

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS SEMI-VOLATILE ORGANICS

PROJECT NAME: FORMER SCHLUMBERGER STC PTC SITE D3868221

JACOBS ENGINEERING GROUP, INC.

412 Mt. Kemble Ave

Downtown Building

Morristown, NJ - 07960

Phone No: 9732670555

ORDER ID: Q1711

ATTENTION: John Ynfante

Table Of Contents for Q1711

1) Signature Page	3
2) Case Narrative	5
2.1) VOCMS Group3- Case Narrative	5
2.2) SVOC-SIMGroup1- Case Narrative	7
2.3) Metals-MS- Case Narrative	9
2.4) Genchem- Case Narrative	11
3) Qualifier Page	13
4) QA Checklist	15
5) VOCMS Group3 Data	16
6) SVOC-SIMGroup1 Data	24
7) Metals-MS Data	31
8) Genchem Data	40
9) Shipping Document	48
9.1) CHAIN OF CUSTODY	49
9.2) ROC	51
9.3) Lab Certificate	54
9.4) Internal COC	55

Q1711 2 of 56

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labora	atory Name :	Alliance Technical Group LLC	Client :	JACOBS Engine	eering	Group	o, Inc.		
Projec	ct Location: Prin	nceton Junction, NJ	Project Number :	D3868221					
Labora	atory Sample ID((s): Q1711	Sampling Date(s):	4/02/2025					
List DI	KQP Methods Us	sed (e.g., 8260,8270, et Cetra)	,6020B,8260-Low,8270-Mo	dified,9056A,SN	/ 12320	B,SM	2540	C,SO	Р
1	specified QA/Qe explain any crite	ical method referenced in this la C performance criteria followed, eria falling outside of acceptable Known Quality performance star	including the requirement to guidelines, as specified in the		V	Yes		No	
1A	Were the metho	od specified handling, preservation	on, and holding time requiren	nents met?	V	Yes		No	
1B		Vas the EPH method conducted respective DKQ methods)	without significant modificatio	ns (see		Yes		No	✓ N/A
2		es received by the laboratory in a e associated chain-of-custody do		at	V	Yes		No	
3	Were samples r	eceived at an appropriate tempe	erature (4±2° C)?		$\overline{\mathbf{A}}$	Yes		No	□ N/A
4	Were all QA/QC standards achi	C performance criteria specified i ieved?	n the NJDEP DKQP			Yes	$\overline{\checkmark}$	No	
5		g limits specified or referenced on the laboratory prior to sample			V	Yes		No	
	b)Were these re	eporting limits met?			V	Yes		No	□ N/A
6	results reporte	cical method referenced in this lated to all constituents identified in a DKQP documents and/or site-section.	the method-specific analyte		V	Yes		No	
7	Are project-spe	cific matrix spikes and/or laborat	ory duplicates included in this	s data set?	V	Yes		No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Q1711 3 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Cover Page

Order ID: Q1711

Project ID: Former Schlumberger STC PTC Site D3868221

Client: JACOBS Engineering Group, Inc.

Lab Sample Number Client Sample Number Q1711-01 MW-18B-56-040225 Q1711-02 MW-18B-56-040225MS Q1711-03 MW-18B-56-040225MSD Q1711-04 MW-17B-55-040225 Q1711-07 RMW-05B-89-040225 Q1711-08 EB01-040225 Q1711-10 TB01-040225 Q1711-12 MW-17B-55-040225 Q1711-13 EB01-040225 Q1711-14 MW-18B-56-040225 Q1711-15 MW-18B-56-040225MS Q1711-16 MW-18B-56-040225MSD

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature : APPROVED

By Nimisha Pandya, QA/QC Supervisor at 11:19 am, Apr 14, 2025

NYDOH CERTIFICATION NO - 11376 NJDEP CERTIFICATION NO - 20012

4/14/2025

Date:

Q1711 4 of 56

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger STC PTC Site D3868221

Project # N/A

Chemtech Project # Q1711 Test Name: VOCMS Group3

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for VOCMS Group3.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of VOCMS Group3 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS {Q1711-02MS} with File ID: VX045591.D recoveries met the requirements for all compounds except for cis-1,2-Dichloroethene[30%] this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The MSD {Q1711-03MSD} with File ID: VX045577.D recoveries met the acceptable requirements except for cis-1,2-Dichloroethene[50%] this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The RPD for {Q1711-03MSD} with File ID: VX045577.D met criteria except for cis-1,2-Dichloroethene[50%] this compound did not meet the NJDKQP criteria and in-house criteria due to difference in results of MS and MSD.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

Q1711 5 of 56

Samples MW-18B-56-040225, MW-17B-55-040225 was diluted due to high concentrations of compound Trichloroethene.

E. Additional Comments:

Trip Blank was not provided with this set of samples.

For Sample #01 & 04 at the time of fax Sequence Processed with wrong method after further review it is corrected in Hardcopy therefore fax and Hardcopy data will not match.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Q1711 6 of 56

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger STC PTC Site # D3868221

Project # N/A

Chemtech Project # Q1711 Test Name: SVOC-SIMGroup1

A. Number of Samples and Date of Receipt:

10 Water samples were received on 04/02/2025.

- 3 Water samples were received on 04/03/2025.
- 2 Water samples were received on 04/03/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for SVOC-SIMGroup1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_N using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOC-SIMGroup1 was based on method 8270-Modified and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS {Q1711-02MS} with File ID: BN036834.D recoveries met the requirements for all compounds except for 1,4-Dioxane[-98%], this compound did not meet the NJDKQP criteria and in-house criteria, due to matrix interference no corrective action was taken.

The MSD {Q1711-03MSD} with File ID: BN036835.D recoveries met the acceptable requirements except for 1,4-Dioxane[-73%], this compound did not meet the NJDKQP criteria and in-house criteria, due to matrix interference no corrective action was taken.

The RPD for {Q1711-03MSD} with File ID: BN036835.D met criteria except for 1,4-Dioxane[29%], this compound did not meet the NJDKQP criteria and in-house criteria but due to difference in results of MS and MSD.

The Blank Spike met requirements for all samples.

Q1711 7 of 56

The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration File ID BN036817.D met the requirements except for Fluoranthene-d10, The failure compound not associated with the client parameters list, therefore no corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is $<\!20\%$ for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is $>\!20\%$ for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

APPROVED

Signature______By Nimisha Pandya, QA/QC Supervisor at 11:20 am, Apr 14, 2025

Q1711 8 of 56

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger STC PTC Site D3868221

Project # N/A

Chemtech Project # Q1711

Test Name: Metals Group4, Dissolved ICP-Group2

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for Metals Group4, Dissolved ICP-Group2.

C. Analytical Techniques:

The analysis of Dissolved ICP-Group2, Metals Group4 was based on method 6020B and digestion based on method 3010 (waters).

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (MW-18B-56-040225DUP) analysis met criteria for all samples except for Manganese due to sample matrix interference.

The Matrix Spike (MW-18B-56-040225MS) analysis met criteria for all samples except for Arsenic and Potassium due to Chemical Interference during Digestion Process.

The Matrix Spike Duplicate (MW-18B-56-040225MSD) analysis met criteria for all samples except for Arsenic due to Chemical Interference during Digestion Process.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

Sample Q1711-01, Q1711-04, Q1711-08 were analyze as Total Metal and Sample Q1711-12, Q1711-13, Q1711-14 were analyze as Dissolved Metal.

Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

Q1711 9 of 56

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

A	P	P	R	0	V	15	ח
			m	v	v		

By Nimisha Pandya, QA/QC Supervisor at 11:20 am, Apr 14, 2025 Signature_

Q1711 10 of 56

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

JACOBS Engineering Group, Inc.

Project Name: Former Schlumberger STC PTC Site D3868221

Project # N/A

Chemtech Project # Q1711

Test Name: Alkalinity, TDS, Anions Group1

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for Alkalinity, TDS, Anions Group1.

C. Analytical Techniques:

The analysis of Anions Group1 was based on method 9056A, The analysis of Alkalinity was based on method SM2320 B and The analysis of TDS was based on method SM2540 C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Sample MW-18B-56-040225 was diluted due to high concentrations for Chloride & Sample MW-17B-55-040225 was diluted due to high concentrations for Chloride.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike (MW-18B-56-040225MS) analysis met criteria for all samples except for Chloride due to matrix interference.

The Matrix Spike Duplicate (MW-18B-56-040225MSD) analysis met criteria for all samples except for due to matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

Q1711 **11 of 56**

Signature_

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

APPROVED

By Nimisha Pandya, QA/QC Supervisor at 11:20 am, Apr 14, 2025

Q1711 **12 of 56**

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

- J Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates the analyte was analyzed for, but not detected.
- ND Indicates the analyte was analyzed for, but not detected
- E Indicates the reported value is estimated because of the presence of interference
- M Indicates Duplicate injection precision not met.
- N Indicates the spiked sample recovery is not within control limits.
- S Indicates the reported value was determined by the Method of Standard Addition (MSA).
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for the MSA is less than 0.995.
- D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- M Method qualifiers
 - **"P"** for ICP instrument
 - "PM" for ICP when Microwave Digestion is used
 - "CV" for Manual Cold Vapor AA
 - "AV" for automated Cold Vapor AA
 - "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi –Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - **"T"** for Titrimetric
 - "NR" for analyte not required to be analyzed
- OR Indicates the analyte's concentration exceeds the calibrated range of the
 - instrument for that specific analysis.
- Q Indicates the LCS did not meet the control limits requirements
- H Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. " $10\mathrm{U}$ ". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

Aliance

APPENDIX A

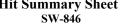
QA REVIEW GENERAL DOCUMENTATION

Project #: Q1711

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	✓ ✓ ✓
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u>✓</u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	' ' ' ' '
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI Date: 04/14/2025

Q1711 15 of 56



284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet

SDG No.: Q1711

Client: JACOBS Engineering Group, Inc.

Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID:	MW-18B-56-040225	5					
Q1711-01	MW-18B-56-04022	Water	Vinyl Chloride	47.7	2.60	10.0	ug/L
Q1711-01	MW-18B-56-04022	Water	1,1-Dichloroethene	13.0	2.30	10.0	ug/L
Q1711-01	MW-18B-56-04022	Water	cis-1,2-Dichloroethene	850	1.90	10.0	ug/L
Q1711-01	MW-18B-56-04022	Water	Trichloroethene	370	0.93	10.0	ug/L
			Total Voc:	1280			
			Total Concentration:	1280			
Client ID:	MW-17B-55-040225	5					
Q1711-04	MW-17B-55-04022	Water	cis-1,2-Dichloroethene	2200	19.0	100	ug/L
Q1711-04	MW-17B-55-04022	Water	Trichloroethene	11400	9.30	100	ug/L
Q1711-04	MW-17B-55-04022	Water	Tetrachloroethene	110	23.0	100	ug/L
			Total Voc:	13700			
			Total Concentration:	13700			
Client ID:	RMW-05B-89-0402	25					
Q1711-07	RMW-05B-89-0402	Water	1,1-Dichloroethane	1.60	0.23	1.00	ug/L
Q1711-07	RMW-05B-89-0402	Water	cis-1,2-Dichloroethene	4.00	0.19	1.00	ug/L
			Total Voc:	5.60			
			Total Concentration:	5.60			

Q1711 16 of 56

SAMPLE DATA

5

A

C

Q1711-01

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Matrix:

Water

uL

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

SDG No.:

Client Sample ID: MW-18B-56-040225 Q1711

Analytical Method: SW8260 % Solid:

Final Vol: 5000 Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol: Test: VOCMS Group3 uL

DB-624UI ID: 0.18 Level: LOW GC Column:

Prep Method:

Lab Sample ID:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VX045575.D 10 04/03/25 16:47 VX040325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	47.7		2.60	10.0	ug/L
75-35-4	1,1-Dichloroethene	13.0		2.30	10.0	ug/L
75-34-3	1,1-Dichloroethane	2.30	U	2.30	10.0	ug/L
156-59-2	cis-1,2-Dichloroethene	850		1.90	10.0	ug/L
71-55-6	1,1,1-Trichloroethane	2.00	U	2.00	10.0	ug/L
71-43-2	Benzene	1.50	U	1.50	10.0	ug/L
107-06-2	1,2-Dichloroethane	2.20	U	2.20	10.0	ug/L
79-01-6	Trichloroethene	370		0.93	10.0	ug/L
79-00-5	1,1,2-Trichloroethane	2.10	U	2.10	10.0	ug/L
127-18-4	Tetrachloroethene	2.30	U	2.30	10.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.4		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	51.5		70 (75) - 130 (124)	103%	SPK: 50
2037-26-5	Toluene-d8	51.2		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.1		70 (77) - 130 (121)	98%	SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	64100	5.55			
540-36-3	1,4-Difluorobenzene	121000	6.757			
3114-55-4	Chlorobenzene-d5	112000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	43800	12.018			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711 18 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Matrix:

Water

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: MW-17B-55-040225 SDG No.: Q1711

Lab Sample ID: Q1711-04 Analytical Method: SW8260 % Solid:

Final Vol: 5000 Sample Wt/Vol: 5 Units: mLuL

Soil Aliquot Vol: Test: VOCMS Group3 uL

DB-624UI ID: 0.18 Level: LOW GC Column:

Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VX045569.D 100 04/03/25 14:27 VX040325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	26.0	U	26.0	100	ug/L
75-35-4	1,1-Dichloroethene	23.0	U	23.0	100	ug/L
75-34-3	1,1-Dichloroethane	23.0	U	23.0	100	ug/L
156-59-2	cis-1,2-Dichloroethene	2200		19.0	100	ug/L
71-55-6	1,1,1-Trichloroethane	20.0	U	20.0	100	ug/L
71-43-2	Benzene	15.0	U	15.0	100	ug/L
107-06-2	1,2-Dichloroethane	22.0	U	22.0	100	ug/L
79-01-6	Trichloroethene	11400		9.30	100	ug/L
79-00-5	1,1,2-Trichloroethane	21.0	U	21.0	100	ug/L
127-18-4	Tetrachloroethene	110		23.0	100	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.8		70 (74) - 130 (125)	110%	SPK: 50
1868-53-7	Dibromofluoromethane	52.2		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	50.7		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	46.9		70 (77) - 130 (121)	94%	SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	63200	5.55			
540-36-3	1,4-Difluorobenzene	123000	6.757			
3114-55-4	Chlorobenzene-d5	111000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	41800	12.018			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711 19 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: RMW-05B-89-040225 SDG No.: Q1711

Lab Sample ID: Q1711-07 Matrix: Water

Analytical Method: SW8260 % Solid: 0

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group3

GC Column: DB-624UI ID: 0.18 Level: LOW

Prep Method:

Client:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VX045568.D 1 04/03/25 14:04 VX040325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	1.60		0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	4.00		0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.2		70 (74) - 130 (125)	110%	SPK: 50
1868-53-7	Dibromofluoromethane	52.0		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	50.6		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.6		70 (77) - 130 (121)	101%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	63800	5.55			
540-36-3	1,4-Difluorobenzene	125000	6.757			
3114-55-4	Chlorobenzene-d5	116000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	47000	12.018			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711 **20 of 56**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

EB01-040225 Client Sample ID: SDG No.: Q1711

Lab Sample ID: Q1711-08 Matrix: Water

Analytical Method: SW8260 % Solid:

uL

Final Vol: 5000 Sample Wt/Vol: 5 Units: mLuL Soil Aliquot Vol: Test: VOCMS Group3

DB-624UI ID: 0.18 Level: LOW GC Column:

Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VX045572.D 1 04/03/25 15:37 VX040325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.4		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	51.0		70 (75) - 130 (124)	102%	SPK: 50
2037-26-5	Toluene-d8	50.9		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.8		70 (77) - 130 (121)	100%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	63300	5.543			
540-36-3	1,4-Difluorobenzene	123000	6.757			
3114-55-4	Chlorobenzene-d5	114000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	46600	12.024			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711 21 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Level:

LOW

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: TB01-040225 SDG No.: Q1711

Lab Sample ID: Q1711-10 Matrix: Water

Analytical Method: SW8260 % Solid: 0

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group3

GC Column: DB-624UI ID: 0.18

Prep Method:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VX045571.D 1 04/03/25 15:14 VX040325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.9		70 (74) - 130 (125)	108%	SPK: 50
1868-53-7	Dibromofluoromethane	52.0		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	51.0		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.0		70 (77) - 130 (121)	102%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	66900	5.544			
540-36-3	1,4-Difluorobenzene	129000	6.757			
3114-55-4	Chlorobenzene-d5	122000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	49400	12.018			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711 **22 of 56**

LAB CHRONICLE

OrderID: Q1711

Client: JACOBS Engineering Group, Inc.

Contact: John Ynfante

OrderDate: 4/3/2025 10:00:00 AM

Project: Former Schlumberger STC PTC Site D3868221

Location: I41,L21,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-04	MW-17B-55-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-07	RMW-05B-89-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-08	EB01-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-10	TB01-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	

Q1711 23 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q1711

Client: JACOBS Engineering Group, Inc.

Sample ID	Client ID		Parameter	Concentration C	MDL	RDL	Unit
Client ID:	MW-18B-56-040225						
Q1711-01	MW-18B-56-040225	WATER	1,4-Dioxane	4.000	0.07	0.21	ug/L
			Total Svoc:	4	.00		
			Total Concentration:	•	4.00		
Client ID:	MW-17B-55-040225						
Q1711-04	MW-17B-55-040225	WATER	1,4-Dioxane	1.800	0.07	0.2	ug/L
			Total Svoc:	1	.80		
			Total Concentration:	•	1.80		
Client ID:	RMW-05B-89-040225						
Q1711-07	RMW-05B-89-040225	WATER	1,4-Dioxane	0.200	0.07	0.2	ug/L
			Total Svoc:	0	.20		
			Total Concentration:		0.20		
Client ID:	EB01-040225						
Q1711-08	EB01-040225	WATER	1,4-Dioxane	0.120 J	0.07	0.21	ug/L
			Total Svoc :	0	.12		

Total Concentration:

0.12

Q1711 **24 of 56**

6

A

C

0

SAMPLE DATA

Q1711 **25 of 56**

SVOC-SIMGroup1

Test:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Former Schlumberger STC PTC Site # D3868221 Project: Date Received: 04/02/25

Client Sample ID: MW-18B-56-040225 SDG No.: Q1711

Lab Sample ID: Q1711-01 Matrix: Water Analytical Method: SW8270ESIM % Solid: 0

Sample Wt/Vol: 970 Final Vol: 1000 uL Units: mL

Extraction Type: Decanted: Ν Level: LOW

uL

GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method:

Soil Aliquot Vol:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed BN036833.D 1 04/03/25 13:10 04/03/25 21:27 PB167450

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
TARGETS					
123-91-1	1,4-Dioxane	4.00	0.070	0.21	ug/L
SURROGATES					
7297-45-2	2-Methylnaphthalene-d10	0.35	30 (20) - 150 (139)	88%	SPK: 0.4
93951-69-0	Fluoranthene-d10	0.43	30 (30) - 150 (150)	108%	SPK: 0.4
4165-60-0	Nitrobenzene-d5	0.35	30 (27) - 130 (154)	87%	SPK: 0.4
321-60-8	2-Fluorobiphenyl	0.40	30 (25) - 130 (149)	101%	SPK: 0.4
1718-51-0	Terphenyl-d14	0.47	30 (54) - 130 (175)	116%	SPK: 0.4
INTERNAL STA	NDARDS				
3855-82-1	1,4-Dichlorobenzene-d4	1920	7.695		
1146-65-2	Naphthalene-d8	4920	10.477		
15067-26-2	Acenaphthene-d10	2870	14.334		
1517-22-2	Phenanthrene-d10	6160	17.074		
1719-03-5	Chrysene-d12	5430	21.268		
1520-96-3	Perylene-d12	5100	23.51		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Report of Analysis

Client: JACOBS Engineering Group, Inc.

Units:

Fax: 908 789 8922

Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site # D3868221

Date Received: 04/02/25

Client Sample ID: MW-17B-55-040225

SDG No.: Q1711

Lab Sample ID: Q1711-04

Matrix: Water

Analytical Method: SW8270ESIM

% Solid:

Sample Wt/Vol: Soil Aliquot Vol: mL uL Final Vol: Test:

SVOC-SIMGroup1

PH:

uL

Extraction Type : Injection Volume :

Decanted:

1.0

N

Level:

GPC Cleanup:

LOW

Ν

0

1000

Prep Method:

File ID/Qc Batch:

Dilution:

1

990

Prep Date

Date Analyzed

Prep Batch ID

BN036830.D

04/03/25 13:10

GPC Factor:

04/03/25 19:38

PB167450

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
TARGETS					
123-91-1	1,4-Dioxane	1.80	0.070	0.20	ug/L
SURROGATES					
7297-45-2	2-Methylnaphthalene-d10	0.33	30 (20) - 150 (1	39) 83%	SPK: 0.4
93951-69-0	Fluoranthene-d10	0.42	30 (30) - 150 (1	50) 105%	SPK: 0.4
4165-60-0	Nitrobenzene-d5	0.31	30 (27) - 130 (1	54) 77%	SPK: 0.4
321-60-8	2-Fluorobiphenyl	0.39	30 (25) - 130 (1	49) 98%	SPK: 0.4
1718-51-0	Terphenyl-d14	0.42	30 (54) - 130 (1	75) 104%	SPK: 0.4
INTERNAL STA	ANDARDS				
3855-82-1	1,4-Dichlorobenzene-d4	1750	7.695		
1146-65-2	Naphthalene-d8	4470	10.477		
15067-26-2	Acenaphthene-d10	2430	14.334		
1517-22-2	Phenanthrene-d10	5240	17.086		
1719-03-5	Chrysene-d12	4580	21.268		
1520-96-3	Perylene-d12	4350	23.513		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

SVOC-SIMGroup1

иL

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site # D3868221 Date Received: 04/02/25

Client Sample ID: RMW-05B-89-040225 SDG No.: Q1711

Lab Sample ID:Q1711-07Matrix:WaterAnalytical Method:SW8270ESIM% Solid:0

Sample Wt/Vol: 990 Units: mL Final Vol: 1000 uL

Test:

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

Prep Method:

Soil Aliquot Vol:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BN036831.D
 1
 04/03/25 13:10
 04/03/25 20:14
 PB167450

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
TARGETS					
123-91-1	1,4-Dioxane	0.20	0.070	0.20	ug/L
SURROGATES					
7297-45-2	2-Methylnaphthalene-d10	0.34	30 (20) - 150 (139	86%	SPK: 0.4
93951-69-0	Fluoranthene-d10	0.44	30 (30) - 150 (150	109%	SPK: 0.4
4165-60-0	Nitrobenzene-d5	0.34	30 (27) - 130 (154	84%	SPK: 0.4
321-60-8	2-Fluorobiphenyl	0.40	30 (25) - 130 (149	100%	SPK: 0.4
1718-51-0	Terphenyl-d14	0.38	30 (54) - 130 (175	96%	SPK: 0.4
INTERNAL STA	NDARDS				
3855-82-1	1,4-Dichlorobenzene-d4	1720	7.695		
1146-65-2	Naphthalene-d8	4310	10.477		
15067-26-2	Acenaphthene-d10	2460	14.334		
1517-22-2	Phenanthrene-d10	5130	17.074		
1719-03-5	Chrysene-d12	5000	21.268		
1520-96-3	Perylene-d12	5310	23.51		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site # D3868221 Date Received: 04/02/25

Client Sample ID: EB01-040225 SDG No.: Q1711

Lab Sample ID: EB01-040225 SDG No.: Q1711

Lab Sample ID: Q1711-08 Matrix: Water

Analytical Method: SW8270ESIM % Solid: 0

Sample Wt/Vol: 960 Units: mL Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOC-SIMGroup1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

Prep Method:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BN036832.D
 1
 04/03/25 13:10
 04/03/25 20:51
 PB167450

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
123-91-1	1,4-Dioxane	0.12	J	0.070	0.21	ug/L
SURROGATES						
7297-45-2	2-Methylnaphthalene-d10	0.34		30 (20) - 150 (139)	84%	SPK: 0.4
93951-69-0	Fluoranthene-d10	0.44		30 (30) - 150 (150)	109%	SPK: 0.4
4165-60-0	Nitrobenzene-d5	0.32		30 (27) - 130 (154)	79%	SPK: 0.4
321-60-8	2-Fluorobiphenyl	0.37		30 (25) - 130 (149)	93%	SPK: 0.4
1718-51-0	Terphenyl-d14	0.41		30 (54) - 130 (175)	102%	SPK: 0.4
INTERNAL STAI	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	2130	7.695			
1146-65-2	Naphthalene-d8	5120	10.477			
15067-26-2	Acenaphthene-d10	3000	14.334			
1517-22-2	Phenanthrene-d10	6320	17.086			
1719-03-5	Chrysene-d12	5670	21.268			
1520-96-3	Perylene-d12	5200	23.513			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q1711

29 of 56

LAB CHRONICLE

OrderID: Q1711

Client: JACOBS Engineering Group, Inc.

Contact: John Ynfante

OrderDate: 4/3/2025 10:00:00 AM

Project: Former Schlumberger STC PTC Site # D3868221

Location: I41,L21,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-04	MW-17B-55-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-07	RMW-05B-89-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-08	EB01-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	

Q1711 **30 of 56**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Hit Summary Sheet SW-846

Q1711 Order ID: Q1711 SDG No.:

Client: Project ID: IACORS Engineering Group Inc Former Schlumberger STC PTC Site D386

Client:	JACOBS Engineering Grou	ıp, Inc.		Project ID): 	Former Schlumberger STC PTC Site		
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units
Client ID:	MW-18B-56-040225							
Q1711-01	MW-18B-56-040225	Water	Aluminum	1470		1.94	20.0	ug/L
Q1711-01	MW-18B-56-040225	Water	Antimony	1.67	J	0.11	2.00	ug/L
Q1711-01	MW-18B-56-040225	Water	Arsenic	0.85	J	0.089	1.00	ug/L
Q1711-01	MW-18B-56-040225	Water	Barium	119		0.21	10.0	ug/L
Q1711-01	MW-18B-56-040225	Water	Chromium	0.58	J	0.21	2.00	ug/L
Q1711-01	MW-18B-56-040225	Water	Iron	560		7.81	50.0	ug/L
Q1711-01	MW-18B-56-040225	Water	Magnesium	315	J	19.5	500	ug/L
Q1711-01	MW-18B-56-040225	Water	Manganese	4.19		0.43	1.00	ug/L
Q1711-01	MW-18B-56-040225	Water	Potassium	23000		36.4	500	ug/L
Q1711-01	MW-18B-56-040225	Water	Sodium	20000		128	500	ug/L
Client ID:	MW-17B-55-040225							
Q1711-04	MW-17B-55-040225	Water	Aluminum	64.1		1.94	20.0	ug/L
Q1711-04	MW-17B-55-040225	Water	Antimony	0.31	J	0.11	2.00	ug/L
Q1711-04	MW-17B-55-040225	Water	Arsenic	0.83	J	0.089	1.00	ug/L
Q1711-04	MW-17B-55-040225	Water	Barium	388		0.21	10.0	ug/L
Q1711-04	MW-17B-55-040225	Water	Iron	5600		7.81	50.0	ug/L
Q1711-04	MW-17B-55-040225	Water	Magnesium	7420		19.5	500	ug/L
Q1711-04	MW-17B-55-040225	Water	Manganese	450		0.43	1.00	ug/L
Q1711-04	MW-17B-55-040225	Water	Potassium	7500		36.4	500	ug/L
Q1711-04	MW-17B-55-040225	Water	Sodium	6460		128	500	ug/L
Client ID:	EB01-040225							
Q1711-08	EB01-040225	Water	Aluminum	6.98	J	1.94	20.0	ug/L
Q1711-08	EB01-040225	Water	Lead	0.44	J	0.21	1.00	ug/L
Client ID:	MW-17B-55-040225							
Q1711-12	MW-17B-55-040225	Water	Iron	5190		7.81	50.0	ug/L
Client ID:	EB01-040225							
Q1711-13	EB01-040225	Water	Iron	11.9	J	7.81	50.0	ug/L
Client ID:	MW-18B-56-040225							
Q1711-14	MW-18B-56-040225	Water	Iron	40.3	J	7.81	50.0	ug/L

Q1711 31 of 56

SAMPLE DATA

7

Α

В

D

Q1711-01

Lab Sample ID:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Matrix:

Water

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: MW-18B-56-040225 SDG No.: Q1711

Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	1470		1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-36-0	Antimony	1.67	J	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-38-2	Arsenic	0.85	JN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-39-3	Barium	119		1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-47-3	Chromium	0.58	J	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-89-6	Iron	560		1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-92-1	Lead	0.21	U	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-95-4	Magnesium	315	J	1	19.5	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-96-5	Manganese	4.19	*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-09-7	Potassium	23000	N	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-23-5	Sodium	20000		1	128	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Metals Group4

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: MW-17B-55-040225 SDG No.: Q1711

Lab Sample ID: Q1711-04 Matrix: Water

Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	64.1		1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-36-0	Antimony	0.31	J	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-38-2	Arsenic	0.83	JN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-39-3	Barium	388		1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-47-3	Chromium	0.21	U	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-89-6	Iron	5600		1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-92-1	Lead	0.21	U	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-95-4	Magnesium	7420		1	19.5	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-96-5	Manganese	450	*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-09-7	Potassium	7500	N	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-23-5	Sodium	6460		1	128	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Metals Group4

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: EB01-040225 SDG No.: Q1711 Lab Sample ID: Q1711-08 Matrix: Water Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	6.98	J	1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-36-0	Antimony	0.11	U	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-38-2	Arsenic	0.089	UN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-39-3	Barium	0.21	U	1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-47-3	Chromium	0.21	U	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-89-6	Iron	7.81	U	1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-92-1	Lead	0.44	J	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-95-4	Magnesium	19.5	U	1	19.5	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-96-5	Manganese	0.43	U*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-09-7	Potassium	36.4	UN	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-23-5	Sodium	128	U	1	128	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: Metals Group4

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: MW-17B-55-040225 SDG No.: Q1711 Lab Sample ID: Q1711-12 Matrix: Water Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua. DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7439-89-6	Iron	5190	1 7.81	50.0	ug/L	04/04/25 12:05	04/07/25 13:24	SW6020	3010A

Color Before: Colorless

Clarity Before:

Clear Clear Texture:

Color After: Colorless

Clarity After:

Artifacts:

Comments: Dissolved Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence

of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: EB01-040225 SDG No.: Q1711 Lab Sample ID: Q1711-13 Matrix: Water Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua	a. DI	F MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7439-89-6	Iron	11.9	J	1	7.81	50.0	ug/L	04/04/25 12:05	04/07/25 13:27	SW6020	3010A

Color Before: Colorless

Clarity Before:

Texture:

Color After: Colorless

Clarity After: Clear

Clear

Artifacts:

Comments: Dissolved Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence

of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q1711

Report of Analysis

JACOBS Engineering Group, Inc. Client: Date Collected: 04/02/25 Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: MW-18B-56-040225 SDG No.: Q1711 Lab Sample ID: Q1711-14 Matrix: Water Level (low/med): % Solid: 0 low

Cas	Parameter	Conc.	Qua	. DI	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7439-89-6	Iron	40.3	J	1	7.81	50.0	ug/L	04/04/25 12:05	04/07/25 13:30	SW6020	3010A

Color Before: Colorless

Clarity Before:

Clear

Texture:

Color After: Colorless

Clarity After:

Clear

Artifacts:

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

Dissolved Metals Group3

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence

of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q1711

LAB CHRONICLE

OrderID: Q1711

Client: JACOBS Engineering Group, Inc.

Contact: John Ynfante

OrderDate: 4/3/2025 10:00:00 AM

Project: Former Schlumberger STC PTC Site D3868221

Location: I41,L21,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water			04/02/25			04/02/25
			Metals Group4	6020B		04/04/25	04/04/25	
Q1711-04	MW-17B-55-040225	Water			04/02/25			04/02/25
			Metals Group4	6020B		04/04/25	04/04/25	
Q1711-08	EB01-040225	Water			04/02/25			04/02/25
			Metals Group4	6020B		04/04/25	04/04/25	
Q1711-12	MW-17B-55-040225	Water			04/02/25			04/02/25
			Dissolved ICP-Group2	6020B		04/04/25	04/07/25	
Q1711-13	EB01-040225	Water			04/02/25			04/02/25
			Dissolved ICP-Group2	6020B		04/04/25	04/07/25	
Q1711-14	MW-18B-56-040225	Water			04/02/25			04/02/25
			Dissolved ICP-Group2	6020B		04/04/25	04/07/25	

Q1711 39 of 56

SAMPLE DATA

Q1711 **40 of 56**

Lab Sample ID:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 12:35

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: MW-18B-56-040225 SDG No.: Q1711 Q1711-01 WATER

> % Solid: 0

Matrix:

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	273		1	1.00	2.00	mg/L		04/03/25 13:36	SM 2320 B-11
Chloride	26.6	OR	1	0.19	0.60	mg/L		04/03/25 12:29	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 12:29	9056A
Sulfate	10.7		1	0.46	3.00	mg/L		04/03/25 12:29	9056A
TDS	257		1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments: The alkalinity to pH 4.28=273 mg CaCO3/L

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

41 of 56

Q1711

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 12:35

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: MW-18B-56-040225DL SDG No.: Q1711

Lab Sample ID: Q1711-01DL Matrix: WATER

% Solid: 0

Parameter	Conc. Q	Qua.	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	23.6	D	10 1.90	6.00	mg/L		04/03/25 14:59	9056A

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 15:35

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: MW-17B-55-040225 SDG No.: Q1711

Lab Sample ID: Q1711-04 Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	91.4		1	1.00	2.00	mg/L		04/03/25 13:45	SM 2320 B-11
Chloride	20.1	OR	1	0.19	0.60	mg/L		04/03/25 13:55	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 13:55	9056A
Sulfate	4.50		1	0.46	3.00	mg/L		04/03/25 13:55	9056A
TDS	38.0		1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments: The alkalinity to pH 4.37=91.4 mg CaCO3/L

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q1711 43 of 56

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 15:35

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25 Client Sample ID: MW-17B-55-040225DL SDG No.: Q1711

Lab Sample ID: Q1711-04DL Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	18.4	D	5	0.95	3.00	mg/L		04/03/25 15:21	9056A

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q1711

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q1711-08

Lab Sample ID:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Matrix:

Water

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 04/02/25 15:50

Project: Former Schlumberger STC PTC Site D3868221 Date Received: 04/02/25

Client Sample ID: EB01-040225 SDG No.: Q1711

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	1.00	U	1	1.00	2.00	mg/L		04/03/25 14:04	SM 2320 B-11
Chloride	0.19	U	1	0.19	0.60	mg/L		04/03/25 14:16	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 14:16	9056A
Sulfate	0.46	U	1	0.46	3.00	mg/L		04/03/25 14:16	9056A
TDS	1.00	U	1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

LAB CHRONICLE

OrderID: Q1711 OrderDate: 4/3/2025 10:00:00 AM

Client: JACOBS Engineering Group, Inc. Project: Former Schlumberger STC PTC Site D3868221

Contact: John Ynfante Location: I41,L21,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	WATER			04/02/25 12:35			04/02/25
			Alkalinity	SM2320 B			04/03/25 13:36	
			Anions Group1	9056A			04/03/25 12:29	
			TDS	SM2540 C			04/03/25 12:30	
Q1711-01DL	MW-18B-56-040225D L	WATER			04/02/25 12:35			04/02/25
			Anions Group1	9056A			04/03/25 14:59	
Q1711-04	MW-17B-55-040225	WATER			04/02/25 15:35			04/02/25
			Alkalinity	SM2320 B	13.33		04/03/25 13:45	
			Anions Group1	9056A			04/03/25 13:55	
			TDS	SM2540 C			04/03/25 12:30	
Q1711-04DL	MW-17B-55-040225D L	WATER			04/02/25 15:35			04/02/25
			Anions Group1	9056A			04/03/25 15:21	
Q1711-08	EB01-040225	Water			04/02/25 15:50			04/02/25

Q1711 46 of 56

LAB CHRONICLE

Alkalinity SM2320 B 04/03/25
14:04
Anions Group1 9056A 04/03/25
14:16
TDS SM2540 C 04/03/25
12:30

Q1711 47 of 56

SHIPPING DOCUMENTS

Q1711 48 of 56

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net

ALLIANCE PF	ROJECT NO.
QUOTE NO.	11F1()
COC Number	2045984

1

	4200	CLIENT PROJECT INFORMATION											CLIEN	IT BILLI	NG INFO	DRMATION					
COMPANY: J		TTTO BE SENTTO:		PROJE	CT.I	MAV	E: STC	PTL					BILL 1	ro: N	lary	Mu	dy		PO#:		
ADDRESS: 4	12 Mt Kew	ble Are Suite	d 100	PROJEC	CT NO	D.: 🐧	3868221	LOCA	ATION:	Prince	tho	netin	ADDF	RESS:	1		1				
CITY MO	ivistan	STATE: NT	ZIP: 07460	PROJEC	CT M/	ANAG	ER: MO	vy Mi	uphy				CITY					STAT	E:	:ZIP:	
	John Yufa	John John V	whenter Touche	e-mail: Mary, Menly a Tacok, com							ATTE	NTION:				PHO	NE.				
	COW														10		ANA	ALYSIS	-9		
PHONE:	PHONE	100	DATA	DELIVE	FA RABLE IN	XX::	ATION		-												
DATA TURNAROUND INFORMATION FAX (RUSH) PART (2 day) DAYS* HARDCOPY (DATA PACKAGE): DAYS* *TO BE APPROVED BY CHEMTECH STANDARD HARDCOPY TURNAROUND TIME IS 10 BUSINESS					l 1 (Re	esults (esults + esults + ta)	Only)	Level 4 (QC NJ Reduce NYS ASP A Other	C + Full F	Raw Data		11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ord of	Signal Si	Voit 6 Octor Allana 6	(0) C	212205 Aurous Aurous	(AUT)	SERVELLE SERVELLE	244	
						IPLE	SAN	IPLE	E				PRE	SERVA	TIVES					OMMENTS	
ALLIANCE SAMPLE		PROJECT AMPLE IDENTIFICA	TION	SAMPLE MATRIX		PE m	COLLI	ECTION	OF BOTTLES	AE	E	BE	E	E	E	E	A/E		A-HCI	ify Preservat D-NaOH	lives
ID	3,	AWIFEE IDENTIFICA		MATHIA	COMP	GRAB	DATE	TIME	# 0F	1	2	3	4	5	6	7	8	9	B-HN03 C-H2SO4	E-ICE F-OTHER	
1.	MW-18B-	56-040225		GW		1	4/2/25	1235	24		/	/	/	1	/	1	放	0	Ms/a	15D !!	27 bo He
2.	MW-17B	- 55 - 040225		GW		/	4/2/25	1535	094	1	/	V	/	/	/	/	2		9 bottle	5	
3.	MW-18B	-56-040225-	SIM	GW		V	4/2/25	1235	2	,							/				
4.	1MW-178	-56-040225	5-SIM	GW		J	4/2/25	1535	2								/				
5.							71														
6.																					
7.																					
8.																					
9.																					\neg
10.																					
		SAMPLE CUSTOR		UMENTE	BEI	LOW												470			
1. ALA RELINQUISHED BY 2.	LINQUISHED BY SAMPLER: DATE/TIME: LINQUISHED BY SAMPLER: DATE/TIME: RECEIVED BY: 1.				4-2-25				Conditions of bottles or coolers at receipt: a COMPLIANT COMMENTS: See work order for list PRESERVE DISSOLVE IRON SI PD # 148064311 Temp 3-0° CACUST				ed	Fact							
EALINGOISHED B	ONIVIPLEN:	4-2-25	3.	Page 1 of 2 CLIENT: □ Hand Delivered □ Other						Shipment Complete Second Seco											

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net

ALLIANCE PROJECT NO. QUOTE NO.

DIFIL

COC Number

2045981

	CLIENT INFORMATION	CLIENT PROJECT INFORMATION						CLIENT BILLING INFORMATION										
COMPANY:	Jacobs	PROJECT NAME: STC PTC						BILL TO: Mary Murphy PO#:										
ADDRESS:	PROJECT NO.:) 386822 LOCATION: Princeton Junction							ADDRESS:										
CITY MOL	VISTOUR STATE: NJ ZIP: D'7960	PROJECT MANAGER: MAN MUMMY							CITY			STAT	STATE: :ZIP:					
ATTENTION:	John Yntarte John Ynfante @ Jacobs.	e-mail: Mary, Murphy Tauds, com							ATTENTION: PHONE:					NE:				
	FAX:	PHONE: FAX:							ANALYSIS									
PHONE:	DATA TURNAROUND INFORMATION																	
FAX (RUSH) HARDCOPY (D. EDD: *TO BE APPRO STANDARD HA	DATA DELIVERABLE INFORMATION Level 1 (Results Only) Level 4 (QC + Full Raw Data) Level 2 (Results + QC) NJ Reduced US EPA CLP Level 3 (Results + QC NYS ASP A NYS ASP B + Raw Data) Other EDD FORMAT SAMPLE SAMPLE SAMPLE ST										MMENTS							
ALLIANCE	PPO IFOT	SAMPLE	SAM			IPLE ECTION	TLES	A/			84						< Speci	y Preservatives
SAMPLE	PROJECT SAMPLE IDENTIFICATION	MATRIX	COMP	GRAB	DATE	TIME	OF BOTTLES	A/É		A/E	発	E	E	E	E		A-HCI B-HN03	D-NaOH E-ICE
		4	8	3			11:	1	2	3	4 8 c/60	5	6	7	8	9	C-H2SO4	F-OTHER
1.	RMW-05B-89-040225	GW		2	4/2/25		4	1	1	20	60) DE		ļ.,	7			
2.	EB01-040225	DI		4	4/2/25		q	_ <	1		/	_/_		/	/			
3.	EB01-040225-SIM	DI		1	4/2/25	1550	2			1								
4.	TBO1-640225	DI		1	4/2/25	1600	2	✓										
5.					,													
6.																		
7.																		
8.																		
9.																		
10.																		
	SAMPLE CUSTODY MUST BE DOC	UMENTED	BEL	.ow	EACH TI	ME SAMP	LES C	HANGE	POSS	ESSIO	N INCL	UDING	COUR	IER DE	LIVER		7	
RELINQUISHED BY SAMPLER: DATE/TIME: 1650 1. 1								= .										
3.		Page Z of Z CLIENT: ☐ Hand						Hand D	elivered									

From: Ynfante, John <John.Ynfante@jacobs.com>

Sent: Friday, April 04, 2025 12:54 PM **To:** Yazmeen Gomez; Mohammad Ahmed

Subject: RE: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

Secured by Check Point

Thanks Yazmeen, but like I mentioned yesterday if you aren't able to analyze any of those 3 normal samples by SIM then I have no need for the EB to be analyzed by SIM either so please just cancel that SIM EB. I will already have EB data for VOCs from the EB you ran (or are running) by your routine low 8260D.

From: Yazmeen Gomez <Yazmeen.Gomez@alliancetg.com>

Sent: Friday, April 4, 2025 11:51 AM

To: Ynfante, John <John.Ynfante@jacobs.com>; Mohammad Ahmed <mohammad.ahmed@alliancetg.com>

Subject: [EXTERNAL] RE: Princeton SIM/no-SIM

John,

Please see attached. SIM analysis is also not possible for MW-18B and MW-17B.

However, "EB01-040225-SIM" will be analyzed with SIM.

Best Regards,

Yazmeen Gomez Sr. Project Manager An Alliance Technical Group Company

Main: 908-789-8900 **Direct:** 908-728-3147

Address: 284 Sheffield St, Ste 1, Mountainside, NJ 07092

www.alliancetg.com in AST AEMAAS

From: Ynfante, John < John. Ynfante@jacobs.com >

Sent: Thursday, April 3, 2025 6:27 PM

To: Mohammad Ahmed <mohammad.ahmed@alliancetg.com>; Yazmeen Gomez <Yazmeen.Gomez@alliancetg.com>

Subject: RE: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

1

Q1711 51 of 56

Ok thanks for the confirmation Mohammad

From: Mohammad Ahmed <mohammad.ahmed@alliancetg.com>

Sent: Thursday, April 3, 2025 5:22 PM

To: Ynfante, John < John. Ynfante@jacobs.com >; Yazmeen Gomez < Yazmeen.Gomez@alliancetg.com >

Subject: [EXTERNAL] Re: Princeton SIM/no-SIM

Hi John,

I will let you know about other 2 samples regarding SIM.

1 8oz jar is enough to run Total metals and SPLP

Get Outlook for iOS

From: Ynfante, John < John. Ynfante@jacobs.com>

Sent: Thursday, April 3, 2025 5:55:35 PM

To: Yazmeen Gomez < Yazmeen.Gomez@alliancetg.com; Mohammad Ahmed mohammad.ahmed@alliancetg.com;

Subject: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

Secured by Check Point

Hi Yazmeen and Mohammad, a few things:

After speaking with Mohammad I understand that the full scan 8260D run for the MW-17B sample had ~11ppm of TCE and high concs of other VOCs as well so you won't be able to run SIM on it – I understand the limitations and have passed that update on to the team so that is fine. There should also be SIM samples collected for 2 more samples - MW-18B and MW-19B so please let me know if your standard 8260 run shows similar concentrations on those as well. Note that these 3 samples are in a completely different location from the rest of the samples and their concentrations shouldn't necessarily represent the levels we will see for other samples – I understand if you have to dilute these high-conc samples I just don't want to over-dilute other samples unnecessarily.

Also, if you don't end up running any of the 3 SFAM-SIM samples then we have no need for that SIM equipment blank to be analyzed either so you can cancel that unless MW-18B or MW-19B turn out to be low enough to be able to be run by SIM in which case I would want the SIM EB.

Finally, for the soil samples we are collecting next week the client decided today that we should also collect for SPLP silver and place it on hold pending the total silver results – I believe you sent 8oz jars for the total silver so that should be plenty to cover the initial silver analysis and then still have enough for SPLP Silver if we need to run it right? Or do you prefer a completely separate jar for the SPLP Ag?

John Ynfante
Jacobs
Chemist
281-414-1719 mobile
John.Ynfante@jacobs.com
www.jacobs.com

2

Q1711 **52 of 56**

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

QA Control Code: A2070148

Q1711 54 of 56

Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: Q1711

JACO05

Order Date: 4/3/2025 10:00:00 AM

Project Mgr:

Client Name: JACOBS Engineering Grou

Project Name: Former Schlumberger STC

Report Type: Level 4

Client Contact: John Ynfante

Receive DateTime: 4/2/2025 6:25:00 PM

EDD Type: CH2MHILL

Invoice Name: JACOBS Engineering Grou

Purchase Order:

Hard Copy Date:

Invoice Contact: John Ynfante

Date Signoff:

LAB ID	CLIENT ID	MATRIX SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1711-01	MW-18B-56-040225	Water 04/02/202	25 12:35						
				VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-02	Q1711-01MS	Water 04/02/202	25 12:35						
Q1711-03	Q1711-01MSD	Water 04/02/202	IE 40.05	VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-03	QT/TI-0TIMOD	Water 04/02/202	25 12:35	VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-04	MW-17B-55-040225	Water 04/02/202	5 15:35			-	2 340. Jujo		
				VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-05	MW-18B-56-040225-SIM	Water 04/02/202	5 12:3 5						
				VOC TRACE SFAM		SFAM_Trace	2 Bus. Days		
Q1711-06	MW-17B-56-040225-SIM	Water 04/02/202	5 15:35	V00 TD105 05111				YG	25
Q1711-07	RMW-05B-89-040225	Water 04/02/202	5 16:05	VOC-TRACE-SFAM		SFAM_Trace	2 Bus. Days	04/04/202	25
		77410. 0 1102,202		VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-08	EB01-040225	Water 04/02/202	5 15:50	•			•		
Q1711				Page 1 of 2 55 of 56					

Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: Q1711

Invoice Contact: John Ynfante

JACO05

Order Date: 4/3/2025 10:00:00 AM

Project Mgr:

Client Name: JACOBS Engineering Grou

Project Name: Former Schlumberger STC

Report Type: Level 4

Client Contact: John Ynfante

Receive DateTime: 4/2/2025 6:25:00 PM

EDD Type: CH2MHILL

Invoice Name: JACOBS Engineering Grou

Purchase Order:

Hard Copy Date:

Date Signoff:

LAB ID	CLIENT ID	MATRIX SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
				VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-09	EB01-040225-SIM	Water 04/02/2025	15:50						
				VOC-TRACE-SFAM		SFAM_Trace	2 Bus. Days	YG	
Q1711-10	TB01-040225	Water 04/02/2025	16:00					04/04	1/2025
				VOCMS Group3		8260-Low	2 Bus. Days		

Relinguished By:

Date / Time : 4.3.25

Received By:

Date / Time:

Storage Area: VOA Refridgerator Room

Page 2 of 2 56 of 56