

DATA PACKAGE

VOLATILE ORGANICS GC SEMI-VOLATILES

PROJECT NAME : 1454 TO 1460 HADDON AVENUE, CAMDEN, NJ

JPCL ENGINEERING

41-14 29th Street

Long Island City, NY - 11101

Phone No: 917-985-0770

ORDER ID : P5194

ATTENTION : Paul Rotondi

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	4
2.1) VOC-TCLVOA-10- Case Narrative	4
2.2) Diesel Range Organics- Case Narrative	6
2.3) EPH- Case Narrative	8
3) Qualifier Page	10
4) QA Checklist	11
5) VOC-TCLVOA-10 Data	12
6) Diesel Range Organics Data	27
7) EPH Data	31
8) Shipping Document	43
8.1) CHAIN OF CUSTODY	44
8.2) Lab Certificate	45
8.3) Internal COC	46

Client Sample Number

Cover Page

- Order ID : P5194
- Project ID: 1454 to 1460 Haddon Avenue, Camden, NJ
 - Client : JPCL Engineering

Lab Sample Number

P5194-01UST-1P5194-02UST-2P5194-03WP-1P5194-04WP-2P5194-05WP-3P5194-06WP-4

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

APPROVED By Nimisha Pandya, QA/QC Supervisor at 2:58 pm, Dec 13, 2024

e: 12/13/2024

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

JPCL Engineering Project Name: 1454 to 1460 Haddon Avenue, Camden, NJ Project # N/A Chemtech Project # P5194 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

6 Solid samples were received on 12/06/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Diesel Range Organics, EPH and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_Y were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration File ID VY020560.D met the requirements except for Acetone is failing high and associate sample having hit of acetone but below CRQL therefore no corrective action taken.

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

By Nimisha Pandya, QA/QC Supervisor at 2:58 pm, Dec 13, 2024

APPROVED

Signature_

CASE NARRATIVE

JPCL Engineering Project Name: 1454 to 1460 Haddon Avenue, Camden, NJ Project # N/A Chemtech Project # P5194 Test Name: Diesel Range Organics

A. Number of Samples and Date of Receipt:

6 Solid samples were received on 12/06/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Diesel Range Organics, EPH and VOC-TCLVOA-10. This data package contains results for Diesel Range Organics.

C. Analytical Techniques:

The analysis were performed on instrument FID_G. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 13302. The analysis of Diesel Range Organics was based on method 8015D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for UST-1 [Tetracosane-d50 - 29%]but this sample was required dilution as well due to high concentration, therefore no further corrective action taken.

The Retention Times were acceptable for all samples.

The MS {P5194-02MS} with File ID: FG014973.D recoveries met the requirements for all compounds except for DRO[1056%] due to sample matrix interference.

The MSD {P5194-02MSD} with File ID: FG014974.D recoveries met the acceptable requirements except for DRO[1358%] due to sample matrix interference.

The RPD for {P5194-02MSD} with File ID: FG014974.D met criteria except for DRO[25%] due to difference in results of MS-MSD.

The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

Samples UST-1, UST-2 was diluted due to bad matrix.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

APPROVED

Signature_

By Nimisha Pandya, QA/QC Supervisor at 2:59 pm, Dec 13, 2024

2 2.3

CASE NARRATIVE

JPCL Engineering Project Name: 1454 to 1460 Haddon Avenue, Camden, NJ Project # N/A Chemtech Project # P5194 Test Name: EPH

A. Number of Samples and Date of Receipt:

6 Solid samples were received on 12/06/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Diesel Range Organics, EPH and VOC-TCLVOA-10. This data package contains results for EPH.

C. Analytical Techniques:

The analysis were performed on instrument FID_C. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analyses were performed on instrument FID_D. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis of EPHs was based on method NJEPH and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples.

The MS {P5194-01MS} with File ID: FC067989.D recoveries met the requirements for all compounds except for Aliphatic C16-C21[29%], Aliphatic C28-C40[157%]due to matrix interference.

The MSD {P5194-01MSD} with File ID: FC067990.D recoveries met the acceptable requirements except for Aliphatic C16-C21[26%], Aliphatic C28-C40[185%] due to matrix interference.

The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

2 2.3

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

By Nimisha Pandya, QA/QC Supervisor at 2:59 pm, Dec 13, 2024

Signature

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: P5194

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u>✓</u>
Is the chain of custody signed and complete	
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u>✓</u>
Collect information for each project id from server. Were all requirements followed	<u>✓</u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u>✓</u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>✓</u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>✓</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	$\frac{\checkmark}{\checkmark}$
Were the samples received within hold time	<u>✓</u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u>✓</u>
Was client requirement followed?	<u>✓</u>
Does the case narrative summarize all QC failure?	
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sl	ieet
SW-846	

		5	w-840				
P5194							В
JPCL Engineer	ring						С
							D
Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units	
WP-2							-
WP-2	SOIL	Acetone	17.3	J 7.40	29.5	ug/Kg	
		Total Voc :	17.3				
		Total Concentration:	17.3				
	JPCL Engineer Client ID WP-2	JPCL Engineering Client ID Matrix WP-2	P5194 JPCL Engineering Client ID Matrix WP-2 WP-2 SOIL Acetone Total Voc :	P5194 Image: Second	P5194 JPCL Engineering Client ID Matrix Parameter Concentration C MDL WP-2 SOIL Acetone 17.3 J 7.40 Total Voc : 17.3	JPCL Engineering Client ID Matrix Parameter Concentration C MDL RDL WP-2 SOIL Acetone 17.3 J 7.40 29.5 Total Voc :	P5194 JPCL Engineering Client ID Matrix Parameter Concentration C MDL RDL Units WP-2 SOIL Acetone 17.3 J 7.40 29.5 ug/Kg Total Voc: 17.3

A B C D

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-1	SDG No.:	P5194
Lab Sample ID:	P5194-03	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	97.4
Sample Wt/Vol:	4.67 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020575.D	1		12/10/24 17:43	VY121024	J

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
75-71-8	Dichlorodifluoromethane	1.80	U	1.80	5.50	ug/Kg
74-87-3	Chloromethane	1.30	U	1.30	5.50	ug/Kg
75-01-4	Vinyl Chloride	0.85	U	0.85	5.50	ug/Kg
74-83-9	Bromomethane	1.10	U	1.10	5.50	ug/Kg
75-00-3	Chloroethane	1.10	U	1.10	5.50	ug/Kg
75-69-4	Trichlorofluoromethane	1.00	U	1.00	5.50	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	1.20	U	1.20	5.50	ug/Kg
75-35-4	1,1-Dichloroethene	0.86	U	0.86	5.50	ug/Kg
67-64-1	Acetone	6.90	U	6.90	27.5	ug/Kg
75-15-0	Carbon Disulfide	1.40	U	1.40	5.50	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.74	U	0.74	5.50	ug/Kg
79-20-9	Methyl Acetate	2.00	U	2.00	5.50	ug/Kg
75-09-2	Methylene Chloride	3.70	U	3.70	11.0	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.92	U	0.92	5.50	ug/Kg
75-34-3	1,1-Dichloroethane	0.69	U	0.69	5.50	ug/Kg
110-82-7	Cyclohexane	0.76	U	0.76	5.50	ug/Kg
78-93-3	2-Butanone	6.20	U	6.20	27.5	ug/Kg
56-23-5	Carbon Tetrachloride	0.96	U	0.96	5.50	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.67	U	0.67	5.50	ug/Kg
74-97-5	Bromochloromethane	2.70	U	2.70	5.50	ug/Kg
67-66-3	Chloroform	0.74	U	0.74	5.50	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.86	U	0.86	5.50	ug/Kg
108-87-2	Methylcyclohexane	0.96	U	0.96	5.50	ug/Kg
71-43-2	Benzene	0.79	U	0.79	5.50	ug/Kg
107-06-2	1,2-Dichloroethane	0.67	U	0.67	5.50	ug/Kg
79-01-6	Trichloroethene	0.82	U	0.82	5.50	ug/Kg
78-87-5	1,2-Dichloropropane	0.73	U	0.73	5.50	ug/Kg
75-27-4	Bromodichloromethane	0.62	U	0.62	5.50	ug/Kg
108-10-1	4-Methyl-2-Pentanone	4.80	U	4.80	27.5	ug/Kg
108-88-3	Toluene	0.74	U	0.74	5.50	ug/Kg

P5194

5

C D

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-1	SDG No.:	P5194
Lab Sample ID:	P5194-03	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	97.4
Sample Wt/Vol:	4.67 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VY020575.D	1		12/10/24 17:43	VY121024

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.66	U	0.66	5.50	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.63	U	0.63	5.50	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.92	U	0.92	5.50	ug/Kg
591-78-6	2-Hexanone	5.30	U	5.30	27.5	ug/Kg
124-48-1	Dibromochloromethane	0.71	U	0.71	5.50	ug/Kg
106-93-4	1,2-Dibromoethane	0.87	U	0.87	5.50	ug/Kg
127-18-4	Tetrachloroethene	0.98	U	0.98	5.50	ug/Kg
108-90-7	Chlorobenzene	0.81	U	0.81	5.50	ug/Kg
100-41-4	Ethyl Benzene	0.68	U	0.68	5.50	ug/Kg
179601-23-1	m/p-Xylenes	1.50	U	1.50	11.0	ug/Kg
95-47-6	o-Xylene	0.77	U	0.77	5.50	ug/Kg
100-42-5	Styrene	0.66	U	0.66	5.50	ug/Kg
75-25-2	Bromoform	0.89	U	0.89	5.50	ug/Kg
98-82-8	Isopropylbenzene	0.74	U	0.74	5.50	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.20	U	1.20	5.50	ug/Kg
541-73-1	1,3-Dichlorobenzene	0.81	U	0.81	5.50	ug/Kg
106-46-7	1,4-Dichlorobenzene	0.88	U	0.88	5.50	ug/Kg
95-50-1	1,2-Dichlorobenzene	0.65	U	0.65	5.50	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.70	U	1.70	5.50	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	0.87	U	0.87	5.50	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	0.86	U	0.86	5.50	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	63.3		50 - 163	127%	SPK: 50
1868-53-7	Dibromofluoromethane	52.8		54 - 147	106%	SPK: 50
2037-26-5	Toluene-d8	50.8		58 - 134	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	46.1		29 - 146	92%	SPK: 50
INTERNAL STAL						
363-72-4	Pentafluorobenzene	97200	7.707			
540-36-3	1,4-Difluorobenzene	167000				
3114-55-4	Chlorobenzene-d5	147000	11.414			
3855-82-1	1,4-Dichlorobenzene-d4	59500	13.346			

5

C D

		Report of	Analysis	\$		
Client:	JPCL Enginee	ring		Date Collected:	12/05/24	
Project:	1454 to 1460 l	Haddon Avenue, Camden, NJ		Date Received:	12/06/24	
Client Sample ID:	WP-1			SDG No.:	P5194	
Lab Sample ID:	P5194-03			Matrix:	SOIL	
Analytical Method:	SW8260			% Solid:	97.4	
Sample Wt/Vol:	4.67 Ur	its: g		Final Vol:	5000	uL
Soil Aliquot Vol:		uL		Test:	VOC-TCLVO	A-10
GC Column:	RXI-624	ID: 0.25		Level :	LOW	
Prep Method :						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VY020575.D	1			12/10/24 17:43	VY121024	
AS Number Par	ameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-2	SDG No.:	P5194
Lab Sample ID:	P5194-04	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	94.3
Sample Wt/Vol:	4.5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020576.D	1		12/10/24 18:06	VY121024	J

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
75-71-8	Dichlorodifluoromethane	1.90	U	1.90	5.90	ug/Kg
74-87-3	Chloromethane	1.40	U	1.40	5.90	ug/Kg
75-01-4	Vinyl Chloride	0.91	U	0.91	5.90	ug/Kg
74-83-9	Bromomethane	1.20	U	1.20	5.90	ug/Kg
75-00-3	Chloroethane	1.20	U	1.20	5.90	ug/Kg
75-69-4	Trichlorofluoromethane	1.10	U	1.10	5.90	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	1.30	U	1.30	5.90	ug/Kg
75-35-4	1,1-Dichloroethene	0.92	U	0.92	5.90	ug/Kg
67-64-1	Acetone	17.3	J	7.40	29.5	ug/Kg
75-15-0	Carbon Disulfide	1.50	U	1.50	5.90	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.79	U	0.79	5.90	ug/Kg
79-20-9	Methyl Acetate	2.10	U	2.10	5.90	ug/Kg
75-09-2	Methylene Chloride	4.00	U	4.00	11.8	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.99	U	0.99	5.90	ug/Kg
75-34-3	1,1-Dichloroethane	0.74	U	0.74	5.90	ug/Kg
110-82-7	Cyclohexane	0.81	U	0.81	5.90	ug/Kg
78-93-3	2-Butanone	6.70	U	6.70	29.5	ug/Kg
56-23-5	Carbon Tetrachloride	1.00	U	1.00	5.90	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.72	U	0.72	5.90	ug/Kg
74-97-5	Bromochloromethane	2.90	U	2.90	5.90	ug/Kg
67-66-3	Chloroform	0.79	U	0.79	5.90	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.92	U	0.92	5.90	ug/Kg
108-87-2	Methylcyclohexane	1.00	U	1.00	5.90	ug/Kg
71-43-2	Benzene	0.85	U	0.85	5.90	ug/Kg
107-06-2	1,2-Dichloroethane	0.72	U	0.72	5.90	ug/Kg
79-01-6	Trichloroethene	0.88	U	0.88	5.90	ug/Kg
78-87-5	1,2-Dichloropropane	0.78	U	0.78	5.90	ug/Kg
75-27-4	Bromodichloromethane	0.66	U	0.66	5.90	ug/Kg
108-10-1	4-Methyl-2-Pentanone	5.10	U	5.10	29.5	ug/Kg
108-88-3	Toluene	0.79	U	0.79	5.90	ug/Kg

5

C D

P5194

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-2	SDG No.:	P5194
Lab Sample ID:	P5194-04	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	94.3
Sample Wt/Vol:	4.5 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VY020576.D	1		12/10/24 18:06	VY121024

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.71	U	0.71	5.90	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.67	U	0.67	5.90	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.99	U	0.99	5.90	ug/Kg
591-78-6	2-Hexanone	5.60	U	5.60	29.5	ug/Kg
124-48-1	Dibromochloromethane	0.77	U	0.77	5.90	ug/Kg
106-93-4	1,2-Dibromoethane	0.93	U	0.93	5.90	ug/Kg
127-18-4	Tetrachloroethene	1.00	U	1.00	5.90	ug/Kg
108-90-7	Chlorobenzene	0.87	U	0.87	5.90	ug/Kg
100-41-4	Ethyl Benzene	0.73	U	0.73	5.90	ug/Kg
179601-23-1	m/p-Xylenes	1.60	U	1.60	11.8	ug/Kg
95-47-6	o-Xylene	0.82	U	0.82	5.90	ug/Kg
100-42-5	Styrene	0.71	U	0.71	5.90	ug/Kg
75-25-2	Bromoform	0.95	U	0.95	5.90	ug/Kg
98-82-8	Isopropylbenzene	0.79	U	0.79	5.90	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.30	U	1.30	5.90	ug/Kg
541-73-1	1,3-Dichlorobenzene	0.87	U	0.87	5.90	ug/Kg
106-46-7	1,4-Dichlorobenzene	0.94	U	0.94	5.90	ug/Kg
95-50-1	1,2-Dichlorobenzene	0.70	U	0.70	5.90	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.80	U	1.80	5.90	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	0.93	U	0.93	5.90	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	0.92	U	0.92	5.90	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.3		50 - 163	115%	SPK: 50
1868-53-7	Dibromofluoromethane	50.7		54 - 147	101%	SPK: 50
2037-26-5	Toluene-d8	50.8		58 - 134	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	45.2		29 - 146	90%	SPK: 50
INTERNAL STAL						
363-72-4	Pentafluorobenzene	155000	7.707			
540-36-3	1,4-Difluorobenzene	268000	8.61			
3114-55-4	Chlorobenzene-d5	231000	11.414			
3855-82-1	1,4-Dichlorobenzene-d4	95000	13.347			

C D

		Report of	Analysis	8		
Client:	JPCL Engineer	ng		Date Collected:	12/05/24	
Project:	1454 to 1460 H	addon Avenue, Camden, NJ		Date Received:	12/06/24	
Client Sample ID:	WP-2			SDG No.:	P5194	
Lab Sample ID:	P5194-04			Matrix:	SOIL	
Analytical Method:	SW8260			% Solid:	94.3	
Sample Wt/Vol:	4.5 Uni	ts: g		Final Vol:	5000	uL
Soil Aliquot Vol:		uL		Test:	VOC-TCLVO	A-10
GC Column:	RXI-624	ID: 0.25		Level :	LOW	
Prep Method :						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VY020576.D	1			12/10/24 18:06	VY121024	
AS Number Para	ameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-3	SDG No.:	P5194
Lab Sample ID:	P5194-05	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	89
Sample Wt/Vol:	5.05 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020577.D	1		12/10/24 18:30	VY121024	J

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
75-71-8	Dichlorodifluoromethane	1.80	U	1.80	5.60	ug/Kg
74-87-3	Chloromethane	1.30	U	1.30	5.60	ug/Kg
75-01-4	Vinyl Chloride	0.86	U	0.86	5.60	ug/Kg
74-83-9	Bromomethane	1.10	U	1.10	5.60	ug/Kg
75-00-3	Chloroethane	1.10	U	1.10	5.60	ug/Kg
75-69-4	Trichlorofluoromethane	1.00	U	1.00	5.60	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	1.20	U	1.20	5.60	ug/Kg
75-35-4	1,1-Dichloroethene	0.87	U	0.87	5.60	ug/Kg
67-64-1	Acetone	6.90	U	6.90	27.8	ug/Kg
75-15-0	Carbon Disulfide	1.40	U	1.40	5.60	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.75	U	0.75	5.60	ug/Kg
79-20-9	Methyl Acetate	2.00	U	2.00	5.60	ug/Kg
75-09-2	Methylene Chloride	3.80	U	3.80	11.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.93	U	0.93	5.60	ug/Kg
75-34-3	1,1-Dichloroethane	0.70	U	0.70	5.60	ug/Kg
110-82-7	Cyclohexane	0.77	U	0.77	5.60	ug/Kg
78-93-3	2-Butanone	6.30	U	6.30	27.8	ug/Kg
56-23-5	Carbon Tetrachloride	0.97	U	0.97	5.60	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.68	U	0.68	5.60	ug/Kg
74-97-5	Bromochloromethane	2.70	U	2.70	5.60	ug/Kg
67-66-3	Chloroform	0.75	U	0.75	5.60	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.87	U	0.87	5.60	ug/Kg
108-87-2	Methylcyclohexane	0.97	U	0.97	5.60	ug/Kg
71-43-2	Benzene	0.80	U	0.80	5.60	ug/Kg
107-06-2	1,2-Dichloroethane	0.68	U	0.68	5.60	ug/Kg
79-01-6	Trichloroethene	0.83	U	0.83	5.60	ug/Kg
78-87-5	1,2-Dichloropropane	0.73	U	0.73	5.60	ug/Kg
75-27-4	Bromodichloromethane	0.62	U	0.62	5.60	ug/Kg
108-10-1	4-Methyl-2-Pentanone	4.80	U	4.80	27.8	ug/Kg
108-88-3	Toluene	0.75	U	0.75	5.60	ug/Kg

C D

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-3	SDG No.:	P5194
Lab Sample ID:	P5194-05	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	89
Sample Wt/Vol:	5.05 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VY020577.D	1		12/10/24 18:30	VY121024

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.67	U	0.67	5.60	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.63	U	0.63	5.60	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.93	U	0.93	5.60	ug/Kg
591-78-6	2-Hexanone	5.30	U	5.30	27.8	ug/Kg
124-48-1	Dibromochloromethane	0.72	U	0.72	5.60	ug/Kg
106-93-4	1,2-Dibromoethane	0.88	U	0.88	5.60	ug/Kg
127-18-4	Tetrachloroethene	0.99	U	0.99	5.60	ug/Kg
108-90-7	Chlorobenzene	0.82	U	0.82	5.60	ug/Kg
100-41-4	Ethyl Benzene	0.69	U	0.69	5.60	ug/Kg
179601-23-1	m/p-Xylenes	1.50	U	1.50	11.1	ug/Kg
95-47-6	o-Xylene	0.78	U	0.78	5.60	ug/Kg
100-42-5	Styrene	0.67	U	0.67	5.60	ug/Kg
75-25-2	Bromoform	0.90	U	0.90	5.60	ug/Kg
98-82-8	Isopropylbenzene	0.75	U	0.75	5.60	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.20	U	1.20	5.60	ug/Kg
541-73-1	1,3-Dichlorobenzene	0.82	U	0.82	5.60	ug/Kg
106-46-7	1,4-Dichlorobenzene	0.89	U	0.89	5.60	ug/Kg
95-50-1	1,2-Dichlorobenzene	0.66	U	0.66	5.60	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.70	U	1.70	5.60	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	0.88	U	0.88	5.60	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	0.87	U	0.87	5.60	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	59.5		50 - 163	119%	SPK: 50
1868-53-7	Dibromofluoromethane	51.5		54 - 147	103%	SPK: 50
2037-26-5	Toluene-d8	50.7		58 - 134	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	45.2		29 - 146	90%	SPK: 50
INTERNAL STAN						
363-72-4	Pentafluorobenzene	145000	7.707			
540-36-3	1,4-Difluorobenzene	255000	8.61			
3114-55-4	Chlorobenzene-d5	224000	11.414			
3855-82-1	1,4-Dichlorobenzene-d4	90600	13.347			

A

5

С

		Report o	f Analysis	5		
Client:	JPCL Enginee	ring		Date Collected:	12/05/24	
Project:	1454 to 1460 I	ładdon Avenue, Camden, NJ		Date Received:	12/06/24	
Client Sample ID:	WP-3			SDG No.:	P5194	
Lab Sample ID:	P5194-05			Matrix:	SOIL	
Analytical Method:	SW8260			% Solid:	89	
Sample Wt/Vol:	5.05 Ur	its: g		Final Vol:	5000	uL
Soil Aliquot Vol:		uL		Test:	VOC-TCLVOA	A-10
GC Column:	RXI-624	ID: 0.25		Level :	LOW	
Prep Method :						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VY020577.D	1			12/10/24 18:30	VY121024	
S Number Para	imeter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

22 of 46

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-4	SDG No.:	P5194
Lab Sample ID:	P5194-06	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	97.4
Sample Wt/Vol:	4.51 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020574.D	1		12/10/24 17:20	VY121024	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
75-71-8	Dichlorodifluoromethane	1.90	U	1.90	5.70	ug/Kg
74-87-3	Chloromethane	1.30	U	1.30	5.70	ug/Kg
75-01-4	Vinyl Chloride	0.88	U	0.88	5.70	ug/Kg
74-83-9	Bromomethane	1.20	U	1.20	5.70	ug/Kg
75-00-3	Chloroethane	1.10	U	1.10	5.70	ug/Kg
75-69-4	Trichlorofluoromethane	1.00	U	1.00	5.70	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	1.20	U	1.20	5.70	ug/Kg
75-35-4	1,1-Dichloroethene	0.89	U	0.89	5.70	ug/Kg
67-64-1	Acetone	7.10	U	7.10	28.5	ug/Kg
75-15-0	Carbon Disulfide	1.50	U	1.50	5.70	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.76	U	0.76	5.70	ug/Kg
79-20-9	Methyl Acetate	2.00	U	2.00	5.70	ug/Kg
75-09-2	Methylene Chloride	3.90	U	3.90	11.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.96	U	0.96	5.70	ug/Kg
75-34-3	1,1-Dichloroethane	0.72	U	0.72	5.70	ug/Kg
110-82-7	Cyclohexane	0.79	U	0.79	5.70	ug/Kg
78-93-3	2-Butanone	6.50	U	6.50	28.5	ug/Kg
56-23-5	Carbon Tetrachloride	0.99	U	0.99	5.70	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.69	U	0.69	5.70	ug/Kg
74-97-5	Bromochloromethane	2.80	U	2.80	5.70	ug/Kg
67-66-3	Chloroform	0.76	U	0.76	5.70	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.89	U	0.89	5.70	ug/Kg
108-87-2	Methylcyclohexane	0.99	U	0.99	5.70	ug/Kg
71-43-2	Benzene	0.82	U	0.82	5.70	ug/Kg
107-06-2	1,2-Dichloroethane	0.69	U	0.69	5.70	ug/Kg
79-01-6	Trichloroethene	0.85	U	0.85	5.70	ug/Kg
78-87-5	1,2-Dichloropropane	0.75	U	0.75	5.70	ug/Kg
75-27-4	Bromodichloromethane	0.64	U	0.64	5.70	ug/Kg
108-10-1	4-Methyl-2-Pentanone	5.00	U	5.00	28.5	ug/Kg
108-88-3	Toluene	0.76	U	0.76	5.70	ug/Kg

C D

Client:	JPCL Engineering	Date Collected:	12/05/24
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24
Client Sample ID:	WP-4	SDG No.:	P5194
Lab Sample ID:	P5194-06	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	97.4
Sample Wt/Vol:	4.51 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VY020574.D	1		12/10/24 17:20	VY121024

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.68	U	0.68	5.70	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.65	U	0.65	5.70	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.96	U	0.96	5.70	ug/Kg
591-78-6	2-Hexanone	5.50	U	5.50	28.5	ug/Kg
124-48-1	Dibromochloromethane	0.74	U	0.74	5.70	ug/Kg
106-93-4	1,2-Dibromoethane	0.90	U	0.90	5.70	ug/Kg
127-18-4	Tetrachloroethene	1.00	U	1.00	5.70	ug/Kg
108-90-7	Chlorobenzene	0.84	U	0.84	5.70	ug/Kg
100-41-4	Ethyl Benzene	0.71	U	0.71	5.70	ug/Kg
179601-23-1	m/p-Xylenes	1.50	U	1.50	11.4	ug/Kg
95-47-6	o-Xylene	0.80	U	0.80	5.70	ug/Kg
100-42-5	Styrene	0.68	U	0.68	5.70	ug/Kg
75-25-2	Bromoform	0.92	U	0.92	5.70	ug/Kg
98-82-8	Isopropylbenzene	0.76	U	0.76	5.70	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.30	U	1.30	5.70	ug/Kg
541-73-1	1,3-Dichlorobenzene	0.84	U	0.84	5.70	ug/Kg
106-46-7	1,4-Dichlorobenzene	0.91	U	0.91	5.70	ug/Kg
95-50-1	1,2-Dichlorobenzene	0.67	U	0.67	5.70	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.80	U	1.80	5.70	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	0.90	U	0.90	5.70	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	0.89	U	0.89	5.70	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.8		50 - 163	112%	SPK: 50
1868-53-7	Dibromofluoromethane	50.8		54 - 147	102%	SPK: 50
2037-26-5	Toluene-d8	49.8		58 - 134	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	43.8		29 - 146	88%	SPK: 50
INTERNAL STAI						
363-72-4	Pentafluorobenzene	151000	7.707			
540-36-3	1,4-Difluorobenzene	263000	8.61			
3114-55-4	Chlorobenzene-d5	223000	11.414			
3855-82-1	1,4-Dichlorobenzene-d4	90400	13.347			

5

C D

P5194

Report of Analysis										
Client:	JPCL Engineering			Date Collected:	12/05/24					
Project:	1454 to 1460 Hade	don Avenue, Camden, NJ		Date Received:	12/06/24					
Client Sample ID:	WP-4			SDG No.:	P5194					
Lab Sample ID:	P5194-06			Matrix:	SOIL					
Analytical Method:	SW8260			% Solid:	97.4					
Sample Wt/Vol:	4.51 Units:	g		Final Vol:	5000	uL				
Soil Aliquot Vol:		uL		Test:	VOC-TCLVOA	-10				
GC Column:	RXI-624	ID: 0.25		Level :	LOW					
Prep Method :										
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID					
VY020574.D	1			12/10/24 17:20	VY121024					
AS Number Para	ameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units				

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

25 of 46

С

D

LAB CHRONICLE

OrderID:P5194Client:JPCL EngineeringContact:Paul Rotondi		OrderDate: Project: Location:	Project: 1454 to 1460 Haddon Avenue, Camden, N					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5194-03	WP-1	SOIL			12/05/24			12/06/24
			VOC-TCLVOA-10	8260D			12/10/24	
P5194-04	WP-2	SOIL	VOC-TCLVOA-10	8260D	12/05/24		12/10/24	12/06/24
P5194-05	WP-3	SOIL			12/05/24			12/06/24
			VOC-TCLVOA-10	8260D			12/10/24	
P5194-06	WP-4	SOIL	VOC-TCLVOA-10	8260D	12/05/24		12/10/24	12/06/24

В

в

Report of Analysis

Client:	JPCL Engineering				Date Collected:	12/05/24	
Project:	1454 to 1460 Haddo	n Avenue, Came	len, NJ		Date Received:	12/06/24	
Client Sample ID:	UST-1				SDG No.:	P5194	
Lab Sample ID:	P5194-01				Matrix:	SOIL	
Analytical Method	8015D DRO				% Solid:	88.1 De	canted:
Sample Wt/Vol:	30.06 Units:	g			Final Vol:	1	mL
Soil Aliquot Vol:		uL			Test:	Diesel Range Orga	anics
Extraction Type:					Injection Volume :		
GPC Factor :		PH :					
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep I	Date	-	Date Analyzed	Prep Batc	h ID
FG014965.D	10	12/11/	24 09:15		12/11/24 12:22	PB165556	5
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight)
TARGETS DRO	DRO	125000		2090		1890) ug/kg
SURROGATES 16416-32-3	Tetracosane-d50	0.58	*	37 - 130		29%	SPK: 20

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

28 of 46

в

Report of Analysis

Client:	JPCL Engineering				Date Collected:	12/05/24	
Project:	1454 to 1460 Hado	lon Avenue, Came	len, NJ		Date Received:	12/06/24	
Client Sample ID:	UST-2				SDG No.:	P5194	
Lab Sample ID:	P5194-02				Matrix:	SOIL	
Analytical Method	: 8015D DRO				% Solid:	91.2 D	ecanted:
Sample Wt/Vol:	30.02 Units:	g			Final Vol:	1	mL
Soil Aliquot Vol:		uL			Test:	Diesel Range Org	ganics
Extraction Type:					Injection Volume :		
GPC Factor :		PH :					
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep D	Date		Date Analyzed	Prep Bat	ch ID
FG014966.D	10	12/11/	24 09:15		12/11/24 12:50	PB16555	56
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQI	Units(Dry Weight)
TARGETS DRO	DRO	294000		2030		1830	00 ug/kg
SURROGATES 16416-32-3	Tetracosane-d50	1.38		37 - 130		69%	SPK: 20

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

29 of 46

A

С

6

LAB CHRONICLE

OrderID: Client: Contact:	P5194 JPCL Engineering Paul Rotondi			OrderDate: Project: Location:	12/6/2024 3:08 1454 to 1460 H L41,VOA Ref. #	addon Avenue	, Camden, NJ	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5194-01	UST-1	SOIL			12/05/24			12/06/24
			Diesel Range Organics	8015D		12/11/24	12/11/24	
			EPH	NJEPH		12/11/24	12/11/24	
P5194-02	UST-2	SOIL			12/05/24			12/06/24
			Diesel Range Organics EPH	8015D NJEPH		12/11/24 12/11/24	12/11/24 12/12/24	

в

Report of Analysis

JPCL Engineering	Date Collected:	12/05/24	
1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24	
UST-1	SDG No.:	P5194	
P5194-01	Matrix:	Solid	
NJEPH	% Solid:	88.1	
30.09 Units: g	Final Vol:	2000	uL
uL	Test:	EPH	
	1454 to 1460 Haddon Avenue, Camden, NJ UST-1 P5194-01 NJEPH 30.09 Units: g	1454 to 1460 Haddon Avenue, Camden, NJDate Received:UST-1SDG No.:P5194-01Matrix:NJEPH% Solid:30.09Units:g	1454 to 1460 Haddon Avenue, Camden, NJDate Received:12/06/24UST-1SDG No.:P5194P5194-01Matrix:SolidNJEPH% Solid:88.130.09Units:gFinal Vol:

Prep Date :	Date Analyzed :	Prep Batch ID
12/11/24 09:12	12/11/24 21:57	PB165557
		Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight	:)
TARGETS								
Aliphatic C9-C	12 Aliphatic C9-C12	0.43	U	1	0.43	1.13	mg/kg	FC067987.D
Aliphatic C12-C	C16 Aliphatic C12-C16	0.37	J	1	0.27	0.75	mg/kg	FC067987.D
Aliphatic C16-C	Aliphatic C16-C21	8.48		1	0.34	1.13	mg/kg	FC067987.D
Aliphatic C21-C	Aliphatic C21-C28	3.37		1	0.91	1.51	mg/kg	FC067987.D
Aliphatic C28-C	Aliphatic C28-C40	17.2		1	2.04	2.26	mg/kg	FC067987.D
Aromatic C10-C	C12 Aromatic C10-C12	0.34	U	1	0.34	0.75	mg/kg	FD048876.D
Aromatic C12-C	C16 Aromatic C12-C16	0.39	U	1	0.39	1.13	mg/kg	FD048876.D
Aromatic C16-C	Aromatic C16-C21	1.24	J	1	1.09	1.89	mg/kg	FD048876.D
Aromatic C21-C	Aromatic C21-C36	4.04		1	2.26	3.02	mg/kg	FD048876.D
Total AliphaticE	PH Total AliphaticEPH	29.4			3.99	6.78	mg/kg	
Total AromaticE	CPH Total AromaticEPH	5.28	J		4.08	6.79	mg/kg	
Total EPH	Total EPH	34.7			8.06	13.6	mg/kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

7

В

Report of Analysis

Client:	JPCL Engineer	ing		Date C	Collected:	12/05/24		
Project:	1454 to 1460 H	addon Avenue, Camden, NJ		Date F	Received:	12/06/24		
Client Sample ID:	UST-1			SDG 1	No.:	P5194		
Lab Sample ID:	P5194-01			Matrix	с:	Solid		
Analytical Method:	NJEPH		% Sol	id:	88.1			
Sample Wt/Vol:	30.09 Uni	ts: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :	I	Prep Batch ID	
File ID : FC067987.D	Dilution: 1	Prep Date : 12/11/24		Date Analy 12/11/24	zed :		Prep Batch ID PB165557	
	1		Conc.	2	zed : MDL		•	Units
FC067987.D AS Number Paran	1		Conc.	12/11/24			PB165557	Units
FC067987.D	1 neter		Conc. 0.43	12/11/24			PB165557	Units mg/kg
FC067987.D AS Number Paran FARGETS	1 neter Aliph	12/11/24		12/11/24 Qualifier	MDL		PB165557	
FC067987.D AS Number Paran FARGETS Aliphatic C9-C12	1 neter Aliph Aliph	12/11/24 atic C9-C12	0.43	12/11/24 Qualifier U	MDL 0.43		PB165557 LOQ / CRQL 1.13	mg/kg
FC067987.D AS Number Paran FARGETS Aliphatic C9-C12 Aliphatic C12-C16 Aliphatic C16-C21	1 neter Aliph Aliph Aliph	12/11/24 atic C9-C12 atic C12-C16	0.43 0.37	12/11/24 Qualifier U	MDL 0.43 0.27		1.13 0.75	mg/kg mg/kg
FC067987.D AS Number Paran FARGETS Aliphatic C9-C12 Aliphatic C12-C16	1 neter Aliph Aliph Aliph Aliph	12/11/24 atic C9-C12 atic C12-C16 atic C16-C21	0.43 0.37 8.48	12/11/24 Qualifier U	MDL 0.43 0.27 0.34		PB165557 LOQ / CRQL 1.13 0.75 1.13	mg/kg mg/kg mg/kg
FC067987.D AS Number Paran FARGETS Aliphatic C9-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C28	1 neter Aliph Aliph Aliph Aliph	12/11/24 atic C9-C12 atic C12-C16 atic C16-C21 atic C21-C28	0.43 0.37 8.48 3.37	12/11/24 Qualifier U	MDL 0.43 0.27 0.34 0.91		1.13 0.75 1.13 1.51	mg/kg mg/kg mg/kg mg/kg
FC067987.D AS Number Paran FARGETS Aliphatic C9-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C28 Aliphatic C28-C40	1 neter Aliph Aliph Aliph Aliph	12/11/24 atic C9-C12 atic C12-C16 atic C16-C21 atic C21-C28	0.43 0.37 8.48 3.37	12/11/24 Qualifier U	MDL 0.43 0.27 0.34 0.91		1.13 0.75 1.13 1.51	mg/kg mg/kg mg/kg mg/kg

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	P5194-01	Acq On:	11 Dec 2024 21:57
Client Sample ID:	UST-1	Operator:	YP/AJ
Data file:	FC067987.D	Misc:	
Instrument:	FID_C	ALS Vial:	14
Dilution Factor:	1	Sample Multiplier:	1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.151	6.428	369547	2.334	300	ug/ml
Aliphatic C12-C16	6.429	9.820	795444	4.963	200	ug/ml
Aliphatic C16-C21	9.821	13.180	17133674	112.453	300	ug/ml
Aliphatic C21-C28	13.181	16.836	6090451	44.657	400	ug/ml
Aliphatic C28-C40	16.837	21.674	24207343	228.447	600	ug/ml
Aliphatic EPH	3.151	21.674	48596459	392.855		ug/ml
ortho-Terphenyl (SURR)	0.000	0.000	0	0		ug/ml
1-chlorooctadecane (SURR)	12.915	12.915	8067094	63.22		ug/ml
Aliphatic C9-C28	3.151	16.836	24389116	164.407	1200	ug/ml

B C

7

7

Client:	JPCL Engineering			Date C	Collected:	12/05/24		
Project:	1454 to 1460 Haddon Ave	enue, Camden, NJ		Date F	Received:	12/06/24		
Client Sample ID:	UST-1			SDG 1	No.:	P5194		
Lab Sample ID:	P5194-01			Matrix	.:	Solid		
Analytical Method:	NJEPH			% Sol	id:	88.1		
Sample Wt/Vol:	30.09 Units: g			Final	Vol:	2000	uL	
Soil Aliquot Vol:	uL			Test:		EPH		
Prep Method :								
File ID :	Dilution:	Prep Date :	Date Analyzed :		Prep Batch ID			
ED04007(D								
FD048876.D	1	12/11/24		12/11/24		F	PB165557	
	1 meter	12/11/24	Conc.		MDL	F	2B165557 LOQ / CRQL	Units
AS Number Para FARGETS	meter			Qualifier		F	LOQ / CRQL	
AS Number Para FARGETS Aromatic C10-C12	meter Aromatic C10-	-C12	0.34	Qualifier U	0.34	F	LOQ / CRQL 0.75	mg/kg
AS Number Para TARGETS Aromatic C10-C12 Aromatic C12-C16	meter Aromatic C10- Aromatic C12-	-C12 -C16	0.34 0.39	Qualifier U U	0.34 0.39	F	0.75 1.13	mg/kg mg/kg
AS Number Para FARGETS Aromatic C10-C12	meter Aromatic C10-	-C12 -C16 -C21	0.34	Qualifier U	0.34	F	LOQ / CRQL 0.75	mg/kg
AS Number Para TARGETS Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21	meter Aromatic C10- Aromatic C12- Aromatic C16-	-C12 -C16 -C21	0.34 0.39 1.24	Qualifier U U	0.34 0.39 1.09	F	0.75 1.13 1.89	mg/kg mg/kg mg/kg
AS Number Para TARGETS Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C36	meter Aromatic C10- Aromatic C12- Aromatic C16- Aromatic C21-	-C12 -C16 -C21	0.34 0.39 1.24	Qualifier U U	0.34 0.39 1.09	F	0.75 1.13 1.89	mg/kg mg/kg mg/kg mg/kg
AS Number Para FARGETS Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C36 SURROGATES	meter Aromatic C10- Aromatic C12- Aromatic C16- Aromatic C21-	-C12 -C16 -C21 -C36 thalene (SURR)	0.34 0.39 1.24 4.04	Qualifier U U	0.34 0.39 1.09 2.26	F	0.75 1.13 1.89 3.02	mg/kg mg/kg mg/kg

2-Flurobiphenyl (SURR)

8.213

8.213

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

48.97

7

В

ug/ml

Quantitation Report For Aromatic EPH Range.

Lab Sample ID:	P5194-01			Acq On:	11 Dec 2024 21:57	
Client Sample ID:	UST-1			Operator:	YP/AJ	
Data file:	FD048876.D			Misc:		
Instrument:	FID_D			ALS Vial:	64	
Dilution Factor:	1			Sample Multiplier:	1.00	
Compound	R.T.		Response	Conc	highest_standard	Units
Compound Aromatic C10-C12	R.T. 4.086	5.804	Response 574566	Conc 3.021	highest_standard 200	Units ug/ml
·			1		0 =	
Aromatic C10-C12	4.086	5.804	574566	3.021	200	ug/ml
Aromatic C10-C12 Aromatic C12-C16	4.086 5.805	5.804 8.409	574566 801429	3.021 4.311	200 300	ug/ml ug/ml
Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21	4.086 5.805 8.410	5.804 8.409 12.673	574566 801429 2778914	3.021 4.311 16.393	200 300 500	ug/ml ug/ml ug/ml
Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C36	4.086 5.805 8.410 12.674	5.804 8.409 12.673 18.083	574566 801429 2778914 7581988	3.021 4.311 16.393 53.549	200 300 500	ug/ml ug/ml ug/ml ug/ml

5059178

в

Report of Analysis

Client:	JPCL Engineering	Date Collected:	12/05/24	
Project:	1454 to 1460 Haddon Avenue, Camden, NJ	Date Received:	12/06/24	
Client Sample ID:	UST-2	SDG No.:	P5194	
Lab Sample ID:	P5194-02	Matrix:	Solid	
Analytical Method:	NJEPH	% Solid:	91.2	
Sample Wt/Vol:	30.07 Units: g	Final Vol:	2000	uL
Soil Aliquot Vol:	uL	Test:	EPH	
Prep Method :				

Prep Date :	Date Analyzed :	Prep Batch ID
12/11/24 09:12	12/12/24 0:21	PB165557
		Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS								
Aliphatic C9-C	12 Aliphatic C9-C12	0.45	J	1	0.42	1.09	mg/kg	FC067991.D
Aliphatic C12-C	Aliphatic C12-C16	0.73		1	0.26	0.73	mg/kg	FC067991.D
Aliphatic C16-C	Aliphatic C16-C21	8.59		1	0.33	1.09	mg/kg	FC067991.D
Aliphatic C21-C	Aliphatic C21-C28	5.26		1	0.88	1.46	mg/kg	FC067991.D
Aliphatic C28-C	Aliphatic C28-C40	42.4		1	1.97	2.19	mg/kg	FC067991.D
Aromatic C10-C	C12 Aromatic C10-C12	0.33	U	1	0.33	0.73	mg/kg	FD048880.D
Aromatic C12-C	Aromatic C12-C16	0.37	U	1	0.37	1.09	mg/kg	FD048880.D
Aromatic C16-C	Aromatic C16-C21	1.24	J	1	1.05	1.82	mg/kg	FD048880.D
Aromatic C21-C	Aromatic C21-C36	5.37		1	2.19	2.92	mg/kg	FD048880.D
Total AliphaticE	PH Total AliphaticEPH	57.4			3.85	6.56	mg/kg	
Total AromaticE	PH Total AromaticEPH	6.61			3.94	6.56	mg/kg	
Total EPH	Total EPH	64.0			7.79	13.1	mg/kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

7

В

Report of Analysis

Client:	JPCL Enginee	ering		Date (Collected:	12/05/24		
Project:	1454 to 1460	Haddon Avenue, Camden, NJ		Date I	Received:	12/06/24		
Client Sample ID:	UST-2			SDG 1	No.:	P5194		
Lab Sample ID:	P5194-02			Matrix	K:	Solid		
Analytical Method:	NJEPH			% Sol	id:	91.2		
Sample Wt/Vol:	30.07 Ui	nits: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :	I	Prep Batch ID	
FC067991.D	1	12/11/24		12/12/24		Ι	PB165557	
AS Number Para	neter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS								
Aliphatic C9-C12	Alip	ohatic C9-C12	0.45	J	0.42		1.09	mg/kg
Aliphatic C12-C16	Alip	ohatic C12-C16	0.73		0.26		0.73	mg/kg
Aliphatic C16-C21	Alip	phatic C16-C21	8.59		0.33		1.09	mg/kg
Aliphatic C21-C28	Alip	ohatic C21-C28	5.26		0.88		1.46	mg/kg
Aliphatic C28-C40	Alip	ohatic C28-C40	42.4		1.97		2.19	mg/kg
3383-33-2	1-ch	nlorooctadecane (SURR)	45.5		40 - 140		91%	SPK: 50
			0.00				0%	SPK: 50
SURROGATES 3383-33-2	1-ch	llorooctadecane (SURR)	45.5		40 - 140		91%	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	P5194-02	Acq On:	12 Dec 2024 00:21
Client Sample ID:	UST-2	Operator:	YP/AJ
Data file:	FC067991.D	Misc:	
Instrument:	FID_C	ALS Vial:	18
Dilution Factor:	1	Sample Multiplier:	1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.151	6.428	982183	6.204	300	ug/ml
Aliphatic C12-C16	6.429	9.820	1612440	10.06	200	ug/ml
Aliphatic C16-C21	9.821	13.180	17935838	117.718	300	ug/ml
Aliphatic C21-C28	13.181	16.836	9837034	72.127	400	ug/ml
Aliphatic C28-C40	16.837	21.674	61578956	581.127	600	ug/ml
Aliphatic EPH	3.151	21.674	91946451	787.238		ug/ml
ortho-Terphenyl (SURR)	0.000	0.000	0	0		ug/ml
1-chlorooctadecane (SURR)	12.915	12.915	5811393	45.55		ug/ml
Aliphatic C9-C28	3.151	16.836	30367495	206.109	1200	ug/ml

7

В

7

Client:	JPCL Engineering			Date Collected:				
Project:	1454 to 1460 Ha	ddon Avenue, Camden, NJ		Date I	Received:	12/06/24		
Client Sample ID:	UST-2			SDG 1	No.:	P5194		
Lab Sample ID:	P5194-02			Matrix	x:	Solid		
Analytical Method:	NJEPH			% Sol	id:	91.2		
Sample Wt/Vol:	30.07 Units	s: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :]	Prep Batch ID	
FD048880.D	1	12/11/24		12/12/24		1	PB165557	
AS Number Parar	neter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
FARGETS								
Aromatic C10-C12		atic C10-C12	0.33	U	0.33		0.73	mg/kg
Aromatic C12-C16		atic C12-C16	0.37	U	0.37		1.09	mg/kg
Aromatic C16-C21		atic C16-C21	1.24	J	1.05		1.82	mg/kg
Aromatic C21-C36	Aroma	atic C21-C36	5.37		2.19		2.92	mg/kg
SURROGATES								
580-13-2	2-Bron	nonaphthalene (SURR)	55.9		40 - 140		112%	SPK: 50
321-60-8	2-Flure	obiphenyl (SURR)	59.1		40 - 140		118%	SPK: 50
84-15-1	ortho-7	Terphenyl (SURR)	28.8		40 - 140		58%	SPK: 50

2-Bromonaphthalene (SURR)

2-Flurobiphenyl (SURR)

7.365

8.215

7.365

8.215

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

55.93

59.15

7

В

ug/ml

ug/ml

Quantitation Report For Aromatic EPH Range.

Lab Sample ID:	P5194-02			Acq On:	12 Dec 2024 00:21				
Client Sample ID:	UST-2			Operator:	YP/AJ				
Data file:	FD048880.D			Misc:					
Instrument:	FID_D			ALS Vial:	68				
Dilution Factor:	1			Sample Multiplier:	1.00				
Compound	R.T.		Response	Conc	highest_standard	Units			
Compound Aromatic C10-C12	R.T. 4.086	5.804	Response 595027	Conc 3.128	highest_standard 200	Units ug/ml			
· · ·			1		<u> </u>				
Aromatic C10-C12	4.086	5.804	595027	3.128	200	ug/ml			
Aromatic C10-C12 Aromatic C12-C16	4.086 5.805	5.804 8.409	595027 946315	3.128 5.091	200 300	ug/ml ug/ml			
Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21	4.086 5.805 8.410	5.804 8.409 12.673	595027 946315 2872448	3.128 5.091 16.945	200 300 500	ug/ml ug/ml ug/ml			

9421246

6110604

A B

С

LAB CHRONICLE

OrderID: Client: Contact:	P5194 JPCL Engineering Paul Rotondi			OrderDate: Project: Location:	12/6/2024 3:08:24 PM 1454 to 1460 Haddon Avenue, Camden, NJ L41,VOA Ref. #2 Soil					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received		
P5194-01	UST-1	SOIL			12/05/24			12/06/24		
			Diesel Range Organics	8015D		12/11/24	12/11/24			
			EPH	NJEPH		12/11/24	12/11/24			
P5194-02	UST-2	SOIL			12/05/24			12/06/24		
			Diesel Range Organics EPH	8015D NJEPH		12/11/24 12/11/24	12/11/24 12/12/24			

<u>SHIPPING</u> DOCUMENTS

8

CHE	MIECH	284 Sheffield Street, Mountainside, NJ 07092										CHEMTECH PROJECT NO. DS199								
	CUSTODY RECORD	((908) 789-8900 • Fax (908) 789-8922														- 8			
CHAIN OF U			www.chemtech.net									^{COC Number} 2041877					8.1			
	CLIENT INFORMATION		CLIENT PROJECT INFORMATION									CLIENT BILLING INFORMATION					1			
COMPANY:	JPCL ENGINEERING, LLC	PROJE	PROJECT NAME: 1454-1460 HADDOM AU BILL TO:									5	See Cluri PO#:							
ADDRESS:	2 Clenco LN, Bld / 1	PROJEC									ADD	RESS:								
	usborough STATE: NY ZIP: 08844				FB·	P.R.	ro	nd.			CITY					STA	TE·		IP:	1
ATTENTION:	PAOL Rosondi	e-mail:	PR	010	ndie	TACLE	NG	Nee	MAS	, 00						PHC		2		1
	3-38+6 (09460-4355	409 PHONE	20	R- :	2011				0					-	AN	ALYSIS	and the second s			
the second se	DATA TURNAROUND INFORMATION	PHONE		_		RABLE IN	FORM	ATION												
FAX (RUSH)	5 DAYS*		el 1 (Res	sults C)nly) 🛛	Level 4 (QC	; + Full F	Raw Data		D	0,0	1/	/	/	//	/	//	/	/	
	DATA PACKAGE):DAYS*					NJ Reduce				10	LO IO	/ /	/ /	/ /	/ /	/ /	/ /	/ /		
EDD: *TO BE APPRO	DAYS*A		el 3 (Res aw Data			NYS ASP A Other		S ASP B	W	21	y	/ ,	/ ,	/ ,	/ .,	/ ,	/ ,	/		
	ARDCOPY TURNAROUND TIME IS 10 BUSINESS DAYS			/				$\overline{1}$	/2	3	4	5	/6	/7	8	9	/			
CHEMTECH			SAM			MPLE	LES				PRE	SERV	TIVES	1	1			COMME		
SAMPLE	PROJECT SAMPLE IDENTIFICATION	SAMPLE	TY			ECTION	BOTTLES										A-HCI	D-	servatives	
ID			COMP	GRAB	DATE	TIME	40 #	1	2	3	4	5	6	7	8	9	B-HN0 C-H2S		CE DTHER	
1.	UST-1	Son			12/5	11:02	2	2												וך
							1 a								-					
2.	UST-2-	Soil			12/5		2	2												
2. 3.	WP-1	Soil		X	12/5			2	3											
	WP-2 WP-2	Soil Soil					3	1	33											-
3.	WP-1 WP-2 WP-3	Soil		X X X		9:14	33		-											
3. 4.	WP-2 WP-2	Soil Soil		X X		9:14 10:57	333		3											
 3. 4. 5. 	WP-1 WP-2 WP-3	Soil Soil Soil		X X X		9:14 10:57 11:11	333		33											
 3. 4. 5. 6. 	WP-1 WP-2 WP-3	Soil Soil Soil		X X X		9:14 10:57 11:11	333		33											
 3. 4. 5. 6. 7. 8. 	WP-1 WP-2 WP-3	Soil Soil Soil		X X X		9:14 10:57 11:11	333		33											-
 3. 4. 5. 6. 7. 	WP-2 WP-2 WP-3 WP-4	Soil Soil Soil Soil			12/5	9:44 10:57 11:11 (]:31	3333		333											
3. 4. 5. 6. 7. 8. 9. 10.	WP-2 WP-2 WP-3 WP-4 SAMPLE CUSTODY MUST BE DOC	Soil Soil Soil Soil				9:44 10:57 11:11 (1:51	3 3 3 3	HANGE	3 3 3			_				Y				
3. 4. 5. 6. 7. 8. 9. 10.	WP-2 WP-2 WP-3 WP-4 SAMPLE CUSTODY MUST BE DOC	Soil Soil Soil Soil				9:44 10:57 11:11 (1:31) ME SAMP	3 3 3 3 4 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3	HANGE s at receip	3 3 3 POSS	OMPLIAN	T 🗆 NC	N COMPL	ANT Q	COOLER T		Y 2.		°C		
3. 4. 5. 6. 7. 8. 9. 10. RELINCOUSHED 1.	$\begin{array}{c} \mathcal{WP}-1\\ \mathcal{WP}-2\\ \mathcal{WP}-3\\ \mathcal{WP}-4\\ \end{array}$ $\begin{array}{c} \mathcal{WP}-4\\ \mathcal{WP}-4\\ \end{array}$ $\begin{array}{c} \mathcal{WP}-4\\ \mathcal{WP}-4\\ \mathcal{WP}-4\\ \end{array}$	Soil Soil Soil Soil				9:44 10:57 11:11 (1:31) ME SAMP	3 3 3 3 4 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3	HANGE	3 3 3 POSS	OMPLIAN	T 🗆 NC	N COMPL	ANT Q	COOLER T		γ 7 7 7 7 7 7	(- (-	°C € (
3. 4. 5. 6. 7. 8. 9. 10. RELINQUISHED BY RELINQUISHED BY	WP-2 WP-2 WP-3 WP-4 SAMPLE CUSTODY MUST BE DOC SAMPLER: DATE/TIME: 12/6/13 OF 1.	Soil Soil Soil Soil				9:44 10:57 11:11 (1:31) ME SAMP	3 3 3 3 4 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3	HANGE s at receip	3 3 3 POSS	OMPLIAN	T 🗆 NC	N COMPL	ANT Q	COOLER T		Y 7 7 7 7 7 7 7 7 7 7	((-°C ₽ (
3. 4. 5. 6. 7. 8. 9. 10. RELINGDISHED BY 1. HOLAN RELINQUISHED BY 2.	WP-1 WP-2 WP-3 WP-4 SAMPLE CUSTODY MUST BE DOC SAMPLER: DATE/TIME: P SAMPLER: DATE/TIME: P SAMPLER: DATE/TIME: RECEIVED BY: 2.	Soil Soil Soil Soil				9:44 10:57 11:11 (1:31) ME SAMP	3 3 3 3 3 4 ULES CI or cooler 5 '	HANGE DA	3 3 3	COMPLIAN		N COMPL	ant q	COOLER T		Y 2. 7P((. j	¢ (
 3. 4. 5. 6. 7. 8. 9. 	WP-1 WP-2 WP-3 WP-4 SAMPLE CUSTODY MUST BE DOC SAMPLER: DATE/TIME: PSAMPLER: DATE/TIME: RECEIVE BY 1. RECEIVE BY: 2.	Soil Soil Soil Soil			I2/5	9:44 10:57 11:11 (1:31) ME SAMP	3 3 3 3 3 3 3 4 5 	HANGE s at receip	3 3 3 7	COMPLIAN	T INC		ANT Q	COOLER T		Y 2- 7P(€ (ment Cor YES □		

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

LOGIN REPORT/SAMPLE TRANSFER

8.3

Clie	ent Contact : voice Name :	P5194 JPCL Engine Paul Rotondi JPCL Engine Paul Rotondi	ering		Pro Receive	oject Name :	12/6/2024 3:08:24 PM 1454 to 1460 Haddon Aven 12/6/2024 1:00:00 PM		EDD Type : ard Copy Date :	NJ Reduced Level 1 Excel NY		
LAB ID	CLIEN			MATRIX	SAMPLE	SAMPLE	TEST	TEST GROUP	Date Signoff : METHOD	12/6/2024 4:13:46 P	'M FAX DATE	DUE
					DATE	TIME			METHOD		FAA DATE	DATES
P5194-03		WP-1		Solid	12/05/2024	09:44						
							VOC-TCLVOA-10		8260D	5 Bus. Days		
P5194-04		WP-2		Solid	12/05/2024	10:37						
							VOC-TCLVOA-10		8260D	5 Bus. Days		
P5194-05		WP-3		Solid	12/05/2024	11:11						
							VOC-TCLVOA-10		8260D	5 Bus. Days		
P5194-06		WP-4		Solid	12/05/2024	11:31						
							VOC-TCLVOA-10		8260D	5 Bus. Days		

Relinguished By : Date / Time : 12-10-2414:48

Received By : 2-114:45 12.10. Date / Time :

Storage Area : VOA Refridgerator Room