

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS SEMI-VOLATILE ORGANICS

PROJECT NAME : FORMER SCHLUMBERGER STC PTC SITE D3868221

JACOBS ENGINEERING GROUP, INC.

412 Mt. Kemble Ave

Downtown Building

Morristown, NJ - 07960

Phone No: 9732670555

ORDER ID : Q1711 ATTENTION : John Ynfante

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	5
2.1) VOCMS Group3- Case Narrative	5
2.2) SVOC-SIMGroup1- Case Narrative	7
2.3) Metals-MS- Case Narrative	9
2.4) Genchem- Case Narrative	11
3) Qualifier Page	13
4) QA Checklist	15
5) VOCMS Group3 Data	16
6) SVOC-SIMGroup1 Data	24
7) Metals-MS Data	31
8) Genchem Data	40
9) Shipping Document	48
9.1) CHAIN OF CUSTODY	49
9.2) ROC	51
9.3) Lab Certificate	54
9.4) Internal COC	55

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

1

Laboratory Name : <u>Alliance Technical Group LLC</u>	Client :	JACOBS Engineering Group, Inc.
Project Location : Princeton Junction, NJ	Project Number :	D3868221
Laboratory Sample ID(s) : Q1711	Sampling Date(s) :	4/02/2025

List DKQP Methods Used (e.g., 8260,8270, et Cetra) ,6020B,8260-Low,8270-Modified,9056A,SM2320 B,SM2540 C,SOP

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	V	Yes		No	
1A	Were the method specified handling, preservation, and holding time requirements met?	$\mathbf{\nabla}$	Yes		No	
1B	EPH Method: Was the EPH method conducted without significant modifications (see Section 11.3 of respective DKQ methods)		Yes		No	✓ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	\Box	Yes		No	
3	Were samples received at an appropriate temperature (4±2° C)?	Ø	Yes		No	D N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?		Yes	V	No	
5	a)Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	Ø	Yes		No	
	b)Were these reporting limits met?	\square	Yes		No	□ N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	V	Yes		No	
7	Are project-specific matrix spikes and/or laboratory duplicates included in this data set?	\square	Yes		No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Cover Page

- Order ID: Q1711
- Project ID : Former Schlumberger STC PTC Site D3868221
 - **Client :** JACOBS Engineering Group, Inc.

Lab Sample Number **Client Sample Number** Q1711-01 MW-18B-56-040225 Q1711-02 MW-18B-56-040225MS Q1711-03 MW-18B-56-040225MSD Q1711-04 MW-17B-55-040225 Q1711-07 RMW-05B-89-040225 Q1711-08 EB01-040225 Q1711-10 TB01-040225 Q1711-12 MW-17B-55-040225 Q1711-13 EB01-040225 Q1711-14 MW-18B-56-040225 Q1711-15 MW-18B-56-040225MS Q1711-16 MW-18B-56-040225MSD

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 4/14/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Chemtech Project # Q1711 Test Name: VOCMS Group3

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for VOCMS Group3.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of VOCMS Group3 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {Q1711-02MS} with File ID: VX045591.D recoveries met the requirements for all compounds except for cis-1,2-Dichloroethene[30%] this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The MSD {Q1711-03MSD} with File ID: VX045577.D recoveries met the acceptable requirements except for cis-1,2-Dichloroethene[50%] this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The RPD for {Q1711-03MSD} with File ID: VX045577.D met criteria except for cis-1,2-Dichloroethene[50%] this compound did not meet the NJDKQP criteria and in-house criteria due to difference in results of MS and MSD.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

Samples MW-18B-56-040225, MW-17B-55-040225 was diluted due to high concentrations of compound Trichloroethene.

E. Additional Comments:

Trip Blank was not provided with this set of samples.

For Sample #01 & 04 at the time of fax Sequence Processed with wrong method after further review it is corrected in Hardcopy therefore fax and Hardcopy data will not match.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site # D3868221 Project # N/A Chemtech Project # Q1711 Test Name: SVOC-SIMGroup1

A. Number of Samples and Date of Receipt:

10 Water samples were received on 04/02/2025.

3 Water samples were received on 04/03/2025.

2 Water samples were received on 04/03/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for SVOC-SIMGroup1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_N using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOC-SIMGroup1 was based on method 8270-Modified and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {Q1711-02MS} with File ID: BN036834.D recoveries met the requirements for all compounds except for 1,4-Dioxane[-98%], this compound did not meet the NJDKQP criteria and in-house criteria, due to matrix interference no corrective action was taken.

The MSD {Q1711-03MSD} with File ID: BN036835.D recoveries met the acceptable requirements except for 1,4-Dioxane[-73%], this compound did not meet the NJDKQP criteria and in-house criteria, due to matrix interference no corrective action was taken.

The RPD for {Q1711-03MSD} with File ID: BN036835.D met criteria except for 1,4-Dioxane[29%], this compound did not meet the NJDKQP criteria and in-house criteria but due to difference in results of MS and MSD.

The Blank Spike met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration File ID BN036817.D met the requirements except for Fluoranthene-d10, The failure compound not associated with the client parameters list, therefore no corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.3

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Chemtech Project # Q1711 Test Name: Metals Group4,Dissolved ICP-Group2

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for Metals Group4, Dissolved ICP-Group2.

C. Analytical Techniques:

The analysis of Dissolved ICP-Group2, Metals Group4 was based on method 6020B and digestion based on method 3010 (waters).

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (MW-18B-56-040225DUP) analysis met criteria for all samples except for Manganese due to sample matrix interference.

The Matrix Spike (MW-18B-56-040225MS) analysis met criteria for all samples except for Arsenic and Potassium due to Chemical Interference during Digestion Process. The Matrix Spike Duplicate (MW-18B-56-040225MSD) analysis met criteria for all samples except for Arsenic due to Chemical Interference during Digestion Process. The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

Sample Q1711-01, Q1711-04, Q1711-08 were analyze as Total Metal and Sample Q1711-12, Q1711-13, Q1711-14 were analyze as Dissolved Metal.
Collision cell is being used to remove potential interferences. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

24

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Chemtech Project # Q1711 Test Name: Alkalinity,TDS,Anions Group1

A. Number of Samples and Date of Receipt:

12 Water samples were received on 04/02/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Metals Group4, SVOC-SIMGroup1, TDS, VOC-TRACE-SFAM and VOCMS Group3. This data package contains results for Alkalinity, TDS, Anions Group1.

C. Analytical Techniques:

The analysis of Anions Group1 was based on method 9056A, The analysis of Alkalinity was based on method SM2320 B and The analysis of TDS was based on method SM2540 C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Sample MW-18B-56-040225 was diluted due to high concentrations for Chloride & Sample MW-17B-55-040225 was diluted due to high concentrations for Chloride.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike (MW-18B-56-040225MS) analysis met criteria for all samples except for Chloride due to matrix interference.

The Matrix Spike Duplicate (MW-18B-56-040225MSD) analysis met criteria for all samples except for due to matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

Signature_____

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).				
U	Indicates the analyte was analyzed for, but not detected.				
ND	Indicates the analyte was analyzed for, but not detected				
Ε	Indicates the reported value is estimated because of the presence of interference				
Μ	Indicates Duplicate injection precision not met.				
Ν	Indicates the spiked sample recovery is not within control limits.				
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).				
*	Indicates that the duplicate analysis is not within control limits.				
+	Indicates the correlation coefficient for the MSA is less than 0.995.				
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.				
M OR	 Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi – Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis. 				
Q	Indicates the LCS did not meet the control limits requirements				
Н	Sample Analysis Out Of Hold Time				

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q1711

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u>✓</u>
Is the chain of custody signed and complete	<u>✓</u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u>✓</u>
Collect information for each project id from server. Were all requirements followed	<u>✓</u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u>✓</u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sheet SW-846

 SDG No.:
 Q1711

 Client:
 JACOBS Engineering Group, Inc.

Sample ID	Client ID Ma	atrix Parameter	Concentration	C MDL	RDL	Units
Client ID:	MW-18B-56-040225					
Q1711-01	MW-18B-56-04022 Water	Vinyl Chloride	47.7	2.60	10.0	ug/L
Q1711-01	MW-18B-56-04022 Water	1,1-Dichloroethene	13.0	2.30	10.0	ug/L
Q1711-01	MW-18B-56-04022 Water	cis-1,2-Dichloroethene	850	1.90	10.0	ug/L
Q1711-01	MW-18B-56-04022 Water	Trichloroethene	370	0.93	10.0	ug/L
		Total Voc :	1280			
		Total Concentration:	1280			
Client ID:	MW-17B-55-040225					
Q1711-04	MW-17B-55-04022 Water	cis-1,2-Dichloroethene	2200	19.0	100	ug/L
Q1711-04	MW-17B-55-04022 Water	Trichloroethene	11400	9.30	100	ug/L
Q1711-04	MW-17B-55-04022 Water	Tetrachloroethene	110	23.0	100	ug/L
		Total Voc :	13700			
		Total Concentration:	13700			
Client ID:	RMW-05B-89-040225					
Q1711-07	RMW-05B-89-0402 Water	1,1-Dichloroethane	1.60	0.23	1.00	ug/L
Q1711-07	RMW-05B-89-0402 Water	cis-1,2-Dichloroethene	4.00	0.19	1.00	ug/L
		Total Voc :	5.60			
		Total Concentration:	5.60			

5

A B

D

A B C D

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-18B-56-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-01	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX045575.D	10			04/03/25 16:47	VX040325	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	47.7		2.60	10.0	ug/L
75-35-4	1,1-Dichloroethene	13.0		2.30	10.0	ug/L
75-34-3	1,1-Dichloroethane	2.30	U	2.30	10.0	ug/L
156-59-2	cis-1,2-Dichloroethene	850		1.90	10.0	ug/L
71-55-6	1,1,1-Trichloroethane	2.00	U	2.00	10.0	ug/L
71-43-2	Benzene	1.50	U	1.50	10.0	ug/L
107-06-2	1,2-Dichloroethane	2.20	U	2.20	10.0	ug/L
79-01-6	Trichloroethene	370		0.93	10.0	ug/L
79-00-5	1,1,2-Trichloroethane	2.10	U	2.10	10.0	ug/L
127-18-4	Tetrachloroethene	2.30	U	2.30	10.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.4		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	51.5		70 (75) - 130 (124)	103%	SPK: 50
2037-26-5	Toluene-d8	51.2		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.1		70 (77) - 130 (121)	98%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	64100	5.55			
540-36-3	1,4-Difluorobenzene	121000	6.757			
3114-55-4	Chlorobenzene-d5	112000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	43800	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

B C

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-17B-55-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-04	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX045569.D	100			04/03/25 14:27	VX040325	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	26.0	U	26.0	100	ug/L
75-35-4	1,1-Dichloroethene	23.0	U	23.0	100	ug/L
75-34-3	1,1-Dichloroethane	23.0	U	23.0	100	ug/L
156-59-2	cis-1,2-Dichloroethene	2200		19.0	100	ug/L
71-55-6	1,1,1-Trichloroethane	20.0	U	20.0	100	ug/L
71-43-2	Benzene	15.0	U	15.0	100	ug/L
107-06-2	1,2-Dichloroethane	22.0	U	22.0	100	ug/L
79-01-6	Trichloroethene	11400		9.30	100	ug/L
79-00-5	1,1,2-Trichloroethane	21.0	U	21.0	100	ug/L
127-18-4	Tetrachloroethene	110		23.0	100	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.8		70 (74) - 130 (125)	110%	SPK: 50
1868-53-7	Dibromofluoromethane	52.2		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	50.7		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	46.9		70 (77) - 130 (121)	94%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	63200	5.55			
540-36-3	1,4-Difluorobenzene	123000	6.757			
3114-55-4	Chlorobenzene-d5	111000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	41800	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

B

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	RMW-05B-89-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-07	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX045568.D	1			04/03/25 14:04	VX040325	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	1.60		0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	4.00		0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.2		70 (74) - 130 (125)	110%	SPK: 50
1868-53-7	Dibromofluoromethane	52.0		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	50.6		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.6		70 (77) - 130 (121)	101%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	63800	5.55			
540-36-3	1,4-Difluorobenzene	125000	6.757			
3114-55-4	Chlorobenzene-d5	116000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	47000	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	EB01-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-08	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
1			04/03/25 15:37	VX040325	
Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
Vinyl Chloride	0.26	U	0.26	1.00	ug/L
1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
Benzene	0.15	U	0.15	1.00	ug/L
1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
Trichloroethene	0.090	U	0.090	1.00	ug/L
1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
Tetrachloroethene	0.23	U	0.23	1.00	ug/L
1,2-Dichloroethane-d4	53.4		70 (74) - 130 (125)	107%	SPK: 50
Dibromofluoromethane	51.0		70 (75) - 130 (124)	102%	SPK: 50
Toluene-d8	50.9		70 (86) - 130 (113)	102%	SPK: 50
4-Bromofluorobenzene	49.8		70 (77) - 130 (121)	100%	SPK: 50
DARDS					
Pentafluorobenzene	63300	5.543			
1,4-Difluorobenzene	123000	6.757			
Chlorobenzene-d5	114000	10.049			
1,4-Dichlorobenzene-d4	46600	12.024			
	Dilution: 1 Parameter Vinyl Chloride 1,1-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Difluorobenzene-d5 1,4-Dichlorobenzene-d4	Dilution:Prep Date1ParameterConc.Vinyl Chloride0.261,1-Dichloroethene0.231,1-Dichloroethane0.23cis-1,2-Dichloroethane0.20Benzene0.151,2-Dichloroethane0.22Trichloroethane0.231,2-Dichloroethane0.20Benzene0.151,2-Dichloroethane0.22Trichloroethane0.21Tetrachloroethene0.231,2-Dichloroethane0.231,2-Dichloroethane53.4Dibromofluoromethane51.0Toluene-d850.94-Bromofluorobenzene49.8DARDSPentafluorobenzenePentafluorobenzene123000Chlorobenzene-d51140001,4-Dichlorobenzene-d446600	Dilution:Prep Date1ParameterConc.QualifierVinyl Chloride0.26U1,1-Dichloroethene0.23U1,1-Dichloroethane0.23U1,1-Dichloroethane0.23Ucis-1,2-Dichloroethane0.20UBenzene0.15U1,2-Dichloroethane0.22UTrichloroethane0.22UTrichloroethane0.21U1,2-Dichloroethane0.23U1,2-Dichloroethane0.23U1,2-Dichloroethane0.23U1,2-Dichloroethane0.23U1,2-Dichloroethane0.23U1,2-Dichloroethane53.4Dibromofluoromethane51.0Toluene-d850.94-Bromofluorobenzene49.8DARDSPentafluorobenzenePentafluorobenzene1230006.757Chlorobenzene-d511400010.0491,4-Dichlorobenzene-d44660012.024	Dilution: Prep Date Date Analyzed 1 04/03/25 15:37 Parameter Conc. Qualifier MDL Vinyl Chloride 0.26 U 0.26 1,1-Dichloroethene 0.23 U 0.23 1,1-Dichloroethene 0.23 U 0.23 1,1-Dichloroethane 0.20 U 0.20 Benzene 0.15 U 0.22 Trichloroethane 0.22 U 0.22 Trichloroethane 0.22 U 0.22 Trichloroethane 0.21 U 0.21 1,2-Dichloroethane 0.23 U 0.23 1,2-Dichloroethane 0.21 U 0.21 Tetrachloroethane 51.0 70 (74) - 130 (125) Dibromofluoromethane 51.0 70 (74) - 130 (121) 0 24 OARDS 70 (77) - 130 (121) 0 Pentafluorobenzene 4300 5.543 1,4-Difluorobenzene-d5 1,4-Dichlorobenzene-d5 114000 10.049	Dilution: Prep Date Date Analyzed Prep Batch ID 1 04/03/25 15:37 VX040325 Parameter Conc. Qualifier MDL LOQ/CRQL Vinyl Chloride 0.26 U 0.23 1.00 1,1-Dichloroethene 0.23 U 0.23 1.00 1,1-Dichloroethane 0.23 U 0.23 1.00 cis-1,2-Dichloroethane 0.20 U 0.20 1.00 l,1-Trichloroethane 0.20 U 0.20 1.00 l,2-Dichloroethane 0.22 U 0.22 1.00 Trichloroethane 0.21 U 0.21 1.00 1,1-2-Trichloroethane 0.23 U 0.21 1.00 Tetrachloroethane 0.23 U 0.23 1.00 1,2-Dichloroethane 0.23 U 0.21 1.00 Tetrachloroethane 51.0 70 (74) - 130 (125) 107% Dibromofluoromethane 51.0 70 (75) - 130 (121) 102%

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

B C

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	TB01-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-10	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX045571.D	1			04/03/25 15:14	VX040325	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.9		70 (74) - 130 (125)	108%	SPK: 50
1868-53-7	Dibromofluoromethane	52.0		70 (75) - 130 (124)	104%	SPK: 50
2037-26-5	Toluene-d8	51.0		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.0		70 (77) - 130 (121)	102%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	66900	5.544			
540-36-3	1,4-Difluorobenzene	129000	6.757			
3114-55-4	Chlorobenzene-d5	122000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	49400	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

С

A

С

D

5

LAB CHRONICLE

OrderID: Client: Contact:	Q1711 JACOBS Engineering Group, Ir John Ynfante	IC.		OrderDate: Project: Location:	4/3/2025 10:00: Former Schlum I41,L21,VOA Re	:00 AM berger STC P1 ef. #3 Water	C Site D38682	21
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-04	MW-17B-55-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-07	RMW-05B-89-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-08	EB01-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	
Q1711-10	TB01-040225	Water			04/02/25			04/02/25
			VOCMS Group3	8260-Low			04/03/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

A B C

D

6

Hit Summary Sheet SW-846

SDG No.:	Q1711						
Client:	JACOBS Engineering C	Broup, Inc.					
Sample ID	Client ID		Parameter	Concentration C	MDL	RDL	Units
Client ID :	MW-18B-56-040225						
Q1711-01	MW-18B-56-040225	WATER	1,4-Dioxane	4.000	0.07	0.21	ug/L
			Total Svoc :	4	.00		
			Total Concentration:	4	.00		
Client ID :	MW-17B-55-040225						
Q1711-04	MW-17B-55-040225	WATER	1,4-Dioxane	1.800	0.07	0.2	ug/L
			Total Svoc :	1	.80		
			Total Concentration:	1	.80		
Client ID :	RMW-05B-89-040225						
Q1711-07	RMW-05B-89-040225	WATER	1,4-Dioxane	0.200	0.07	0.2	ug/L
			Total Svoc :	0	.20		
			Total Concentration:	C	.20		
Client ID :	EB01-040225						
Q1711-08	EB01-040225	WATER	1,4-Dioxane	0.120 J	0.07	0.21	ug/L
			Total Svoc :	0	.12		
			Total Concentration:	C	.12		

A B C D

0
Ο

					Repor	t of Ar	aly	ysis				
Client:	JA	JACOBS Engineering Group, Inc.							Date Collected:	(04/02/25	
Project:	Fo	rmer S	Schlumber	ger STC	PTC Site #	D386822	1		Date Received:	(04/02/25	
Client Sample	ID: M	W-18E	8-56-0402	25					SDG No.:	(Q1711	
Lab Sample ID): Q1	711-0	1						Matrix:	V	Water	
Analytical Met	hod [.] SV	V8270	ESIM						% Solid [.]	()	
Sample Wt/Vol	l· 07	0	Unite.	mI					Final Vol:	1	1000	υĪ
	.1.	0	Units.						Tindi vol.	1		uL
Soll Aliquot Vo	01:			uL					lest:	2	SVOC-SI	MGroup1
Extraction Typ	e :				Decar	nted :	Ν		Level :	I	LOW	
Injection Volur	ne :			G	PC Factor :	1.0			GPC Cleanup :	Ν]	PH :
Prep Method :												
File ID/Qc Batch	n: Dilu	tion:			Prep Date			Date A	nalyzed	Prep	Batch ID)
BN036833.D	1				04/03/25 1	3:10		04/03/2	25 21:27	PB1	67450	
CAS Number	Parameter				Conc.	Qualif	ïer	MDL		LOQ /	CRQL	Units
123-91-1	1,4-Dioxane				4.00			0.070		0.21		ug/L
SURROGATES												
7297-45-2	2-Methylnap	nthale	ne-d10		0.35			30 (20) - 15	50 (139)	88%	,	SPK: 0.4
93951-69-0	Fluoranthene	-d10			0.43			30 (30) - 15	50 (150)	108%	%	SPK: 0.4
4165-60-0	Nitrobenzene	-d5			0.35			30 (27) - 13	30 (154)	87%	1	SPK: 0.4
321-60-8	2-Fluorobiph	enyl			0.40			30 (25) - 13	30 (149)	101%	%	SPK: 0.4
1718-51-0	Terphenyl-d1	4			0.47			30 (54) - 13	30 (175)	116%	V ₀	SPK: 0.4
INTERNAL STA	NDARDS											
INTERNAL STA 3855-82-1	NDARDS 1,4-Dichlorol	oenzei	ne-d4		1920	7.69	5					
INTERNAL STA 3855-82-1 1146-65-2	NDARDS 1,4-Dichlorol Naphthalene-	oenzei d8	ne-d4		1920 4920	7.69 10.4	5 77					
INTERNAL STA 3855-82-1 1146-65-2 15067-26-2	NDARDS 1,4-Dichlorol Naphthalene- Acenaphthen	oenzei d8 e-d10	ne-d4		1920 4920 2870	7.69 10.4 14.3	5 77 34					
INTERNAL STA 3855-82-1 1146-65-2 15067-26-2 1517-22-2	NDARDS 1,4-Dichlorol Naphthalene- Acenaphthen Phenanthrene	oenzer d8 e-d10 e-d10	ne-d4		1920 4920 2870 6160	7.69 10.4 14.3 17.0	5 77 34 74					
INTERNAL STA 3855-82-1 1146-65-2 15067-26-2 1517-22-2 1719-03-5	NDARDS 1,4-Dichlorol Naphthalene- Acenaphthen Phenanthrene Chrysene-d12	oenzer d8 e-d10 e-d10 2	ne-d4		1920 4920 2870 6160 5430	7.69 10.4 14.3 17.0 21.2	5 77 34 74 68					

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

h
9

			Repor	rt of Anal	ysis			
Client:	JACOB	S Engineeri	ng Group, Inc.		D	Date Collected:	04/02/25	
Project:	Former	Schlumberg	ger STC PTC Site #	D3868221	D	ate Received:	04/02/25	
Client Sample	ID: MW-17	B-55-04022	25		S	DG No.:	Q1711	
Lab Sample ID): 01711-()4			Ν	fatrix:	Water	
Analytical Met	hod: SW827(FSIM			0/	Solid	0	
Sampla W/t/Wal	. 000	Linita	μ		E	inal Val	1000	ч
Sample wt/vol	. 990	Units:	mL		Г	inal vol:	1000	uL
Soil Aliquot Vo	ol:		uL		Т	est:	SVOC-SI	MGroup1
Extraction Type	e :		Decar	nted : N	L	evel :	LOW	
Injection Volun	ne :		GPC Factor :	1.0	G	PC Cleanup :	Ν	PH :
Prep Method :								
File ID/Qc Batch	n: Dilution:		Prep Date		Date Anal	lyzed	Prep Batch II	D
BN036830.D	1		04/03/25 1	3:10	04/03/25	19:38	PB167450	
CAS Number	Parameter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TADORTO								
TARGETS 123-91-1	1,4-Dioxane		1.80		0.070		0.20	ug/L
TARGETS 123-91-1 SUPPOCATES	1,4-Dioxane		1.80		0.070		0.20	ug/L
TARGETS 123-91-1 SURROGATES 7297-45-2	1,4-Dioxane 2-Methylnaphthalo	ene-d10	1.80 0.33		0.070 30 (20) - 150	(139)	0.20 83%	ug/L SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10	ene-d10	1.80 0.33 0.42		0.070 30 (20) - 150 30 (30) - 150	(139) (150)	0.20 83% 105%	ug/L SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0	1,4-Dioxane 2-Methylnaphthald Fluoranthene-d10 Nitrobenzene-d5	ene-d10	1.80 0.33 0.42 0.31		0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130	(139) (150) (154)	0.20 83% 105% 77%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl	ene-d10	1.80 0.33 0.42 0.31 0.39		0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130	(139) (150) (154) (149)	0.20 83% 105% 77% 98%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0	1,4-Dioxane 2-Methylnaphthald Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	ene-d10	1.80 0.33 0.42 0.31 0.39 0.42		0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	 (139) (150) (154) (149) (175) 	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAI	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS	ene-d10	1.80 0.33 0.42 0.31 0.39 0.42		0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	 (139) (150) (154) (149) (175) 	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenze	ene-d10 ene-d4	1.80 0.33 0.42 0.31 0.39 0.42 1750	7.695	0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	(139) (150) (154) (149) (175)	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAT 3855-82-1 1146-65-2	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenze Naphthalene-d8	ene-d10 ene-d4	1.80 0.33 0.42 0.31 0.39 0.42 1750 4470	7.695 10.477	0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	 (139) (150) (154) (149) (175) 	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2 15067-26-2	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenze Naphthalene-d8 Acenaphthene-d10	ene-d10 ene-d4	1.80 0.33 0.42 0.31 0.39 0.42 1750 4470 2430	7.695 10.477 14.334	0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	(139) (150) (154) (149) (175)	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2 15067-26-2 1517-22-2	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenze Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10	ene-d10 ene-d4	1.80 0.33 0.42 0.31 0.39 0.42 1750 4470 2430 5240	7.695 10.477 14.334 17.086	0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	 (139) (150) (154) (149) (175) 	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2 15067-26-2 1517-22-2 1719-03-5	1,4-Dioxane 2-Methylnaphthale Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenze Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12	ene-d10 ene-d4	1.80 0.33 0.42 0.31 0.39 0.42 1750 4470 2430 5240 4580	7.695 10.477 14.334 17.086 21.268	0.070 30 (20) - 150 30 (30) - 150 30 (27) - 130 30 (25) - 130 30 (54) - 130	 (139) (150) (154) (149) (175) 	0.20 83% 105% 77% 98% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

Q1711

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

2-Fluorobiphenvl

1,4-Dichlorobenzene-d4

Terphenyl-d14

Naphthalene-d8

Acenaphthene-d10

Phenanthrene-d10

Chrysene-d12

Perylene-d12

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch:

BN036831.D

CAS Number

TARGETS 123-91-1

SURROGATES 7297-45-2

93951-69-0

4165-60-0

321-60-8

1718-51-0

3855-82-1

1146-65-2

15067-26-2

1517-22-2

1719-03-5

1520-96-3

INTERNAL STANDARDS

Report of Analysis

		1		•				
	IACOBS Engin	eering Group Inc			Date Collected	04/0	2/25	ו
	Former Schlum	bargar STC PTC Sita	# 17386877	1	Date Deceived:	04/0	2/25	
	Former Semun	beiger STCTTC Site	# D380822	.1	Date Received.	04/0	2123	1.0
:	RMW-05B-89-	040225			SDG No.:	Q17	11	
	Q1711-07				Matrix:	Wate	er	
d:	SW8270ESIM				% Solid:	0		
	990 Uni	ts: mL			Final Vol:	1000) uL	
		uL			Test:	SVC	C-SIMGroup1	
		Dec	anted :	Ν	Level :	LOW	V	
:		GPC Factor	: 1.0		GPC Cleanup :	Ν	PH :	
								J
	Dilution:	Prep Dat	e		Date Analyzed	Prep Ba	tch ID	ר
	1	04/03/25	13:10		04/03/25 20:14	PB1674	50	J
Param	ieter	Conc.	Qualif	ïer	MDL	LOQ / CR	QL Units	
1,4-Di	oxane	0.20		0	.070	0.20	ug/L	
2-Met	hylnaphthalene-d1	0 0.34		3	0 (20) - 150 (139)	86%	SPK: 0.4	
Fluora	nthene-d10	0.44		3	0 (30) - 150 (150)	109%	SPK: 0.4	
Nitrob	enzene-d5	0.34		3	0 (27) - 130 (154)	84%	SPK: 0.4	

30 (25) - 130 (149)

30 (54) - 130 (175)

100%

96%

SPK: 0.4 SPK: 0.4

U = Not Detected	ed
------------------	----

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

0.40

0.38

1720

4310

2460

5130

5000

5310

7.695

10.477

14.334

17.074

21.268

23.51

Client:

Date Collected:

	_	
	 _	-

С

04/02/25	
04/02/25	
Q1711	
Water	
0	
1000 uL	
SVOC-SIMGroup1	
LOW	
рН ·	

Report of Analysis

JACOBS Engineering Group, Inc.

Project:	Former Schlu	mberger S	TC PTC Site #1	D3868221	Date Received:	04/02/25	
Client Sample II	D: EB01-040225	5			SDG No.:	Q1711	
Lab Sample ID:	Q1711-08				Matrix:	Water	
Analytical Meth	od: SW8270ESIN	Л			% Solid:	0	
Sample Wt/Vol:	960 U	nits: ml	-		Final Vol:	1000	uL
Soil Aliquot Vol			_		Test:	SVOC SI	AGroup1
Son Anquot voi		uL			Test.	5000-511	woroup1
Extraction Type	:		Decan	ited : N	Level :	LOW	
Injection Volum	e :		GPC Factor :	1.0	GPC Cleanup :	N I	PH :
Prep Method :							
File ID/Qc Batch:	Dilution:		Prep Date		Date Analyzed	Prep Batch ID)
BN036832.D 1			04/03/25 13	3:10	04/03/25 20:51	PB167450	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS	14.0		0.10	T	0.050	0.01	1
123-91-1	1,4-Dioxane		0.12	J	0.070	0.21	ug/L
SURROGATES							
7297-45-2	2-Methylnaphthalene-d	10	0.34		30 (20) - 150 (139)	84%	SPK: 0.4
93951-69-0	Fluoranthene-d10		0.44		30 (30) - 150 (150)	109%	SPK: 0.4
4165-60-0	Nitrobenzene-d5		0.32		30 (27) - 130 (154)	79%	SPK: 0.4
321-60-8	2-Fluorobiphenyl		0.37		30 (25) - 130 (149)	93%	SPK: 0.4
1718-51-0	Terphenyl-d14		0.41		30 (54) - 130 (175)	102%	SPK: 0.4
INTERNAL STAN	DARDS						
3855-82-1	1,4-Dichlorobenzene-d	4	2130	7.695			
1146-65-2	Naphthalene-d8		5120	10.477			
15067-26-2	Acenaphthene-d10		3000	14.334			
1517-22-2	Phenanthrene-d10		6320	17.086			
1719-03-5	Chrysene-d12		5670	21.268			
1520-96-3	Pervlene-d12		5200	23 513			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: Client: Contact:	Q1711 JACOBS Engineering Group, Ir John Ynfante	10.		OrderDate: Project: Location:	4/3/2025 10:00 Former Schlum I41,L21,VOA R	:00 AM Iberger STC P ⁻ ef. #3 Water	TC Site # D3868	3221
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-04	MW-17B-55-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-07	RMW-05B-89-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	
Q1711-08	EB01-040225	Water			04/02/25			04/02/25
			SVOC-SIMGroup1	8270-Modified		04/03/25	04/03/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922 7

B C

D

Hit Summary Sheet SW-846

SDG No.:	Q1711			Order ID:		Q1711				
Client:	JACOBS Engineering Group		Project ID):	Former Schlumberger STC PTC Site D386					
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units		
Client ID :	MW-18B-56-040225									
Q1711-01	MW-18B-56-040225	Water	Aluminum	1470		1.94	20.0	ug/L		
Q1711-01	MW-18B-56-040225	Water	Antimony	1.67	J	0.11	2.00	ug/L		
Q1711-01	MW-18B-56-040225	Water	Arsenic	0.85	J	0.089	1.00	ug/L		
Q1711-01	MW-18B-56-040225	Water	Barium	119		0.21	10.0	ug/L		
Q1711-01	MW-18B-56-040225	Water	Chromium	0.58	J	0.21	2.00	ug/L		
Q1711-01	MW-18B-56-040225	Water	Iron	560		7.81	50.0	ug/L		
Q1711-01	MW-18B-56-040225	Water	Magnesium	315	J	19.5	500	ug/L		
Q1711-01	MW-18B-56-040225	Water	Manganese	4.19		0.43	1.00	ug/L		
Q1711-01	MW-18B-56-040225	Water	Potassium	23000		36.4	500	ug/L		
Q1711-01	MW-18B-56-040225	Water	Sodium	20000		128	500	ug/L		
Client ID :	MW-17B-55-040225									
Q1711-04	MW-17B-55-040225	Water	Aluminum	64.1		1.94	20.0	ug/L		
Q1711-04	MW-17B-55-040225	Water	Antimony	0.31	J	0.11	2.00	ug/L		
Q1711-04	MW-17B-55-040225	Water	Arsenic	0.83	J	0.089	1.00	ug/L		
Q1711-04	MW-17B-55-040225	Water	Barium	388		0.21	10.0	ug/L		
Q1711-04	MW-17B-55-040225	Water	Iron	5600		7.81	50.0	ug/L		
Q1711-04	MW-17B-55-040225	Water	Magnesium	7420		19.5	500	ug/L		
Q1711-04	MW-17B-55-040225	Water	Manganese	450		0.43	1.00	ug/L		
Q1711-04	MW-17B-55-040225	Water	Potassium	7500		36.4	500	ug/L		
Q1711-04	MW-17B-55-040225	Water	Sodium	6460		128	500	ug/L		
Client ID :	EB01-040225									
Q1711-08	EB01-040225	Water	Aluminum	6.98	J	1.94	20.0	ug/L		
Q1711-08	EB01-040225	Water	Lead	0.44	J	0.21	1.00	ug/L		
Client ID :	MW-17B-55-040225									
Q1711-12	MW-17B-55-040225	Water	Iron	5190		7.81	50.0	ug/L		
Client ID :	EB01-040225									
Q1711-13	EB01-040225	Water	Iron	11.9	J	7.81	50.0	ug/L		
Client ID :	MW-18B-56-040225									
Q1711-14	MW-18B-56-040225	Water	Iron	40.3	J	7.81	50.0	ug/L		

A B C D

B C D

Report of Analysis

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-18B-56-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-01	Matrix:	Water
Level (low/med):	low	% Solid:	0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	1470		1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-36-0	Antimony	1.67	J	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-38-2	Arsenic	0.85	JN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-39-3	Barium	119		1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-47-3	Chromium	0.58	J	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-89-6	Iron	560		1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-92-1	Lead	0.21	U	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-95-4	Magnesium	315	J	1	19.5	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7439-96-5	Manganese	4.19	*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-09-7	Potassium	23000	Ν	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A
7440-23-5	Sodium	20000		1	128	500	ug/L	04/04/25 12:05	04/04/25 15:46	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:				
Color After:	Colorless	Clarity After:	Clear	Artifacts:				
Comments:	Metals Group4							
U = Not Detec	eted			J = Estimated Value				
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank				
MDL = Method	od Detection Limit			* = indicates the duplicate analysis is not within control limits.				
LOD = Limit	of Detection			E = Indicates the reported value is estimated because of the presence				
D = Dilution				of interference.				
Q = indicates	LCS control criteria did not	meet requirements	OR = Over Range					
				N =Spiked sample recovery not within control limits				
24744								

33 of 56

B C D

Report of Analysis

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-17B-55-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-04	Matrix:	Water
Level (low/med):	low	% Solid:	0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	64.1		1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-36-0	Antimony	0.31	J	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-38-2	Arsenic	0.83	JN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-39-3	Barium	388		1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-47-3	Chromium	0.21	U	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-89-6	Iron	5600		1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-92-1	Lead	0.21	U	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-95-4	Magnesium	7420		1	19.5	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7439-96-5	Manganese	450	*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-09-7	Potassium	7500	Ν	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A
7440-23-5	Sodium	6460		1	128	500	ug/L	04/04/25 12:05	04/04/25 16:18	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:			
Color After:	Colorless	Clarity After:	Clear	Artifacts:			
Comments:	Metals Group4						
U = Not Detected J = Estimated Value							
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank			
MDL = Method	od Detection Limit			* = indicates the duplicate analysis is not within control limits.			
LOD = Limit	of Detection			E = Indicates the reported value is estimated because of the presence			
D = Dilution				of interference.			
Q = indicates	LCS control criteria did not	meet requirements	OR = Over Range				
				N =Spiked sample recovery not within control limits			
24744							

34 of 56

B C D

Report of Analysis

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	EB01-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-08	Matrix:	Water
Level (low/med):	low	% Solid:	0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	6.98	J	1	1.94	20.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-36-0	Antimony	0.11	U	1	0.11	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-38-2	Arsenic	0.089	UN	1	0.089	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-39-3	Barium	0.21	U	1	0.21	10.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-41-7	Beryllium	0.32	U	1	0.32	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-43-9	Cadmium	0.34	U	1	0.34	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-47-3	Chromium	0.21	U	1	0.21	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-50-8	Copper	0.30	U	1	0.30	2.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-89-6	Iron	7.81	U	1	7.81	50.0	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-92-1	Lead	0.44	J	1	0.21	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-95-4	Magnesium	19.5	U	1	19.5	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7439-96-5	Manganese	0.43	U^*	1	0.43	1.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-09-7	Potassium	36.4	UN	1	36.4	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7782-49-2	Selenium	2.90	U	1	2.90	5.00	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A
7440-23-5	Sodium	128	U	1	128	500	ug/L	04/04/25 12:05	04/04/25 16:21	SW6020	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	Metals Group4			
U = Not DetectLOQ = LimitMDL = MethoLOD = LimitD = Dilution	cted of Quantitation od Detection Limit of Detection			 J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference.
Q = indicates LCS control criteria did not meet requirements				OR = Over Range N = Spiked sample recovery not within control limits
Q1711			35 c	of 56

	Report of Analysis											
Client:		JACO	OBS Enginee	ring Gro	ıp, Inc.		Date Collected	Date Collected: 04/02/25			С	
Project:		Form	er Schlumbe	rger STC	PTC Site D3868221		Date Received:	Date Received: 04/02/25			D	
Client S	ample ID:	MW-	17B-55-0402	225		SDG No.:	Q17	Q1711				
Lab San	nple ID:	Q171	1-12				Matrix:	Wate	er			
Level (lo	ow/med):	low					% Solid:	0				
Cas	Parameter	Conc.	Qua. DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.	_	
7439-89-6	Iron	5190	1 '	7.81	50.0	ug/L	04/04/25 12:05	04/07/25 13:24	SW6020	3010A	-	

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	Dissolved Metals Group3			
U = Not Detec	ted			J = Estimated Value
LOQ = Limit o	of Quantitation			B = Analyte Found in Associated Method Blank
MDL = Metho	d Detection Limit			* = indicates the duplicate analysis is not within control limits.
LOD = Limit o	of Detection			E = Indicates the reported value is estimated because of the presence
D = Dilution				of interference.
Q = indicates I	LCS control criteria did not meet	requirements		OR = Over Range
				N =Spiked sample recovery not within control limits
24744			26 0	4 6 0

36 of 56

					Report of A	1141 y 515					
Client:		JAC	COBS Eng	gineering Grou	p, Inc.	Date Collected	1: 04/0	02/25		C	
Project:		For	mer Schlu	mberger STC	PTC Site D3868221	Date Received	: 04/0	02/25		D	
Client S	ient Sample ID: EB01-040225					SDG No.:	Q17	711		17	
Lab San	nple ID:	Q17	/11-13				Matrix:	Wat	ter		
Level (le	ow/med):	low					% Solid:	0			
Cas	Parameter	Conc.	Qua. 1	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.	
7439-89-6	Iron	11.9	I 1	7.81	50.0	11g/L	04/04/25 12:05	04/07/25 13.2	7 SW6020	3010A	-

Color Before:	Colorless	Clarity Before:	Clear	Texture:			
Color After:	Colorless	Clarity After:	Clear	Artifacts:			
Comments:	Dissolved Metals Group3						
U = Not Detec	ted		J = Estimated Value				
LOQ = Limit o	of Quantitation			B = Analyte Found in Associated Method Blank			
MDL = Metho	d Detection Limit			* = indicates the duplicate analysis is not within control limits.			
LOD = Limit o	of Detection			E = Indicates the reported value is estimated because of the presence			
D = Dilution				of interference.			
Q = indicates LCS control criteria did not meet requirements				OR = Over Range			
				N =Spiked sample recovery not within control limits			
71711			27 0	4 E C			

37 of 56

(
l	Client:		JAC	COBS Engi	neering Grou	ıp, Inc.	Date Collected	: 04/0	04/02/25			
l	Project:		For	mer Schlur	nberger STC	PTC Site D3868221	Date Received	: 04/0	2/25		D	
l	Client Sa	ample ID:	ID: MW-18B-56-040225						Q17	Q1711		
l	Lab Sam	ple ID:	Q1711-14					Matrix:	Wate	Water		
l	Level (lo	ow/med):	low					% Solid:	0			
C	Cas	Parameter	Conc.	Qua. D	F MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.	_
7	439-89-6	Iron	40.3	J 1	7.81	50.0	ug/L	04/04/25 12:05	04/07/25 13:30	SW6020	3010A	-

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	Dissolved Metals Group3			
U = Not Detec LOQ = Limit of MDL = Metho LOD = Limit of D = Dilution	ted of Quantitation d Detection Limit of Detection			J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference.
Q = indicates I	LCS control criteria did not meet i	requirements		N = Spiked sample recovery not within control limits
24744			20 -	4 5 0

38 of 56

LAB CHRONICLE

OrderID: Client: Contact:	Q1711 JACOBS Engineering Group, In John Ynfante	с.		OrderDate: Project: Location:	4/3/2025 10:00 Former Schlum I41,L21,VOA Re	00 AM berger STC P1 ef. #3 Water	C Site D38682	21
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	Water	Matala Casus 4	60200	04/02/25	04/04/25	04/04/25	04/02/25
Q1711-04	MW-17B-55-040225	Water	Metals Group4	6020B	04/02/25	04/04/25	04/04/25	04/02/25
Q1711-08	EB01-040225	Water	Metals Group4	6020B	04/02/25	04/04/25	04/04/25	04/02/25
Q1711-12	MW-17B-55-040225	Water	Disselved ICR Croup?	6020B	04/02/25	04/04/25	04/04/25	04/02/25
Q1711-13	EB01-040225	Water	Dissolved ICP-Group2	6020B	04/02/25	04/04/25	04/07/25	04/02/25
Q1711-14	MW-18B-56-040225	Water	Dissolved ICP-Group2	6020B	04/02/25	04/04/25	04/07/25	04/02/25

В

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25 12:35
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-18B-56-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-01	Matrix:	WATER
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	273		1	1.00	2.00	mg/L		04/03/25 13:36	SM 2320 B-11
Chloride	26.6	OR	1	0.19	0.60	mg/L		04/03/25 12:29	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 12:29	9056A
Sulfate	10.7		1	0.46	3.00	mg/L		04/03/25 12:29	9056A
TDS	257		1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments: The alkalinity to pH 4.28=273 mg CaCO3/L

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

в

^{* =} indicates the duplicate analysis is not within control limits.

Client:	JACOBS E	JACOBS Engineering Group, Inc.			Date Collected:	04/02/25	04/02/25 12:35	
Project:	Former Sch	Former Schlumberger STC PTC Site D3868221			Date Received: 04/02/			
Client Sample ID:	MW-18B-5	MW-18B-56-040225DL			SDG No.:	Q1711		
Lab Sample ID:	Q1711-01D	Q1711-01DL			Matrix:	WATER		
					% Solid:	0		
Parameter	Conc. Qua.	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Chloride	23.6 D	10 1.90	6.00	mg/L		04/03/25 14:59	9 9056A	

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25 15:35
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	MW-17B-55-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-04	Matrix:	WATER
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	91.4		1	1.00	2.00	mg/L		04/03/25 13:45	SM 2320 B-11
Chloride	20.1	OR	1	0.19	0.60	mg/L		04/03/25 13:55	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 13:55	9056A
Sulfate	4.50		1	0.46	3.00	mg/L		04/03/25 13:55	9056A
TDS	38.0		1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments: The alkalinity to pH 4.37=91.4 mg CaCO3/L

U = Not Detected	ł
------------------	---

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

8

В

Client:	JACOBS Er	JACOBS Engineering Group, Inc.			Date Collected:	04/02/25	04/02/25 15:35	
Project:	Former Schl	Former Schlumberger STC PTC Site D3868221			Date Received: 04/02/2			
Client Sample ID:	MW-17B-55	MW-17B-55-040225DL			SDG No.:	Q1711		
Lab Sample ID:	Q1711-04D	Q1711-04DL]	Matrix:	WATER		
					% Solid:	0		
Parameter	Conc. Qua.	DF MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Chloride	18.4 D	5 0.95	3.00	mg/L		04/03/25 15:21	1 9056A	

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

Client:	JACOBS Engineering Group, Inc.	Date Collected:	04/02/25 15:50
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	04/02/25
Client Sample ID:	EB01-040225	SDG No.:	Q1711
Lab Sample ID:	Q1711-08	Matrix:	Water
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	1.00	U	1	1.00	2.00	mg/L		04/03/25 14:04	SM 2320 B-11
Chloride	0.19	U	1	0.19	0.60	mg/L		04/03/25 14:16	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		04/03/25 14:16	9056A
Sulfate	0.46	U	1	0.46	3.00	mg/L		04/03/25 14:16	9056A
TDS	1.00	U	1	1.00	10.0	mg/L		04/03/25 12:30	SM 2540 C-15

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

8

В

^{* =} indicates the duplicate analysis is not within control limits.

o 1 = 1 1

.

A

С

LAB CHRONICLE

OrderID: Q1711 Client: JACOBS Engineering Group, Inc. Contact: John Ynfante				OrderDate: Project: Location:	Former Schlumberger STC PTC Site D3868221 I41,L21,VOA Ref. #3 Water			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1711-01	MW-18B-56-040225	WATER			04/02/25 12:35			04/02/25
			Alkalinity	SM2320 B			04/03/25 13:36	
			Anions Group1	9056A			04/03/25 12:29	
			TDS	SM2540 C			04/03/25 12:30	
Q1711-01DI	L MW-18B-56-040225D L	WATER			04/02/25 12:35			04/02/25
			Anions Group1	9056A			04/03/25 14:59	
Q1711-04	MW-17B-55-040225	WATER			04/02/25 15:35			04/02/25
			Alkalinity	SM2320 B			04/03/25 13:45	
			Anions Group1	9056A			04/03/25 13:55	
			TDS	SM2540 C			04/03/25 12:30	
Q1711-04DI	L MW-17B-55-040225D L	WATER			04/02/25 15:35			04/02/25
			Anions Group1	9056A			04/03/25 15:21	
Q1711-08	EB01-040225	Water			04/02/25 15:50			04/02/25

С

8

LAB CHRONICLE

Alkalinity	SM2320 B	04/03/25
		14:04
Anions Group1	9056A	04/03/25
		14:16
TDS	SM2540 C	04/03/25
		12:30

<u>SHIPPING</u> DOCUMENTS

A	284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 · Fax (908) 789-8922 www.chemtech.net									ALLIANCE PROJECT NO. QUOTE NO. COC Number 2045984				- 9						
					ROJECT IN	IFORMA	TION		14		6 10		CLIEN	IT BILLI	NG INFO	ORMATION				
COMPANY: J	PROJECT NAME: STC PTL							BILL TO: Mary Murchy PO#:												
ADDRESS: 4	PROJEC).: D	3868221	LOCA	TION:	Ville	toin I	neties	ADDRESS:										
CITY MO	wishun :	STATE: NJ ZIP: 07960	PROJEC	ст ма	NAG	ER: Ma	vy Mu	very				CITY STATE:				:ZIP:				
	Tolus Yubauk	Tohy Vytante Taules	e-mail: (OL:	Ret	T Ma	My. Mur	nhuta	Tacol	6.0014		ATTE					PHO	NE		1
ATTENTION.	JOINN LOOMOON	COM/		- 21	1	1		p p	10000	y				14		AN	ALYSIS			
PHONE:			PHONE		ΔΤΑ	DELIVER		X:;			1									1
FAX (RUSH) HARDCOPY (D. EDD: *TO BE APPRO STANDARD HA	 Level Level Level + Ra EDD 	1 (Res 2 (Res 3 (Res w Data FORM	sults (sults + sults + a) AT	Dnly) □ 1 ⊢QC) □ 1 ⊢QC □ 1 □ (evel 4 (QC NJ Reduced NYS ASP A Other	+ Full R d D US	aw Data EPA CL SASP B	a) LP isure Peer	14 D. 15	tore (and a set of the set o	Noir Beller	105 C	122203	Ally of	SEANDLIN"SU				
ALLIANCE				SAM	PLE	SAN	IPLE	ILES	4		B/	PRE	SERVA	TIVES		Δ/		CON ← Specify	Preservatives	
SAMPLE	SAMPLE SAMPLE IDENTIFICATION				AB	DATE	TIME	F BOT	"/E	É	ΪE	E	E	E	E	"/E		A-HCI B-HN03	D-NaOH E-ICE	
				8	GR	DATE	TTIVIE	0 #	1	2	3	4	5	6	7	8	9	C-H2SO4	F-OTHER	Į,
1.	MW-18B-56-0	40225	GW		✓,	4/2/25	1235	24		/	/	/	1	/	1	X	Ð	MS/M.	D : (27b	He
2.	MW-17B-55	- 040225	GW		/	4/2/25	1535	994	1	/	V	/	/	/	/	E.		9 bottles	_	
3.	MW-18B-56-6	40225-SIM	GIW		V	4/2/25	1235	2								~				
4.	MW-178-56	-040225-SIM	GW		V	4/2/25	1535	2								\bigvee				
5.						1														
6.																				1
7.																				1
8.																				1
9.																				1
10.																				1
	SAMPL	E CUSTODY MUST BE DOCU	JMENTED) BEL	.ow	EACH TIN	IE SAMP	LES CI	IANGE	POSS	ESSIO	N INCL	UDING	COUR	IER DI	LIVER	Y			Ĺ
RELINQUISHED B	Y SAMPLER: DATE/T	IME: USO RECEIVED BY:	D,	16	50	Conditio	ns of bottles	or coolers	at receip		MPLIANT	I NON	COMPLIA		COOLER T	EMP	3.	06	°C	1
1. MA		IME: REPETVED BY	P	1 ° d.	D	- PRE	SERVE	Dis	SOLU	EIRO	SNIS	AMP	LES	UPOAL	ALLE	IVAL	- To 1	THEIAB		
2		2				PO	# 148	0643	11	~ ^ `	¥ 0		P) (2)				-	11		
REMNQUISHED B	Y SAMPLER: DATE/T	TIME: 1825 RECEIVED BY:		-	-	1	Tem	P 3		CAC	Hand D	ted factor +1) IR (GON	Shipment (Complete		
87) 2	Page of 2																			
Q17112024	V	WHITE - ALLIANC	E COPY FO	R RETU	RN TC	CLIENT	49 [°] of 5	6- ALLIA	NCE COF	γ	PINK - S	AMPLER	COPY							

A	284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net									ALLIANCE PROJECT NO. QUOTE NO. COC Number 2045981				g							
	CLIENT	INFORMATION					CLIENT PF	ROJECT IN	FORMA	TION			-			CLIEN	T BILLI	NG INF	ORMATION		
COMPANY:	Jacobs	TTO BE SENT TO:	1	PROJECT NAME: STC PTC							BILL TO: Mary Murphy PO#:										
ADDRESS:	412 Mt K	mble Ave So	ite 100	PROJECT NO .:) 386822 LOCATION: Winchim Junchim 1							ADDR	ADDRESS:					4				
CITY MOL	vistown	STATE: NJ	ZIP: 07960	PROJEC	CT MA	ANAG	ER: M	my Mi	Mary				CITY					STAT	ΓE:	:ZIP:	
ATTENTION:	John Yufai	nte John. Yu	Jule@Jacks.	e-mail:	Mo	ny.	Muiph	yco Jai	dos. a	sim			ATTEN	TION:			0.010	PHO	NE:		
PHONE:		FAX:	Com	PHONE:				FA	X: :		_						ANA	L TOIS			t
[DATA TURNAR	OUND INFORMATIO	N			ATA	DELIVER	RABLE IN	FORM	ATION			ST.	51	3		/		//	11	4
FAX (RUSH) HARDCOPY (D. EDD: *TO BE APPRO STANDARD HA	Level	Level 1 (Results Only) Level 4 (QC + Full Raw Data) Level 2 (Results + QC) NJ Reduced US EPA CLP Level 3 (Results + QC NYS ASP A NYS ASP B + Raw Data) Other EDD FORMAT Comparison of the second																			
				SAMPLE SAMPLE							PRES	SERVA	TIVES				CO	MMENTS			
ALLIANCE SAMPLE ID	PROJECT SAMPLE IDENTIFICATION				COMP COMP	GRAB 3d	DATE	TIME	# OF BOTTI	A/E	Ē 2	A/E 3	H	علا 5	E 6	E 7	8	9	A-HCI B-HN03 C-H2SO4	D-NaOH E-ICE F-OTHER	
1.	R MIN-DS	B-89-040775		610		V	4/2/2	1605	4	$\overline{\mathbf{Z}}$		48	GR	200							1
2.	FRAI-NU	1775		DI		1	4/2/2	1550	Ø	1		1	1		/		/				1
3.	ERDLand	0775-CIM		DI		V	U/2/X	1550	7	L .	-	1			-						1
4.		10220-3101		DI		1	4/2/25	1400	2	J		-									
5	1801-00	10025		PI			10/00	1000	-	L.											1
6					-					<u> </u>		-									1
7																					1
8												-									1
о. q											-										
40																					-
10.		SAMPLE CUSTOD	Y MUST BE DOC	UMENTE) BEI	_ow	EACH TI	IE SAMP	LES C	I HANGF	L E POSS	I SESSIO		UDING	COUR		LIVER	Y	-2		
RELINQUISHED B	SAMPLE CUSTODY MUST BE DOCU RELINQUISHED BY SAMPLER: DATE/TIME: ILSO RECEIVED BY: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						1650 4.2-25 Conditions of bottles or coolers at receipt: COMPLIANT Comments: See Work order for ITS						t af	Sile	Spec		MP CS	3.	0		
2.	V SAMPLED.	DATE/TIME I 225	2.					Ten	np.	3.0	60	AJJ	USte	1 Fo	Ho	(+)) -	IR	Gun #	- 1	
3.		4-2-25	3.	Page Z of Z CLIENT: Hand Delivered Other						ther	Shipment Complete										
Q1711	V		WHITE - ALLIAN	CE COPY FO	R RETI	JRN TO	O CLIENT	50 of 5	W - ALLIA 6	NCE COI	PY	PINK -	SAMPLER	COPY							

From: Sent: To: Subject: Ynfante, John <John.Ynfante@jacobs.com> Friday, April 04, 2025 12:54 PM Yazmeen Gomez; Mohammad Ahmed RE: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

Secured by Check Point

Thanks Yazmeen, but like I mentioned yesterday if you aren't able to analyze any of those 3 normal samples by SIM then I have no need for the EB to be analyzed by SIM either so please just cancel that SIM EB. I will already have EB data for VOCs from the EB you ran (or are running) by your routine low 8260D.

From: Yazmeen Gomez <Yazmeen.Gomez@alliancetg.com>
Sent: Friday, April 4, 2025 11:51 AM
To: Ynfante, John <John.Ynfante@jacobs.com>; Mohammad Ahmed <mohammad.ahmed@alliancetg.com>
Subject: [EXTERNAL] RE: Princeton SIM/no-SIM

John,

Please see attached. SIM analysis is also not possible for MW-18B and MW-17B.

However, "EB01-040225-SIM" will be analyzed with SIM.

Best Regards,

Yazmeen Gomez Sr. Project Manager An Alliance Technical Group Company Main: 908-789-8900 Direct: 908-728-3147 Address: 284 Sheffield St, Ste 1, Mountainside, NJ 07092 www.alliancetg.com

From: Ynfante, John <<u>John.Ynfante@jacobs.com</u>> Sent: Thursday, April 3, 2025 6:27 PM To: Mohammad Ahmed <<u>mohammad.ahmed@alliancetg.com</u>>; Yazmeen Gomez <<u>Yazmeen.Gomez@alliancetg.com</u>> Subject: RE: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

9 9.2

9.2

Ok thanks for the confirmation Mohammad

From: Mohammad Ahmed <<u>mohammad.ahmed@alliancetg.com</u>>
Sent: Thursday, April 3, 2025 5:22 PM
To: Ynfante, John <<u>John.Ynfante@jacobs.com</u>>; Yazmeen Gomez <<u>Yazmeen.Gomez@alliancetg.com</u>>
Subject: [EXTERNAL] Re: Princeton SIM/no-SIM

Hi John,

I will let you know about other 2 samples regarding SIM . 1 8oz jar is enough to run Total metals and SPLP

Get Outlook for iOS

From: Ynfante, John <<u>John.Ynfante@jacobs.com</u>>
Sent: Thursday, April 3, 2025 5:55:35 PM
To: Yazmeen Gomez <<u>Yazmeen.Gomez@alliancetg.com</u>>; Mohammad Ahmed <<u>mohammad.ahmed@alliancetg.com</u>>;
Subject: Princeton SIM/no-SIM

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

Secured by Check Point

Hi Yazmeen and Mohammad, a few things:

After speaking with Mohammad I understand that the full scan 8260D run for the MW-17B sample had ~11ppm of TCE and high concs of other VOCs as well so you won't be able to run SIM on it – I understand the limitations and have passed that update on to the team so that is fine. There should also be SIM samples collected for 2 more samples - MW-18B and MW-19B so please let me know if your standard 8260 run shows similar concentrations on those as well. Note that these 3 samples are in a completely different location from the rest of the samples and their concentrations shouldn't necessarily represent the levels we will see for other samples – I understand if you have to dilute these high-conc samples I just don't want to over-dilute other samples unnecessarily.

Also, if you don't end up running any of the 3 SFAM-SIM samples then we have no need for that SIM equipment blank to be analyzed either so you can cancel that unless MW-18B or MW-19B turn out to be low enough to be able to be run by SIM in which case I would want the SIM EB.

Finally, for the soil samples we are collecting next week the client decided today that we should also collect for SPLP silver and place it on hold pending the total silver results – I believe you sent 8oz jars for the total silver so that should be plenty to cover the initial silver analysis and then still have enough for SPLP Silver if we need to run it right? Or do you prefer a completely separate jar for the SPLP Ag?

John Ynfante Jacobs Chemist 281-414-1719 mobile John.Ynfante@jacobs.com www.jacobs.com

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

9

9.4

C I Inv	Order ID : Client Name : Client Contact : Chvoice Name : voice Contact :	Q1711 JACO05 JACOBS Engineering Grou John Ynfante JACOBS Engineering Grou		(Pro Receive Purch	Order Date : Dject Name : DateTime : Dase Order :	4/3/2025 10:00:00 AM Former Schlumberger STC 4/2/2025 6:25:00 PM	Ha	Project Mgr : Report Type : I EDD Type : C Ird Copy Date : Date Signoff :	level 4 CH2MHILL		
LAB ID	CLIEN	T ID	MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1711-01	1 M	W-18B-56-040225	Water	04/02/2025	12:35						
01711-02	2	Q1711-01MS	Water	04/02/2025	12-35	VOCMS Group3		8260-Low	2 Bus. Days		
	-		viator	04/02/2020	12.00	VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-03	}	Q1711-01MSD	Water	04/02/2025	12:35						
Q1711-04	I M	W-17B-55-040225	Water	04/02/2025	15:35	VOCMS Group3		8260-Low	2 Bus. Days		
						VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-05	- MW	-18B-56-040225-SIM	Water	04/02/2025	12:3 5						
04744 00		47D 56 040225 ONA	Matar	04/00/0005	45.05	VOC TRACE SFAM		SFAM_Trace	2 Bus. Days		
Q1711-00	• • • • • • • • • • • • • • • • • • •	-17 B-96-040229-511VI	water_	04/02/2025	15:35	VOC-TRACE-SFAM		SFAM_Trace	2 Bus. Days	YG 04/04/202	25
Q1711-07	RM	IW-05B-89-040225	Water	04/02/2025	16:05						
~ / - /						VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-08		EB01-040225	Water	04/02/2025	15:50						

Page 1 of 2 55 of 56

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID : Client Name : Client Contact : Invoice Name :		 k Q1711 JACO05 k JACOBS Engineering Grou k JACOBS Engineering Grou 		Order Date : u Project Name : Receive DateTime : u Purchase Order :			4/3/2025 10:00:00 AM Former Schlumberger STC 4/2/2025 6:25:00 PM	Ha				
Invoice	e Contact :	John Ynfan	te						Date Signoff :			
LAB ID	CLIEN	T ID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1711-09		EB01-04022	25-SIM	Water	04/02/2025	15:50	VOCMS Group3		8260-Low	2 Bus. Days		
Q1711-10		TB01-040	0225	Water	04/02/2025	16:00	VOG-TRACE-SFAM		SFAM_Trace	2 Bus. Days-	YG 04/04	/2025
							VOCMS Group3		8260-Low	2 Bus. Days		

Relinguished By : Date / Time : 4.3.25 1225

Received By : 4.3.25 12'25 Date / Time :

Storage Area : VOA Refridgerator Room

9.4