284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 ## **Prep Standard - Chemical Standard Summary** | Order | ID: | P5299 | |-------|-----|-------| | | | | Test: Mercury, Metals ICP-TAL PB165722,PB165728, Prepbatch ID: Fax: 908 789 8922 ## Metals STANDARD PREPARATION LOG | Recipe
ID | NAME | <u>NO.</u> | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | |--------------|---------|------------|------------|--------------------|----------------|----------------|------------------|-------------------------------| | 169 | 1:1HNO3 | MP83498 | 12/09/2024 | 12/28/2024 | Janvi Patel | None | None | | | | | | | | | | | 12/09/2024 | | Recipe
ID | NAME. | <u>NO.</u> | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | |--------------|---|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 871 | MERCURY INTERMEDIATE B
250PPB WORKING STD. | MP83675 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | | FROM 1.00000ml of M6126 + 2.50000ml of M5062 + 96.50000ml of W3112 = Final Quantity: 100.000 ml **Metals STANDARD PREPARATION LOG** | Recipe
ID | <u>NAME</u> | <u>NO.</u> | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--------------|-----------------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1340 | Hg 0.00 PPB STD | MP83676 | 12/18/2024 | 12/19/2024 | Mohan Bera | None | METALS_PIP
ETTE_5 (HG | | **FROM** 2.50000ml of M6126 + 247.50000ml of W3112 = Final Quantity: 250.000 ml | Recipe | | | | Expiration | Prepared | | | Supervised By | |-----------|----------------|------------|------------|-------------|------------|----------------|------------------|-----------------| | <u>ID</u> | <u>NAME</u> | <u>NO.</u> | Prep Date | <u>Date</u> | <u>By</u> | <u>ScaleID</u> | <u>PipetteID</u> | Sarabjit Jaswal | | 1341 | Hg 0.2 PPB STD | MP83677 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP | | | | | | | | | | ETTE_5 (HG | 12/18/2024 | **FROM** 2.50000ml of M6126 + 247.30000ml of W3112 + 0.20000ml of MP83675 = Final Quantity: 250.000 ml ## Metals STANDARD PREPARATION LOG | Recipe
ID | NAME | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | | | |--------------|----------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------|--|--| | 1342 | Hg 2.5 PPB STD | MP83678 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | • | | | | | A) | | | | | | | | | | **FROM** 2.50000ml of M6126 + 245.0000ml of W3112 + 2.50000ml of MP83675 = Final Quantity: 250.000 ml | Recipe
ID | NAME | <u>NO.</u> | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--------------|----------------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1343 | Hg 5.0 PPB STD | MP83679 | 12/18/2024 | 12/19/2024 | Mohan Bera | None | METALS_PIP
ETTE_5 (HG | , | FROM 2.50000ml of M6126 + 242.50000ml of W3112 + 5.00000ml of MP83675 = Final Quantity: 250.000 ml 284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 ## **Metals STANDARD PREPARATION LOG** | 1344 Hg 7.5 PPB STD MP83680 12/18/2024 12/19/2024 Mohan Bera None METALS_PIP ETTE_5 (HG 12/18/2024 | | cipe
D | <u>NAME</u> | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--|----|-----------|----------------|---------|------------|--------------------|----------------|----------------|------------------|-------------------------------| | | 13 | 344 | Hg 7.5 PPB STD | MP83680 | 12/18/2024 | 12/19/2024 | Mohan Bera | | _ | , | **FROM** 2.50000ml of M6126 + 240.00000ml of W3112 + 7.50000ml of MP83675 = Final Quantity: 250.000 ml | Recipe
ID | <u>NAME</u> | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | |--------------|-----------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1345 | Hg 10.0 PPB STD | MP83681 | 12/18/2024 | 12/19/2024 | Mohan Bera | None | METALS_PIP
ETTE_5 (HG | • | FROM 2.50000ml of M6126 + 237.50000ml of W3112 + 10.00000ml of MP83675 = Final Quantity: 250.000 ml Fax: 908 789 8922 ## **Metals STANDARD PREPARATION LOG** | Recipe
ID | NAME_ | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | |--------------|-----------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1346 | Hg ICV SOLUTION | MP83682 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | | | | | | | | | | A) | | **FROM** 2.50000ml of M5953 + 2.50000ml of M6126 + 245.00000ml of W3112 = Final Quantity: 250.000 ml | Recipe
ID | NAME | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipetteID</u> | Supervised By Sarabjit Jaswal | |--------------|----------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1351 | ICB (Hg 0.00 PPB SOLUTION) | MP83683 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | • | **FROM** 2.50000ml of M6126 + 247.50000ml of W3112 = Final Quantity: 250.000 ml Fax: 908 789 8922 ## **Metals STANDARD PREPARATION LOG** | Recipe
ID | NAME | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--------------|---------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1358 | CCV (Hg 5.0 PPB SOLUTION) | MP83684 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | | | | | | | | | | A) | | | ID NAME NO. Prep Date By ScaleID | <u>PipetteID</u> | 0 | |---|--------------------------|---| | 1352 CCB (Hg 0.00 PPB SOLUTION) MP83685 12/18/2024 12/19/2024 Mohan Bera None | METALS_PIP
ETTE_5 (HG | | **FROM** 495.00000ml of W3112 + 5.00000ml of M6126 = Final Quantity: 500.000 ml Fax: 908 789 8922 ## Metals STANDARD PREPARATION LOG | Recipe
ID | NAME. | NO. | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--------------|----------------------------------|---------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1349 | CRA/CRI (Hg 0.2 PPB
SOLUTION) | MP83686 | 12/18/2024 | 12/19/2024 | Mohan Bera | None | METALS_PIP
ETTE_5 (HG | | | | | | | | | | A) | | **FROM** 2.50000ml of M6126 + 247.30000ml of W3112 + 0.20000ml of MP83675 = Final Quantity: 250.000 ml | Recipe
ID | NAME | <u>NO.</u> | Prep Date | Expiration
Date | Prepared
By | <u>ScaleID</u> | <u>PipettelD</u> | Supervised By Sarabjit Jaswal | |--------------|----------------------------------|------------|------------|--------------------|----------------|----------------|--------------------------|-------------------------------| | 1350 | CHK STD (Hg 7.0 PPB
SOLUTION) | MP83687 | 12/18/2024 | 12/19/2024 | Mohan Bera | | METALS_PIP
ETTE_5 (HG | • | **FROM** 2.50000ml of M6126 + 240.50000ml of W3112 + 7.00000ml of MP83675 = Final Quantity: 250.000 ml Fax: 908 789 8922 ## **Metals STANDARD PREPARATION LOG** | Recipe
ID
68 | NAME STANNOUS CHLORIDE SOLUTION | NO.
MP83689 | Prep Date
12/18/2024 | Expiration Date 12/19/2024 | | <u>ScaleID</u>
METALS_SCA
LE_3 (M SC-3) | | Supervised By Sarabjit Jaswal 12/18/2024 | | | |--------------------|---------------------------------|----------------|-------------------------|----------------------------|--|---|--|--|--|--| | FROM | | | | | | | | | | | ## **CHEMICAL RECEIPT LOG BOOK** | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |--------------------------------|--|--------------|-----------------------------|----------------------------|--------------------------------|-----------------------| | Inorganic
Ventures | MSHG-10PPM /
MERCURY HCI 125mL
10ug/mL | S2-HG709270 | 09/22/2026 | 05/28/2022 /
mohan | 01/27/2022 /
mohan | M5062 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | PCI Scientific
Supply, Inc. | 26397-103 / PTFE
BOILING STONES | W126678 | 02/28/2025 | 01/20/2024 / | 06/12/2023 /
jaswal | M5585 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | Seidler Chemical | BA-3980-01 / Stannous
Chloride (cs/4x500g) | 232820 | 08/31/2028 | 04/30/2024 /
mohan | 04/25/2024 /
mohan | M5882 | | Supplier | ItemCode / ItemName |
Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | EPA | ICV-5 / ICV (HG)STOCK
SOLN | ICV5-0415 | 01/01/2025 | 07/01/2024 /
mohan | 03/30/2023 /
mohan | M5953 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | | | | | | | | | Inorganic
Ventures | WW-LFS-1 / Laboratory
Fortified Stock Solution 1,
125 ml | T2-MEB723367 | 08/30/2026 | 08/13/2024 /
Jaswal | 05/14/2024 /
Jaswal | M6000 | | | Fortified Stock Solution 1, | T2-MEB723367 | 08/30/2026 Expiration Date | | | M6000 Chemtech Lot # | Fax: 908 789 8922 ## **CHEMICAL RECEIPT LOG BOOK** | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |------------------|---|------------|--------------------|----------------------------|--------------------------------|-------------------| | Seidler Chemical | BA-9530-33 / Hydrochloric
Acid, Instra-Analyzed
(cs/6x2.5L) | 0000275677 | 05/13/2025 | 11/13/2024 /
Eman | 10/13/2024 /
Eman | M6121 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |--------------------------------|--|--------|--------------------|----------------------------|--------------------------------|-------------------| | PCI Scientific
Supply, Inc. | 1403 / Hydrogen Peroxide,
30% 1 gal | 820803 | 05/25/2025 | 11/26/2024 /
Eman | 11/22/2024 /
Eman | M6125 | | | | | | | | | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |------------------|--|------------|--------------------|----------------------------|--------------------------------|-------------------| | Seidler Chemical | BA-9598-34 / Nitric Acid,
Instra-Analyzed (cs/4x2.5L) | 24D1062002 | 06/03/2025 | 12/03/2024 /
Janvi | 11/12/2024 /
Janvi | M6126 | | | | | | | | | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |------------------|---------------------|---------------------|--------------------|----------------------------|--------------------------------|-------------------| | Seidler Chemical | DIW / DI Water | Daily Lab-Certified | 07/03/2029 | 07/03/2024 /
lwona | 07/03/2024 /
lwona | W3112 | 1 Reagent Lane Fair Lawn, NJ 07410 201,796,7100 tel Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System Standard ISO9001:2015 by SAI Global Certificate Number CERT - 0120633 201,796,1329 fax This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained. | Catalog Number | T142 | Quality Test / Release Date | 08/17/2023 | | | | | | |-------------------|---|-----------------------------|------------|--|--|--|--|--| | Lot Number | 232820 | | | | | | | | | Description | STANNOUS CHLORIDE, DIHYDRATE CERTIFIED ACS (Suitable for Mercury Determination) | | | | | | | | | Country of Origin | United States | Suggested Retest Date | Aug/2028 | | | | | | | Chemical Origin | Inorganic-non animal | | | | | | | | | BSE/TSE Comment | No animal products are used as starting raw material ingredients, or used in processing, including lubricants, processing aids, or any other material that might migrate to the finished product. | | | | | | | | | N/A | | | | | |-------------------|-----------|----------------------------|---------------------|--| | Result Name | Units | Specifications | Test Value | | | APPEARANCE | | REPORT | Clear crystals | | | ASSAY | % | Inclusive Between 98 - 103 | 100.65 | | | CALCIUM | % | <= 0.005 | 0.0017 | | | IDENTIFICATION | PASS/FAIL | = PASS TEST | PASS TEST | | | IRON (Fe) | % | <= 0.003 | 0.0011 | | | LEAD (Pb) | % | <= 0.01 | 0.0006 | | | MERCURY (Hg) | ppm | <= 0.05 | <0.05 | | | POTASSIUM (K) | % | <= 0.005 | 0.0001 | | | SODIUM (Na) | % | <= 0.01 | <0.01 | | | SOLUBILITY IN HCL | PASS/FAIL | = PASS TEST | PASS TEST | | | SULFATE (SO4) | PASS/FAIL | = P.T. (ABOUT 0.003%) | P.T. (ABOUT 0.003%) | | Harout Sahagian - Quality Control Supervisor - Fair Lawn ### M6000,M6001,M6002,M6003,M6004,M6005,M6006,M6007,M6008 # **Certificate of Analysis** Refine your results. Redefine your industry. RD:05/14/2024 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION **Product Code:** Multi Analyte Custom Grade Solution Catalog Number: WW-LFS-1 Lot Number: T2-MEB723367 Matrix: 5% (v/v) HNO3 Value / Analyte(s): 1 000 μg/mL ea: Potassium, 600 μg/mL ea: Phosphorus, 300 μg/mL ea: Iron, 200 μg/mL ea: Sodium, Magnesium, Aluminum, Cerium, Selenium, Thallium, 100 μg/mL ea: Lead, Calcium, 80 µg/mL ea: Arsenic, 70 µg/mL ea: Mercury, 50 µg/mL ea: Nickel, 40 μg/mL ea: Chromium, 30 μg/mL ea: Copper, Boron, Vanadium, 20 μg/mL ea: Zinc, Strontium, Barium, Beryllium, Cadmium, Cobalt, Manganese, Lithium, 7.5 µg/mL ea: Silver ### 3.0 CERTIFIED VALUES AND UNCERTAINTIES | ANALYTE
Aluminum, Al | CERTIFIED VALUE
200.0 ± 0.7 µg/mL | ANALYTE
Arsenic, As | CERTIFIED VALUE
80.0 ± 0.7 µg/mL | |-------------------------|--------------------------------------|------------------------|-------------------------------------| | Barium, Ba | 20.00 ± 0.09 μg/mL | Beryllium, Be | 20.00 ± 0.13 μg/mL | | Boron, B | 30.00 ± 0.18 μg/mL | Cadmlum, Cd | 20.00 ± 0.09 μg/mL | | Calcium, Ca | 100.0 ± 0.4 μg/mL | Cerium, Ce | 200.0 ± 0.8 µg/mL | | Chromium, Cr | 40.00 ± 0.30 μg/mL | Cobalt, Co | 20.00 ± 0.10 μg/mL | | Copper, Cu | 30.00 ± 0.13 μg/mL | Iron, Fe | 300.0 ± 1.3 μg/mL | | Lead, Pb | 100.0 ± 0.4 μg/mL | Lithium, Li | 20.00 ± 0.08 µg/mL | | Magneslum, Mg | 200.0 ± 0.8 μg/mL | Manganese, Mn | 20.00 ± 0.08 µg/mL | | Mercury, Hg | 70.0 ± 0.3 µg/mL | Nickel, Ni | 50.00 ± 0.22 μg/mL | | Phosphorus, P | 600.0 ± 2.7 μg/mL | Potassium, K | 1 000 ± 4 µg/mL | | Selenium, Se | 200.0 ± 1.3 μg/mL | Silver, Ag | 7.50 ± 0.03 µg/mL | | Sodium, Na | 300.0 ± 1.4 μg/mL | Strontium, Sr | 20.01 ± 0.08 μg/mL | | Thailium, Ti | 200.0 ± 1.4 μg/mL | Vanadium, V | 30.00 ± 0.13 μg/mL | | Zinc, Zn | 20.00 ± 0.09 μg/mL | | | 1.034 g/mL (measured at 20 \pm 4 °C) Density: **Assay Information:** | ANALYTE | METHOD | NIST SRM# | SRM LOT# | |---------|-------------|--------------------|--------------| | Ag | ICP Assay | 3151 | 160729 | | Ag | Volhard | 999c | 999c | | Ag | Calculated | | See Sec. 4.2 | | Al | ICP Assay | 3101a | 140903 | | Al | EDTA | 928 | 928 | | As | ICP Assay | 3103a | 100818 | | В | ICP Assay | 3107 | 190605 | | Ва | ICP Assay | 3104a | 140909 | | Ва | Gravimetric | | See Sec. 4.2 | | Ве | ICP Assay | 3105a | 090514 | | Ca | ICP Assay | 3109a | 130213 | | Ca | EDTA | 928 | 928 | | Cd | ICP Assay | 3108 | 130116 | | Cd | EDTA | 928 | 928 | | Се | ICP Assay | 3110 | 090504 | | Ce | EDTA | 928 | 928 | | Co | ICP Assay | 3113 | 190630 | | Со | EDTA | 928 | 928 | | Cr | ICP Assay | 3112a | 170630 | | Cu | ICP Assay | 3114 | 121207 | | Cu | EDTA | 928 | 928 | | Fe | ICP Assay | 3126a | 140812 | | Fe | EDTA | 928 | 928 | | Hg | ICP Assay | 3133 | 160921 | | Hg | EDTA | 928 | 928 | | K | ICP Assay | 3141a | 140813 | | K | Gravimetric | | See Sec. 4.2 | | Li | ICP Assay | 3129a | 100714 | | Li | Gravimetric | | See Sec. 4.2 | | Mg | ICP Assay | 3131a | 140110 | | Mg | EDTA | 928 | 928 | | Mn | ICP Assay | 3132 | 050429 | | Mn | EDTA | 928 | 928 | | Na | ICP Assay | Traceable to 3152A | S2-NA700842 | | Na | Gravimetric | | See Sec. 4.2 | | Ni | ICP Assay | 3136 | 120619 | | Ni | EDTA | 928 | 928 | | P | ICP Assay | 3139a | 060717 | | P | Acidimetric | 84L | 84L | | Pb | ICP Assay | 3128 | 101026 | | Pb | EDTA | 928 | 928 | | Se | ICP Assay | 3149 | 100901 | | Sr | EDTA | 928 | 928 | | Sr | ICP Assay | Traceable to 3153a | K2-SR650985 | | TI | ICP Assay | 3158 | 151215 | | V | IC Assay | 3165 | 160906 | | V | EDTA | 928 | 928 | | Zn | ICP Assay | 3168a | 120629 | | Zn | EDTA | 928 | 928 | Page 4 of 6 The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} =
\Sigma(w_i) \{X_i\}$ X_i = mean of Assay Method i with standard uncertainty $u_{char\ i}$ w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{1/2}$ k = coverage factor = 2 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} is are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty #### Characterization of CRM/RM by One Method Certified Value, X_{CRMRM}, where one method of characterization is used is the mean of individual results: $X_{CRM/RM} = (X_a) (u_{char})$ X_a = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{tts} + u^2_{ts})^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (slorage) u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) N/A #### 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar. #### 8.0 HAZARDOUS INFORMATION Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com #### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date August 30, 2022 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - August 30, 2026 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | - Sealed TCT Bag Open Da | te: | |--------------------------|-----| |--------------------------|-----| - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS #### **Certificate Approved By:** Thomas Kozikowski Manager, Quality Control Certifying Officer: **Paul Gaines** Chairman / Senior Technical Director DD978hi. # Certificate of Analysis Refine your results. Redefine your industry. RD:05/14/2024 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com #### 1.0 **ACCREDITATION / REGISTRATION** INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION **Product Code:** Multi Analyte Custom Grade Solution Catalog Number: WW-LFS-2 Lot Number: U2-MEB731108 Matrix: 5% (v/v) HNO3 tr. HF Value / Analyte(s): 200 µg/mL ea: Silica, 80 µg/mL ea: Antimony, 70 µg/mL ea: Tin, 40 µg/mL ea: Molybdenum, 20 µg/mL ea: Titanium #### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES** **ANALYTE** Antimony, Sb **CERTIFIED VALUE** 80.1 ± 0.6 µg/mL **ANALYTE** Molybdenum, Mo **CERTIFIED VALUE** 40.03 ± 0.18 µg/mL Silica, SIQ2 200.2 ± 1.3 μg/mL Tin, Sn $70.0 \pm 0.4 \, \mu g/mL$ Titanium, Ti 20.01 ± 0.13 µg/mL Density: 1.025 g/mL (measured at 20 ± 4 °C) #### **Assay Information:** | ANALYTE
Mo | METHOD
ICP Assay | NIST SRM#
3134 | SRM LOT#
130418 | |---------------|---------------------|-------------------|--------------------| | Мо | Calculated | | See Sec. 4.2 | | Sb | ICP Assay | 3102a | 140911 | | SiO2 | ICP Assay | 3150 | 130912 | | Sn | ICP Assay | 3161a | 140917 | | П | ICP Assay | 3162a | 130925 | | Ti | Calculated | | See Sec. 4.2 | The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2))$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{\frac{1}{2}}$ k = coverage factor = 2 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty #### Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of Individual results: $X_{CRM/RM} = (X_a) (u_{char e})$ X_a = mean of Assay Method A with u_{char a} = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{bs} + u^2_{ts}\right)^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for
testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. #### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) N/Δ #### 6.0 INTENDED USE - **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D. - **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.Inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass. #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION ### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com #### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date March 17, 2023 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - March 17, 2028 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | Sealed TCT Bag Open Date | | |--|--| |--|--| - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. #### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Thomas Kozikowski Manager, Quality Control 3D978hi. **Certifying Officer:** Paul Gaines Chairman / Senior Technical I Chairman / Senior Technical Director # Certificate of Analysis 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Mass Spec Solution Catalog Number: MSHG-10PPM Lot Number: S2-HG709270 Matrix: 10% (v/v) HCI Value / Analyte(s): 10 μg/mL ea: Mercury Starting Material: Hg metal Starting Material Lot#: 1959 Starting Material Purity: 99.9994% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES **Certified Value:** $10.001 \pm 0.053 \,\mu g/mL$ Density: 1.020 g/mL (measured at 20 ± 4 °C) #### **Assay Information:** | ANALYTE | METHOD | NIST SRM# | SRM LOT# | |---------|------------|-----------|--------------| | Hg | ICP Assay | 3133 | 160921 | | Hg | EDTA | 928 | 928 | | Ha | Calculated | | See Sec. 4.2 | The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $\mathbf{X_i}$ = mean of Assay Method i with standard uncertainty $\mathbf{u_{char}}$ i w_i = the weighting factors for each method calculated using the inverse square of the variance. $\mathbf{w_i} = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty #### Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results: X_{CRM/RM} = (X_a) (u_{char a}) Xa = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²char a + u²bb + u²lts + u²ts) 1/2 k = coverage factor = 2 u_{char a} = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. #### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` O Ag 0.000011 M Eu < 0.000201 O Na 0.000004 M Se < 0.015915 O Zn < 0.001510 0 Al 0.000001 O Fe 0.000001 M Nb < 0.000201 O Si 0.000005 M Zr < 0.000201 M As < 0.000402 M Ga < 0.000201 M Nd < 0.000201 M Sm < 0.000201 M Au < 0.003631 M Gd < 0.000201 M Ni < 0.000402 M Sn < 0.001007 M B < 0.001208 M Ge < 0.000201 M Os < 0.000605 M Sr < 0.000201 M Ba < 0.000201 M Hf < 0.000201 O P < 0.032370 M Ta < 0.000201 M Be < 0.000201 s M Pb < Hq < 0.000201 M Tb < 0.000201 M Bi < 0.000201 M Ho < 0.000201 M Pd < 0.000403 M Te < 0.002216 0 Ca 0.000007 M In < 0.000201 M Pr < 0.000201 M Th < 0.000201 M Cd < 0.000201 M Ir 0.000201 M Pt < 0.000402 M Ti < 0.000402 0.000201 O TI < M Ce < 0.000201 O K 0.000020 M Rb < 0.016508 Co < M 0.000201 M La < 0.000201 M Re < 0.000201 M Tm < 0.000201 Cr < 0 0.003021 O Li < 0.000107 M Rh < 0.000201 M U < 0.008058 M Cs < 0.001208 M Lu < 0.000201 M Ru < 0.000201 M V < 0.000201 M Cu < 0.000402 O Mg 0.000001 O S < 0.053950 M W < 0.000604 M Dy < 0.000201 M Mn <
0.000604 M Sb < 0.001208 M Y < 0.000201 M Er < 0.000201 M Mo 0.000009 M Sc < 0.000201 M Yb < 0.000201 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element #### 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 200.59 +2 4 Hg(OH)(aq) 1+ **Chemical Compatibility -** Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water. **Stability -** 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container. **Hg Containing Samples (Preparation and Solution) -** Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation questions in further detail.). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 202 amu | 9 ppt | n/a | 186W16O | | ICP-OES 184.950 nm | 0.03 / 0.005 μg/mL | 1 | | | ICP-OES 194.227 nm | 0.03 / 0.005 µg/mL | 1 | V | | ICP-OES 253.652 nm | 0.1 / 0.03 µg/mL | 1 | Ta, Co, Th, Rh, Fe, | | | | | U | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com #### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date September 22, 2021 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - September 22, 2026 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | Sealed TCT | Bag | Open Date: | | | |------------|-----|------------|--|--| | | | | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By: Uyen Truong Supervisor, Product Documentation Mya Truong #### Certificate Approved By: Michael Booth Director, Quality Control Michael 2 Booth #### Certifying Officer: Paul Gaines Chairman / Senior Technical Director Paul R Laines ## MATERIAL CERTIFICATE OF COMPLIANCE **DATE: JUNE 12, 2023** **CUSTOMER:** PCI SCIENTIFIC SUPPLY, INC **PURCHASE ORDER NO.** 6054931 CATALOG NO. BOI5021-450L PRODUCT DESCRIPTION: **BOILING STONES, TFE, 454GMS** **QUANTITY:** 10 EACH LOT NO. W126678 **SPECIFICATION (S):** Made from Virgin PTFE Resin We certify that we have complied with the terms and conditions of the above Purchase Order and the Part Specifications in the manufacturing of the above product. Laura Valencia **Quality Assurance Inspector** F:U:J:CF:PCISCI:GOC-55118-BQI5021-061223 ## QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" Instructions for QATS Reference Material: Inorganic ICV Solutions ## QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6) These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions. APPLICATION: For use with the CLP SFAM01.0 SOW and revisions. **CAUTION:** Read instructions carefully before opening bottle(s) and proceeding with the analyses. Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL > Safety Data Sheets Available Upon Request ## (A) SAMPLE DESCRIPTION Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively. ## (B) BREAKAGE OR MISSING ITEMS Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided > QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120 ## (C) ANALYSIS OF SAMPLES The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s). ICV1-1014 For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric Page 1 of 2 ## QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program" # Instructions for QATS Reference Material: Inorganic ICV Solutions ICV1-1014 For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid. ICV5-0415 For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid. ICV6-0400 For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₅, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light. NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS. # (D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS | | ICV1-1014 | | | |---------|---|-------------------------|--| | Element | Concentration (µg/L) (after 10-fold dilution) | Concentration (µg/L | | | Al | 2500 | (after 50-fold dilution | | | Sb | 1000 | 500 | | | As | 1000 | 200 | | | Ba | 520 | 200 | | | Be | 510 | 100 | | | Cd | 510 | 100 | | | Ca | 10000 | 100 | | | Cr | 520 | 2000 | | | Co | 520 |
100 | | | Cu | 510 | 100 | | | Fe | 10000 | 100 | | | Pb | 1000 | 2000 | | | Mg | 6000 | 200 | | | Mn | | 1200 | | | Ni | 520 | 100 | | | K | 530 | 110 | | | Se | 9900 | 2000 | | | Ag | 1000 | 200 | | | Na | 250 | 50 | | | TI | 10000 | 2000 | | | V | 1000 | 210 | | | Zn | 500 | 100 | | | | 1000 | 200 | | | | ICV5-0415 | | ICV6-0400 | |---------|--|---------|---| | Element | Concentration (µg/L) (after 100-fold dilution) | Analyte | Concentration (µg/L) (after 100-fold dilution | | Hg | 4.0 | CN- | 99 | Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis R->16/13/24 Met dig M 6/21 Material No.: 9530-33 Batch No.: 0000275677 Manufactured Date: 2020/12/16 Retest Date: 2025/12/15 Revision No: 1 ## Certificate of Analysis | Test | Specification | Result | |---|---------------|---------| | ACS - Assay (as HCl) (by acid-base titrn) | 36.5 - 38.0 % | 37.6 | | ACS - Color (APHA) | <= 10 | 5 | | ACS - Residue after Ignition | <= 3 ppm | 1 | | ACS - Specific Gravity at 60°/60°F | 1.185 – 1.192 | 1.190 | | ACS – Bromide (Br) | <= 0.005 % | < 0.005 | | ACS - Extractable Organic Substances | <= 5 ppm | 1 | | ACS - Free Chlorine (as Cl2) | <= 0.5 ppm | < 0.5 | | Phosphate (PO ₄) | <= 0.05 ppm | < 0.03 | | Sulfate (SO ₄) | <= 0.5 ppm | < 0.3 | | Sulfite (SO ₃) | <= 0.8 ppm | 0.3 | | Ammonium (NH ₄) | <= 3 ppm | < 1 | | Trace Impurities – Arsenic (As) | <= 0.010 ppm | < 0.003 | | Trace Impurities - Aluminum (Al) | <= 10.0 ppb | < 0.2 | | Arsenic and Antimony (as As) | <= 5 ppb | < 3 | | Trace Impurities – Barium (Ba) | <= 1.0 ppb | < 0.2 | | Trace Impurities – Beryllium (Be) | <= 1.0 ppb | < 0.2 | | Trace Impurities – Bismuth (Bi) | <= 10.0 ppb | < 1.0 | | Trace Impurities – Boron (B) | <= 20.0 ppb | < 5.0 | | Frace Impurities – Cadmium (Cd) | <= 1.0 ppb | < 0.3 | | Frace Impurities – Calcium (Ca) | <= 50.0 ppb | 29.7 | | race Impurities – Chromium (Cr) | <= 1.0 ppb | < 0.4 | | race Impurities – Cobalt (Co) | <= 1.0 ppb | < 0.4 | | race Impurities – Copper (Cu) | <= 1.0 ppb | < 0.1 | | race Impurities – Gallium (Ga) | <= 1.0 ppb | < 0.2 | Material No.: 9530-33 Batch No.: 0000275677 | Test | Specification | Result | |--|---------------|--------------| | Trace Impurities - Germanium (Ge) | <= 3.0 ppb | < 2.0 | | Trace Impurities - Gold (Au) | <= 4.0 ppb | < 0.2 | | Heavy Metals (as Pb) | <= 100 ppb | < 50 | | Trace Impurities – Iron (Fe) | <= 15.0 ppb | <1 | | Trace Impurities – Lead (Pb) | <= 1.0 ppb | < 0.5 | | Trace Impurities – Lithium (Li) | <= 1.0 ppb | 0.2 | | Trace Impurities – Magnesium (Mg) | <= 10.0 ppb | 0.4 | | Trace Impurities – Manganese (Mn) | <= 1.0 ppb | < 0.4 | | Trace Impurities – Mercury (Hg) | <= 0.5 ppb | 0.1 | | Trace Impurities – Molybdenum (Mo) | <= 10.0 ppb | < 5.0 | | Trace Impurities – Nickel (Ni) | <= 4.0 ppb | < 0.3 | | Trace Impurities – Niobium (Nb) | <= 1.0 ppb | < 0.2 | | Frace Impurities – Potassium (K) | <= 9.0 ppb | < 2.0 | | Frace Impurities - Selenium (Se), For Information Only | ppb | 1.0 | | Trace Impurities - Silicon (Si) | <= 100.0 ppb | < 10.0 | | race Impurities – Silver (Ag) | <= 1.0 ppb | < 0.3 | | race Impurities – Sodium (Na) | <= 100.0 ppb | < 5.0 | | race Impurities – Strontium (Sr) | <= 1.0 ppb | < 0.2 | | race Impurities – Tantalum (Ta) | <= 1.0 ppb | < 0.9 | | race Impurities - Thallium (TI) | <= 5.0 ppb | < 2.0 | | race Impurities - Tin (Sn) | <= 5.0 ppb | < 0.8 | | race Impurities - Titanium (Ti) | <= 1.0 ppb | 0.8 | | race Impurities – Vanadium (V) | <= 1.0 ppb | | | race Impurities – Zinc (Zn) | <= 5.0 ppb | < 0.2 | | race Impurities – Zirconium (Zr) | <= 1.0 ppb | 0.3
< 0.1 | For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC M6125 Receive -> 11/22/24 # **CORCO CHEMICAL CORPORATION** Manufacturers of ACS Reagents and Semiconductor Grade Chemicals Office and Plant 299 Cedar Lane Fairless Hills, PA 19030 Phone: 215-295-5006 Fax: 215-295-0781 ## Hydrogen Peroxide 30%, ACS Reagent Grade | SPECIFICATION | MAXIMUM LIMITS | | |-----------------------------|--|--| | Appearance | Colorless and free from suspended matter or sediment | | | Assay | 29-32% | | | Color (APHA) | 10 | | | Residue after Evaporation | 0.002% | | | Titratable Acid | 0.0006 meq/g | | | Chloride (CI) | 3 ppm | | | Nitrate (NO ₃) | 2 ppm | | | Phosphate | 2 ppm | | | Sulfate (SO ₄) | 5 ppm | | | Ammonium (NH ₄) | 5 ppm | | | Heavy Metals (as Pb) | 1 ppm | | | Iron (Fe) | 0.5 ppm | | R -> 11/12/24 Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 Revision No.: 0 ## Certificate of Analysis | Test | Specification | Result | |-----------------------------------|---------------|-------------| | Assay (HNO3) | 69.0 – 70.0 % | 69.7 % | | Appearance | Passes Test | Passes Test | | Color (APHA) | ≤ 10 | 5 | | Residue after Ignition | ≤ 2 ppm | 1 ppm | | Chloride (CI) | ≤ 0.08 ppm | < 0.03 ppm | | Phosphate (PO ₄) | ≤ 0.10 ppm | < 0.03 ppm | | Sulfate (SO ₄) | ≤ 0.2 ppm | < 0.2 ppm | | Trace Impurities - Aluminum (AI) | ≤ 40.0 ppb | < 1.0 ppb | | Arsenic and Antimony (as As) | ≤ 5.0 ppb | < 2.0 ppb | | Trace Impurities – Barium (Ba) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities - Beryllium (Be) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities – Bismuth (Bi) | ≤ 20.0 ppb | < 10.0 ppb | | Trace Impurities - Boron (B) | ≤ 10.0 ppb | < 5.0 ppb | | Trace Impurities - Cadmium (Cd) | ≤ 50 ppb | < 1 ppb | | Trace Impurities – Calcium (Ca) | ≤ 50.0 ppb | 2.3 ppb | | Trace Impurities - Chromium (Cr) | ≤ 30.0 ppb | < 1.0 ppb | | Trace Impurities - Cobalt (Co) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities - Copper (Cu) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities – Gallium (Ga) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities - Germanium (Ge) | ≤ 20 ppb | < 10 ppb | | Trace Impurities - Gold (Au) | ≤ 20 ppb | < 5 ppb | | Heavy Metals (as Pb) | ≤ 100 ppb | 100 ppb | | Trace Impurities – Iron (Fe) | ≤ 40.0 ppb | < 1.0 ppb | | Trace Impurities - Lead (Pb) | ≤ 20.0 ppb | < 10.0 ppb | | Trace Impurities - Lithium (Li) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities – Magnesium (Mg) | ≤ 20 ppb | < 1 ppb | | Trace Impurities – Manganese (Mn) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities - Nickel (Ni) | ≤ 20.0 ppb | < 5.0 ppb | | | | | >>> Continued on page 2 >>> Nitric Acid 69% CMOS Material No.: 9606-03 Batch No.: 24D1062002 Test Specification Result For Microelectronic Use Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC Cloak Director Quality Operations, Bioscience Production