibration Std. hexchrome 0.1 WP110886 11/26/2024 ppm	NAMENO.Prep DateDateCalibration Std. hexchrome 0.1WP11088611/26/202411/27/2024ppmIndext representation of the second s	NAMENO.Prep DateDateByCalibration Std. hexchrome 0.1WP11088611/26/202411/27/2024Rubina Mughal	NAMENO.Prep DateDateByScaleIDCalibration Std. hexchrome 0.1WP11088611/26/202411/27/2024Rubina MughalNoneppm	NAMENO.Prep DateDateByScaleIDPipetteIDCalibration Std. hexchrome 0.1WP11088611/26/202411/27/2024Rubina MughalNoneWETCHEM_PppmImage: Comparison of the second secon

Recipe ID 3808	NAME Calibration and CCV std HexChrome 0.5PPM	<u>NO.</u> WP110887	<u>Prep Date</u> 11/26/2024		Prepared By Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/02/2024
<u>FROM</u>	99.00000ml of W3112 + 1.00000ml o	f WP108658	3 = Final Qua	ntity: 100.000	ml		(WC) '	
Recipe				Expiration	Prenared			Supervised By

Recipe				Expiration	Prepared			<u>Supervised By</u>
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Iwona Zarych
3809	Calibration std HexChrome 1.0PPM	<u>WP110888</u>	11/26/2024	11/27/2024	Rubina Mughal	None	WETCHEM_P IPETTE_3	12/02/2024
FROM	98.00000ml of W3112 + 2.00000ml o	f WP108658	3 = Final Qua	ntity: 100.000	ml		(WC)	

Recipe ID 3804	NAME Hexavalent Chromium ICV-LCS Std	<u>NO.</u> WP110889	<u>Prep Date</u> 11/26/2024		<u>Prepared</u> <u>By</u> Rubina Mughal	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/02/2024
<u>FROM</u>	99.00000ml of W3112 + 1.00000ml o	f WP108659	9 = Final Qua	intity: 100.000	ml		(WC)	

Recipe					Flepaleu			Supervised by
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipetteID	Jignesh Parikh
3850	Cyanide MS-MSD spiking solution, 5PPM	<u>WP110899</u>	12/02/2024	01/05/2025	Iwona Zarych	None	WETCHEM_P IPETTE_3	12/02/2024
							(WC)	12/03/2024
FROM	1.00000ml of W3154 + 199.00000ml	of WP10864	40 = Final Qu	antity: 200.000) ml		(000)	
<u></u>				,				

Recipe ID 3456	NAME Cyanide Intermediate Working Std, 5PPM	<u>NO.</u> WP110950	Prep Date 12/05/2024	Expiration Date 12/06/2024	<u>Prepared</u> <u>By</u> Niha Farheen Shaik	<u>ScaleID</u> None	PipetteID WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/06/2024
<u>FROM</u>	0.25000ml of W3154 + 49.75000ml c	of WP10864) = Final Qua	antity: 50.000 r	nl		(WC)	

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Iwona Zarych
4	Calibation standard 500 ppb	<u>WP110951</u>	12/05/2024	12/06/2024	Niha Farheen Shaik	None	None	12/06/2024
FROM	45.00000ml of WP108640 + 5.00000	ml of WP11	0950 = Final	Quantity: 50.00)0 ml			

Recipe ID 3761	NAME Calibration-CCV CN Standard 250 ppb	<u>NO.</u> WP110952	Prep Date 12/05/2024	Expiration Date 12/06/2024	<u>Prepared</u> <u>By</u> Niha Farheen Shaik	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/06/2024
FROM	2.50000ml of WP110950 + 47.50000	ml of WP10	8640 = Final	Quantity: 50.00	0 ml		(WC) '	

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych	
6	Calibration Standard 100 ppb	<u>WP110953</u>	12/05/2024	12/06/2024	Niha Farheen Shaik	None	WETCHEM_P IPETTE_3	12/06/2024	
<u>FROM</u>	1.00000ml of WP110950 + 49.00000	ml of WP10	8640 = Final	Quantity: 50.00	00 ml		(WC)		
									ļ

Recipe ID 7	NAME Calibration Standard 50 ppb	<u>NO.</u> WP110954	Prep Date 12/05/2024	Expiration Date 12/06/2024	<u>Prepared</u> <u>By</u> Niha Farheen Shaik	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/06/2024
FROM	0.50000ml of WP110950 + 49.50000	ml of WP10	8640 = Final	Quantity: 50.00	00 ml		(WC)	

<u>R</u>	<u>ecipe</u> ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych
	8	Calibration Standard 10 ppb	<u>WP110955</u>	12/05/2024	12/06/2024	Niha Farheen Shaik	None	WETCHEM_P IPETTE_3	12/06/2024
E	ROM	1.00000ml of WP110951 + 49.00000	ml of WP10	8640 = Final	Quantity: 50.00	00 ml		(WC)	

Recipe ID 9	NAME	<u>NO.</u> WP110956	Prep Date 12/05/2024		<u>Prepared</u> <u>By</u> Niha Farheen Shaik	<u>ScaleID</u> None	PipettelD WETCHEM_P IPETTE_3	Supervised By Iwona Zarych 12/06/2024
FROM	0.50000ml of WP110951 + 49.50000	ml of WP10	8640 = Final	Quantity: 50.00	00 ml		(WC)	

Recipe			_	Expiration	Prepared			Supervised By
ID	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	PipettelD	Iwona Zarych
167	0 ppb CN calibration std	WP110957	12/05/2024	12/06/2024	Niha Farheen	None	None	
					Shaik			12/06/2024
FROM	50.00000ml of WP108640 = Final Q	uantity: 50.0	00 ml					

11/15/2022

CALE_4 (WC

SC-4)

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID 1582 FROM	NAME Chloramine T solution, 0.014M 0.08000gram of W3139 + 20.00000n	<u>NO.</u> WP110958 nl of W3112	Prep Date 12/05/2024 = Final Quan		Prepared By Niha Farheen Shaik	<u>ScaleID</u> WETCHEM_S CALE_5 (WC SC-5)	PipettelD None	Supervised By Iwona Zarych 12/06/2024
		İ						
Recipe ID 11	NAME Sodium hydroxide absorbing	<u>NO.</u> <u>WP99896</u>	Prep Date 11/15/2022	Expiration Date 05/15/2023	<u>Prepared</u> <u>By</u> Jignesh Parikh	<u>ScaleID</u> WETCHEM_S	<u>PipetteID</u> None	<u>Supervised By</u> Iwona Zarych

21.00000L of W2606 + 210.00000gram of W2845 = Final Quantity: 21.000 L FROM

solution 0.25 N

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19631-100 / SODIUM SULFATE, ANHYDROUS, PEST GRADE, 1	313201	01/03/2025	01/03/2024 / Rajesh	07/20/2023 / Rajesh	E3551
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19510-5 / Sodium Hydroxide Pellets 2.5 Kg, Pk of 4	23B1556310	12/31/2025	12/04/2023 / Rajesh	12/01/2023 / Rajesh	E3657
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	24H2762008	05/18/2025	11/18/2024 / Rajesh	11/15/2024 / Rajesh	E3830
Supplier	ItemCode / ItemName	Lot #	Expiration	Date Opened /	Received Date /	Chemtech

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	0000281827	06/02/2025	06/01/2022 /	04/05/2022 / william	M5173

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	23D2462010	03/20/2028	09/21/2023 / mohan	09/05/2023 / mohan	M5673

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	22G2862015	12/08/2024	06/24/2024 / Al-Terek	06/07/2024 / Al-Terek	M5929

Supply, Inc.

PHOSPHATE,

ACS, 2.5 KG

MONOBAS/HYD, CRYS,

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName			Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.			02/29/2028	09/03/2024 / jignesh	08/19/2024 / Jaswal	M6069
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	0000275677	05/13/2025	11/13/2024 / Eman	10/13/2024 / Eman	M6121
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	10/24/2024	10/24/2019 / apatel	10/24/2019 / apatel	W2606
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	AA13450-36 / Potassium Dichromate, 500g(NEW)	T15F019	01/24/2030	01/24/2020 / apatel	01/24/2020 / apatel	W2651
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	P188-500 / Potassium Dichromate, 500g(new-2nd lot)	194664	01/24/2030	01/24/2020 / apatel	01/24/2020 / apatel	W2652
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific	J3818-5 / SODIUM	0000225799	12/03/2025	04/05/2021 /	02/10/2020 /	W2668

Alexander

apatel

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	0000263246	06/17/2023	12/23/2020 / ketankumar	12/23/2020 / ketankumar	W2783	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
PCI Scientific Supply, Inc.	PC19510-7 / Sodium Hydroxide Pellets 12 Kg	21C2456604	01/31/2024	03/30/2022 / JIGNESH	06/24/2021 / apatel	W2845	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
PCI Scientific Supply, Inc.	EM-BX0035-3 / Barbituric Acid, 100 gms	1.00132.0100	04/30/2025	12/07/2021 /	11/30/2021 / apatel	W2882	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received Bv	Chemtech Lot #	

Supplier	ItemCode / ItemName	Lot #	Date	Opened By	Received Date / Received By	Lot #
Supelco	90157 / Cyanide Standard, 1000ppm from Supelco	HC03107133	06/30/2023	01/24/2022 / apatel	01/24/2022 / apatel	W2898

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	31390 / 1,5-Diphenylcarbazide	MKCR6636	12/09/2027	12/09/2022 / Iwona	12/09/2022 / Iwona	W2979

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	01237-10KG / Megnasium Chloride Hexahydrate ACS 10KG	002251-03319	06/06/2027	01/23/2023 / Iwona	06/06/2022 / Iwona	W3001

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	/ ICV-CN	ICV6-400	12/31/2024	01/03/2024 / Iwona	02/20/2020 / Iwona	W3011
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
SIGMA ALDRICH	270970-1L / Pyridine 1L	SHBQ2113	04/03/2028	04/03/2023 / Iwona	04/03/2023 / Iwona	W3019
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	AL14455-3 / buffer solution pH 7 yellow	4308H30	07/31/2025	01/02/2024 / JIGNESH	12/06/2023 / Iwona	W3071
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	04667-2.5 / Silica Gel (60-200 mesh), 2.5 KG	072154301	01/30/2029	05/07/2024 / jignesh	01/30/2024 / jignesh	W3079
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	566002 / BUFFER PH 7.00 GREEN 1PINT PK6	44001f99	12/31/2025	04/03/2024 / jignesh	04/02/2024 / jignesh	W3093
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1601-1 / PH 10.01 BUFFER,COLOR CD 475ML	4310g83	03/31/2025	04/03/2024 / jignesh	04/02/2024 / jignesh	W3094

SENSI,100PK

Supplier	entific 470112-662 / TEST 402403 04/30/2026		Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
PCI Scientific Supply, Inc.			04/30/2026	05/02/2024 / Iwona	04/10/2024 / Iwona	W3101
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	AL14055-3 / PH 4 BUFFER SOLUTION	AL14055-3	AL14055-3 02/27/2026		05/13/2024 / jignesh	W3107
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	LC135457 / Cyanide Standard, 1000 PPM, Second Source	44080060	01/30/2025	09/06/2024 / Iwona	08/28/2024 / Iwona	W3138
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	JTE494-6 / CHLORAMINE-T BAKER 250GM	10239484	09/09/2029	09/09/2024 / Iwona	09/09/2024 / Iwona	W3139
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	140444 / TEST PAPERS,PH 0-14,.5	10D0142	09/17/2029	09/17/2024 / Iwona	09/17/2024 / Iwona	W3140

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9262-03 / Hexane, Ultra-Resi (cs/4x4L)	24G1962003	08/22/2025	11/25/2024 / jignesh	11/21/2024 / jignesh	W3153
		-				
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

Certificate of Analysis

1.19533.0500 Cyanide standard solution traceable to SRM from NIST $K_2[Zn(CN)_4]$ in H_2O 1000 mg/l CN Certipur®

Batch HC03107133

		Batch Value	\$					
		Bater value.	5		 	 	 	
Concentration	β (CN⁻)	1002		mg/l				

Determination method: Argentometric titration.

The content of this solution was determined with silver nitrate standard solution (article number 1.09081) standardized against volumetric standard sodium chloride (article number 1.02406). The expanded measurement uncertainty is ± 0.7 % (k=2 coverage factor for 95% coverage probability). The certified value is traceable to primary standard NIST SRM 999c (NIST: National Institute of Standards and Technology, USA) by means of volumetric standard sodium chloride, measured in the accredited calibration laboratory of Merck KGaA, Darmstadt, Germany in accordance to DIN EN ISO/IEC 17025.

Date of release (DD.MM.YYYY) 02.07.2020 Minimum shelf life (DD.MM.YYYY) 30.06.2023

> Ayfer Yildirim Responsible laboratory manager quality control

This document has been produced electronically and is valid without a signature.

ThermoFisher SCIENTIFIC

Certificate of Analysis

Product No.:	13450
--------------	-------

Product: Potassium dichromate, ACS, 99.0% min

Lot No.: T15F019

Test	Limits	Results
_		
Appearance	Orange-red crystals	Orange-red crystals
Identification	To Pass	Passes
Purity	99.0 % min	99.67 %
Insoluble matter	0.005 % max	0.004 %
Loss on drying	0.05 % max	0.03 %
Chloride	0.001 % max	< 0.001 %
Sulfate	0.005 % max	< 0.005 %
Iron	0.001 % max	< 0.001 %
Calcium	0.003 % max	0.0012 %
Sodium	0.02 % max	0.0047 %

Order our products online alfa.com

This document has been electronically generated and does not require a signature.

This is to certify that units of the lot number above were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the purchaser, formulator or those performing further manufacturing to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The above information is the actual analytical results obtained.

Acetone ULTRA RESI-ANALYZED For Organic Residue Analysis

Material No.: 9254-03 Batch No.: 0000263246 Manufactured Date: 2020/06/17 Expiration Date: 2023/06/17 Revision No: 1

Certificate of Analysis

Test	Specification	Result
Assay ((CH3)2CO) (by GC, corrected for water)	>= 99.4 %	99.7
Color (APHA)	<= 10	5
Residue after Evaporation	<= 1.0000 ppm	0.1000
ubstances Reducing Permanganate	Passes Test	PT
ītrable Acid (µeq/g)	<= 0.3	0.1
ītrable Base (μeq/g)	<= 0.6	< 0.1
Vater (H2O)	<= 0.5 %	0.3
ID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	<= 5	< 1
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	<= 10	5

For Laboratory, Research or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC

ames Techie

Jamie Ethier Vice President Global Quality

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700

RICCA CHEMICAL COMPANY®

W³07/ Mc 12/6/23 Certificate of Analysis 12

1490 Lammers Pike Batesville, IN 47006 http://www.riccachemical.com 1-888-GO-RICCA customerservice@riccachemical.com

Buffer, Reference Standard, pH 7.00 ± 0.01 at 25°C (Color Coded Yellow)

Lot Number: 4308H30

Product Number: 1551

Manufacture Date: AUG 09, 2023 Expiration Date: JUL 2025

The certified value for this product is confirmed in independent testing by a second qualified chemist. The NIST traceable pH value is certified to ± 0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ± 0.05 .

°C pH	0 7.12	5 7.09	$\begin{array}{c} 10 \\ 7.06 \end{array}$	15 7.04	20 7.02	$\begin{array}{c} 25 \\ 7.00 \end{array}$	30 6.99	35 6.98	$\begin{array}{c} 40 \\ 6.98 \end{array}$	45 6.97	50 6.97	

Name	CAS#	Grade	
Water	7732-18-5	ACS/ASTM/USP/I	RP
Sodium Phosphate Dibasic	7558-79-4	ACS	
Potassium Dihydrogen Phosphate	7778-77-0	ACS	
Preservative	Proprietary		
Yellow Dye	Proprietary	1111 B. Luce	
Sodium Hydroxide	1310-73-2	Reagent	
Test	Specification	Result	
Appearance	Yellow liquid	Passed	*Not a certified value
Test	Certified Value	Uncertainty	NIST SRM#
pH at 25°C (Method: SQCP027, SQCP033)	7.002	0.02	186-I-g, 186-II-g, 191d
Specification	Re	ference	
Commercial Buffer Solutions	AS	TM (D 1293 B)	
Buffer A		TM (D 5464)	
Buffer A		ГМ (D 5128)	

per industributions were periorined in our Batesvine, in laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.02) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)
1551-2.5	10 L Cubitainer®	24 months
1551-5	20 L Cubitainer®	24 months

Recommended Storage: 15°C - 30°C (59°F - 86°F)

Foul Brandon

Paul Brandon (08/09/2023) Production Manager This document is designed to comply with ISO Guide 31 "Reference Materials --Contents of Certificates and Labels."

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

W2918 1e. 06/06/22 W3001 exp. 06/06/27 Chem-Impex International, Inc.

Tel: (630) 766-2112 E-mail: sales@chemimpex.com Shipping and Correspondence: 935 Dillon Drive Wood Dale, IL 60191

Fax: (630) 766-2218 Web site: www.chemimpex.com Manufacturing site: 825 Dillon Drive Wood Dale, IL 60191

C	ertificate of Analysis
Catalogue Number	01237
Product	Magnesium chloride hexahydrate
Lot Number	002251-03319
	Magnesium chloride•6H2O
CAS Number	7791-18-6
Molecular Formula	MgCl ₂ •6H ₂ O
Molecular Weight	203.3
Appearance	Colorless crystals, very deliquescent
Heavy Metals	< 5 ppm
Anion	Nitrate : < 0.001% Phosphate : < 5 ppm Sulfate : < 0.002%
Cation	Ammonium : < 0.002% Barium : < 0.005% Calcium : 0.0006% Iron : < 5 ppm Manganese : 1.8 ppm Potassium : 0.0006% Sodium : 0.0008% Strontium : 0.0015%
Insoluble material	0.0025%
Assay by titration	100.29%
Grade	ACS reagent
Storage	Store at RT
Country of Origin	India

Certificate of Analysis

Catalog Number: 01237

Lot Number: 002251-03319

Remarks

See material safety data sheet for additional information

For laboratory use only

The foregoing is a copy of the Certificate of Analysis as provided by our supplier

A litumer.

Bala Kumar Quality Control Manager

Sigma-Aldrich

W3019 Rec 4/3/23

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Name: Pyridine - anhydrous, 99.8%

Product Number:	270970
Batch Number:	SHBQ2113
Brand:	SIAL
CAS Number:	110-86-1
MDL Number:	MFCD00011732
Formula:	C5H5N
Formula Weight:	79.10 g/mol
Quality Release Date:	15 DEC 2022

Certificate of Analysis

Test	Specification	Result	
Appearance (Color)	Colorless	Colorless	
Appearance (Form)	Liquid	Liquid	
Infrared Spectrum	Conforms to Structure	Conforms	
Purity (GC)	> 99.75 %	99.99 %	
Water (by Karl Fischer)	_ < 0.003 %	0.002 %	
Residue on Evaporation	_ 	< 0.0001 %	

Larry Coers, Director Quality Control Sheboygan Falls, WI US

Z

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Certificate of Analysis

1 Reagent Lane		
Fair Lawn, NJ 07410		
201.796.7100 tel	Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System	
201.796.1329 fax	Standard ISO9001:2015 by SAI Global Certificate Number CERT – 0120632	

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

Catalog Number	P188	Quality Test / Release Date	08/12/2019
Lot Number	194664		
Description	POTASSIUM DICHROMATE, A.C.S.		
Country of Origin	United States	Suggested Retest Date	Aug/2024
Chemical Origin	Inorganic-non animal		
BSE/TSE Comment	No animal products are used as starting processing aids, or any other material the		
Chemical Comment			

N/A				
Result Name	Units	Specifications	Test Value	
APPEARANCE		REPORT	Fine, orange-red crystals	
ASSAY	%	>= 99	99.2	
CALCIUM	%	<= 0.003	<0.003	
CHLORIDE	%	<= 0.001	<0.001	
LOSS ON DRYING @ 105 C	%	<= 0.05	<0.05	
SULFATE (SO4)	%	<= 0.005	<0.005	
INSOLUBLE MATTER	%	<= 0.005	0.003	
IRON (Fe)	%	<= 0.001	<0.001	
SODIUM (Na)	%	<= 0.02	<0.02	
IDENTIFICATION	PASS/FAIL	= PASS TEST	PASS TEST	

Ierisa Bailig- Wyche

Quality Assurance Specialist - Certificate of Analysis Fair Lawn

Note: The data listed is valid for all package sizes of this lot of this product, expressed as an extension of this catalog number listed above. If there are any questions with this certificate, please call at (800) 227-6701. *Based on suggested storage condition.

PRODUCTOS QUIMICOS MONTERREY, S.A. DE CY. MIRADOR 201, COL. MIRADOR MONTERREY, N.L. MEXICO CP 64070 TEL +52 81 13 52 57 57 WWW.pqm.com.mx

CERTIFICATE OF ANALYSIS

	DIUM SULFATE CRYS			NA.CO	
SPECIFICATION NUMBER :	N N		E DATE:	Na ₂ SO ₄	
	3201	N.a.L.a.M.O	E 1./A I E.	ABR/21/2023	
TEST	SPECI	FICATIONS	LOT V	ALUES	
Assay (Na ₂ SO ₄)	Min. 99	1.0%	99.7 %		
pH of a 5% solution at 25°C	5.2 - 9.	2	6.1		
Insoluble matter	Max. 0.	01%	0.005	1	
Loss on ignition	Max. 0.	5%	0.1 %	16	
Chloride (Cl)	Max. 0.	001%	<0.001	0/	
Nitrogen compounds (as N)	Max. 5	ppm	<0.001 <5 ppn		
Phosphate (PO ₄)	Max. 0.		9 X		
Heavy metals (as Pb)	Max. S		<0.001 %		
Iron (Fe)	Max, 0,		<5 ppn <0.001		
Calcium (Ca)	Max. 0.	01%	0.002 %		
Magnesium (Mg)	Max. 0.	005%	0.001 %		
Potassium (K)	Max. 0.				
Extraction-concentration suit	ability Passes	Passes test		Passes test	
Appearance	Passes		Passes test		
Identification	Passes	test	Passes test		
Solubility and foreing matter		test	Passes	: test	
Retained on US Standard No.		h	0.1 %		
Retained on US Standard No.	60 sieve Min. 94	a/ ₀	97.3 %		
Through US Standard No. 60	sieve Max. 5%	46	2.5 %		
Through US Standard No. 100) sieve Max. 10	1%	0.1 %		
an second a second s	CON	MENTS	ಕ್ಷಿತ್ರಾಳಿಸಿಕ ಕಾರ್ಯಕರ್ ಪ್ರದೇಶಕರ್		
91 <i>0</i> 91			n+	15 HANDOWNI	
			- he "		
			1		
		QC: Ph	C Irma Belma	res	

If you need further details, please call our factory or contact our local distributor.

Read. by R: 017/293 E3551

RE-02-01, Ed. 1

Certificate of Analysis

Sodium Hydroxide (Pellets)

Material: Grade: Batch Number: 0583 ACS GRADE 23B1556310

 Manufacture Date:
 12/14/2022

 Expiration Date:
 12/31/2025

Storage: Room Temperature

Pellets

TEST	SPECIFICATION	ANALYSIS	DISPOSITION
Calcium	<= 0.005 %	<0.005 %	PASS
Chloride	<= 0.005 %	0.002 %	PASS
Heavy Metals	<= 0.002 %	<0.002 %	PASS
Iron	<= 0.001 %	<0.001 %	PASS
Magnesium	<= 0.002 %	<0.002 %	PASS
Mercury	<= 0.1 ppm	<0.1 ppm	PASS
Nickel	<= 0.001 %	<0.001 %	PASS
Nitrogen Compounds	<= 0.001 %	<0.001 %	PASS
Phosphate	<= 0.001 %	<0.001 %	PASS
Potassium	<= 0.02 %	<0.02 %	PASS
Purity	>= 97.0 %	99.2 %	PASS
Sodium Carbonate	<= 1.0 %	0.5 %	PASS
Sulfate	<= 0.003 %	<0.003 %	PASS

Internal ID #: 710

Signature

Additional Information

Analysis may have been rounded to significant digits in specification limits.

This document has been electronically produced and is valid without a signature.

We certify that this batch conforms to the specifications listed.

Leona Edwardson, Quality Control Sr. Manager - Solon VWR Chemicals, LLC. 28600 Fountain Parkway, Solon OH 44139 USA Product meets analytical specifications of the grades listed.

VWR International LLC, Radnor Corporate Center, Suite 200, 100 Matsonford Road, Radnor, PA 19087, USA

Date Printed:

Acetone BAKER RESI-ANALYZED® Reagent For Organic Residue Analysis

Material No.: 9254-03 Batch No.: 24H2762008 Manufactured Date: 2024-04-18 Expiration Date:2027-04-18 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay ((CH3)2CO) (by GC, corrected forwater)	>= 99.4 %	100.0 %
Color (APHA)	<= 10	5
Residue after Evaporation	<= 1.0 ppm	0.0 ppm
Substances Reducing Permanganate	Passes Test	Passes Test
Titrable Acid (µeq/g)	<= 0.3	0.2
Titrable Base (µeq/g)	<= 0.6	<0.1
Water (H2O)	<= 0.5 %	<0.1 %
FID-Sensitive Impurities (as 2–Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	1

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC Recd. 57 RP ON 11115124

E 3830

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700

2

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R: 02/20

Instructions for QATS Reference Material: Inorganic ICV Solutions

For ICP-MS use: dilute the ICV1 concentrate 50-fold with 1% (v/v) nitric acid; pipet 2 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid. $\[mu]{301}$

ICV5-0415For the cold vapor analysis of mercury by AA: dilute the ICV5 concentrate 100-fold
with 2% (v/v) nitric acid; pipet 1 mL of the concentrate into a 100 mL volumetric flask
and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in
0.05% (w/v) K2Cr2O7 and 5% (v/v) nitric acid.& 3013
& 3014
& 3015

ICV6-0400 For the analysis of cyanide: dilute the ICV6 concentrate 100-fold with Type II water; pipet 1 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₆, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

و هر د. رو	ICV1-1014				
Element	* Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)			
AI	2520	504			
Sb	1010	202			
As	997	199			
Ba	518	104			
Be	514	103			
Cd	514	103			
Ca	10000	2000			
Cr	517	103			
Co	521	104			
Cu	505	101			
Fe	10100	2020			
Pb	1030	206			
Mg	5990	1198			
Mn	524	105			
Ni	525	105			
K	9940	1988			
Se	1030	206			
Ag	252	50			
Na	10100	2020			
ТІ	1040	208			
V	504	101			
Zn	1010	202			

ICV5-0415		ICV6-0400	
Element	Concentration (µg/L) (after-100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN [.]	99

ICV 1, 5, 6.docx

۲. ۱ Hydrochloric Acid, 36.5–38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 0000281827 Manufactured Date: 2021/03/30 Retest Date: 2026/03/29 Revision No: 1

Certificate of Analysis

Test	Specification	Result
ACS – Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6
ACS – Color (APHA)	<= 10	5
ACS – Residue after Ignition	<= 3 ppm	1
ACS – Specific Gravity at 60°/60°F	1.185 – 1.192	1.189
ACS – Bromide (Br)	<= 0.005 %	< 0.005
ACS – Extractable Organic Substances	<= 5 ppm	< 1
ACS – Free Chlorine (as Cl2)	<= 0.5 ppm	< 0.5
Phosphate (PO4)	<= 0.05 ppm	< 0.03
Sulfate (SO4)	<= 0.5 ppm	< 0.3
Sulfite (SO3)	<= 0.8 ppm	0.3
Ammonium (NH4)	<= 3 ppm	< 1
race Impurities – Arsenic (As)	<= 0.010 ppm	< 0.003
race Impurities – Aluminum (Al)	<= 10.0 ppb	0.5
Arsenic and Antimony (as As)	<= 5 ppb	< 3
Frace Impurities – Barium (Ba)	<= 1.0 ppb	< 0.2
Frace Impurities – Beryllium (Be)	<= 1.0 ppb	< 0.2
Frace Impurities – Bismuth (Bi)	<= 10.0 ppb	< 1.0
Frace Impurities – Boron (B)	<= 20.0 ppb	< 5.0
Frace Impurities – Cadmium (Cd)	<= 1.0 ppb	< 0.3
Frace Impurities – Calcium (Ca)	<= 50.0 ppb	15.0
Frace Impurities – Chromium (Cr)	<= 1.0 ppb	< 0.4
Frace Impurities – Cobalt (Co)	<= 1.0 ppb	< 0.3
Frace Impurities – Copper (Cu)	<= 1.0 ppb	< 0.1
Frace Impurities – Gallium (Ga)	<= 1.0 ppb	< 0.2

Test	Specification	Result	
race Impurities – Germanium (Ge)	<= 3.0 ppb	< 2.0	
race Impurities – Gold (Au)	<= 4.0 ppb	3.0	
leavy Metals (as Pb)	<= 100 ppb	< 50	
race Impurities – Iron (Fe)	<= 15.0 ppb	1.0	
race Impurities – Lead (Pb)	<= 1.0 ppb	< 0.5	
race Impurities – Lithium (Li)	<= 1.0 ppb	< 0.2	
race Impurities – Magnesium (Mg)	<= 10.0 ppb	< 0.4	
race Impurities – Manganese (Mn)	<= 1.0 ppb	< 0.4	
race Impurities – Mercury (Hg)	<= 0.5 ppb	0.2	
race Impurities – Molybdenum (Mo)	<= 10.0 ppb	< 5.0	
race Impurities – Nickel (Ni)	<= 4.0 ppb	< 0.3	
race Impurities – Niobium (Nb)	<= 1.0 ppb	< 0.2	
race Impurities – Potassium (K)	<= 9.0 ppb	< 2.0	
race Impurities – Selenium (Se), For Information Only	ppb	1.0	
race Impurities – Silicon (Si)	<= 100.0 ppb	18.0	
race Impurities – Silver (Ag)	<= 1.0 ppb	< 0.3	
race Impurities – Sodium (Na)	<= 100.0 ppb	< 5.0	
race Impurities – Strontium (Sr)	<= 1.0 ppb	< 0.2	
race Impurities – Tantalum (Ta)	<= 1.0 ppb	< 0.9	
race Impurities - Thallium (TI)	<= 5.0 ppb	< 2.0	
race Impurities – Tin (Sn)	<= 5.0 ppb	< 0.8	
race Impurities – Titanium (Ti)	<= 1.0 ppb	< 0.2	
race Impurities – Vanadium (V)	<= 1.0 ppb	< 0.2	
race Impurities – Zinc (Zn)	<= 5.0 ppb	0.4	
race Impurities – Zirconium (Zr)	<= 1.0 ppb	< 0.1	

For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications

Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC

James Techie

Jamie Ethier Vice President Global Quality

Sulfuric Acid BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Low Selenium

MS693-

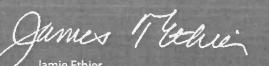
Material No.: 9673-33 Batch No.: 23D2462010 Manufactured Date: 2023-03-22 Retest Date: 2028-03-20 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS – Assay (H2SO4)	95.0 - 98.0 %	96.1 %
Appearance	Passes Test	Passes Test
ACS – Color (APHA)	≤ 10	5
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm
ACS – Substances Reducing Permanganate (as SO2)	≤ 2 ppm	< 2 ppm
Ammonium (NH4)	≤ 1 ppm	1 ppm
Chloride (Cl)	≤ 0.1 ppm	< 0.1 ppm
Nitrate (NO3)	≤ 0.2 ppm	< 0.1 ppm
Phosphate (PO4)	≤ 0.5 ppm	< 0.1 ppm
Trace Impurities – Aluminum (AI)	≤ 30.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 4.0 ppb	< 2.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	8.5 ppb
Trace Impurities – Cadmium (Cd)	≤ 2.0 ppb	< 0.3 ppb
Trace Impurities – Chromium (Cr)	≤ 6.0 ppb	< 0.4 ppb
Trace Impurities - Cobalt (Co)	≤ 0.5 ppb	< 0.3 ppb
Trace Impurities – Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gold (Au)	≤ 10.0 ppb	0.5 ppb
Heavy Metals (as Pb)	≤ 500.0 ppb	< 100.0 ppb
Trace Impurities - Iron (Fe)	≤ 50.0 ppb	1.3 ppb
Trace Impurities - Lead (Pb)	≤ 0.5 ppb	< 0.5 ppb
Trace Impurities – Magnesium (Mg)	≤ 7.0 ppb	0.8 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities – Nickel (Ni)	≤ 2.0 ppb	0.3 ppb
Trace Impurities – Potassium (K)	≤ 500.0 ppb	< 2.0 ppb
Trace Impurities – Selenium (Se)	≤ 50.0 ppb	< 0.1 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	31.5 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb

>>> Continued on page 2 >>>

Sulfuric Acid BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis Low Selenium



Material No.: 9673-33 Batch No.: 23D2462010

Test	Specification	Result
Trace Impurities – Sodium (Na)	≤ 500.0 ppb	5.4 ppb
Trace Impurities – Strontium (Sr)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.8 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.4 ppb

For Laboratory, Research, or Manufacturing Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Ethier Vice President Global Quality

Certificate of Analysis

Product information

Product	pH-Fix 0.3-2.3
REF	92180
LOT	80A0441
Expiration date:	29.02.2028
Date of examination:	23.01.2024
Gradation:	pH 0.3-0.7-1.0-1.3-1.6-1.9-2.3

Confirmation

Hereby we confirm, that the above mentioned product has successfully passed our quality control system in accordance with ISO 9001 and meets the specific quality criteria.

This document has been produced electronically and is valid without a signature.

MACHEREY-NAGEL GmbH & Co. KG Valencienner Str. 11 52355 Düren · Germany www.mn-net.com DE Tel.: +49 24 21 969-0 info@mn-net.com CH Tel.: +41 62 388 55 00 sales-ch@mn-net.com

FR Tel.: +33 388 68 22 68 sales-fr@mn-net.com

M6069

R: 8/19/24

US Tel.: +1 888 321 62 24 sales-us@mn-net.com

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent

For Trace Metal Analysis

R->10/13/24

Met dig

Material No.: 9530-33 Batch No.: 0000275677 Manufactured Date: 2020/12/16 Retest Date: 2025/12/15

Μ	6	۱	2	1
_	_	-		

Certificate of Analysis

Test	Specification	Result
ACS - Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6
ACS – Color (APHA)	<= 10	5
ACS – Residue after Ignition	<= 3 ppm	1
ACS - Specific Gravity at 60°/60°F	1.185 - 1.192	1.190
ACS – Bromide (Br)	<= 0.005 %	< 0.005
ACS – Extractable Organic Substances	<= 5 ppm	1
ACS - Free Chlorine (as Cl2)	<= 0.5 ppm	< 0.5
Phosphate (PO4)	<= 0.05 ppm	< 0.03
Sulfate (SO4)	<= 0.5 ppm	< 0.3
Sulfite (SO3)	<= 0.8 ppm	0.3
Ammonium (NH4)	<= 3 ppm	< 1
Trace Impurities - Arsenic (As)	<= 0.010 ppm	< 0.003
Trace Impurities - Aluminum (Al)	<= 10.0 ppb	< 0.2
Arsenic and Antimony (as As)	<= 5 ppb	< 3
Trace Impurities – Barium (Ba)	<= 1.0 ppb	< 0.2
Trace Impurities – Beryllium (Be)	<= 1.0 ppb	< 0.2
Trace Impurities – Bismuth (Bi)	<= 10.0 ppb	< 1.0
Trace Impurities – Boron (B)	<= 20.0 ppb	< 5.0
Trace Impurities - Cadmium (Cd)	<= 1.0 ppb	< 0.3
Trace Impurities – Calcium (Ca)	<= 50.0 ppb	29.7
Trace Impurities – Chromium (Cr)	<= 1.0 ppb	< 0.4
Trace Impurities – Cobalt (Co)	<= 1.0 ppb	< 0.3
Trace Impurities – Copper (Cu)	<= 1.0 ppb	< 0.1
Trace Impurities – Gallium (Ga)	<= 1.0 ppb	< 0.2

Material No.: 9530-33 Batch No.: 0000275677

Test	Specification	Result	
Trace Impurities – Germanium (Ge)	<= 3.0 ppb	< 2.0	
Trace Impurities - Gold (Au)	<= 4.0 ppb	< 0.2	
Heavy Metals (as Pb)	<= 100 ppb	< 50	
Trace Impurities – Iron (Fe)	<= 15.0 ppb	<]	
Trace Impurities – Lead (Pb)	<pre>>> dqq 0.1 =></pre>	< 0.5	
Trace Impurities – Lithium (Li)	<= 1.0 ppb	0.2	
Frace Impurities – Magnesium (Mg)	<= 10.0 ppb	0.2	
Frace Impurities – Manganese (Mn)	<= 1.0 ppb	< 0.4	
race Impurities – Mercury (Hg)	<= 0.5 ppb	0.1	
race Impurities – Molybdenum (Mo)	<= 10.0 ppb	< 5.0	
race Impurities – Nickel (Ni)	<= 4.0 ppb	< 0.3	
race Impurities – Niobium (Nb)	<= 1.0 ppb	< 0.2	
race Impurities – Potassium (K)	<= 9.0 ppb	< 2.0	
race Impurities - Selenium (Se), For Information Only	ppb	1.0	
race Impurities - Silicon (Si)	<= 100.0 ppb	< 10.0	
race Impurities – Silver (Ag)	<= 1.0 ppb	< 0.3	
race Impurities – Sodium (Na)	<= 100.0 ppb	< 5.0	
race Impurities – Strontium (Sr)	<= 1.0 ppb	< 0.2	
race Impurities – Tantalum (Ta)	<= 1.0 ppb	< 0.2	
ace Impurities - Thallium (TI)	<= 5.0 ppb		
ace Impurities – Tin (Sn)	<= 5.0 ppb	< 2.0	
ace Impurities - Titanium (Ti)	<= 1.0 ppb	< 0.8	
ace Impurities – Vanadium (V)	<= 1.0 ppb	0.2	
ace Impurities – Zinc (Zn)	<= 5.0 ppb	< 0.2	
ace Impurities – Zirconium (Zr)	<= 1.0 ppb	0.3 < 0.1	

For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications

Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC

James Techie Jamie Ethier Vice President Global Quality

Certificate of Analysis

1.00132.0000 Barbituric acid for analysis EMSURE® Batch N020065932

	Spec. Values	3	Batch Values	
		A /		24
Assay (acidimetric)	≥ 99	%	99.6	%
Identity (IR-spectrum)	passes test		passes test	
Chloride (Cl)	≤ 40	ppm	≤ 40	ppm
Heavy metals (as Pb)	≤ 50	ppm	≤ 50	ppm
Fe (Iron)	≤ 10	ppm	≤ 10	ppm
Sulfated ash	≤ 0.1	%	≤ 0.1	%
Loss on Drying (105 °C)	≤ 0.1	%	≤ 0.1	%
Suitability as reagent (for cyanide determination)	passes test		passes test	

Date of release (DD.MM.YYYY) 17.04.2020 Minimum shelf life (DD.MM.YYYY) 30.04.2025

Ioannis Chartomatsidis

Responsible laboratory manager quality control

This document has been produced electronically and is valid without a signature.

Sodium Phosphate, Monobasic, Monohydrate, Crystal BAKER ANALYZED® A.C.S. Reagent

(sodium dihydrogen phosphate, monohydrate)

Material No.: 3818-05 Batch No.: 0000225799 Manufactured Date: 2018/12/05 Retest Date: 2025/12/03 Revision No: 1

Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

Test	Specification	Result 99.5	
Assay (NaH2PO4 · H2O)	98.0 - 102.0 %		
oH of 5% Solution at 25℃	4.1 - 4.5	4.3	
nsoluble Matter	<= 0.01 %	< 0.01	
Chloride (Cl)	<= 5 ppm	< 5	
ACS – Sulfate (SO4)	<= 0.003 %	< 0.003	
Calcium (Ca)	<= 0.005 %	<0.005	
Potassium (K)	<= 0.01 %	< 0.01	
leavy Metals (as Pb)	<= 0.001 %	< 0.001	
Frace Impurities – Iron (Fe)	<= 0.001 %	< 0.001	

For Laboratory, Research or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs

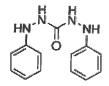
Country of Origin:	IN
Packaging Site:	Paris Mfg Ctr & DC

James Techie

Jamie Ethier Vice President Global Quality

W2979

lec: 12/08/22


exp. 12/08/27

Product Name: 1,5-Diphenylcarbazide - ACS reagent

Product Number:	259225
Batch Number:	MKCR6636
Brand:	SIAL
CAS Number:	140-22-7
MDL Number:	MFCD00003013
Formula:	C13H14N4O
Formula Weight:	242.28 g/mol
Quality Release Date:	02 JUN 2022

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Certificate of Analysis

Test	Specification	Result
Appearance (Color)	Conforms to Requirements	Pink
Off-White to Pink, Light Purple or Tan	·	
Appearance (Form)	Powder or Chunks	Powder
Melting Point	173.0 - 176.0 °C	173.0 °C
Infrared Spectrum	Conforms to Structure	Conforms
Residue on ignition (Ash)	<u><</u> 0.05 %	0.01 %
15 minutes, 800 Degrees Celsius		
Solubility	Pass	Pass
Sensitivity Test	Pass	Pass
Meets ACS Requirements	Current ACS Specification	Conforms

Z

Larry Coers, Director Quality Control Milwaukee, WI US

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Certificate of Analysis

Product information

Product:

REF:

Silica 60, 0.063 - 0.200 mm

815330.25

LOT: 072154301

Technical data

Material: Description: Synthethic amorphus silica (Irregular shaped) White powder

Parameter	Specifications	Result
Specific surface (m³/g, N2 edsorption) :	450 - 550	537
Particle size distribution (screen analysis) :	< 63 µm max. 5 %	0.3
	> 200 jim max. 5 %	0.1
pH value :	6.0 - 7.5	7
Water content (%) :	<7	3.6
Pore volume (mL/g, N2 adsorption) :	0.65 - 0.85	0.82
Mean pore size (Å, N2 adsorption) :	50 - 70	62

Expiry

This product has no stated expiration date or shelf life.

We recommend to use the product within a time period of 5 years after date of QC release. This time period is valid only if the product is stored under dry and frost-free conditions. After 5 years we recommend retesting the adsorbent to make sure that the expected performance is still given.

Confirmation

Hereby we confirm, that the above mentioned product has successfully passed our quality control system in accordance with ISO 9801 and meets the specific quality criteria.

This document has been produced electronically and is valid without a signature.

Date of measurement: 16.02.2023 22:00

٩,

RICCA CHEMICAL COMPANY[®] 3^{003} 0^{001} Certificate of Analysis 0^{010}

1490 Lammers Pike Batesville, IN 47006 http://www.riccachemical.com 1-888-GO-RICCA customerservice@riccachemical.com

Manufacture Date: JAN 08, 2024

Expiration Date: DEC 2025

Buffer, Reference Standard, pH 7.00 ± 0.01 at 25°C (Color Coded Yellow)

Product Number: 1551

°C pH	0 7.12	5 7.09	10 7.06	15 7.04	20 7.02	25 7.00	30 6.99	35 6.98	40 6.98	45 6.97	50 6.97	
Name						CA	S#		1.15	Grade		
Water						77	32-18-5			ACS/AS	STM/USP/I	С Р
Sodiun	n Phosp	hate Di	basic			758	58-79-4	-		ACS		
Potass	ium Dił	nydrogen	n Phospi	hate		77	78-77-0			ACS		
Preserv	vative					Pro	prietar	У				
Yellow	Dye				•		prietar					
Sodium	n Hydro	xide					.0-73-2	· .				
Test						1.1	Spec	ification	1	Re	sult	
Appear	ance				LEC.		Yell	ow liqui	d	Pas	ssed	*Not a certified value
<u>Fest</u>	st					Certified Value			lue	• Uncertainty		NIST SRM#
pH at 2	5°C (M	ethod: S	QCP02	7, SQCP	033)	7.004				0.0	2	186-I-g, 186-II-g, 191d
Specific	ation					Reference						
Comme	rcial Bu	ffer Sol	utions						ASTN	A (D 1293	B)	
Buffer A										A (D 5464		
Buffer A	1								ASTN	4 (D 5128		

a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)
1551-1	4 L natural poly	24 months
1551-1CT	4 L Cubitainer®	24 months
1551-2.5	10 L Cubitainer®	24 months
1551-5	20 L Cubitainer®	24 months
Decommonded Steven 1500	2000 (F00) - 000T)	

Recommended Storage: 15°C - 30°C (59°F - 86°F)

Lot Number: 4401F99

Paul Drondon

Paul Brandon (01/08/2024) Production Manager This document is designed to comply with ISO Guide 31 "Reference Materials --Contents of Certificates and Labels."

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

RICCA CHEMICAL COMPANY°

1490 Lammers Pike Batesville, IN 47006 http://www.riccachemical.com 1-888-GO-RICCA customerservice@riccachemical.com

Certificate of Analysis

Buffer, Reference Standard, pH 10.00 ± 0.01 at 25°C (Color Coded Blue)

The cer	Lot Number: 4310G83 Product The certified value for this product is confirmed in inder The NIST traceable pH value is certified to ±0.01 at 25						eting by a	socond av	ualified o t their co		Manufacture Date: OCT 09, 2023 Expiration Date: MAR 2023		
°C pH	0 10.31	5 10.23	$\begin{array}{c} 10\\ 10.17\end{array}$	$\begin{array}{c} 15\\ 10.11 \end{array}$	20 10.05	$\begin{array}{c} 25\\ 10.00 \end{array}$	30 9.95	35 9.91	40 9.87	50 9.81			
Name						CA	S#			Grade			
Sodiur	n Carbo n Bicarl n Hydro vative	oonate				497 144 131 Pro	32-18-5 7-19-8 4-55-8 0-73-2 prietary prietary	• •	1	ACS/ASTM/USP/ ACS ACS Reagent Result	EP		
Appear	ance					Blue liquid				Passed	*Not a certified value.		
Test					5.15	Certified Value			lue	Uncertainty	NIST SRM#		
pH at 2	5°C (M	ethod: S	QCP02	7, SQCI	2 033)	10.003				0.02	186-I-g, 186-II-g, 191d		
Specific	ation				vini -	Reference							
Commercial Buffer Solutions Buffer C Buffer C					ASTM (D 1293 B) ASTM (D 5464) ASTM (D 5128)								
comparis Standard a normal	ons. The u Referenc distributi	incertaint e Materia on. Volun	y is calcul l, and the netric glas	lated from uncertain sware con	the unce ty of the polies wit	rtainty of measurem h Class A	the meas ent proce	d Reference urement v ss. The ur	ce Mater ariation acertaint	ial as indicated above v from sample to sample y is multiplied by k=2, STM F 288 and NICT (cate L2387.02) and are certified ia an unbroken chain of , the uncertainty in the NIST corresponding to 95% coverage in Circular 434; it is calibrated ces are calibrated regularly with		

before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured. Part Number

I di ti tullibel	Size / Package Type	Shelf Life (Unopened Container)
1601-16	500 mL natural poly	18 months
1601-5	20 L Cubitainer®	18 months
Person and ad Steven 1500		

Recommended Storage: 15°C - 30°C (59°F - 86°F)

Foul Brandon 1

F

Paul Brandon (10/09/2023) Production Manager This document is designed to comply with ISO Guide 31 "Reference Materials --Contents of Certificates and Labels."

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

RICCA CHEMICAL COMPANY®

J³¹⁰⁺ Certificate of Analysis 1490 Lammers Pike Batesville, IN 47006 http://www.riccachemical.com 1-888-GO-RICCA customerservice@riccachemical.com

Buffer, Reference Standard, pH 4.00 ± 0.01 at 25°C (Color Coded Red)

Lot Number: 4403F90

Product Number: 1501

Manufacture Date: MAR 09, 2024 Expiration Date: FEB 2026

The certified value for this product is confirmed in independent testing by a second qualified chemist. The NIST Traceable pH value is certified to ± 0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ± 0.05 .

							-			^	0 1	
°C	0	5	10	15	20	25	30	35	40	45	50	
$_{ m pH}$	4.00	4.00	4.00	4.00	4.00	4.00	4.01	4.02	4.03	4.04	4.06	

Name	CAS#	Grade	
Water	7732-18-5	ACS/ASTM/USP/I	EP
Potassium Acid Phthalate	877-24-7	Buffer	
Preservative	Proprietary	Commercial	••
Red Dye	Proprietary	Purified	
Test	Specification	Result	
Appearance	Red liquid	Passed	*Not a certified value
Test	Certified Value	Uncertainty	NIST SRM#
pH at 25°C (Method: SQCP027, SQCP033)	4.000	0.02	185i, 186-I-g, 186-II-g
Specification	Re	ference	
Commercial Buffer Solutions	AS	TM (D 1293 B)	
Buffer B	AS	TM (D 5464)	

Buffer B

pH measurements were performed in our Batesville, IN laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.02) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

ASTM (D 5128)

Part Number	Size / Package Type	Shelf Life (Unopened Container)		
1501-2.5	10 L Cubitainer®	24 months		
1501-32	1 L natural poly	24 months		
1501-5	20 L Cubitainer®	24 months		

Recommended Storage: 15°C - 30°C (59°F - 86°F)

Foul Brandon

Paul Brandon (03/09/2024) Production Manager This document is designed to comply with ISO Guide 31 "Reference Materials --Contents of Certificates and Labels."

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

Part of TCP Analytical Group

Jackson's Pointe Commerce Park- Building 1000 1010 Jackson's Pointe Court, Zelienople, PA 16063

Certificate of Analysis

Cyanide Standard 1000 ppm (1ml = 1mg CN)

Product Code:	LC13545		Manufacture Date: August 01, 2024	
Lot Number:	44080060		Expiration Date: January 30, 2025	
Test		Specification	Result	
Appearance (cla	irity)	clear solution	clear solution	
Appearance (co	lor)	colorless	colorless	
Concentration (0	CN)	0.990 - 1.010mg/mL	1.008mg/mL	
Concentration (0	CN)	990 - 1,010ppm	1,008ppm	
Traceable to NIST SRM		Report	999b	

Intended Use - Product is intended for use in manufacturing procedures and laboratory procedures and protocols.

Storage Information - Unless noted on the product label, store the product under normal lab conditions in its tightly closed, original container. Do not pipet directly from the container or return unused portions to the container.

Instructions for Handling and Use - Please refer to the associated product label and Safety Data Sheet (SDS) for information regarding safety and handling of this product.

Preparation - All products are manufactured and tested according to established, documented procedures and methodology. Production documentation records manufacturing data, raw material traceability and testing history on a per lot basis. Balances, thermometers, and glassware are calibrated before first use and on a regular schedule with references traceable to NIST standards.

The suffix of the product code may differ from what is on your product label. The suffix will designate the size and be associated with a numeric digit(s). Visit LabChem.com for more information

Suffix	1	2	3/35/36/365	4/4C	5	6	7	8	9	20	44	200	246	486
Size	500mL or g	1L or 1kg	2.5L/2.5L Coated/6x2.5L/6x2.5L Coated	4L	20L	10L	125mL	25g	100g	20x20mL	4x4L	200L	24x6mL	48x6mL

Michael Montelsons

Michael Monteleone Chemistry Supervisor - Quality Control

W3139 Received on 9/9/24 by IZ

Product No.:

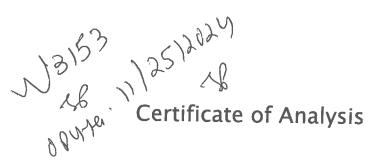
A12044

Product: Chloramine-T trihydrate, 98%

Lot No.: 10239484

Appearance: Melting Point: Assay (lodometric titration): Identification (FTIR): White powder 166°C(dec) 100.5% Conforms

Order our products online thermofisher.com/chemicals


This document has been electronically generated and does not require a signature.

Products are processed under ISO 9001:2015 quality management systems and samples are tested for conformance to the noted specifications. Certain data may have been supplied by third parties. We disclaim the implied warranties of merchantability and fitness for a particular purpose, and the accuracy of third party data or information associated with the product. Products are for research and development use only. Products are not for direct administration to humans or animals. It is the responsibility of the final formulator or end user to determine suitability, and to qualify and/or validate each product for its intended use.

n-Hexane 95% ULTRA RESI-ANALYZED For Organic Residue Analysis

Material No.: 9262-03 Batch No.: 24G1962003 Manufactured Date: 2024-05-23 Expiration Date: 2025-08-22 Revision No.: 0

Test	Specification	Result		
FID-Sensitive Impurities (as 2-Octanol) Single Impurity Peak (ng/mL)	≤ 5	3		
ECD Sensitive Impurities (as Heptachlor Epoxide) Single Peak (pg/mL)	≤ 10	3		
ECD-Sensitive Impurities (as Ethylene Dibromide) – Single Impurity Peak (ng/mL)	≤ 5	1		
Assay (Total Saturated C6 Isomers) (by GC, corrected for water)	≥ 99.5 %	99.7 %		
Assay (as n-Hexane) (by GC, corrected for water)	≥ 95 %	98 %		
Color (APHA)	≤ 10	5		
Residue after Evaporation	≤ 1.0 ppm	0.1 ppm		
ubstances Darkened by H2SO4	Passes Test	Passes Test		
Vater (by KF, coulometric)	≤ 0.05 %	< 0.01 %		

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

and the second se	The stand of the stand of the stand of the stand	The Law
	ACioak	1997
	0	
	Jamie Croak Director Quality Operations, Bioscience P	roduction