

Prep Standard - Chemical Standard Summary

Order ID : Q1731

Test : SVOC-SIMGroup1

Prepbatch ID : PB167468,

Sequence ID/Qc Batch ID: BN040425,BN040725,

Standard ID :

EP2559,EP2565,EP2597,SP6682,SP6683,SP6684,SP6730,SP6731,SP6732,SP6733,SP6734,SP6735,SP6736,SP673 8,SP6739,SP6740,SP6755,SP6757,

Chemical ID :

1ul/100ul

sample,E3551,E3657,E3828,E3873,E3874,E3902,E3904,M5173,S10104,S11074,S11495,S11650,S11785,S11831,S118 32,S12114,S12142,S12189,S12195,S12208,S12216,S12270,S12328,S12469,S12478,S12517,S12525,S12577,S12651 ,S12791,S12966,W3112,

Т

Extractions STANDARD PREPARATION LOG

Recipe ID 1874	NAME 10 N SODIUM HYDROXIDE SOLN	<u>NO.</u> EP2559	Prep Date 11/14/2024		<u>Prepared</u> <u>By</u> Rajesh Parikh	ScaleID Extraction_SC ALE_2	<u>PipetteID</u> None	Supervised By RUPESHKUMAR SHAH 11/14/2024
FROM	1000.00000ml of W3112 + 400.0000	0gram of E3	657 = Final (Quantity: 1000.	000 ml	(EX-SC-2)		

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Expiration</u> <u>Date</u>	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By
314	1.1 H2SO4 SOLN	<u>EP2565</u>	11/20/2024		<u>By</u> Rajesh Parikh	None	None	RUPESHKUMAR SHAH
014	1.1112004 00211	<u>L1 2000</u>	11/20/2024	00/20/2020		None	None	11/20/2024
FROM	1000.00000ml of M5173 + 1000.0000	00ml of W31	112 = Final Q	uantity: 2000.0	00 ml			

Extractions STANDARD PREPARATION LOG

FROM 4000.00000gram of E3551 = Final Quantity: 4000.000 gram	EX-S	(-2)	

Recipe ID 3493	NAME Internal Standard 0.4 PPM	<u>NO.</u> <u>SP6682</u>	<u>Prep Date</u> 11/15/2024	Expiration Date 05/09/2025	Prepared By Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Supervised By Yogesh Patel 12/03/2024
FROM	0.10000ml of S12328 + 4.90000ml of	f E3828 = F	inal Quantity:	5.000 ml				

<u>Recipe</u> <u>ID</u> 3355	NAME 8270-SIM MDL-3.2PPM CALIBRATION STOCK SOL- 2ND	<u>NO.</u> SP6683	Prep Date 11/15/2024	Expiration Date 04/10/2025	Prepared By Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Supervised By Yogesh Patel 12/03/2024
FROM	SOURCE 0.00630ml of S12189 + 0.01280ml of 0.06400ml of S12469 + 0.06400ml of						f S12142 +	

NAME	NO	Pren Date	Expiration Date	Prepared By	ScaleID	PinettelD	Supervised By
							Yogesh Patel
CALIBRATION SOL ICV-2ND	<u>3F0004</u>	11/15/2024	04/10/2025	Upadhyay	None	NOTIE	12/03/2024
	SP6682 + 0	.12500ml of S	P6683 = Final	Quantity: 1.010	ml	•	
	SOURCE	8270-SIM MDL-0.4PPM <u>SP6684</u> CALIBRATION SOL ICV-2ND SOURCE	8270-SIM MDL-0.4PPM CALIBRATION SOL ICV-2ND SOURCE	NAMENO.Prep DateDate8270-SIM MDL-0.4PPMSP668411/15/202404/10/2025CALIBRATION SOL ICV-2NDSOURCESOURCESOURCE	NAMENO.Prep DateDateBy8270-SIM MDL-0.4PPMSP668411/15/202404/10/2025JagrutCALIBRATION SOL ICV-2NDUpadhyayUpadhyay	NAMENO.Prep DateDateByScaleID8270-SIM MDL-0.4PPMSP668411/15/202404/10/2025JagrutNoneCALIBRATION SOL ICV-2NDVVUpadhyayV	NAMENO.Prep DateDateByScaleIDPipetteID8270-SIM MDL-0.4PPMSP668411/15/202404/10/2025JagrutNoneNoneCALIBRATION SOL ICV-2NDImage: Calibration of the second se

Recipe ID 3339	NAME 8270 sim calibration stock 10ppm (CPI)	<u>NO.</u> <u>SP6730</u>	Prep Date 02/04/2025	Expiration Date 05/12/2025	Prepared By Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Shreena Patel
FROM	0.03350ml of S10104 + 0.05000ml of 0.25000ml of S12791 + 24.16650ml of				600ml of S12114	4 + 0.25000ml o	f S12270 +	

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Shreena Patel
3361	8270-SIM MDL-5PPM CALIBRATION SOLUTION	<u>SP6731</u>	02/04/2025	05/09/2025	Jagrut Upadhyay	None	None	02/07/2025
<u>FROM</u>	0.50000ml of E3874 + 0.01000ml of	SP6682 + 0	.50000ml of S	P6730 = Final	Quantity: 1.010) ml		

<u>Recipe</u> <u>ID</u> 3341	NAME 8270-SIM MDL-3.2PPM CALIBRATION SOLUTION	<u>NO.</u> <u>SP6732</u>	Prep Date 02/04/2025	Expiration Date 05/09/2025	<u>Prepared</u> <u>By</u> Jagrut Upadhyay	<u>ScaleID</u> None	<u>PipetteID</u> None	Shreena Patel
<u>FROM</u>	0.68000ml of E3874 + 0.01000ml of 3	I SP6682 + 0	.32000ml of S	P6730 = Final		ml		

Recipe		<u>NO.</u>	Prep Date		<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	PipettelD	<u>Supervised By</u> Shreena Patel
3344	8270-SIM MDL-1.6PPM CALIBRATION SOLUTION	<u>SP6733</u>	02/04/2025	05/09/2025	Jagrut Upadhyay	None	None	02/07/2025
FROM	0.84000ml of E3874 + 0.01000ml of 3	SP6682 + 0	.16000ml of S	P6730 = Final	Quantity: 1.010) ml		

Recipe ID 3342	NAME 8270-SIM MDL-0.8PPM CALIBRATION SOLUTION	<u>NO.</u> <u>SP6734</u>	Prep Date 02/04/2025	Expiration Date 05/09/2025	<u>Prepared</u> <u>By</u> Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Shreena Patel
<u>FROM</u>	0.92000ml of E3874 + 0.01000ml of \$	SP6682 + 0	.08000ml of S	P6730 = Final		ml		
<u> </u>								a : 15

<u>Recipe</u> <u>ID</u>	NAME	<u>NO.</u>	<u>Prep Date</u>	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	<u>Supervised By</u> Shreena Patel
3343	8270-SIM MDL-0.4PPM CALIBRATION SOLUTION	<u>SP6735</u>	02/04/2025	05/09/2025	Jagrut Upadhyay	None	None	02/07/2025
<u>FROM</u>	0.96000ml of E3874 + 0.01000ml of \$	SP6682 + 0	.04000ml of S	P6730 = Final	Quantity: 1.010	ml		

<u>Recipe</u> <u>ID</u> 3345	NAME 8270-SIM MDL-0.2PPM CALIBRATION SOLUTION	<u>NO.</u> <u>SP6736</u>	Prep Date 02/04/2025	Expiration Date 05/09/2025	<u>Prepared</u> <u>By</u> Jagrut Upadhyay	<u>ScaleID</u> None	<u>PipetteID</u> None	Shreena Patel
<u>FROM</u>	0.50000ml of E3874 + 0.01000ml of s	SP6682 + 0	.50000ml of S	P6735 = Final	Quantity: 1.010	ml		

Recipe ID 3346	NAME 8270-SIM MDL-0.1PPM CALIBRATION SOLUTION	<u>NO.</u> SP6738	Prep Date 02/04/2025	Expiration Date 05/09/2025	<u>Prepared</u> <u>By</u> Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Supervised By Shreena Patel 02/07/2025
FROM	0.75000ml of E3874 + 0.01000ml of \$	SP6682 + 0	.25000ml of S	P6735 = Final) ml		02/07/2025

Recipe ID 3492	NAME 8270-SIM-Spike 0.4 PPM	<u>NO.</u> <u>SP6739</u>	Prep Date 02/05/2025		Prepared By Jagrut Upadhyay	<u>ScaleID</u> None	PipetteID None	Shreena Patel
FROM	0.00080ml of S11650 + 0.01000ml of 49.92920ml of E3873 = Final Quanti			S12478 + 0.020	00ml of S1252	5 + 0.02000ml c	f S12966 +	

<u>Recipe</u> <u>ID</u> 3493	NAME Internal Standard 0.4 PPM	<u>NO.</u> <u>SP6740</u>	Prep Date 02/13/2025	Expiration Date 07/30/2025	<u>Prepared</u> <u>By</u> Rahul Chavli	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Yogesh Patel 02/28/2025
FROM	0.10000ml of S12651 + 4.90000ml of	E3874 = F	inal Quantity:	5.000 ml				02/20/2023

Recipe ID 3491	NAME 8270-SIM-Surrogate 0.4 PPM	<u>NO.</u> <u>SP6755</u>	Prep Date 03/20/2025	Expiration Date 07/24/2025	<u>Prepared</u> <u>By</u> Jagrut Upadhyay	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Rahul Chavli 04/01/2025
FROM	0.00400ml of S12195 + 0.00800ml of	5 S12216 + (0.02000ml of a	S11832 + 99.96	800ml of E3902	2 = Final Quant	ity: 100.000 n	

Recipe ID 3895	NAME 50 ug/ml DFTPP 8270E	<u>NO.</u> <u>SP6757</u>	Prep Date 03/31/2025	Expiration Date 09/30/2025	Prepared By Rahul Chavli	<u>ScaleID</u> None	<u>PipetteID</u> None	Supervised By Jagrut Upadhyay 04/01/2025
<u>FROM</u>	1.00000ml of S12577 + 19.00000ml (of E3904 =	Final Quantity	y: 20.000 ml				04/01/2023

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19631-100 / SODIUM SULFATE, ANHYDROUS, PEST GRADE, 1	313201	07/01/2025	01/03/2024 / Rajesh	07/20/2023 / Rajesh	E3551
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19510-5 / Sodium Hydroxide Pellets 2.5 Kg, Pk of 4	23B1556310	12/31/2025	12/04/2023 / Rajesh	12/01/2023 / Rajesh	E3657
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	24G0862003	05/09/2025	11/09/2024 / Rajesh	11/04/2024 / Rajesh	E3828
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	24H2762008	07/29/2025	01/29/2025 / Rajesh	01/29/2025 / Rajesh	E3873
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	25A0262002	07/30/2025	01/30/2025 / Rajesh	01/20/2025 / Rajesh	E3874
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9254-03 / Acetone, Ultra Resi (cs/4x4L)	24H2762008	09/18/2025	03/18/2025 / RUPESH	02/12/2025 / RUPESH	E3902

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	24K1762005	01/07/2026	03/13/2025 /	12/27/2024 / RUPESH	E3904
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	0000281827	06/02/2025	06/01/2022 /	04/05/2022 / william	M5173
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
CPI International	Z-112090-04 / CLP Acid Surrogate Solution, 7500 mg/L, 1ml	440246	07/30/2025	01/30/2025 / anahy	12/09/2021 / Christian	S10104
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31853 / 1,4-Dioxane, 2000 ug/ml , Solvent: Methylene Chloride	A0187043	05/15/2025	11/15/2024 / Jagrut	02/06/2023 / Christian	S11074
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
CPI International	Z-110094-02 / CLP Base/Neutral Surrogate Solution, 5000 mg/L, 1ml	506889	05/12/2025	11/12/2024 / Jagrut	08/11/2023 / Yogesh	S11495
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	555872 / Custom Standard, pentachlorophenol Std [CS 5328-5]	A0201728	07/29/2025	01/29/2025 / anahy	11/09/2023 / Yogesh	S11650

-

т

CHEMICAL RECEIPT LOG BOOK

т

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31853 / 1,4-Dioxane, 2000 ug/ml , Solvent: Methylene Chloride	A0196453	07/29/2025	01/29/2025 / anahy	11/21/2023 / Rahul	S11785
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	33913 / SOM01.0 SIM Analysis Standard (Surrogate), 2000 PPM	A0201976	04/11/2025	10/11/2024 / Jagrut	11/21/2023 / rahul	S11831
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	33913 / SOM01.0 SIM Analysis Standard (Surrogate), 2000 PPM	A0201976	07/24/2025	01/24/2025 / anahy	11/21/2023 / rahul	S11832
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
CPI International	z-010223-01 / 1,4-Dioxane Solution, 2,000mg/L, 1ml	454157	05/12/2025	11/12/2024 / Jagrut	03/08/2024 / Rahul	S12114
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31850 / 8270 SV Mix, 8270 Mega Mix 1mL, 1000ug/mL, CH2Cl2 [New Solvent 100% CH2Cl2]	A0203726	04/30/2025	11/14/2024 / anahy	03/15/2024 / Rahul	S12142
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31087 / Acid Surrogate 10,000ug/ml,methanol,5ml/ ampul	A0206206	04/10/2025	10/10/2024 / anahy	03/15/2024 / Rahul	S12189

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31087 / Acid Surrogate 10,000ug/ml,methanol,5ml/ ampul	A0206206	09/18/2025	03/18/2025 / anahy	03/15/2024 / Rahul	S12195
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31086 / Base Neutral Surrogate 5000ug/ml,CH2Cl2,5ml	A0206381	05/15/2025	11/15/2024 / Jagrut	03/15/2024 / Rahul	S12208
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31086 / Base Neutral Surrogate 5000ug/ml,CH2Cl2,5ml	A0206381	09/18/2025	03/18/2025 / anahy	03/15/2024 / Rahul	S12216
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
CPI International	z-110381-01 / 8270 Calibration Solution, 76-1, 500 & 1,000 mg/L, 1ml	520963	07/30/2025	01/30/2025 / anahy	05/24/2024 / Rahul	S12270
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31206 / SV Mix, CLP method, Internal Std, 2000ug/mL, CH2Cl2, 1mL	A0206540	05/13/2025	11/13/2024 / anahy	05/30/2024 / Rahul	S12328
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	555223 / Custom 8270 Plus Std #1 [2nd lot at \$100 per ampul if requested - contact ARM with Request]	A0214021	05/14/2025	11/14/2024 / anahy	07/23/2024 / RAHUL	S12469

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	555223 / Custom 8270 Plus Std #1 [2nd lot at \$100 per ampul if requested - contact ARM with Request]	A0214021	07/29/2025	01/29/2025 / anahy	07/23/2024 / RAHUL	S12478
	[CS 4978-1]	1		1	T	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	555224 / Custom 8270 Plus Std #2 [2nd lot at \$85 per ampul if requested - contact ARM with Request] [CS 4978-2]	A0214017	05/14/2025	11/14/2024 / anahy	07/23/2024 / RAHUL	S12517
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	555224 / Custom 8270 Plus Std #2 [2nd lot at \$85 per ampul if requested - contact ARM with Request]	A0214017	07/29/2025	01/29/2025 / anahy	07/23/2024 / RAHUL	S12525
	[CS 4978-2]				1	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31615 / SV Mixture, GC/MS Tuning Mixture, CH2Cl2, 1mL,	A0212955	06/30/2027	03/31/2025 / Rahul	08/01/2024 / Rahul	S12577
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31206 / SV Mix, CLP method, Internal Std, 2000ug/mL, CH2Cl2, 1mL	A0212266	08/07/2025	02/07/2025 / anahy	09/20/2024 / anahy	S12651
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
CPI International	Z-110816-01 / Custom 8270 Mix, 4-79, 1000 mg/L, 1 mL, (Maximum Expiration: 180 Days)	414127	06/21/2025	01/30/2025 / anahy	05/24/2024 / Rahul	S12791

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31850 / 8270 SV Mix, 8270 Mega Mix 1mL, 1000ug/mL, CH2Cl2 [New Solvent 100% CH2Cl2]	A0219438	07/29/2025	01/29/2025 / anahy	12/11/2024 / anahy	S12966
Ormalian		1.4.4	Expiration	Date Opened /	Received Date /	Chemtech
Supplier	ItemCode / ItemName	Lot #	Date	Opened By	Received By	Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

5580 Skylane Blvd Santa Rosa, CA 95403

(707)525-5788 (800)878-7654 Toll Free (707)545-7901 Fax

Manufacturer's Quality System Audited & Registered by TUV USA to ISO 9001:2015

Date Received:_

		Certific	ate of Ana	lysis Rev 0	Page 1 of 1
Catalog No.: Lot No.: Storage: Z-112090 440246 ≤ -10 °C		Solvent: Methylene Chloride	Exp. Date:	Descri P Acid Surrogate Solutio	-
-04 Compor	und	CAS No.	Purity (%)	Compound Lot No.	Concentration, mg/L
0. Hannhamal d		93951-73-6	99.3	248.12.7P	7487 ± 17.2
2-chlorophenol-d₄ 2-fluorophenol		367-12-4	99.8	10.7.3.3P	7513 ± 17.26
		13127-88-3	99.9	949.120.8P	7481 ± 17.19
phenol-d6 2,4,6-tribromophenol		118-79-6	99.8	12.1.6P	7469 ±17.17

Receivedon 02/25/21 64 C6 59236 +0 59240

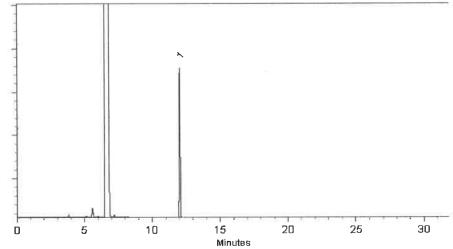
*Not a certified value

Manufactured by o2si smart solutions, Accredited to ISO 9001:2008 by NSF and ISO/IEC 17025:2005 (Certification No. 3031.01) and ISO Guide 34:2009 (Certification No. 3031.02) by A2LA

Erre Castre

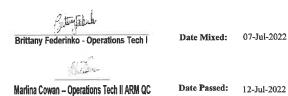
Certified By:

Erica Castiglione Chemist


All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

RES		CERTIFIED REFEI	RENCE MATE	RIAL	ACCREDITED ISO 17834 Accredited Reference Material Producer Certificate #322201
Bellefonte, P/ Tel: (800) Fax: (814) www.res	A 16823-8812 356-1688 353-1309	Certificate o	of Analysis	BC-MRA	ACCREDITED ISO/IEC 17025 Accredited Testing Laboratory Certificate #3222.02
		FOR LABORATORY USE ON This Reference Material is intended the qualitative and/or quantitative de	for Laboratory Use Only as	a standard for	al on 2106/23
Catalog No. :	31853	Lot No.:	A0187043		51
Description :	1,4-dioxane				СС
	1,4-Dioxane 2,0	000µg/mL, Methylene Chloride, 1mL/am	npul	S llo	7
Container Size :	2 mL	Pkg Amt:	> 1 mL		to
Expiration Date :	July 31, 2027	Storage:	0°C or colder	SIL	075
		Ship:	Ambient		

CERTIFIED VALUES


Elution Order		Compound	Grav. Conc. (weight/volume)		Expanded (95% C.L.;	Uncertainty K=2)	
1	1,4-Dioxane CAS # 123-91-1 Purity 99%	(Lot SHBN5929)	2,019.0 μg/mL	+/- +/- +/-	11.8486 43.2570 44.5129	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
Column	Mathrulana ahlarida						

Solvent: Methylene chloride CAS # 75-09-2 Purity 99% Column: 105m x 0.53mm x 3.0µm Rtx-502.2 (cat#10910) Carrier Gas: hydrogen-constant pressure 11.0 psi. Temp. Program: 40°C (hold 2 min.) to 240°C @ 8°C/min. (hold 5 min.) Inj. Temp: 200°C Det. Temp: 250°C Det. Type: FID

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Balance: 1128360905

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

PRODUCTOS QUIMICOS MONTERREY, S.A. DE CY. MIRADOR 201, COL. MIRADOR MONTERREY, N.L. MEXICO CP 64070 TEL +52 81 13 52 57 57 WWW.pgm.com.mx

CERTIFICATE OF ANALYSIS

	PRODUCT : SODIUM SULFATE CRYSTALS / QUALITY : ACS (CODE RMB3375) SPECIFICATION NUMBER : 6399			NA.CO	
			E DATE:	Na ₂ SO ₄ ABR/21/2023	
				ADR/2 1/2023	
TEST	SPECI	FICATIONS	LOT V	ALUES	
Assay (Na ₂ SO ₄)	Min. 99	1.0%	99.7 %		
pH of a 5% solution at 25°C	5.2 - 9.	2	6.1		
Insoluble matter	Max. 0.	01%	0.005	1	
Loss on ignition	Max. 0.	5%	0.1 %	16	
Chloride (Cl)	Max. 0.	001%	<0.001	0/	
Nitrogen compounds (as N)	Max. 5	ppm	<0.001 <5 ppn		
Phosphate (PO ₄)	Max. 0.		<0.001		
Heavy metals (as Pb)	Max. S				
Iron (Fe)	Max, 0,		<5 ppm <0.001 % 0.002 % 0.001 % 0.003 %		
Calcium (Ca)	Max. 0.	01%			
Magnesium (Mg)	Max. 0.	005%			
Potassium (K)	Max. 0.				
Extraction-concentration suit	ability Passes	Passes test		Passes test	
Appearance	Passes		Passes		
Identification	Passes	test	Passes	test	
Solubility and foreing matter		test	Passes	: test	
Retained on US Standard No.		h	0.1 %		
Retained on US Standard No.	60 sieve Min. 94	a/ ₀	97.3 %		
Through US Standard No. 60	sieve Max. 5%	46	2.5%		
Through US Standard No. 100) sieve Max. 10	1%	0.1 %		
an second a second s	CON	MENTS	ಕ್ಷಿತ್ರಾಲೆಗೂ ಕಾರ್ಯಕ್ರಿ ಕ್ರಿತಿ ನಿರ್ದೇಶಕರ್ಷ ಪ್ರಾರಂಭ		
91 <i>0</i> 91			n+	15 HANDOWNI	
			- he "		
			1		
		QC: Ph	C Irma Belma	res	

If you need further details, please call our factory or contact our local distributor.

Read. by R: 017/293 E3551

RE-02-01, Ed. 1

Certificate of Analysis

Sodium Hydroxide (Pellets)

Material: Grade: Batch Number: 0583 ACS GRADE 23B1556310

 Manufacture Date:
 12/14/2022

 Expiration Date:
 12/31/2025

Storage: Room Temperature

Pellets

TEST	SPECIFICATION	ANALYSIS	DISPOSITION
Calcium	<= 0.005 %	<0.005 %	PASS
Chloride	<= 0.005 %	0.002 %	PASS
Heavy Metals	<= 0.002 %	<0.002 %	PASS
Iron	<= 0.001 %	<0.001 %	PASS
Magnesium	<= 0.002 %	<0.002 %	PASS
Mercury	<= 0.1 ppm	<0.1 ppm	PASS
Nickel	<= 0.001 %	<0.001 %	PASS
Nitrogen Compounds	<= 0.001 %	<0.001 %	PASS
Phosphate	<= 0.001 %	<0.001 %	PASS
Potassium	<= 0.02 %	<0.02 %	PASS
Purity	>= 97.0 %	99.2 %	PASS
Sodium Carbonate	<= 1.0 %	0.5 %	PASS
Sulfate	<= 0.003 %	<0.003 %	PASS

Internal ID #: 710

Signature

Additional Information

Analysis may have been rounded to significant digits in specification limits.

This document has been electronically produced and is valid without a signature.

We certify that this batch conforms to the specifications listed.

Leona Edwardson, Quality Control Sr. Manager - Solon VWR Chemicals, LLC. 28600 Fountain Parkway, Solon OH 44139 USA Product meets analytical specifications of the grades listed.

VWR International LLC, Radnor Corporate Center, Suite 200, 100 Matsonford Road, Radnor, PA 19087, USA

Date Printed:

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)

Material No.: 9266-A4 Batch No.: 24J0862003 Manufactured Date: 2024-09-12 Expiration Date:2025-12-12 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5	2
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	1
Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water)	>= 99.8 %	100.0 %
Color (APHA)	<= 10	5
Residue after Evaporation	<= 1.0 ppm	5 0.2 ppm
itrable Acid (µeq/g)	<= 0.3	<0.1
Chloride (Cl)	<= 10 ppm	<5 ppm
Vater (by KF, coulometric)	<= 0.02 %	<0.01 %

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC

E 3828

Acetone BAKER RESI-ANALYZED® Reagent For Organic Residue Analysis

Material No.: 9254-03 Batch No.: 24H2762008 Manufactured Date: 2024-04-18 Expiration Date:2027-04-18 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay ((CH3)2CO) (by GC, corrected forwater)	>= 99.4 %	100.0 %
Color (APHA)	<= 10	5
Residue after Evaporation	<= 1.0 ppm	0.0 ppm
Substances Reducing Permanganate	Passes Test	Passes Test
Titrable Acid (µeq/g)	<= 0.3	0.2
Titrable Base (µeq/g)	<= 0.6	<0.1
Water (H2O)	<= 0.5 %	<0.1 %
FID-Sensitive Impurities (as 2–Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	1

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC

Recd. 57 Rp on 1/29/25 [E3873]

PO: PO2-1178.2 PRODUCT CODE: SHIP DATE: 1/20/2025

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane) *...

(V) avantor

Material No.: 9266-A4 Batch No.: 25A0262002 Manufactured Date: 2024-11-21 Expiration Date:2026-02-20 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5)
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	4
Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water)	>= 99.8 %	99.9 %
Color (APHA)	<= 10	10
Residue after Evaporation	<= 1.0 ppm	0.8 ppm
Titrable Acid (µeq/g)	<= 0.3	<0.1
Chloride (Cl)	<= 10 ppm	<5 ppm
Water (by KF, coulometric)	<= 0.02 %	<0.01 %

For Laboratory,Research,or Manufacturing Use

MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC

E 3874

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials,LLC 100 Matsonford Rd, Suite 200,Radnor,PA,19087.U.S,A.Phone 610.386.1700

Page 1 of 1

Acetone

BAKER RESI-ANALYZED® Reagent For Organic Residue Analysis

Avantor

Material No.: 9254-03 Batch No.: 24H2762008 Manufactured Date: 2024-04-18 Expiration Date:2027-04-18 Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay ((CH3)2CO) (by GC, corrected forwater)	>= 99.4 %	100.0 %
Color (APHA)	<= 10	5
Residue after Evaporation	<= 1.0 ppm	0.0 ppm
Substances Reducing Permanganate	Passes Test	Passes Test
Titrable Acid (µeq/g)	<= 0.3	0.2
Titrable Base (µeq/g)	<= 0.6	<0.1
Water (H2O)	<= 0.5 %	<0.1 %
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak $\left< pg / mL \right>$	<= 10	1

For Laboratory, Research, or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States Packaging Site: Phillipsburg Mfg Ctr & DC

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials,LLC

100 Matsonford Rd, Suite 200,Radnor,PA,19087.U.S.A.Phone 610.386.1700

Page 1 of 1

Hydrochloric Acid, 36.5–38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 0000281827 Manufactured Date: 2021/03/30 Retest Date: 2026/03/29 Revision No: 1

Certificate of Analysis

Test	Specification	Result
ACS – Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	37.6
ACS – Color (APHA)	<= 10	5
ACS – Residue after Ignition	<= 3 ppm	1
ACS – Specific Gravity at 60°/60°F	1.185 – 1.192	1.189
ACS – Bromide (Br)	<= 0.005 %	< 0.005
ACS – Extractable Organic Substances	<= 5 ppm	< 1
ACS – Free Chlorine (as Cl2)	<= 0.5 ppm	< 0.5
Phosphate (PO4)	<= 0.05 ppm	< 0.03
Sulfate (SO4)	<= 0.5 ppm	< 0.3
Sulfite (SO3)	<= 0.8 ppm	0.3
Ammonium (NH4)	<= 3 ppm	< 1
race Impurities – Arsenic (As)	<= 0.010 ppm	< 0.003
race Impurities – Aluminum (Al)	<= 10.0 ppb	0.5
Arsenic and Antimony (as As)	<= 5 ppb	< 3
Frace Impurities – Barium (Ba)	<= 1.0 ppb	< 0.2
Frace Impurities – Beryllium (Be)	<= 1.0 ppb	< 0.2
Frace Impurities – Bismuth (Bi)	<= 10.0 ppb	< 1.0
Frace Impurities – Boron (B)	<= 20.0 ppb	< 5.0
Frace Impurities – Cadmium (Cd)	<= 1.0 ppb	< 0.3
Frace Impurities – Calcium (Ca)	<= 50.0 ppb	15.0
Frace Impurities – Chromium (Cr)	<= 1.0 ppb	< 0.4
Frace Impurities – Cobalt (Co)	<= 1.0 ppb	< 0.3
Frace Impurities – Copper (Cu)	<= 1.0 ppb	< 0.1
Frace Impurities – Gallium (Ga)	<= 1.0 ppb	< 0.2

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700

Test	Specification	Result
race Impurities – Germanium (Ge)	<= 3.0 ppb	< 2.0
race Impurities – Gold (Au)	<= 4.0 ppb	3.0
leavy Metals (as Pb)	<= 100 ppb	< 50
race Impurities – Iron (Fe)	<= 15.0 ppb	1.0
race Impurities – Lead (Pb)	<= 1.0 ppb	< 0.5
race Impurities – Lithium (Li)	<= 1.0 ppb	< 0.2
race Impurities – Magnesium (Mg)	<= 10.0 ppb	< 0.4
race Impurities – Manganese (Mn)	<= 1.0 ppb	< 0.4
race Impurities – Mercury (Hg)	<= 0.5 ppb	0.2
race Impurities – Molybdenum (Mo)	<= 10.0 ppb	< 5.0
race Impurities – Nickel (Ni)	<= 4.0 ppb	< 0.3
race Impurities – Niobium (Nb)	<= 1.0 ppb	< 0.2
race Impurities – Potassium (K)	<= 9.0 ppb	< 2.0
race Impurities – Selenium (Se), For Information Only	ppb	1.0
race Impurities – Silicon (Si)	<= 100.0 ppb	18.0
race Impurities – Silver (Ag)	<= 1.0 ppb	< 0.3
race Impurities – Sodium (Na)	<= 100.0 ppb	< 5.0
race Impurities – Strontium (Sr)	<= 1.0 ppb	< 0.2
race Impurities – Tantalum (Ta)	<= 1.0 ppb	< 0.9
race Impurities - Thallium (TI)	<= 5.0 ppb	< 2.0
race Impurities – Tin (Sn)	<= 5.0 ppb	< 0.8
race Impurities – Titanium (Ti)	<= 1.0 ppb	< 0.2
race Impurities – Vanadium (V)	<= 1.0 ppb	< 0.2
race Impurities – Zinc (Zn)	<= 5.0 ppb	0.4
race Impurities – Zirconium (Zr)	<= 1.0 ppb	< 0.1

For Laboratory, Research or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications

Country of Origin: US Packaging Site: Phillipsburg Mfg Ctr & DC

James Techie

Jamie Ethier Vice President Global Quality

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC 100 Matsonford Rd, Suite 200, Radnor, PA 19087. U.S.A. Phone: 610.386.1700

(in)		AL
)	Z
\sim	_	
		AT
	L	ERNA
	1	

5580 Skylane Blvd Santa Rosa, CA 95403

Manufacturer's Quality System Audited & Registered by TUV USA to ISO 9001:2015

> (800)878-7654 Toll Free (707)545-7901 Fax

(707)525-5788

Date Received:

Certificate of Analysis Rev 0 Page 1 of 1	Description:	CLP Base/Neutral Surrogate Solution, 5,000 mg/L, 1 ml
cate of ,	Exp. Date:	7/25/2028
Certifi	Solvent:	Methylene Chloride

Storage: ≤-10 °C

Catalog No.: Lot No.:

506889

Z-110094-02

Compound	CAS No.	Purity (%)	Compound Lot No.	Concentration, mg/L
1,2-dichlorobenzene-d"	2199-69-1	66.7	247.29.3P	5035 ± 28.02
2-fluorobiphenył	321-60-8	69.66	8.286.1.1P	4999 ± 103.66
nitrobenzene-dS	4165-60-0	99.67	7.9.3P	4988 ±27.32
p-terphenyl-d14	1718-51-0	99.3	9.120.8P	5005 ±27.85

51494 7.P. 211130 L

*Not a certified value

Anoneociation Clint Tipton Chemist

Certified By:

All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

·

Bellefonte, PA 16823-8812

Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis gravimetric

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

- Slicke ?	J.L	V (1118123	SILER			
Lot No.: <u>A0201728</u>	q	d 25,000µg/mL, Methanol,	Pkg Amt: > 1 mL	Storage: 10°C or colder	Ship: Ambient	
555872	Custom Pentachlorophenol Standard	Custom Pentachlorophenol Standard 25,000µg/mL, Methanol, 1mL/ampul	2 mL.	September 30, 2026		
Catalog No. :	Description :		Container Size :	Expiration Date :		

S	
ш	
<	
>	
Δ	
ш	
-	
ш	
_	
⊢	
0Ľ	
Ш	
O	

onen #	Compound	CAS #	Lot #	Purity Grav. Conc. (weight/volume)	Uncertainty (95% C.L.; K=2)
Pentachlorophenol		87-86-5	RP230530RSR	99% 25,000.0 μg/mL +/- 777.0837	+/- 777.0837

67-56-1 %66 Methanol CAS# Purity Solvent:

Josh McCloskey - Operations Technician I provide 1

05-Sep-2023 Date Mixed:

Balance: B251644995

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397 1 of 2

01-Nov-2022 rev.

RESTEK

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions. .
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Notes: Purity

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD GC/MS, LC/MS, RI, and/or melting point. .
- \prec Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers. .
 - Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes

uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty and shipping stability uncertainty and were combined using the following formula: .

$$U_{combined}$$
 uncertainty = $k \sqrt{u_{gravimetric}^2 + u_{comogeneity}^2 + u_{storage}^2}$ stability + $u_{shipping}^2$ stability

P.

k is a coverage factor of 2, which gives a level of confidence of approximately 95%

The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred. .

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom which includes complete instructions. .
 - any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved. -٠

RESTEK

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31853	Lot No.:	A0196453	_ 911749) ₀ 1
Description :	1,4-dioxane			_ L (KC/
	1,4-Dioxane 2,000µg/mL, Me	ethylene Chloride, 1mL/arr	ipul	
Container Size :	2 mL	Pkg Amt:	> 1 mL	_ SII794 / 11/30/23
Expiration Date :	March 31, 2028	Storage:	0°C or colder	3/11/11/2
		Ship:	Ambient	

CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,4-Dioxane	123-91-1	SHBN3770	99%	2,013.0 µg/mL	+/- 25.0521

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

Quality Confirmation Test

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

그는 방법에 있는 것 같아요. 이 것 같은 것 같은 것이 있다.	
	$u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage stability}^2 + u_{shipping stability}^2$
$U_{combined uncertainty} = k$	11^{4} $\pm 11^{2}$
- compinea uncertainty	"gravimetric ' "homogeneity ' "storage stability ' "shipping stability
an a	a stability stability

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

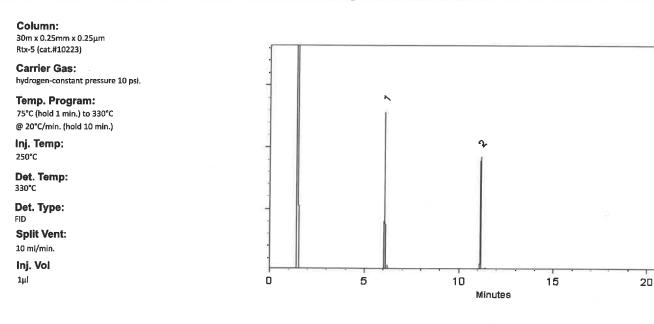
CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.


Catalog No. :	33913	Lot No.: A0201976	
Description :	SOM01.0 SIM Analysis Standard		511828)
	SOM01.0 SIM Analysis Standard 2 /ampul	J (RC/	
Container Size :	2 mL	Pkg Amt: > 1 mL	- SI1832 11/30/23
Expiration Date :	August 31, 2029	Storage: 10°C or colder	
Handling:	Sonication required. Mix is photosensitive.	Ship: Ambient	

CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	2-Methylnaphthalene-d10	7297-45-2	EF-135	98%	2,015.9 μg/mL	+/- 90.8098
2	Fluoranthene-d10	93951-69-0	PR-32557	99%	2,020.0 µg/mL	+/- 90.9963

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

chniclan | Date Mixed:

13-Sep-2023 E

Balance Serial # B442140311

George & William

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed: 28-Sep-2023

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

• The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

• Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

www.restek.com

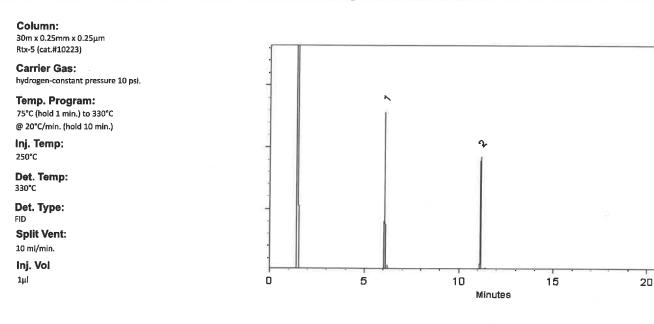
CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.


Catalog No. :	33913	Lot No.: A0201976	
Description :	SOM01.0 SIM Analysis Standard		511828)
	SOM01.0 SIM Analysis Standard 2 /ampul	000µg/mL, Methylene chloride, 1mL	J (RC/
Container Size :	2 mL	Pkg Amt: > 1 mL	- SI1832 11/30/23
Expiration Date :	August 31, 2029	Storage: 10°C or colder	
Handling:	Sonication required. Mix is photosensitive.	Ship: Ambient	

CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	2-Methylnaphthalene-d10	7297-45-2	EF-135	98%	2,015.9 μg/mL	+/- 90.8098
2	Fluoranthene-d10	93951-69-0	PR-32557	99%	2,020.0 µg/mL	+/- 90.9963

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

chniclan | Date Mixed:

13-Sep-2023 E

Balance Serial # B442140311

George & William

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed: 28-Sep-2023

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

• The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

• Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

5580 Skylane Blvd Santa Rosa, CA 95403

(707)525-5788 (800)878-7654 Toll Free (707)545-7901 Fax Manufacturer's Quality System Audited & Registered by TUV USA to ISO 9001:2015

Date Received:_

Certificate of Analysis Rev 0 Page 1 of 1 Solvent: Exp. Date: Catalog No.: Lot No.: **Storage: Description:** 1,4-Dioxane Solution, 2000 mg/L, 6/10/2026 Z-020223-01 454157 ≤-10 °C P/T Methanol 1 mL Compound CAS No. Purity (%) **Compound Lot No.** Concentration, mg/L 123-91-1 100 1,4-dioxane 223.1.3P 1997 ± 57.08

512112] RC/ V] 03/08/24

*Not a certified value

Melson Ubr

Certified By:

Melissa Workoff Chemist All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

hand

ISO/IEC 17025 Accred Testing Laboratory Certificate #3222.02

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31850	Lot No.: <u>A020372</u>	6	6121177 Rc/
Description :	8270 MegaMix®			Juit
	8270 MegaMix® 500-1000 μg/mL, I	Methylene Chloride, 1mL/ampu	اد	1 03/18/24
Container Size :	2 mL	Pkg Amt: > 1 mL		512146
Expiration Date :	April 30, 2025	Storage: 0°C or co	lder	5/2/40
Handling:	Sonication required. Mix is photosensitive.	Ship: Ambient		

CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Pyridine	110-86-1	SHBP6240	99%	1,001.6 µg/mL	+/- 36.4412
2	N-Nitrosodimethylamine	62-75-9	230209JLM	99%	1,005.9 µg/mL	+/- 36.5968
3	Phenol	108-95-2	MKCK1120	99%	1,003.3 µg/mL	+/- 36.5038
4	Aniline	62-53-3	X22F726	99%	1,005.8 μg/mL	+/- 36.5928
5	Bis(2-chloroethyl)ether	111-44-4	SHBL6942	99%	1,008.1 μg/mL	+/- 36.6776
6	2-Chlorophenol	95-57-8	STBJ3909	99%	1,001.8 µg/mL	+/- 36.4492
7	1,3-Dichlorobenzene	541-73-1	BCCD5315	99%	1,002.3 µg/mL	+/- 36.4654
8	1,4-Dichlorobenzene	106-46-7	MKBS7929V	99%	1,003.7 µg/mL	+/- 36.5159
9	Benzyl alcohol	100-51-6	SHBK5469	99%	1,008.7 µg/mL	+/- 36.6979
10	1,2-Dichlorobenzene	95-50-1	SHBN3835	99%	1,000.3 µg/mL	+/- 36.3926
11	2-Methylphenol (o-cresol)	95-48-7	SHBN7598	99%	1,003.5 µg/mL	+/- 36.5099
12	2,2'-oxybis(1-chloropropane)	108-60-1	29-MAR-45-5	99%	1,007.3 µg/mL	+/- 36.6493
13	3-Methylphenol (m-cresol)	108-39-4	STBJ0710	99%	504.3 µg/mL	+/- 18.3500
14	4-Methylphenol (p-cresol)	106-44-5	SHBN3411	99%	503.6 µg/mL	+/- 18.3237
15	N-Nitroso-di-n-propylamine	621-64-7	N63MG	99%	1,008.3 µg/mL	+/- 36.6857
16	Hexachloroethane	67-72-1	QTORH	99%	1,007.5 µg/mL	+/- 36.6554
17	Nitrobenzene	98-95-3	10224044	99%	1,008.6 µg/mL	+/- 36.6938

18	Isophorone	78-59-1	MKCC9506	99%	1,005.9	µg/mL	+/- 36.5988
19	2-Nitrophenol	88-75-5	RP230710	99%	1,003.2	μg/mL	+/- 36.4998
20	2,4-Dimethylphenol	105-67-9	XW5GK	99%	1,003.8	µg/mL	+/- 36.5200
21	Bis(2-chloroethoxy)methane	111-91-1	13670200	99%	1,002.1	µg/mL	+/- 36.4573
22	2,4-Dichlorophenol	120-83-2	BCBZ6787	99%	1,003.7	µg/mL	+/- 36.5180
23	1,2,4-Trichlorobenzene	120-82-1	SHBP5900	99%	1,007.6	μg/mL	+/- 36.6574
24	Naphthalene	91-20-3	STBL1057	99%	1,008.3	µg/mL	+/- 36.6837
25	4-Chloroaniline	106-47-8	BCCJ3217	99%	1,001.3	µg/mL	+/- 36.4290
26	Hexachlorobutadiene	87-68-3	RP230823RSR	98%	1,008.3	µg/mL	+/- 36.6829
27	4-Chloro-3-methylphenol	59-50-7	BCCD4461	99%	1,003.1	µg/mL	+/- 36.4937
28	2-Methylnaphthalene	91-57-6	STBK0259	96%	1,001.9	µg/mL	+/- 36.4505
29	1-Methylnaphthalene	90-12-0	5234.00-8	98%	1,000.0	µg/mL	+/- 36.3838
30	Hexachlorocyclopentadiene	77-47-4	099063I14L	98%	1,008.5	µg/mL	+/- 36.6909
31	2,4,6-Trichlorophenol	88-06-2	STBJ5914	99%	1,004.4	µg/mL	+/- 36.5442
32	2,4,5-Trichlorophenol	95-95-4	FHN01	98%	1,001.9	µg/mL	+/- 36.4512
33	2-Chloronaphthalene	91-58-7	RPN7O	99%	1,001.1	µg/mL	+/- 36.4230
34	2-Nitroaniline	88-74-4	RP230531	99%	1,002.9	µg/mL	+/- 36.4876
35	1,4-Dinitrobenzene	100-25-4	RP230816	99%	1,005.7	µg/mL	+/- 36.5887
36	Acenaphthylene	208-96-8	p06V	98%	1,009.5	µg/mL	+/- 36.7265
37	1,3-Dinitrobenzene	99-65-0	1-DXX-24-1	99%	1,004.4	µg/mL	+/- 36.5422
38	Dimethylphthalate	131-11-3	358221L17K	99%	1,005.9	µg/mL	+/- 36.5968
39	2,6-Dinitrotoluene	606-20-2	BCCG1833	99%	1,003.2	µg/mL	+/- 36.4998
40	1,2-Dinitrobenzene	528-29-0	RP230428	99%	1,002.2	µg/mL	+/- 36.4634
41	Acenaphthene	83-32-9	MKCR7169	99%	1,009.3	µg/mL	+/- 36.7221
42	3-Nitroaniline	99-09-2	RP230822RSR	99%	1,003.9	µg/mL	+/- 36.5240
43	2,4-Dinitrophenol	51-28-5	DR230417RSR	99%	1,002.0	µg/mL	+/- 36.4553
44	Dibenzofuran	132-64-9	MKCD9952	99%	1,006.7	µg/mL	+/- 36.6251
45	2,4-Dinitrotoluene	121-14-2	MKAA0690V	99%	1,003.8	µg/mL	+/- 36.5220
46	4-Nitrophenol	100-02-7	RP230627	99%	1,002.3	μg/mL	+/- 36.4674
47	2,3,4,6-Tetrachlorophenol	58-90-2	PR-30126	99%	1,008.7	µg/mL	+/- 36.6979
48	2,3,5,6-Tetrachlorophenol	935-95-5	RP230919	99%	1,006.3	μg/mL	+/- 36.6130
49	Fluorene	86-73-7	10241100	99%	1,008.3	μg/mL	+/- 36.6857
50	4-Chlorophenyl phenyl ether	7005-72-3	MKCT7248	99%	1,003.8	µg/mL	+/- 36.5220
51	Diethylphthalate	84-66-2	MKCD2547	99%	1,008.6	µg/mL	+/- 36.6958
52	4-Nitroaniline	100-01-6	RP230111	99%	1,001.1	µg/mL	+/- 36.4230
53	4,6-Dinitro-2-methylphenol (Dinitro-o-cresol)	534-52-1	230718JLM	99%	1,002.0	ug/mL	+/- 36.4553

54	Diphenylamine	122-39-4	MKCH1042	99%	1,002.3	µg/mL	+/- 36.4674
55	Azobenzene	103-33-3	BCCK0887	99%	1,005.8	µg/mL	+/- 36.5928
56	4-Bromophenyl phenyl ether	101-55-3	STBH6361	99%	1,003.0	µg/mL	+/- 36.4917
57	Hexachlorobenzene	118-74-1	14821700	99%	1,007.5	µg/mL	+/- 36.6554
58	Pentachlorophenol	87-86-5	RP230530RSR	99%	1,008.8	μg/mL	+/- 36.7019
59	Phenanthrene	85-01-8	MKCQ8876	99%	1,008.4	µg/mL	+/- 36.6877
60	Anthracene	120-12-7	MKCR0570	99%	1,009.0	µg/mL	+/- 36.7100
61	Carbazole	86-74-8	14351100	99%	1,000.9	µg/mL	+/- 36.4149
62	Di-n-butylphthalate	84-74-2	MKCN4337	99%	1,007.6	µg/mL	+/- 36.6595
63	Fluoranthene	206-44-0	MKCQ4728	99%	1,009.6	μg/mL	+/- 36.7302
64	Рутепе	129-00-0	BCCG8479	98%	1,007.2	µg/mL	+/- 36.6453
65	Benzyl butyl phthalate	85-68-7	X12I018	99%	1,002.1	μg/mL	+/- 36.4573
66	Bis(2-ethylhexyl)adipate	103-23-1	MKCM1988	99%	1,005.2	µg/mL	+/- 36.5705
67	Benz(a)anthracene	56-55-3	I220012022BAA	99%	1,002.2	µg/mL	+/- 36.4614
68	Chrysene	218-01-9	RP230601	99%	1,008.3	μg/mL	+/- 36.6837
69	Bis(2-ethylhexyl)phthalate	117-81-7	MKCQ3468	99%	1,001.8	µg/mL	+/- 36.4472
70	Di-n-octyl phthalate	117-84-0	14382700	99%	1,006.0	µg/mL	+/- 36.6008
71	Benzo(b)fluoranthene	205-99-2	012013B	99%	1,002.8	µg/mL	+/- 36.4836
72	Benzo(k)fluoranthene	207-08-9	012022K	99%	1,003.0	µg/mL	+/- 36.4917
73	Benzo(a)pyrene	50-32-8	P54915-0703	99%	1,002.3	µg/mL	+/- 36.4674
74	Indeno(1,2,3-cd)pyrene	193-39-5	12-JKL-118-9	97%	1,009.4	µg/mL	+/- 36.7243
75	Dibenz(a,h)anthracene	53-70-3	2-ASA-59-1	99%	1,007.6	µg/mL	+/- 36.6595
76	Benzo(g,h,i)perylene	191-24-2	RP231003RSR	99%	1,002.9	µg/mL	+/- 36.4876

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99% ,

www.restek.com

CERTIFIED REFERENCE MATERIAL

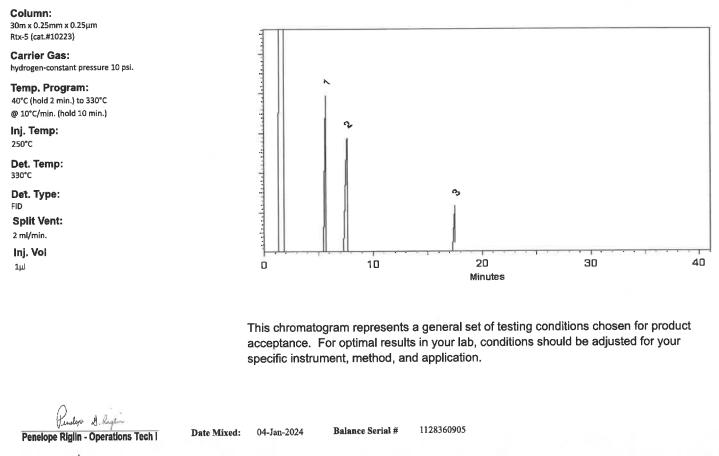
chromatographic plus

ACCREDITED ISO 17034 Accredited

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31087	Lot No.:	A0206206	- 512187 7 RC/
Description :	Acid Surrogate Mix (4/89 SO	W)		512101 KC
	Acid Surrogate 10, 000µg/mL	., Methanol, 5mL/ampul		V (03/18/24
Container Size :	5 mL	Pkg Amt:	> 5 mL	912206
Expiration Date :	January 31, 2032	Storage:	10°C or colder	
		Ship:	Ambient	


CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)
1	2-Fluorophenol	367-12-4	STBK1705	99%	10,005.3 µg/mL	+/- 302.5390
2	Phenol-d6	13127-88-3	PR-33287A	99%	10,005.5 μg/mL	+/- 302.5475
3	2,4,6-Tribromophenol	118-79-6	RP230831RSR	99%	10,006.6 µg/mL	+/- 302.5783

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methanol CAS # 6'

CAS # 67-56-1 Purity 99%

Chuide Milb

Christie Mills - Operations Lead Tech - ARM QC

Date Passed: 08-Jan-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

www.restek.com

CERTIFIED REFERENCE MATERIAL

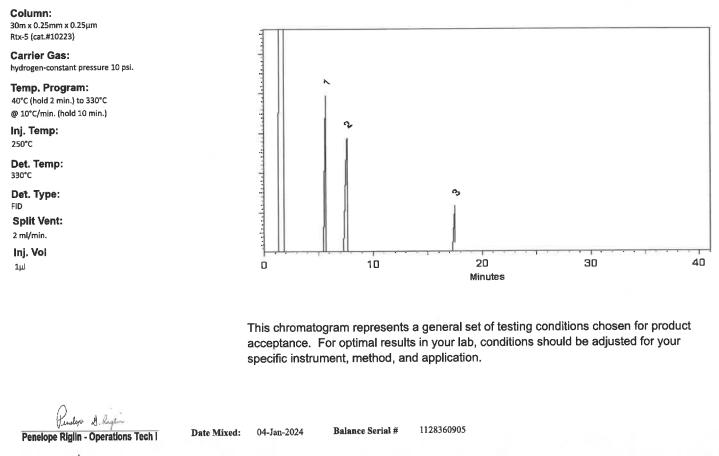
chromatographic plus

ACCREDITED ISO 17034 Accredited

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31087	Lot No.:	A0206206	- 512187 7 RC/
Description :	Acid Surrogate Mix (4/89 SO	W)		512101 KC
	Acid Surrogate 10, 000µg/mL	., Methanol, 5mL/ampul		V (03/18/24
Container Size :	5 mL	Pkg Amt:	> 5 mL	912206
Expiration Date :	January 31, 2032	Storage:	10°C or colder	
		Ship:	Ambient	


CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)
1	2-Fluorophenol	367-12-4	STBK1705	99%	10,005.3 µg/mL	+/- 302.5390
2	Phenol-d6	13127-88-3	PR-33287A	99%	10,005.5 μg/mL	+/- 302.5475
3	2,4,6-Tribromophenol	118-79-6	RP230831RSR	99%	10,006.6 µg/mL	+/- 302.5783

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methanol CAS # 6'

CAS # 67-56-1 Purity 99%

Chuide Milb

Christie Mills - Operations Lead Tech - ARM QC

Date Passed: 08-Jan-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

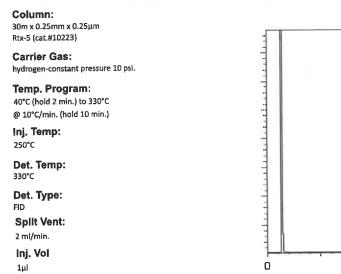
VIEC 17025 Accredite Testing Laboratory Certificate #3222.02

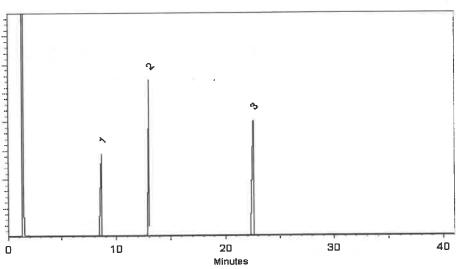
FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31086	Lot No.: 4	A0206381	- 512207 7 Rc/
Description :	B/N Surrogate Mix (4/89 SOW)			Sidou (KC/
	Base Neutral Surrogate 5000µg	/mL, Methylene Chlorid	e, 5mL/ampul	V) 03/18/24
Container Size :	5 mL	Pkg Amt:	> 5 mL	512221
Expiration Date :	December 31, 2029	Storage:	10°C or colder	
Handling:	Sonicate prior to use.	Ship:	Ambient	=:

CERTIFIED VALUES


Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Nitrobenzene-d5	4165-60-0	I-25158	99%	5,029.3 μg/mL	+/- 226.5204
2	2-Fluorobiphenyl	321-60-8	00021384	99%	5,030.9 µg/mL	+/- 226.5936
3	p-Terphenyl-d14	1718-51-0	PR-32599	99%	5,026.4 µg/mL	+/- 226.3909


* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

Tech Tips:

Due to the limited solubility of p-terphenyl-d14 in methanol, we do not recommend that this mixture be diluted in methanol.

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Jess Hoy - Operations Tech I

Date Mixed: 09-Jan-2024

Jan-2024 Balance Serial #

ial # 1128360905

_____.

Gungo & Pullins Jennifer Pollino - Operations Tech III - ARM QC

Date Passed: 11-Jan-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

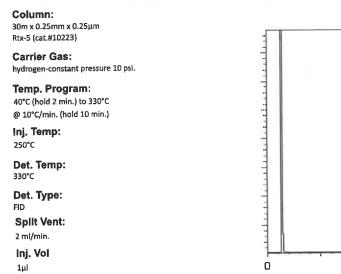
VIEC 17025 Accredite Testing Laboratory Certificate #3222.02

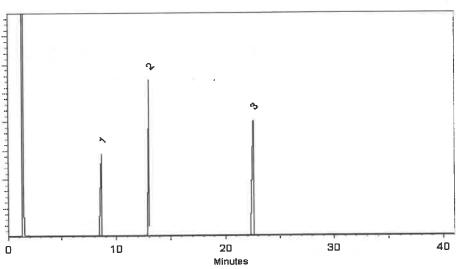
FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31086	Lot No.: 4	A0206381	- 512207 7 Rc/
Description :	B/N Surrogate Mix (4/89 SOW)			Sidou (KC/
	Base Neutral Surrogate 5000µg	/mL, Methylene Chlorid	e, 5mL/ampul	V) 03/18/24
Container Size :	5 mL	Pkg Amt:	> 5 mL	512221
Expiration Date :	December 31, 2029	Storage:	10°C or colder	
Handling:	Sonicate prior to use.	Ship:	Ambient	=:

CERTIFIED VALUES


Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Nitrobenzene-d5	4165-60-0	I-25158	99%	5,029.3 μg/mL	+/- 226.5204
2	2-Fluorobiphenyl	321-60-8	00021384	99%	5,030.9 µg/mL	+/- 226.5936
3	p-Terphenyl-d14	1718-51-0	PR-32599	99%	5,026.4 µg/mL	+/- 226.3909


* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

Tech Tips:

Due to the limited solubility of p-terphenyl-d14 in methanol, we do not recommend that this mixture be diluted in methanol.

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Jess Hoy - Operations Tech I

Date Mixed: 09-Jan-2024

Jan-2024 Balance Serial #

ial # 1128360905

_____.

Gungo & Pullins Jennifer Pollino - Operations Tech III - ARM QC

Date Passed: 11-Jan-2024

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

5580 Skylane Blvd Santa Rosa, CA 95403

(707)525-5788 (800)878-7654 Toll Free (707)545-7901 Fax Manufacturer's Quality System Audited & Registered by TUV USA to ISO 9001:2015

Date Received:_

Certificate of Analysis Rev 0 Page 1 of 4

Tuge 1

Catalog No.: Lot No.:	Storage:	orage: Solvent: Exp. Date: D			escription:		
Z-110381-01 520963	≤-10 °C	Methylene Chloride	10/10/2028 Method	1 8270 Calibration Solution	n, 76-1, 500 & 1,000 mg/L, 1 mL		
Compound		CAS No.	CAS No. Purity (%)		Concentration, mg/L		
acenaphthene		83-32-9	99.9	13.1.5P	1010 ± 9.89		
acenaphthylene		208-96-8	97.6	14.290.1P	1014 ±9.93		
aniline		62-53-3	99.97	64.1.4P	1001 ±9.8		
anthracene		120-12-7	99.5	15.7.1P	999.6 ±9.79		
azobenzene		103-33-3	98.1	252.7.2P	999.1 ± 9.8		
benzo[a]anthracene		56-55-3	100	16.7.3P	1007 ± 9.86		
benzo[b]fluoranthene		205-99-2	99.8	17.421.3P	1011 ±14.11		
benzo[k]fluoranthene		207-08-9	98.9	18.421.4 P	1001 ± 10.96		
benzo[ghi]perylene		191-24-2	93	19.286.4P	999.6 ±13.95		
benzo[a]pyrene		50-32-8	97	20.286.2P	999.9 ±22.24		
benzyl alcohol		100-51-6	99.9	65.18.1P	1001 ± 9.82		
bis(2-chloroethoxy)methane		111-91-1	99.1	31.3.15P	1000 ± 14.69		
bis(2-chloroethyl)ether		111-44-4	99.8	32.7.1P	1003 ±13.89		
bis(2-chloro-1-methylethyl) eth	er	108-60-1	99.5	34.3.15P	999.4 ±14.68		
bis(2-ethylhexyl)adipate		103-23-1	99.5	874.7.1P	999.5 ± 9.8		
bis(2-ethylhexyl)phthalate		117-81-7	99.4	33.29.1 P	998.8 ±17.03		
4-bromophenyl phenyl ether		101-55-3	99.4	35.7.1.1P	1000 ± 13.85		
butyl benzyl phthalate		85-68-7	98.4	36.1.6P	984.7 ± 16.79		
carbazole		86-74-8	99.4	239.7.2P	1000 ± 9.8		

512270 Rc/ V 512274 05/24/24

*Not a certified value

KenzEhane

Certified By:

Kerry Kane Chemist All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

Certificate of Analysis

Catalog No.: Z-110381-01	Lot No.: 520963 Expiration Date: 10/10/2			/2028
Compound	CAS No.	Purity (%)	Compound Lot No.	Concentration, mg/L
4-chloroaniline	106-47-8	100	66.7.1P	1000 ±9.79
4-chlorophenylphenyl ether	7005-72-3	98	37.158.2P	1001 ± 17.07
4-chloro-3-methylphenol	59-50-7	99	102.1.2P	1006 ± 17.16
2-chloronaphthalene	91-58-7	99.9	42.7.6P	1000 ± 9.79
2-chlorophenol	95-57-8	99.8	103.7.1P	1007 ± 13.96
chrysene	218-01-9	96	21.286.2P	998.4 ± 12.85
dibenz[a,h]anthracene	53-70-3	99.44	22.286.3P	1000 ± 9.74
dibenzofuran	132-64-9	100	67.7.2.1P	1002 ± 9.77
di-n-butyl phthalate	84-74-2	99.84	40.286.1P	1007 ± 24.48
1,2-dichlorobenzene	95-50-1	99.8	43.7.1P	1000 ± 9.79
1,3-dichlorobenzene	541-73-1	99.5	44.1.3P	$999.4 \pm 9.79 $
1,4-dichlorobenzene	106-46-7	99.9	45.29.2P	$1000 \hspace{0.1 cm} \pm 9.79$
2,4-dichlorophenol	120-83-2	99.6	104.7.1.1P	1005 ± 13.93
diethyl phthalate	84-66-2	99.8	38.7.1P	$1011 \ \pm 14$
2,4-dimethylphenol	105-67-9	99.6	105.7.1.1P	1009 ± 13.98
dimethyl phthalate	131-11-3	99.9	39.9.2P	996.5 ± 13.8
1,2-dinitrobenzene	528-29-0	99.86	86.7.3.1P	999.5 ± 9.75
1,3-dinitrobenzene	99-65-0	100	313.7.2P	998 ± 9.79
1,4-dinitrobenzene	100-25-4	100	907.7.1P	999.5 ± 9.8
2,4-dinitrophenol	51-28-5	99.9	106.1.6DP	1002 ± 13.89
2,4-dinitrotoluene	121-14-2	100	87.7.3P	999.8 ± 13.85
2,6-dinitrotoluene	606-20-2	99.4	88.7.2.1P	999.6 ±13.85
di-n-octyl phthalate	117-84-0	99.1	41.7.5P	991.6 ±13.74
diphenylamine	122-39-4	100	78.1.6P	998 ±13.79
2,3,5,6-tetrachlorophenol	935-95-5	97	1112.286.1P	1004 ± 14.02
fluoranthene	206-44-0	98.6	23.7.4P	999.6 ± 9.79
fluorene	86-73-7	98.4	24.7.1P	999.7 ± 9.79

*Not a certified value

KenzEkane

Certified By:

Kerry Kane Chemist

All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

Certificate of Analysis

Catalog No.: Z-110381-01	Lot No.: 520963		Expiration Date: 10/10/2028			
Compound	CAS No.	Purity (%)	Compound Lot No.	Concentration, mg/L		
hexachlorobenzene	118-74-1	99	46.158.4P	999.9 ±13.96		
hexachlorobutadiene	87-68-3	97.4	47.1.4P	1000 ± 9.79		
hexachlorocyclopentadiene	77-47-4	99.2	48.2.2P	1001 ± 9.8		
hexachloroethane	67-72-1	99.9	49.1.4P	1003 ± 9.82		
indeno[1,2,3-cd]pyrene	193-39-5	98	25.286.4P	999.4 ± 22.23		
isophorone	78-59-1	98.9	90.1.4P	999.9 ± 13.85		
2-methyl-4,6-dinitrophenol	534-52-1	99.6	107.421.2DP	991 ± 24.09		
l-methylnaphthalene	90-12-0	97.1	249.7.5P	999.2 ± 13.95		
2-methylnaphthalene	91-57-6	97.4	68.7.2P	1006 ± 22.38		
2-methylphenol	95-48-7	99.6	114.7.3P	1001 ± 13.87		
3-methylphenol	108-39-4	99.1	115.7.4P	499.7 ± 6.92		
4-methylphenol	106-44-5	99.5	116.7.1P	501.2 ± 6.94		
naphthalene	91-20-3	99.8	26.9.1P	1018 ± 9.97		
2-nitroaniline	88-74-4	99.7	69.29.1P	999.6 ±9.79		
3-nitroaniline	99-09-2	100	70.7.3P	1000 ± 9.74		
4-nitroaniline	100-01-6	99.7	71.29.1P	1001 ± 9.8		
nitrobenzene	98-95-3	100	94.7.1P	1000 ± 13.85		
2-nitrophenol	88-75-5	99.1	108.29.1P	996.5 ± 13.81		
4-nitrophenol	100-02-7	100	109.7.1P	1000 ± 13.82		
N-nitrosodimethylamine	62-75-9	99.5	57.3.19P	998.5 ± 14.67		
N-nitrosodi-n-propylamine	621-64-7	99.8	59.286.1P	996.8 ±17		
pentachlorophenol	87-86-5	99	110.1.7P	1004 ± 13.92		
phenanthrene	85-01-8	99.7	27.1.5P	999 ± 12.87		
phenol	108-95-2	100	112.7.1P	998.5 ±13.8		
pyrene	129-00-0	99.2	28.9.2P	998.9 ± 9.78		
pyridine	110-86-1	100	101.24.1P	999 ± 9.73		
2,3,4,6-Tetrachlorophenol	58-90-2	91.8	120.421.1P	996.5 ± 13.92		

*Not a certified value

Kenzekane

All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

Certified By:

Kerry Kane Chemist

Certificate of Analysis

Catalog No.: Z-110381-01	Lot No.: 520963		Expiration Date: 10/10/2028			
Compound	CAS No.	Purity (%)	Compound Lot No.	Concentration, mg/L		
1,2,4-trichlorobenzene	120-82-1	99.6	54.29.1P	999.6 ± 9.79		
2,4,5-trichlorophenol	95-95-4	96.5	121.7.1.1P	999.5 ±13.85		
2,4,6-trichlorophenol	88-06-2	99.6	113.7.1P	996 ±13.8		

*Not a certified value

KenzEkane

Kerry Kane Chemist

Certified By:

All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

hduð

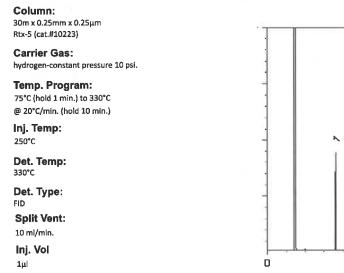
0

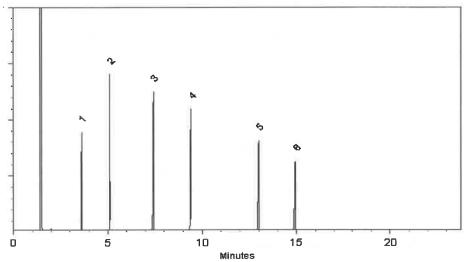
O/IEC 17025 Accredite Testing Laboratory Certificate #3222.02

1

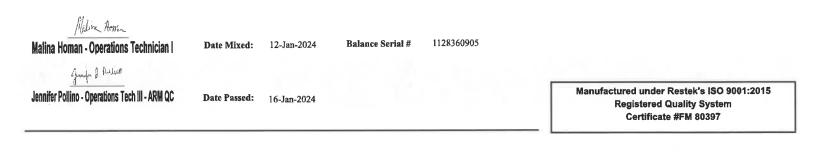
FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

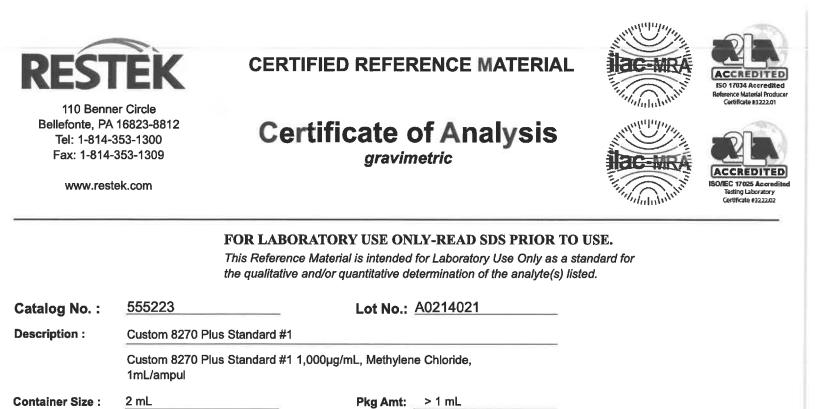
This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.


Catalog No. :	31206	Lot No.:	<u>A0206540</u>	G12312 RC/
Description :	SV Internal Standard Mix 2mg/ml			05/30/24
	SV Internal Standard Mix 2mg/ml 2 1mL/ampul	000 µg/ml, Methyle	ne Chloride,	G12331
Container Size :	<u>2 mL</u>	Pkg Amt:	> 1 mL	
Expiration Date :	December 31, 2029	Storage:	10°C or colder	
Handling:	Sonication required. Mix is photosensitive.	Ship:	Ambient	


CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,4-Dichlorobenzene-d4	3855-82-1	PR-30447	99%	2,007.1 μg/mL	+/- 90.4025
2	Naphthalene-d8	1146-65-2	M-2180	99%	2,005.9 µg/mL	+/- 90.3454
3	Acenaphthene-d10	15067-26-2	PR-33507	99%	2,007.9 μg/mL	+/- 90.4385
4	Phenanthrene-d10	1517-22-2	PR-32303	99%	2,006.7 μg/mL	+/- 90.3845
5	Chrysene-d12	1719-03-5	PR-32210	99%	2,015.5 µg/mL	+/- 90.7778
6	Perylene-d12	1520-96-3	PR-33205	99%	2,014.7 μg/mL	+/- 90.7448


* Expanded Uncertainty displayed in same units as Grav. Conc.


Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

and the second sec

CERTIFIED VALUES

Componen t #	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	3,3'-Dichlorobenzidine	91-94- 1	S240326RSR	99%	1,004.0 µg/mL	+/- 23.0487
2	Atrazine	1912-24-9	5FYWL	99%	1,005.0 μg/mL	+/- 23.0717
3	Benzidine	92-87-5	S240430RSR	99%	1,006.0 μg/mL	+/- 23.0947
4	epsilon-Caprolactam	105-60-2	Y16H012	99%	1,000.0 µg/mL	+/- 22.9569

Storage:

Ship:

10°C or colder

Ambient

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

Expiration Date :

Handling:

July 31, 2026

This product is photosensitive.

512449 RC/ 12508 7/24/24

Repuse depused Rebecca Gingerich - Operations Tech II

Date Mixed: 18-Jul-2024

Balance: 1128353505

1128353505

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

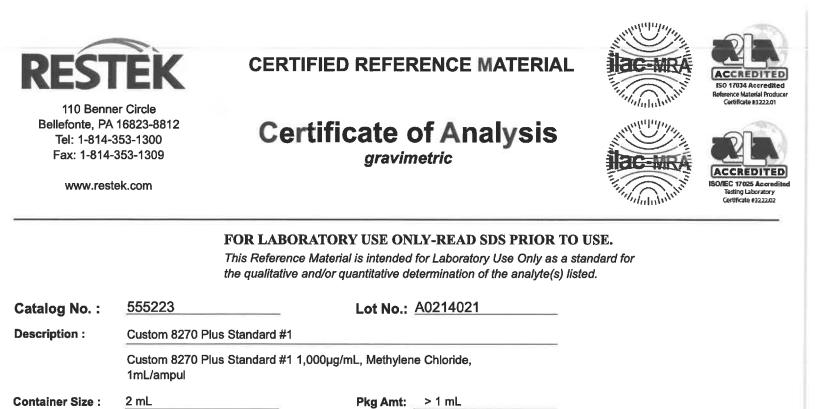
- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.


• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

and the second sec

CERTIFIED VALUES

Componen t #	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	3,3'-Dichlorobenzidine	91-94- 1	S240326RSR	99%	1,004.0 µg/mL	+/- 23.0487
2	Atrazine	1912-24-9	5FYWL	99%	1,005.0 μg/mL	+/- 23.0717
3	Benzidine	92-87-5	S240430RSR	99%	1,006.0 μg/mL	+/- 23.0947
4	epsilon-Caprolactam	105-60-2	Y16H012	99%	1,000.0 µg/mL	+/- 22.9569

Storage:

Ship:

10°C or colder

Ambient

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

Expiration Date :

Handling:

July 31, 2026

This product is photosensitive.

512449 RC/ 12508 7/24/24

Repuse depused Rebecca Gingerich - Operations Tech II

Date Mixed: 18-Jul-2024

Balance: 1128353505

1128353505

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

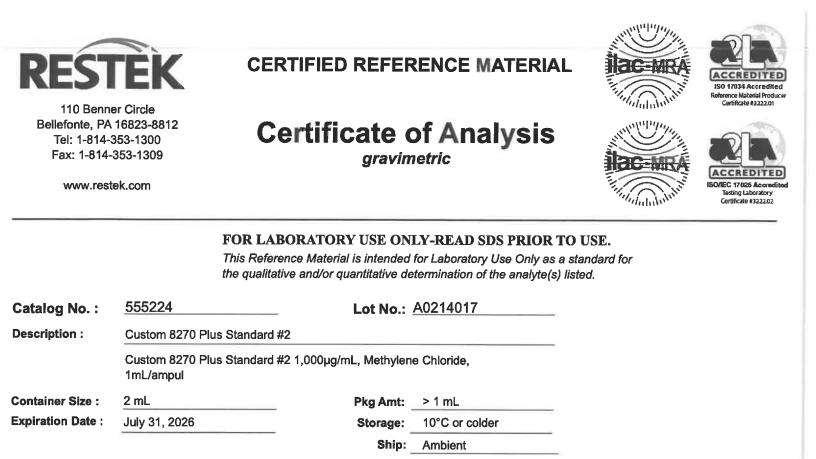
- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.


• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

CERTIFIED VALUES

Componen t#	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,2,4,5-Tetrachlorobenzene	95-94-3	МКСТ9480	99%	1,005.0 µg/mL	+/- 29.541899
2	Acetophenone	98-86-2	STBH8205	99%	1,005.0 μg/mL	+/- 29.541899
3	Benzaldehyde	100-52-7	RD231129RSRA	99%	1,008.0 µg/mL	+/- 29.630084
4	Benzoic acid	65-85-0	MKCR2694	99%	1,010.0 μg/mL	+/- 29.688874
5	Biphenyl	92-52-4	MKCS5928	99%	1,008.0 µg/mL	+/- 29.630084

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

512568 Rc/ V 7/24/24

Jess Hoy - Operations Tech I

Date Mixed: 18-Jul-2024

Balance: 1128360905

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

 \square

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

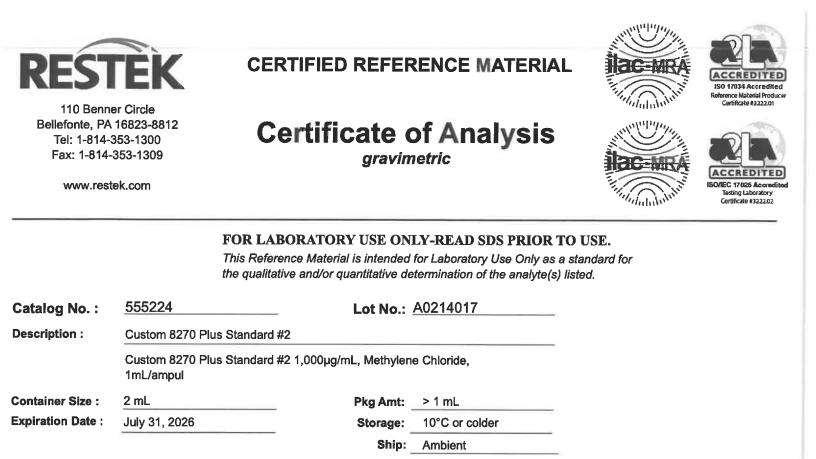
- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.


• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

CERTIFIED VALUES

Componen t#	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,2,4,5-Tetrachlorobenzene	95-94-3	МКСТ9480	99%	1,005.0 µg/mL	+/- 29.541899
2	Acetophenone	98-86-2	STBH8205	99%	1,005.0 μg/mL	+/- 29.541899
3	Benzaldehyde	100-52-7	RD231129RSRA	99%	1,008.0 µg/mL	+/- 29.630084
4	Benzoic acid	65-85-0	MKCR2694	99%	1,010.0 μg/mL	+/- 29.688874
5	Biphenyl	92-52-4	MKCS5928	99%	1,008.0 µg/mL	+/- 29.630084

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

512568 Rc/ V 7/24/24

Jess Hoy - Operations Tech I

Date Mixed: 18-Jul-2024

Balance: 1128360905

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

 \square

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

 The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k \sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

• The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through
 the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability
 information, with the knowledge/understanding that open product stability is subject to the specific handling and
 environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with
 most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom
 ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861,
 which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

www.restek.com

CERTIFIED REFERENCE MATERIAL

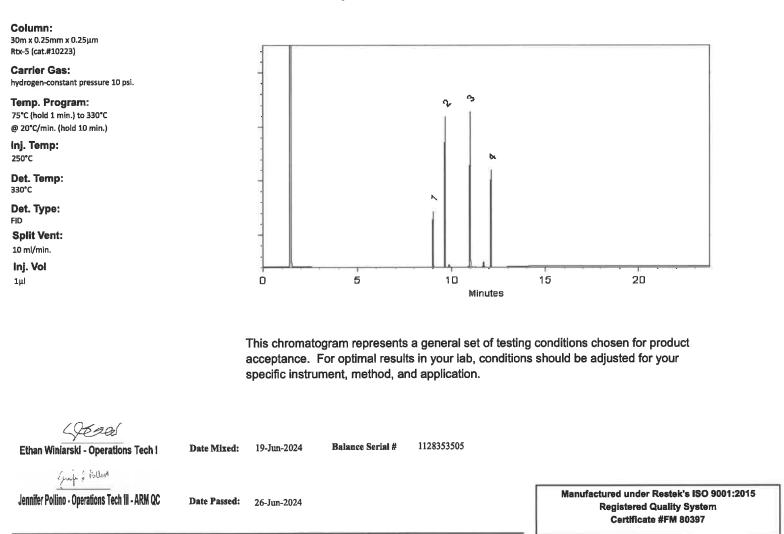
Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31615	Lot No.:	A0212955
Description :	GC/MS Tuning Mixture		
	GC/MS Tuning Mixture 1,000µg/mL, M	lethylene Chlorid	le, 1mL/ampul
Container Size :	2 mL	Pkg Amt:	> 1 mL
Expiration Date :	June 30, 2027	Storage:	10°C or colder
Handling:	Contains carcinogen/reproductive toxin.	Ship:	Ambient


CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Pentachlorophenol	87-86-5	RP240517RSR	99%	1,004.5 μg/mL	+/- 44.8902
2	DFTPP (Decafluorotriphenylphosphine)	5074-71-5	Q117-147	99%	1,004.5 μg/mL	+/- 44.8902
3	Benzidine	92-87-5	S240430RSR	99%	1,006.0 μg/mL	+/- 44.9572
4	4,4'-DDT	50-29-3	S240530RSR	97%	1,000.1 μg/mL	+/- 44.6922

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

SI2577 | RC J 8/2/24

* Expanded Uncertainty displayed in same units as Grav. Conc.

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31206	Lot No.:	A0212266					
Description :	SV Internal Standard Mix 2mg/ml							
	SV Internal Standard Mix 2mg/ml 2000 µg/ml, Methylene Chloride, 1mL/ampul							
Container Size :	2 mL	Pkg Amt:	> 1 mL					
Expiration Date :	April 30, 2030	Storage:	10°C or colder					
Handling:	Sonication required. Mix is photosensitive.	Ship:	Ambient					

CERTIFIED VALUES

Elution Order	Compound	CAS #	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	1,4-Dichlorobenzene-d4	3855-82-1	PR-30447	99%	2,000.6 μg/mL	+/- 90.1075
2	Naphthalene-d8	1146-65-2	M-2180	99%	2,000.3 μg/mL	+/- 90.0925
3	Acenaphthene-d10	15067-26-2	PR-33507	99%	2,000.4 μg/mL	+/- 90.1000
4	Phenanthrene-d10	1517-22-2	PR-34099	99%	2,000.5 μg/mL	+/- 90.1037
5	Chrysene-d12	1719-03-5	PR-33506	99%	2,000.7 μg/mL	+/- 90.1112
6	Perylene-d12	1520-96-3	PR-33205	99%	2,000.6 µg/mL	+/- 90.1075

* Expanded Uncertainty displayed in same units as Grav. Conc.

S12645 AC 10/1/24

Solvent: Methylene chloride CAS # 75-09-2 Purity 99%

5580 Skylane Blvd Santa Rosa, CA 95403

(707)525-5788 (800)878-7654 Toll Free (707)545-7901 Fax

Manufacturer's Quality System Audited & Registered by TUV USA to ISO 9001:2015

Date Received:_

Certificate of Analysis Rev 0 Page 1 of 1 Catalog No.: Lot No.: Solvent: Exp. Date: Storage: **Description:** Custom 8270 Mix, 4-79, Z-110816-01 414127 ≤-10 °C 6/21/2025 Methylene Chloride 1000 mg/L, 1 mL Compound CAS No. **Compound Lot No.** Purity (%) Concentration, mg/L atrazine 1912-24-9 99.5 337.7.3P 997 ± 5.81 benzidine 92-87-5 99.9 124.18.6.2P 991.8 ± 5.77 caprolactam 105-60-2 99.9 271.1.6P 999 ± 5.82

New numbers Generated

512790 Z Rel J) 11/12/24 512794) 11/12/24

*Not a certified value Manufactured by o2si smart solutions, Accredited to ISO 9001:2008 by NSF and ISO/IEC 17025:2005 (Certification No. 3031.01) and ISO Guide 34:2009 (Certification No. 3031.02) by A2LA

Certified By:

Shane Overcash Chemist

All weights are traceable through N. I. S. T. Test No. 822/264157-00. Concentration (correct for purity) and uncertainty (95% confidence) values listed are determined gravimetriclly.

www.restek.com

CERTIFIED REFERENCE MATERIAL

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No. :	31850	Lot No.:	A0219438	- < 12962
Description :	8270 MegaMix®			A. AC
	8270 MegaMix® 500-1000 μg/mL,	Methylene Chloride	, 1mL/ampul	12/17/24
Container Size :	2 mL	Pkg Amt:	> 1 mL	512992)
Expiration Date :	September 30, 2025	Storage:	0°C or colder	
Handling:	Sonication required. Mix is photosensitive.	Ship:	Ambient	

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot #	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	Pyridine	110-86-1	SHBP6240	99%	1,008.3 μg/mL	+/- 36.6849
2	N-Nitrosodimethylamine	62-75-9	S240313RSR	99%	1,008.6 µg/mL	+/- 36.6985
3	Phenol	108-95-2	MKCK1120	99%	1,003.5 μg/mL	+/- 36.5120
4	Aniline	62-53-3	X22F726	99%	1,002.9 µg/mL	+/- 36.4893
5	Bis(2-chloroethyl)ether	111 -44 -4	002891T24M	99%	1,003.0 µg/mL	+/- 36.4938
6	2-Chlorophenol	95-57-8	STBJ3909	99%	1,005.6 µg/mL	+/- 36.5894
7	1,3-Dichlorobenzene	541-73-1	BCCD5315	99%	1,004.1 µg/mL	+/- 36.5348
8	1,4-Dichlorobenzene	106-46-7	MKBS7929V	99%	1,002.1 µg/mL	+/- 36.4620
9	Benzyl alcohol	100-51-6	SHBK5469	99%	1,003.5 µg/mL	+/- 36.5120
10	1,2-Dichlorobenzene	95-50-1	SHBL6287	99%	1,005.3 μg/mL	+/- 36.5757
11	2-Methylphenol (o-cresol)	95-48-7	SHBN7598	99%	1,008.4 μg/mL	+/- 36.6894
12	2,2'-oxybis(1-chloropropane)	108-60-1	29-MAR-45-5	99%	1,004.6 μg/mL	+/- 36.5530
13	3-Methylphenol (m-cresol)	108-39-4	STBJ0710	99%	502.1 μg/mL	+/- 18.2697
14	4-Methylphenol (p-cresol)	106-44-5	SHBN3411	99%	503.8 μg/mL	+/- 18.3288
15	N-Nitroso-di-n-propylamine	621-64-7	N63MG	99%	1,006.5 μg/mL	+/- 36.6212
16	Hexachloroethane	67-72-1	DAXRI	99%	1,004.5 μg/mL	+/- 36.5484
17	Nitrobenzene	98-95-3	10224044	99%	1,002.5 μg/mL	+/- 36.4757

18	Isophorone	78-59-1	MKCR3249	99%	1,003.4	µg/mL	+/-	36.5075
19	2-Nitrophenol	88-75-5	RP230710	99%	1,002.5	µg/mL	+/-	36.4757
20	2,4-Dimethylphenol	105-67-9	XW5GK	99%	1,006.5	µg/mL	+/-	36.6212
21	Bis(2-chloroethoxy)methane	111-91-1	15705100	99%	1,006.6	µg/mL	+/-	36.6257
22	2,4-Dichlorophenol	120-83-2	BCCK6969	99%	1,001.5	µg/mL	+/-	36.4393
23	1,2,4-Trichlorobenzene	120-82-1	SHBP5900	99%	1,006.4	µg/mL	+/-	36.6166
24	Naphthalene	91-20-3	STBL1057	99%	1,002.1	μg/mL	+/-	36.4620
25	4-Chloroaniline	106-47-8	BCCJ3217	99%	1,004.4	µg/mL	+/-	36.5439
26	Hexachlorobutadiene	87-68-3	X05J	98%	1,002.5	µg/mL	+/-	36.4771
27	4-Chloro-3-methylphenol	59-50 - 7	BCCD4461	99%	1,004.5	µg/mL	+/-	36.5484
28	2-Methylnaphthalene	91-57-6	STBL3028	99%	1,000.0	µg/mL	+/-	36.3847
29	1-Methylnaphthalene	90-12-0	5234.00-8	98%	990.2	µg/mL	+/-	36.0269
30	Hexachlorocyclopentadiene	77-47-4	099063I14L	98%	1,001.3	µg/mL	+/-	36.4325
31	2,4,6-Trichlorophenol	88-06-2	STBK8870	99%	1,006.4	µg/mL	+/-	36.6166
32	2,4,5-Trichlorophenol	95-95-4	3YFRE	97%	1,004.6	µg/mL	+/-	36.5505
33	2-Chloronaphthalene	91 -5 8-7	RPN7O	99%	1,004.3	µg/mL	+/-	36.5393
34	2-Nitroaniline	88-74-4	RP240715RSR	99%	1,004.4	µg/mL	+/-	36.5439
35	1,4-Dinitrobenzene	100-25-4	RP240703RSR	99%	1,002.8	µg/mL	+/-	36.4847
36	Acenaphthylene	208-96-8	RP241029RSR	98%	1,000.0	µg/mL	+/-	36.3835
37	1,3-Dinitrobenzene	99-65-0	TRC3-1075941-2-1	99%	1,006.3	µg∕mL	+/-	36.6121
38	Dimethylphthalate	131-11-3	358221L17K	99%	1,008.9	µg/mL	+/-	36.7076
39	2,6-Dinitrotoluene	606-20-2	BCCG1833	99%	1,006.6	µg/mL	+/-	36.6257
40	1,2-Dinitrobenzene	528-29-0	RP240701RSR	99%	1,002.5	μg/mL	+/-	36.4757
41	Acenaphthene	83-32-9	MKCR7169	99%	1,000.0	μg/mL	+/-	36.3847
42	3-Nitroaniline	99-09-2	RP240708RSR	99%	1,004.6	µg/mL	+/-	36.5530
43	2,4-Dinitrophenol	51-28-5	D240927RSR	%	1,005.6	µg/mL	+/-	36.5894
44	Dibenzofuran	132-64-9	MKCN1772	99%	1,003.5	µg/mL	+/-	36.5120
45	2,4-Dinitrotoluene	121-14-2	102869V26E	99%	1,008.3	µg/mL	+/-	36.6849
46	4-Nitrophenol	100-02-7	20241029-2-AN	99%	1,004.8	µg/mL	+/-	36.5575
47	2,3,4,6-Tetrachlorophenol	58-90-2	PR-34476	99%	1,005.8	µg/mL	+/-	36.5939
48	2,3,5,6-Tetrachlorophenol	935-95-5	RP231219RSR	99%	1,006.4	µg/mL	+/-	36.6166
49	Fluorene	86-73-7	10246250	98%	1,000.7	µg/mL	+/-	36.4102
50	4-Chlorophenyl phenyl ether	7005-72-3	MKCT7248	99%	1,004.9	μg/mL	+/-	36.5621
51	Diethylphthalate	84-66-2	BCCJ6241	99%	1,003.9	µg/mL	+/-	36.5257
52	4-Nitroaniline	100-01-6	RP230111	99%	1,006.6	µg/mL	+/-	36.6257
53	4,6-Dinitro-2-methylphenol (Dinitro-o-cresol)	534-52-1	S241008RSR	99%	1,001.3	µg/mL	+/-	36.4302

54	Diphenylamine	122-39-4	MKCT1512	99%	1,003.0	μg/mL	+/- 36.4938
55	Azobenzene	103-33-3	BCCK0887	99%	1,002.4	μg/mL	+/- 36.4711
56	4-Bromophenyl phenyl ether	101-55-3	STBH6361	99%	1,008.8	µg/mL	+/- 36.7031
57	Hexachlorobenzene	118-74-1	15458400	99%	1,005.1	µg/mL	+/- 36.5712
58	Pentachlorophenol	87-86-5	RP240517RSR	99%	1,005.9	μg/mL	+/- 36.5984
59	Phenanthrene	85-01-8	MKCT3391	99%	1,004.9	μg/mL	+/- 36.5621
60	Anthracene	120-12-7	101492T18R	99%	1,005.1	µg/mL	+/- 36.5712
61	Carbazole	86-74-8	15276700	99%	1,005.4	μg/mL	+/- 36.5803
62	Di-n-butylphthalate	84-74-2	MKCN4337	99%	1,006.3	μg/mL	+/- 36.6121
63	Fluoranthene	206-44-0	MKCQ4728	99%	1,003.5	μg/mL	+/- 36.5120
64	Pyrene	129-00-0	BCCK2592	99%	1,002.0	μg/mL	+/- 36.4575
65	Benzyl butyl phthalate	85-68-7	X12I018	99%	1,007.5	µg/mL	+/- 36.6576
66	Bis(2-ethylhexyl)adipate	103-23-1	MKCM1988	99%	1,005.9	µg/mL	+/- 36.5984
67	Benz(a)anthracene	56-55-3	I70012022BAA	99%	1,005.5	µg/mL	+/- 36.5848
68	Chrysene	218-01-9	RP241007RSR	99%	1,005.3	µg/mL	+/- 36.5757
69	Bis(2-ethylhexyl)phthalate	117-81-7	MKCS8065	99%	1,007.5	µg/mL	+/- 36.6576
70	Di-n-octyl phthalate	117-84-0	15566400	99%	1,002.3	µg/mL	+/- 36.4666
71	Benzo(b)fluoranthene	205-99-2	052013B	99%	1,004.1	μg/mL	+/- 36.5348
72	Benzo(k)fluoranthene	207-08-9	012022K	99%	1,002.8	µg/mL	+/- 36.4847
73	Benzo(a)pyrene	50-32-8	NQLXA	98%	1,006.2	µg/mL	+/- 36.6108
74	Indeno(1,2,3-cd)pyrene	193-39-5	12-JKL-118-9	97%	1,001.8	μg/mL	+/- 36.4490
75	Dibenz(a,h)anthracene	53-70-3	2-ASA-59-1	99%	1,003.3	μg/mL	+/- 36.5029
76	Benzo(g,h,i)perylene	191-24-2	RP241014RSR	98%	1,003.8	μg/mL	+/- 36.5217

* Expanded Uncertainty displayed in same units as Grav. Conc.

Solvent: Methylene chloride CAS# 75-09-2 Purity 99%

Tech Tips:

N-Nitrosodiphenylamine (86-30-6) is prone to breakdown in the injection port and will be converted to Diphenylamine (122-39-4). When comparing the response of Diphenylamine to mixtures manufactured using N-Nitrosodiphenylamine, a difference in response will be observed. The ratio of the MW can be used to calculate the theoretical concentration of the N-Nitrosodiphenylamine.