

DATA PACKAGE

VOLATILE ORGANICS GENERAL CHEMISTRY METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS

PROJECT NAME : CON ED NON-MGP - EAST RIVER SI 453648

PARSONS MAIN OF NEW YORK, INC.

301 Plainfield Road

Suite 350

Syracuse, NY - 13212

Phone No: 315-451-9560

ORDER ID: P5362

ATTENTION : Stephen Liberatore

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	4
2.1) VOC-TCLVOA-10- Case Narrative	4
2.2) TCLP VOA- Case Narrative	6
2.3) SVOC-TCL BNA -20- Case Narrative	8
2.4) TCLP BNA- Case Narrative	10
2.5) TCLP Pesticide- Case Narrative	12
2.6) PCB- Case Narrative	14
2.7) TCLP Herbicide- Case Narrative	16
2.8) TPH GC- Case Narrative	18
2.9) Metals-AES- Case Narrative	20
2.10) Metals-TCLP- Case Narrative	22
2.11) Genchem- Case Narrative	24
3) Qualifier Page	25
4) QA Checklist	27
5) VOC-TCLVOA-10 Data	28
6) TCLP VOA Data	34
7) SVOC-TCL BNA -20 Data	38
8) TCLP BNA Data	45
9) TCLP Pesticide Data	52
10) PCB Data	57
11) TCLP Herbicide Data	61
12) TPH GC Data	66
13) Metals-AES Data	69
14) Metals-TCLP Data	73
15) Genchem Data	77
16) Shipping Document	81
16.1) CHAIN OF CUSTODY	82
16.2) Lab Certificate	83
16.3) Internal COC	84

Client Sample Number

Cover Page

- **Order ID :** P5362
- Project ID : Con Ed Non-MGP East River SI 453648
 - **Client :** PARSONS Main of New York, Inc.

Lab Sample Number

P5362-01	WC-SOIL-20241219
P5362-02	WC-SOIL-20241219

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 1/8/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_Y were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples .

The Blank Spike Duplicate met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination.

The %RSD is greater than 20% in the Initial Calibration method (82Y122624S.M) for Toluene-d8 this compound is passing on Linear Regression.

The Continuous Calibration File ID VY020730.D met the requirements except for Bromochloromethane failing high but no positive hit in associated sample therefore no corrective action taken.

The Tuning criteria met requirements.

2.1

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2.2

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: TCLP VOA

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP VOA.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of TCLP VOA was based on method 8260D and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples .

The Blank Spike Duplicate met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements .

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial

Calibration curve and use %D calculated based on Amount added and Calculated amount

for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: SVOC-TCL BNA -20

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um df The analysis of SVOC-TCL BNA -20 was based on method 8270E and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria except for PB165814BL [Nitrobenzene-d5 - 109%], PB165814BS [Nitrobenzene-d5 - 117%], marginally high therefore no corrective action taken.

The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {P5362-01MS} with File ID: BF141002.D recoveries met the requirements for all compounds except for Atrazine[128%], due to matrix interference, no corrective action needed.

The MSD {P5362-01MSD} with File ID: BF141003.D recoveries met the acceptable requirements except for Atrazine[128%], due to matrix interference, no corrective action needed.

The RPD met criteria.

2.3

The Blank Spike for {PB165814BS} with File ID: BF140990.D met requirements for all samples except for 2,2-oxybis(1-Chloropropane)[106%], 2,3,4,6-Tetrachlorophenol [112%], 2,4,5-Trichlorophenol[100%], 2,4,6-Trichlorophenol[106%], 2,4-Dinitrotoluene [118%], 2,6-Dinitrotoluene[106%], 2-Nitroaniline[112%], 2-Nitrophenol[112%], 4,6-Dinitro-2-methylphenol [118%], 4-Bromophenyl-phenylether[106%], 4-Nitroaniline [106%], 4-Nitrophenol [121%], Acenaphthene[106%], Acenaphthylene [106%], 4-Nitroaniline [106%], Benzo(a)pyrene [112%], Benzo(k)fluoranthene [118%], Butylbenzylphthalate [106%], Carbazole[100%], Dibenzofuran[100%], Dimethylphthalate [106%], Hexachlorobenzene[100%], Hexachlorocyclopentadiene [185%], Indeno(1,2,3-cd)pyrene[112%], Isophorone[100%], Nitrobenzene[106%], N-Nitroso-di-n-propylamine[100%], N-Nitrosodiphenylamine[100%] and Pentachlorophenol[106%], The associate samples have no positive hit for these compounds therefore no corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The % RSD is greater than 20% in the Initial Calibration (8270-BF122624.M) for Benzaldehyde, 2-Nitrophenol, Benzoic acid, 2-Nitroaniline, 2,6-Dinitrotoluene, 3-Nitroaniline, 2,4-Dinitrotoluene, 4-Nitroaniline, 4,6-Dinitro-2-methylphenol, these compounds are passing on Linear Regression and 2,4-Dinitrophenol, is passing on Quadratic regression.

The Continuous Calibration met the requirements . The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2 2.4

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: TCLP BNA

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP BNA.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um df The analysis of TCLP BNA was based on method 8270E and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria except for WC-SOIL-20241219MS [Terphenyl-d14 - 126%], due to matrix interference no corrective action is required.

The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {P5362-02MS} with File ID: BF141050.D recoveries met the requirements for all compounds except for 2,4,5-Trichlorophenol[114%] and 2,4,6-Trichlorophenol[114%] due to matrix interference no corrective action is required.

The MSD recoveries met the acceptable requirements . The RPD met criteria .

The Blank Spike for {PB165894BS} with File ID: BF141021.D met requirements for all samples except for 2,4,5-Trichlorophenol[107%], Hexachlorobenzene[109%], The associate samples have no positive hit for these compounds therefore no corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The % RSD is greater than 20% in the Initial Calibration (8270-BF122624.M) for 2,4-Dinitrotoluene, this compound is passing on Linear Regression.

The Continuous Calibration File ID BF141047.D met the requirements except for 2,4-Dinitrotoluene, The associate samples have no positive hit for these compounds therefore no corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	

25

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: TCLP Pesticide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Pesticide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_L. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of TCLP Pesticides was based on method 8081B and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Edison Non-MGP - East River 453648.60024.03 Project # N/A Chemtech Project # P5362 Test Name: PCB

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_O. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11.The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

P5362

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.6

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: TCLP Herbicide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Herbicide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324The analysis of TCLP Herbicides was based on method 8151A and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.7

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Edison Non-MGP - East River 453648.60024.03 Project # N/A Chemtech Project # P5362 Test Name: TPH GC

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TPH GC.

C. Analytical Techniques:

The analysis were performed on instrument FID_G. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 13302. The analysis of TPH GC was based on method 8015D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples.

The MS {P5361-02MS} with File ID: FG015020.D recoveries met the requirements for all compounds except for Petroleum Hydrocarbons[18.4%] Due to matrix interference.

The MSD {P5361-02MSD} with File ID: FG015026.D recoveries met the acceptable requirements except for Petroleum Hydrocarbons[19.1%] Due to matrix interference.

The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.9

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: Metals ICP-TAL,Mercury

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for Metals ICP-TAL, Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010D, digestion based on method 3050 (soils). The analysis and digestion of Mercury was based on method 7471B.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples.

The Matrix Spike (WC-SOIL-20241219MS) analysis met criteria for all samples except for Antimony, Barium, Selenium, Silver, Sodium, Vanadium due to sample matrix interference.

The Matrix Spike Duplicate (WC-SOIL-20241219MSD) analysis met criteria for all samples except for Antimony, Selenium, Silver, Vanadium due to sample matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met criteria for all samples.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2 10

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: TCLP Mercury,TCLP ICP Metals

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Mercury, TCLP ICP Metals.

C. Analytical Techniques:

The analysis of TCLP ICP Metals was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of TCLP Mercury was based on method 7470A and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples.

The Matrix Spike (MOO-24-00395-96MS) analysis met criteria for all samples except for Barium due to sample matrix interference.

The Matrix Spike Duplicate (MOO-24-00395-96MSD) analysis met criteria for all samples except for Barium due to sample matrix interference.

The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements. The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

PARSONS Main of New York, Inc. Project Name: Con Ed Non-MGP - East River SI 453648 Project # N/A Chemtech Project # P5362 Test Name: Corrosivity,pH,Ignitability,Reactive Cyanide,Reactive Sulfide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 12/19/2024.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Corrosivity, Ignitability, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for Corrosivity, pH, Ignitability, Reactive Cyanide, Reactive Sulfide.

C. Analytical Techniques:

The analysis of Ignitability was based on method 1030, The analysis of Reactive Cyanide was based on method 9012B, The analysis of Reactive Sulfide was based on method 9034 and The analysis of Corrosivity, pH was based on method 9045D.

D. QA/ QC Samples:

The Holding Times were met for all samples except for WC-SOIL-20241219 of pH, for WC-SOIL-20241219 of Corrosivity as samples were receive out of holding time.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
U	Indicates the analyte was analyzed for, but not detected.
ND	Indicates the analyte was analyzed for, but not detected
Ε	Indicates the reported value is estimated because of the presence of interference
Μ	Indicates Duplicate injection precision not met.
Ν	Indicates the spiked sample recovery is not within control limits.
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).
*	Indicates that the duplicate analysis is not within control limits.
+	Indicates the correlation coefficient for the MSA is less than 0.995.
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
M OR	 Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi – Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
Q	Indicates the LCS did not meet the control limits requirements
Н	Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: P5362

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	✓
Is the chain of custody signed and complete	
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	✓
Collect information for each project id from server. Were all requirements followed	✓
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	✓
Do lab numbers and client Ids on cover page agree with the Chain of Custody	✓
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	✓
Do requested analyses on Chain of Custody agree with the log-in page	✓
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	
Were the samples received within hold time	✓
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: Mohammad Ahmed

5

В

Units

		Hit S	ummary Sheet SW-846		
P5362					
PARSONS Mai	n of New York, Inc				
Client ID	Matrix	Parameter	Concentration	C MDL	RDL

Client ID:

Sample ID

SDG No.:

Client:

0

Total Voc :

Total Concentration:

5

A B C D

Report of Analysis

Client:	PARSONS Main of New York, Inc.	Date Collected:	12/19/24
Project:	Con Ed Non-MGP - East River SI 453648	Date Received:	12/19/24
Client Sample ID:	WC-SOIL-20241219	SDG No.:	P5362
Lab Sample ID:	P5362-01	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	92
Sample Wt/Vol:	6.14 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020738.D	1		12/27/24 14:47	VY122724	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
75-71-8	Dichlorodifluoromethane	1.50	U	1.50	4.40	ug/Kg
74-87-3	Chloromethane	1.00	U	1.00	4.40	ug/Kg
75-01-4	Vinyl Chloride	0.68	U	0.68	4.40	ug/Kg
74-83-9	Bromomethane	0.91	U	0.91	4.40	ug/Kg
75-00-3	Chloroethane	0.89	U	0.89	4.40	ug/Kg
75-69-4	Trichlorofluoromethane	0.81	U	0.81	4.40	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	0.95	U	0.95	4.40	ug/Kg
75-35-4	1,1-Dichloroethene	0.69	U	0.69	4.40	ug/Kg
67-64-1	Acetone	5.50	U	5.50	22.1	ug/Kg
75-15-0	Carbon Disulfide	1.10	U	1.10	4.40	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.59	U	0.59	4.40	ug/Kg
79-20-9	Methyl Acetate	1.60	U	1.60	4.40	ug/Kg
75-09-2	Methylene Chloride	3.00	U	3.00	8.90	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.74	U	0.74	4.40	ug/Kg
75-34-3	1,1-Dichloroethane	0.56	U	0.56	4.40	ug/Kg
110-82-7	Cyclohexane	0.61	U	0.61	4.40	ug/Kg
78-93-3	2-Butanone	5.00	U	5.00	22.1	ug/Kg
56-23-5	Carbon Tetrachloride	0.77	U	0.77	4.40	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.54	U	0.54	4.40	ug/Kg
74-97-5	Bromochloromethane	2.10	U	2.10	4.40	ug/Kg
67-66-3	Chloroform	0.59	U	0.59	4.40	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.69	U	0.69	4.40	ug/Kg
108-87-2	Methylcyclohexane	0.77	U	0.77	4.40	ug/Kg
71-43-2	Benzene	0.64	U	0.64	4.40	ug/Kg
107-06-2	1,2-Dichloroethane	0.54	U	0.54	4.40	ug/Kg
79-01-6	Trichloroethene	0.66	U	0.66	4.40	ug/Kg
78-87-5	1,2-Dichloropropane	0.58	U	0.58	4.40	ug/Kg
75-27-4	Bromodichloromethane	0.50	U	0.50	4.40	ug/Kg
108-10-1	4-Methyl-2-Pentanone	3.90	U	3.90	22.1	ug/Kg
108-88-3	Toluene	0.59	U	0.59	4.40	ug/Kg

5

C D

Report of Analysis

Client:	PARSONS Main of New York, Inc.	Date Collected:	12/19/24
Project:	Con Ed Non-MGP - East River SI 453648	Date Received:	12/19/24
Client Sample ID:	WC-SOIL-20241219	SDG No.:	P5362
Lab Sample ID:	P5362-01	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	92
Sample Wt/Vol:	6.14 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY020738.D	1		12/27/24 14:47	VY122724	J

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
10061-02-6	t-1,3-Dichloropropene	0.53	U	0.53	4.40	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.50	U	0.50	4.40	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.74	U	0.74	4.40	ug/Kg
591-78-6	2-Hexanone	4.20	U	4.20	22.1	ug/Kg
124-48-1	Dibromochloromethane	0.58	U	0.58	4.40	ug/Kg
106-93-4	1,2-Dibromoethane	0.70	U	0.70	4.40	ug/Kg
127-18-4	Tetrachloroethene	0.79	U	0.79	4.40	ug/Kg
108-90-7	Chlorobenzene	0.66	U	0.66	4.40	ug/Kg
100-41-4	Ethyl Benzene	0.55	U	0.55	4.40	ug/Kg
179601-23-1	m/p-Xylenes	1.20	U	1.20	8.90	ug/Kg
95-47-6	o-Xylene	0.62	U	0.62	4.40	ug/Kg
100-42-5	Styrene	0.53	U	0.53	4.40	ug/Kg
75-25-2	Bromoform	0.72	U	0.72	4.40	ug/Kg
98-82-8	Isopropylbenzene	0.59	U	0.59	4.40	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	0.97	U	0.97	4.40	ug/Kg
541-73-1	1,3-Dichlorobenzene	0.66	U	0.66	4.40	ug/Kg
106-46-7	1,4-Dichlorobenzene	0.71	U	0.71	4.40	ug/Kg
95-50-1	1,2-Dichlorobenzene	0.52	U	0.52	4.40	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.40	U	1.40	4.40	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	0.70	U	0.70	4.40	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	0.69	U	0.69	4.40	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	61.0		50 - 163	122%	SPK: 50
1868-53-7	Dibromofluoromethane	56.9		54 - 147	114%	SPK: 50
2037-26-5	Toluene-d8	52.5		58 - 134	105%	SPK: 50
460-00-4	4-Bromofluorobenzene	47.1		29 - 146	94%	SPK: 50
INTERNAL STAT						
363-72-4	Pentafluorobenzene	106000	7.713			
540-36-3	1,4-Difluorobenzene	171000	8.615			
3114-55-4	Chlorobenzene-d5	144000	11.42			
3855-82-1	1,4-Dichlorobenzene-d4	57000	13.352			

5

C D

5

		Report of	f Analysi	5		
Client:	PARSONS Ma	n of New York, Inc.		Date Collected:	12/19/24	
Project:	Con Ed Non-M	GP - East River SI 453648		Date Received:	12/19/24	
Client Sample ID:	WC-SOIL-202	41219		SDG No.:	P5362	
Lab Sample ID:	P5362-01			Matrix:	SOIL	
Analytical Method:	SW8260			% Solid:	92	
Sample Wt/Vol:	6.14 Uni	ts: g		Final Vol:	5000	uL
Soil Aliquot Vol:		uL		Test:	VOC-TCLVO	A-10
GC Column:	RXI-624	ID: 0.25		Level :	LOW	
Prep Method :						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VY020738.D	1			12/27/24 14:47	VY122724	
AS Number Pa	rameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

5

D

LAB CHRONICLE

OrderID: Client: Contact:	Client: PARSONS Main of New York, Inc.			OrderDate: Project: Location:	12/20/2024 10:0 Con Ed Non-M0 N21,VOA Ref. #	GP - East River	⁻ SI 453648	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL	VOC-TCLVOA-10	8260D	12/19/24		12/27/24	12/19/24
P5362-02	WC-SOIL-20241219	TCLP	TCLP VOA	8260D	12/19/24		12/27/24	12/19/24

Hit Summary Sheet SW-846

			2	SW-846					
SDG No.:	P5362								В
Client:	PARSONS Main	n of New York, In	nc.						С
								_	D
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units	
Client ID:	WC-SOIL-20241	219							_
P5362-02	WC-SOIL-20241	21 TCLP	Chloroform	3.00	J	0.26	5.00	ug/L	
			Total Voc :	3.00					
			Total Concentration	3.00					

6

6

A B C D

С

Report of Analysis

Client:	PARSONS Main of New York, Inc.	Date Collected:	12/19/24
Project:	Con Ed Non-MGP - East River SI 453648	Date Received:	12/19/24
Client Sample ID:	WC-SOIL-20241219	SDG No.:	P5362
Lab Sample ID:	P5362-02	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VN085333.D	1		12/27/24 18:18	VN122724	J

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.34	U	0.34	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.26	U	0.26	5.00	ug/L
78-93-3	2-Butanone	1.30	U	1.30	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	3.00	J	0.26	5.00	ug/L
71-43-2	Benzene	0.16	U	0.16	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.24	U	0.24	5.00	ug/L
79-01-6	Trichloroethene	0.32	U	0.32	5.00	ug/L
127-18-4	Tetrachloroethene	0.25	U	0.25	5.00	ug/L
108-90-7	Chlorobenzene	0.13	U	0.13	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.0		74 - 125	112%	SPK: 50
1868-53-7	Dibromofluoromethane	52.2		75 - 124	104%	SPK: 50
2037-26-5	Toluene-d8	55.4		86 - 113	111%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.2		77 - 121	104%	SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	141000	8.224			
540-36-3	1,4-Difluorobenzene	267000	9.1			
3114-55-4	Chlorobenzene-d5	240000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	92700	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, I Stephen Liberatore	OrderDate: Project: Location:	12/20/2024 10:0 Con Ed Non-M0 N21,VOA Ref. #	GP - East River	⁻ SI 453648			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL	VOC-TCLVOA-10	8260D	12/19/24		12/27/24	12/19/24
P5362-02	WC-SOIL-20241219	TCLP	TCLP VOA	8260D	12/19/24		12/27/24	12/19/24

6

D

B C

Hit Summary Sheet SW-846

SDG No.: P5362

Client: PARSONS Main of New York, Inc.

Sample ID	Client ID	Matrix	Parameter	Conc	entration	С	MDL	RDL	Units
Client ID :	WC-SOIL-20241219								
P5362-01	WC-SOIL-20241219	SOIL	Pyrene		92.700	J	90.2	180	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Benzo(b)fluoranthene		97.900	J	88.1	180	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Benzo(a)pyrene		150.000	JQ	100	180	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Benzo(g,h,i)perylene		150.000	J	87	180	ug/Kg
			Total Svoc :			490.	60		
P5362-01	WC-SOIL-20241219	SOIL	5-Eicosene, (E)-	*	170.000	J	0	0	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Benzophenone	*	340.000	J	0	0	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Dibenzo[def,mno]chrysene	*	120.000	J	0	0	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	n-Hexadecanoic acid	*	250.000	J	0	0	ug/Kg
P5362-01	WC-SOIL-20241219	SOIL	Perylene	*	150.000	J	0	0	ug/Kg
			Total Tics :		1,	030.	00		
			Total Concentration:		1	,520.	.60		

A B C D

		Report	t of Anal	ysis			
Client:	PARSONS Main of Ne	ew York, Inc.			Date Collected:	12/19/24	ŀ
Project:	Con Ed Non-MGP - Ea	ast River SI 4536	48		Date Received:	12/19/24	ŀ
Client Sample ID): WC-SOIL-20241219				SDG No.:	P5362	
Lab Sample ID:	P5362-01				Matrix:	SOIL	
-							
Analytical Metho	od: SW8270				% Solid:	92	
Sample Wt/Vol:	30.02 Units: g	5			Final Vol:	1000	uL
Soil Aliquot Vol:	υ	ıL			Test:	SVOC-1	TCL BNA -20
Extraction Type :		Decan	ted : N	ſ	Level :	LOW	
Injection Volume		GPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3541				Ĩ		
-		Duce Det		Dat	Analyzad	Duran Dat 1	ID
File ID/Qc Batch:	Dilution:	Prep Date			Analyzed	Prep Batch	UI U
BF141001.D	1	12/23/24 09	9:35	12/27	7/24 17:21	PB165814	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weigh
TARGETS	Danzaldahuda	200	IT	200		260	$u \alpha / V \alpha$
100-52-7 108-95-2	Benzaldehyde Phenol	200 90.0	U U	200 90.0		360 180	ug/Kg
108-95-2 111-44-4	bis(2-Chloroethyl)ether	90.0 90.9	U U	90.0 90.9	180		ug/Kg ug/Kg
95-57-8	2-Chlorophenol			90.9 90.7	180		ug/Kg
95-57-8 95-48-7	2-Chlorophenol 2-Methylphenol	90.7 87.6	U U	90.7 87.6	180		ug/Kg
95-48-7 108-60-1	2.2-oxybis(1-Chloropropane)	87.6 98.7		87.6 98.7		180	ug/Kg
108-60-1 98-86-2	Acetophenone	98.7 94.4	UQ U	98.7 94.4		180	ug/Kg
98-86-2 65794-96-9	3+4-Methylphenols	94.4 86.7	U U	94.4 86.7		360	ug/Kg
65794-96-9 621-64-7			-				ug/Kg
	n-Nitroso-di-n-propylamine Hexachloroethane	43.8 90.2	UQ U	43.8		86.9	ug/Kg
67-72-1 08 05 2	Nitrobenzene	90.2 98.6		90.2 08.6		180	ug/Kg
98-95-3 78 50 1			UQ UQ	98.6 01.0		180	ug/Kg
78-59-1 88-75-5	Isophorone	91.9 100	UQ UQ	91.9 100		180	ug/Kg
	2-Nitrophenol	100 100	UQ U	100 100		180 180	ug/Kg
105-67-9 111-91-1	2,4-Dimethylphenol bis(2-Chloroethoxy)methane		U			180	ug/Kg
111-91-1 120-83-2		93.2 82.0	U	93.2 82.0		180 180	ug/Kg
	2,4-Dichlorophenol	82.0 89.7	U				ug/Kg
91-20-3	Naphthalene 4-Chloroaniline	89.7 89.7	U	89.7 89.7		180 180	ug/Kg
106-47-8 87-68-3	4-Chloroaniline Hexachlorobutadiene	89.7 90.5	U	89.7 90.5		180 180	ug/Kg
87-68-3 105-60-2	Caprolactam	90.5 94.3	U U	90.5 94.3		360	ug/Kg
	4-Chloro-3-methylphenol			94.3 84.2			ug/Kg
59-50-7 91-57-6	2-Methylnaphthalene	84.2 89.6	U U	84.2 89.6		180 180	ug/Kg
91-57-6 77-47-4	Hexachlorocyclopentadiene	89.6 170		89.6 170		360	ug/Kg
//-4/-4 88-06-2			UQ UQ				ug/Kg
	2,4,6-Trichlorophenol	77.6 80.4	UQ UQ	77.6 80.4		180 180	ug/Kg
95-95-4	2,4,5-Trichlorophenol	80.4	UQ	80.4		180	ug/Kg
92-52-4	1,1-Biphenyl	94.9	U	94.9 00.5		180	ug/Kg
91-58-7 88-74-4	2-Chloronaphthalene 2-Nitroaniline	90.5 100	U	90.5 100		180	ug/Kg
88-74-4	2-initioannine	100	UQ	100		180	ug/Kg

131-11-3

Dimethylphthalate

UQ

88.7

180

ug/Kg

88.7

			Report	t of Anal	lysis			
Client:	PARSONS Main of	New Y	York, Inc.			Date Collected:	12/19/24	:
Project:	Con Ed Non-MGP -	· East I	River SI 45364	48		Date Received:	12/19/24	l
Client Sample	ID: WC-SOIL-2024121	9				SDG No.:	P5362	
Lab Sample ID						Matrix:	SOIL	
Analytical Met						% Solid:	92	
Sample Wt/Vol		g				Final Vol:	1000	uL
Soil Aliquot Vo		uL				Test:		TCL BNA -20
Extraction Type		-	Decan	ited : N	÷	Level :	LOW	-
		~						рц.
Injection Volum		(GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541	_						
File ID/Qc Batch	h: Dilution:		Prep Date		Date	Analyzed	Prep Batch	ID
BF141001.D	1		12/23/24 09	9:35	12/27	7/24 17:21	PB165814	
CAS Number	Parameter		Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weig
208-96-8	Acenaphthylene		94.0	UQ	94.0		180	ug/Kg
606-20-2	2,6-Dinitrotoluene		90.4	UQ	90.4		180	ug/Kg
99-09-2	3-Nitroaniline		96.9	U	96.9		180	ug/Kg
83-32-9	Acenaphthene		88.1	UQ	88.1		180	ug/Kg
51-28-5	2,4-Dinitrophenol		260	U	260		360	ug/Kg
100-02-7	4-Nitrophenol		130	UQ	130		360	ug/Kg
132-64-9	Dibenzofuran		91.7	UQ	91.7		180	ug/Kg
121-14-2	2,4-Dinitrotoluene		93.6	UQ	93.6		180	ug/Kg
84-66-2	Diethylphthalate		87.0	U	87.0		180	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether		93.0	U	93.0		180	ug/Kg
86-73-7	Fluorene		92.9	U	92.9		180	ug/Kg
100-01-6	4-Nitroaniline		120	UQ	120		180	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol		130	UQ	130		360	ug/Kg
86-30-6	n-Nitrosodiphenylamine		88.6	UQ	88.6		180	ug/Kg
101-55-3	4-Bromophenyl-phenylether		85.7	UQ	85.7		180	ug/Kg
118-74-1	Hexachlorobenzene		92.3	UQ	92.3		180	ug/Kg
	Atrazine		99.3	U	99.3		180	
1912-24-9			<i>))</i> .5	0	JJ.J		100	ug/Kg
1912-24-9 87-86-5	Pentachlorophenol		84.0	UQ	84.0		360	ug/Kg ug/Kg

118-74-1	Hexachlorobenzene	92.3	UQ	92.3	180	ug/Kg
1912-24-9	Atrazine	99.3	U	99.3	180	ug/Kg
87-86-5	Pentachlorophenol	84.0	UQ	84.0	360	ug/Kg
85-01-8	Phenanthrene	91.2	U	91.2	180	ug/Kg
120-12-7	Anthracene	91.7	UQ	91.7	180	ug/Kg
86-74-8	Carbazole	87.2	UQ	87.2	180	ug/Kg
84-74-2	Di-n-butylphthalate	91.6	U	91.6	180	ug/Kg
206-44-0	Fluoranthene	88.7	U	88.7	180	ug/Kg
129-00-0	Pyrene	92.7	J	90.2	180	ug/Kg
85-68-7	Butylbenzylphthalate	110	UQ	110	180	ug/Kg
91-94-1	3,3-Dichlorobenzidine	110	U	110	360	ug/Kg
56-55-3	Benzo(a)anthracene	87.7	U	87.7	180	ug/Kg
218-01-9	Chrysene	86.4	U	86.4	180	ug/Kg
117-81-7	Bis(2-ethylhexyl)phthalate	98.8	U	98.8	180	ug/Kg
117-84-0	Di-n-octyl phthalate	120	U	120	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	97.9	J	88.1	180	ug/Kg
P5362			41 of 84			

7

		Repor	rt of Anal	ysis			
Client:	PARSONS Main of	New York, Inc.			Date Collected:	12/19/24	
Project:	Con Ed Non-MGP -	East River SI 453	648		Date Received:	12/19/24	
-			010		SDG No.:	P5362	
Client Sample ID		9					
Lab Sample ID:	P5362-01				Matrix:	SOIL	
Analytical Metho	od: SW8270				% Solid:	92	
Sample Wt/Vol:	30.02 Units:	g			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	SVOC-T	CL BNA -20
Extraction Type :	:	Deca	nted : N		Level :	LOW	
Injection Volume		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
-		OF C Pacifor .	1.0		Of C Cleanup .	IN	111.
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date A	Analyzed	Prep Batch	D
BF141001.D	1	12/23/24 ()9:35	12/27/	/24 17:21	PB165814	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight
207-08-9	Benzo(k)fluoranthene	89.7	UQ	89.7		180	ug/Kg
50-32-8	Benzo(a)pyrene	150	JQ	100		180	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	84.8	UQ	84.8		180	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	88.2	U	88.2		180	ug/Kg
191-24-2	Benzo(g,h,i)perylene	150	J	87.0		180	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	94.3	U	94.3		180	ug/Kg
123-91-1	1,4-Dioxane	120	U	120		180	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	81.1	UQ	81.1		180	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	115		18 - 112		76%	SPK: 150
13127-88-3	Phenol-d6	114		15 - 107		76%	SPK: 150
4165-60-0	Nitrobenzene-d5	96.0		18 - 107		96%	SPK: 100
321-60-8	2-Fluorobiphenyl	75.5		20 - 109		75%	SPK: 100
118-79-6	2,4,6-Tribromophenol	127		10 - 116		85%	SPK: 150
1718-51-0	Terphenyl-d14	79.2		10 - 105		79%	SPK: 100
NTERNAL STANI							
3855-82-1	1,4-Dichlorobenzene-d4	239000					
1146-65-2	Naphthalene-d8	952000					
15067-26-2	Acenaphthene-d10	519000					
1517-22-2	Phenanthrene-d10	859000					
1719-03-5	Chrysene-d12	501000					
1520-96-3	Perylene-d12	533000	15.433				
	TIFIED COMPOUNDS	2.40	Ŧ			10.0	177
000119-61-9	Benzophenone	340	J			10.6	ug/Kg
11111157/1112	n-Hexadecanoic acid	250	J			11.9	ug/Kg
	074685-30-6 5-Eicosene, (E)-						
000057-10-3 074685-30-6 000198-55-0	5-Eicosene, (E)- Perylene	170 150	J J			13.8 15.3	ug/Kg ug/Kg

7

Report of Analysis									
Client:	PARSONS Mai	n of New York, Inc.			Date Collected:	12/19/2	24		
Project:	Con Ed Non-M	GP - East River SI 453	648		Date Received:	12/19/2	24		
Client Sample ID:	WC-SOIL-2024	1219			SDG No.:	P5362			
Lab Sample ID:	P5362-01				Matrix:	SOIL			
Analytical Method:	SW8270				% Solid:	92			
Sample Wt/Vol:	30.02 Unit	s: g			Final Vol:	1000	uL		
Soil Aliquot Vol:		uL			Test:	SVOC	TCL BNA -20		
Extraction Type :		Deca	nted : N	1	Level :	LOW			
Injection Volume :		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :		
Prep Method :	SW3541								
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch	ı ID		
BF141001.D	1	12/23/24 ()9:35	12/27/2	24 17:21	PB165814			
CAS Number Par	rameter	Conc.	Qualifier	MDL		LOQ / CRQI	Units(Dry Weight)		

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

P5362

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	12/20/2024 10:07:00 AM Con Ed Non-MGP - East River SI 453648 N21,VOA Ref. #2 Soil			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL	SVOC-TCL BNA -20	8270E	12/19/24	12/23/24	12/27/24	12/19/24
P5362-02	WC-SOIL-20241219	TCLP	TCLP BNA	8270E	12/19/24	12/23/24	12/30/24	12/19/24

P5362

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

В	

8

Hit Summary Sheet SW-846

SDG No.:	P5362				
Client:	PARSONS Main	n of New York, Inc.			
Sample ID Client ID :	Client ID	Matrix	Parameter	Concentration C MDL	RDL Units
				0.000	
			Total Svoc :	0.00	
			Total Concentration:	0.00	

A B C D

A B C D

		Repor	t of Anal	ysis			
Client:	PARSONS Main o	f New York, Inc.			Date Collected:	12/19/24	
Project:	Con Ed Non-MGP	- East River SI 4536	48		Date Received:	12/19/24	
Client Sample ID): WC-SOIL-202412	19			SDG No.:	P5362	
Lab Sample ID:	P5362-02				Matrix:	TCLP	
-							
Analytical Metho					% Solid:	0	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	TCLP B	NA
Extraction Type	:	Decan	ted : N		Level :	LOW	
Injection Volume	:	GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date A	Analyzed	Prep Batch I	D
BF141033.D	1	12/27/24 10):25	12/30/	/24 16:20	PB165894	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine	15.5	U	15.5		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	8.40	U	8.40		50.0	ug/L
95-48-7	2-Methylphenol	11.3	U	11.3		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.5	U	11.5		100	ug/L
67-72-1	Hexachloroethane	10.1	U	10.1		50.0	ug/L
98-95-3	Nitrobenzene	12.7	U	12.7		50.0	ug/L
87-68-3	Hexachlorobutadiene	12.7	U	12.7		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	8.90	U	8.90		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.1	UQ	10.1		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	15.2	UM	15.2		50.0	ug/L
118-74-1	Hexachlorobenzene	11.4	UQ	11.4		50.0	ug/L
87-86-5	Pentachlorophenol	18.5	U	18.5		100	ug/L
SURROGATES	2 El angles l	1.5.1		10 120		1010/	ODIZ 170
367-12-4	2-Fluorophenol	151		10 - 139		101%	SPK: 150
13127-88-3	Phenol-d6	142		10 - 134		95%	SPK: 150
4165-60-0	Nitrobenzene-d5	131		49 - 133		131%	SPK: 100
321-60-8	2-Fluorobiphenyl	103		52 - 132		103%	SPK: 100
118-79-6 1718-51-0	2,4,6-Tribromophenol Terphenyl-d14	190 105		44 - 137 48 - 125		127% 105%	SPK: 150 SPK: 100
INTERNAL STAN 3855-82-1	1,4-Dichlorobenzene-d4	235000	6.828				
5055-02-1	Naphthalene-d8	235000 940000	6.828 8.104				
1116 65 2			8.104 9.857				
1146-65-2 15067-26-2	Acenanhthene_d10	20000					
15067-26-2	Acenaphthene-d10 Phenanthrene-d10	506000 868000					
	Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12	506000 868000 598000	11.339 13.98				

		Repor	t of Anal	ysis			
Client:	PARSONS Main	of New York, Inc.			Date Collected:	12/19	0/24
Project:	Con Ed Non-MC	P - East River SI 4536	48		Date Received:	12/19	0/24
Client Sample ID:	WC-SOIL-2024	219			SDG No.:	P536	2
Lab Sample ID:	P5362-02				Matrix:	TCLI	р
Analytical Method:	SW8270				% Solid:	0	
Sample Wt/Vol:	100 Units	: mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	TCLI	P BNA
Extraction Type :		Decar	nted : N		Level :	LOW	T
Injection Volume :		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Bat	ch ID
BF141033.D	1	12/27/24 1	0:25	12/30	/24 16:20	PB16589	94
CAS Number Para	meter	Conc.	Qualifier	MDL		LOQ / CR(QL Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- Q indicates Ees control effectia did not meet requirement.
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

ŏ	0
	×
	U

PARSONS Main o	f New York Inc			Date Collected	12/27/24	4
	- East River Si	+550+6				T
PB165858TB				Matrix:	TCLP	
od: SW8270				% Solid:	0	
100 Units:	mL			Final Vol:	1000	uL
	uL			Test:	TCLP B	NA
	Ι	Decanted :	Ν	Level :	LOW	
	GPC Fac	or 1.0		GPC Cleanup ·	N	PH :
	010100			or o orounup :		
Dilution:	Prep I	Date	Date	Analyzed	Prep Batch	ID
1	12/27	24 10:25	12/3	0/24 10:43	PB165894	
Parameter	Conc.	Quali	fier MDL		LOQ / CRQL	Units
Pyridine	15 4	II.	15.5		50.0	ug/L
						ug/L ug/L
2-Methylphenol			11.3		50.0	ug/L
3+4-Methylphenols	11.5		11.5		100	ug/L
Hexachloroethane	10.1		10.1		50.0	ug/L
Nitrobenzene	12.7	U U	12.7		50.0	ug/L
Hexachlorobutadiene			12.7		50.0	ug/L
2,4,6-Trichlorophenol	8.90	U	8.90		50.0	ug/L
2,4,5-Trichlorophenol			10.1		50.0	ug/L
2,4-Dinitrotoluene			15.2		50.0	ug/L
Hexachlorobenzene		•	11.4		50.0	ug/L
Pentachlorophenol	18.5	U	18.5		100	ug/L
2 Elucation d	1.40		10 120		050/	CDIZ: 170
						SPK: 150
						SPK: 150
		1				SPK: 100
						SPK: 100
						SPK: 150
	94.1		48 - 125		74%0	SPK: 100
			_			
A a am am little and a d10	558	000 9.85	7			
Acenaphthene-d10						
Phenanthrene-d10 Chrysene-d12	953 719	000 11.3	45			
	Con Ed Non-MGP PB165858TB PB165858TB PB165858TB Od: SW8270 100 Units: 100 Units: SW3541 Dilution: 1 Parameter Pyridine 1,4-Dichlorobenzene 2-Methylphenol 3+4-Methylphenol 3+4-Methylphenol 3+4-Methylphenols Hexachlorobutadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorop	Con Ed Non-MGP - East River SIPB165858TBPB165858TBod:SW8270100Units:mLuLuLuLSW3541Dilution:Prep I112/27/ParameterConc.Pyridine15.51,4-Dichlorobenzene8.402-Methylphenol11.33+4-Methylphenols11.5Hexachlorobtadiene10.1Nitrobenzene12.77Hexachlorobtadiene10.12,4,6-Trichlorophenol8.902,4,5-Trichlorophenol10.12,4,5-Trichlorophenol10.12,4,6-Trichlorophenol11.32-Fluorophenol142Phenol-d6138Nitrobenzene-d51182-Fluorophenol142Phenol-d6138Nitrobenzene-d51182-Fluorobiphenyl99.42,4,6-Tribromophenol169Terphenyl-d1494.1DARDS1,4-Dichlorobenzene-d42614	PB165858TB SW8270 100 Units: mL uL s:	Con Ed Non-MGP - East River SI 453648 PB165858TB PB165858TB PB165858TB DB100 Units: mL uL E Decanted : N SW3270 100 Units: mL UL E Decanted : N SW3541 Dilution: Prep Date Dilution: Prep Date Dilution: Prep Date 1 $12/27/24 \ 10:25$ 12/3 Parameter Conc. Qualifier MDL Pyridine 15.5 U 15.5 1,4-Dichlorobenzene 8.40 U 8.40 2-Methylphenol 11.3 U 11.3 3+4-Methylphenols 11.5 U 15.5 Hexachlorobtane 10.1 U 10.1 Nitrobenzene 12.7 U 12.7 Hexachlorobtadiene 15.2 U 15.5 Phenol-d6 138 10 - 134 Nitrobenzene 11.4 UQ 11.4 Pentachlorophenol 142 10 - 139 Phenol-d6 138 10 - 134 Nitrobenzene-d5 118 49 - 133 2-Fluorophenol 169 44 - 137 Terphenyl-d14 94.1 48 - 125 DARDS	Date Received: PB165858TB SDG No.: PB165858TB Matrix: Matrix: Matrix: SW8270 % Solid: ID0 Units: mL % Solid: ID0 Date Amalyzed ID1ution: Prep Date Date Amalyzed SW3541 Pyridim IS.5 U Pyridim SW3541 Pyridine: Prep Date Date Amalyzed 1,4-Dichlorobenzene 8,400 U SA40 Pyridim IS.5 U SA40 U SA40 Pyridin IS.5 U SA40 U SA40 U SA40 U SA40 U SA40	

Client:

	А
Date Collected: 12/27/24	В
Date Received: 12/27/24	С

Report of Analysis

PARSONS Main of New York, Inc.

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
BF141022.D	1	12/27/24 1	0:25	12/30/24 10:43	PB165894	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
Prep Method :	SW3541					
Injection Volume	2:	GPC Factor :	1.0	GPC Cleanup :	N PH	:
Extraction Type	:	Decar	nted : N	Level :	LOW	
Soil Aliquot Vol:		uL		Test:	TCLP BNA	
Sample Wt/Vol:	100 Units	s: mL		Final Vol:	1000	uL
Analytical Metho	od: SW8270			% Solid:	0	
Lab Sample ID:	PB165858TB			Matrix:	TCLP	
Client Sample II	D: PB165858TB			SDG No.:	P5362	
Project:	Con Ed Non-MC	GP - East River SI 4536	648	Date Received:	12/27/24	
		, ,				

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

8

Α

D

8

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	12/20/2024 10:0 Con Ed Non-M0 N21,VOA Ref. #	GP - East Rive	r SI 453648	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL	SVOC-TCL BNA -20	8270E	12/19/24	12/23/24	12/27/24	12/19/24
P5362-02	WC-SOIL-20241219	TCLP	TCLP BNA	8270E	12/19/24	12/27/24	12/30/24	12/19/24

			Hit Sum	nmary Sheet SW-846			Α
SDG No.:	P5362			Order ID:	P5362		В
Client:	PARSONS Main of	f New York, Inc.		Project ID:	Con Ed Non-M	IGP - East River SI 453(С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

0.000 **Total Concentration:**

A B C D

Report of Analysis

Client:	PARSONS Main of	PARSONS Main of New York, Inc.			Date Collected:	12/19/24		
Project:	Con Ed Non-MGP	- East River SI	453648		Date Received:	12/19/24		
Client Sample ID:	WC-SOIL-202412	19			SDG No.:	P5362		
Lab Sample ID:	P5362-02				Matrix:	TCLP		
Analytical Method	: SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
·	ioo onito.							
Soil Aliquot Vol:		uL			Test:	TCLP Pesticic	le	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	SW3541B							
File ID/Qc Batch:	Dilution:	Prep	Prep Date		Date Analyzed	Prep Batch ID		
PL093549.D	1	12/27/24 11:00			12/27/24 17:14	PB165895		
CAS Number	Parameter	neter Conc. Qualifier		MDL		LOQ / CR	QL	Units
TARGETS								
58-89-9	gamma-BHC (Lindane)	0.049	U	0.049		0.	50	ug/L
76-44-8	Heptachlor	0.054	U	0.054		0.	50	ug/L
1024-57-3	Heptachlor epoxide	0.090	U	0.090		0.	50	ug/L
72-20-8	Endrin	0.043	U	0.043		0.	50	ug/L
72-43-5	Methoxychlor	0.11	U	0.11		0.	50	ug/L
8001-35-2	Toxaphene	1.50	U	1.50		10	0.0	ug/L
57-74-9	Chlordane	0.82 U		0.82		5.	00	ug/L
SURROGATES								
2051-24-3	Decachlorobiphenyl	17.4		43 - 140		8	7%	SPK: 20
877-09-8	Tetrachloro-m-xylene	20.2		77 - 126		10	01%	SPK: 20

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

P5362

54 of 84

C D

Report of Analysis

							1	
Client:	PARSONS Main	of New York, Inc			Date Collected:			
Project:	Con Ed Non-MG	Con Ed Non-MGP - East River SI 453648			Date Received:	12/27/24		
Client Sample ID:	PB165858TB				SDG No.:	P5362		
Lab Sample ID:	PB165858TB				Matrix:	TCLP		
Analytical Method					% Solid:	0	Decanted:	
2								
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Pestic	ide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	SW3541B							
Trep Method .	5 1 5 1 5 1 5							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep	Batch ID	
PL093548.D	1	12/2	7/24 11:00		12/27/24 17:00	PB1	65895	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / C	RQL	Units
TARGETS								
58-89-9	gamma-BHC (Lindane)	0.049	U	0.049			0.50	ug/L
76-44-8	Heptachlor	0.054	U	0.054			0.50	ug/L
1024-57-3	Heptachlor epoxide	0.090	U	0.090			0.50	ug/L
72-20-8	Endrin	0.043	U	0.043			0.50	ug/L
72-43-5	Methoxychlor	0.11	U	0.11			0.50	ug/L
72-45-5				1 50			10.0	ug/L
8001-35-2	Toxaphene	1.50	U	1.50			10.0	u _L /L
	Toxaphene Chlordane	1.50 0.82	U U	0.82			5.00	ug/L ug/L
8001-35-2								
8001-35-2 57-74-9						:		

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

P5362

55 of 84

C D

B C D

9

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, Inc. Stephen Liberatore			PARSONS Main of New York, Inc. Project:			•				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received			
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24			
			PCB	8082A		12/20/24	12/20/24				
			TPH GC	8015D		12/23/24	12/23/24				
P5362-02	WC-SOIL-20241219	TCLP			12/19/24			12/19/24			
			TCLP Herbicide	8151A		12/27/24	12/27/24				
			TCLP Pesticide	8081B		12/27/24	12/27/24				

			Hit Su	mmary Sheet SW-846			Α
SDG No.:	P5362			Order ID:	P5362		В
Client:	PARSONS Main of	f New York, Inc.		Project ID:	Con Edison No	n-MGP - East River 45.	С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

0.000 **Total Concentration:**

С

Report of Analysis

Client:	PARSONS Main of New York, Inc.				Date Collected:	12/19/24	
Project:	Con Edison Nor	n-MGP - East Rive	r 453648.6	0024.03	Date Received:	12/19/24	
Client Sample ID:	WC-SOIL-2024	1219			SDG No.:	P5362	
Lab Sample ID:	P5362-01				Matrix:	SOIL	
Analytical Method	l: SW8082A				% Solid:	92 De	canted:
Sample Wt/Vol:	30.08 Unit	ts: g			Final Vol:		uL
	50.08 011	C					uL
Soil Aliquot Vol:		uL			Test:	PCB	
Extraction Type:					Injection Volume :		
GPC Factor :	1.0	PH :					
Prep Method :	SW3541B						
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep Bate	h ID
PO108719.D	1	12/2	0/24 08:30		12/20/24 18:14	PB165777	7
10100/1912	-						
CAS Number	Parameter	Conc.		ier MDL		LOQ / CRQL	Units(Dry Weight)
CAS Number				ier MDL		LOQ / CRQL	Units(Dry Weight)
				ier MDL 3.70		LOQ / CRQL 18,4	
CAS Number TARGETS	Parameter	Conc.	Qualifi				Units(Dry Weight) ug/kg ug/kg
CAS Number TARGETS 12674-11-2	Parameter Aroclor-1016	Conc. 3.70	Qualifi U	3.70		18.4	ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2	Parameter Aroclor-1016 Aroclor-1221	Conc. 3.70 6.90	Qualifi U U	3.70 6.90		18.4 18.4	ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5	Parameter Aroclor-1016 Aroclor-1221 Aroclor-1232	Conc. 3.70 6.90 3.70	Qualifi U U U	3.70 6.90 3.70		18.4 18.4 18.4	ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9	Parameter Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	Conc. 3.70 6.90 3.70 3.70	Qualifi U U U U	3.70 6.90 3.70 3.70		18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	Conc. 3.70 6.90 3.70 3.70 8.60	Qualifi U U U U U	3.70 6.90 3.70 3.70 8.60		18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	ParameterAroclor-1016Aroclor-1221Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254	Conc. 3.70 6.90 3.70 3.70 8.60 3.00	Qualifi U U U U U U U	3.70 6.90 3.70 3.70 8.60 3.00		18.4 18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5	Parameter Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262	Conc. 3.70 6.90 3.70 3.70 8.60 3.00 5.00	Qualifi U U U U U U U U	3.70 6.90 3.70 3.70 8.60 3.00 5.00		18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4	Parameter Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262 Aroclor-1268	Conc. 3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70	Qualifi U U U U U U U U U U	3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70		18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4 11096-82-5	Parameter Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262 Aroclor-1268	Conc. 3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70	Qualifi U U U U U U U U U U	3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70		18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
CAS Number TARGETS 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4 11096-82-5 SURROGATES	ParameterAroclor-1016Aroclor-1221Aroclor-1232Aroclor-1242Aroclor-1248Aroclor-1254Aroclor-1262Aroclor-1268Aroclor-1260	Conc. 3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70 3.20	Qualifi U U U U U U U U U U	3.70 6.90 3.70 3.70 8.60 3.00 5.00 3.70 3.20		18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

Comments:

U = Not Detected J = Estimated Value B = Analyte Found in Associated Method Blank LOQ = Limit of Quantitation MDL = Method Detection Limit N = Presumptive Evidence of a Compound LOD = Limit of Detection * = Values outside of QC limits E = Value Exceeds Calibration Range D = Dilution P = Indicates > 25% difference for detected S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample. concentrations between the two GC columns Q = indicates LCS control criteria did not meet requirements () = Laboratory InHouse Limit M = MS/MSD acceptance criteria did not meet requirements P5362

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, In Stephen Liberatore	nc.		OrderDate: Project: Location:	12/20/2024 10: Con Edison No N21,VOA Ref. 3	n-MGP - East I	River 453648.60	0024.03
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24
			PCB TPH GC	8082A 8015D		12/20/24 12/23/24	12/20/24 12/23/24	

			Hit Su	mmary Sheet SW-846			A
SDG No.:	P5362			Order ID:	P5362		В
Client:	PARSONS Main of	New York, Inc.		Project ID:	Con Ed Non-M	GP - East River SI 453(С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

Total Concentration: 0.000

<u>SAMPLE</u> <u>DATA</u>

С	

Report of Analysis

Client:	PARSONS Mai	n of New York, Inc.			Date Collected:	12/19/24		
Project:		GP - East River SI 4	53648		Date Received:	12/19/24		
Client Sample ID:					SDG No.:	P5362		
Lab Sample ID:	P5362-02				Matrix:	TCLP		
Analytical Method					% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Unit	ts: mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbici		
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :			5			
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Prep I	Date		Date Analyzed	Prep J	Batch ID	
PS028841.D	1	12/27	/24 10:20		12/27/24 22:20	PB16:	5896	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CR	QL	Units
TARGETS								
94-75-7	2,4-D	4.90	U	4.90		20	0.0	ug/L
93-72-1	2,4,5-TP (Silvex)	4.50	U	4.50		20	0.0	ug/L
SURROGATES 19719-28-9	2,4-DCAA	733		39 - 175			47%	SPK: 500

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

63 of 84

Client:

Date Collected:

	Α
	В
	С
	D
canted:	

Report of Analysis	eport of Analy	ysis
--------------------	----------------	------

PARSONS Main of New York, Inc.

Project:	Con Ed Non-	Con Ed Non-MGP - East River SI 453648 Da				12/27/24		
Client Sample ID:	PB165858TE	3			SDG No.:	P5362		
Lab Sample ID:	PB165858TE	PB165858TB Ma				TCLP		
Analytical Method:	SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 U	Inits: mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbic	ide	
Extraction Type:	Extraction Type:				Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	File ID/Qc Batch: Dilution:		Prep Date			Prep	Prep Batch ID	
PS028863.D	1	12/	12/27/24 10:20		12/31/24 11:52	PB165896		
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CI	RQL	Units
TARGETS								
	2,4-D	4.90	U	4.90		2	0.0	ug/L
93-72-1	2,4,5-TP (Silvex)	4.50	U	4.50		2	0.0	ug/L
SURROGATES								

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, In Stephen Liberatore	nc.	OrderDate: 12/20/2024 10:07:00 AM Project: Con Ed Non-MGP - East River SI 45364 Location: N21,VOA Ref. #2 Soil					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24
			PCB	8082A		12/20/24	12/20/24	
			TPH GC	8015D		12/23/24	12/23/24	
P5362-02	WC-SOIL-20241219	TCLP			12/19/24			12/19/24
			TCLP Herbicide	8151A		12/27/24	12/27/24	
			TCLP Pesticide	8081B		12/27/24	12/27/24	

в

Report of Analysis

Client:	PARSONS Main of	New York, Inc	2.	Date Collected	d: 12/19/24		
Project:	Con Edison Non-MO	GP - East Rive	r 453648.60024.03	Date Received	l: 12/19/24		
Client Sample ID:	WC-SOIL-2024121	9		SDG No.:	P5362		
Lab Sample ID:	P5362-01			Matrix:	SOIL		
Analytical Method	: 8015D TPH			% Solid:	92	Dec	anted:
Sample Wt/Vol:	30.05 Units:	g		Final Vol:	1	r	nL
Soil Aliquot Vol:		uL		Test:	TPH GC		
Extraction Type:				Injection Volu	me :		
GPC Factor :		PH :					
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Р	Prep Batch ID	
FG015023.D	1	12/23/24 08:35		12/23/24 15:16	Р	PB165807	
CAS Number	Parameter	Conc.	Qualifier M	DL	LOQ	/ CRQL	Units(Dry Weight)
TARGETS PHC	Petroleum Hydrocarbons	8270	34	5		3080	ug/kg
SURROGATES 16416-32-3	TETRACOSANE-d50	11.1	37	- 130		56%	SPK: 20

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

67 of 84

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, In Stephen Liberatore	OrderDate: Project: Location:	roject: Con Edison Non-MGP - East River 453648.60024.03					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24
			PCB	8082A		12/20/24	12/20/24	
			TPH GC	8015D		12/23/24	12/23/24	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	P5362 PARSONS Main of New Yo	Order ID: Project ID		P5362 Con Ed Non-MGP - East River SI 453648			
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID :	WC-SOIL-20241219						
P5362-01	WC-SOIL-20241219	SOIL	Aluminum	3630	2.38	4.94	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Arsenic	2.08	0.29	0.99	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Barium	24.4	0.63	4.94	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Beryllium	0.35	0.012	0.30	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Calcium	847	2.77	98.8	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Chromium	9.17	0.053	0.49	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Cobalt	6.02	0.057	1.48	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Copper	226	0.46	0.99	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Iron	9420	2.66	4.94	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Lead	231	0.15	0.59	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Magnesium	1870	3.39	98.8	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Manganese	80.9	0.070	0.99	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Mercury	0.030	0.0060	0.013	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Nickel	18.9	0.089	1.98	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Potassium	787	28.4	98.8	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Sodium	120	35.7	98.8	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Vanadium	17.7	0.27	1.98	mg/Kg
P5362-01	WC-SOIL-20241219	SOIL	Zinc	236	0.11	1.98	mg/Kg

B C

D

<u>SAMPLE</u> <u>DATA</u>

Report of Analysis

			В
PARSONS Main of New York, Inc.	Date Collected:	12/19/24	C
Con Ed Non-MGP - East River SI 453648	Date Received:	12/19/24	D
WC-SOIL-20241219	SDG No.:	P5362	
P5362-01	Matrix:	SOIL	
low	% Solid:	92	
	PARSONS Main of New York, Inc. Con Ed Non-MGP - East River SI 453648 WC-SOIL-20241219 P5362-01	Con Ed Non-MGP - East River SI 453648Date Received:WC-SOIL-20241219SDG No.:P5362-01Matrix:	PARSONS Main of New York, Inc.Date Collected:12/19/24Con Ed Non-MGP - East River SI 453648Date Received:12/19/24WC-SOIL-20241219SDG No.:P5362P5362-01Matrix:SOIL

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry	Weigh P)rep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	3630		1	2.38	4.94	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-36-0	Antimony	0.15	UN	1	0.15	2.47	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-38-2	Arsenic	2.08		1	0.29	0.99	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-39-3	Barium	24.4	Ν	1	0.63	4.94	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-41-7	Beryllium	0.35		1	0.012	0.30	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-43-9	Cadmium	0.016	U	1	0.016	0.30	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-70-2	Calcium	847		1	2.77	98.8	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-47-3	Chromium	9.17		1	0.053	0.49	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-48-4	Cobalt	6.02		1	0.057	1.48	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-50-8	Copper	226		1	0.46	0.99	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7439-89-6	Iron	9420		1	2.66	4.94	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7439-92-1	Lead	231		1	0.15	0.59	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7439-95-4	Magnesium	1870		1	3.39	98.8	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7439-96-5	Manganese	80.9		1	0.070	0.99	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7439-97-6	Mercury	0.030		1	0.0060	0.013	mg/Kg	12/20/24 10:15	12/20/24 14:40	SW7471B	
7440-02-0	Nickel	18.9		1	0.089	1.98	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-09-7	Potassium	787		1	28.4	98.8	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7782-49-2	Selenium	0.33	UN	1	0.33	0.99	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-22-4	Silver	0.051	UN	1	0.051	0.49	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-23-5	Sodium	120	Ν	1	35.7	98.8	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-28-0	Thallium	0.44	U	1	0.44	1.98	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-62-2	Vanadium	17.7	Ν	1	0.27	1.98	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050
7440-66-6	Zinc	236		1	0.11	1.98	mg/Kg	12/26/24 14:45	12/30/24 15:28	SW6010	SW3050

Color Before:	Brown	Clarity Before:	Texture: Medium				
Color After:	Yellow	Clarity After:	Artifacts:				
Comments:	METALS-TAL						
U = Not Detected			J = Estimated Value				
LOQ = Limit o	of Quantitation		B = Analyte Found in Associated Method Blank				
MDL = Metho	d Detection Limit		* = indicates the duplicate analysis is not within control limits.				
LOD = Limit of Detection			E = Indicates the reported value is estimated because of the presence				
D = Dilution			of interference.				
Q = indicates I	CS control criteria did	l not meet requirements	OR = Over Range				
			N =Spiked sample recovery not within control limits				
P5362	5362		71 of 84				

13

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, I Stephen Liberatore	OrderDate: Project: Location:	12/20/2024 10:07:00 AM Con Ed Non-MGP - East River SI 453648 N21,VOA Ref. #2 Soil					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24
			Mercury	7471B		12/20/24	12/20/24	
			Metals ICP-TAL	6010D		12/26/24	12/30/24	
P5362-02	WC-SOIL-20241219	TCLP			12/19/24			12/19/24
			TCLP ICP Metals	6010D		12/27/24	12/30/24	
			TCLP Mercury	7470A		12/30/24	12/30/24	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	P5362 PARSONS Main of New Yo		Order ID: Project ID		P5362 Con Ed Non-MGP - East River SI 453648				
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL Units		
Client ID :	WC-SOIL-20241219								
P5362-02	WC-SOIL-20241219	TCLP	Barium	641		62.8	500 ug/L		
P5362-02	WC-SOIL-20241219	TCLP	Cadmium	3.71	J	0.94	30.0 ug/L		
P5362-02	WC-SOIL-20241219	TCLP	Lead	431		35.1	60.0 ug/L		

- B C
- D

14

<u>SAMPLE</u> <u>DATA</u>

Report of Analysis

	Керогсог	Anarysis	
Client:	PARSONS Main of New York, Inc.	Date Collected:	12/19/24
Project:	Con Ed Non-MGP - East River SI 453648	Date Received:	12/19/24
Client Sample ID:	WC-SOIL-20241219	SDG No.:	P5362
Lab Sample ID:	P5362-02	Matrix:	TCLP
Level (low/med):	low	% Solid:	0
ag Danamatan	Come One DE MDI LOO/CDOI	I Units Dues Date Date A	na Ana Mat D Ma

Cas	Parameter	Conc.	Qua.	Dŀ	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7440-38-2	Arsenic	34.8	U	1	34.8	100	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7440-39-3	Barium	641	Ν	1	62.8	500	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7440-43-9	Cadmium	3.71	J	1	0.94	30.0	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7440-47-3	Chromium	6.60	U	1	6.60	50.0	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7439-92-1	Lead	431		1	35.1	60.0	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7439-97-6	Mercury	0.81	U	1	0.81	2.00	ug/L	12/30/24 13:50	12/30/24 14:48	SW7470A	
7782-49-2	Selenium	58.8	U	1	58.8	100	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050
7440-22-4	Silver	5.80	U	1	5.80	50.0	ug/L	12/27/24 09:30	12/30/24 16:29	SW6010	SW3050

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	TCLP METALS			
MDL = MethodLOD = LimitD = Dilution	of Quantitation od Detection Limit	t requirements		J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range N = Spiked sample recovery not within control limits

75 of 84

A B C D

LAB CHRONICLE	
---------------	--

OrderID: Client: Contact:	P5362 PARSONS Main of New York, I Stephen Liberatore	nc.		OrderDate: Project: Location:	12/20/2024 10:07:00 AM Con Ed Non-MGP - East River SI 453648 N21,VOA Ref. #2 Soil						
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received			
P5362-01	WC-SOIL-20241219	SOIL			12/19/24			12/19/24			
			Mercury	7471B		12/20/24	12/20/24				
			Metals ICP-TAL	6010D		12/26/24	12/30/24				
P5362-02	WC-SOIL-20241219	TCLP			12/19/24			12/19/24			
			TCLP ICP Metals	6010D		12/27/24	12/30/24				
			TCLP Mercury	7470A		12/30/24	12/30/24				

Report of Analysis

рН	7.60 Н	1 0	0	pН		12/27/24 14:1	0 9045D
Parameter	Conc. Qua.	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
				0	% Solid:	92	
Lab Sample ID:	P5362-01			Ν	Matrix:	SOIL	
Client Sample ID:	WC-SOIL-2	20241219		S	SDG No.:	P5362	
Project:	Con Ed Nor	n-MGP - East Riv	er SI 453648	Ι	Date Received:	12/19/24	
Client:	PARSONS	Main of New Yor	k, Inc.	Ι	Date Collected:	12/19/24	14:30

Comments: pH result reported at temperature 20.3 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Reactive Sulfide

mg/Kg

12/20/24 08:45 12/20/24 11:27 9034

Report of Analysis

Client: Project: Client Sample ID: Lab Sample ID:	Con Ec	d Non-MO DIL-2024		k, Inc. er SI 453648]	Date Collected: Date Received: SDG No.: Matrix:	12/19/24 1 12/19/24 P5362 SOIL	4:30	ć
Parameter	Conc. Q	ua. DF	MDL	LOQ / CRQL	Units	% Solid: Prep Date	100 Date Ana.	Ana Met.	
Corrosivity Ignitability Reactive Cyanide	NO	H 1 1 U 1	0 0 0.0087	0 0 0.050	pH oC mg/Kg	12/23/24 08:45	12/26/24 16:37 12/20/24 15:05 12/23/24 11:51	9045D 1030 9012B	

10.0

Comments: pH result reported at temperature 20.9 °C

6.31

J

1 0.19

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

LAB CHRONICLE

OrderID: Client: Contact:	P5362 PARSONS Main of New York, I Stephen Liberatore	nc.		OrderDate: Project: Location:	12/20/2024 10:07:00 AM Con Ed Non-MGP - East River SI 453648 N21,VOA Ref. #2 Soil						
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received			
P5362-01	WC-SOIL-20241219	SOIL			12/19/24 14:30			12/19/24			
			рН	9045D			12/27/24 14:10				
P5362-02	2 WC-SOIL-20241219	SOIL			12/19/24 14:30			12/19/24			
			Corrosivity	9045D			12/26/24 16:37				
			Ignitability	1030			12/20/24 15:05				
			Reactive Cyanide	9012B		12/23/24	12/23/24 11:51				
			Reactive Sulfide	9034		12/20/24	11:51 12/20/24 11:27				

<u>SHIPPING</u> DOCUMENTS

CHEINTECH CHAIN OF CUSTODY RECORD		284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net CHEMTECH PROJECT NO. QUOTE NO. COC Number 2041513												16.			
CLIENT INFORMATION		CLIENT PROJECT INFORMATION CLIENT BILLING IN										ING INF	ORMATION				
COMPANY: Parsons	PROJE	PROJECT NAME: Con Ed East River SI BILL TO: Parsons										PO#:	453648				
ADDRESS: 301 Plainfield Road			4536					Han							Road		
CITY Syracuse STATE: NY ZIP: 13212			GER: S.					٧Y							TE: NY	ZIP: 1321	2
ATTENTION: Stephen Liberatore			en.Lib							<u>vy</u>	SI	ihe	nto	re	1216)418-876	7
							0110		AITE	NHON:	0.2			ALYSIS	the second se	1918 010	4
PHONE: (315)4/8-8767 FAX: -	PHONE	100	418-8													A -	
FAX (RUSH)	Level	1 (Result 2 (Result 3 (Result aw Data)	s Only) 📮 s + QC) 📮 s + QC 📮	Level 4 (Q0 NJ Reduce	C+FullI d □ U	Raw Data S EPA C	a) SLP 3 10C 2	SWO TAL	neto PCB5	STRU TUP V	ILLP 1	esvor netals	pest.	ability	astrates a	th	
СНЕМТЕСН		SAMPL TYPE		MPLE ECTION	LES						TIVES				C C	OMMENTS	
SAMPLE SAMPLE IDENTIFICATION	SAMPLE MATRIX	GRAB		TIME	OF BOTTLES	E	E	E	E	E	E	E	<i>E</i>		A-HCI B-HN03	D-NaOH E-ICE	
	0.1				412	- 1.	2	3	4	5	6	.7	8	9	C-H2SO4	F-OTHER	-
1. WC-Soil - 2024/2/9	Soil	X	12/19/24	1430	14	X	X	X	X	Х	X	X	X	<u> </u>			
2.						<u> </u>	-										
3.	<u> </u>						<u> </u>										
4.																	
5.																	
6.																	
7.							1										
8.							1								1		
9.							1	1				-	-				
10.			1	<u> </u>			-						<u> </u>				-
SAMPLE CUSTODY MUST BE DOCU	JMENTED	BELOV	V EACH TI	ME SAMF	LES C	HANGE	E POSS	SESSIO	N INCL	UDING	COUR	IER DI	L	IY ~		1-10-10	
Relinguished by sampler: Date/Time: Receives by: 1. Kalents 12-19-24/1630 1 Relinguished by sampler: Date/Time 2. 2.	P,	163	Conditi	ions of bottles						_				-). /	°C	
RELINQUISHED BY SAMPLER: DATE/TIME: RECEIVED BY:					1	CLIEN	T: 🛛	Hand D	elivered	0.0	ther				Shipmer	nt Complete	1
3. 3. · · · · · · · · · · · · · · · · ·			Page	of 82'of 3		_	ECH:		ed Up SAMPLE		eld Samp	oling			C YES		

16 16.2

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

	Order ID : ent Name :		PARS02 S Main of New Yc				12/20/2024 10:07:00 AM Con Edison Non-MGP -		Project Mgr : Report Type : 1	Results Only		
Client Contact : Stephen Liberatore		Receive DateTime : 12/19										
Invo	ice Name :	PARSONS	S Main of New Yo		Purch	ase Order :		Н	ard Copy Date :			
Invoice	e Contact :	Stephen L	iberatore						Date Signoff :			
LAB ID	CLIEN	ΓID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE
P5362-01	w	C-SOIL-2	0241219	Solid	12/19/2024	14:30						
							VOC-TCLVOA-10		8260D	5 Bus. Days		

Relinguished By : Date / Time: 12-20-24 11:00

Received By: Sam Date/Time: (2/20/24 11:00 BH 6 F22

16.3

Storage Area: VOA Refridgerator Room

Page 1 of 1 84 of 84