

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID: P5033

Test: Metals CLP Full

Prepbatch ID: PB165373,PB165669,

Sequence ID/Qc Batch ID: LB133959,LB134069,

Standard ID:

MP83122, MP83134, MP83141, MP83147, MP83498, MP83499, MP83500, MP83501, MP83502, MP83503, MP83504, MP83505, MP83506, MP83507, MP83508, MP83509, MP83510, MP83511, MP83513, MP83514, MP83619, MP83723, MP83514, MP83619, MP83723, MP83514, MP83619, MP83723, MP83514, MP83619, MP83723, M

Chemical ID:

M5130, M5218, M5223, M5289, M5295, M5296, M5390, M5393, M5429, M5473, M5476, M5496, M5497, M5498, M5513, M5515, M5519, M5658, M5697, M5698, M5751, M5768, M5769, M5799, M5800, M5801, M5802, M5806, M5815, M5816, M5817, M5818, M5819, M5820, M5875, M5959, M5960, M5962, M5970, M5976, M5978, M5982, M5985, M5990, M5999, M6021, M6023, M6025, M6028, M6030, M6033, M6111, M6116, M6117, M6121, M6125, M6126, W3112,

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
169	1:1HNO3	MP83122	11/07/2024	12/06/2024	Janvi Patel	None	None	
								11/07/2024

FROM 1000.00000ml of M6116 + 1000.00000ml of W3112 = Final Quantity: 2000.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Mohan Bera
902	ICP AES CAL BLK (SO/ICB/CCB)	MP83134	10/30/2024	12/06/2024	Kareem Khairalla	None	None	11/08/2024

FROM 125.00000ml of M6111 + 2350.00000ml of W3112 + 25.00000ml of M6117 = Final Quantity: 2500.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Mohan Bera
994	ICPAES ISM01.2 S1 (CONC.)	MP83141	10/30/2024	12/06/2024	Kareem Khairalla	None	None	11/08/2024

FROM

0.02000 ml of M5815 + 0.03000 ml of M5429 + 0.10000 ml of M5798 + 0.10000 ml of M6028 + 0.14000 ml of M5799 + 0.20000 ml of M5476 + 0.20000 ml of M5515 + 0.20000 ml of M5658 + 0.20000 ml of M5801 + 0.20000 ml of M5817 + 0.20000 ml of M5976 + 0.20000 ml of M6025 + 0.20000 ml of M6030 + 0.30000 ml of M5698 + 0.40000 ml of M6033 + 0.50000 ml of M5751 + 0.50000 ml of M6023 + 0.70000 ml of M5962 + 0.80000 ml of M5960 + 1.00000 ml of M5800 + 1.00000 ml of M5819 + 10.00000 ml of M5498 + 10.00000 ml of M5519 + 10.00000 ml of M5768 + 10.00000 ml of M5806 + 10.00000 ml of M5818 + 2.00000 ml of M5978 + 4.00000 ml of M5390 + 34.24000 ml of MP83134 = Final Quantity: 100.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Mohan Bera
921	ICPAES SPIKE SOL#6	MP83147	10/30/2024	12/06/2024	Kareem Khairalla	None	None	11/08/2024

FROM 2.50000ml of M5962 + 50.00000ml of M5990 + 50.00000ml of M5999 + 147.50000ml of MP83134 = Final Quantity: 250.000 ml

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
169	1:1HNO3	MP83498	12/09/2024	12/28/2024	Janvi Patel	None	None	,
								12/09/2024

FROM 1250.00000ml of M6126 + 1250.00000ml of W3112 = Final Quantity: 2500.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
170	1:1HCL	MP83499	12/09/2024	12/28/2024	Eman Mughal	None	None	
								12/09/2024

FROM 1250.00000ml of M6121 + 1250.00000ml of W3112 = Final Quantity: 2500.000 ml

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabiit Jaswal
902	ICP AES CAL BLK (SO/ICB/CCB)	MP83500	12/06/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM	125.00000ml of M6121	+ 2350.00000ml of W3112 +	25.00000ml of M6126	= Final Quantity: 2	500.000 ml
------	----------------------	---------------------------	---------------------	---------------------	------------

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
2480	ICP AES STD 6 ISM01.3	MP83501	12/06/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 4.00000ml of M5289 + 4.00000ml of M5498 + 4.00000ml of M5515 + 4.00000ml of M5768 + 4.00000ml of M5806 + 30.00000ml of MP83500 = Final Quantity: 50.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1004	ICPAES ISM01.2 (S5)	MP83502	12/06/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM

0.25000 ml of M5798 + 0.50000 ml of M5429 + 0.50000 ml of M5473 + 0.50000 ml of M5815 + 0.50000 ml of M5817 + 12.50000 ml of M5819 + 12.50000 ml of M5698 + 12.50000 ml of M5806 + 12.50000 ml of M5819 + 13.75000 ml of M5697 + 14.50000 ml of M5698 + 14.50000 ml of M5515 + 14.50000 ml of M5658 + 2.00000 ml of M5513 + 22.50000 ml of M5497 + 22.50000 ml of M5497 + 22.50000 ml of M5875 + 5.00000 ml of M5893 + 5.00000 ml of M5802 + 5.00000 ml of M5818 + 5.00000 ml of M5875 + 303.50000 ml of M783500 = Final Quantity: 500.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1005	ICPAES ISM01.2(S4)	MP83503	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 250.00000ml of MP83500 + 250.00000ml of MP83502 = Final Quantity: 500.000 ml

Metals STANDARD PREPARATION LOG

1007 ICPAES ISM01.2(S3) MP83504 12/09/2024 01/06/2025 Kareem Khairalla None None 12/09/2024	<u>F</u>	Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
		1007	ICPAES ISM01.2(S3)	MP83504	12/09/2024	01/06/2025		None	None	12/09/2024

FROM 25.00000ml of MP83502 + 75.00000ml of MP83500 = Final Quantity: 100.000 ml

Recipe	NAME	NO	Duan Data	Expiration	<u>Prepared</u>	CastalD	DimettelD	Supervised By
<u>ID</u> 1008	NAME ICPAES ISM01.2(S2)	NO. MP83505	Prep Date 12/09/2024	<u>Date</u> 01/06/2025	<u>By</u> Kareem	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
	, ,				Khairalla			12/09/2024

FROM 12.50000ml of MP83502 + 87.50000ml of MP83500 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe				Expiration	Prepared			Supervised By
<u>ID</u> 994	NAME ICPAES ISM01.2 S1 (CONC.)	NO. MP83506	Prep Date 12/09/2024	<u>Date</u> 01/06/2025	<u>By</u> Kareem	<u>ScaleID</u> None	PipetteID None	Sarabjit Jaswal
	(22.27)				Khairalla			12/09/2024

FROM

0.02000 ml of M5815 + 0.03000 ml of M5429 + 0.10000 ml of M5798 + 0.10000 ml of M6028 + 0.14000 ml of M5799 + 0.20000 ml of M5473 + 0.20000 ml of M5515 + 0.20000 ml of M5658 + 0.20000 ml of M5801 + 0.20000 ml of M5817 + 0.20000 ml of M5817 + 0.20000 ml of M5817 + 0.20000 ml of M5698 + 0.40000 ml of M5496 + 0.50000 ml of M5697 + 0.50000 ml of M6023 + 0.70000 ml of M5962 + 0.80000 ml of M5960 + 1.00000 ml of M5800 + 1.00000 ml of M5691 + 10.00000 ml of M5806 + 1.20000 ml of M5819 + 10.00000 ml of M5498 + 10.00000 ml of M5519 + 10.00000 ml of M5818 + 2.00000 ml of M5978 + 4.00000 ml of M5390 + 34.24000 ml of MP83500 = Final Quantity: 100.000 ml

Recipe ID	<u>NAME</u>	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1003	ICPAES ISM01.2 S1	MP83507	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 0.50000ml of MP83506 + 99.50000ml of MP83500 = Final Quantity: 100.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
2054	ICV-ICPAES	MP83508	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 0.50000ml of M5218 + 0.50000ml of M5816 + 0.50000ml of M5820 + 0.50000ml of M5970 + 0.50000ml of M5982 + 10.00000ml of M5295 + 87.50000ml of MP83500 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
904	ICP AES ICSA SOLN	MP83509	12/09/2024	01/06/2025	Kareem Khairalla	None	METALS_PIP ETTE_3 (A)	,

FROM 10.00000ml of M5130 + 90.00000ml of MP83500 = Final Quantity: 250.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
905	ICP AES ICSAB SOLN	MP83510	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 10.00000ml of M5130 + 10.00000ml of M5223 + 80.00000ml of MP83500 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1119	ICPAES ISM01.2(CCV)	MP83511	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 0.75000ml of M5497 + 0.75000ml of M5769 + 1.22500ml of M5496 + 1.25000ml of M5515 + 1.25000ml of M5806 + 19.77500ml of MP83500 + 25.00000ml of MP83502 = Final Quantity: 50.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabiit Jaswal
919	ICP AES INTERNAL STD	MP83513	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 1.00000ml of M5959 + 10.00000ml of M5985 + 1969.00000ml of W3112 + 20.00000ml of M6126 = Final Quantity: 2000.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
513	RINSE SOLN	MP83514	12/09/2024	01/06/2025	Kareem Khairalla	None	None	12/09/2024

FROM 200.0000ml of M6126 + 9800.0000ml of W3112 = Final Quantity: 10000.000 ml

Metals STANDARD PREPARATION LOG

1122 ICPMS CALIB MP83619 12/13/2024 01/07/2025 Sarabjit Jaswal None METALS_PIP ETTE_3 (A) 12/17/202	Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Mohan Bera
	1122		MP83619	12/13/2024	01/07/2025	Sarabjit Jaswal	None	_	

FROM 25.00000ml of M6121 + 4925.00000ml of W3112 + 50.00000ml of M6126 = Final Quantity: 5000.000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Mohan Bera
1883	SE 10PPM	MP83723	12/19/2024	01/07/2025	Sarabjit Jaswal	None	None	
								12/20/2024

FROM 0.10000ml of M5962 + 9.90000ml of MP83619 = Final Quantity: 10.000 ml

Fax: 908 789 8922

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART A / ICSA (ICP) STOCK SOLN	ICSA-1211	12/28/2024	05/20/2024 / jaswal	04/20/2021 / bin	M5130
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CHEM-QC-4 / CHEM-QC-4, Second Source, 1000 ug/ml, B, Mo, Si, Sn, Ti	S2-MEB711674	11/02/2026	07/01/2022 / bin	09/10/2021 / bin	M5218
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART B / ICSAB (ICP) STOCK SOLN	ICSB-0710	12/28/2024	05/20/2024 / jaswal	04/20/2021 / bin	M5223
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Aluminum (AI) 10,000PPM	070622	07/06/2025	09/02/2022 / jaswal	07/12/2022 / jaswal	M5289
		070622 Lot #	07/06/2025 Expiration Date			M5289 Chemtech Lot #
Standards, Inc.	10,000PPM		Expiration	jaswal Date Opened /	jaswal	Chemtech
Standards, Inc. Supplier	ItemCode / ItemName ICV-1 / ICV (ICP/ICPMS)	Lot #	Expiration Date	Date Opened / Opened By 08/07/2024 /	Received Date / Received By 04/20/2021 /	Chemtech Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	,		07/21/2025	08/07/2024 / jaswal	09/18/2022 / bin	M5390	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	•		
Inorganic Ventures	CLPP-CAL-3 / CLP CAL SOLUTION #3, 125mL	T2-MEB714159	01/13/2027	10/12/2022 / bin	09/19/2022 / bin	M5393	
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.			07/06/2025	01/30/2023 / bin	01/26/2023 / bin	M5429	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57138 / Sr, 10000 PPM, 125 ml	082922	08/29/2025	03/16/2023 / jaswal	03/16/2023 / jaswal	M5473	
	ItemCode / ItemName Lot #						
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Supplier Absolute Standards, Inc.	ItemCode / ItemName 57138 / Sr, 10000 PPM, 125 ml	Lot # 082922	I -	=			
Absolute	57138 / Sr, 10000 PPM,		Date	Opened By 07/29/2024 /	Received By 03/16/2023 /	Lot #	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml	031523	03/15/2026	03/18/2023 / bin	03/17/2023 / bin	M5497	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml			08/15/2023 / jaswal	03/17/2023 / bin	M5498	
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	57182 / Pb, 10000 PPM, 061522 06/15/202 125 ml		06/15/2025	03/19/2023 / bin	03/17/2023 / bin	M5513	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	092122	09/21/2025	08/01/2024 / Jaswal	03/17/2023 / bin	M5515	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57119 / Potassium (K) 10,000PPM	120822	12/08/2025	01/08/2024 / bin	03/17/2023 / bin	M5519	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	102523	10/25/2026	04/03/2024 / jaswal	10/27/2023 / jaswal	M5697	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	, , , , , , , , , , , , , , , , , , , ,		10/26/2026	04/18/2024 / jaswal	10/27/2023 / jaswal	M5698	
Supplier	Supplier ItemCode / ItemName		Expiration Date			Chemtech Lot #	
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	071723	07/17/2026	10/01/2024 / Jaswal	08/25/2023 / jaswal	M5751	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	01/08/2024 / bin	01/03/2024 / bin	M5768	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	05/24/2024 / Jaswal	01/03/2024 / bin	M5769	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799		
Supplier	Supplier ItemCode / ItemName		pplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800		
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	57033 / As, 1000 PPM, 125 ml		11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #		
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	120523	12/05/2026	08/07/2024 / jaswal	01/03/2024 / jaswal	M5802		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	58111 / Na, 10000 PPM, 500 ml	122223	12/22/2026	08/01/2024 / Jaswal	01/03/2024 / jaswal	M5806		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	57016 / S, 1000 PPM, 125 ml	122923	12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816		
Supplier	er ItemCode / ItemName Lo		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	, , , , , ,		07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817		
Supplier	Supplier ItemCode / ItemName		Expiration Date Opened / Date Opened By		Received Date / Received By	Chemtech Lot #		
Absolute 57014 / Si, 1000 PPM, 125 ml		122023	12/20/2026	03/06/2024 / jaswal	02/09/2024 / jaswal	M5818		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	111623	11/16/2026	03/20/2024 / jaswal	02/09/2024 / jaswal	M5819		
Supplier	upplier ItemCode / ItemName		ItemCode / ItemName Lot #		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820		
	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #		
Supplier								

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGY10-1 / YTTRIUM 125mL 10,000ug/mL	V2-Y740548	02/20/2029	07/01/2024 / Jaswal	06/14/2024 / Jaswal	M5959
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	, ,		04/11/2027	07/03/2024 / kareem	06/11/2024 / kareem	M5960
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Standards, Inc. 57034 / Se, 1000 PPM, 125 ml		060624	06/06/2027	07/02/2024 / Jaswal	06/14/2024 / Jaswal	M5962
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57003 / Li, 1000 PPM, 125 ml	061224	06/21/2027	07/01/2024 / Jaswal	07/01/2024 / Jaswal	M5970
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Inorganic Ventures	CGMO1-1 / T2-MO720876 MOLYBDENUM 125mL 1000ug/mL		07/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5976
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
	rganic CGTI1-1 / TITANIUM T2- tures 125mL 1000ug/mL		06/17/2027	08/07/2024 /	02/22/2024 /	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57038 / Sr, 1000 PPM, 125 ml	031524	03/15/2027	07/01/2024 / Jaswal	06/11/2024 / Jaswal	M5982	
Supplier	ItemCode / ItemName	ItemName Lot #		Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures			02/21/2028	10/08/2024 / Jaswal	06/14/2024 / Jaswal	M5985	
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures			03/12/2029	10/04/2024 / Jaswal	02/22/2024 / Jaswal	M5990	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	CLPP-SPK-1 / SOIL/WATER SPIKE SOLN 1, 125mL	T2-MEB721963	07/27/2027	09/04/2024 / Jaswal	02/22/2024 / kareem	M5999	
_	SOIL/WATER SPIKE SOLN	T2-MEB721963	07/27/2027 Expiration Date			M5999 Chemtech Lot #	
Ventures	SOIL/WATER SPIKE SOLN 1, 125mL		Expiration	Jaswal Date Opened /	kareem Received Date /	Chemtech	
Supplier Absolute	SOIL/WATER SPIKE SOLN 1, 125mL ItemCode / ItemName 57023 / V, 1000 PPM, 125	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By 08/05/2024 /	Chemtech Lot #	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57082 / Pb, 1000 PPM, 125 ml	061224	11/09/2026	08/05/2024 / Jaswal	08/05/2024 / Jaswal	M6025	
Supplier	plier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	, ,		07/01/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6028	
Supplier ItemCode / ItemName		Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute 57047 / Ag, 1000 PPM, 125 ml		122823	12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58113 / AI, 10000 PPM, 500 ml	011623	01/16/2026	08/07/2024 / Jaswal	01/03/2024 / Jaswal	M6033	
					•		
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Supplier Seidler Chemical	ItemCode / ItemName BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	Lot # 22F0762009	I -	-			
	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed		Date	Opened By 11/04/2024 /	Received By 09/29/2024 /	Lot #	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24B1362001	05/06/2025	11/06/2024 / Janvi	09/29/2024 / Eman	M6117
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	r Chemical BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)		05/13/2025	11/13/2024 / Eman	10/13/2024 / Eman	M6121
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1403 / Hydrogen Peroxide, 30% 1 gal	820803	05/25/2025	11/26/2024 / Eman	11/22/2024 / Eman	M6125
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	06/03/2025	12/03/2024 / Janvi	11/12/2024 / Janvi	M6126
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

Certificate of Analysis

R: 02/22/24 M5986 M5987 M5988 M5989 M5999

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CLPP-SPK-5

Lot Number:

V2-MEB742037

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

100 µg/mL ea:

Antimony,

50 μg/mL ea:

Selenium,

Thallium,

Cadmium,

40 μg/mL ea: Arsenic,

Alderiie,

20 µg/mL ea: Lead

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Antimony, Sb **CERTIFIED VALUE**

ANALYTE Arsenic, As **CERTIFIED VALUE**

40.00 ± 0.26 μg/mL

Cadmium, Cd

100.0 ± 0.7 μg/mL 49.99 ± 0.22 μg/mL

Lead. Pb

19.99 ± 0.09 µg/mL

Selenium, Se

50.00 ± 0.23 μg/mL

Thallium, Ti

50.00 ± 0.22 μg/mL

Density:

1.025 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Cd	Calculated		See Sec. 4.2
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Pb	Calculated		See Sec. 4.2
Sb	ICP Assay	3102a	140911
Se	ICP Assay	3149	100901
Se	Calculated		See Sec. 4.2
TI	ICP Assay	3158	151215
ТΙ	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

Xi = mean of Assay Method i with standard uncertainty uchar i

w_i = the weighting factors for each method calculated using the inverse square of the variance;

 $\mathbf{w_i} = (1/\mathbf{u_{char\,i}})^2 \, / \, (\Sigma (1/(\mathbf{u_{char\,i}})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/a}$

k = coverage factor = 2

 $u_{char} \simeq [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) \{u_{char} a\}$

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{its} + u^2_{ts})^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

u_{lits} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit

www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous.
 Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

March 12, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- March 12, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date: _____
- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Saine

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R 815/24

Solvent:

24002546

Nitric Acid

Lot #

M6028

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

57048 070124

Lot Number: Description:

Cadmium (Cd)

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB

1000

Recommended Storage:

Expiration Date:

070127 Ambient (20 °C)

Weight shown below was dliuted to (mL):

2000.07

0.100 Flask Uncertainty 5E-05 Balance Uncertainty

2%

40.0 (mL) Nitric Acid

Formulated By:

Alban PROBAN

Aleah O'Brady

070124

Reviewed By:

Pedro L. Rentas

070124

Expanded

Weight (g) Conc. (µg/mL) Uncertainty

Cadmium nitrate tetrahydrate (Cd)

IN024 CDM092021A1

1000

99.999

0.10

36.5

5.4797

5.4804

1000.1

2.0

10022-68-1

0.01 mg/m3

orl-rat 60.2mg/kg

3108

RM#

Number Lot

Conc. (µg/mL)

8

8

Weight (g)

Target

Actual

Actual

Nominal

Purity

Uncertainty Assay Purity (%)

+/- (µg/mL)

CAS#

SDS Information

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50

NIST SRM

m/z-> -z/m m/z-> 1.0E7 2.0E7 5.OE4 1.0E5 2.5E4 5.0M4 [1] Spectrum No.1 010 110 0 220 120 20 [12.514 sec]:58148.D# [Count] [Linear] 230 130 30 240 140 40 N00 150 50 2000 160 60 170 70 180 80 061 Ö 200 100

1 of 2

www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	I	₩ !	В.	be	ָל ל <u>י</u>	炗	As	. 6	ç	2		I		
	10.04	200	A).02	10.03	60.5	3	4	20.02	3	< 0.02				
	2	2 8	<u>ვ</u>	T,) {	,	င္ပ	, 2	?	2				
	70.02	2 6 6	8	<0.02	\$0.02	3	∆ .02	3.6	5	-7				
	TAU.	} {	₹.	Ga	2	2	달	E	j	Ų				
	20.02	3 6	3	<0.02	\$0.02	3	20.00	20.02	3	△0.02	THE STORY OF STREET			
	20	2 5	- ·	81	ing.	4	Þ,	HO	:	出		L	-	
	20.02	20.02	3	∆ 0.2	<0.02	3	\$ \$	40.02		A).02	The second second	ומכם ואום	_1	
	20	MIO	X .	Щg	Mn	, ,	Me	E		E	S REAL PROPERTY.	Acraio	+ 2	
(T) = Target analyte	40,02	20.02	3	∆ 0.2	<0.02		40.01	<0.02		<0.02		AGLUICA	Conifica	
jet anal	×	7	7	7	Pd		<u>ာ</u>	3	-	Z.		ב		
yte	A0.22	\$0.02	2	A 23 26	<0.02	6.01	3	<0.02	-	4000		יא וכד-	5	
	Sc	Sm	•	R	RЬ	TOT	<u> </u>	₽ Re	;	P		CIM		
	40.02	40.02		A) (2)	40,02	10.00	3	<0.02	******	A) 03		(TIII/6r		
	Ta	S	, ,	Ş	Z	ÖK	<u> </u>	S.	Ş	G	SPARENCE		١	
	Ð.02	40.02	6.0	3	40.2	40.02	3	60.02	10.4	4	MARKEDIST			
	Ti	Sn	-	3	Ħ	11	3	Te	10					
	<0.02	40.02	10.04	3	40.02	20.02	3	40.02	20.02	200	Recilionne stam			
	Zt	Zn	1-	<	¥	~	5	u	¥		ONE DESCRIPTION OF THE PERSON			
	<0.02	<0.02	20.02	3	<0.02	20.02		40.02	20:02	200				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57048

2 of 2

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CHEM-CLP-4
Lot Number: S2-MEB711673
Matrix: 3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s): 1 000 μg/mL ea:

Boron, Molybdenum,

Silicon, Tin,

Titanium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Boron, B $1\ 000\pm 6\ \mu g/mL$ Molybdenum, Mo $1\ 000\pm 6\ \mu g/mL$ Silicon, Si $1\ 000\pm 7\ \mu g/mL$ Tin, Sn $1\ 000\pm 6\ \mu g/mL$

Titanium, Ti $1000 \pm 7 \mu g/mL$

Density: 1.030 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	110830
Мо	ICP Assay	3134	130418
Si	ICP Assay	3150	130912
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	3162a	130925

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ($u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$)^{1/2} CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT **HF Note:** This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- November 02, 2026

- Sealed TCT Rag Open Date:

- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

		=	
This CDM/DM should not be us	and langer than one year (or civ	months in the case	of a 20 m

- Inis CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

Paul R Saines

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CLPP-CAL-1

Lot Number: T2-MEB714417

Matrix: 5% (v/v) HNO3

Value / Analyte(s): 5 000 µg/mL ea:

Calcium, Potassium, Magnesium, Sodium,

2 000 µg/mL ea:

Aluminum, Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Nickel, Vanadium, Zinc, Cobalt,

Manganese, 250 μg/mL ea:

Silver, Copper,

200 μg/mL ea: Chromium, 50 μg/mL ea: Beryllium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 μg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Calcium, Ca	5 000 ± 22 μg/mL
Chromium, Cr	200.0 ± 1.0 μg/mL	Cobalt, Co	500.0 ± 2.4 μg/mL
Copper, Cu	250.0 ± 1.0 μg/mL	Iron, Fe	1 000 ± 4 μg/mL
Magnesium, Mg	5 000 ± 20 μg/mL	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Potassium, K	5 000 ± 19 μg/mL
Silver, Ag	250.0 ± 1.1 μg/mL	Sodium, Na	5 000 ± 18 μg/mL
Vanadium, V	499.7 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density: 1.118 g/mL (measured at 20 ± 4 °C)

Assay Information:

13.	ay iiii Oi iii atioii.			
	ANALYTE	METHOD	NIST SRM#	SRM LOT#
	Ag	ICP Assay	3151	160729
	Ag	Volhard	999c	999c
	Al	ICP Assay	3101a	140903
	Al	EDTA	928	928
	Ва	ICP Assay	3104a	140909
	Ва	Gravimetric		See Sec. 4.2
	Ве	ICP Assay	3105a	090514
	Ве	Calculated		See Sec. 4.2
	Ca	ICP Assay	3109a	130213
	Ca	EDTA	928	928
	Co	ICP Assay	3113	190630
	Co	EDTA	928	928
	Cr	ICP Assay	3112a	170630
	Cr	Calculated		See Sec. 4.2
	Cu	ICP Assay	3114	121207
	Cu	EDTA	928	928
	Fe	ICP Assay	3126a	140812
	Fe	EDTA	928	928
	K	ICP Assay	3141a	140813
	K	Gravimetric		See Sec. 4.2
	Mg	ICP Assay	3131a	140110
	Mg	EDTA	928	928
	Mn	ICP Assay	3132	050429
	Mn	EDTA	928	928
	Na	ICP Assay	3152a	120715
	Na	Gravimetric		See Sec. 4.2
	Ni	ICP Assay	3136	120619
	Ni	EDTA	928	928
	V	IC Assay	3165	160906
	V	EDTA	928	928
	Zn	ICP Assay	3168a	120629
	Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 27, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT Bag Open Date:	
· Sealeo TCT Bao Oberi Dale	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

DD9784.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

 Catalog Number:
 CLPP-CAL-3

 Lot Number:
 T2-MEB714159

 Matrix:
 7% (v/v) HNO3

 Value / Analyte(s):
 1 000 μg/mL ea:

Arsenic, Lead, Selenium, Thallium,

500 μg/mL ea: Cadmium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Arsenic, As $1\ 000\pm 8\ \mu g/mL$ Cadmium, Cd $500.0\pm 2.1\ \mu g/mL$ Lead, Pb $1\ 000\pm 5\ \mu g/mL$ Selenium, Se $1\ 000\pm 8\ \mu g/mL$

Thallium, TI 1 000 \pm 7 μ g/mL

Density: 1.043 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
TI	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 13, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT Bag Open Date:	
· Sealeo TCT Bao Oberi Dale	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

20178Ci

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R: 815/24 M6025

CERTIFIED WEIGHT REPORT: Part Number: 57182 110923 Solvent: 24002546 Lot #

Nitric Acid

Lot Number: Description: Lead (Pb)

Nominal Concentration (µg/mL): Recommended Storage: 10000 Ambient (20 °C)

Expiration Date:

110926

2%

Nitric Acid

Formulated By:

Lawence Barry

110923

110923

Revience

<u>=</u> 40.0

Weight shown below was diluted to (mL): **NIST Test Number: 6UTB** Lot 2000.02 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Actual Uncertainty Reviewed By: Expanded Pedro L. Rentas SDS information

[F.]	1. Lead(II) nitrate (Pb)	Compound
[1] Spectrum No.1	IN029 PBD122016A1	Lot Nominal Purity Uncertainty Assay Target Actual RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Weight (g)
17.284 5	11	Nominal Purity Uncertainty Assay Conc. (µg/mL) (%) Purity (%) (%) \(\begin{array}{c}\)
7	99.999	Purity (%)
של מו	0.10	Uncertainty Purity (%)
	62.5	Assay (%)
7 I I	32.0006	Target Weight (g)
	10000 99.999 0.10 62.5 32.0006 32.0040	Actual Weight (g)
		Actual Conc. (µg/mL)
	20.0	Actual Uncertainty onc. (µg/mL) +/- (µg/mL)
	10099-74-8	(Solv
	10001.1 20.0 10099-74-8 0.05 mg/m3	Actual Uncertainty (Solvent Safety Info. On Attached pg.) Conc. (ug/mL) +/- (ug/mL) CAS# OSHA PEL (TWA) LD50
	intryns-rat 93 mg/kg 3128	tached pg.) LD50
	3128	NIST SRM

110 120 130 140 150	10 20 30 40	
120 130 140	20 30	
120 130 140	30	
130	30	
130		
140		
	8	
	6	
o d		
di O		
	5	
60	6). O	
-4		
170	70	
14 00	80	
180		
19 0	9	
0	90	
200	100	

Part # 57182

1 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			_		20.02	2	70.02
					3	?	3
<0.02 Pt					40.02	S	40.02
					40.02	, t	<u> </u>
					A.12	S	20.02
			_		A0.02	, E	8 2
					A	<u></u>	20.02
					40.02	, E	20.02
7 7 Z Q Z 7 3	40.02 40.02 40.02	Mg 40.02 Hg 40.02 Hg 40.02	40.02 Lu 40.02 40.02 Mg 40.01 40.02 Mg 40.02 40.02 Mg 40.02	Ho 4002 Lu 4002 Li 4002 Mg 4001 Li 4002 Mg 4001 Li 4002 Mg 402 Fe 402 Hg 402	40.02 Lu 40.02 40.02 Mg 40.01 40.02 Mg 40.02 40.02 Mg 40.02	4002 Ho 4002 Lu 4002 4002 In 4002 Mg 4001 4002 Fe 402 Hg 402	Er 4002 Ho 4002 Lu 4002 Eu 4002 In 4002 Mg 4001 Gd 4002 Ir 4002 Mn 4002 Ga 4002 Fe 402 Hg 402

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Son I Mills

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

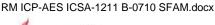
Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**


(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, **Interferents:** Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211,
AND ICSA-1211 MIXED WITH ICSB-0710

Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
Al	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ba	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Ca	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

ICSA M5126 M5127 M5128 M5129 M5130

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

value \pm 15 percent of the listed certified value.

ICSB

M5219

M5220

M5221

M5222

M5223

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CHEM-QC-4

Lot Number: S2-MEB711674

Matrix: 3% (v/v) HNO3
 3% (v/v) HF

3 /0 (V/V) I II

Value / Analyte(s): 1 000 μg/mL ea:

Boron, Molybdenum,

Silicon, Tin,

Titanium

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Boron, B $1\,000\pm7\,\mu\text{g/mL}$ Molybdenum, Mo $1\,000\pm5\,\mu\text{g/mL}$ Silicon, Si $1\,000\pm7\,\mu\text{g/mL}$ Tin, Sn $1\,000\pm5\,\mu\text{g/mL}$

Titanium, Ti $1 001 \pm 6 \mu g/mL$

Density: 1.032 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	110830
Мо	ICP Assay	3134	130418
Si	ICP Assay	3150	130912
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	3162a	130925

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ($u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$)^{1/2} CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT **HF Note:** This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

November 02, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- November 02, 2026

- Sealed TCT Rag Open Date:

- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

could for bug opon buto.		•	
This CDM/DM should not be up	and langer than one year for six	months in the case of a 2	n ml

- I his CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Michael 2 Booth

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Michael Booth Director, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

Paul R Laine

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

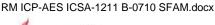
Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**


(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, **Interferents:** Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211,
AND ICSA-1211 MIXED WITH ICSB-0710

Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
Al	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ba	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Ca	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Со	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

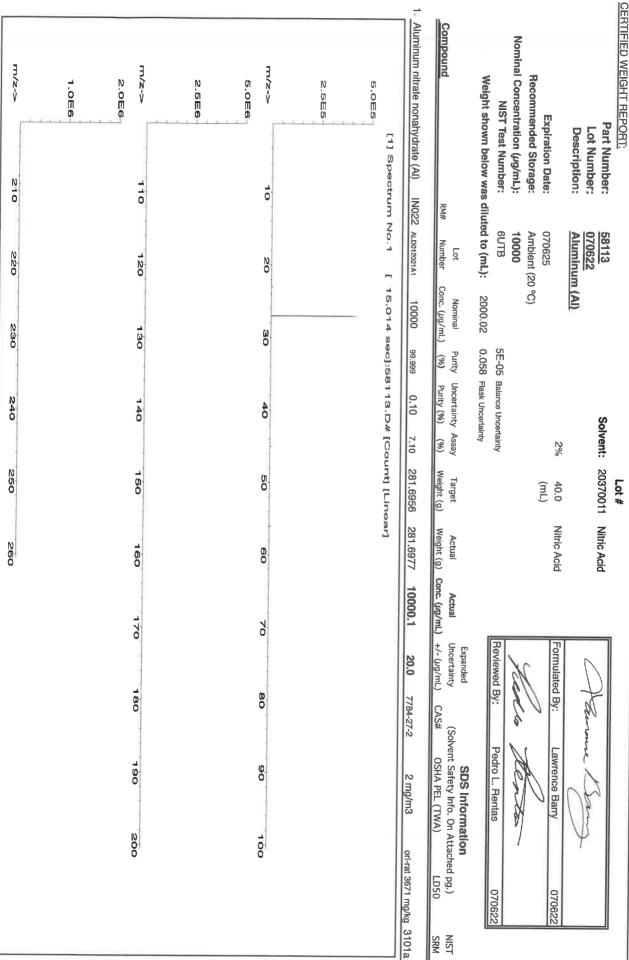
ICSA M5126 M5127 M5128 M5129 M5130

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

value \pm 15 percent of the listed certified value.

ICSB

M5219


M5220

M5221

M5222

M5223

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Part # 58113

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

7	Tb <0.02 W
_	A 0.02
	3 :
	3 1
	2 :
	Ti <0.02 Zr
	Se <0.2 Si <0.02 Ag <0.02 Na <0.02 Si <0.02 Si <0.02 Ag <0.02 Si <0.02

Physical Characterization:

(I)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2

Part # 58113

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" R: 4120/21

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions **HAZARDOUS MATERIAL**

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014". "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

> QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (y/y) nitric acid.

Page 1 of 2

RMs ICV 1, 5, 6 SFAM.docx

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₆, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

ICV1-1014					
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)			
Al	2500	500			
Sb	1000	200			
As	1000	200			
Ba	520	100			
Be	510	100			
Cd	510	100			
Ca	10000	2000			
Cr	520	100			
Co	520	100			
Cu	510	100			
Fe	10000	2000			
Pb	1000	200			
Mg	6000	1200			
Mn	520	100			
Ni	530	110			
K	9900	2000			
Se	1000	200			
Ag	250	50			
Na	10000	2000			
Ti	1000	210			
V	500	100			
Zn	1000	200			

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN-	99

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

57056

Solvent:

20510011

Nitric Acid

8

40.0

Nitric Acid

Description: Lot Number:

072122 Barium (Ba)

Certified Reference Material CRM

Riograph 33

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Formulated By: Liovannie Giovanni Esposito appeal 2

072122

Reviewed By: Pedro L. Rentas 072122

IN023 BAD022019A1 RM# Number 5 Conc. (µg/mL) Nominal 1000 99.999 Purity 8 Uncertainty Assay Purity (%) 0.10 52.3 <u>8</u> Weight (g) 3.82417 Target Weight (g) Conc. (µg/mL) 3.82426 Actual 1000.0 Actual +/- (µg/mL) Uncertainty Expanded 2.0 10022-31-8 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information 0.5 mg/m3 orl-rat 355 mg/kg 3104a SRM TSIN

1. Barium nitrate (Ba)

Nominal Concentration (µg/mL):

1000

Ambient (20 °C) 072125

NIST Test Number:

Recommended Storage:

Expiration Date:

Weight shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

m/z-> **1/2-**2 17/2-Y 2.5E6 5.0E6 2.0E5 1.0ES 2.0E6 1.OE6 [1] Spectrum No.1 210 110 0 220 120 N O [12.514 sec]:58156.D# [Count] [Linear] 130 230 30 140 240 4 250 150 Ö. 160 260 00 170 8 180 80 190 90 200 100

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						•	Traca M.	otolo	Varifica	+ion	ו מטן ייץ	1 37	1					l	
							1	נמונו	۱^		ביים עמ	2	pg/mr)						
					No. of Lot, House, etc., in case, or window,													ı	
I V	<0.02	ొ	<0.02	δ	<0.02	HF	<0.02	ï	<0.02	Z	<0.02	占	<0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3	25.	É	89	100	000
Sb	<0.02	ටී	<0.2	Ţ,	CD 02	H	2007	1	2000	11.16	000	£		3 8	1	2	70.02	A	70.02
A	4	,	100	i	100	2	70.00	7	70.0>	D.	70.02	2	40.02	2	<0.02	E .	<0.05	ם	<0.02
AS	7.02	3	Z0:02	2	<0.02	드	<0.02	Mg	₹0.0 1	ő	<0.02	Rh	<0.00	Ag	2007	F	50 9	77	6
Ha	€	ێ	2002	3	5000	,1	000	>	200	i		1	***************************************	0	70.05	1	70.07	>	70:05
	4	3	*0.00	3	7000	=	70.05	IMIM	70:0>	2	<0.02	Rb	Q.02	Z	8	Ę	200	5	2007
Be	<0.01	Ö	<0.02	Ğ	<0.02	Ę.	<0.2	Ho	<0.2	۵	200	å	6	į,	1 6	Ę	0.00	; ;	70:05
ä	200	ځ	0000	Č	000	,		0 ,			10.04	7	70.07	วี	70'05	E	70.05	>-	\$0.05
7	70.07	3	Z0.02	5	20102	2	40.02	Wo	₹0.05	Ž,	<0.02	Sm	<0.02	v.	2002	Ca	2000	7	000
20	Q0.05	Č	<0.00	Ап	200	á	200	FIN	000	2	0	7		,	10:00	2	70:07	77	70.02
1			2010		7000	7 0	70.05	DAT	Z0:0>	4	787	S	<0.02	2	202	Ë	200	,	5000

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Deference Metaric Com

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

<u>ئ</u>

Certified Reference Material CRM
[N 403 | 20 | 128 | 125 | 1

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com

070622 070622 Pedro L. Rentas Lawrence Barry Formulated By: Reviewed By: Nitric Acid Nitric Acid 20510011 Fot # 20.0 (mL) Solvent: 2% 0.058 Flask Uncertainty 5E-05 Balance Uncertainty 1000.12 Ambient (20 °C) Lithium (Li) Weight shown below was diluted to (mL): 57103 070622 070625 10000 **6UTB** Nominal Concentration (µg/mL): NIST Test Number: Lot Number: Description: Expiration Date: Recommended Storage: Part Number: CERTIFIED WEIGHT REPORT:

Γ						ar]	[9.619 sec]:58103.D# [Count] [Linear]	# [C	58103.D	sec]::	_	No.1	ctrum	[1] Spectrum No.1	
5	Byfill 0241 ischin	2					1								
MA	0.10 10.0 100.0134 100.0173 10000.4 20.0 7790-69-4 5 ma/m3 nd-sat 1428 ma/m NA	5 ma/m3	7790-69-4	20.0	10000.4	100.0173	100.0134	10.0	0.10	99.999	10000 89.889 0.	IN019 UZ042018A1	IN019		Lithium nitrate (Li)
SEM	LD50	RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50	CAS#	+/- (ug/mL)	Conc. (ug/mL)	Weight (g)	Weight (g)	(%)	Purity (%)	(%)	Conc. (µg/mL)	Number	RM#		БПроппа
	Attached oc.)	(Solvent Safety Info. On Attached og.)	(Solv	Uncertainty	Actual	Actual	Target	Assay	Nominal Punty Uncertainty Assay. Target	Funty	Nominal	707			Commonwood
	ition	SDS Information		Expanded								-			

1.056	6.0E5	m/z->- 500 250	7,2-7 20 10	m/z->
L'ON EUROPE		0	0	010
_		00	08	O
9.619 sec]:58103.D# [Count] [Linear]		.0	130	OR A
3103.D# [Q		0	041	entra () istera de activados por de activados por esta de activado por e
ount) (Lines		00	150	* DESCRIPTION OF THE PROPERTY
rr]		.0	0	The state of the s
		0	. Q	
		. 0	180	
		.O 0	0	
		001	000	

Printed: 1/18/2023, 4:01:43 PM

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace Me	stale	Varifics	tion	hy ICP.	MC	(lm/m/)						
SHIPPING IN		STREET, STREET	THE RESIDENCE OF THE PERSON NAMED IN			-	THE PARTY		2011124		1	2	(M)						
A1	2002	3	2000	2	88	30	800	E	F	1	89	4		I.	-				
2 :	70'00	3	70.00	5	70.02	1	70105	3	1	Σ,	70.02	=	Z0:0>	3	40.2	19	Ø.02	≥	40.02
3	<0.02	రి	40.2	山	<0.02	Ho	40.02	Ē	40.02	ź	40.02	2	Q .02	SS.	<0.02	T _e	<0.02	ח	<0.02
As	₩2	ප	<0.02	嵒	<0.02	편	₹0.02	Mg	<0.01	ő	<0.02	Rh A	<0.02	Ag	<0.02	E	<0.02	>	Ø 02
Ba	<0.02	రో	<0.02	3	<0.02	卢	<0.02	Mn	<0.02	Z	ZO:02	2	Ø.02	Z	40.2	£	200	\$	500
Be	<0.01	ඊ	<0.02	පී	40.02	괊	<0.2	黑	\$07	Δ.	<0.02	Ra	900	J.	<0.02	ع ا	8	*	200
B.	40.02	රි	40.02	පී	20.0 2	3	<0.02	₩ W	40.02	Æ	<0.02	SB	<0.02	S	<0.05	5	8	- E	200
В	<0.02	ರೆ	<0.02	Αn	<0.02	2	<0.02	P	<0.02	24	<0.2	S	40.02	E C	<0.02	E	000	7 1	200

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57103

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com 031523 031523 Giovanni Esposito Pedro L. Rentas Liovanni Formulated By: Reviewed By: Certified Reference Material CRM Nitric Acid Nitric Acid Solvent: 21110221 Lot # 60.0 (mL) % 5E-05 Balance Uncertainty 0.058 Flask Uncertainty 3000.41 Ambient (20 °C) Calcium (Ca) Weight shown below was diluted to (mL): 031523 031526 10000 **6UTB** Recommended Storage: Nominal Concentration (µg/mL): Part Number: Lot Number: Description: **Expiration Date:** NIST Test Number: CERTIFIED WEIGHT REPORT:

Compound	RM#	Lot Number	Nominal Purity Conc. (µg/mL) (%)	Punty (%)	Purity Uncertainty Assay (%) Purity (%) (%)		Target Weight (g)	Actual Weight (g)	Expanded Actual Actual Uncertainty (Sc Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS#	Expanded Uncertainty +/- (ug/mL)	(Solv	SDS Information (Solvent Safety Info. On Attached pg.) NS# OSHA PEL (TWA) LD50	Attached pg.) LD50	NIST
1. Calcium carbonate (Ca)	IN014	INO14 caboragezat	10000 99.999	666.66	0.10	38.9	75.1990	75.2093	10001.4	20.0	471-34-1	5 mg/m3	ort-rat	3109a
[1] S ₁	[1] Spectrum No.1		4.00	8ec]:6	12.514 sec]:58120.D# [Count] [Linear]	<u> </u>	unti (Line	ari						
1.0E4														
m/z->	0	. O		000	.0	400400	0	0	2		0		001	
2. 4 4														
m/z->	0	120		90	140		150	160	071	0	180	190		
6.0E4														
m/z->	019	220		230	240		250	260						

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Trace Me	tals	Verificat	ioi	by ICP-N	MS ($(\mu g/m\Gamma)$		r				
SHEW SHEET	STANSON STANSON				SIGNATURE.	STON SAFETY SAGE	S. Parlie	THE SHARE SHARE	Series .		Sec.	STREET, STREET	THE PERSON	THE PERSON NAMED IN	THE PERSON			
707	ප	<0.02	δ	40.05	H	<0.02	II.	<0.02	Z	<0.02	ď	<0.02	Se	<0.2	13	<0.02	≥	<0.02
700	రో	H	卢	₹0.02	윒	20.02	3	<0.02	ź	<0.02	2	<0.02	ន	<0.02	Į.	40.02	Þ	₹0.05
07	ඊ	40.02	超	<0.02	Я	<0.02	Mg	40.01	ő	<0.02	쥪	<0.02	Ag	<0.02	F	<0.02	>	<0.02
707	ర	<0.02	පි	<0.02	片	<0.02	Mn	<0.02	Z	<0.02	2	<0.02	ž	<0.2	Ę	<0.02	¥9	40.02
100	Ö	<0.02	ජි	40.02	Ŗ	<0.2	Hg	40.2	م	<0.02	æ	<0.02	స	<0.02	Ę,	<0.02	¥	₹0.05
707	රි	40.02	පි	₹0.02	3	₹0.02	Wo	<0.02	五	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	₹0.02
707	ਰੋ	<0.02	Αū	<0.02	2	<0.02	PN	<0.02	×	40.2	S	<0.02	Ta	<0.02	Ξ	<0.02	Z	40.02
	6.00 6.00 6.00 6.00 6.00 6.00		3 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Cd	Cd	Cd	Cd	Cd	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ca T En -0.02 Ho -0.02 Li -0.02 Ce -0.02 Eu -0.02 in -0.02 Mg -0.02 Cr -0.02 Gd -0.02 Fe -0.02 Mn -0.02 Co -0.02 Ge -0.02 Fe -0.02 Mo -0.02 Cu -0.02 Au -0.02 Fe -0.02 Mo -0.02	Cd -60.02 Dy -60.02 Hf -60.02 Li -60.02 Ni Ca T En -60.02 Ho -60.02 Lu -60.02 Nh Ca -60.02 Eu -60.02 In -60.02 Mn -60.02 Pd Cr -60.02 Ga -60.02 Fe -60.2 Hg -60.2 Pr Co -60.02 Ga -60.02 La -60.02 Rr -60.02 Rr Cu -60.02 Au -60.02 Pr -60.02 Rr	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Ca T En -6.002 Ho -6.002 Lu -6.002 Nh -6.002 Ce -6.002 Eu -6.002 In -6.002 Mg -6.012 Nh -6.002 Cr -6.002 Gd -6.002 Fe -6.02 Mn -6.02 Pd -6.02 Cr -6.002 Gg -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Cu -6.002 Au -6.002 In -6.002 R -6.002 Cu -6.002 Au -6.002 Ph -6.002 R -6.002	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Pr Ca T Ea -6.002 Ho -6.002 Lu -6.002 Nh -6.002 Rb Ce -6.002 Eu -6.002 Ir -6.002 Mn -6.002 Rb -6.002 Rb Cr -6.002 Ga -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Ru Co -6.002 Ga -6.002 La -6.002 Rr -6.002 Rr Co -6.002 Ga -6.002 Pr -6.002 Rr -6.002 Sr Cu -6.002 Au -6.002 Pr -6.002 Rr -6.002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Ca T Ba -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Ce -0.02 Bu -0.02 Ir -0.02 Mg -0.01 Os -0.02 Rb -0.02 Cr -0.02 Ga -0.02 Mn -0.02 Pr -0.02 Ru -0.02 Cr -0.02 Ga -0.02 Hg -0.2 Pr -0.02 Ru -0.02 Cr -0.02 Ga -0.02 Hg -0.2 Pr -0.02 Ru -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02 Sr -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02 Sr -0.02	Cd -d002 Dy -d002 Hf -d002 Li -d002 Ni -d002 Re -d002 Si Ca T Ea -d002 Ho -d002 Lu -d002 Nb -d002 Re -d002 Si Ca -d002 Ea -d002 Hr -d002 Mn -d002 Rh -d002 Na Cr -d002 Ga -d002 Hg -d02 Pr -d002 Ru -d002 Na Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Cu -d002 Au -d002 Nd -d002 Rr -d002 Sr -d002 Sr -d002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Se -0.02 Ca T Eu -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Si -0.02 Ce -0.02 Eu -0.02 In -0.02 Mn -0.02 Rb -0.02 Na -0.02 Ca -0.02 Gd -0.02 Ir -0.02 Mn -0.02 Rb -0.02 Na -0.02 Ca -0.02 Ga -0.02 Hg -0.02 Ru -0.02 Sr -0.02 Ca -0.02 Ga -0.02 Hg -0.02 Rr -0.02 Sr -0.02 Ca -0.02 Ba -0.02 Na -0.02 Rr -0.02 Sr -0.02 Ca -0.02 Au -0.02 Rr -0.02 Sr	Cd 4002 Dy 4002 H 4002 Li 4002 Ni 4002 Pr 4002 Se 402 Th Ca T Ea 4002 Ha 4002 Lu 4002 Nb 4002 Rb 4002 Tr Ca 4002 Eu 4002 Ha 4002 Pd 4002 Rb 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Sr 4002 Sr 4002 Cr 4002 Au 4002 Rr 4002 Rr 4002 Sr 4002 Sr 4002 Sr

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com 031523 031523 Giovanni Esposito Pedro L. Rentas Liovanni Formulated By: Reviewed By: Certified Reference Material CRM Nitric Acid Nitric Acid Solvent: 21110221 Lot # 60.0 (mL) % 5E-05 Balance Uncertainty 0.058 Flask Uncertainty 3000.41 Ambient (20 °C) Calcium (Ca) Weight shown below was diluted to (mL): 031523 031526 10000 **6UTB** Recommended Storage: Nominal Concentration (µg/mL): Part Number: Lot Number: Description: **Expiration Date:** NIST Test Number: CERTIFIED WEIGHT REPORT:

Compound	RM#	Lot Number	Nominal Purity Conc. (µg/mL) (%)	Punty (%)	Purity Uncertainty Assay (%) Purity (%) (%)		Target Weight (g)	Actual Weight (g)	Expanded Actual Actual Uncertainty (Sc Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS#	Expanded Uncertainty +/- (ug/mL)	(Solv	SDS Information (Solvent Safety Info. On Attached pg.) NS# OSHA PEL (TWA) LD50	Attached pg.) LD50	NIST
1. Calcium carbonate (Ca)	IN014	INO14 caboragezat	10000 99.999	666.66	0.10	38.9	75.1990	75.2093	10001.4	20.0	471-34-1	5 mg/m3	ort-rat	3109a
[1] S ₁	[1] Spectrum No.1		4.00	8ec]:6	12.514 sec]:58120.D# [Count] [Linear]	<u> </u>	unti (Line	ari						
1.0E4														
m/z->	0	. O		000	.0	400400	0	0	2		0		001	
2. 4 4														
m/z->	0	120		90	140		150	160	071	0	180	190		
6.0E4														
m/z->	019	220		230	240		250	260						

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Trace Me	tals	Verificat	ioi	by ICP-N	MS ($(\mu g/m\Gamma)$		r				
SHEW SHEET	STANSON STANSON				SIGNATURE.	STON SAFETY SAGE	S. Parlie	THE SHARE SHARE	Series .		Sec.	STREET, STREET	THE PERSON	THE PERSON NAMED IN	THE PERSON			
707	ප	<0.02	δ	40.05	H	<0.02	II.	<0.02	Z	<0.02	ď	<0.02	Se	<0.2	13	<0.02	≥	<0.02
700	రో	H	卢	₹0.02	윒	20.02	3	<0.02	ź	<0.02	2	<0.02	ន	<0.02	Į.	40.02	Þ	₹0.05
07	ඊ	40.02	超	<0.02	Я	<0.02	Mg	40.01	ő	<0.02	쥪	<0.02	Ag	<0.02	F	<0.02	>	<0.02
707	ర	<0.02	පි	<0.02	片	<0.02	Mn	<0.02	Z	<0.02	2	<0.02	ž	<0.2	Ę	<0.02	¥9	40.02
100	Ö	<0.02	ජි	40.02	Ŗ	<0.2	Hg	40.2	م	<0.02	æ	<0.02	స	<0.02	Ę,	<0.02	¥	₹0.05
707	රි	40.02	පි	₹0.02	3	₹0.02	Wo	<0.02	五	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	2	₹0.02
707	ਰੋ	<0.02	Αū	<0.02	2	<0.02	PN	<0.02	×	40.2	S	<0.02	Ta	<0.02	Ξ	<0.02	Z	40.02
	6.00 6.00 6.00 6.00 6.00 6.00		3 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Cd	Cd	Cd	Cd	Cd	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ca T En -0.02 Ho -0.02 Li -0.02 Ce -0.02 Eu -0.02 in -0.02 Mg -0.02 Cr -0.02 Gd -0.02 Fe -0.02 Mn -0.02 Co -0.02 Ge -0.02 Fe -0.02 Mo -0.02 Cu -0.02 Au -0.02 Fe -0.02 Mo -0.02	Cd -60.02 Dy -60.02 Hf -60.02 Li -60.02 Ni Ca T En -60.02 Ho -60.02 Lu -60.02 Nh Ca -60.02 Eu -60.02 In -60.02 Mn -60.02 Pd Cr -60.02 Ga -60.02 Fe -60.2 Hg -60.2 Pr Co -60.02 Ga -60.02 La -60.02 Rr -60.02 Rr Cu -60.02 Au -60.02 Pr -60.02 Rr	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Ca T En -6.002 Ho -6.002 Lu -6.002 Nh -6.002 Ce -6.002 Eu -6.002 In -6.002 Mg -6.012 Nh -6.002 Cr -6.002 Gd -6.002 Fe -6.02 Mn -6.02 Pd -6.02 Cr -6.002 Gg -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Cu -6.002 Au -6.002 In -6.002 R -6.002 Cu -6.002 Au -6.002 Ph -6.002 R -6.002	Cd -6.002 Dy -6.002 Hf -6.002 Li -6.002 Ni -6.002 Pr Ca T Ea -6.002 Ho -6.002 Lu -6.002 Nh -6.002 Rb Ce -6.002 Eu -6.002 Ir -6.002 Mn -6.002 Rb -6.002 Rb Cr -6.002 Ga -6.002 Fe -6.02 Hg -6.02 Pr -6.02 Ru Co -6.002 Ga -6.002 La -6.002 Rr -6.002 Rr Co -6.002 Ga -6.002 Pr -6.002 Rr -6.002 Sr Cu -6.002 Au -6.002 Pr -6.002 Rr -6.002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Ca T Ba -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Ce -0.02 Bu -0.02 Ir -0.02 Mg -0.01 Os -0.02 Rb -0.02 Cr -0.02 Ga -0.02 Mn -0.02 Pr -0.02 Ru -0.02 Cr -0.02 Ga -0.02 Hg -0.2 Pr -0.02 Ru -0.02 Cr -0.02 Ga -0.02 Hg -0.2 Pr -0.02 Ru -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02 Sr -0.02 Cu -0.02 Au -0.02 Nd -0.02 Rr -0.02 Sr -0.02	Cd -d002 Dy -d002 Hf -d002 Li -d002 Ni -d002 Re -d002 Si Ca T Ea -d002 Ho -d002 Lu -d002 Nb -d002 Re -d002 Si Ca -d002 Ea -d002 Hr -d002 Mn -d002 Rh -d002 Na Cr -d002 Ga -d002 Hg -d02 Pr -d002 Ru -d002 Na Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Co -d002 Ga -d002 Hg -d002 Rr -d002 Sr -d002 Sr Cu -d002 Au -d002 Nd -d002 Rr -d002 Sr -d002 Sr -d002 Sr	Cd -0.02 Dy -0.02 Hf -0.02 Li -0.02 Ni -0.02 Pr -0.02 Se -0.02 Ca T Eu -0.02 Ho -0.02 Lu -0.02 Nb -0.02 Rb -0.02 Si -0.02 Ce -0.02 Eu -0.02 In -0.02 Mn -0.02 Rb -0.02 Na -0.02 Ca -0.02 Gd -0.02 Ir -0.02 Mn -0.02 Rb -0.02 Na -0.02 Ca -0.02 Ga -0.02 Hg -0.02 Ru -0.02 Sr -0.02 Ca -0.02 Ga -0.02 Hg -0.02 Rr -0.02 Sr -0.02 Ca -0.02 Ba -0.02 Na -0.02 Rr -0.02 Sr -0.02 Ca -0.02 Au -0.02 Rr -0.02 Sr	Cd 4002 Dy 4002 H 4002 Li 4002 Ni 4002 Pr 4002 Se 402 Th Ca T Ea 4002 Ha 4002 Lu 4002 Nb 4002 Rb 4002 Tr Ca 4002 Eu 4002 Ha 4002 Pd 4002 Rb 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Ru 4002 Tr Cr 4002 Ga 4002 Hg 402 Pr 4002 Sr 4002 Sr 4002 Cr 4002 Au 4002 Rr 4002 Rr 4002 Sr 4002 Sr 4002 Sr

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

800-368-1131 www.absolutestandards.com	100	Å		•	Sertified .	Refere	Since Mai	Certified Reference Material CRM	1/203 (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	ANAB ISO 17034 Accredited AR-1539 Certificate Number ttps://Absolutestandards.com	credited Number rds.com
CERTIFIED WEIGHT REPORT:						1	Lot#			る				
Fart Number: Lot Number: Description:		57182 061522 Lead (Pb)			Solvent:		20510011	Nitric Acid		Hieram	ranvie Ed	peate		
Expiration Date:		081525				%	40.0	Nitric Acid		Formulated By:	Giovann	Giovanní Esposito	061522	
Recommended Storage: Nominal Concentration (µg/mL):		Ambient (20 °C) 10000	Ő				(TE)			Jh.	May 1	C/S		
NIST Test Number: 6UTB Weight shown below was diluted to (mL):	r: 6U as diluted		2000.02	5E-05 B 0.058 FI	5E-05 Balance Uncertainty 0.058 Flask Uncertainty	inty f				Reviewed By:	Pedro L	Pedro L. Rentas	061522	
Compound	RM#	Lot Number C	Lot Nominal Purity Uncertaint Number Conc. (µg/ml.) (%) Purity (%)	Purity (×	- 1	Target Weight (g)	Expanded Actual Actual Uncertainty Weight (g) Conc. (µg/mL) +/- (µg/mL)	Actual	Expanded Uncertainty (4+-(µg/mL) CAS#	SD: (Solvent Safe S# OSHA	SDS information (Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) LDSC	l pg.) LD50	NIST

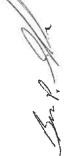
SRM

1. Lead(II) nitrate (Pb)	INO29 PBD122016A1	10000	88.888	0.10	62.5	32.0006	32.0041 10001.1		20.0	10099-74-8	0.05 mg/m3	intryne-rat 83 mo/kg 3128	3128
1.0E7	[1] Spectrum No.1	17.284 sec]:58182.D# [Count] [Linear]	ec]:58	82.D*	Cour	nt] [Line		1				p h	
S.0E8													
m/z->> 2.0€6	0 P	O		.0		0.00	9	02		08	0	100	
1.0E6													
m/z->	1100	190		04	r P	150	160	170	Ī	180	001	000	
5.0ES													
Å	220	230		240		250	260						

Lot # 061522

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com


Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Ī	Trace Me	stals	Verifica	tion	by ICP-	SM	(ma/m)		,				
Section 1	May be seen annual	į	WORNING STREET	Name of Street, or other Persons and Street,	3-5-40. 1. 1. 1. 3-2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-	THE PROPERTY OF THE PARTY OF TH	CAMPBOOK.					2	Commence of the last					
₹	<0.02	ਝ	<0.02	Ď	<0.02	HŁ	<0.02	Ľ	<0.02	ž	<0.02	ď	2002	3	202	4	200		000
Sp	<0.02	ථ	<0.2	ď	200	H	200	ž	969	1	9	è	2000	3	100	2	20.02	*	7mm>
V V	ç	d	1 6	,		2	777	3	70:05	ON T	70.02	2	7070>	7	₹0.02	<u>e</u>	\$0.02	Þ	40.02
ĉ	7.02	3	Z0:02	S S	Q0:05	크	8002	Mg	40.0 1	ර	40.02	Rh	40.02	Ao	CD CD	F	200	2	8
Ba	<0.02	రో	<0.02	3	<0.02	4	<0.02	M	<0.02	Ъ	2002	40	8	0 2	6	į	70:00	- E	70'05
Be	<0.01	Ö	<0.02	S	<0.02	Ę,	402	H	5	. 0	600		7000	2 0	707	= 6	20.02	Q.	40.02
ž	2000	S	200	2	8	-	9 6	9	700	- é	20.02	1	70'05	ă	40.002	Ħ	40.02	×	<0.02
i	200	3 6	70.00	5 .	20.02	3	70:05	WIO	<0.02	Σ,	<0.02	SH	<0.02	S	<0.02	Sn	₹0.02	Z	40.02
	70.02	3	70'02	Au	<0.02	£	T	ž	40.02	×	\$ \$	S	<0.02	Ę	CD 02	Ę	29	2	8

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Lot # 061522

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). All standard containers are meticulously cleaned prior to use.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

03/12/23

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Iron (Fe) Compound Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): Recommended Storage: m/z-> m/z-> 5.0E7-5.0E7-1.0E8 1.0E8 2.0E4 NIST Test Number: 1.0E4 **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 [30.763 sec]:58126.D# [Count] [Linear] 110 5 IN346 2224912-500 58126 092122 Iron (Fe) 10000 **6UTB** 092125 Ambient (20 °C) Number Εţ 120 20 Conc. (µg/mL) 5000.1 10000 Nominal 130 30 99.995 5E-05 Balance Uncertainty Purity Uncertainty Assay 0.12 Flask Uncertainty 8 Purity (%) 0.10 140 6 Solvent: 20510011 100.0 8 7.0% 50.0034 Weight (g) 350.0 Lot # 150 50 Target (III) Nitric Acid Weight (g) Conc. (µg/mL) Nitric Acid 50.0111 Actual 160 60 10001.5 Actual 170 70 +/- (µg/mL) Expanded Reviewed By: Formulated By: Uncertainty 20.0 Giovannie 7439-89-6 0.8 180 CAS# (Solvent Safety Info. On Attached pg.) Giovanni Esposito Pedro L. Rentas Japane 1 OSHA PEL (TWA) SDS Information 190 90 5 mg/m3 200 100 orl-rat 7500mg/kg 3126a 092122 092122

SRM TSIN

m/z->

210

220

230

240

250

260

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace Me	stals	Verificat	ion b	y ICP-MS	<i>бп</i>) s	/m[)						
STORY.	000			1	2000		THE PARTY OF		Name of the last		NAME OF TAXABLE PARTY.								
æ	40.02	3	70.05	3	70'0>	Ē	70.02	3	40,02	ž	<0.10	£	₹0.02	ž	402	e	<0.02	*	40.02
S.	<0.02	రే	4 02	À	<0.02	Ho	40.02	3	<0.02	ź	<0.02	Re	<0.02	জ	₹0 ,02	<u>1</u> 2	<0.02	מ	<0.02
As	Ø.2	ප	<0.02	큡	<0.02	멸	<0.02	Mg	<0.01	ő	<0.02	쫎	<0.02	Ag	<0.02	F	<0.02	>	<0.02
Ba	40.02	ඊ	Ø.02	3	<0.02	ㅂ	40.02	Ma	<0.10	몺	<0.02	R _b	40.02	g	40.2	Ē	<0.02	χ.	<0.02
Be	40.01	ඊ	40.05	පී	40.02	윤	<0.2	Hg	<0.7	Δ.	<0.02	콥	₹0.05	ĸ	₹0.02	멾	<0.02	>	<0.02
Ä	40.02	රි	Ø.10	පී	€0.10	ے	<0.02	Mo	<0.02	Æ	<0.02	Sm	<0.02	တ	<0.02	Sn	<0.02	Zu	<0.05
В	<0.02	ರೆ	<0.10	Αu	<0.02	£	<0.02	PR	<0.02	M	<0.2	ß	<0.02	Ta	<0.02	H	<0.02	Z	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

2 of 2

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

Description: Lot Number:

58119 120822 Potassium (K)

Solvent: 20510011 Nitric Acid

Lot #

Javanva

アイクラクスで

60.0 <u>a</u>

2%

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Ambient (20 °C) 120825

Recommended Storage:

Expiration Date:

Weight shown below was diluted to (mL):

3000.4

5E-05 Belance Uncertainty

0.06 Flask Uncertainty

Nitric Acid

Formulated By:

Giovanni Esposito

120822

Reviewed By:

Pedro L. Rentas

120822

12 [1]	Potassium nitrate (K)	Compound
[1] Spectrum No.1 [35.763 sec]:58119 D# (Count II Insert	IN034 KD022021A1 10000 99.989 0.10 37.6 79.7990 79.8075	Lot Nominal Purity Uncertainty Assay Target Actual RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Weight (g) C
35.763 se	10000	Nominal Purity Uncertainty Assay Conc. (µg/ml.) (%) Purity (%) (%)
9C]:58	99.999	Purity (%)
119.0	0.10	Uncertainty Purity (%)
# [00]	37.6	Assay (%)
inti II ina	79.7990	Target Weight (g)
	79.8075	Actual Weight (g)
	10001.1	Actual Conc. (µg/mL
	10001.1 20.0 7757-79-1	Expanded Uncertainty +/- (µg/mL)
	7757-79-1	(Solv
	5 mg/m3	Expanded SDS Information Actual Uncertainty (Solvent Safety Info. On Attached pg.) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50
	orl-rat 3015 mg/kg 314	tached pg.)
	kg 3141a	NIST

m/z-y	5000	m/z->	1.0E5	m/z->	1.000	2.016
salatinak en eganda aa	and distinct access gapen game to the street dige access			,		
210		110		ō		
		0				
220		ก		N.		
230		130		3		
		1				
N 4		4.		4		
N.G.		3-00		O.		
				-		
N 0 0		160		0		
		170		8		
		180		Ö		
		190		0		
		6)				
		200		100		,

Lot # 120822

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Bi Be	
	4000 4000 4000 4000 4000	
	585888 8	
Œ	40.02 40.02 40.02 40.02 40.02 40.02	
	등 유 명 전 함 표 것	
	\$	
	3234483	1.
	402 402 402 402 402	Trace Me
	NA BA BA L L	etals
(T) = Tar	40.00 40.00 40.00 40.00 40.00 40.00 40.00	Verifica
Target analyte	K P P Z O K N	ation
alyte	4022 4022 4022 4022 7	by ICP-
	S B B B B B	SW
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(Jm/gu)
	Ja Sr Na S. S.	
	402 402 402 402 402 402 402 402 402 402	
	计划证证证证	
	4000 4000 4000 4000 4000	
	55~\$<□≤	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Lot # 120822

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: 58024 060523 Chromium (Cr) 21110221 Lot # Nitric Acid Solvent: Lavense

2.0% 40.0 Nitric Acid

(III)

Formulated By:

Lawrence Barry

060523

060523

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 Ambient (20 °C) 060526

Compound Volume shown below was diluted to (mL): NIST Test Number: Number Part **BTU9** Number Lot 2000.02 Factor Dilution Vol. (mL) Pipette (mL) Conc. (µg/mL) 0.058 5E-05 Initial Flask Uncertainty Balance Uncertainty Uncertainty Nominal Conc. (µg/mL) Conc. (µg/mL) Initial Final Reviewed By: +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) Pedro L. Rentas **SDS Information**

P20

TSIN SRM

3112a

 Chromium(III) nitrate nonahydrate (Cr) 58124 071122 0.1000 200.0 0.084 1000 10000.1 1000.0 12 7789-02-8 0.5 mg(Cr)/m3 ort-rat 3250 mg/kg

m/z->	N 5 10	5.0E5	5.0E5	m/z->	5000	1.004
				3		
N 10		110		o .		
h				7		(
N N N N		120		N. O		(
230		130		۵. ۵.		
						(
240		140		ò		
N		<u></u>		(h		
250		150		0		
260		160		0		
		170		70		
		380		8 2.		
		0				
		190		90		
		N 0- 0		100		
		Ŏ		0		

Part # 58024

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			_				_		_	=
	B	ᄧ	Ве	В	As	Sb	Δ	Monthly		
	A).02	4 0.02	0,01	A .02	40.2	△0.02	△0.02			
	δ	පි	Ω	င္တ	දි	ర్జ	Ω			
	40.02	A).02		40.02	- 40.02	∆0.2	40.02			
	Æ	ဂ္ဂ	වූ	ନ୍ଥ	멸	녆	Dy	8.0		
	40.02	40.02	40.02	<0.02	<0.02	40.02	<0.02	mineral affection		
	끃	Ľ	सु	Ħ	Ħ	H	Ж	Short Street		
	40.02	40.02	40.2	0.02	<0.02	40.02	40.02		I race M	1
	圣	Мо	ВH	Ķ	₩	Į.	Е	MINION SERVICE	Metals	1
3	A),02	40.02	40.2	40.02	40,01	∆ .02	40.02	SI RECEIPTOR	Verification	
Towns and the	~	7	70	2	ဝွ	₹	Z	SHOWING THE	Clon	
	∆ 0.2	40.02	40.02	40,02	40.02	40.02	<0.02	THE REAL PROPERTY.	by ICP-M	
	Sc	Sm	Ru	뫊	Rh	æ	P			5
	<0.02	<0.02	<0.02	40.02	40,02	40.02	<0.02		g/mL)	
	Ta	ç	ş	Z.	Ag	Si.	%			
	40.02	<0.02	40.02	402	40.02	40.02	402			
į	===	Sn	Ħ	₽	ᄇ	귿	Tb			
	40,02	40.02	40,02	40,02	40.02	40,02	<0.02	Section of the second		
	Zr	Zn	~	뀾	۷	Ϥ	W			
	<0.02	<0.02	<0.02	<0.02	<0.02	40.02	<0.02			

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5697 B: 10/27/23

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:	l 						Lot #	Solvent:						L:
- P	Part Number: Lot Number: Description:	O look life	58029 102523 Copper (Cu)	9			24002546	Nitric Acid						
							2,0%	40.0	Nitric Acid	Formulated By:	y:	Benson Chan	102523	-
Exp	Expiration Date:		102526	2				(mL)			0	D		
Nominal Concentration (µg/mL):	Concentration (µg/mL):	<u></u> >	1000	S						M	N	tento		
NIST	NIST Test Number:	0	втв		5E-05	Balance Uncertainty	inty			Reviewed By:		Pedro L. Rentas	102523	
Volume sh	Volume shown below was diluted to (mL):	diluted	1 to (mL):	2000.02	0.058	Flask Uncertainty								Ĺ
										Expanded		SDS Information	tion	
Compound	z	Part	Lot	Dilution	Initial Vol. (ml.)	Uncertainty Piperta (ml.)	Nominal	Initial	Final	Uncertainty	(Solv	(Solvent Safety Info. On Attached pg.)	Attached pg.)	NIST
		1400 HOCK	reamber	1 00000	AOF (THE)	voir (nint) riporte (nint) (Conc. (Agrant)	Conc. (July 1982)	Contra (ug/mic)	+/= (Jg/10L)	50#	OSHA FEL (TWA)	E	MANC
1. Copper(II) nitrate trihydrate (Cu)		58129	100223	0.1000	200.0	0.084	1000	10000.1	1000.0	N N	10031-43-3	1 mg/m3	orl-rat 794 mg/kg	3114
1.006	[1] Spectrum No.1	Z Z	_	3.422 s	əc]:58(33.422 sec]:58029.D# [Count] [Linear]	Sount] [Lir	near]	2004					
5.0MS									hinkin dhasha dha 1970 u maille agtic a ca					
									direktirak alak alak dikenak berak bandarak					
m/z->	10		N .	<u>ය</u>	32 12	40	50	60	70		80	90	100	
2.5E7														
m/z-v	110		120	130		140	150	160	170		180	190	200	
2.0€7														
1.0€7														
m/z->	N 10		200	230		N 40	250	260						

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		_	_			_	_	V - 127	-
	Ľ	<u>в</u>	Ве	Ва	As	Sb	Δ		
	20.02	8.00	10.0	40.02	402	40.02	40.02		
	2	, ზ	υ	င္ပ	ပ္ပ	δ	8		
	-	<0.02	40.02	<0.02	<0.02	40.2	<0.02		
	Au	Š.	Ç	£	멸	ঘ	Dy		
	<0.02	40,02	<0.02	<0.02	<0.02	40.02	40.02		
	3	F	팖	=	Ы	Но	Ħ		
	40.02	40.02	40.2	△0.02	<0.02	<0.02	40.02	1	Trace M
	Nd	Мо	Hg	M	Mgg	Lu	<u>E</u>		letals
(T) = Target analyte	A).02	40.02	40.2	<0.02	10.05	40.02	40.02		Verifica
et anal	×	7	ק	Ъ	တ္တ	3	Z		-
vie	40.2	40.02	40.02	40.02	40.02	<0.02	<0.02	29 101	-4-10-14
	&	Sm	Ru	짱	Rh	Re	Pr	Ę	
	40.02	<0.02	40.02	A).02	40.02	6 0.02	40.02	g/ 111L/	
	Ta	Ø	Sr	Z	Ag	S:	Š	Marchine	
	40,02	<0.02	40.02	40.2	40.02	40.02	40.2		
	11	Sn	ď	₽	∄	Te	급		
	40.02	40.02	40.02	40.02	40.02	<0.02	40.02		
	Zr	25	ĸ	¥	<	ď	W		
	<0.02	∆ 0,02	∆ 0.02	<0.02	∆ 0.02	∆ 0.02	40.02		

1.1

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certifled by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.

 * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ırt # 58029

2 of 2

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M5648 A: 10/23/23

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Manganese(II) nitrate tetrahydrate (Mn) Compound Nominal Concentration (µg/mL): m/z-> m/z-> M/Z-V 5.OE7 1.0≣8 5.0厘7 1,0E8 2.5E6 5.0E6 Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: [1] Spectrum No.1 Lot Number: Description: 110 210 0 58125 Number Part 58025 102623 **BTUB** 1000 Ambient (20 °C) 102626 Manganese (Mn) 071123 120 Number 20 Ĕ [34.243 sec]:57025.D# [Count] [Linear] 3000.41 0.1000 Factor Dilution 130 30 Vol. (mL) Pipette (mL) Conc. (µg/mL) 300.0 0.058 5E-05 Initial Flask Uncertainty Balance Uncertainty 240 140 Uncertainty 40 0.084 24002546 Nominal 2.0% Lot # 1000 250 150 0 Conc. (µg/mL) Conc. (µg/mL) Nitric Acid Solvent: 10000.1 Initial <u>a</u> 60.0 260 160 00 Nitric Acid 1000.0 Final 170 0 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Expanded <u>2</u> 180 80 20694-39-7 CAS# (Solvent Safety Info. On Attached pg.) 190 OSHA PEL (TWA) 90 Pedro L. Rentas Benson Chan SDS Information 5 mg/m3 200 100 ort-rat >300mg/kg D50 102623 102623 3132 SRM

Printed: 10/26/2023, 1:20:32 PM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	4	3	1	3	,	3	2	7	5	3	Z	3	Ş	3	A	3	?	3	7
& 20.02	Zn	40.02	Sa	∆ .02	S	<0.02	Sm	40.02	7	6.02	Mo	6.02	L	<0.02	ද	40.02	S	60.02	Bi
<0.02	×	40.02	Tm	40.02	Sr	<0.02	찙	<0.02	۵,	40.2	ЯН	40.2	Fe	40.02	ဂ္ဂ	40.02	ರ	10.05	Be
A).02	4	40.02	H	D 2	Z,	<0.02	RЬ	<0.02	Pd	Н	Mn	<0.02	. F	40.02	ይ	<0.02	ဂ္ဂ	40.02	Ва
A.02	<	40.02	Ħ	40.02	Ag	<0.02	쫎	40.02	õ	40.01	Mg	A).02	F.	40.02	멸	<0.02	င္ပ	0,2	As
A0,02	ч	40.02	ie	20.0≥	Si	A0.02	₹	40.02	3	40.02	Ē	A).02	Н	40.02	ဌ	<0.2	ប្ច	△0.02	æ
40.02	W	40.02	41	40.2	8	<0.02	7	<0.02	Z	40.02	E	<0.02	Hf	<0.02	Ų	<0.02	ξ	40.02	≥
		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED IN THE PERSON			SECTION SECTION	Water Company		Remote many series	SEMMENTS	SECTION PARTY	MINNER	STATES OF STATES	0100 mm 550	STATISTICS OF THE PARTY OF THE	SANTON S	a solution and a			
						J/mL)	in Chi	by ICP-N	נוסח	Verifica	letals	I race N							Γ
								950											

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

CERTIFIED WEIGHT REPORT

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

R:8/25) Lot # Solvent:

21110221

Nitric Acid

Part Number: Description: Lot Number: 58029 071723 Copper (Cu)

Recommended Storage: **Expiration Date:** Ambient (20 °C) 071726 2.0%

(mL)

40.0

Nitric Acid

Formulated By:

Benson Chan

071723

Nominal Concentration (µg/mL): Volume shown below was diluted to (mL): **NIST Test Number:** 1000 **BTU9** 2000.02 0.058 5E-05 Flask Uncertainty Balance Uncertainty Reviewed By: Pedro L. Rentas

Part

Lot

Dilution

Initia

Uncertainty

Nominal

Initial

 Copper(II) nitrate trihydrate (Cu) 58129 022723 0.1000 200.0 0.084 1000 10000.5 1000.0 2.2 10031-43-3 1 mg/m3 ori-rat 794 mg/kg

Number Number Factor Val. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LDSO 3114 SRM

Final Uncertainty Expanded (Solvent Safety Info. On Attached pg.) SDS Information TSIN

071723

5.0E5 1.0E6 [1] Spectrum No.1 [33.422 sec]:58029.D# [Count] [Linear]

	[9 9	, E	, <u>H</u>	Ą	. S	· Þ	1000	Γ	
	F	_				_		Statement of the last of the l		
	20.02	200	8 2	20.02	40.2	20.02	0.02			
	2	. წ	. τ	<u>က</u>	င္စ	წ	Ω			
	-	40.02	0.02	A).02	0.02	∆ 0.2	40.02	The second second		
	A	- Ge	ဂ္ဂ	S	퍨	耳	Dy			
	40.02	40.02	A) 02	40.02	40.02	40.02	<0.02			
	198	F	क्र	F,"	5	Ήο	Ж	DESTRUCTION OF THE PERSON NAMED IN		
	40.02	40.02	40,2	40.02	40.02	40.02	<0.02	HILIPAGESTARING SHIPE	Irace M	1
	Z	Мо	ВН	Min	Mg	£	Ľ.	N/S/GREEN	etais	
(T) = Tarnot analyto	40,02	40.02	82	<0.02	<0.01	<0.02	<0.02	MINISTERNATION OF THE PERSON NAMED IN	Verifica	
de anak	×	29	ъ	ъ	õ	¥	Z	STATES NAMED IN	tion	
7	∆0.2	40.02	40.02	40.02	<0.02	40.02	<0.02	Michigan Described	oy ICP-N	
	Sc	Sm	Ru	Rb.	Rh.	æ	7		SUE	,
	40.02	40.02	40.02	40.02	40.02	<0.02	40.02		J/mL)	,
	Ta	Ø	Ş.	Z	À	Si	še			
	40,02	40.02	40.02	40.2	40.02	<0.02	<0.2			
	11	Sn	Tm	Ħ	∄	.	Tb			
	40.02	40,02	<0.02	<0.02	40.02	40.02	<0.02			
	Zr	25	×	\$	<	٦	W	THE REAL PROPERTY.		
	<0.02	40.02	♦ 0.02	< 0.02	< 0.02	<0.02	<0.02			

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

^{*} All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

M5768 [M576] (B) R:1/3/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Magnesium nitrate hexahydrate (Mg) IN030 маровгозата Compound Nominal Concentration (µg/mL): m/z-> ~-z/m m/z-> Weight shown below was diluted to (mL): Recommended Storage: 2.0≡4 1.0E4 5.0E5 1.0E6 1000 2000 NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 쭕 **BTUB** 58112 091823 10000 Ambient (20°C) (M5+18), (M5+16) 091826 Magnesium (Mg) Number 120 ğ 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.02 0.058 Flask Uncertainty 10000 Nominal 130 230 30 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) (%) 140 0.10 240 40 Solvent: 24002546 Nitric Acid 8.51 150 234.9118 Weight (g) Target Lot # Ē Weight (g) Conc. (µg/mL) 234.9126 Nitric Acid Actual 160 260 0 10000.0 Actual 170 6 +/- (µg/mL) Expanded Uncertainty Reviewed By: Formulated By: 20.0 180 80 13446-18-9 (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Pedro L. Rentas Lawrence Barry 190 **SDS Information** Ö Z 200 100 orl-rat 5440 mg/kg 3131a 091823 091823 SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	555	В	Ве	Ва	As	Sb	A		
						_			
	∆0.02	0.02	40.01	<0.02	60.2	<0.02	<0.02		
	Ĉ.	ဝ	Ω	Ŝ	ද	ದ್	Ω		
	∆ 0.02	<0.02	<0.02	<0.02	40.02	40.2	<0.02		
	Αu	ရွာ	က္အ	8	탇	耳	Dy		
	₹0,02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
	73	L ₂	Fe	F	ħ	Ho	Hf		ı
	<0.02	40,02	40.2	<0.02	<0.02	<0.02	<0.02	I acc	-1
	Z.	Mo	Hg	Mn	Mg	ŗ	5	Mergis	2
)	<0.02	<0.02	<0.2	<0.02	⊷]	<0.02	<0.02	Verifica	No.
	×	7.	Р	Pd	S _O	Ş	Z		
	40.2	40.02	40.02	<0.02	<0.02	40.02	<0.02	יטע וכד-ו	3
	Sc	Sm	Ru	Rb	Rh	Re	Pr	AU (F	
	<0.02	<0.02	<0.02	40.02	40.02	<0.02	<0.02	g/mL)	
	Ta	CO.	Sr	Na	δķ	Σ:	Se		١
	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	40.2		
	Ti	Sn	Im	Th	∄	Te	-Tι-		
	<0.02	0.02	0.02	40.02	40.02	40.02	<0.02		
	Zr	Z	ĸ	4,4	٧	u	¥		
	<0.02	40.02	40.02	40.02	A).02	<0.02	40.02		

(1) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

M5768 [M576] (B) R:1/3/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Magnesium nitrate hexahydrate (Mg) IN030 маровгозата Compound Nominal Concentration (µg/mL): m/z-> ~-z/m m/z-> Weight shown below was diluted to (mL): Recommended Storage: 2.0≡4 1.0E4 5.0E5 1.0E6 1000 2000 NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 쭕 **BTUB** 58112 091823 10000 Ambient (20°C) (M5+18), (M5+16) 091826 Magnesium (Mg) Number 120 ğ 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.02 0.058 Flask Uncertainty 10000 Nominal 130 230 30 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) (%) 140 0.10 240 40 Solvent: 24002546 Nitric Acid 8.51 150 234.9118 Weight (g) Target Lot # Ē Weight (g) Conc. (µg/mL) 234.9126 Nitric Acid Actual 160 260 0 10000.0 Actual 170 6 +/- (µg/mL) Expanded Uncertainty Reviewed By: Formulated By: 20.0 180 80 13446-18-9 (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Pedro L. Rentas Lawrence Barry 190 **SDS Information** Ö Z 200 100 orl-rat 5440 mg/kg 3131a 091823 091823 SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	555	В	Ве	Ва	As	Sb	A		
						_			
	∆0.02	0.02	40.01	<0.02	60.2	<0.02	<0.02		
	Ĉ.	ဝ	Ω	Ŝ	ද	ದ್	Ω		
	∆ 0.02	<0.02	<0.02	<0.02	40.02	40.2	<0.02		
	Αu	ရွာ	က္အ	8	탇	耳	Dy		
	₹0,02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
	73	L ₂	Fe	F	ħ	Ho	Hf		ı
	<0.02	40,02	40.2	<0.02	<0.02	<0.02	<0.02	I acc	-1
	Z.	Mo	Hg	Mn	Mg	ŗ	5	Mergis	2
)	<0.02	<0.02	<0.2	<0.02	⊷]	<0.02	<0.02	Verifica	No.
	×	7.	Р	Pd	S _O	Ş	Z.		
	40.2	40.02	40.02	<0.02	<0.02	40.02	<0.02	יטע וכד-ו	3
	Sc	Sm	Ru	Rb	Rh	Re	Pr	AU (F	
	<0.02	<0.02	<0.02	40.02	40.02	<0.02	<0.02	g/mL)	
	Ta	CO.	Sr	Na	δķ	Σ:	Se		١
	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	40.2		
	Ti	Sn	Im	Th	∄	Te	-Tι-		
	<0.02	0.02	0.02	40.02	40.02	40.02	<0.02		
	Zr	Z	ĸ	4,4	٧	u	¥		
	<0.02	40.02	40.02	40.02	A).02	<0.02	40.02		

(1) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number: 57004 102523 02/09/24 Lot # Solvent:

24002546 Nitric Acid

2.0% (IE)

Nominal Concentration (µg/mL):

NIST Test Number:

BTU₉ 1000

Volume shown below was diluted to (mL):

2000.02

0.058

Flask Uncertainty Balance Uncertainty

5E-05

Number

Number Lot

Vol. (mL.)

Part

Dilution Factor

hitia

Uncertainty

Recommended Storage:

Ambient (20 °C) 102526

Expiration Date:

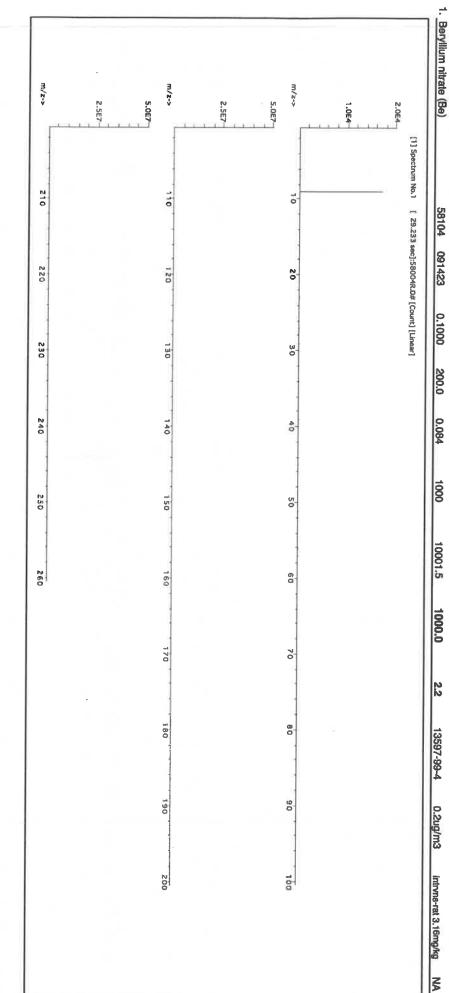
Lot Number: Description:

Beryllium (Be)

40.0

Nitric Acid

Benson Chan


102523

Formulated By:

Reviewed By:

Pedro L. Rentas 102523

Pipette (mL) Conc. (µg/mL) Nominal Conc. (µg/mL) Conc. (µg/mL) Final +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information LD50 NIST SRM

800-368-1131

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verificat	cation	by ICP-M	(J) S	ua/mL)						
	TATES AND AND		District Color	STATE OF THE PERSON		Senter and		SOMETHINGS.	NAME OF STREET	SAMOOGE STATE	SECOND SPINSO	No. of Concession, Name of Street, or other Persons and Street, or other P	. 18						
F	<0.02	3	<0.02	Ďλ	<0.02	HL	<0.02	Li	<0.02	z	<0.02	Ā	<0.02	Se	<0.2	T.	<0.02	M	<0.02
Sp	<0.02	ථ	40.2	占	₹0.02	He	<0.02	3	<0.02	£	<0.02	Re	<0.02	Š	<0.02	ę	₹0.02	Þ	<0.02
As	<0.7	ඊ	<0.02	립	₩	ដ	₹0.02	Mg	10.0>	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0.02	>	40.02
Ba	<0.02	ర	<0.02	3	<0.02	ㅂ	<0.02	Mn	<0.02	2	<0.02	8	<0.02	ž	40.2	Ħ	<0.02	2	<0.02
æ	Т	Ç	40.02	ő	40.02	£	<0.7	Hg	<02	Δ,	<0.02	Ru	<0.02	š	<0.02	Tm	₹0.02	×	40.02
洒	<0.02	රි	<0.02	ප	<0.02	ឌ	40.02	Mo	<0.02	武	<0.02	Sm	<0.02	S	<0.02	S	<0.02	2	<0.02
æ	<0.02	ื	<0.02	Au	<0.02	£	₹0.02	PK	<0.02	M	<0.2	S	40.02	Ta	<0.02	F	<0.02	Z	40.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

All standard containers are meticulously cleaned prior to use.

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

122

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number: Description: Lot Number: 57050 071123 Tin (Sn)

Salvents: 21110221

Nitric Acid Hydrochloric acid

Lot #

22D0562008

Nominal Concentration (µg/mL): Recommended Storage: **NIST Test Number:** Expiration Date: 1000 Ambient (20 °C) 071126

Weight shown below was diluted to (mL): **BTU9** 499.93

RM#

Number

Conc. (µg/mL) Nominal

(%)

Uncertainty Assay
Purity (%) (%)

Weight (g)

Target

ρţ

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

> 10.0 30.0

3 6%

Nitric Acid

Formulated By:

Benson Chan

071123

Hydrochloric acid

Reviewed By:

Pedro L. Rentas

071123

Weight (g)	ACTUAL	
Conc. (µg/ml.)	Actual Ur	
'- (µg/mL)	certainty	xpanded
CAS# OSHA PEL (TWA) LD50	(Solvent Safety	SUS
PEL (TWA)	y Info. On Attache	Information
LD50	d pg.)	
SRM	TSIN	

1. Ammonium hexafluorostannate(IV) (Sn) m/z-> ---x/m --Z/111 2.5E4 5.0E4 1.0ES 2.0E6 2.5E5 S.OEG [1] Spectrum No.1 210 110 0 IN010 SND042023A1 120 220 N [15.034 sec]:58150.D# [Count] [Linear] 1000 230 130 8 240 140 0.10 40 44.2 250 150 Ö 1.13107 1.13286 160 260 60 1001.6 170 70 2.0 180 80 16919-24-7 190 90 7 mg/m3 200 100 ₹ 3161a

Part # 57050

	Al Shaper	I
	4000 4000 4000 4000 4000 4000 4000 400	
	58555	ı
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	A C C C E E P	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	HH Ho Hr Fe	
	40.02 40.02 40.02 40.02 40.02	Irace N
	Mo Min Li	1etal:
e1 = U	40.02 40.02 40.02 40.02 40.02	s Verific
T) = Tamet anak/a	× 7 × 8 8 8 × 1	ation
	44444	by CP-
	S R R R R P	ns (
	40.02 40.02 40.02 40.02 40.02	Ja/mL)
	Z S Z Z S	
	40.02 40.02 40.02 40.02 40.02 40.02	
	T T T T T	
	40.02 40.02 40.02 40.02 40.02	
	* * * * * * * * * * * * * * * * * * *	
	000 000 000 000 000 000	

(I) = larget analyte

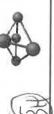
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

R: 02109124

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com 091923 091923 (Solvent Safety Info On Attach SDS Information Pedro L. Rentas Lawrence Barry Formulated By: Reviewed By: Expanded Nitric Acid Final Nitric Acid 40.0 (III) hital 24002546 2.0% Nominal Balance Uncertainty Flask Uncertainty 5E-05 0.058 Initial 2000.02 Dilution Ambient (20 °C) Cobalt (Co) Volume shown below was diluted to (mL): 57027 091923 091926 ĕ 1000 **6UTB** Part Description: **Expiration Date:** Recommended Storage: Nominal Concentration (ug/mL): NIST Test Number: Part Number: Lot Number: CERTIFIED WEIGHT REPORT:

						TANK BURNE	10000	CHICAGO CONTROL CONTRO	URCH LABILLY	ianioc)	(Solvent Safety Into, On Attached pg.)	rttached pg.)	202
Compound	Number	Number	Factor	Vol. (mL)	Pipette (mL) C	conc. (ug/ml.)	Conc. (µg/mL)	Conc. (ug/ml.)	+/- (ng/mL)	CAS#	Number Number Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA)	1050	SRM
Cobatt(II) nitrate hexahydrate (Co) 58127 050923 0.1000 200.0	58127	050923	0.1000		0.084	1000	10000	100001 100001	9.0	10008.000	000	700	- 5
							20000		7:5	100c0-22-9	O.UZ ING/ITI3	STEE 10020-22-9 0.02 mg/ms on-rat 691 mg/kg 3113	3113
2000	Z Ezz	1.0	9 4 DAG 46	Cau. Co	CHARLE WAS	[1] Specifical No.1 Cat. 04.04% pool: nacotation of the partition of the p							

1.0E6	5.0E5	m/z->	5.0E7	1.0E8	5.0E7
				F	
		.0		0	
		0		120	
L 34-243 Secj.baok7.D# [Count] [Linear]		Ō		130	
		.0		140	
		.09		150	
		. O		160	
				170	
		02			
		80		160	
		00		180	
		100		200	

Lot # 091923

250

240

230

220

010

W/Z->

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifical	tion	by ICP-M	4S (F	ig/mL)						
1							STREET, STREET	No section lives	ALL DESCRIPTION OF THE PERSON	10.000	Market Mark	MINNSH.	San Salar Salar	NAME OF TAXABLE PARTY.	Service of the last	SECOND SECOND		THE PERSON NAMED IN	STREET, SQUARE,
IV	<0.02	ಶ	1	Š	40.02 Dy 40.02	Ħ	<0.02	П	<0.02	Z	<0.02	Æ	<0.02	B	<0.2	£	<0.02	A	<0.02
ౙ	40.02	రే	40 7	占	<0.02	H9	<0.02	.3	₹005	Ź	₹0.02	2	<0.02	Š	40.02	T _e	40.05	ם	40.02
As	Q 5	ප	40.02	呂	40.02	ų	<0.02	Mg	10.05	ő	₹0.02	뙲	<0.02	Ag	40.02	F	<0.02	>	Ø.02
쯃	40.02	చ	40.02	3	4002	ㅂ	<0.02	Ma	<0.02	콘	₹000	2	40.02	N _a	40.2	Ę	20:0>	Ŗ	Ø.02
2	¥0.01	ඊ	20.02	త్ర	40.02	હ	40.2	쁀	\$ 20	م	₹0.02	콥	40.02	Şt	40.02	Tm	Ø.02	7	Ø.02
遥	40.02	රි	۳	Ğ,	4002	ដ	<0.02	Mo	40.02	Æ	20'0 >	S	<0.02	S	40.02	Sn	40.02	Zn	Ø.02
æ	<0.02	ට්	<0.02	Αn	<0.02	윤	Z0'0>	P	<0.02	м	40.2	S	<0.02	Fee	40,02	Ħ	Ø.02	72	Ø.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Lot # 091923

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M5801

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Arsenic (As) Compound Nominal Concentration (µg/mL): M/2-> m/z-> -z/m 5.OE4 2.5E4 Recommended Storage: 1.0E5 2.0ES 1000 Volume shown below was diluted to (mL): 500 **NIST Test Number: Expiration Date:** Part Number: Description: Lot Number: [1] Spectrum No.1 210 110 0 58133 Number Part **SUTB** 1000 111326 57033 111323 Ambient (20 °C) Arsenic (As) 020522 Number 120 D D ONN NO [34.433 sec]:57033.D# [Count] [Linear] 0.1000 4000.0 Dilution Factor 230 130 30 Vol. (mL) 5E-05 400.0 initial 0.06 Pipette (mL) Conc. (µg/mL) Flask Uncertainty Balance Uncertainty Uncertainty 240 140 40 0.084 24002546 Nominal 2.0% Lot # 100 250 160 50 Conc. (µg/mL) Conc. (µg/mL) Nitric Acid 10001.0 Solvent: Initial 80.0 260 160 60 Nitric Acid 1000.0 Fina 170 0 Formulated By: Reviewed By: +/- (µg/ml.) Uncertainty Expanded 2.0 180 Thomas 80 7440-38-2 (Solvent Safety Info. On Attached pg.) 190 OSHA PEL (TWA) Pedro L. Rentas Lawrence Barry 90 SDS Information 0.5 mg/m3 100 000 orl-rat 500 mg/kg LD50 111323 111323 3103a NIST SRM

Printed: 2/8/2024, 5:01:04 PM

	- H H H > /0 >	8	-
	AS Sb Ba Bi Bi		
	4002 4002 4002 4002 4002		
	5 8 ជ ង 8 ជ ប		
	402 402 402 402 402 402		
	₹ ७८८ = = ⊅		
	6000 6000 6000 6000		
	322428		
	40.02 40.02 40.02 40.02 40.02	Trace N	
	N H M L L	letals	
9	40.2 40.2 40.2 40.2 40.2	Verifica	
= Target	M R P B O R R	E S S	
Target analyte	40.02 40.02 40.02 40.02	by ICP-N	
	S R R R R R	id) St	
R	4444 444 444 444 444 444 444 444 444 4	g/mL)	
	Ta Sr Na Se		
	40.2 40.2 40.2 40.2 40.2 40.2		
	######################################		
(+)	40.02 40.02 40.02 40.02 40.02 40.02		
	Z Z Y Z < C &		
	40.02 40.02 40.02 40.02 40.02		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R102109124

MURIC

Solvent: 21110221

Nitric Acid

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: **Lot Number:**

57115 041723

Description:

Phosphorous (P)

Expiration Date:

041726

Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: 10000 Ambient (20 °C)

BTUB

5E-05 Balance Uncertainty

Weight shown below was diluted to (mL): 2000.02

Number 5 Conc. (µg/mL) Nominal 0.058 Flask Uncertainty Purity 3 Uncertainty Assay Purity (%) E Target

1. Ammonium dihydrogen phosphate (P)

IN008 PV082019A1

10000

99,999

0.10

27.5

RM#

Compound

22%

40.0

Nitric Acid

Formulated By:

Lawrence Barry

041723

into

Reviewed By:

Pedro L. Rentas

Expanded SDS Information 041723

Weight (g) 72.7287 Weight (g) Conc. (ug/mL) 72.7289 Actual 10000.0 Actual +/- (µg/mL) Uncertainty 20.0 7722-76-1 CAS# (Solvent Safety Info. On Attached pg.)

OSHA PEL (TWA) LD50 5 mg/m3 orl-rat >2000mg/kg 3186 NIST SRM

Part # 57115

1 of 2

	Γ						, .		Г	
	F	3 <u>5</u>	i Re	, 5	AS —	90	# ≥			
	20.02	20.02	10.0	20.02	202	20.02	A0.02	A STATE OF THE PERSON NAMED IN		
	2	, S	ť	ů	£	. E	S			
	A),02	A0.02	A)02	40.02	6 002	40.2	40.02	MANAGE SHAFTER		
	æ	ှင့	୍ଷଳ	8	먑	É	Dy	Section 2		
	A0.02	A.02	40.02	∆ 0,02	40.02	40.02	40.02	William Constitution		
	3	5	놂	r r	ıl	H	Hf	1	1	
	∆ 0,02	40,02	6 22	40.02	40.02	40.02	40.02		Trace Me	
	Æ	Mo	Hg	Mn	Mg	Ţ	Е		letals	I
Townst analytic	40.02	A),02	402	40.02	0.01	40.02	<0.02		Verifica	
	~	ጀ	۳	2	Ŝ	₹	Z		tion	
	A	40,02	7	40.02	40.02	40.02	40,02		by ICP-N	
	Sc	Sm	R _L	25	R.	æ	27	Į.	E SI	
	40.02	40.02	40.02	40.02	40.02	A 02	40.02	ľ	g/mL)	The second second
	T _B	S	Ş	Z	¥	S	&			
	40.02	∆ .02	6.02	<u>\$</u>	∆ 0,02	40.02	40.2			
	17	Sh	T	₽	ㅂ	Te	4L			
	<0.02	<0.02	<0.02	∆ 0.02	40,02	40,02	40,02	Machine Marie		
	Zr	Zn	Υ.	\$	<	Ϥ	W			
	<0.02	6002	A).02	∆.02	\$0.0 2	A0.02	40.02	TO THE REAL PROPERTY.		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. *Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

*All Standards should be stored with caps tight and under appropriate laboratory conditions.
*Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2

Part # 57115

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

R1 02/09/124 Certified Reference Material CRM

M5816

CERTIFIED WEIGHT REPORT

Part Number:

Lot Number: Description:

57016 122923

Solvent:

122923

ASTM Type 1 Water

Lot #

Expiration Date: 122926 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 1000

Recommended Storage:

Ambient (20 °C)

Weight shown below was diluted to (mL): 4000.0 5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Nominal

Purity

Uncertainty Assay

Target

Actual

Uncertainty

Expanded

Reviewed By:

Pedro L. Rentas

122923

tento

Formulated By:

Benson Chan

122923

 Ammonium sulfate (S) IN117 SLBR7225V Number Conc. (µg/mL) 1000 99.9 38 Purity (%) 0.10 24.3 38 Weight (g) 16.4979 Weight (g) Conc. (µg/mL) 16.4980 1000.0 +/- (µg/mL) 20 7783-20-2 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 ¥ orl-rat 4250mg/kg 3181 SRM

1/Z-V m/z-> m/z-> N.SES S.OEB 5.OE7 1.0**E**8 N. SES 5.0E5 [1] Spectrum No. 1 210 110 0 120 ななり 0 [33.603 sec]:57016.D# [Count] [Linear] 130 230 30 140 240 40 250 150 000 160 200 00 170 0 180 80 190 00 200 100

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Part # 57016

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

109/24

M5817

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: 071123 57116

Solvent:

071123

ASTM Type 1 Water

Burense

Formulated By:

Lawrence Barry

071123

Lot #

Expiration Date: Description: 071126 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 10000 Ambient (20 °C)

Recommended Storage:

EU1B

Weight shown below was diluted to (mL): 1999.48 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Pedro L. Rentas SDS Information

 Ammonium sulfate (S) IN117 SLBR7225V 10000 99.9 0.10 24.3 82.4675 82,4682 10000.1 20.0 7783-20-2 Z orl-rat 4250mg/kg 3181

Number Ĕ Conc. (µg/mL) Purity 8 Uncertainty Assay Purity (%) 8 Weight (g) Target Weight (g) Conc. (µg/mL) Actual Actual +/- (µg/mL) OSHA PEL (TWA)

Expanded

071123

Uncertainty (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 SRM NIST

m/z->	1.005	m/z-> 2.0E5	2.5E5	5.0E5	1000	2000
0		110		0		
N N O		120		20		
230		130		3 0		
24		140		40		
250		150		50		
260		190		8		
		170		70		
		180		8.		
		190		90		
		200		100		

Part # 57116

	BE BE BE
	002 002 002 002
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
•	594445
	40.22 40.22 40.22 40.22
	≥ 유요요 프 무 ▽
	40.02 40.02 40.02 40.02 40.02
	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	40,02 40,02 40,02 40,02 40,02 40,02
	Li Li Mg Mn Hg
(T)= Tarnet anakre	Verifica
onsk.	K P P B S S N
5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	S S S S S S S S S S S S S S S S S S S
	(µg/mL)
	Ta Sr Na Se
	40.22 40.02 40.02 40.02 40.02 7 7 40.02
	To T
	60000000000000000000000000000000000000
	Z
	666666666666666666666666666666666666666

Physical Characterization:

(1)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57116

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

109124 M.5818

Solvent: 24002546 Nitric Acid

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

Lot Number: Description: 57014 122023

Silicon (SI)

Nominal Concentration (µq/mL): Recommended Storage: 1000 Ambient (20 °C)

Expiration Date:

122026

2%

40.0 (mL)

Nitric Acid

Formulated By:

Aleah O'Brady

122023

122023

Areah o Brasky

Compound			Weight shown below was diluted to (mL): 1999.48 0.058 Flask Uncertainty	NIST Test Number	The second secon
RM#			elow was diluted	Number:	
Number	Lot		d to (mL):	8TUB	
Conc. (µg/mL)	Nominal		1999.48		
(%)	Purity		0.058	5E-05	
Purity (%)	Nominal Purity Uncertainty Assay		Flask Uncerta	5E-05 Balance Uncertainty	
8	Assay		unty	artainty	
Weight (g)	Target				
Weight (g)	Actual				
Conc. (ug/mL)	Actual				
+/- (ug/mL)	Uncertainty	Expanded		Reviewed By:	/
CAS#	(Solve				
OSHA PEL (TWA)	Lot Nominal Purity Uncertainty Assay Target Actual Actual Uncertainty (Solvent Safety Info. On Attac	SDS Information		Pedro L. Rentas	1

						10000	12000			00000	3 3 16 3		
				1							4	INIOOD CITATORIA	amonism beyefluorosilicate (C) Nicon succession Apple Ap
	П												
	E	COLIS LEE (1887)	5	Tribulary	Carrie Office Course	(B) 200 Bross	183 million		The state of the state of		400		
200		NUMP NUMBER Conc. (143/ml.) (%) Purity (%) (%) Weight (a) Weight (b) Conc (143/ml.) CAS# OCUA DCI (74/ml.)	HOACH	+1/1 (12/11)	Come (sector)	Weight (a)	Weight (a)	8	8) All a	98	Conc. (Ja/mL)	KM# Number	ALI PARTICION DE LA CONTROL DE
		•									,	Disk No.	
Z	Attached po.)	Uncertainty (Solvent Sallety Inio, On Attached pg.)	(SOIVE)	Uncertainty	ACTUAL	ACCUAL	iafier	Masay	טואיפו עמוורץ	r writy	recommend family of the control of t		
	A A A A A A A A A A A A A A A A A A A	THE PLEASE OF	1011				Townsh	2000	Incortaint.		Zomina	2	

*	orl-mus 70 mg/kg	2.5 mg/m3	2.0 16919-19-0	2.0	1000.0	13.8855	13.8854	14.4	0.10	99.999	1000	IN009 SID082022A1	Ammonium hexafluorosilicate (Si) IN009 sido82022A1 1000 99.999 0.10 14.4 13.8854 13.8855 1000.0
	Esc		CAS#	(ASA) +/- (ASA)	רטות. (ששיוור)	(A) THEISTA	(R) Militare	(101)	fact frience	(00)	400	(A) mediu (A) many (sa) (sa) (sa) mediu (A) mediu (A) conc.	

92 II	CAS#		CAS# OSHA PEL (TWA) LD50 SRM 1919-19-0 2.5 mg/m3 orl-mus 70 mg/kg NA	1. Ammonium hexafluorosilicate (Si) IN009 siposzozza1 1000 98.899 0.10 14.4 13.8854 13.8855 1000.0 2.0 169	Compound RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL)
		Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) 1000.0 2.0 16919-19-0 2.5 mg/m3	Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) 1000.0 2.0 18919-19-0 2.5 mg/m3	10 14.4 13.8	(%) (%) Weigh
Conc. (µg/mL) +/- (µg/mL) 1000.0 2.0 10	Conc. (µg/mL) +/- (µg/mL) CAS# 1000.0 2.0 16919-19-0			3854 13.8855	ht (g) Weight (g)
2.0 10	2.0 16919-19-0			1000.0	Conc. (µg/mL) +
	CAS#			2.0	/- (µg/mL)

m/z->	5.085	m/z->	1.0E6	2.0E6	2500	5000
210		1		Ö.		
N				3		
220		ก 0		N .		
230		130		(a)		
		Ψ				
0 40		4		4		
250		150		(n		
ö		Ö		6		*
N 00		160		6) O		
		**************************************		.d.		
		170		70		
		180 80		8 .		
		90		0		
		200		100		

Part # 57014

1 of 2

Ţ.	5	B	ķ	7 5	# :	As	30	2	A	i	Ī	
ŀ	_	_	_			_	_	_				
70.02	3	<u> 0</u> 02	10.05	20.02	3 1	8	20.02		40.02	The state of the s		
2	?	င	7	, Ç	3 8	<u>ئ</u>	S.	1	2			
\$0.02	3	A).02	<0.02	20:02	3 6	3	40.2	40.04	20.02	住地に なる 日本の		
A		ಕ್ಕ ಕ	G	ğ	2 5	ਜੂ ਜੂ	Ē,	5	7	2000 mg/mg/		
20.02		A) (2)	A)22	40.52	6.52	3	40.02	20.02	000			
Ğ	! }		'	H	۱ ا	7	픙	111	AB.			٠
40.02	40.0	3	60.2	40.02	20.02	3	∆ .02	20.02	000	SOMEON PROPERTY.	Hace M	,
Nd	10.00	5	8H	Mn	. 00		Ē	E	1		verais	
<0.02	10.07	3	6 02	40,02	10.03	2	∆ 0,02	20.02			Verifica	11
×	2	Ş	٦	Pd	ç	,	\$	2	1		HOD	
40.2	20.02	3	∆.02	40,02	40.02		8.00	20.02		ŀ	by ICP-I	
જ	300	2	₽	R	2	!	7	7		ļ	E S	
40.02	20.02	3	40.02	20.0≥	40.02		8	<0.02		ľ	g/mL)	
Ta	v	,	Z.	Z	A A		2	Se				I
& .02	20.02	3	83.6	40.2	40,02		-1	40.2		-		
Ħ	Sn	,	ď	Ħ	Ħ	,	7	7				
40.02	20.02		20.02	40.02	40.02	20.02	3	40.02		The Real Property lies		
Z	70	,	<u> </u>	\$	<	-	=======================================	¥				
∆ 0.02	40.02	1010	A	40.02	40.02	10.02	3	40.02	O) SOUTHWOOD			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated. * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

2 02/na

ング

Solvent: 24002546

Nitric Acid

F Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Part Number: Lot Number: 58030

Description:

111623 Zinc (Zn)

Ambient (20 °C) 111626

Expiration Date:

Nominal Concentration (µg/mL): Recommended Storage:

NIST Test Number:

BTU9 1000

5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Weight shown below was diluted to (mL):

3000.4

5

Nominal

Purity

Uncertainty Assay

Target

Actual

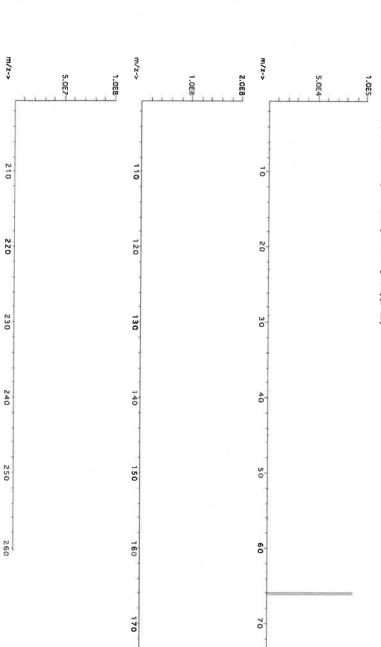
Actual

Uncertainty

Expanded

84 60.0 <u>a</u>

Nitric Acid


Formulated By: Benson Chan

111623

Reviewed By: Pedro L. Rentas

111623

Zinc nitrate hexahydrate (Zn) Compound [1] Spectrum No.1 [31.103 sec]:58130.D# [Count] [Linear] IN016 ZNE032021A1 RM# Number Conc. (µg/ml.) 1 000 99.999 8 Purity (%) 0.10 24.3 3 Weight (g) 12.3475 Weight (g) Conc. (µg/ml.) 12.3502 1000.2 +/- (µg/mL) 2.0 10196-18-6 CAS# OSHA PEL (TWA) orl-rat 1190mg/kg 3168

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 **SDS** Information SRM SRM

200

100

Part # 58030

	BE BE S S A	Г	
	4002 4002 4002 4001 4002 4002		
	585855		
	40.02 40.02 40.02 40.02 40.02		
	26 6 6 E E E D		
	000000000000000000000000000000000000000		
	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		
	40.00 40.00 40.00 40.00 40.00 40.00	Trace Me	
	Mo Mg LL	letals	
Threat and the	40.02 40.02 40.02 40.02 40.02	Verifica	
	X Y T R Q S Y X	tion	
	40.22 40.22 40.22 40.22	by ICP-	
	S E E E E F	Š	
	66666666666666666666666666666666666666	(ug/mL)	
	Ta Sr Za Ag		
	402 402 402 402 402		
		1	
	000 000 000 000 000 000 000 000 000		
100	22×2<=		
	\$ 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

^{*} All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Lot #

Part Number: Lot Number: Description: 57015 091123 Phosphorous (P) Solvent: 24002546 2% 40.0 Nitric Acid Nitric Acid

Formulated By:

Lawrence Barry

091123

Pedro L. Rentas

091123

SDS information

rento

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 091126 Ambient (20 °C) (JE)

Weight shown below was diluted to (mL): **NIST Test Number:** BITUB Lot 2000.02 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Uncertainty Reviewed By: Expanded

 Ammonium dihydrogen phosphate (P) IN008 Pvos2018A1 [1] Spectrum No.1 RM# Number [12.074 sec]:58115.D# [Count] [Linear] Conc. (µg/mL) 1000 99.999 3 Purity (%) 0.10 27.5 3 Weight (g) 7.2729 Weight (g) Conc. (µg/mL) 7.2730 1000.0 +/- (µg/mL) 2.0 7722-76-1 CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 5 mg/m3 rl-rat >2000mg/ki 3186 SRM

Part # 57015

--z/m

210

220

230

240

250

260

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ľ	В	<u> </u>	Ħ.	뮸	200	Ę,	3		ş	2	4		
		A 022	20.02	3	- 60 10	70.02	3	70		A	2002	200		
ř.		<u>ნ</u>	8	,	Ω	Ç	?	g		<u>ප</u>	2	2		
		A 23 23	20705	3	A 20.02	20.02	3	40.02		2	20,02	3		
		A II	Ę	1	ට ව	2	2	달	2	Į,	Ų			
		3	40.02		3	♦0.02)	8	20.02	3	∆ .02			
		ÿ	<u>_</u>		₹1	4		<u> </u>	0.0	F .	H	1		
	2000	3	<u> </u>	4.4	3	∆ 02		6 002	20.02	3	40.02	-		Trace M
	i de	ž	š	200	Ç	¥	9	X	Į,	•	5			<u>P</u>
3	20,02	3	<u>8</u>	7.03	3	∆ 0,02	1000	<u>^</u>	40,02	2	A 0,02			Verifica
Target	ŀ	4	7	7	,	Z	Ş	Ş	S		Z			†:
Target analyte	ê	9	A)	_		8	10:04	3	A0.02		A) (2)		3	אי וכפרו
	Se.	•	S	¥.	,	₽	2	P	₽	:	Ŗ	Manager Street	F	100
	40.02		A S	40.02		A	70.05	3	<u>\$</u> 0.02	***************************************	A		g/ IIIL)	7
	Ta	,	^	ş		Z.	A	•	S	ş	ß	SANSON COM		
	40.02	70.02	3	∆ 0,02	Į.	3	20,02	3	∆	ć	3			
	111	ě	?	Ĭ'n	Ē	;	Η	!	7	č				
	40.02	70.02	3	∆0,02	2000	3	∆ 0.02	2	200	20.02	300			
	Zr	2	7	<u>~</u>	16	\$	\ -		9	*				
	40.02	20.02	3	20.02	70.0>	3	<u></u>		A) (2)	20.02				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

ACCREDITATION / REGISTRATION 1.0

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGY10

Lot Number:

V2-Y740548

Matrix:

2% (v/v) HNO3

Value / Analyte(s):

10 000 µg/mL ea:

Yttrium

Starting Material:

Yttrium Oxide

Starting Material Lot#:

2661 and 06230520YL

Starting Material Purity:

99.9984%

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Value:

 $10000 \pm 30 \mu g/mL$

Density:

1.032 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

10011 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

9997 ± 50 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 190730

Assay Method #3

9984 ± 31 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method I with standard uncertainty uchar i

; = the weighting factors for each method calculated using the inverse square of the variance:

$$w_i = (1/u_{char})^2 / (\Sigma (1/(u_{char})^2))$$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

u_{its} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

- ------

Characterization of CRM/RM by One Method
Gertified Value, Xanuary, where one method of characterizat

Gertified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

XCDM/DM = (Xa) (Uchar a)

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} a + u^2_{bb} + u^2_{lts} + u^2_{ts})^{V_2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Ag	<	0.004600	М	Eu		0.009037	М	Na		0.086360	M:	Se	<	0.005200	M	Zn		0.030125
M	Al		0.014862	0	Fe		0.002410	М	Nb	<	0.000570	0	Si		0.024100	0	Zr	<	0.002600
М	As	<	0.003500	М	Ga	<	0.000570	M	Nd		0.000923	M	Sm		0.000461				
М	Au	<	0.001700	М	Gd	<	0.003500	M	Ni	<	0.005700	M	Sn	<	0.002300				
0	В		0.002209	M	Ge	<	0.005200	M	Os	<	0.001200	M	Sr	<	0.004600				
0	Ba	<	0.002500	М	Hf	<	0.000570	n	Р	<		M	Ta	<	0.000570				
0	Be	<	0.001400	М	Hg	<	0.000570	M	Pb		0.005020	M	Tb		0.001044				
M	Bi	<	0.003500	М	Но		0.009037	М	Pd	<	0.005100	М	Te	<	0.002300				
0	Ca		0.009841	М	In	<	0.002300	M	Pr	<	0.002300	М	Th	<	0.000570				
M	Cd	<	0.000570	М	lr	<	0.000570	M	Pt	<	0.000570	M	Ti	<	0.003500				
M	Ce	<	0.002300	0	K		0.018677	М	Rb	<	0.000570	М	TI	<	0.000570				
M	Co	<	0.000570	M	La		0.000461	М	Re	<	0.000570	М	Tm	<	0.003500				
M	Cr	<	0.004000	0	Li	<	0.009300	М	Rh	<	0.008000	M	U	<	0.000570				
M	Cs	<	0.000570	M	Lu		0.000582	М	Ru	<	0.000570	M	V		0.001265				
M	Си		0.002610	0	Mg		0.001486	n	S	<		M	W	<	0.002300				
М	Dy		0.003815	M	Mn		0.000582	М	Sb		0.005422	S	Υ	<					
M	Er		0.003615	M	Мо	<	0.005700	М	Sc	<	0.001200	M	Yb		0.001827				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.Inorganicventures.com/TCT

chemically stable for years in 2-5% HNO3 / LDPE container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.91 +3 6 Y(OH)(H2O)x+2 Chemical Compatibility -Soluble in HCl, H2SO4 and HNO3. Avoid HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids); Oxide (Dissolve by heating in H2O/ HNO3); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H2O / HCl or HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axiai view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 89 amu	0.8 ppt	N/A	73Ge16O, 178Hf+2
ICP-OES 360.073 nm	0.005 / 0.000036 μg/mL	1	Ce, Th
ICP-OES 371.030 nm	0.004 / 0.00007 µg/mL	1	Се
ICP-OES 377.433 nm	0.005 / 0.0009 µg/mL	1	Ta, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Regulrements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 20, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 20, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

_	Sealed TCT	Bag	Open	Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 **NAMES AND SIGNATURES OF CERTIFYING OFFICERS** Certificate Prepared By:

Uyen Truong Custom Processing Supervisor

Mayyand Man Paul R. Laine

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com

Certified Reference Material M5960

スズ

Lot #

ANAB ISO AR-1539 C https://Absolo	
124	

CRM /	ANAB ISO 1 AR-1539 Ce https://Absolut
1. 6/11/24	-
Acid	1

Solvent: 24002546 Nitric Acid	Nitric Acid	J.		
2% 5.0 (mL)	Nitric Acid	Formulated By:	Brian Geddes	041124
Uncertainty		Reviewed By:	Pedro L. Rentas	041124

5E-05 Balance Uncertainty 0.002 Flask Uncertainty

249.85

6UTB 1000

NIST Test Number:

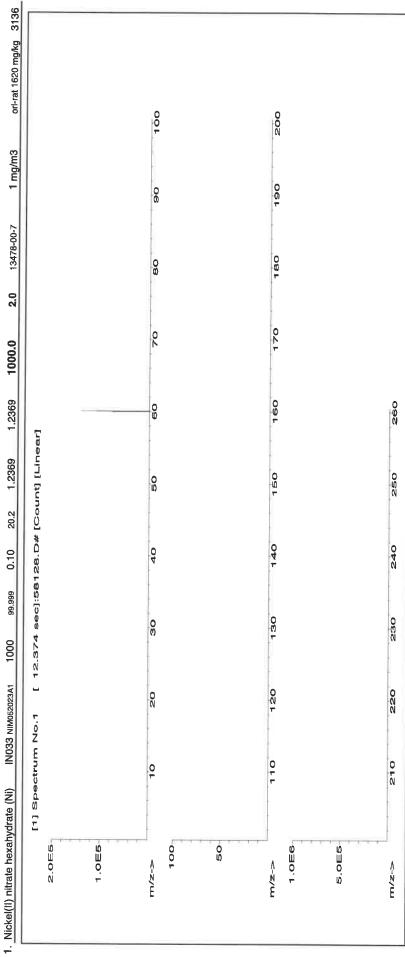
Weight shown below was diluted to (mL):

Ambient (20 °C)

Recommended Storage: Nominal Concentration (µg/mL):

Expiration Date:

041127


57028 041124 Nickel (NI)

Part Number: Lot Number: Description:

CERTIFIED WEIGHT REPORT:

	NIST	SRM	
_	tached pg.)	LDSO	
SDS Information	(Solvent Safety Info. On Attached pg.)	OSHA PEL (TWA)	
	(Sol	CAS#	
Expanded	Uncertainty	+/- (µg/mL)	
	Actual	Weight (g) Conc. (ug/mL) +/- (µg/mL)	
	Actual	Weight (g)	
	Target	Weight (g)	
	Assay	(%)	
	Uncertainty Assay	Purity (%) (%)	
	Purity	(%)	
	Nominal	Conc. (µg/mL)	
	Lot	Number	
		RM#	
		Compound	

orl-rat 1620 mg/kg 31	гшд/шз	13478-00-7	2.0	1000.0	5003	2003	20.7		2000			
	,	00 000 0 10 10 10 10 10 10 10 10 10 10 1	c	0 0001	1 2360	1 2360	20.0	0 10	000 00	1000	IN033 NIM052023A1	Nickel(II) nitrate hexahvdrate (Ni)

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

L						ľ		ŀ											
							Irace Me	tals	Verifi	cation	by ICP-N	Š	$(\mu g/mL)$						
Ψ	<0.02	3	<0.02	Dy	<0.02	HŁ	<0.02	Ľ	<0.02	ž	T	ď.	<0.02	Se	<0.2	Th	CD 02	3	L
Sb	<0.02	౮	<0.2	山	<0.02	Но	<0.02	Ľ	<0.02	Nb	<0.02	Re	<0.02	V.	20.05	- E	20:07	= =	
As	<0.2	೦	<0.02	En	<0.02	П	<0.02	Mg	<0.01	č	000	72	9		000	ÈF	70:07) ;	
Ba	<0.02	ర	<0.02	PS	<0.02	Ļ	<0.00	, Ž	2007	Ъ	600	70	20:05	0 N	70.07	7 F	20:02	> ;	
Be	<0.01	Ö	<0.02	Ga	<0.02	نه <u>آ</u>	202	Но	2007	2	70:07	2 2	20.05 -0.02	N C	7.0>	<u> </u>	<0.02	χ.	
Bi	<0.02	රි	<0.02	Ge	<0.02	Į,	0.00	N S	20.02	- 4	20:02	Z Z	20.02	i c	<0.02	E .	<0.02	× 1	<0.02
В	<0.02	ī,	<0.02	Au	<0.02	Pb	<0.02	PN	<0.02	: ×	20.02	5	20.02 CO 02	o E	<0.02 0.02	G ::	<0.02 20.02	7.	
				-							7:00	2	70'07	14	70.07	=======================================	<0.02	7	

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

the preparation of all standards,

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions. * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5962 R! 06/14/24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->		io io	m/z->	-	Ņ	m/z->	i i	1. Selenium (Se)	Compound		<		Nominal Co	Re			CERTIFIED WEIGHT HEPOHT	מדודודה שובום
210	1.OE8	2.008	110	1.OE8		10	[1] Spectrum No.1				Volume shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	1	Lot Number: Description:	Part Number:	1 11000H
0			0			Ü	Z 2 0	58134	Number	Part	as dilute					in in in	_	
220			120			20	-	071223	Number	Lot	d to (mL):	6UTB	1000	Ambient (20 °C)		060624 Selenium (Se)	57034	
Ŋ			<u></u>			ω	3.702	0.1000	Factor	Dilution	2000.07			<u>ග</u>		Se)		
230			130			30	sec]:58	200.0	Vol. (mL	Initial	0.100	5E-05						
240			140			40	33.702 sec]:58034.D# [Count] [Linear]	0.084	Val. (mL) Pipette (mL) Conc. (μg/mL)	Uncertainty	Flask Uncertainty	Balance Uncertainty						
250			150			50	Count) [L	1000	Conc. (µg/mL)	Nominal	ťγ	ainty			2.0%	24007540	24002546	
260			160			. 60	inear	10002.5	Conc. (µg/mL	Initial				(m_C)	40.0	Na Contraction	Solvent:	
0						12 33 34		1000.0	Conc. (µg/mL) Conc. (µg/mL)	Final					Nitric Acid			(1)
			170			70		2.2	.) +/- (µg/mL)	Uncertainty	Expanded	Reviewed By:	ta	N	Formulated By:	M		10
			180			80		7782-49-2	C	(So		y:	1 to	11	By:			
			190			90		2 0.2 mg/m3	OSHA PEL (TWA)	(Solvent Safety Info. On Attached pg.)	SDS Information	Pedro L. Rentas	leenes		Benson Chan	M		
			2200			100			VA)). On Atta	rmation	ntas	,	/	ב	5		
						-		orl-rat 6700 mg/kg	1.050	ched pg.)		060624			060624			
								3149	SRM	NIST		ٿ			1+2			

							I race M	1etals	Verifica	lion	oy ICP-M	S (1)	g/mL)						
Al	<0.02	CG	<0.02	Dγ	<0.02	HH	<0.02	11	<0.02	Z.	<0.02	Pr	<0.02	Se	H	16	40.02	W	40,02
SЪ	<0.02	ූ	<0.2	퍜	<0.02	田	<0.02	Į	<0.02	₽	<0.02	Re	<0.02	S:	<0.02	Te	<0.02	U	<0.02
As	<0.2	ಕಿ	<0.02	핃	<0.02	Ы	<0.02	Mg	<0.01	°	<0.02	Rh	40.02	Ag	<0.02	∄	40.02	۷	<0.02
Ва	<0.02	င္တ	<0.02	æ	<0.02	H.	<0.02	Mn	<0.02	Pd	40.02	₽.	<0.02	Na	<0.2	Ħ	<0.02	4	<0.02
Ве	40.01	ť	40.02	Ga	<0.02	Fe	<0.2	Hg	A02	P	<0.02	Ru	40.02	Sr	<0.02	Tm	<0.02	¥	<0.02
Bi	40.02	င္ပ	<0.02	ଦୁ	<0.02	Ľ	<0.02	Mo	<0.02	7	<0.02	Sm	40.02	S	<0.02	Sn	40.02	Zn	<0.02
В	<0.02	Cι	<0.02	Au	<0.02	Pb	<0.02	M	<0.02	×	40.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Zr	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

CERTIFIED WEIGHT REPORT:
Part Number:
Lot Number: Lithium nitrate (Li) Nominal Concentration (µg/mL): m/z-> Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date** [1] Spectrum No.1 [32.093 sec]:58003.D# [Count] [Linear] Description: 210 10 Part Lot Number Number 58103 070622 0.1000 57003 062124 Lithium (Li) 6UTB 062127 Ambient (20 °C) 1000 220 120 20 250.11 230 25.0 0.004 Initial Uncertainty Nominal Initial Final

Vol. (mL) Pipette (ml.) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) 0.016 Flask Uncertainty 5E-05 Balance Uncertainty HEBSON OF PSON 240 40 1000 24002546 Lot# 2.0% 250 150 50 Nitric Acid Solvent: 10000.4 (mL) 260 1000.0 Nitric Acid 7/01/24 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Giovannie Capacito 2.0 7790-69-4 5 mg/m3 orl-rat 1426 mg/kg NA SDS Information
(Solvent Safety Info. On Attached pg.)
CAS# OSHA PEL (TWA) LD50 Pedro L. Rentas Giovanni Esposito 9 0 062124 062124 SRM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

\$

Certified Reference Material CRM

20

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part # 57003 Lot # 062124

1 of 2

Printed: 6/24/2024, 11:20:08 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

40.02 40.01	40.2 40.02	40.02	40.2		<0.02	<0.02				
8 ជ ជ	ა ზ	S		Ç	Ca	Ω				
<0.02		<0.02	<0.02	<0.02	<0.2	<0.02				
	ဝူ	Ga	Gd	Eu	먁	Ьy				
3	<0.02	<0.02	<0.02	<0.02	<0.02	20.02				
Pb	ŗ	Fe	ㅂ	Ħ	Но	H	1			
40.02	<0.02	<0.2	<0.02	<0.02	<0.02	20.02			Trace V	
NA	Мо	Hg	Mn	Mg	Lu	Ē			etals	
<0.02	<0.02	<0.2	<0.02	<0.01	<0.02	-	3		Verifica:	
×	7	P	Pd	Ç	8	1 2	Z.	ľ	tion b	١
<0.2	<0.02	<0.02	40.02	20.02	20.02	0.02	A	ľ	V CP-V	١
Sc	Sm	Ku	8	1 5	1 8	:	P		ori) Si	۱
<0.02	<0.02	20.02	<0.02	<0.02	50.02	5 6	<0.02		<u></u>	١
Ta		, H	N	3v	2	2 !	Se	۱		I
20.02	20.02	20.02	100	40.02	0.00	3	€ 0.2			
-	1 1	? [1 :	1 :	3 5	7	dE			I
20.02	40.02	3 6.02	3 6	0.02	0.00	2	<0.02			
E	7 1	7,	< ?	\$.	< 0	=	W			
20.02	40.02	200	3 8	3 8	000	<0.02	<0.02			

(T) = Target analyte

Physical Characterization:

Al Sh As Ba Ba Bi

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

	Puri	굺
	Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in	certifi
	ids,	ed v
•	18.2	alue i
=	3	st
	ego	he
	풀	con
	dei	cen
	Si.	tra
	zed	tio
	wa	1 ca
	ter,	Cul
	ca	ate
	ğ	<u>d</u>
	ate	Om
	G	gra
	ass	MINE
	Þ	- EE
	gla	2
	WSS	anc
	are	V
	an	ŭ
	d	i e c
	ne	5
	ngr	100
	lesi	ž
	þ	9
	ā	: 0
	y ra	8
	×	d
	nac	00
	ens	. 0
	S	9
	are	00
	USU	000
	ed	1 6
	3	

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* All standards on prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are prepared gravimetrically using balances that are calibrated.

* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

Part # 57003 Lot # 062124

Printed: 6/24/2024, 11:20:08 PM

2 of 2

Refine your results. Redefine your industry.

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

Certificate of Analysis M5976, M5977 R : 02/22/24 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 **PRODUCT DESCRIPTION**

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGMO1

Lot Number:

T2-MO720876

Matrix:

H2O

tr. NH40H

Value / Analyte(s):

1 000 µg/mL ea:

Molybdenum

Starting Material:

Ammonium Molybdate

Starting Material Lot#:

2361

Starting Material Purity: 99.9893%

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Value:

 $998 \pm 7 \, \mu g/mL$

Density:

1.000 g/mL (measured at 20 ± 4 °C)

Assav Information:

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3134 Lot Number: 130418

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRWRM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) \{X_i\}$

Xi = mean of Assay Method : with standard uncertainty uchar i

wi = the weighting factors for each method calculated using the inverse square of

 $w_i = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{cs})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

u_{(s} = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results;

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

ucher a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Page 1 of 4

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
0.008000 M Zn
M Ag <
          0.000590 M Eu <
                           0.000300 M Na
                                            0.000879 M Se <
                                                                               0.000598
M AI
          0.000563 M Fe <
                          0.006500 M Nb <
                                            0.029000 i
                                                       Si <
                                                                     M Zr <
                                                                               0.001800
M As <
         0.002100 M Ga <
                          0.000300 i
                                     Nd <
                                                   M Sm <
                                                              0.000300
M
   Au <
         0.000300 M Gd <
                          0.000300 M Ni <
                                            0.008000 M Sn <
                                                              0.008900
М
   B <
         0.003300 M
                    Ge <
                          0.000300 M Os <
                                            0.000590 M Sr
                                                              0.000175
                           0.001800 i
М
   Ba
          0.001689 M
                    Hf <
                                     P <
                                                   М
                                                      Ta <
                                                             0.004200
M
  Be <
         0.000890 M Hg <
                          0.003300 M Pb <
                                            0.000300 M
                                                      Tb <
                                                              0.000300
         0.000890 M Ho < 0.000300 M Pd <
M Bi <
                                            0.001800 M
                                                      Te <
                                                             0.021000
  Ca
         0.006334 M In < 0.032000 M Pr <
0
                                            0.013000 M Th <
                                                             0.000300
O Cd <
         0.026000 M Ir < 0.000300 M Pt <
                                            0.000300 O Ti <
                                                             0.032000
M Ce <
         0.008300 M K
                           0.130213 M Rb
                                            0.004575 M TI
                                                             0.001266
M Co
         0.000598 M La < 0.000300 M Re <
                                            0.000300 M Tm <
                                                              0.000300
                           0.000059 M Rh <
M Cr
         0.000527 O Li
                                            0.000300 M U <
                                                             0.005300
M Cs
         0.000527 M Lu <
                           0.000300 M Ru <
                                            0.079000 M V <
                                                             0.000890
М
   Cu
         0.002252 M Mg
                           0.000563 i
                                     S <
                                                   M W
                                                             0.087982
М
   Dy <
         0.000300 M
                    Mn <
                           0.005900 M
                                     Sb
                                            0.001513 M Y <
                                                             0.000300
М
  Er <
         0.000300 s
                    Mo <
                                  M
                                     Sc <
                                            0.001200 M Yb <
                                                             0.000300
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94 +6 6,7,8,9 [MoO4]-2(chemical form as received)

Chemical Compatibility -Mo is received in a NH4OH matrix giving the operator the option of using HCl or HF to stabilize acidic solutions. The [MoO4]-2 is soluble in concentrated HCl [MoOCl5]-2, dilute HF / HNO3 [MoOF5]-2 and basic media [MoO4]-2. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO4]-2 chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF5]-2 for months in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the [MoO4]-2 chemically stable for years in 1% NH40H in a LDPE container.

Mo Containing Samples (Preparation and Solution) -Metal (Soluble in HF / HNO3 or hot dilute HCl); Oxide (soluble in HF or NH4OH); Organic Matrices (Dry ash at 450EC in Pt0 and dissolve oxide with HF or HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 95 amu	3 ppt	n/a	40Ar39K16O,79Br1
			6O,190Os2+,190Pt
			2+
ICP-OES 202.030 nm	0.008 / 0.0002 µg/mL	1	Os, Hf
ICP-OES 203.844 nm	0.012 / 0.002 μg/mL	1	
ICP-OES 204.598 nm	0.012 / 0.001 µg/mL	1	Ir, Ta

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRWRM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

- 10.1 ISO 9001 Quality Management System Registration
 - QSR Certificate Number QSR-1034
- 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"
 - Chemical Testing Accredited / A2LA Certificate Number 883.01
- 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"
 - Reference Material Producer Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 17, 2022

- The certification is valid within the measurement uncertainty specified provided the CRMRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 17, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date: _____
- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong Supervisor, Product Documentation

Meyer Trusing

Certificate Approved By:

Michael Booth Director, Technical Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Saine

Certificate of Analysis 6652M , 8782M

MORGANIC NE NE SE SEGENE YOU TREST

info@inorganicventures.com P: 800-669-6799/540-585-3030 P: 540-585-3030 R:2/22/24

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

ACCREDITATION / REGISTRATION

Number QSR-1034). the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (GSR Certificate INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

PRODUCT DESCRIPTION

Catalog Number:

Single Analyte Custom Grade Solution Product Code:

CGTN

2% (v/v) HNO3 :xintsM T2-TI719972 Lot Number:

muineill 1 000 hg/mL ea: Value / Analyte(s): tr. HF

Starting Material Lot#: 2094 Starting Material: Ti Metal

Starting Material Purity: 99.9975%

1002 ± 5 µg/mL Certified Value: **CERTIFIED VALUES AND UNCERTAINTIES**

1.012 g/mL (measured at 20 \pm 4 °C) Density:

Assay Information:

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 µg/mL Assay Method #1

The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance $\frac{1}{1000}$

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mosn of individual results:

XCRANGAM = (x_a) (ucher a) X = x_a mass of Keesy Method A with x_a = x_a the standard uncertainty of

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expressed at approximately the 95% confidence level using a coverage factor of $K=\Sigma$.

Characterization of CRM/RM by One Method Characterization of CRM/RM by Two or More Methods

4.0 TRACEABILITY TO NIST

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWIRMs.

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of ore each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of the property of the property

e2 M 078220.0 > gN O 882000.0 > u3 M 8g < 0.000536 M Eu <

ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to

Page 2 of 4

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

> uA M 882000.0

> 9A M 886 0.000.0

> bq M 882000.0 > rq M 888200.0 > rq M 682000.0 > dg M 271100.0

> q O f81200.0 > dq M f82800.0

> iN O 882000.0 > aO M 841200.0

> dN O 322500.0 > N M 862000.0

M - Checked by ICP-MS

Mn < Mg < Li <

> 0H

> 6H

ΉŁ

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

M 976800.0 > 8 | 34500.0 M 576800.0 > 8 M 782600.0

by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

> mT M 882000.0 > U M 882000.0 > V M 682000.0 W M

> 6T M 882000.0 > AT M 882000.0

sT M 034450.0 > dT M E70100.0

s 852000.0 M 882000.0

O 69Z000'0

O.043560 O

n2 M 068010.0 89Z000.0 > mS M 89Z000.0

> II

JS

674000.0 228610.0

892000.0 892000.0

0.000268

699630.0

0.001341

892000.0

0.010560

960000'0

960000.0

73260.0 > nZ O 402100.0 038540.0 > nZ O 267400.0

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/ml)

7.7 Storage and Handling Recommendations

oM M 882000.0

0.000268 M K 0.000268 M K 0.000268 M K

0.000872 O Fe > 0.008586 M Ga <

O 892000.0

O S37000.0 M 882000.0

M 882000.0

M 603100.0

M 885800.0

M £83200.0 > 00 M GG8020 O.004577 M Gd <

INTENDED USE

W Et < O Cn <

O B <

IA O

4.1 Thermometer Calibration

volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is - This product is traceable to MIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMINM uncertainty error and the measurement, weighing and

Page 3 of 4

- Chemical Testing - Accredited / AZLA Certificate Number 863.01

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- QSR Certificate Number QSR-1034

1.01 ISO 9001 Qualify Management System Registration

MOITATY STANDARD DOCUMENTATION 0.01

Homogeneity data indicate that the end user should take a minimum ample size of 0.0.2 m L to assume

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. The Coth series alongs mirranament to be the Coth of the Coth series alongs mirranament to be the Coth series alongs mirranament.

HOMOGENEITY

Please refer to the Safety Data Sheet for information regarding this CRWRM.

NOITAMROANI SUOGRASAH HF Note: This standard should not be prepared or stored in glass.

Ollinger		C INTOTINATION (ICP_OEC n.	Idoseones	
ss radial/axial view):	are given	Estimated D.L. Estimated D.L.	Technique/Line	
Interferences (Underline 11)	Order	idq 41	ICP-MS 48 amu	
Interferences (underlined indicates severe) 32S16O, 32S14N,	A/N	add		
14N160180,				
14N17N2, 36Ar12C,				
48Ca, [96X=2				
7-Vool (no o				
(where X = Zr, Mo, Ru)]		10000 () 1900 ()	ICP-OES 323.452 nm	
Ce, Ar, Ni		Jm/gu Se000.0 \ +200.0	ICP-0ES 334.941 nm	
		m/pu 820000.0 \ 8500.0	ICP-0ES 336.121 nm	
ла, Та, Сг, U М М9 Ω-	1 1		Mote: This start and F	II-
W, Mo, Co		In/gy 4500000 \ cocos-	nous prepries entre shou	•

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/a

1:1:1 H2O / HF./ H2SO4 or fuse ash with pyrosulfate if oxide is as plastic pigment and likely in brookite Volentily), Oxide - Northere are repetation; and sociation; restore (Dissolved by heating in 1737 HZO / HF / HZSO4); Oxide - Northere history (~800EC) brooklie (fuse in Pt0 with KZSZO7); Ores (fuse in Pt0 with KZZZO7); Ores (fuse in Pt0 with provide it as plastic pigment and likely in brooktie (fuse in Pt0 with provide it as plastic pigment and likely in brooktie TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts

HNO3 / LDPE container. 1-10,000 ppm single element solutions as the Ti(F)6-2 chemically stable for years in 2-5% HNO3 / trace HF in an LDPE container. with a fendency to hydrolyze forming the hydrated oxide in all dilute acids except HE.

Stability - 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1%

HNO3 / LDPE container. 1-10.000 ppm sincle element solutions as the Ti(F)8-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F-away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute adds except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HNO3. Avoid neutral to basic Atomic Weight, Valence; Coordination Number; Chemical Form in Solution - 47.87 +4 6 Ti(F)6-2

- For more information, visit www.inorganicventures.com/TCT

reported density. Do not pipette from the container. Do not refurn removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the renorded density. Do not biselfe from the container. Do not return removed alticular to container.

Twitte sociate in the secied 101 beg, trainspleaded for the orderiver in the shalfy concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - While stored in the sealed TCT bag, transpiration of this CRWRM is negligible. After opening the sealed TCT bag, transpiration in a negligible in the capture managed in the capture

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Chairman / Senior Technical Director

- Sealed TCT Bag Open Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- The date after which this CRM/RM should not be used.

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

norganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.859.5790; 540.855.3030, Fax: 540.555.3012; Inorga - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1.

stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified it instructions in Sec 7.1 are not followed or if the CRWRM is damaged, confaminated, or otherwise modified.

Thomas Kozikowski Manager, Quality Control Certificate Approved By:

thibils Validity

- June 17, 2027 11.2 Lot Expiration Date

June 17, 2022 11.1 Certification Issue Date

Paul Gaines Certifying Officer:

0.Sr

0.11

CERTIFIED WEIGHT REPORT:

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Mater

fied Refe	rence Mai	fied Reference Material CRM	C		ANAB IS AR-153 https://ab	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	dited
¥	Z #107	7	2	2/11/0	>		
Solvent:	Solvent: 24002546 Nitric Acid	Nitric Acid		A CONTRACTOR OF THE PARTY OF TH			
2%	40.0	Nitric Acid		Formulated By:	Benson Chan	031524	
	(III)			M	Hento		
Uncertainty				Reviewed By:	Pedro L. Rentas	031524	

Part Number: Lot Number:		19		Solvei	Solvent: 24002546 Nitric Acid	46 Nitr	ic Acid		A STATE OF THE STA	1		
Description:	Strontium (Sr)	(Sr)		Q	2% 40.0		Nitric Acid	, Itt	Formulated Bv:	Benson Chan	8	031524
Expiration Date:	031527							L	7	1		
Recommended Storage:	Ambient (20 °C)	(2)							1	A Comment of the Comm	1	
Nominal Concentration (µg/mL):	1000								June 1	Kena	΄ Δ	
NIST Test Number:	6UTB		5E-05 Ba	5E-05 Balance Uncertainty	<u>~</u>			Œ	Reviewed By:	Pedro L. Rentas		031524
Weight shown below was diluted to (mL); 2000.07	as diluted to (mL):	2000.07	0.100 Fla	0.100 Flask Uncertainty				I				
									Expanded	SDS Information	mation	
	Lot	Nominal	Purity U	Nominal Purity Uncertainty Assay	say Target		Actual Act	Actual U	Uncertainty	(Solvent Safety Info. On Attached pg.)	On Attached pg.)	TSIN
Compound	RM# Number Conc. (µg/mL) (%) Purity (%) (%)	Conc. (ug/mL)	(%)	urity (%) (9	6) Weight (g)		Weight (g) Conc. (µg/mL) +/- (µg/mL)	ug/mL) +	-/- (ug/mL) CAS#	# OSHA PEL (TWA)	NA) LD50	SRM

1. Strontium nitrate (Sr)		IN017 SRZ022018A1	1000	89.997	0.10	41.2	4.85470	4.85502	1000.1	2.0	10042-76-9	NA	orl-rat >2000mg/kg 3153a
5.0EG	[1] Spect	[1] Spectrum No.1	[14.495 sec]:58138.D# [Count] [Linear]	sec]:581	38.D#	Coun	nt] [Linea						
2.5E6												-90-000 Market	
m/z->⊶ 1.0E6	•	10 20		OG	0		.00	09	0,		80	. <u>0</u>	100
5.0ES	unggap a militing di danggap kili.												
m/z-≫ 5.0E6		110 120		130	041		150	160	0.71		180	081	200
2.5E6													
V-z/H	4	220		230	240	14	250	260					

Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Ī	Trace Me	etals	Verifica	tion	by ICP-I	ξS	(na/mr)						
Name of	THE RESIDENCE OF THE PERSON NAMED IN	MARKET STATES	WITH STATE OF	Section 1	Control of the last	Separate Sep	The later little	THE REAL PROPERTY.	Series and designation of the least		Management of the last of the	Service of the last	в	William .	The state of the s	MANAGEMENT	SHARWARD CONTRACTOR		The second second second
₹	<0.02	ਲ	<0.02	Dy	<0.02	HĘ	<0.02	E	<0.02	Z	<0.02	Į.	L	Se	<0.2	P	4002	B	2002
જ	<0.02	రి	<0.2	占	<0.02	Ho	<0.02	7	<0.02	ź	<0.02	Re	_	S	<0.02	Ę	2000	=	7
As	<0.2	ඊ	<0.02	En	<0.02	'n	<0.02	Mg	<0.01	ő	<0.02	招		Ag	<0.02	F	2000	>	
Ba	<0.02	ඊ	<0.02	3	<0.02	긔	<0.02	Mn	<0.02	Pd	<0.02	Rb		ž	20°	É	60 6	5	
æ	<0.01	ర	<0.02	త్	<0.02	윤	<0.2	H	<0.2	д	<0.02	Z.	40.02	6	! -	<u> </u>	20:05	>	
B.	<0.02	රි	<0.02	පී	<0.02	2	<0.02	Wo	<0.02	ă	<0.02	S		v.	, S	5	600	, ,,	
В	<0.02	ರೆ	<0.02	Au	<0.02	2	<0.02	ğ	<0.02	×	<0.2	S	Ì	Ta (<0.02	Ē	8.00 20.00	1 2	20:05
																		1	

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

1. P

Lot # 031524

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M5985 R:6/14/24

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGIN10

Lot Number:

U2-IN729349

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

10 000 μg/mL ea:

Indium

Starting Material:

Indium Metal

Starting Material Lot#:

2511

Starting Material Purity:

99.9995%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10022 \pm 30 \mu g/mL$

Density:

1.044 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

10021 ± 56 µg/mL

ICP Assay NIST SRM 3124a Lot Number: 110516

Assay Method #2

10035 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #3

10001 ± 33 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty uchar i

w_i = the weighting factors for each method calculated using the inverse square of

 $w_i = (1/u_{char\ i})^2 / (\Sigma (1/(u_{char\ i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Certified Value, $X_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

Characterization of CRM/RM by One Method

 $X_{CRM/RM} = (X_n) (u_{char})$

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ls}\right)^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

М	Ag	<	0.000760	М	Eu	<	0.000760	0	Na		0.012771	M	Se	<	0.023000	М	Zn	<	0.006100
М	Al		0.003385	0	Fe		0.004462	М	Nb	<	0.000760	0	Si		0.024619	М	Zr	<	0.000760
М	As	<	0.004600	М	Ga	<	0.000760	М	Nd	<	0.000760	М	Sm	<	0.000760				
М	Au	<	0.002300	М	Gd	<	0.000760	0	Ni	<	0.005100	М	Sn	<	0.000760				
0	В		0.003692	М	Ge	<	0.001600	М	Os	<	0.000760	0	Sr	<	0.000610				
М	Ba	<	0.001600	M	Hf	<	0.000760	n	Р	<		М	Ta	<	0.000760				
0	Be	<	0.000130	M	Hg	<	0.003100	M	Pb		0.001400	М	Tb	<	0.000760				
M	Bi	<	0.000760	М	Но	<	0.000760	М	Pd	<	0.001600	М	Te	<	0.000760				
0	Ca		0.004616	8	In	<		М	Pr	<	0.000760	М	Th	<	0.000760				
M	Cd	<	0.000760	М	lr	<	0.000760	M	Pt	<	0.000760	0	π	<	0.001100				
М	Ce	<	0.000760	0	K		0.007078	М	Rb	<	0.000760	М	TI	<	0.000760				
М	Co	<	0.000760	М	La	<	0.000760	М	Re	<	0.000760	М	Tm	<	0.000760				
0	Сг	<	0.001300	0	Li	<	0.000130	М	Rh	<	0.000760	М	U	<	0.000760				
М	Cs	<	0.000760	М	Lu	<	0.000760	М	Ru	<	0.000760	М	٧	<	0.001600				
М	Cu	<	0.003800	0	Mg		0.000707	n	S	<		М	W	<	0.001600				
М	Dy	<	0.000760	0	Mn		0.000149	M	Sb	<	0.000760	М	Υ	<	0.000760				
М	Er	<	0.000760	М	Мо	<	0.002300	М	Sc	<	0.000760	M	Yb	<	0.000760				

n - Not Checked For s - Solution Standard Element

M - Checked by ICP-MS O - Checked by ICP-OES

i - Spectral Interference

INTENDED USE 6.0

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 114.82 +3 6 In(H2O)6+3 Chemical Compatibility -Soluble in HCl, HNO3, and H2SO4. Avoid neutral and basic media. Stable with most metals and inorganic anions. The oxalate, sulfide, carbonate, hydroxide and phosphate are insoluble in water.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

In Containing Samples (Preparation and Solution) -Metal (Best dissolved in HCl / HNO3); Oxide (Soluble in mineral acids); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Sulfuric/peroxide digestion or dry ash and dissolution in dilute HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 115 amu	1 ppt	n/a	115Sn, 99Ru16O
ICP-OES 158.583 nm	0.05 / 0.002 μg/mL	1	
ICP-OES 230.606 nm	0.1 / 0.03 μg/mL	1	Ni, Os
ICP-OES 325.609 nm	0.2 / 0.05 μg/mL	1	Mn, Mo, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 21, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 21, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

0 I TOT D 0	na Datas	
- Sealed TCT Bag Ope	en Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

20178hi

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com R: 2/22/2024 M5999 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CLPP-SPK-1

Lot Number:

T2-MEB721963

Matrix:

7% (v/v) HNO3

Value / Analyte(s):

2 000 µg/mL ea:

Aluminum,

Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Manganese,

Nickel, Zinc,

Vanadium,

Cobalt,

250 µg/mL ea:

Copper,

200 µg/mL ea: Chromium,

50 µg/mL ea:

Beryllium,

ium, Silver

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE 2 000 ± 7 µg/mL 2 000 ± 9 µg/mL Aluminum, Al Barium, Ba Beryllium, Be 50.00 ± 0.26 µg/mL Chromium, Cr 200.0 ± 1.1 µg/mL 500.0 ± 2.4 µg/mL Cobalt, Co Copper, Cu 250.0 ± 1.0 µg/mL Iron, Fe 1 000 ± 4 µg/mL 500.0 ± 2.0 µg/mL Manganese, Mn Nickel, Ni 500.0 ± 2.2 µg/mL Silver, Ag 50.00 ± 0.22 µg/mL 500.0 ± 2.2 μg/mL 500.0 ± 2.2 µg/mL Vanadium, V Zinc, Zn

Density:

1.070 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Ag	Calculated		See Sec. 4.2
Al	ICP Assay	3101a	140903
Al	EDTA	928	928
Ba	ICP Assay	3104a	140909
Ba	Gravimetric		See Sec. 4.2
Be	ICP Assay	3105a	090514
Be	Calculated		See Sec. 4.2
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i)(X_i)$

 X_i = mean of Assay Method i with standard uncertainty $u_{char\ i}$

 $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{\mathrm{char}\,i})^2/(\Sigma(1/(u_{\mathrm{char}\,i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

u_{char a} = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (‡) = $U_{CRM/RM} = k (u^2_{char a} + u^2_{bb} + u^2_{lts} + u^2_{bs})^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)
uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 27, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:	
-----------------------------	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

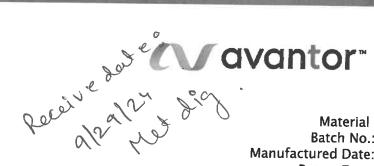
Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Paul R Line Chairman / Senior Technical Director

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com



R; 01/03/24 M6033 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->	1.006	2.016	m/z->	N O	5.0E6	m/z->	1.1.1.	2.5E5	6-6	5.0E5	Aluminum nitrate nonahydrate (Al)	Compound	Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Fyniret	Des	Fan Lot	CERTIFIED WEIGHT REPORT:
210			110			10				[1] Spectrum No.1	11	RM#	below was dilut	Number:	(µg/mL):	Storage:	Evniration Data:	Description:	Fart Number:	
220			120			20				_	IN022 ALM112021A1	Lot Number Co		6UTB	10000	Ambient (20 °C)	011636	Aluminum (Al)	011623)
230			130			30				5.014 sec]:	10000 99.999	Nominal Purity Conc. (µg/mL) (%)	2000.02 0.05	5E-0		<u>.</u>				
240			140			40				15.014 sec]:58113.D# [Count] [Linear]	9 0.10 7.30	Purity Uncertainty Assay (%) Purity (%) (%)	0.058 Flask Uncertainty	5E-05 Balance Uncertainty			2%		Solvent:	>
250			150			50				Count] [Line	0 273.9779	ay Target) Weight (g)		y		(1117)			it: 20510011	
260			160			60				»ar]	274.0078 1	Actual Weight (g) Con					Nitric Acid		Nitric Acid	
			170			70					10001.1 2	Actual Unce Conc. (µg/mL) +/- (Revi			Form	7	~e	7
			180			80					20.0 7784-27-2	Expanded (Si Uncertainty (Si +/- (µg/mL) CAS#		Reviewed By:	tach		Formulated By:	200 A contract	L'internation of	
			190			90					2 mg/m3	SUS Information blvent Safety Info. On Attac OSHA PEL (TWA)		Pedro L. Rentas	pena		Giovanni Esposito	(7	
			200			100						Attached		38	8		sito		e de	
											orl-rat 3671 mg/kg 3101a	pg.) NIST LD50 SRM		011623			011623			

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33

Batch No.: 22F0762009 Manufactured Date: 2022-05-10

Retest Date: 2027-05-09

Revision No.: 0

Certificate of Analysis

Test	Specification	Result	
ACS - Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6 %	
ACS - Color (APHA)	≤ 10	5	
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm	
ACS - Specific Gravity at 60°/60°F	1.185 - 1.192	1.190	
ACS - Bromide (Br)	≤ 0.005 %	< 0.005 %	
ACS - Extractable Organic Substances	≤ 5 ppm	< 1 ppm	
ACS - Free Chlorine (as Cl2)	≤ 0.5 ppm	< 0.5 ppm	
Phosphate (PO ₄)	≤ 0.05 ppm	< 0.03 ppm	
Sulfate (SO ₄)	≤ 0.5 ppm	< 0.3 ppm	
Sulfite (SO₃)	≤ 0.8 ppm	0.3 ppm	
Ammonium (NH4)	≤ 3 ppm	< 1 ppm	
Trace Impurities - Arsenic (As)	≤ 0.010 ppm	< 0.003 ppm	
Trace Impurities - Aluminum (Al)	≤ 10.0 ppb	0.8 ppb	
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 3.0 ppb	
Trace Impurities - Barium (Ba)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities - Beryllium (Be)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities – Bismuth (Bi)	≤ 10.0 ppb	< 1.0 ppb	
Trace Impurities - Boron (B)	≤ 20.0 ppb	< 5.0 ppb	
Trace Impurities – Cadmium (Cd)	≤ 1.0 ppb	< 0.3 ppb	
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	14.9 ppb	
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	< 0.4 ppb	
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	< 0.3 ppb	
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb	
Trace Impurities – Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities - Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb	
Trace Impurities - Gold (Au)	≤ 4.0 ppb	0.2 ppb	
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb	
Trace Impurities - Iron (Fe)	≤ 15 ppb	6 ppb	
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb	

>>> Continued on page 2 >>>

Material No.: 9530-33 Batch No.: 22F0762009

Test	Specification	Result	
Trace Impurities – Lead (Pb)	≤ 1.0 ppb	< 0.5 ppb	
Trace Impurities – Lithium (Li)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	0.8 ppb	
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb	
Trace Impurities - Mercury (Hg)	≤ 0.5 ppb	0.1 ppb	
Trace Impurities - Molybdenum (Mo)	≤ 10.0 ppb	< 3.0 ppb	
Trace Impurities ~ Nickel (Ni)	≤ 4.0 ppb	< 0.3 ppb	
Trace Impurities - Niobium (Nb)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities – Potassium (K)	≤ 9.0 ppb	< 2.0 ppb	
Trace Impurities – Selenium (Se), For Information Only		< 1.0 ppb	
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	1.0 ppb	
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb	
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	0.7 ppb	
Trace Impurities - Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	< 0.9 ppb	
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb	
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.8 ppb	
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	0.2 ppb	
Trace Impurities – Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb	
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.8 ppb	
Frace Impurities – Zirconium (Zr)	≤ 1.0 ppb	< 0.1 ppb	

Hydrochloric Acid, 36.5-38.0%
BAKER INSTRA-ANALYZED® Reagent
For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22F0762009

Test Specification Result

For Laboratory, Research, or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Nitric Acid 69% **CMOS**

Receive: Avantor

Material No.: 9606-03 Batch No.: 24B1362001

Manufactured Date: 2024-01-25 Retest Date: 2029-01-23

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO ₃)	69.0 ~ 70.0 %	69.6 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	< 1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities - Aluminum (AI)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	< 0.2 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities - Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24B1362001

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	3 par/ml
Particle Count – 1.0 µm and greater	≤ 10 par/ml	1 par/ml

Nitric Acid 69% **CMOS**

Material No.: 9606-03 Batch No.: 24B1362001

Test

Specification

Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Sr. Manager, Quality Assurance

Nitric Acid 69% **CMOS**

Receive: Avantor

Material No.: 9606-03 Batch No.: 24B1362001

Manufactured Date: 2024-01-25 Retest Date: 2029-01-23

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO ₃)	69.0 ~ 70.0 %	69.6 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	< 1 ppm
Chloride (Cl)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities - Aluminum (AI)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities - Calcium (Ca)	≤ 50.0 ppb	< 0.2 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities - Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24B1362001

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Potassium (K)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	< 10 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Sodium (Na)	≤ 150.0 ppb	< 5.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities – Tantalum (Ta)	≤ 10.0 ppb	< 5.0 ppb
Trace impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	3 par/ml
Particle Count – 1.0 µm and greater	≤ 10 par/ml	1 par/ml

Nitric Acid 69% **CMOS**

Material No.: 9606-03 Batch No.: 24B1362001

Test

Specification

Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Sr. Manager, Quality Assurance

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

R->16/13/24 Met dig

M 6/21

Material No.: 9530-33 Batch No.: 0000275677 Manufactured Date: 2020/12/16 Retest Date: 2025/12/15

Revision No: 1

Certificate of Analysis

Test	Specification	Result 37.6	
ACS - Assay (as HCl) (by acid-base titrn)	36.5 - 38.0 %		
ACS - Color (APHA)	<= 10	5	
ACS - Residue after Ignition	<= 3 ppm	1	
ACS - Specific Gravity at 60°/60°F	1.185 – 1.192	1.190	
ACS – Bromide (Br)	<= 0.005 %	< 0.005	
ACS - Extractable Organic Substances	<= 5 ppm	1	
ACS - Free Chlorine (as Cl2)	<= 0.5 ppm	< 0.5	
Phosphate (PO ₄)	<= 0.05 ppm	< 0.03	
Sulfate (SO ₄)	<= 0.5 ppm	< 0.3	
Sulfite (SO ₃)	<= 0.8 ppm	0.3	
Ammonium (NH ₄)	<= 3 ppm	< 1	
Trace Impurities – Arsenic (As)	<= 0.010 ppm	< 0.003	
Trace Impurities - Aluminum (Al)	<= 10.0 ppb	< 0.2	
Arsenic and Antimony (as As)	<= 5 ppb	< 3	
Trace Impurities – Barium (Ba)	<= 1.0 ppb	< 0.2	
Trace Impurities – Beryllium (Be)	<= 1.0 ppb	< 0.2	
Trace Impurities – Bismuth (Bi)	<= 10.0 ppb	< 1.0	
Trace Impurities – Boron (B)	<= 20.0 ppb	< 5.0	
Frace Impurities – Cadmium (Cd)	<= 1.0 ppb	< 0.3	
Frace Impurities – Calcium (Ca)	<= 50.0 ppb	29.7	
race Impurities – Chromium (Cr)	<= 1.0 ppb	< 0.4	
race Impurities – Cobalt (Co)	<= 1.0 ppb	< 0.4	
race Impurities – Copper (Cu)	<= 1.0 ppb	< 0.1	
race Impurities – Gallium (Ga)	<= 1.0 ppb	< 0.2	

Material No.: 9530-33 Batch No.: 0000275677

Test	Specification	Result	
Trace Impurities - Germanium (Ge)	<= 3.0 ppb	< 2.0	
Trace Impurities - Gold (Au)	<= 4.0 ppb	< 0.2	
Heavy Metals (as Pb)	<= 100 ppb	< 50	
Trace Impurities – Iron (Fe)	<= 15.0 ppb	<1	
Trace Impurities – Lead (Pb)	<= 1.0 ppb	< 0.5	
Trace Impurities – Lithium (Li)	<= 1.0 ppb	0.2	
Trace Impurities – Magnesium (Mg)	<= 10.0 ppb	0.4	
Trace Impurities – Manganese (Mn)	<= 1.0 ppb	< 0.4	
Trace Impurities – Mercury (Hg)	<= 0.5 ppb	0.1	
Trace Impurities – Molybdenum (Mo)	<= 10.0 ppb	< 5.0	
Trace Impurities – Nickel (Ni)	<= 4.0 ppb	< 0.3	
Trace Impurities – Niobium (Nb)	<= 1.0 ppb	< 0.2	
Frace Impurities – Potassium (K)	<= 9.0 ppb	< 2.0	
Frace Impurities - Selenium (Se), For Information Only	ppb	1.0	
Trace Impurities - Silicon (Si)	<= 100.0 ppb	< 10.0	
race Impurities – Silver (Ag)	<= 1.0 ppb	< 0.3	
race Impurities – Sodium (Na)	<= 100.0 ppb	< 5.0	
race Impurities – Strontium (Sr)	<= 1.0 ppb	< 0.2	
race Impurities – Tantalum (Ta)	<= 1.0 ppb	< 0.9	
race Impurities – Thallium (TI)	<= 5.0 ppb	< 2.0	
race Impurities – Tin (Sn)	<= 5.0 ppb	< 0.8	
race Impurities - Titanium (Ti)	<= 1.0 ppb	0.8	
race Impurities – Vanadium (V)	<= 1.0 ppb	< 0.2	
race Impurities – Zinc (Zn)	<= 5.0 ppb		
race Impurities – Zirconium (Zr)	<= 1.0 ppb	0.3 < 0.1	

For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications

Country of Origin:

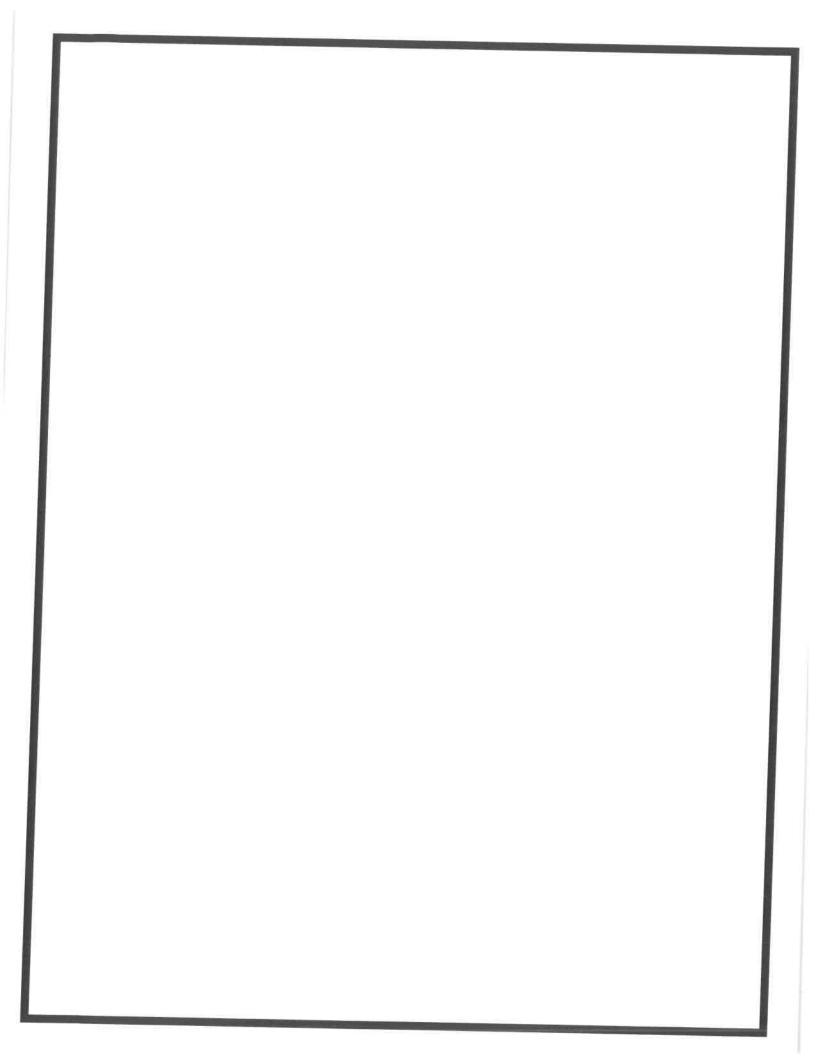
US

Packaging Site:

Phillipsburg Mfg Ctr & DC

M6125 Receive -> 11/22/24

CORCO CHEMICAL CORPORATION


Manufacturers of ACS Reagents and Semiconductor Grade Chemicals

Office and Plant 299 Cedar Lane Fairless Hills, PA 19030

Phone: 215-295-5006 Fax: 215-295-0781

Hydrogen Peroxide 30%, ACS Reagent Grade

SPECIFICATION	MAXIMUM LIMITS
Appearance	Colorless and free from suspended matter or sediment
Assay	29-32%
Color (APHA)	10
Residue after Evaporation	0.002%
Titratable Acid	0.0006 meq/g
Chloride (CI)	3 ppm
Nitrate (NO ₃)	2 ppm
Phosphate	2 ppm
Sulfate (SO ₄)	5 ppm
Ammonium (NH ₄)	5 ppm
Heavy Metals (as Pb)	1 ppm
Iron (Fe)	0.5 ppm

R -> 11/12/24

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO3)	69.0 – 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (CI)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities - Aluminum (AI)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Test Specification Result

For Microelectronic Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Cloak

Director Quality Operations, Bioscience Production

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

58111 122223

Sodium (Na)

Lot Number: Description:

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000

Weight shown below was diluted to (mL):

3000.4

0.06 Flask Uncertainty 5E-05 Balance Uncertainty

RW#

Number Lot

Nominal

Purity

Uncertainty Assay Purity (%)

Target

Actual

8

38

Recommended Storage:

Ambient (20 °C)

122226

Expiration Date:

Lot # M5807

Solvent:

24002546 Nitric Acid

2%

60.0 (III)

Nitric Acid

Formulated By: 13827 P Aleah O'Brady Back

Reviewed By: Pedro L. Rentas

122223

22223

Actual Uncertainty Expanded (Solvent Safety Info. On Attached pg.) **SDS Information** TSIN

CAS#

SE

1. Sodium nitrate (Na) IN036 NAV01201511 Conc. (µg/mL) 10000 98.999 0.10 26.9 111.5406 Weight (g) Weight (g) Conc. (µg/mL) 111.5479 10000.7 +/- (µg/mL) 20.0 7631-99-4 OSHA PEL (TWA) 5 mg/m3 ori-rat 3430 mg/kg 3152a

1 m/z-> 17/z-Y m/z-> N.5E6 5.0E6 2.5E6 5.0E6 2.5E5 5.0E5 [1] Spectrum No.1 210 110 0 220 120 NO. [8.935 sec]:58111.D# [Count] [Linear] 130 230 30 140 240 6 150 250 50 160 260 0 170 70 180 80 190 90 100 200

Part # 58111

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	AS BE BE	
	40.2 40.2 40.2 40.0 40.0 40.0 40.0 40.0	
	585855	
	40.02 40.02 40.02 40.02 40.02 40.02	
	₹ 안 안 집 때 다 것	
	4422	
	27. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Trace M
	Mo Mg Li	fetals
(T) = Tar	442 442 442 442 442 442 442 442 442 442	Verifica
) = Target analyte	N N O B o K N	ation
ılytе	4000 4000 4000 4000 4000 4000	by ICP-
	S R R R R	NO C
	400000000000000000000000000000000000000	(m/)
	T _a S ₇ S ₈	
	402 402 402 402 402	
	in Signation in the state of th	ı
	40.02 40.02 40.02 40.02	

	600000000000000000000000000000000000000	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: 57051 120523 BTU9 1000 120526 Ambient (20 °C) Antimony (Sb) 3000.41 0.058 5E-05 Flask Uncertainty Balance Uncertainty 24002546 Lot # 2.0% M.5802 Nitric Acid Solvent: 0.00 MSBOS Nitric Acid Formulated By: Reviewed By: Pedro L. Rentas Lawrence Barry 120523 120523

1. Antimony (Sb)

58151

100923

0.1000

300.0

1000

10001.4

1000.0

7440-36-0

0.5 mg/m3

orl-rat 7000 mg/kg 3102a

Number Part

Number Ď

Vol. (ml.)

Pipette (ml.) Conc. (µg/ml.)

Conc. (µg/mL)

Conc. (µg/ml.)

+/- (µg/mt.) Uncertainty Expanded

CAS#

(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

SRM NIST SDS Information

Final

Dilution Factor

Initial

Uncertainty

Nominal

Compound

-2/m	1.057	m/z-> 2.0E7	2. 6 8	5.0E5	2.0 E	6.OE6
				the state of the s		
210		10		ō		
220		±		N		
0		N		N		
230		130		30		
240		.d.				
		140		ò		
0		180		50		
N O						
0		180		9		
		170		70		
		180		8 .		
		190		8		
				Constitution or section of the control of the contr		
		200		100		

Part # 57051

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	-	Г	_					_					II	Ĭ	-	-
		9	9	<u></u>	Б е	_	8	2		00	2	2	Ì	ı		
		70.0>	2 1	2	10.05	0.00	2	20.7	3	-	ł	∆0.02				
		2	2 8	3	다	(ٽ ح	ς	2	೭		2				
		20.02	600	3	88	1000	3	70.02	3	<u>6</u> 2	2000	A0,02				
	İ	All	- G	9	වූ	٤	5	臣	1	Ę	-	Ų				
		∆ 022	70.02	3	A)02	20.02	3	40,02		∆ 002	********	A003				
		3	2	1	ď,	=	7	5		Ho		HF.				
		₽	20.02	3 1	40.2	20.02		& .02	-	200	40.04	43	MANAGEMENT OF THE PARTY OF THE	11.000	T SC V	
		Z	Mo	:	T.	MD	;	Z o	L	=	Ī		Medical Control	i de calle	240	
(T) = Tamet analyte		40.00	20.02		<u> </u>	40.02	, ,	<u>&</u>	2000	2	20.02	2000		ACHIE	Corifica	
	Ŀ	~	7		0	Pd	1 1	ဂ္ဂ	740	Ş	N			CIOIL	3.	
akao	20.6	3	40,02	20.00	3	A)02	-	A) (2)	2000	3	20.02	200		wy INF		
	Ę	ç	Sin	NII.	D.	\$	1	2	N	9	7			JO CH	2	
	20.02	3	\$0.03 \$10.00	20.02	3	∆ 0,02	70.02	3	20.02	3	20,52			9/ IIIL/	2	
	Ē	3	S	K	2	Z	200	<u> </u>	2	2	ď					١
	20.05	3	A 0.02	20.02		2	70.02	2	20,02	3	۵					
		3 1	S	m	1	=	11	3	Te		7	۱				ı
	20.02		A 33	40.02	20:02	3	20.02	8	20.02		0.02					
	122	1	7 _n	7		ş	<	;	_ _		W					
	<0.02	10.01	3	800	20.02	3	20.02		8,82	******	200	No. of the last of				

(1) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Printed: 1/16/2024, 3:48:48 PM

Part # 57051

Lot # 120523

Certified Reference Material CRM

M6030

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

R = 8 | 5 | 24

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

800-368-1131

Absolute Standards, Inc.

Part Number: Solvent: 24002546 Lot # Nitric Acid

Lot Number: Description: 57047 122823 Silver (Ag)

Recommended Storage: **Expiration Date:** 1000 122826

Weight shown below was diluted to (mL): 4000.30

1. Silver nitrate (Ag)

IN035 J0612AGA1

1000.0

0.10

63.7

6.27992

6.27998

1000.0

2.0

7761-88-B

10 ug/m3

Z

3151

Nominal Concentration (µg/mL): NIST Test Number: **6UTB** Ambient (20 °C) 0.058 Flask Uncertainty 5E-05 Balance Uncertainty

2% <u>E</u> 80.0 Nitric Acid

Formulated By:

Benson Chan

122823

122823

Reviewed By: Pedro L. Rentas

Compound RM# Number 헏 Conc. (µg/mL) Nominal Purity Uncertainty Assay 8 Purity (%) 38 Weight (g) Target Weight (g) Conc. (µg/mL) Actual Actual +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) SDS Information NIST SRM

m/z-> m/z-> W-2/m 5.0E6 5.0E5 1.0≡6 2.5E6 5.0E6 1.0€7 [1] Spectrum No.1 210 110 0 120 NNO NO [14.044 sec]:58147.D# [Count] [Linear] 230 130 30 140 240 ò 150 250 50 260 160 00 170 0 180 0 190 000 200 100

www.absolutestandards.com

							race Me	letals	Verificat	tion	by ICP-I	S	μ g/mL)						
No.	Will Will Street						The No. of the												
Ą	<0.02	${\mathfrak L}$	<0.02	Dy	<0.02	H	<0.02	Ľ	<0.02	Z	<0.02	7	<0.02	Se	40.2	귱	<0.02	W	<0.02
Sb.	<0.02	င္က	40.2	咭	40.02	Но	<0.02	Ľ.	<0.02	¥	40.02	Re	∆ 0.02	S:	6 .02	근	∆ .02	┙	40.02
As	40.2	င္စ	<0.02	땰	40.02	'n	<0.02	Mg	<0.01	တ္တ	40.02	Rh.	<0.02	Ag	1	∄	∆ 0.02	<	<0.02
Ва	<0.02	రి	40,02	82	<0.02	듁	40.02	Mn	40.02	Pd	<0.02	25	40.02	Z	4 0.2	∄	<u>\$</u>	상	<0.02
Ве	40.01	Ω	<0.02	හු	<0.02	ਲ	40.2	Hg	40.2	P	40.02	Ru	∆ 0.02	Ş,	A0.02	Ħ	<0.02	Κ.	<0.02
₿.	<0.02	င္ပ	<0.02	႙ၟ	<0.02	2	<0.02	Mo	<0.02	77	∆ .02	Sm	40.02	Ś	40.02	S	A).02	Zn	A) ()2
В	<0.02	Cî	<0.02	Au	<0.02	РЬ	<0.02	Z	<0.02	×	40.2	ç	40.02	교	<0.02	Ħ	40.02	72	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R: 03/16/23 MS473 MS474, MS475, MS Lot #

CERTIFIED WEIGHT REPORT:

Part Number:

56138 082922

Solvent: 20510011

Nitric Acid

2% 20.0 Nitric Acid

<u>P</u>

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Recommended Storage:

Ambient (20 °C) 082925

Expiration Date:

Description: Lot Number:

Strontium (Sr)

Weight shown below was diluted to (mL):

1000.12

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

> Formulated By: Lawrence Barry

Pedro L. Rentas

Reviewed By:

082922

082922

SDS Information (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

SRM SRM

10042-76-9 Ι₹ orl-rat >2000mg/kg 3153a

Strontium nitrate (Sr

IN017 SRZ022018A1

10000

99.997

0.10

41.2

24.2756 Weight (g)

24.2758

10000.1

20.0

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g) Conc. (µg/mL) +/- (µg/mL)

CAS#

Uncertainty

Expanded

닭

Nominal

Purity Uncertainty Assay

m/z-> m/z-> M/z-> 2.5E6 5.0E6 5.0E5 1.0E6 2.5 € 6 5.0E6 [1] Spectrum No.1 210 110 10 220 120 20 [14.495 sec]:58138.D# [Count] [Linear] 230 130 30 140 240 40 250 150 50 260 160 60 170 0 80 190 90 200 100

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

П				П		Ш	Trace Me	tals	Verifica	tion	by ICP-	S	μg/mL)	Н					
				I		i				ı	8	ı		۱					
Α	<0.02	${\mathfrak S}$	<0.02	Dу	<0.02	H	<0.02	Ľ.	40.02	<u>Z</u> .	<0.02	P.	<0.02	Se	<0.2	4T	<0.02	¥	<0.02
SЬ	<0.02	က္အ	<0.2	缸	△0.02	Но	<0.02	Lu	<0.02	子	<0.02	Re	<0.02	Si	<0.02	Te	∆ 0.02	Ϥ	<0.02
As	<0.2	ප	<0.02	땹	<0.02	F	<0.02	Mg	<0.01	္တ	<0.02	₽	<0.02	Ag	<0.02	∄	<0.02	<	<0.02
Ва	<0.02	స	<0.02	ନ୍ଦ	<0.02	ī	<0.02	M	<0.02	Pd	<0.02	₽ B	<0.02	N ₂	<0.2	∄	<0.02	4	<0.02
Be	<0.01	ζ	△0.02	ନ୍ଥ	<0.02	듔	<0.2	Нg	<0.2	Р	<0.02	ᇟ	<0.02	Sr	Ţ	Tm	<0.02	~	<0.02
Bi	40.02	င္ပ	<0.02	Ge	<0.02	La	<0.02	Μo	<0.02	뫈	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	Zn	<0.02
В	<0.02	₽ C	<0.02	Au	<0.02	Рь	<0.02	Nd	40.02	×	<0.2	Sc	<0.02	Ta	<0.02	∄	<0.02	Zr	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R: 03/16/23 MS473 MS474, MS475, MS Lot #

CERTIFIED WEIGHT REPORT:

Part Number:

56138 082922

Solvent: 20510011

Nitric Acid

2% 20.0 Nitric Acid

<u>P</u>

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 10000 Recommended Storage:

Ambient (20 °C) 082925

Expiration Date:

Description: Lot Number:

Strontium (Sr)

Weight shown below was diluted to (mL):

1000.12

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

닭

Nominal

Purity Uncertainty Assay

Formulated By: Lawrence Barry

Pedro L. Rentas

Reviewed By:

082922

082922

SDS Information (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

CAS#

LD50 SRM SRM

Strontium nitrate (Sr IN017 SRZ022018A1 10000 99.997 0.10 41.2 24.2756 24.2758

10000.1

Weight (g) Conc. (µg/mL) +/- (µg/mL)

Uncertainty

Expanded

20.0

10042-76-9

Ι₹

orl-rat >2000mg/kg 3153a

M/z-> 5.0E5 1.0E6 2.5 € 6 5.0E6 [1] Spectrum No.1 10 20 [14.495 sec]:58138.D# [Count] [Linear] 30 40 50 60 0 80 90 100

m/z->

210

220

230

240

250

260

2.5E6

m/z->

110

120

130

140

150

160

170

190

200

5.0E6

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

П				П		Ш	Trace Me	tals	Verifica	tion	by ICP-	S	μg/mL)	Н					
				I		i				ı	8	ı		۱					
Α	<0.02	${\mathfrak S}$	<0.02	Dу	<0.02	H	<0.02	Ľ.	40.02	<u>Z</u> .	<0.02	P.	<0.02	Se	<0.2	4T	<0.02	¥	<0.02
SЬ	<0.02	က္အ	<0.2	缸	△0.02	Но	<0.02	Lu	<0.02	子	<0.02	Re	<0.02	Si	<0.02	Te	∆ 0.02	Ϥ	<0.02
As	<0.2	ප	<0.02	땹	<0.02	F	<0.02	Mg	<0.01	္တ	<0.02	₽	<0.02	Ag	<0.02	∄	<0.02	<	<0.02
Ва	<0.02	స	<0.02	ନ୍ଦ	<0.02	ī	<0.02	M	<0.02	Pd	<0.02	₽ B	<0.02	N ₂	<0.2	∄	<0.02	4	<0.02
Be	<0.01	ζ	△0.02	ନ୍ଥ	<0.02	듔	<0.2	Нg	<0.2	Р	<0.02	ᇟ	<0.02	Sr	Ţ	Tm	<0.02	~	<0.02
Bi	40.02	င္ပ	<0.02	Ge	<0.02	La	<0.02	Μo	<0.02	뫈	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	Zn	<0.02
В	<0.02	₽ C	<0.02	Au	<0.02	Рь	<0.02	Nd	40.02	×	<0.2	Sc	<0.02	Ta	<0.02	∄	<0.02	Zr	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 56138

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M6023

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

		Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Expiration Date:		Description:	Lot Number:	Part Number:	CERTIFIED WEIGHT REPORT:
Lot		ted to (mL):	8TUB	1000	Ambient (20 °C)	062727		Thalllum (TI)	062724	57081	
Nominal		2000.1			၀ (၄)						
Purity Uncertainty Assay		0.10 Flask Uncertainty	5E-05 Balance Uncertainty				2%			Solvent:	
Target						(mL)	40.0			Solvent: 24002546	Lot #
Actual							Nitric Acid			Nitric Acid	
Actual											
Uncertainty	Expanded		Reviewed By:	Juna	1		Formulated By:	4	TO ST	>	
(Solvent Safety Info. On Attached pg.)	SDS Information		Pedro L. Rentas	" human	A A		Aleah O'Brady	0	San O To asign	7	
ched pg.) NIST			062724				062724			,	
7											

RW#

Number

Conc. (µg/mL) (%)

Purity (%) (%)

Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

~-Z/III	5.0E5	1.0E6	m/z->	5000	1.0€4	1.0E6	2.0E6	
N			-1				El opegrum No.	
210			10		ö		3	
220			120		N O			
							4 0	
230			130		9		[]4.044 sec]:57081.D# [Count] [Linear]	
240			<u> </u>		4		57081.	
ō			140		40		<u> </u>	
250			1		OI.		in order	
							000000000000000000000000000000000000000	
N			160		60			
			4		70			
			170		0			
			180		80			100
			190		90			or any
			200		100			
			ŏ		ŏ			See all see al
								0

Part # 57081

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		ᄧ	10	Ħ.	Ве	, to	ಸ ತ	AS		Sb		<u>></u>		Ī		
		40.02	20.02	3	<u>6</u> .01	70.02	3	4.6	5	<u> </u>		A) 02				
	ŀ	ဂ္	8)	ç	Ç	,	g	<u> </u>	ري و	-	2		l		
		40.02	20.02		A).03	20.03	3	40.02		<u>ه</u>	10.01	20.02				
		A	Ç,	9	<u>.</u>	Ga	2	ᄪ	1 1	Į	5	7	A PROPERTY OF			
	20,02	3	40.02	0.01	3	20.02	3	∆ 0.02		200	10.04	2000	CATALOGUE SANCES			
	100	ğ	Į,	,	<u>.</u>	Ę	•	ď	110	ᄪ	121	321			_	
	70.02	3	∆ 0.02	ć	2	40.02		∆ .02	20.02	3	20.02	200		ומכפ ויונ	TOO M	
		Ž	Mo	21.1	Ę	M	q	Mg	100	T 21	E			cais	7	
(T) = Target analyte	20.02	3	& 20.02	7.0	5	40.02		<u>A</u>	20.02	3	20.02	200		ACHILLA	くのいかい	
et anal	F	4 .	7	7	,	Pd	Ş	ခွ	IND	ź	2		8	ונוטוו	÷.	
yte	2.05	b	<u>\$</u>	20,02	Š	<0.02	10,02	3	20.02	3	<0.02			Dy ICE-	3	
	Sc	,	S E	X.	,	2	1	P.	Ke	;	7			WU C	20	
	40.02	20:02	200	40.02		<0.02	10.04	3	20.02	2	<u>ه</u>			ug/mL)		
	Ta	,	<i>n</i>	Si		ž	3	<u> </u>	S	?	လ လ		I			
	40,02	40.04	3	A).02	i	40.2	20.03	3	∆ 0.02	· i	A).2					
	11	011	?	ď	ŀ	#	1.1	1	Te		7					
	40.02	70.02	3	40.02	40.04	AD 03	_	3	<u>6</u> ,02	60.00	<0.03					
	Zr	112	7	×	ć	ş	<	ă Y	_ _		W.	Talenta Commission				
	40.02	20.02	3	∆ 0.02	70.02	3	∆ .02		A 0.02	20.02	28	TOTAL CONTRACTOR AND ADDRESS OF THE PARTY OF				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M6021

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT Part Number: Lot Number: 57023 062424 24002546 Nitric Acid Solvent:

Nitric Acid

Ambient (20 °C) 2.0% (III) 40.0

Formulated By:

Aleah O'Brady

062424

ASSET O DE LONG

Recommended Storage:

Expiration Date:

062427

Description:

Vanadium (V)

Nominal Concentration (µg/mL): Volume shown below was diluted to (mL): **NIST Test Number: 6UTB** 1000 2000.3 5E-05 0.06 Balance Uncertainty Flask Uncertainty Reviewed By:

Pedro L. Rentas

062424

Ammonium metavanadate (V) Compound 58123 Number Part 021224 Number D D 0.1000 Dilution Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) 200.0 Initial Uncertainty 0.084 Nominal 1000 Conc. (µg/mL) Conc. (µg/mL) 10000.3 nitial 1000.0 Final +/- (µg/mL) Uncertainty Expanded 22 7803-55-6 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) 0.05 mg/m3 **SDS Information** orl-rat 58.1mg/kg LD50 3165 NIST SRM

7/2	P. 50 M. 50 M. 50	m/z->- 5,0E8	1.0E7	m/z->	1.0E6	2.006
210		110		0		
220		1 20		N.		
Ö		Ö		O		
N G O		130		90		
N:						
200		140		0		
N 50		50		50		
B4						ı
260		160		60		
		170		70		
		d .		80		
		190		90		
		200		100		

Part # 57023

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	E	В	Ве	Ba	AS	00	2 2	Δ		
	40,02	A),02	40.01	40.02	40.2	20.02	200	A		
	5	ပ	유	సి	င်) [2	۶ د	2		
	40.02	40,02	<0.02	40.02	40.02	40.2	20.02	3		
	Au	ဂ္ဂ	స్ట	හු	Ē	乓	Ş			
	40.02	40.02	40,02	40.02	40.02	<0.02	20.02			
	3	<u>.</u>	737	5	급	Но	H	1		
	40.02	40.02	40,2	0.02	₫.02	40.02	40.02		Irace M	
	폽	Mo	He	Mn	Mg	댭	Σ		etals	
(T) = Target analyte	40.02	40.02	402	40,02	10.0>	40.02	40.02		Verifica	
et analy	~	¥	P	2	ဝွ	7	Z	S. St. St.	tion	
6	A0,2	A 20.02	A).02	A).02	₫.02	<0.02	0.02	DESIGNATIONS OF	oy ICP-N	
	Sc	Sm	7	공	2	Re	7		is (vc	
	40.02	A (A :	40.02	A.02	<0.02	<0.02		/mL)	
	ng (so s	?	Z,	Ag	Si	æ			l
	40.02	A 6	3 1	40.2	A).02	8.02	<0.2			
	# 1	8	1	3	=	F.	4T			
	40.02	A 6.2	5 6 6	3	A)02	40.02	∆ 0.02			
	27	7,	< 5	\$.	<	a	¥	SPECIAL SECTION OF SEC		
	6.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	2 6	3 6	§ .	-3	A 0.02	<0.02	THE REAL PROPERTY.		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).