

SDG NARRATIVE

USEPA
SDG # ME28N9
CASE # 51847
CONTRACT # 68HERH20D0011
SOW# SFAM01.1
LAB NAME: Alliance Technical Group, LLC
LAB CODE: ACE
LAB ORDER ID # P5154

A. Number of Samples and Date of Receipt

19 Soil samples were delivered to the laboratory intact on 12/06/2024.

B. Parameters

Test requested for Metals CLP12 = Aluminum, Calcium, Iron, Magnesium, Potassium, Sodium & Mercury, Cyanide.

Test requested for Metals CLP MS FULL = Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc

C. Cooler Temp

Indicator Bottle: Presence/Absence

Cooler: 2.4°C, 2.0°C, 2.1°C

D. Detail Documentation (related to Sample Handling Shipping, Analytical Problem, Temp of Cooler etc):

Issue 1: A "P" or "M" prefix was listed at the beginning of a CLP sample ID.

E. Corrective Action taken for above:

Resolution 1: To maintain COC integrity, ASB requests no changes to the Sample IDs. The laboratory will note the issue in the SDG Narrative and proceed with the analysis of the samples.

F. Analytical Techniques:

All analyses were based on CLP Methodology by method SFAM01.1.

Inter Element correction factors (IECs) are determined annually and correction factor are applied during

284 Sheffield Street Mountainside, NJ 07092

ICP-AES analysis.

G. Calculation:

Calculation for ICP-AES Soil Sample:

Conversion of Results from mg/L or ppm to mg/kg (Dry Weight Basis):

Concentration (mg/kg) =
$$\begin{array}{ccc} C & x & \underline{Vf} & x & DF \\ \hline W & x & S \end{array}$$

Where,

C = Instrument value in ppm (The average of all replicate exposures)

Vf = Final digestion volume (mL)

W = Initial aliquot amount (g) (Sample amount taken in prep)

S = % Solids / 100 (Fraction of Percent Solids)

DF = Dilution Factor

Example Calculation For Sample ME28N9 For Aluminum:

If
$$C = 64.16558 \text{ ppm}$$

$$Vf = 100 \text{ ml}$$

$$W = 1.05g$$

$$S = 0.787(78.7/100)$$

$$DF = 1$$

Concentration (mg/kg) =
$$64.16558 \text{ x} \underline{100} \text{ x } 0.787 \text{ x } 1$$

= 7800 mg/kg (Reported Result with Signification)

Calculation for ICP-MS Soil Sample:

Conversion of Results from µg /L or ppb to mg/kg:

Concentration (mg/kg) =
$$\begin{array}{ccc} C & x & \underline{Vf} & x & DF / 1000 \\ \hline W & x & S \end{array}$$

Where,

C = Instrument value in ppb (The average of all replicate integrations)

Vf = Final digestion volume (mL)

W = Initial aliquot amount (g) (Fraction of Sample amount taken in prep)

S = % Solids / 100 (Fraction of Percent Solids)

DF = Dilution Factor

284 Sheffield Street Mountainside, NJ 07092

Example Calculation For Sample ME28N9 For Arsenic:

If C = 15.82 ppb
Vf = 500 ml
W = 1.39 g
S = 0.787 (78.7/100)
DF = 1
Concentration (mg/kg) = 15.82 x
$$\frac{500}{1.39 \times 0.787}$$
 x 1 / 1000
= 7.2308100 mg/kg

= 7.2 mg/kg (Reported Result with Signification)

Calculation for Hg Soil Sample:

Conversion of Results from µg /L or ppb to mg/kg:

Concentration (mg/kg) =
$$C \times Vf \times DF / 1000$$

W x S

Where,

C = Instrument response in μ g/L from the calibration curve.

Vf = Final prepared (absorbing solution) volume (mL)

W = Initial aliquot amount (g) (Fraction of Sample amount taken in prep)

S = % Solids / 100 (Fraction of Percent Solids)

DF = Dilution Factor

Example Calculation For Sample ME28N9:

$$\begin{split} &\text{If C} &= 0.2458 \text{ ppb} \\ &\text{Vf} = 100 \text{ mL} \\ &\text{W} &= 0.58g \\ &\text{S} &= 0.787(78.7/100) \\ &\text{DF} = 1 \end{split}$$

Concentration (mg/kg) =
$$0.2458 \text{ x} \frac{100}{0.58 \text{ x } 0.787} \text{ x } 1 / 1000$$

= 0.05384 mg/kg

= 0.054 mg/kg (Reported Result with Signification)

Calculation for CN Soil Sample:

Conversion of Results from μg /L or ppb to mg/kg:

$$Concentration (mg/kg) = C x Vf Vf DF / 1000$$

$$W x S$$

Where,

C = Instrument response in μ g/L CN from the calibration curve.

Vf = Final prepared (absorbing solution) volume (mL)

W = Initial aliquot amount (g) (Fraction of Sample amount taken in prep)

S = % Solids / 100 (Fraction of Percent Solids)

DF = Dilution Factor

Example Calculation For Sample ME28P3:

$$\begin{split} &\text{If C} &= 3.8014 \text{ ppb} \\ &\text{Vf} = 50 \text{ ml} \\ &\text{W} &= 1.05 \text{ g} \\ &\text{S} &= 0.901(90.1/100) \\ &\text{DF} = 1 \end{split}$$

Concentration (mg/kg) =
$$3.8014 \text{ x} \frac{50}{1.05 \text{ x } 0.901} \text{ x } 1 / 1000$$

= 0.20090 mg/kg

= 0.2 mg/kg (Reported Result with Signification)

H. QA/QC

Calibrations met requirements. Interference check met requirements. Blank analyses did not indicate any presence of contamination. Laboratory Control sample was within control limits. Spike sample did meet requirements except for Copper, Nickel. Duplicate sample did meet requirements. Serial Dilution did meet requirements.

Internal standard 209Bi(1) was out Side qc limit for samples ME28Q4, ME28Q4S, ME28Q4D in Original so for these samples affected parameters are reported from 2X Dilution.

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

284 Sheffield Street Mountainside, NJ 07092

Internal Standard Association for ICP-MS analysis.

Target Analyte	Associated
	Internal Standard
Antimony	159Tb
Arsenic	89Y
Barium	159Tb
Beryllium	6Li
Cadmium	159Tb
Chromium	45Sc
Cobalt	45Sc
Copper	45Sc
Lead	209Bi
Manganese	45Sc
Nickel	45Sc
Selenium	89Y
Silver	159Tb
Thallium	209Bi
Vanadium	45Sc
Zinc	45Sc

I certify that the data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Signature	Name: Nimisha Pandya
Date.	Title: Document Control Officer