

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS

PROJECT NAME : FT MEADE TIPTON AIRFIELD PARCEL RI - PO 0111169

WESTON SOLUTIONS

1400 Weston Way

PO Box 2653

West Chester, PA - 19380

Phone No: 610-701-7400

ORDER ID: Q1109 **ATTENTION : Nathan Fretz**

Laboratory Certification ID # 20012

E

1

1) Signature Page	3
2) Case Narrative	4
2.1) VOC-TCLVOA-10- Case Narrative	4
2.2) Gasoline Range Organics- Case Narrative	6
2.3) SVOC-TCL BNA -20- Case Narrative	8
2.4) PESTICIDE Group1- Case Narrative	10
2.5) Diesel Range Organics- Case Narrative	12
2.6) Metals-MS- Case Narrative	14
2.7) Genchem- Case Narrative	16
3) Qualifier Page	18
4) QA Checklist	20
5) VOC-TCLVOA-10 Data	21
6) Gasoline Range Organics Data	30
7) SVOC-TCL BNA -20 Data	33
8) PESTICIDE Group1 Data	40
9) Diesel Range Organics Data	45
10) Metals-MS Data	48
11) Genchem Data	54
12) Shipping Document	59
12.1) CHAIN OF CUSTODY	60
12.2) Lab Certificate	61
12.3) Internal COC	62

Client Sample Number

Cover Page

- **Order ID :** Q1109
- Project ID : Ft Meade Tipton Airfield Parcel RI PO 0111169
 - Client : Weston Solutions

Lab Sample Number

Q1109-01TAPIAL1-MW04I-011525-00-T3Q1109-02TAPIAL1-MW04S-011525-00-T2Q1109-04TAP-TB-01-011525

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 1/29/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

Q1109

2 2.1

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The RPD for {VN0116WBSD02} with File ID: VN085477.D met criteria except for 2-Butanone[23%] due to difference in results of BS and BSD.

The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements . The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

The not QT review data is reported in the Miscellaneous.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F.Calculation for Concentration in Water Samples:

Concentration ug/L = $(A \times)(I \times) (Df)$ (Ais) (RRF)(V0)

Where,

Ax = Area for the compound to be measured Ais = Area for the specific internal standard Is = Amount of internal standard added in nanograms (ng) RRF = Relative response factor of the initial calibration curve standard. Vo = Volume of water purged in milliliters (mL) Df = Dilution factor.

G. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: Gasoline Range Organics

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for Gasoline Range Organics.

C. Analytical Techniques:

The analysis performed on instrument FID_B were done using GC column RTX502.2 which is 60 meters, 0.53mm ID, 3.0 um df, cat#10909.The analysis of Gasoline Range Organics was based on method 8015D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration met the requirements .

E. Additional Comments:

The not QT review data is reported in the Miscellaneous.

F. Calculation for Concentration in WATER samples :

Calculations for samples are: Waters: mg/L

ng purged (mL sample purged) (1000)

Where ng purged = <u>total area of peaks</u> calibration factor (CF)

CF = mean CF of the initial calibration

G. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

=

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.2

2 2.3

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: SVOC-TCL BNA -20

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um dfThe analysis of SVOC-TCL BNA -20 was based on method 8270E and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria .

The Blank Spike for {PB166117BS} with File ID: BF141218.D met requirements for all samples except for Hexachlorocyclopentadiene[190%] but no positive hit in associated sample therefore no corrective action taken.

The Blank Spike Duplicate for {PB166117BSD} with File ID: BF141219.D met requirements for all samples except for Hexachlorocyclopentadiene[190%] but no positive hit in associated sample therefore no corrective action taken.

The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration File ID BF141212.D met the requirements except for 4,6-Dinitro-2-methylphenol but no positive hit in associated sample therefore no corrective action taken.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 8 points.

The not QT review data is reported in the Miscellaneous.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Calculation for Concentration in Water Samples:

Concentration ug/L = (Ax) (Is) (Vt) (DF) (GPC)(Ais) (RRF) (Vo) (Vi)

Where,

Ax = Area of the characteristic ion for the compound to be measured.

Ais = Area of the characteristic ion for the internal standard.

Is = Amount of internal standard injected in ng.

Vo = Volume of water extracted in mL.

Vi = Volume of extract injected in uL.

Vt = Volume of the concentrated extract in uL

RRF = Mean Relative Response Factor determined from the initial calibration standard.

 $GPC = \frac{Vin}{Vout} = GPC$ factor (If no GPC is performed, GPC=1) Vout

G. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: PESTICIDE Group1

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for PESTICIDE Group1.

C. Analytical Techniques:

The analysis was performed on instrument ECD_L. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of PESTICIDE Group1s was based on method 8081B and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The not QT review data is reported in the Miscellaneous.

F. Calculation for Concentration in Water Samples:

Concentration in ug/L = (Ax) (Vt) (DF) (GPC)(CF) (Vo) (Vi)

Where,

- Ax = Response (peak area or height) of the compound to be measured.
- CF = Mean Calibration Factor from the initial calibration (area/ng).
- Vo = Volume of water extracted in mL.
- Vi = Volume of extract injected in uL.
- Vt = Volume of the concentrated extract in uL
- $GPC = \underline{Vin} = GPC$ factor (If no GPC is performed, GPC=1)

Vout

Vin = Volume of extract loaded onto GPC column.

Vout = Volume of extract collected after GPC cleanup.

DF = Dilution Factor.

G. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2 2.5

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: Diesel Range Organics

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for Diesel Range Organics.

C. Analytical Techniques:

The analysis of Diesel Range Organics was based on method 8015D and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The not QT review data is reported in the Miscellaneous

F. Calculation for Concentration in WATER samples :

The sample concentrations (Cs) in ug/L are calculated as follows:

 $Cs = \frac{\{Extract DRO-net (ug/mL)\}\{Final vol. extract (mL)\}\{Df\}}{Ws}$

Where

DRO (net)ug/mL = DRO (total) ug /mL - DRO (solvent) ug /mL

Df = Dilution factor

Ws= Weight of sample in mL

G. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.6

CASE NARRATIVE

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: Metals ICP-TAL,Mercury

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for Metals ICP-TAL, Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6020B, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (TAPIAL1-MW04S-011525-00-T2MSD) analysis met criteria for all samples except for Silver due to Chemical Interference during Digestion Process. The Matrix Spike (427MS) analysis met criteria for all samples except for Mercury due to sample matrix interference. The Matrix Spike (TAPIAL1-MW04S-011525-00-T2MS) analysis met criteria for all samples except for Aluminum, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Iron, Potassium, Silver, Sodium and Vanadium due to Chemical Interference during Digestion process.

The Matrix Spike Duplicate (427MSD) analysis met criteria for all samples except for Mercury due to sample matrix interference. The Matrix Spike Duplicate (TAPIAL1-MW04S-011525-00-T2MSD) analysis met criteria for all samples except for Aluminum, Arsenic, Barium, Cadmium, Calcium, Chromium, Iron, Potassium, Silver and Sodium due to Chemical Interference during Digestion process.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met criteria for all samples.

E. Additional Comments:

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

2.6

Calculation for ICP-MS Water Sample:

Concentration or Result ($\mu g/L$) = C x Vf x DF Vi

Where,

C = Instrument value in ppb (The average of all replicate integrations)
Vf = Final digestion volume (mL)
Vi = Initial aliquot amount (mL) (Sample amount taken in prep)
DF = Dilution Factor

Calculation for Hg Water Sample:

Concentration or Result $(\mu g/L) = C \times DF$ Where, $C = \text{Instrument response in } \mu g/L \text{ from the calibration curve.}$ DF = Dilution Factor

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

27

Weston Solutions Project Name: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Project # N/A Chemtech Project # Q1109 Test Name: Hexavalent Chromium,Oil and Grease,Anions Group5,TOC,Ammonia

A. Number of Samples and Date of Receipt:

3 Water samples were received on 01/16/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Ammonia, Anions Group5, Diesel Range Organics, Gasoline Range Organics, Hardness, Total, Hexavalent Chromium, Mercury, Metals ICP-TAL, METALS-TAL, Oil and Grease, PESTICIDE Group1, PESTICIDE Group3, SVOC-TCL BNA -20, TOC and VOC-TCLVOA-10. This data package contains results for Hexavalent Chromium,Oil and Grease,Anions Group5,TOC,Ammonia.

C. Analytical Techniques:

The analysis of Oil and Grease was based on method 1664A, The analysis of Hexavalent Chromium was based on method 7196A, The analysis of Anions Group5 was based on method 9056A, The analysis of TOC was based on method 9060A and The analysis of Ammonia was based on method SM4500-NH3.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Sample TAPIAL1-MW04S-011525-00-T2 was diluted due to high concentrations for Chloride and Sulfate.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike (TAPIAL1-MW04S-011525-00-T2MS) analysis met criteria for all samples except for Chloride due to sample Matrix interference.

The Matrix Spike Duplicate (DSN002MSD) analysis met criteria for all samples except for Ammonia due to sample Matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

As per method 1664A, MS/MSD is required to be performed with the sample analysis. However, Lab did not receive sufficient volume to perform the MS/MSD therefore MS/MSD were not performed for this project.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).					
U	Indicates the analyte was analyzed for, but not detected.					
ND	Indicates the analyte was analyzed for, but not detected					
Ε	Indicates the reported value is estimated because of the presence of interference					
М	Indicates Duplicate injection precision not met.					
Ν	Indicates the spiked sample recovery is not within control limits.					
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).					
*	Indicates that the duplicate analysis is not within control limits.					
+	Indicates the correlation coefficient for the MSA is less than 0.995.					
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.					
M OR	Method qualifiers"P"for ICP instrument"PM"for ICP when Microwave Digestion is used"CV"for Manual Cold Vapor AA"AV"for automated Cold Vapor AA"CA"for MIDI-Distillation Spectrophotometric"AS"for Semi – Automated Spectrophotometric"C"for Manual Spectrophotometric"T"for Titrimetric"NR"for analyte not required to be analyzedIndicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.					
Q	Indicates the LCS did not meet the control limits requirements					
Н	Sample Analysis Out Of Hold Time					

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q1109

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u>✓</u>
All runlogs and manual integration are reviewed for requirements	
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sheet SW-846						A			
SDG No.:	Q1109								В
Client:	Weston Solutions	5							С
									D
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	LOD	RDL	Units	
Client ID:									-
				0					

Total Voc :

Total Concentration:

A B C D

Report of Analysis

Client:	Weston Solutions	Date Collected:	01/15/25
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25
Client Sample ID:	TAPIAL1-MW04S-011525-00-T2	SDG No.:	Q1109
Lab Sample ID:	Q1109-02	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed		Prep Batch ID	
VN085476.D	1			01/16/25 17:44		VN011625	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	0.50	U	0.21	0.50	5.00	ug/L
74-87-3	Chloromethane	0.50	U	0.35	0.50	5.00	ug/L
75-01-4	Vinyl Chloride	0.75	U	0.34	0.75	5.00	ug/L
74-83-9	Bromomethane	3.80	U	1.40	3.80	5.00	ug/L
75-00-3	Chloroethane	0.50	U	0.56	0.50	5.00	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	0.34	0.50	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	0.25	0.50	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.75	U	0.26	0.75	5.00	ug/L
67-64-1	Acetone	3.80	U	1.40	3.80	25.0	ug/L
75-15-0	Carbon Disulfide	0.75	U	0.32	0.75	5.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	0.16	0.50	5.00	ug/L
79-20-9	Methyl Acetate	0.75	U	0.60	0.75	5.00	ug/L
75-09-2	Methylene Chloride	0.50	U	0.32	0.50	5.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	0.25	0.50	5.00	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	0.23	0.50	5.00	ug/L
110-82-7	Cyclohexane	3.80	U	1.60	3.80	5.00	ug/L
78-93-3	2-Butanone	2.50	U	1.30	2.50	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	0.25	0.50	5.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	0.25	0.50	5.00	ug/L
74-97-5	Bromochloromethane	0.50	U	0.18	0.50	5.00	ug/L
67-66-3	Chloroform	0.50	U	0.26	0.50	5.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.75	U	0.19	0.75	5.00	ug/L
108-87-2	Methylcyclohexane	0.50	U	0.19	0.50	5.00	ug/L
71-43-2	Benzene	0.50	U	0.16	0.50	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.75	U	0.24	0.75	5.00	ug/L
79-01-6	Trichloroethene	0.75	U	0.32	0.75	5.00	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	0.19	0.50	5.00	ug/L
75-27-4	Bromodichloromethane	0.50	U	0.24	0.50	5.00	ug/L
108-10-1	4-Methyl-2-Pentanone	2.50	U	0.75	2.50	25.0	ug/L
108-88-3	Toluene	0.50	U	0.18	0.50	5.00	ug/L

C D

Report of Analysis

Client:	Weston Solutions	Date Collected:	01/15/25
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25
Client Sample ID:	TAPIAL1-MW04S-011525-00-T2	SDG No.:	Q1109
Lab Sample ID:	Q1109-02	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

(CAS Number	Parameter	Conc.	Qualifier MDI	_ LOD	LOQ / CRQL	Units
	VN085476.D	1		01/	16/25 17:44	VN011625	
	File ID/Qc Batch:	Dilution:	Prep Date	Dat	e Analyzed	Prep Batch ID	

Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
t-1,3-Dichloropropene	0.50	U	0.21	0.50	5.00	ug/L
cis-1,3-Dichloropropene	0.50	U	0.18	0.50	5.00	ug/L
1,1,2-Trichloroethane	0.50	U	0.21	0.50	5.00	ug/L
2-Hexanone	2.50	U	1.10	2.50	25.0	ug/L
Dibromochloromethane	0.50	U	0.18	0.50	5.00	ug/L
1,2-Dibromoethane	0.50	U	0.16	0.50	5.00	ug/L
Tetrachloroethene	0.50	U	0.25	0.50	5.00	ug/L
Chlorobenzene	0.50	U	0.13	0.50	5.00	ug/L
Ethyl Benzene	0.50	U	0.16	0.50	5.00	ug/L
m/p-Xylenes	1.00	U	0.31	1.00	10.0	ug/L
o-Xylene	0.50	U	0.14	0.50	5.00	ug/L
Styrene	0.50	U	0.16	0.50	5.00	ug/L
Bromoform	0.50	U	0.21	0.50	5.00	ug/L
Isopropylbenzene	0.50	U	0.13	0.50	5.00	ug/L
1,1,2,2-Tetrachloroethane	0.50	U	0.27	0.50	5.00	ug/L
1,3-Dichlorobenzene	0.50	U	0.24	0.50	5.00	ug/L
1,4-Dichlorobenzene	0.50	U	0.27	0.50	5.00	ug/L
1,2-Dichlorobenzene	0.50	U	0.19	0.50	5.00	ug/L
1,2-Dibromo-3-Chloropropane	2.00	U	0.46	2.00	5.00	ug/L
1,2,4-Trichlorobenzene	0.50	U	0.42	0.50	5.00	ug/L
1,2,3-Trichlorobenzene	0.50	U	0.51	0.50	5.00	ug/L
1,2-Dichloroethane-d4	55.1		81 - 118		110%	SPK: 50
Dibromofluoromethane	52.9		80 - 119		106%	SPK: 50
Toluene-d8	50.1		89 - 112		100%	SPK: 50
4-Bromofluorobenzene	47.6		85 - 114		95%	SPK: 50
NDARDS						
Pentafluorobenzene	169000					
1,4-Difluorobenzene	305000	9.1				
Chlorobenzene-d5	271000	11.865				
1,4-Dichlorobenzene-d4	107000	13.788				
	t-1,3-Dichloropropene cis-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5	t-1,3-Dichloropropene 0.50 cis-1,3-Dichloropropene 0.50 1,1,2-Trichloroethane 0.50 2-Hexanone 2.50 Dibromochloromethane 0.50 1,2-Dibromoethane 0.50 Tetrachloroethene 0.50 Chlorobenzene 0.50 Ethyl Benzene 0.50 m/p-Xylenes 1.00 o -Xylene 0.50 Bromoform 0.50 Isopropylbenzene 0.50 1,2-Dichlorobenzene 0.50 Bromoform 0.50 Isopropylbenzene 0.50 1,2-Z-Tetrachloroethane 0.50 1,3-Dichlorobenzene 0.50 1,2-Dichlorobenzene 0.50 1,2-Dichlorobenzene 0.50 1,2-Dichlorobenzene 0.50 1,2-Dichlorobenzene 0.50 1,2,3-Trichlorobenzene 0.50 1,2-Dichloroethane-d4 55.1 Dibromofluoromethane 52.9 Toluene-d8 50.1 4-Bromofluorobenzene 47.6 NDARDSPentafluorobenzene 169000 1,4-Difluorobenzene 305000 Chlorobenzene-d5 271000	t-1,3-Dichloropropene 0.50 U cis-1,3-Dichloropropene 0.50 U 1,1,2-Trichloroethane 0.50 U 2-Hexanone 2.50 U Dibromochloromethane 0.50 U 1,2-Dibromoethane 0.50 U 1,2-Dibromoethane 0.50 U Tetrachloroethene 0.50 U Chlorobenzene 0.50 U Ethyl Benzene 0.50 U m/p-Xylenes 1.00 U o-Xylene 0.50 U Bromoform 0.50 U Isopropylbenzene 0.50 U 1,1,2,2-Tetrachloroethane 0.50 U 1,3-Dichlorobenzene 0.50 U 1,3-Dichlorobenzene 0.50 U 1,2-Diblorobenzene 0.50 U 1,2-Dichlorobenzene 0.50 U 1,2-Diblorobenzene 0.50 U 1,2,3-Trichlorobenzene 0.50 U 1,2,3-Trichlorobenzene	t-1,3-Dichloropropene 0.50 U 0.21 cis-1,3-Dichloropropene 0.50 U 0.18 1,1,2-Trichloroethane 0.50 U 0.21 2-Hexanone 2.50 U 1.10 Dibromochloromethane 0.50 U 0.18 1,2-Dibromoethane 0.50 U 0.18 1,2-Dibromoethane 0.50 U 0.16 Tetrachloroethene 0.50 U 0.13 Ethyl Benzene 0.50 U 0.13 Ethyl Benzene 0.50 U 0.14 Styrene 0.50 U 0.14 Styrene 0.50 U 0.14 Styrene 0.50 U 0.27 1,3-Dichlorobenzene 0.50 U 0.27 1,3-Dichlorobenzene 0.50 U 0.27 1,3-Dichlorobenzene 0.50 U 0.27 1,2-Dichlorobenzene 0.50 U 0.27 1,2-Dichlorobenzene 0.50 U 0.27 1,2-Dichlorobenzene 0.50 U 0.27 1,2-Dichlorobenzene 0.50 U 0.46 1,2,4-Trichlorobenzene 0.50 U 0.42 1,2,3-Trichlorobenzene 0.50 U 0.51 1,2-Dichloroethane-d4 55.1 $81 - 118$ Dibromofluoromethane 52.9 $80 - 119$ Toluene-d8 50.1 $89 - 112$ 4-Bromofluorobenzene 47.6 $85 - 114$ NDARDSPentafluorobenzene 16900 8.218 1,4-Difluorobenzene </td <td>t-1,3-Dichloropropene 0.50 U 0.21 0.50 cis-1,3-Dichloropropene 0.50 U 0.18 0.50 1,1,2-Trichloroethane 0.50 U 0.21 0.50 2-Hexanone 2.50 U 1.10 2.50 Dibromochloromethane 0.50 U 0.18 0.50 1,2-Dibromoethane 0.50 U 0.16 0.50 1,2-Dibromoethane 0.50 U 0.13 0.50 Chlorobenzene 0.50 U 0.16 0.50 Diversene 0.50 U 0.16 0.50 M/p-Xylenes 1.00 U 0.31 1.00 o-Xylene 0.50 U 0.16 0.50 Styrene 0.50 U 0.16 0.50 Isopropylbenzene 0.50 U 0.21 0.50 I,2.2-Tetrachloroethane 0.50 U 0.27 0.50 I,2.2-Tetrachloroethane 0.50 U 0.27</td> <td>t-1,3-Dichloropropene 0.50 U 0.21 0.50 5.00 cis-1,3-Dichloropropene 0.50 U 0.18 0.50 5.00 1,1,2-Trichloroethane 0.50 U 0.21 0.50 5.00 2-Hexanone 2.50 U 1.10 2.50 25.0 Dibromochloromethane 0.50 U 0.18 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 Chlorobenzene 0.50 U 0.16 0.50 5.00 Ethyl Benzene 0.50 U 0.16 0.50 5.00 m/p-Xylenes 1.00 U 0.31 1.00 10.0 o-Xylene 0.50 U 0.21 0.50 5.00 Isopropylbenzene 0.50 U 0.21 0.50</td>	t-1,3-Dichloropropene 0.50 U 0.21 0.50 cis-1,3-Dichloropropene 0.50 U 0.18 0.50 1,1,2-Trichloroethane 0.50 U 0.21 0.50 2-Hexanone 2.50 U 1.10 2.50 Dibromochloromethane 0.50 U 0.18 0.50 1,2-Dibromoethane 0.50 U 0.16 0.50 1,2-Dibromoethane 0.50 U 0.13 0.50 Chlorobenzene 0.50 U 0.16 0.50 Diversene 0.50 U 0.16 0.50 M/p-Xylenes 1.00 U 0.31 1.00 o-Xylene 0.50 U 0.16 0.50 Styrene 0.50 U 0.16 0.50 Isopropylbenzene 0.50 U 0.21 0.50 I,2.2-Tetrachloroethane 0.50 U 0.27 0.50 I,2.2-Tetrachloroethane 0.50 U 0.27	t-1,3-Dichloropropene 0.50 U 0.21 0.50 5.00 cis-1,3-Dichloropropene 0.50 U 0.18 0.50 5.00 1,1,2-Trichloroethane 0.50 U 0.21 0.50 5.00 2-Hexanone 2.50 U 1.10 2.50 25.0 Dibromochloromethane 0.50 U 0.18 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 1,2-Dibromoethane 0.50 U 0.16 0.50 5.00 Chlorobenzene 0.50 U 0.16 0.50 5.00 Ethyl Benzene 0.50 U 0.16 0.50 5.00 m/p-Xylenes 1.00 U 0.31 1.00 10.0 o-Xylene 0.50 U 0.21 0.50 5.00 Isopropylbenzene 0.50 U 0.21 0.50

C D

Report of Analysis						
Client:	Weston Solutions		Date Collected:	01/15/25		
Project:	Ft Meade Tipton Ai	rfield Parcel RI - PO 0111169	Date Received:	01/16/25		
Client Sample ID:	TAPIAL1-MW04S-	-011525-00-T2	SDG No.:	Q1109		
Lab Sample ID:	Q1109-02		Matrix:	Water		
Analytical Method:	SW8260		% Solid:	0		
Sample Wt/Vol:	5 Units:	mL	Final Vol:	5000 uL		
Soil Aliquot Vol:		uL	Test:	VOC-TCLVOA-10		
GC Column:	RXI-624 II	D: 0.25	Level :	LOW		
Prep Method :						
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID		
VN085476.D	1		01/16/25 17:44	VN011625		

Qualifier

MDL

Conc.

CAS Number

Parameter

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

LOD

LOQ / CRQL

- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

25 of 63

Units

Report of Analysis

ſ			
Client:	Weston Solutions	Date Collected:	01/15/25
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25
Client Sample ID:	TAP-TB-01-011525	SDG No.:	Q1109
Lab Sample ID:	Q1109-04	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed		Prep Batch ID	
VN085475.D	1			01/16/25 17:21		VN011625	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	0.50	U	0.21	0.50	5.00	ug/L
74-87-3	Chloromethane	0.50	U	0.35	0.50	5.00	ug/L
75-01-4	Vinyl Chloride	0.75	U	0.34	0.75	5.00	ug/L
74-83-9	Bromomethane	3.80	U	1.40	3.80	5.00	ug/L
75-00-3	Chloroethane	0.50	U	0.56	0.50	5.00	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	0.34	0.50	5.00	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	0.25	0.50	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.75	U	0.26	0.75	5.00	ug/L
67-64-1	Acetone	3.80	U	1.40	3.80	25.0	ug/L
75-15-0	Carbon Disulfide	0.75	U	0.32	0.75	5.00	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	0.16	0.50	5.00	ug/L
79-20-9	Methyl Acetate	0.75	U	0.60	0.75	5.00	ug/L
75-09-2	Methylene Chloride	0.50	U	0.32	0.50	5.00	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	0.25	0.50	5.00	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	0.23	0.50	5.00	ug/L
110-82-7	Cyclohexane	3.80	U	1.60	3.80	5.00	ug/L
78-93-3	2-Butanone	2.50	U	1.30	2.50	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	0.25	0.50	5.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	0.25	0.50	5.00	ug/L
74-97-5	Bromochloromethane	0.50	U	0.18	0.50	5.00	ug/L
67-66-3	Chloroform	0.50	U	0.26	0.50	5.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.75	U	0.19	0.75	5.00	ug/L
108-87-2	Methylcyclohexane	0.50	U	0.19	0.50	5.00	ug/L
71-43-2	Benzene	0.50	U	0.16	0.50	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.75	U	0.24	0.75	5.00	ug/L
79-01-6	Trichloroethene	0.75	U	0.32	0.75	5.00	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	0.19	0.50	5.00	ug/L
75-27-4	Bromodichloromethane	0.50	U	0.24	0.50	5.00	ug/L
108-10-1	4-Methyl-2-Pentanone	2.50	U	0.75	2.50	25.0	ug/L
108-88-3	Toluene	0.50	U	0.18	0.50	5.00	ug/L

C D

Report of Analysis

Client:	Weston Solutions	Date Collected:	01/15/25
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25
Client Sample ID:	TAP-TB-01-011525	SDG No.:	Q1109
Lab Sample ID:	Q1109-04	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :			

(CAS Number	Parameter	Conc. Or	nalifier MDL	LOD LOO/CROL	Units	
	VN085475.D	1		01/16/25 17:	21 VN011625		J
	File ID/Qc Batch:	Dilution:	Prep Date	Date Analyz	ed Prep Batch ID		

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
10061-02-6	t-1,3-Dichloropropene	0.50	U	0.21	0.50	5.00	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	0.18	0.50	5.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	0.21	0.50	5.00	ug/L
591-78-6	2-Hexanone	2.50	U	1.10	2.50	25.0	ug/L
124-48-1	Dibromochloromethane	0.50	U	0.18	0.50	5.00	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	0.16	0.50	5.00	ug/L
127-18-4	Tetrachloroethene	0.50	U	0.25	0.50	5.00	ug/L
108-90-7	Chlorobenzene	0.50	U	0.13	0.50	5.00	ug/L
100-41-4	Ethyl Benzene	0.50	U	0.16	0.50	5.00	ug/L
179601-23-1	m/p-Xylenes	1.00	U	0.31	1.00	10.0	ug/L
95-47-6	o-Xylene	0.50	U	0.14	0.50	5.00	ug/L
100-42-5	Styrene	0.50	U	0.16	0.50	5.00	ug/L
75-25-2	Bromoform	0.50	U	0.21	0.50	5.00	ug/L
98-82-8	Isopropylbenzene	0.50	U	0.13	0.50	5.00	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	0.27	0.50	5.00	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	0.24	0.50	5.00	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	0.27	0.50	5.00	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	0.19	0.50	5.00	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	2.00	U	0.46	2.00	5.00	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.42	0.50	5.00	ug/L
87-61-6	1,2,3-Trichlorobenzene	0.50	U	0.51	0.50	5.00	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	56.9		81 - 118		114%	SPK: 50
1868-53-7	Dibromofluoromethane	53.0		80 - 119		106%	SPK: 50
2037-26-5	Toluene-d8	49.7		89 - 112		99%	SPK: 50
460-00-4	4-Bromofluorobenzene	46.9		85 - 114		94%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	168000	8.224				
540-36-3	1,4-Difluorobenzene	312000	9.1				
3114-55-4	Chlorobenzene-d5	270000	11.865				
3855-82-1	1,4-Dichlorobenzene-d4	107000	13.788				

C D

5

uL

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Report of Analysis				А
Weston Solutions	Date Collected:	01/15/25		В
Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25		С
TAP-TB-01-011525	SDG No.:	Q1109		D
Q1109-04	Matrix:	Water		
SW8260	% Solid:	0		
5 Units: mL	Final Vol:	5000	uL	

Test:

VOC-TCLVOA-10

CAS Number	Parameter	Conc.	Qualifier MDL	LOD LOQ / CRQL	Units
VN085475.D	1		01/16/25 17:21	VN011625	
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
Prep Method :					
GC Column:	RXI-624	ID: 0.25	Level :	LOW	

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:3 Ft Meade Tipto M11,VOA Ref. :	n Airfield Parce	el RI - PO 01111	59
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25
			VOC-TCLVOA-10	8260D			01/16/25	
Q1109-04	TAP-TB-01-011525	Water			01/15/25			01/16/25
			VOC-TCLVOA-10	8260D			01/16/25	

В

В

Report of Analysis

Client:	Weston Solution	15			Date Collected:	01/15/	25	
Project:	Ft Meade Tiptor	n Airfield Parcel RI	- PO 0111169)	Date Received:	01/16/	25	
Client Sample ID:	TAPIAL1-MW	04S-011525-00-T2			SDG No.:	Q1109)	
Lab Sample ID:	Q1109-02				Matrix:	Water		
Analytical Method	8015D GRO				% Solid:	0	Decanted	l:
Sample Wt/Vol:	5 Unit	ts: mL			Final Vol:	5	mL	
Soil Aliquot Vol:		uL			Test:	Gasoli	ine Range Organic	cs
Extraction Type:					Injection Volum	e :		
GPC Factor :		PH :						
Prep Method :								
File ID/Qc Batch:	Dilution:				Date Analyzed		Prep Batch ID	
FB031317.D	1				01/17/25 11:05		FB011725	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOD LC	Q / CRQL	Units
TARGETS GRO	GRO	9.00	U	6.00		9.00	45.0	ug/L
SURROGATES 98-08-8	Alpha,Alpha,Alpha-Tri	fluoroto 18.6		50 - 150			93%	SPK: 20

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

31 of 63

A B C

6

LAB CHRONICLE

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:32 Ft Meade Tipto M11,VOA Ref. 3	n Airfield Parce	el RI - PO 01111	69
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25
			Diesel Range Organics	8015D		01/17/25	01/17/25	
			Gasoline Range Organics	8015D			01/17/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

A B C D

7

Hit Summary Sheet SW-846

Q1109							
Weston Solutions							
Client ID TAPIAL1-MW04S-011525-00-T2	Parameter	Concentration	С	MDL	LOD	RDL	Units
TAPIAL1-MW04S-01152 WATER	Caprolactam	2.200	J	1.7	8.2	10.2	ug/L
	Total Svoc :		2.2	20			
TAPIAL1-MW04S-01152 WATER	2-Pentanone, 4-hydroxy-4-methyl	* 5.000	AB	0		0	ug/L
TAPIAL1-MW04S-01152 WATER	n-Hexadecanoic acid	* 4.300	J	0		0	ug/L
	Total Tics : Total Concentration:						
	Weston Solutions Client ID TAPIAL1-MW04S-011525-00-T2 TAPIAL1-MW04S-01152 WATER TAPIAL1-MW04S-01152 WATER	Weston Solutions Parameter Client ID Parameter TAPIAL1-MW04S-011525-00-T2 Caprolactam TAPIAL1-MW04S-01152 WATER Caprolactam TAPIAL1-MW04S-01152 WATER 2-Pentanone, 4-hydroxy-4-methyl TAPIAL1-MW04S-01152 WATER n-Hexadecanoic acid	Weston SolutionsParameterConcentrationClient IDParameterConcentrationTAPIAL1-MW04S-011525-00-T2Caprolactam2.200TAPIAL1-MW04S-01152 WATERCaprolactam2.200TAPIAL1-MW04S-01152 WATER2-Pentanone, 4-hydroxy-4-methyl *5.000TAPIAL1-MW04S-01152 WATERn-Hexadecanoic acid *4.300TAPIAL1-MW04S-01152 WATERn-Hexadecanoic acid *4.300	Weston SolutionsParameterConcentrationCClient IDParameterConcentrationCTAPIAL1-MW04S-011525-00-T2TCTTAPIAL1-MW04S-01152 WATERCaprolactam2.200JTAPIAL1-MW04S-01152 WATER2-Pentanone, 4-hydroxy-4-methyl *5.000ABTAPIAL1-MW04S-01152 WATERn-Hexadecanoic acid*4.300JTAPIAL1-MW04S-01152 WATERn-Hexadecanoic acid*9.300	Weston SolutionsParameterConcentrueCMDLTAPIAL1-MW04S-011525-00-T2TAPIAL1-MW04S-01152 WATERCaprolactam2.200J1.7TAPIAL1-MW04S-01152 WATERCaprolactam2.200J1.7TAPIAL1-MW04S-01152 WATER2-Pentanone, 4-hydroxy-4-methyl *5.000AB0TAPIAL1-MW04S-01152 WATER0-Hexadecanoic acid*4.300J0TAPIAL1-MW04S-01152 WATER0-Hexadecanoic acid*9.3U	Weston SolutionsParameterConcentrationCMDLLODTAPIAL1-MW04S-011525-00-T2Caprolactam2.200J1.78.2TAPIAL1-MW04S-01152 WATERCaprolactam2.200J1.78.2TAPIAL1-MW04S-01152 WATER2-Pentanone, 4-hydroxy-4-methyl *5.000AB05.000TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.41.41.41.4TAPIAL1-MW04S-01152 WATER1.41.4 </th <th>Weston Solutions Concentration C MDL LOD RDL TAPIAL1-MW04S-011525-00-T2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 1.7 8.2 10.2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 1.7 8.2 10.2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 0.2 0 TAPIAL1-MW04S-01152 WATER Caprolactam 2.9 J 0.2 0 TAPIAL1-MW04S-01152 WATER 2-Pentanone, 4-hydroxy-4-methyl * 5.000 AB 0 0 TAPIAL1-MW04S-01152 WATER 0-Hexadecanoic acid * 4.300 J 0 0 TAPIAL1-MW04S-01152 WATER Total Tics : 9.3U 0 0 0</th>	Weston Solutions Concentration C MDL LOD RDL TAPIAL1-MW04S-011525-00-T2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 1.7 8.2 10.2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 1.7 8.2 10.2 TAPIAL1-MW04S-01152 WATER Caprolactam 2.200 J 0.2 0 TAPIAL1-MW04S-01152 WATER Caprolactam 2.9 J 0.2 0 TAPIAL1-MW04S-01152 WATER 2-Pentanone, 4-hydroxy-4-methyl * 5.000 AB 0 0 TAPIAL1-MW04S-01152 WATER 0-Hexadecanoic acid * 4.300 J 0 0 TAPIAL1-MW04S-01152 WATER Total Tics : 9.3U 0 0 0

A B C D

7

A B C D

Report of Analysis											
Client:	Weston Solutions	Date Collected:	Date Collected: 01/15/25								
Project:						01/16/25	5				
Client Sample ID: TAPIAL1-MW04S-011525-00-T2					Date Received: SDG No.:	Q1109					
•											
Lab Sample ID:					Matrix:	Water					
Analytical Meth	od: SW8270				% Solid:	0					
Sample Wt/Vol: 980 Units:		mL			Final Vol:	1000	uL				
Soil Aliquot Vol:		uL			Test:	SVOC-TCL BNA -20					
Extraction Type	:	Decan	ted : N		Level :	LOW					
Injection Volum	e :	GPC Factor :	1.0		GPC Cleanup :	Ν	PH :				
Prep Method :	SW3510C										
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID				
		*			2	-	-				
BF141220.D	1	01/17/25 11	.40	01/20	0/25 14:13	PB166117					
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Unit				
FARGETS											
100-52-7	Benzaldehyde	8.20	U	4.10	8.20	10.2	ug/L				
108-95-2	Phenol	4.10	Ū	0.95	4.10	5.10	ug/L				
111-44-4	bis(2-Chloroethyl)ether	4.10	U	1.20	4.10	5.10	ug/L				
95-57-8	2-Chlorophenol	4.10	U	0.72	4.10	5.10	ug/L				
95-48-7	2-Methylphenol	4.10	U	1.20	4.10	5.10	ug/L				
108-60-1	2,2-oxybis(1-Chloropropane)	4.10	U	1.40	4.10	5.10	ug/L				
98-86-2	Acetophenone	4.10	U	1.10	4.10	5.10	ug/L				
65794-96-9	3+4-Methylphenols	8.20	U	1.20	8.20	10.2	ug/L				
621-64-7	n-Nitroso-di-n-propylamine	2.60	U	1.50	2.60	2.60	ug/L				
67-72-1	Hexachloroethane	4.10	U	1.00	4.10	5.10	ug/L				
98-95-3	Nitrobenzene	4.10	U	1.30	4.10	5.10	ug/L ug/L				
98-93-3 78-59-1	Isophorone	4.10 4.10	U U	1.30	4.10 4.10	5.10					
							ug/L				
88-75-5	2-Nitrophenol	4.10	U	2.00	4.10	5.10	ug/L				
105-67-9	2,4-Dimethylphenol	4.10	U	1.50	4.10	5.10	ug/L				
111-91-1	bis(2-Chloroethoxy)methane	4.10	U	1.00	4.10	5.10	ug/L				
120-83-2	2,4-Dichlorophenol	4.10	U	0.90	4.10	5.10	ug/L				
91-20-3	Naphthalene	4.10	U	1.00	4.10	5.10	ug/L				
106-47-8	4-Chloroaniline	4.10	U	1.30	4.10	5.10	ug/L				
87-68-3	Hexachlorobutadiene	4.10	U	1.30	4.10	5.10	ug/L				
105-60-2	Caprolactam	2.20	J	1.70	8.20	10.2	ug/L				
59-50-7	4-Chloro-3-methylphenol	4.10	U	0.86	4.10	5.10	ug/L				
91-57-6	2-Methylnaphthalene	4.10	U	1.20	4.10	5.10	ug/L				
77-47-4	Hexachlorocyclopentadiene	8.20	UQ	5.10	8.20	10.2	ug/L				
88-06-2	2,4,6-Trichlorophenol	4.10	U	0.91	4.10	5.10	ug/L				
95-95-4	2,4,5-Trichlorophenol	4.10	U	1.00	4.10	5.10	ug/L				
92-52-4	1,1-Biphenyl	4.10	U	0.93	4.10	5.10	ug/L				
91-58-7	2-Chloronaphthalene	4.10	Ū	0.99	4.10	5.10	ug/L				
88-74-4	2-Nitroaniline	4.10	U	1.40	4.10	5.10	ug/L				
		1.10	0				~~~~ <u>~</u>				

131-11-3

Dimethylphthalate

U

4.10

0.95

4.10

5.10

ug/L

7

Date Collected: 01/15/25 01/16/25 Q1109 Water 0 1000 uL SVOC-TCL BNA -20

Client: Weston Solutions Project: Ft Meade Tipton Airfield Parcel RI - PO 0111169 Date Received: TAPIAL1-MW04S-011525-00-T2 Client Sample ID: SDG No.: Lab Sample ID: Q1109-02 Matrix: Analytical Method: % Solid: SW8270 Sample Wt/Vol: 980 Units: mL Final Vol: Test: Soil Aliquot Vol: uL Extraction Type : Decanted : Ν Level : LOW Injection Volume : GPC Factor : 1.0 GPC Cleanup : PH : Ν Prep Method : SW3510C

Report of Analysis

File ID/Qc Batch:Dilution:BF141220.D1		Prep Date 01/17/25 11:40		Date Analyzed 01/20/25 14:13		Prep Batch ID PB166117	
208-96-8	Acenaphthylene	4.10	U	1.10	4.10	5.10	ug/L
606-20-2	2,6-Dinitrotoluene	4.10	U	1.30	4.10	5.10	ug/L
99-09-2	3-Nitroaniline	4.10	U	1.40	4.10	5.10	ug/L
83-32-9	Acenaphthene	4.10	U	0.83	4.10	5.10	ug/L
51-28-5	2,4-Dinitrophenol	8.20	U	6.60	8.20	10.2	ug/L
100-02-7	4-Nitrophenol	8.20	U	2.00	8.20	10.2	ug/L
132-64-9	Dibenzofuran	4.10	U	0.95	4.10	5.10	ug/L
121-14-2	2,4-Dinitrotoluene	4.10	U	1.60	4.10	5.10	ug/L
84-66-2	Diethylphthalate	4.10	U	1.10	4.10	5.10	ug/L
7005-72-3	4-Chlorophenyl-phenylether	4.10	U	1.00	4.10	5.10	ug/L
86-73-7	Fluorene	4.10	U	0.98	4.10	5.10	ug/L
100-01-6	4-Nitroaniline	4.10	U	2.10	4.10	5.10	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	8.20	U	3.10	8.20	10.2	ug/L
86-30-6	n-Nitrosodiphenylamine	4.10	U	0.91	4.10	5.10	ug/L
101-55-3	4-Bromophenyl-phenylether	4.10	U	0.97	4.10	5.10	ug/L
118-74-1	Hexachlorobenzene	4.10	U	1.20	4.10	5.10	ug/L
1912-24-9	Atrazine	4.10	U	1.30	4.10	5.10	ug/L
87-86-5	Pentachlorophenol	8.20	U	1.90	8.20	10.2	ug/L
85-01-8	Phenanthrene	4.10	U	0.91	4.10	5.10	ug/L
120-12-7	Anthracene	4.10	U	1.10	4.10	5.10	ug/L
86-74-8	Carbazole	4.10	U	1.20	4.10	5.10	ug/L
84-74-2	Di-n-butylphthalate	4.10	U	1.50	4.10	5.10	ug/L
206-44-0	Fluoranthene	4.10	U	1.30	4.10	5.10	ug/L
129-00-0	Pyrene	4.10	U	1.10	4.10	5.10	ug/L
85-68-7	Butylbenzylphthalate	4.10	U	2.10	4.10	5.10	ug/L
91-94-1	3,3-Dichlorobenzidine	8.20	U	1.30	8.20	10.2	ug/L
56-55-3	Benzo(a)anthracene	4.10	U	0.96	4.10	5.10	ug/L
218-01-9	Chrysene	4.10	U	0.88	4.10	5.10	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	4.10	U	1.90	4.10	5.10	ug/L
117-84-0	Di-n-octyl phthalate	8.20	U	2.60	8.20	10.2	ug/L
205-99-2	Benzo(b)fluoranthene	4.10	U	1.20	4.10	5.10	ug/L
1109			36 of 63				

7

B C D

		Report of Analys	is	
Client:	Weston Solutions		Date Collected:	01/15/25
Project:	Ft Meade Tipton A	Airfield Parcel RI - PO 0111169	Date Received:	01/16/25
Client Sample ID:	TAPIAL1-MW04	S-011525-00-T2	SDG No.:	Q1109
Lab Sample ID:	Q1109-02		Matrix:	Water
Analytical Method:	SW8270		% Solid:	0
Sample Wt/Vol:	980 Units:	mL	Final Vol:	1000 uL
Soil Aliquot Vol:		uL	Test:	SVOC-TCL BNA -20
Extraction Type :		Decanted : N	Level :	LOW
Injection Volume :		GPC Factor : 1.0	GPC Cleanup :	N PH:
Prep Method :	SW3510C			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF141220 D	1	01/17/25 11:40	01/20/25 14:13	PB166117

BF141220.D	1	01/17/25 11:40		01/20/25 14:13		PB166117		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
207-08-9	Benzo(k)fluoranthene	4.10	U	1.20	4.10	5.10	ug/L	
50-32-8	Benzo(a)pyrene	4.10	U	1.70	4.10	5.10	ug/L	
193-39-5	Indeno(1,2,3-cd)pyrene	4.10	U	1.00	4.10	5.10	ug/L	
53-70-3	Dibenzo(a,h)anthracene	4.10	U	1.20	4.10	5.10	ug/L	
191-24-2	Benzo(g,h,i)perylene	4.10	U	1.20	4.10	5.10	ug/L	
95-94-3	1,2,4,5-Tetrachlorobenzene	4.10	U	1.10	4.10	5.10	ug/L	
123-91-1	1,4-Dioxane	4.10	U	1.30	4.10	5.10	ug/L	
58-90-2	2,3,4,6-Tetrachlorophenol	4.10	U	0.81	4.10	5.10	ug/L	
SURROGATES								
367-12-4	2-Fluorophenol	74.5		19 - 119		50%	SPK: 150	
13127-88-3	Phenol-d6	46.5		10 - 130		31%	SPK: 150	
4165-60-0	Nitrobenzene-d5	106		44 - 120		106%	SPK: 100	
321-60-8	2-Fluorobiphenyl	99.8		44 - 119		100%	SPK: 100	
118-79-6	2,4,6-Tribromophenol	176		43 - 140		118%	SPK: 150	
1718-51-0	Terphenyl-d14	93.0		50 - 134		93%	SPK: 100	
INTERNAL STA	NDARDS							
3855-82-1	1,4-Dichlorobenzene-d4	169000	6.81					
1146-65-2	Naphthalene-d8	674000	8.092					
15067-26-2	Acenaphthene-d10	367000	9.845					
1517-22-2	Phenanthrene-d10	632000	11.328					
1719-03-5	Chrysene-d12	449000	13.969					
1520-96-3	Perylene-d12	365000	15.427					
TENTATIVE ID	ENTIFIED COMPOUNDS							
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	5.00	AB			5.02	ug/L	
000057-10-3	n-Hexadecanoic acid	4.30	J			11.9	ug/L	

7

		Repor	t of Analy	sis				
Client:	Weston Solutions	5		Dat	e Collected:		01/15/25	
Project:	Ft Meade Tipton	Airfield Parcel RI - Po	O 0111169	Dat	e Received:		01/16/25	
Client Sample ID:	TAPIAL1-MW0	4S-011525-00-T2		SD	SDG No.: Q1109			
Lab Sample ID:	Q1109-02			Ma	trix:		Water	
Analytical Method:	SW8270			%	Solid:		0	
Sample Wt/Vol:	980 Units	: mL		Fin	al Vol:		1000	uL
Soil Aliquot Vol:		uL		Tes	t:		SVOC-TCL	BNA -20
Extraction Type :		Decar	nted : N	Lev	vel :		LOW	
Injection Volume :		GPC Factor :	1.0	GP	C Cleanup :	Ν	P	H :
Prep Method :	SW3510C							
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyz	zed	Pro	ep Batch ID	
BF141220.D	1	01/17/25 1	1:40	01/20/25 14	:13	PB	166117	
CAS Number Para	ameter	Conc.	Qualifier	MDL	LOD	LOQ	/ CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C D

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz		OrderDate:1/16/2025 11:32:00 AMProject:Ft Meade Tipton Airfield Parcel RI - PO 0111169Location:M11,VOA Ref. #3 Water				69	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25
			SVOC-TCL BNA -20	8270E		01/17/25	01/20/25	

			Hit Su	mmary Sheet SW-846						
SDG No.:	Q1109			Order ID:	Q1	109				В
Client:	Weston Solutions			Project ID:		Ft Meade	Tipton Ai	rfield Par	cel RI - P	С
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	LOD	RDL	Units	D
Client ID :										

0.000 **Total Concentration:**

A B C D

Client:	Weston Solutions	Date Collected: 01/15/25
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received: 01/16/25
Client Sample ID:	TAPIAL1-MW04S-011525-00-T2	SDG No.: Q1109
Lab Sample ID:	Q1109-02	Matrix: WATER
Analytical Method:	SW8081	% Solid: 0 Decanted:
Sample Wt/Vol:	980 Units: mL	Final Vol: 10000 uL
Soil Aliquot Vol:	uL	Test: PESTICIDE Group1
Extraction Type:		Injection Volume :
GPC Factor :	1.0 PH :	
Prep Method :	3510C	

File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed		Prep Batch ID	
PL093704.D	1	01/17	7/25 08:17		01/20/25 13:15		PB166101	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOD LO	Q / CRQL	Units
TARGETS								
319-84-6	alpha-BHC	0.026	U	0.0062		0.026	0.051	ug/L
319-85-7	beta-BHC	0.026	U	0.014		0.026	0.051	ug/L
319-86-8	delta-BHC	0.026	U	0.015		0.026	0.051	ug/L
58-89-9	gamma-BHC (Lindane)	0.026	U	0.0050		0.026	0.051	ug/L
76-44-8	Heptachlor	0.026	U	0.0055		0.026	0.051	ug/L
309-00-2	Aldrin	0.026	U	0.0045		0.026	0.051	ug/L
1024-57-3	Heptachlor epoxide	0.026	U	0.0092		0.026	0.051	ug/L
959-98-8	Endosulfan I	0.026	U	0.0051		0.026	0.051	ug/L
60-57-1	Dieldrin	0.026	U	0.0048		0.026	0.051	ug/L
72-55-9	4,4-DDE	0.026	U	0.0046		0.026	0.051	ug/L
72-20-8	Endrin	0.010	U	0.0044		0.010	0.051	ug/L
33213-65-9	Endosulfan II	0.026	U	0.0077		0.026	0.051	ug/L
72-54-8	4,4-DDD	0.026	U	0.0094		0.026	0.051	ug/L
1031-07-8	Endosulfan Sulfate	0.026	U	0.0036		0.026	0.051	ug/L
50-29-3	4,4-DDT	0.026	U	0.0045		0.026	0.051	ug/L
72-43-5	Methoxychlor	0.026	U	0.011		0.026	0.051	ug/L
53494-70-5	Endrin ketone	0.026	U	0.0099		0.026	0.051	ug/L
7421-93-4	Endrin aldehyde	0.026	U	0.010		0.026	0.051	ug/L
5103-71-9	alpha-Chlordane	0.026	U	0.0061		0.026	0.051	ug/L
5103-74-2	gamma-Chlordane	0.026	U	0.0061		0.026	0.051	ug/L
8001-35-2	Toxaphene	0.51	U	0.15		0.51	1.00	ug/L
57-74-9	Chlordane	0.26	U	0.084		0.26	0.51	ug/L
2385-85-5	Mirex	0.026	U	0.0042		0.026	0.051	ug/L
SURROGATES								
2051-24-3	Decachlorobiphenyl	13.9		30 - 135	5		69%	SPK: 20
877-09-8	Tetrachloro-m-xylene	21.1		44 - 124	4		106%	SPK: 20

8

C D

Lab Sample ID: Analytical Method:	SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	980	Units: m	ıL		Final Vol:	10000	uL	
Soil Aliquot Vol:		ul	L		Test:	PESTICID	E Group1	
Extraction Type:					Injection Volume	:		
GPC Factor :	1.0	PH	:					
Prep Method :	3510C							
File ID/Qc Batch:	Dilution:		Prep 1	Date	Date Analyzed	Pr	ep Batch ID	
PL093704.D	1		01/17	/25 08:17	01/20/25 13:15	PI	B166101	

Comments:

U = Not Detected

LOQ = Limit of Quantitation

- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- P = Indicates > 25% difference for detected
- concentrations between the two GC columns
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- $\mathbf{S}=\mathbf{Indicates}$ estimated value where valid five-point calibration
- was not performed prior to analyte detection in sample.
- () = Laboratory InHouse Limit

С

Α

С

D

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:3 Ft Meade Tipto M11,VOA Ref. ;	n Airfield Parce	el RI - PO 01111	69
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25
			Diesel Range Organics Gasoline Range Organics PESTICIDE Group1	8015D 8015D 8081B		01/17/25 01/17/25	01/17/25 01/17/25 01/20/25	

В

Report of Analysis

Client:	Weston Solution	S			Date Collected:	01/15/	/25	
Project:	Ft Meade Tipton	Airfield Parcel RI	- PO 011116	59	Date Received:	01/16/	/25	
Client Sample ID:	TAPIAL1-MW0	4S-011525-00-T2			SDG No.:	Q1109)	
Lab Sample ID:	Q1109-02				Matrix:	Water		
Analytical Method	8015D DRO				% Solid:	0	Decante	ed:
Sample Wt/Vol:	980 Units	s: mL			Final Vol:	1	mL	
Soil Aliquot Vol:		uL			Test:	Diesel	Range Organics	
Extraction Type:					Injection Volum	e :		
GPC Factor :		PH :						
Prep Method :	SW3510							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed		Prep Batch ID	
FF015250.D	1	01/1	7/25 08:15		01/17/25 13:39		PB166100	
CAS Number	Parameter	Conc.	Qualifier	r MDL		LOD LC	Q / CRQL	Units
TARGETS DRO	DRO	13.0	J	10.0		26.0	51.0	ug/L

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	
LOD = Limit of Detection E = Value Exceeds Calibration Range P = Indicates >25% difference for detected concentrations between the two GC columns Q = indicates LCS control criteria did not meet requirements	 * = Values outside of QC limits D = Dilution S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

46 of 63

С

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:32 Ft Meade Tiptor M11,VOA Ref. #	h Airfield Parce	el RI - PO 01111	69
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25
			Diesel Range Organics Gasoline Range Organics	8015D 8015D		01/17/25	01/17/25 01/17/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	Q1109 Weston Solutions		Order ID: Project II		Q1109 Et Meade Ti	pton Airfield 1	Parcel RL.	- PO 01
						_		
Sample ID	Client ID Matrix	Parameter	Concentration	С	MDL	LOD	RDL	Units
Client ID :	TAPIAL1-MW04I-011525-00-T3	Aluminum	177		1.98	10.0	20.0	
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water		0.15	т		10.0	20.0	ug/L
Q1109-01 Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Antimony		J	0.11	0.25	2.00	ug/L
	TAPIAL1-MW04I-011525-00-T3 Water	Arsenic Barium	0.59 23.9	J	0.090	0.25	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water		23.9 0.19	T	0.30	1.25	10.0	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Beryllium		J	0.16	0.25	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Calcium	9990	T	62.5	190	500	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Chromium	1.03	J	0.40	0.75	2.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Cobalt	19.2		0.062	0.25	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Copper	4.35		0.40	1.50	2.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Iron	318		9.60	25.0	50.0	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Lead	0.55	J	0.11	0.75	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Magnesium	3180		26.6	190	500	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Manganese	293		0.24	0.75	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Nickel	11.0		0.18	0.25	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Mercury	0.086	J	0.081	0.16	0.20	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Potassium	923		46.1	190	500	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Sodium	14500		85.8	190	500	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Thallium	0.11	J	0.085	0.50	1.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Vanadium	1.16	J	0.072	0.25	5.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Zinc	12.8		0.56	1.50	5.00	ug/L
Q1109-01	TAPIAL1-MW04I-011525-00-T3 Water	Hardness, Total	38000		266	1260	3310	ug/L
Client ID :	TAPIAL1-MW04S-011525-00-T2							
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Aluminum	453		1.98	10.0	20.0	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Arsenic	0.75	J	0.090	0.25	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Barium	27.7		0.30	1.25	10.0	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Beryllium	0.19	J	0.16	0.25	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Calcium	11200		62.5	190	500	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Chromium	1.58	J	0.40	0.75	2.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Cobalt	21.4		0.062	0.25	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Copper	5.61		0.40	1.50	2.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Iron	665		9.60	25.0	50.0	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Lead	0.89	J	0.11	0.75	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Magnesium	3650		26.6	190	500	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Manganese	313		0.24	0.75	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Nickel	13.1		0.18	0.25	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Potassium	977		46.1	190	500	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Sodium	15200		85.8	190	500	ug/L

10

B C

D

4	1

	D
_	

SDG No.:	Q1109		Order ID:		Q1109			
Client:	Weston Solutions		Project ID):	Ft Meade Ti	pton Airfield I	Parcel RI -	PO 01
Sample ID	Client ID Matrix	Parameter	Concentration	С	MDL	LOD	RDL	Units
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Thallium	0.090	J	0.085	0.50	1.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Vanadium	2.50	J	0.072	0.25	5.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T. Water	Zinc	5.94		0.56	1.50	5.00	ug/L
Q1109-02	TAPIAL1-MW04S-011525-00-T2 Water	Hardness, Total	43000		266	1260	3310	ug/L

Hit Summary Sheet SW-846

- (
	Client:	Weston Solutions	Date Collected:	01/15/25	
	Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25	I
	Client Sample ID:	TAPIAL1-MW04I-011525-00-T3	SDG No.:	Q1109	Ĩ
	Lab Sample ID:	Q1109-01	Matrix:	Water	
	Level (low/med):	low	% Solid:	0	

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	177	Ν	1	1.98	10.0	20.0	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-36-0	Antimony	0.15	J	1	0.11	0.25	2.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-38-2	Arsenic	0.59	JN	1	0.090	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-39-3	Barium	23.9	Ν	1	0.30	1.25	10.0	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-41-7	Beryllium	0.19	JN	1	0.16	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-43-9	Cadmium	0.50	UN	1	0.30	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-70-2	Calcium	9990	Ν	1	62.5	190	500	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-47-3	Chromium	1.03	JN	1	0.40	0.75	2.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-48-4	Cobalt	19.2		1	0.062	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-50-8	Copper	4.35		1	0.40	1.50	2.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
Hardness	Hardness, Tot	al 38000		1	266	1260	3310	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7439-89-6	Iron	318	Ν	1	9.60	25.0	50.0	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7439-92-1	Lead	0.55	J	1	0.11	0.75	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7439-95-4	Magnesium	3180		1	26.6	190	500	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7439-96-5	Manganese	293		1	0.24	0.75	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7439-97-6	Mercury	0.086	JN	1	0.081	0.16	0.20	ug/L	01/16/25 14:40	01/17/25 12:40	SW7470A	L
7440-02-0	Nickel	11.0		1	0.18	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-09-7	Potassium	923	Ν	1	46.1	190	500	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7782-49-2	Selenium	4.50	U	1	1.38	4.50	5.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-22-4	Silver	0.50	UN	*1	0.077	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-23-5	Sodium	14500	Ν	1	85.8	190	500	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-28-0	Thallium	0.11	J	1	0.085	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-62-2	Vanadium	1.16	JN	1	0.072	0.25	5.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A
7440-66-6	Zinc	12.8		1	0.56	1.50	5.00	ug/L	01/22/25 10:05	01/27/25 19:07	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Artifacts:	
Comments:	METALS-TAL			
MDL = Methodologiest MDL = Limit of D = Dilution	of Quantitation of Detection Limit	equirements		 J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range
01100				N =Spiked sample recovery not within control limits
			E1 a	

Q1109

10

B C D

Report of Analy			В
Weston Solutions	Date Collected:	01/15/25	С
Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25	D
TAPIAL1-MW04S-011525-00-T2	SDG No.:	Q1109	
Q1109-02	Matrix:	Water	
low	% Solid:	0	
	Weston Solutions Ft Meade Tipton Airfield Parcel RI - PO 0111169 TAPIAL1-MW04S-011525-00-T2 Q1109-02	Weston SolutionsDate Collected:Ft Meade Tipton Airfield Parcel RI - PO 0111169Date Received:TAPIAL1-MW04S-011525-00-T2SDG No.:Q1109-02Matrix:	Weston SolutionsDate Collected:01/15/25Ft Meade Tipton Airfield Parcel RI - PO 0111169Date Received:01/16/25TAPIAL1-MW04S-011525-00-T2SDG No.:Q1109Q1109-02Matrix:Water

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	453	Ν	1	1.98	10.0	20.0	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-36-0	Antimony	0.25	U	1	0.11	0.25	2.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-38-2	Arsenic	0.75	JN	1	0.090	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-39-3	Barium	27.7	Ν	1	0.30	1.25	10.0	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-41-7	Beryllium	0.19	JN	1	0.16	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-43-9	Cadmium	0.50	UN	1	0.30	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-70-2	Calcium	11200	Ν	1	62.5	190	500	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-47-3	Chromium	1.58	JN	1	0.40	0.75	2.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-48-4	Cobalt	21.4		1	0.062	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-50-8	Copper	5.61		1	0.40	1.50	2.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
Hardness	Hardness, Tot	al 43000		1	266	1260	3310	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7439-89-6	Iron	665	Ν	1	9.60	25.0	50.0	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7439-92-1	Lead	0.89	J	1	0.11	0.75	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7439-95-4	Magnesium	3650		1	26.6	190	500	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7439-96-5	Manganese	313		1	0.24	0.75	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7439-97-6	Mercury	0.16	UN	1	0.081	0.16	0.20	ug/L	01/16/25 14:40	01/17/25 12:42	SW7470A	L
7440-02-0	Nickel	13.1		1	0.18	0.25	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-09-7	Potassium	977	Ν	1	46.1	190	500	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7782-49-2	Selenium	4.50	U	1	1.38	4.50	5.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-22-4	Silver	0.50	UN	* 1	0.077	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-23-5	Sodium	15200	Ν	1	85.8	190	500	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-28-0	Thallium	0.090	J	1	0.085	0.50	1.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-62-2	Vanadium	2.50	JN	1	0.072	0.25	5.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A
7440-66-6	Zinc	5.94		1	0.56	1.50	5.00	ug/L	01/22/25 10:05	01/27/25 19:10	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:				
Color After:	Colorless	Clarity After:	Clear	Artifacts:				
Comments:	METALS-TAL							
U = Not Detec	eted			J = Estimated Value				
LOQ = Limit o	of Quantitation			B = Analyte Found in Associated Method Blank				
MDL = Metho	d Detection Limit			* = indicates the duplicate analysis is not within control limits.				
LOD = Limit of	of Detection			E = Indicates the reported value is estimated because of the presence				
D = Dilution				of interference.				
Q = indicates I	LCS control criteria did not meet	requirements		OR = Over Range				
~		•		N =Spiked sample recovery not within control limits				
01100			F0 a	4.00				

Q1109

10

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:32:00 AM Ft Meade Tipton Airfield Parcel RI - PO 0111169 M11,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received		
Q1109-01	TAPIAL1-MW04I-011 525-00-T3	Water			01/15/25			01/16/25		
			Mercury	7470A		01/16/25	01/17/25			
			Metals ICP-TAL	6020B		01/22/25	01/27/25			
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	Water			01/15/25			01/16/25		
			Mercury Metals ICP-TAL	7470A 6020B		01/16/25 01/22/25	01/17/25 01/27/25			

ТОС	0.98 J	1 019	0.50	1.00	mg/L	Trep Date	01/17/25 10:39		
Parameter	Conc. Oua	. DF MDL	LOD	LOO / CROL	Units	Prep Date	Date Ana.	Ana Met.	
					9	% Solid:	0		
Lab Sample ID:	Q1109-0	l			Ν	Aatrix:	WATER		
Client Sample ID:	TAPIAL	-MW04I-0115	25-00-Т	3	S	DG No.:	Q1109		
Project:	Ft Meade	Tipton Airfiel	d Parcel I	RI - PO 0111169	Date Received:	01/16/25			
Client:	Weston S	olutions			Ι	Date Collected:	01/15/25 1	2:20	

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

Report of Analysis

Client:	Weston Solutions	Date Collected:	01/15/25 12:20	В
Project:	Ft Meade Tipton Airfield Parcel RI - PO 0111169	Date Received:	01/16/25	С
Client Sample ID:	TAPIAL1-MW04S-011525-00-T2	SDG No.:	Q1109	
Lab Sample ID:	Q1109-02	Matrix:	WATER	
		% Solid:	0	

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	0.080	U	1	0.045	0.080	0.10	mg/L	01/17/25 08:45	01/17/25 11:44	SM 4500-NH3
										B plus G-11
Bromide	1.00	U	1	0.034	1.00	2.00	mg/L		01/16/25 14:04	9056A
Chloride	21.4	OR	1	0.011	0.30	0.60	mg/L		01/16/25 14:04	9056A
Fluoride	0.16	J	1	0.057	0.20	0.40	mg/L		01/16/25 14:04	9056A
Nitrite	0.30	U	1	0.011	0.30	0.60	mg/L		01/16/25 14:04	9056A
Nitrate	1.00		1	0.0034	0.25	0.50	mg/L		01/16/25 14:04	9056A
Sulfate	47.3	OR	1	0.032	1.50	3.00	mg/L		01/16/25 14:04	9056A
Dissolved Hexavalent	0.0050	U	1	0.0030	0.0050	0.010	mg/L		01/16/25 13:14	7196A
Chromium										
Oil and Grease	2.00	U	1	0.40	2.00	5.00	mg/L		01/20/25 16:00	1664A
TOC	1.20		1	0.19	0.50	1.00	mg/L		01/17/25 11:58	9060A

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

Client:	Weston S	olutions]	Date Collected:	01/15/25 1	2:20	В
Project:	Ft Meade	Tipton Airf	eld Parcel	RI - PO 0111169	1	Date Received:	01/16/25		C
Client Sample ID:	TAPIAL1	-MW04S-0	11525-00-Т	2DL	5	SDG No.:	Q1109		
Lab Sample ID:	Q1109-02	2DL]	Matrix:	WATER		
					(% Solid:	0		
Parameter	Conc. Qua	. DF MI	DL LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Chloride	20.3 D	5 0.0		3.00	mg/L		01/16/25 15:09		
Sulfate	49.3 D	5 0.1	6 7.50	15.0	mg/L		01/16/25 15:09	9056A	

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

A B C

OrderID: Client: Contact:	Q1109 Weston Solutions Nathan Fretz			OrderDate: Project: Location:	1/16/2025 11:32:00 AM Ft Meade Tipton Airfield Parcel RI - PO 0111169 M11,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received		
Q1109-01	TAPIAL1-MW04I-011 525-00-T3	WATER			01/15/25 12:20			01/16/25		
			TOC	9060A			01/17/25 10:39			
Q1109-02	TAPIAL1-MW04S-011 525-00-T2	WATER			01/15/25 12:20			01/16/25		
			Ammonia	SM4500-NH3		01/17/25	01/17/25 11:44			
			Anions Group5	9056A			01/16/25 14:04			
			Hexavalent Chromium	7196A			01/16/25 13:14			
			Oil and Grease	1664A			01/20/25 16:00			
			тос	9060A			01/17/25 11:58			
Q1109-02D	L TAPIAL1-MW04S-011 525-00-T2DL	WATER			01/15/25 12:20			01/16/25		
			Anions Group5	9056A	-		01/16/25 15:09			

<u>SHIPPING</u> DOCUMENTS

12

	Weston COC ID																				`	
	Weston_20250115_1527			(Chain	of Cu	stody Reco	ord/Lab Wo	rk R	equ	est					Page	1	i of	1		1	NGI
	Client:	Weston	Solutio	ons, Inc.			Project Name:	Fort I	Vleade F	રા		Pn	oject PC	C:			Natha	an Fretz				Matrix Codes
	Project Manager:	Davi	d Seml	brot			PO Number	01	11169				Phone:				484-52	24-5665			s	S - Soll
	Street Address:	1400 Weston Way	City	y:	West Che	ester	W.O. #:					POC	e-mail:		natha	n.fretz@	westor	nsolution	s.com		S	E - Sediment
	Phone:	610-314-5456	ST,	, ZIP:	PA, 190	38	Lab:	CHE	MTECH	1		L	ab POC	:			Jordan	Hedvat			s	0 - Solid
	e-mait:	david.sembrot@	westo	onsolu	itions.co	m	TAT (days):		21			Li	ab Phon	9:			908-72	28-3144			S	L- Sludge
	Sampled By:	Cheyen	ne Han	rington			Lab Address:			284 Sh	effield St	reet Mou	Intainside	e, NJ 07	092						G	W - Groundwater
									22	₽	ш	64A	PA	đ	yd	ß		×	H3		W	/ - Water
	Lab	Use Only							TPH-DRO by EPA 8015D	Pesticides by EPA 8081B	SVOCs by EPA 8270E	Oil & Grease by EPA 1664A	Hardness by Calc by EPA 200.7	Anions by EPA 9056A	TOC by EPA 9060A/Lloyd Katin	TPH-GRO by EPA 8015D	VOCs by EPA 8260D	Hex Chromium by EPA 7196A	Ammonia by SM4500-NH3 B&G	TAL Metals w Hg by 6020B/7470A	S	B - Soil Boring
em	perature of cooler when received (°C	C)					Analyses	Requested:	EP/	EP	EPA	у ЕР	D.7 Calc	EPA (9060 hrt	EP/	PA 8	q mn 199	SM45	s w F 7470	A	- Air
00	Tape was present and unbroken or	n outer package?		Y	N		Analyses	requested,	6 PA	les by	sby	ase	202 202	s by f	EPA Ka	KO by	by E	hromi 719	a by B8	Metal 020B/	D	S - Drum Solids
am	ples received in good condition?			Ŷ	N				0 H	sticio	Noc	e S S	rdnes	Anion	lC by	H-GF	\0C2	EX C	inoni	TAL	D	L - Drum Liquids
abe	els indicate property preserved?			Y	N				H.	å	N N	0	포		TO	TP	N.	T	Am		L	- EP/TCLP Leach
lece	veived within holding times? Y N			N			Container Type:	Amber	Amber	Amber	Glass	Plastic	Plastic	Viał	Vial	Vial	Plastic	Plastic	Plastic	W	1 - Wipe	
Discr	repancies between sample labels an	ad COC record?		Y	N			Container Size:	11	1 L	1L	1 L	11	1 L	40 mL	40 mL	40 mL	500 mL	500 mL	500 mL	X	- Other
								Preservative:		0-6	Ice to 0-6 deg C	H2SO4	HNO3	Ice to 0-6 deg C	H2SO4	HCL	HCL	Ammo nium Sulfate	H2\$04	HNO3	F	- Fish
#	Sample ID	G/C	M	latrix	# Cont	MS/MSD	Date Collected	Time Collected					·								Special Ins	tructions/Commen
1	TAPIAL1-MW04I-011525-00-T3	g	0	GW	4	no	1/15/2025	12:20					x		x					X		
2	TAPIAL1-MW04S-011525-00-T2	g	0	GW	19	no	1/15/2025	12:20	х	х	x	х	х	х	х	х	х	x	х	X		
3	TAP-TB-01-011525	g		w	2	no	1/15/2025	15:35									х					
4																						
5						_																
6																						
7																						
3																						
	the second s																					
0																						
1																						
2																						

	Shipping Airbill Number:	771460	519011	171460519022		Tem	P 2.2 Cooler Number: 12 2 of 2
	Relinquished By	Date	Time	Received By	Date	Time	Additional Comments
1.)	Chy Hot	11525	1700	ADAS	1-16-25	0932	QSM 6.0 Compliant
2.)	1 - 2		/	4-4			Deliverable Requirements: DoD Level IV report, EnviroData EDD, and ERIS-compatible EDD
3.)							

12 12.1

12 12.2

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Clien	Client Name : Weston Solutions Client Contact : Nathan Fretz Invoice Name : Weston Solutions						 : 1/16/2025 11:32:00 AM : Ft Meade Tipton Airfield Pa : 1/16/2025 9:32:00 AM 	3	Project Mgr : Report Type : L EDD Type : S			
		Weston Solutio Nathan Fretz	ns		Purch	ase Order		B	ard Copy Date : Date Signoff :			
LAB ID	CLIENT	D		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1109-02	TAPIAL1	-MW04S-011	525-00-T2	Water	01/15/2025		Gasoline Range Organics		8015D	10 Bus. Davs		

Relinguished By : Date / Time : 1-1625 315

- 16 - 25 2: VO PM **Received By :** Date / Time :

Storage Area : VOA Refridgerator Room

LOGIN REPORT/SAMPLE TRANSFER

	Order ID :	Q1109	WEST04		C	Order Date :	1/16/2025 11:32:00 AM		Project Mgr :			
Cli	ient Name :	Weston Sol	lutions		Pro	oject Name :	Ft Meade Tipton Airfield P	а	Report Type : L	.evel 4		F
Clien	t Contact :	Nathan Fre	tz		Receive	DateTime :	1/16/2025 9:32:00 AM		EDD Type: S	EDD 2A		
Invo	oice Name :	Weston Sol	utions		Purch	ase Order :		Ha	rd Copy Date :			
Invoic	e Contact :	Nathan Fre	tz						Date Signoff :			
LAB ID	CLIEN	TID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1109-02	TAPIAL	1-MW04S-(011525-00-T2	Water	01/15/2025	12:20						
							VOC-TCLVOA-10		8260D	10 Bus. Days		
Q1109-04	Т	AP-TB-01-0	011525	Water	01/15/2025	15:35						
							VOC-TCLVOA-10		8260D	10 Bus. Days		

Stoked in Yor Stoket # 05

Relinguished By : Date / Time: 12-16-25 13:15

da -125 2:00 pm my lad **Received By :** 201 Date / Time :

Storage Area : VOA Refridgerator Room