

ANALYTICAL RESULTS SUMMARY

VOLATILE ORGANICS GENERAL CHEMISTRY METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS

PROJECT NAME : CON EDISON - 11TH AVE-WEST 50TH ST SITE

PARSONS ENGINEERING OF NEW YORK, INC.

301 Plainfield Road

Suite 350

Syracuse, NY - 13212

Phone No: 315-451-9560

ORDER ID: Q1739

ATTENTION : Stephen Liberatore

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	4
2.1) VOC-TCLVOA-10- Case Narrative	4
2.2) TCLP VOA- Case Narrative	6
2.3) SVOC-TCL BNA -20- Case Narrative	8
2.4) TCLP BNA- Case Narrative	10
2.5) TCLP Pesticide- Case Narrative	12
2.6) PCB- Case Narrative	14
2.7) TCLP Herbicide- Case Narrative	16
2.8) TPH GC- Case Narrative	18
2.9) Metals-AES- Case Narrative	20
2.10) Metals-TCLP- Case Narrative	22
2.11) Genchem- Case Narrative	24
3) Qualifier Page	25
4) QA Checklist	27
5) VOC-TCLVOA-10 Data	28
6) TCLP VOA Data	34
7) SVOC-TCL BNA -20 Data	38
8) TCLP BNA Data	45
9) TCLP Pesticide Data	52
10) PCB Data	57
11) TCLP Herbicide Data	61
12) TPH GC Data	66
13) Metals-AES Data	69
14) Metals-TCLP Data	73
15) Genchem Data	77
16) Shipping Document	80
16.1) CHAIN OF CUSTODY	81
16.2) Lab Certificate	82
16.3) Internal COC	83

Cover Page

- **Order ID :** Q1739
- Project ID : Con Edison 11th Ave-West 50th St Site
 - **Client :** PARSONS Engineering of New York, Inc.

Lab Sample NumberClient Sample NumberQ1739-01WC-LIQUID-20250404Q1739-02WC-LIQUID-20250404

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 4/17/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

Q1739

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination.

The %RSD is greater than 20% in the Initial Calibration method (82X040225W.M) for t-1,3dichloropropene is passing on Linear Regression.

The Continuous Calibration met the requirements . The Tuning criteria met requirements.

Sample WC-LIQUID-20250404 was diluted due to sample having oil layer in vial.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data. Trip Blank was not provided with this set of samples.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TCLP VOA

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP VOA.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of TCLP VOA was based on method 8260D and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The RPD met criteria. The Blank Spike met requirements for all samples. The Blank Spike Duplicate met requirements for all samples. The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements. The Continuous Calibration met the requirements. The Tuning criteria met requirements.

Samples WC-LIQUID-20250404 was diluted due to sample having oil layer in vial.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.2

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: SVOC-TCL BNA -20

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOC-TCL BNA -20 was based on method 8270E and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-LIQUID-20250404 [2,4,6-Tribromophenol - 15%, 2-Fluorobiphenyl - 44%, 2-Fluorophenol - 7%, Nitrobenzene-d5 - 34% and Phenol-d6 - 8%], due to the presence of non-targeted hydrocarbons which can be witnessed by the abnormal chromatogram, therefore no corrective action was taken.

The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria .

The Blank Spike for {PB167521BS} with File ID: BM049861.D met requirements for all samples except for Atrazine[124%], Hexachlorocyclopentadiene[180%], The associate samples have no positive hit for these compounds therefore no corrective action was taken.

The Blank Spike Duplicate for {PB167521BSD} with File ID: BM049862.D met requirements for all samples except for Atrazine[132%], Hexachlorocyclopentadiene [190%], The associate samples have no positive hit for these compounds therefore no corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The % RSD is greater than 20% in the Initial Calibration (8270-BM040825.M) for 2,4-Dinitrophenol, these compounds are passing on Linear Regression.

The Continuous Calibration met the requirements. The Tuning criteria met requirements.

Samples WC-LIQUID-20250404 analyzed with direct 5x dilution due to oily, viscous and dirty matrix.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TCLP BNA

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP BNA.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of TCLP BNA was based on method 8270E and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-LIQUID-20250404 [Terphenyl-d14 - 146%], The above failure surrogates not associated with the client parameters list, therefore no corrective action was taken.

The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria .

The Blank Spike for {PB167518BS} with File ID: BP024263.D met requirements for all samples except for 2,4,5-Trichlorophenol[110%], 2,4,6-Trichlorophenol[111%], 2,4-Dinitrotoluene[117%], 2-Methylphenol[115%], 3+4-Methylphenols[112%], Hexachlorobenzene[108%], Hexachlorobutadiene[102%] and

2 24

Pentachlorophenol[120%], are failing high but no positive hit in associate samples therefore no corrective action taken.

The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements . The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TCLP Pesticide

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Pesticide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_L. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of TCLP Pesticides was based on method 8081B and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-LIQUID-20250404 [Tetrachloro-m-xylene(1) - 58%, Tetrachloro-m-xylene(2) - 63%], WC-LIQUID-20250404MS [Tetrachloro-m-xylene(1) - 62%, Tetrachloro-m-xylene(2) - 70%], WC-LIQUID-20250404MSD [Tetrachloro-m-xylene(1) - 61% and Tetrachloro-m-xylene(2) - 69%] MS and MSD surrogate failure confirmed with parent sample.

The Retention Times were acceptable for all samples.

The MS recoveries for {Q1739-02MS} with File ID: PL095145.D met requirements for all samples except for Endrin[68%], Heptachlor epoxide[60%] and Methoxychlor[68%] Due to matrix interference..

The MSD {Q1739-02MSD} with File ID: PL095146.D recoveries met requirements for all samples except for Endrin[66%], Heptachlor epoxide[58%] and Methoxychlor[68%] Due to matrix interference.

The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature

2.5

2.6

CASE NARRATIVE

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: PCB

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_O. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11.The analysis of PCBs was based on method 8082A and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements . Samples WC-LIQUID-20250404 was diluted due to oily matrix.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

2.6

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TCLP Herbicide

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Herbicide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324The analysis of TCLP Herbicides was based on method 8151A and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

2.7

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TPH GC

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TPH GC.

C. Analytical Techniques:

The analysis of TPH GC was based on method 8015D and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-LIQUID-20250404 [TETRACOSANE-d50 - 0%]Surrogate was diluted out due to the high dilution, no further corrective action was taken.

The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

Samples WC-LIQUID-20250404 was diluted due to bad matrix The above samples original run is reported as screening data in miscellaneous data.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.9

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: Metals ICP-TAL,Mercury

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for Metals ICP-TAL, Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike (B-158-GW01MS) analysis met criteria for all samples except for Mercury due to matrix interference.

The Matrix Spike (WATER TREATMENT DISCHARGEMS) analysis met criteria for all samples except for Antimony, Barium, Beryllium, Magnesium due to matrix interference.

The Matrix Spike Duplicate (B-158-GW01MSD) analysis met criteria for all samples except for Mercury due to matrix interference.

The Matrix Spike Duplicate (WATER TREATMENT DISCHARGEMSD) analysis met criteria for all samples except for Antimony, Barium, Beryllium, Magnesium due to matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2 10

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: TCLP Mercury,TCLP ICP Metals

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for TCLP Mercury, TCLP ICP Metals.

C. Analytical Techniques:

The analysis of TCLP ICP Metals was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of TCLP Mercury was based on method 7470A and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (TP-20DUP) analysis met criteria for all samples except for Barium due to matrix interference.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate (TP-20MSD) analysis met criteria for all samples except for Barium due to matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

PARSONS Engineering of New York, Inc. Project Name: Con Edison - 11th Ave-West 50th St Site Project # N/A Chemtech Project # Q1739 Test Name: pH,Flash Point,Reactive Cyanide,Reactive Sulfide

A. Number of Samples and Date of Receipt:

2 Water samples were received on 04/04/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Flash Point, Mercury, Metals ICP-TAL, METALS-TAL, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TPH GC and VOC-TCLVOA-10. This data package contains results for pH,Flash Point,Reactive Cyanide,Reactive Sulfide.

C. Analytical Techniques:

The analysis of Flash Point was based on method 1010B, The analysis of Reactive Cyanide was based on method 9012B, The analysis of Reactive Sulfide was based on method 9034 and The analysis of pH was based on method 9040C.

D. QA/ QC Samples:

The Holding Times were met for all samples except for WC-LIQUID-20250404 of pH, for WC-LIQUID-20250404 of pH as samples were receive out of holding time. The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).							
U	Indicates the analyte was analyzed for, but not detected.							
ND	Indicates the analyte was analyzed for, but not detected							
Ε	Indicates the reported value is estimated because of the presence of interference							
М	Indicates Duplicate injection precision not met.							
Ν	Indicates the spiked sample recovery is not within control limits.							
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).							
*	Indicates that the duplicate analysis is not within control limits.							
+	Indicates the correlation coefficient for the MSA is less than 0.995.							
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.							
M OR	Method qualifiers"P"for ICP instrument"PM"for ICP when Microwave Digestion is used"CV"for Manual Cold Vapor AA"AV"for automated Cold Vapor AA"CA"for MIDI-Distillation Spectrophotometric"AS"for Semi – Automated Spectrophotometric"C"for Manual Spectrophotometric"T"for Titrimetric"NR"for analyte not required to be analyzedIndicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.							
Q	Indicates the LCS did not meet the control limits requirements							
Н	Sample Analysis Out Of Hold Time							

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q1739

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u>✓</u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>✓</u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u>✓</u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u>√</u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u>✓</u>
Does the case narrative summarize all QC failure?	<u>✓</u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u>✓</u>

QA Review Signature: SOHIL JODHANI

Q1739

SDG No.:

Hit Summary Sheet SW-846

Client: PARSONS Engineering of New York, Inc.

Sample ID	Client ID	Matrix	Parameter	Со	ncentr	ation	С	MDL	RDL	Units
Client ID: Q1739-01	WC-LIQUID-2025 WC-LIQUID-2025	0404 Water	Acetone		600		J	75.5	1300	ug/L
			Total Voc :			600				
Q1739-01	WC-LIQUID-20250	Water	Tert butyl alcohol	*	1500		J	280	1300	ug/L
			Total Tics :			1500				
			Total Concentration:			2100				

5

B C

D

Q1739

A B C D

Report of Analysis

Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739
Lab Sample ID:	Q1739-01	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch: Dilution:		Prep Date		Date Analyzed	Prep Batch ID		
VX045669.D	50			04/09/25 12:38	VX040925		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units	
TARGETS							
75-71-8	Dichlorodifluoromethane	11.0	U	11.0	250	ug/L	
74-87-3	Chloromethane	16.0	U	16.0	250	ug/L	
75-01-4	Vinyl Chloride	13.0	U	13.0	250	ug/L	
74-83-9	Bromomethane	72.0	U	72.0	250	ug/L	
75-00-3	Chloroethane	23.5	U	23.5	250	ug/L	
75-69-4	Trichlorofluoromethane	16.5	U	16.5	250	ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	12.5	U	12.5	250	ug/L	
75-35-4	1,1-Dichloroethene	11.5	U	11.5	250	ug/L	
67-64-1	Acetone	600	J	75.5	1300	ug/L	
75-15-0	Carbon Disulfide	10.5	U	10.5	250	ug/L	
1634-04-4	Methyl tert-butyl Ether	8.00	U	8.00	250	ug/L	
79-20-9	Methyl Acetate	13.5	U	13.5	250	ug/L	
75-09-2	Methylene Chloride	14.0	U	14.0	250	ug/L	
156-60-5	trans-1,2-Dichloroethene	11.5	U	11.5	250	ug/L	
75-34-3	1,1-Dichloroethane	11.5	U	11.5	250	ug/L	
110-82-7	Cyclohexane	72.5	U	72.5	250	ug/L	
78-93-3	2-Butanone	49.0	U	49.0	1300	ug/L	
56-23-5	Carbon Tetrachloride	12.5	U	12.5	250	ug/L	
156-59-2	cis-1,2-Dichloroethene	9.50	U	9.50	250	ug/L	
74-97-5	Bromochloromethane	11.0	U	11.0	250	ug/L	
67-66-3	Chloroform	12.5	U	12.5	250	ug/L	
71-55-6	1,1,1-Trichloroethane	10.0	U	10.0	250	ug/L	
108-87-2	Methylcyclohexane	8.00	U	8.00	250	ug/L	
71-43-2	Benzene	7.50	U	7.50	250	ug/L	
107-06-2	1,2-Dichloroethane	11.0	U	11.0	250	ug/L	
79-01-6	Trichloroethene	4.70	U	4.70	250	ug/L	
78-87-5	1,2-Dichloropropane	10.0	U	10.0	250	ug/L	
75-27-4	Bromodichloromethane	11.0	U	11.0	250	ug/L	
108-10-1	4-Methyl-2-Pentanone	34.0	U	34.0	1300	ug/L	
108-88-3	Toluene	7.00	U	7.00	250	ug/L	

5

Report of Analysis

Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739
Lab Sample ID:	Q1739-01	Matrix:	Water
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :			

File ID/Qc Batch: Dilution:		Prep Date		Date Analyzed	Prep Batch ID		
VX045669.D	50			04/09/25 12:38	VX040925		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units	
10061-02-6	t-1,3-Dichloropropene	8.50	U	8.50	250	ug/L	
10061-01-5	cis-1,3-Dichloropropene	8.00	U	8.00	250	ug/L	
79-00-5	1,1,2-Trichloroethane	10.5	U	10.5	250	ug/L	
591-78-6	2-Hexanone	44.5	U	44.5	1300	ug/L	
124-48-1	Dibromochloromethane	9.00	U	9.00	250	ug/L	
106-93-4	1,2-Dibromoethane	7.50	U	7.50	250	ug/L	
127-18-4	Tetrachloroethene	11.5	U	11.5	250	ug/L	
108-90-7	Chlorobenzene	6.00	U	6.00	250	ug/L	
100-41-4	Ethyl Benzene	6.50	U	6.50	250	ug/L	
179601-23-1	m/p-Xylenes	12.0	U	12.0	500	ug/L	
95-47-6	o-Xylene	6.00	U	6.00	250	ug/L	
100-42-5	Styrene	7.50	U	7.50	250	ug/L	
75-25-2	Bromoform	9.50	U	9.50	250	ug/L	
98-82-8	Isopropylbenzene	6.00	U	6.00	250	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	13.0	U	13.0	250	ug/L	
541-73-1	1,3-Dichlorobenzene	8.00	U	8.00	250	ug/L	
106-46-7	1,4-Dichlorobenzene	9.50	U	9.50	250	ug/L	
95-50-1	1,2-Dichlorobenzene	8.00	U	8.00	250	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	26.5	U	26.5	250	ug/L	
120-82-1	1,2,4-Trichlorobenzene	10.0	U	10.0	250	ug/L	
87-61-6	1,2,3-Trichlorobenzene	10.0	U	10.0	250	ug/L	
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.7		74 - 125	109%	SPK: 50	
1868-53-7	Dibromofluoromethane	50.6		75 - 124	101%	SPK: 50	
2037-26-5	Toluene-d8	50.6		86 - 113	101%	SPK: 50	
460-00-4	4-Bromofluorobenzene	52.1		77 - 121	104%	SPK: 50	
INTERNAL STAN	DARDS						
363-72-4	Pentafluorobenzene	67400	5.544				
540-36-3	1,4-Difluorobenzene	136000	6.757				
3114-55-4	Chlorobenzene-d5	126000	10.049				
3855-82-1	1,4-Dichlorobenzene-d4	54300	12.018				
TENTATIVE IDEN	NTIFIED COMPOUNDS						

5

C D

С

5

75-65-0	Tert butyl alcohol	1500	J		2.96	ug/L
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
VX045669.D	50			04/09/25 12:38	VX040925	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
Prep Method :						
GC Column:	DB-624UI II	D: 0.18		Level :	LOW	
Soil Aliquot Vol:		uL		Test:	VOC-TCLVOA	A-10
Sample Wt/Vol:	5 Units:	mL		Final Vol:	5000	uL
Analytical Method	: SW8260			% Solid:	0	
Lab Sample ID:	Q1739-01			Matrix:	Water	
Client Sample ID:	WC-LIQUID-2025)404		SDG No.:	Q1739	
Project:	Con Edison - 11th A	we-West 50th St Site		Date Received:	04/04/25	
Client:	PARSONS Enginee	ring of New York, Inc.		Date Collected:	04/04/25	

Report of Analysis

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C

D

LAB CHRONICLE

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	4/4/2025 2:08:3 Con Edison - 1 L31,VOA Ref. #	31 PM 1th Ave-West 5 ¢3 Water	0th St Site	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040	Water			04/04/25			04/04/25
	-		VOC-TCLVOA-10	8260D			04/09/25	
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
	-		TCLP VOA	8260D			04/09/25	

Hit Summary Sheet SW-846

Hit Summary Sheet									
SDG No.:	O1739		54	-040				В	
Client:	PARSONS Engl	ineering of New Yo	ork, Inc.					С	
								_ D	
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units		
Client ID:								-	
				0					

Total Voc :

Total Concentration:

A B C D

Report of Analysis

Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25	
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25	
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739	
Lab Sample ID:	Q1739-02	Matrix:	TCLP	
Analytical Method:	SW8260	% Solid:	0	
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL	
Soil Aliquot Vol:	uL	Test:	TCLP VOA	
GC Column:	DB-624UI ID: 0.18	Level :	LOW	
Prep Method :	SW5035			

CAS Number	Danamatan	Cone Quelifier	MDI		Inite
VX045670.D	50		04/09/25 13:01	VX040925	
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	13.0	U	13.0	250	ug/L
75-35-4	1,1-Dichloroethene	11.5	U	11.5	250	ug/L
78-93-3	2-Butanone	49.0	U	49.0	1300	ug/L
56-23-5	Carbon Tetrachloride	12.5	U	12.5	250	ug/L
67-66-3	Chloroform	12.5	U	12.5	250	ug/L
71-43-2	Benzene	7.50	U	7.50	250	ug/L
107-06-2	1,2-Dichloroethane	11.0	U	11.0	250	ug/L
79-01-6	Trichloroethene	4.70	U	4.70	250	ug/L
127-18-4	Tetrachloroethene	11.5	U	11.5	250	ug/L
108-90-7	Chlorobenzene	6.00	U	6.00	250	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.5		74 - 125	107%	SPK: 50
1868-53-7	Dibromofluoromethane	50.8		75 - 124	102%	SPK: 50
2037-26-5	Toluene-d8	50.2		86 - 113	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.9		77 - 121	106%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	65000	5.544			
540-36-3	1,4-Difluorobenzene	129000	6.757			
3114-55-4	Chlorobenzene-d5	121000	10.049			
3855-82-1	1 4-Dichlorobenzene-d4	52100	12 018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

B

A B C

6

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore		OrderDate: Project: Location:	4/4/2025 2:08:3 Con Edison - 1 L31,VOA Ref. #	31 PM 1th Ave-West 5 ¢3 Water	0th St Site		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
	•		TCLP VOA	8260D			04/09/25	

B C

Hit Summary Sheet SW-846

SDG No.:Q1739Client:PARSONS Engineering of New York, Inc.

Sample ID	Client ID		Parameter	Concentration	С	MDL	RDL	Units
Client ID :	WC-LIQUID-20250404							
Q1739-01	WC-LIQUID-20250404	WATER	Phenanthrene	510.000	J	100	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Fluoranthene	2,500.000		170	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Pyrene	2,200.000		100	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzo(a)anthracene	660.000	J	92.8	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Chrysene	630.000	J	90.7	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzo(b)fluoranthene	850.000	J	100	1000	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzo(k)fluoranthene	530.000	J	99	1000	ug/L
			Total Svoc :	7,	880	.00		
Q1739-01	WC-LIQUID-20250404	WATER	1,2,4-Oxadiazol-5(4H)-one, 4-(2-	6 ,700.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	1H-Cyclopenta[a]phenanthrene, 1	* 3,500.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	2,4,4,6,6,8,8-Heptamethyl-2-none	2 * 4,400.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	4-(2-Carbamoyl-2-cyano-1-methy	y * 3,800.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1,1,4,6,6-pentamethylh	a * 5,100.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1-ethylundecyl)-	* 4,900.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1-methyldodecyl)-	* 9,900.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1-methyltridecyl)-	* 3,900.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1-methylundecyl)-	* 3,400.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Benzene, (1-propyldecyl)-	* 2,700.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown13.469	* 3,000.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown15.369	* 3,400.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown17.486	* 2,000.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown21.127	* 2,700.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown21.633	* 4,200.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown21.727	* 3,800.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown22.051	* 4,400.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown22.674	* 3,400.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	unknown23.380	* 4,100.000	J	0	0	ug/L
Q1739-01	WC-LIQUID-20250404	WATER	Cyclohexanone, 3-butyl-	* 3,300.000	J	0	0	ug/L
			Total Tics :	82,	600	.00		
			Total Concentration:	90	,480	.00		

Q1739

A B C D

7

		Report	t of Ana	lysis			
Client:	PARSONS Engineerin	g of New York, Ir	ıc.		Date Collected:	04/04/25	
Project:	Con Edison - 11th Ave	-West 50th St Site	e		Date Received:	04/04/25	
Client Sample IF	WC-LIOUID-2025040	14			SDG No ·	01739	
	у. WC-LIQUID-202504(74			SDG N0	Q1733	
Lab Sample ID:	Q1739-01				Matrix:	Water	
Analytical Metho	od: SW8270				% Solid:	0	
Sample Wt/Vol:	970 Units: r	nL			Final Vol:	10000	uL
Soil Aliquot Vol:	ι	ıL			Test:	SVOC-T	CL BNA -20
Extraction Type :	:	Decan	ted : N	1	Level :	LOW	
Injection Volume	· ·	GPC Factor ·	1.0		GPC Cleanup ·	N	РН ·
Dran Mathad :	SW2510C				or e creanup .		
Prep Metriod .	SW3310C						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch I	D
BM049874.D	20	04/08/25 11	:55	04/09	0/25 19:01	PB167521	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS							
100-52-7	Benzaldehyde	810	U	810		2100	ug/L
108-95-2	Phenol	190	U	190		1000	ug/L
111-44-4	bis(2-Chloroethyl)ether	170	U	170		1000	ug/L
95-57-8	2-Chlorophenol	120	U	120		1000	ug/L
95-48-7	2-Methylphenol	230	U	230		1000	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	260	U	260		1000	ug/L
98-86-2	Acetophenone	150	U	150		1000	ug/L
65794-96-9	3+4-Methylphenols	230	U	230		2100	ug/L
621-64-7	n-Nitroso-di-n-propylamine	290	U	290		520	ug/L
67-72-1	Hexachloroethane	130	U	130		1000	ug/L
98-95-3	Nitrobenzene	160	U	160		1000	ug/L
78-59-1	Isophorone	150	U	150		1000	ug/L
88-75-5	2-Nitrophenol	360	U	360		1000	ug/L
105-67-9	2,4-Dimethylphenol	380	U	380		1000	ug/L
111-91-1	bis(2-Chloroethoxy)methane	140	U	140		1000	ug/L
120-83-2	2,4-Dichlorophenol	110	U	110		1000	ug/L
91-20-3	Naphthalene	100	U	100		1000	ug/L
106-47-8	4-Chloroaniline	170	U	170		1000	ug/L
87-68-3	Hexachlorobutadiene	110	U	110		1000	ug/L
105-60-2	Caprolactam	230	U	230		2100	ug/L
59-50-7	4-Chloro-3-methylphenol	120	U	120		1000	ug/L
91-57-6	2-Methylnaphthalene	120	U	120		1000	ug/L
77-47-4	Hexachlorocyclopentadiene	750	UQ	750		2100	ug/L
88-06-2	2,4,6-Trichlorophenol	110	U	110		1000	ug/L
95-95-4	2,4,5-Trichlorophenol	130	U	130		1000	ug/L
92-52-4	1,1-Biphenyl	110	U	110		1000	ug/L
91-58-7	2-Chloronaphthalene	130	U	130		1000	ug/L
88-74-4	2-Nitroaniline	260	U	260		1000	ug/L

131-11-3

Dimethylphthalate

U

130

130

1000

ug/L

7

A B C D

Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25	
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25	
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739	
Lab Sample ID:	Q1739-01	Matrix:	Water	
Analytical Method:	SW8270	% Solid:	0	
Sample Wt/Vol:	970 Units: mL	Final Vol:	10000 uL	
Soil Aliquot Vol:	uL	Test:	SVOC-TCL BNA -20	
Extraction Type :	Decanted : N	Level :	LOW	
Injection Volume :	GPC Factor : 1.0	GPC Cleanup : N	PH :	
Prep Method :	SW3510C			

Report of Analysis

File ID/Qc Batch: Dilution:		Prep Date		Date Analyzed	Prep Batch ID	
BM049874.D	20	04/08/25 11:55		04/09/25 19:01	PB167521	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
208-96-8	Acenaphthylene	150	U	150	1000	ug/L
606-20-2	2,6-Dinitrotoluene	190	U	190	1000	ug/L
99-09-2	3-Nitroaniline	220	U	220	1000	ug/L
83-32-9	Acenaphthene	110	U	110	1000	ug/L
51-28-5	2,4-Dinitrophenol	1200	U	1200	2100	ug/L
100-02-7	4-Nitrophenol	490	U	490	2100	ug/L
132-64-9	Dibenzofuran	130	U	130	1000	ug/L
121-14-2	2,4-Dinitrotoluene	250	U	250	1000	ug/L
84-66-2	Diethylphthalate	140	U	140	1000	ug/L
7005-72-3	4-Chlorophenyl-phenylether	140	U	140	1000	ug/L
86-73-7	Fluorene	130	U	130	1000	ug/L
100-01-6	4-Nitroaniline	310	U	310	1000	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	590	U	590	2100	ug/L
86-30-6	n-Nitrosodiphenylamine	120	U	120	1000	ug/L
101-55-3	4-Bromophenyl-phenylether	82.5	U	82.5	1000	ug/L
118-74-1	Hexachlorobenzene	110	U	110	1000	ug/L
1912-24-9	Atrazine	210	UQ	210	1000	ug/L
87-86-5	Pentachlorophenol	330	U	330	2100	ug/L
85-01-8	Phenanthrene	510	J	100	1000	ug/L
120-12-7	Anthracene	130	U	130	1000	ug/L
86-74-8	Carbazole	150	U	150	1000	ug/L
84-74-2	Di-n-butylphthalate	250	U	250	1000	ug/L
206-44-0	Fluoranthene	2500		170	1000	ug/L
129-00-0	Pyrene	2200		100	1000	ug/L
85-68-7	Butylbenzylphthalate	400	U	400	1000	ug/L
91-94-1	3,3-Dichlorobenzidine	190	U	190	2100	ug/L
56-55-3	Benzo(a)anthracene	660	J	92.8	1000	ug/L
218-01-9	Chrysene	630	J	90.7	1000	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	330	U	330	1000	ug/L
117-84-0	Di-n-octyl phthalate	480	U	480	2100	ug/L
205-99-2	Benzo(b)fluoranthene	850	J	100	1000	ug/L
1739			41 of 83			

7

		Report	of Anal	ysis			
Client:	PARSONS Engineering	of New York, In	c.		Date Collected:	04/04/25	
Project:	Con Edison - 11th Ave-V	West 50th St Site			Date Received:	04/04/25	
Client Sample	ID [.] WC-LIOUID-20250404				SDG No [.]	01739	
Lab Samala ID					Metrico	Watar	
Lab Sample ID	Q1739-01				Matrix:	water	
Analytical Met	shod: SW8270				% Solid:	0	
Sample Wt/Vol	l: 970 Units: mI	L			Final Vol:	10000	uL
Soil Aliquot Vo	ol: uL	,			Test:	SVOC-TO	CL BNA -20
Extraction Typ	e :	Decant	ed: N		Level :	LOW	
Injection Volur	ne -	GPC Factor ·	1.0		GPC Cleanup ·	N	рH ·
Dran Mathada	SW2510C		110		of e clountup .		
Prep Method :	SW3510C						
File ID/Qc Batch	n: Dilution:	Prep Date		Date A	Analyzed	Prep Batch I	D
BM049874.D	20	04/08/25 11:	:55	04/09/	/25 19:01	PB167521	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
207-08-9	Benzo(k)fluoranthene	530	J	99.0		1000	ug/L
50-32-8	Benzo(a)pyrene	110	U	110		1000	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	120	U	120		1000	ug/L
53-70-3	Dibenzo(a,h)anthracene	140	U	140		1000	ug/L
191-24-2	Benzo(g,h,i)perylene	140	U	140		1000	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	110	U	110		1000	ug/L
123-91-1	1,4-Dioxane	210	U	210		1000	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	150	U	150		1000	ug/L
SURROGATES							
367-12-4	2-Fluorophenol	11.2	*	10 - 139		7%	SPK: 150
13127-88-3	Phenol-d6	12.0	*	10 - 134		8%	SPK: 150
4165-60-0	Nitrobenzene-d5	34.2	*	49 - 133		34%	SPK: 100
321-60-8	2-Fluorobiphenyl	44.0	*	52 - 132		44%	SPK: 100
118-79-6	2,4,6-Tribromophenol	23.2	*	44 - 137		15%	SPK: 150
1718-51-0	Terphenyl-d14	59.4		48 - 125		59%	SPK: 100
INTERNAL STA	NDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	308000	7.781				
1146-65-2	Naphthalene-d8	1100000	10.569				
15067-26-2	Acenaphthene-d10	707000	14.422				
1517-22-2	Phenanthrene-d10	1460000	17.163				
1719-03-5	Chrysene-d12	1750000	21.41				
1520-96-3	Perylene-d12	1660000	24.415				
FENTATIVE IDI	ENTIFIED COMPOUNDS						
039178-69-3	Cyclohexanone, 3-butyl-	3300	J			11.8	ug/L
039761-73-4	2,4,4,6,6,8,8-Heptamethyl-2-none	ene 4400	J			12.9	ug/L
	unknown13.469	3000	J			13.5	ug/L
	unknown15.369	3400	J			15.4	ug/L
002719-61-1	Benzene, (1-methylundecyl)-	3400	J			17.1	ug/L
004534-51-4	Benzene, (1-propyldecyl)-	2700	J			17.3	ug/L
	unknown17.486	2000	J			17.5	ug/L

7

С	

Report of Analysis							
Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25				
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25				
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739				
Lab Sample ID:	Q1739-01	Matrix:	Water				
Analytical Method:	SW8270	% Solid:	0				
Sample Wt/Vol:	970 Units: mL	Final Vol:	10000 uL				
Soil Aliquot Vol:	uL	Test:	SVOC-TCL BNA -20				
Extraction Type :	Decanted : N	Level :	LOW				
Injection Volume :	GPC Factor : 1.0	GPC Cleanup : N	PH :				
Prep Method :	SW3510C						

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BM049874.D	20	04/08/25 1	1:55	04/09/25 19:01	PB167521	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
004534-52-5	Benzene, (1-ethylundecyl)-	4900	J		17.5	ug/L
055134-07-1	Benzene, (1,1,4,6,6-pentamethylhep	5100	J		17.7	ug/L
004534-53-6	Benzene, (1-methyldodecyl)-	9900	J		17.8	ug/L
004534-59-2	Benzene, (1-methyltridecyl)-	3900	J		18.6	ug/L
	unknown21.127	2700	J		21.1	ug/L
	unknown21.633	4200	J		21.6	ug/L
	unknown21.727	3800	J		21.7	ug/L
000474-20-4	1H-Cyclopenta[a]phenanthrene, 17-	(3500	J		22.0	ug/L
	unknown22.051	4400	J		22.1	ug/L
1000311-98-1	4-(2-Carbamoyl-2-cyano-1-methylvi	in 3800	J		22.3	ug/L
	unknown22.674	3400	J		22.7	ug/L
288246-55-9	1,2,4-Oxadiazol-5(4H)-one, 4-(2-ch	6700	J		22.9	ug/L
	unknown23.380	4100	J		23.4	ug/L

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C D

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	OrderDate:4/4/2025 2:08:31 PMProject:Con Edison - 11th Ave-West 50th St SiteLocation:L31,VOA Ref. #3 Water			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040	Water			04/04/25			04/04/25
	-		SVOC-TCL BNA -20	8270E		04/08/25	04/09/25	
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
	-		TCLP BNA	8270E		04/08/25	04/10/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

A B C D

8

Hit Summary Sheet SW-846

SDG No.:	Q1739							
Client:	PARSONS Engineerin	ng of New Yor	k, Inc.					
Sample ID Client ID :	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
				0.00	0			
			Total Svoc :		0.	00		
			Total Concentration:		0	.00		

A B C D

Report of Analysis

-

Client:	PARSONS Engi	neering of New York, I	nc.		Date Collected:	04/08/25	
Project:	Con Edison - 11	th Ave-West 50th St Sit	e		Date Received:	04/08/25	
Client Sample	ID: PB167488TB				SDG No.:	Q1739	
Lab Sample II	D [.] PB167488TB				Matrix [.]	TCLP	
Analytical Ma	thad: SW2270				0/ Salid	0	
Analytical Me	strod: Sw8270				% Sond:	0	
Sample Wt/Vo	ol: 100 Unit	s: mL			Final Vol:	1000	uL
Soil Aliquot V	ol:	uL			Test:	TCLP BN	JA
Extraction Typ	be :	Decan	ted : N		Level :	LOW	
Injection Volu	me :	GPC Factor :	1.0		GPC Cleanup :	N	PH :
Dron Mothod :	SW2541				01 0 011110p		
Flep Method .	5 W 5541						
File ID/Qc Bate	h: Dilution:	Prep Date		Date A	Analyzed	Prep Batch I	D
BP024284.D	1	04/08/25 08	3:25	04/14	/25 19:16	PB167518	
CAS Number	Parameter	Conc	Oualifier	MDL		LOO/CROL	Units
	i ul ullicter	Conce	Quanner			Log / engl	
TARGETS							
110-86-1	Pyridine	12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L
95-48-7	2-Methylphenol	11.2	UQ	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.0	UQ	11.0		100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	UQ	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	UQ	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	UQ	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	UQ	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	UQ	5.20		50.0	ug/L
87-86-5	Pentachlorophenol	15.8	UQ	15.8		100	ug/L
SURROGATES							
367-12-4	2-Fluorophenol	156		10 - 139		104%	SPK: 150
13127-88-3	Phenol-d6	143		10 - 134		95%	SPK: 150
4165-60-0	Nitrobenzene-d5	101		49 - 133		101%	SPK: 100
321-60-8	2-Fluorobiphenyl	100		52 - 132		100%	SPK: 100
118-79-6	2,4,6-Tribromophenol	150		44 - 137		100%	SPK: 150
1718-51-0	Terphenyl-d14	98.8		48 - 125		99%	SPK: 100
INTERNAL STA	NDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	225000	7.728				
1146-65-2	Naphthalene-d8	887000	10.504				
15067-26-2	Acenaphthene-d10	528000	14.357				
1517-22-2	Phenanthrene-d10	1050000	17 169				
1719-03-5	Chrysene-d12	1170000	21.616				
1520-96-3	Pervlene-d1?	130000	21.010				
1520-70-5	1 of yrono-u12	1500000	<u>⊿</u> -1.700				

		Repor	t of Anal	ysis		
Client:	PARSONS Eng	gineering of New York, I	Inc.	Date Collected:	04/08/25	
Project:	Con Edison - 1	1th Ave-West 50th St Si	te	Date Received:	04/08/25	
Client Sample ID:	PB167488TB			SDG No.:	Q1739	
Lab Sample ID:	PB167488TB			Matrix:	TCLP	
Analytical Method:	SW8270			% Solid:	0	
Sample Wt/Vol:	100 Un	its: mL		Final Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:	TCLP BNA	
Extraction Type :		Deca	nted : N	Level :	LOW	
Injection Volume :		GPC Factor :	1.0	GPC Cleanup :	N PH :	
Prep Method :	SW3541					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BP024284.D	1	04/08/25 0	08:25	04/14/25 19:16	PB167518	
CAS Number Para	ımeter	Conc.	Oualifier	MDL	LOO / CROL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

Q1739

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

8

Report of Analysis

_
. • 1
12.1
-

Client:	PARSONS Engine	ering of New York, Ind	с.		Date Collected:	04/04/25	
Project:	Con Edison - 11th	Ave-West 50th St Site			Date Received:	04/04/25	
Client Sample	ID: WC-LIQUID-2025	50404			SDG No.:	Q1739	
Lab Sample ID	0.1739-02				Matrix:	TCLP	
	1 1 GW0070					neen o	
Analytical Met	sw8270				% Solid:	0	
Sample Wt/Vol	l: 100 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vo	ol:	uL			Test:	TCLP BN	λA
Extraction Typ	e :	Decante	ed: N		Level :	LOW	
Injection Volur	ne :	GPC Factor :	1.0		GPC Cleanup :	N	PH :
Pren Method :	SW35/1				Ĩ		
Trep Wethod .	5 1 5571						
File ID/Qc Batch	n: Dilution:	Prep Date		Date A	Analyzed	Prep Batch I	D
BM049887.D	1	04/08/25 08:	25	04/10	/25 16:46	PB167518	
CAS Number	Parameter	Conc	Qualifier	MDL			Units
		June	Zuminer			Lov, onell	2
TARGETS							
110-86-1	Pyridine	12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L
95-48-7	2-Methylphenol	11.2	UQ	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.0	UQ	11.0		100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	UQ	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	UQ	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	UQ	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	UQ	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	UQ	5.20		50.0	ug/L
87-86-5	Pentachlorophenol	15.8	UQ	15.8		100	ug/L
SURROGATES							
367-12-4	2-Fluorophenol	122		10 - 139		81%	SPK: 150
13127-88-3	Phenol-d6	112		10 - 134		75%	SPK: 150
4165-60-0	Nitrobenzene-d5	90.6		49 - 133		91%	SPK: 100
321-60-8	2-Fluorobiphenyl	92.7		52 - 132		93%	SPK: 100
118-79-6	2,4,6-Tribromophenol	158		44 - 137		105%	SPK: 150
1718-51-0	Terphenyl-d14	146	*	48 - 125		146%	SPK: 100
INTERNAL STA	NDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	359000	7.775				
1146-65-2	Naphthalene-d8	1280000	10.569				
15067-26-2	Acenaphthene-d10	872000	14.421				
1517-22-2	Phenanthrene-d10	1740000	17.174				
1719-03-5	Chrysene-d12	764000	21.433				
1520-96-3	Pervlene-d12	2090000	24.468				

		Report of Analysi	\$	
Client:	PARSONS Engine	ering of New York, Inc.	Date Collected:	04/04/25
Project:	Con Edison - 11th	Ave-West 50th St Site	Date Received:	04/04/25
Client Sample ID:	WC-LIQUID-2025	50404	SDG No.:	Q1739
Lab Sample ID:	Q1739-02		Matrix:	TCLP
Analytical Method:	SW8270		% Solid:	0
Sample Wt/Vol:	100 Units:	mL	Final Vol:	1000 uL
Soil Aliquot Vol:		uL	Test:	TCLP BNA
Extraction Type :		Decanted : N	Level :	LOW
Injection Volume :		GPC Factor : 1.0	GPC Cleanup :	N PH :
Prep Method :	SW3541			
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BM049887.D	1	04/08/25 08:25	04/10/25 16:46	PB167518

Qualifier

MDL

Conc.

U = Not Detected

CAS Number

Parameter

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

LOQ / CRQL

Units

- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

8

A B C

AB

8

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	OrderDate:4/4/2025 2:08:31 PMProject:Con Edison - 11th Ave-West 50th St SiteLocation:L31,VOA Ref. #3 Water			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040 4	Water			04/04/25			04/04/25
			SVOC-TCL BNA -20	8270E		04/08/25	04/09/25	
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
	•		TCLP BNA	8270E		04/08/25	04/10/25	

			Hit St	ummary Sheet SW-846			
SDG No.:	Q1739			Order ID:	Q1739		В
Client:	PARSONS Engine	ering of New York	, Inc.	Project ID	: Con Edison - 1	1th Ave-West 50th St Si	С
Sample ID	Client ID	Matrix	Parameter	Concentration	n C MDL	RDL Units	D
Client ID :							

Total Concentration:

0.000

A B C D

C D

Client:	PARSONS Engine	eering of New Yo	rk, Inc.		Date Collected:			
Project:	Con Edison - 11th	Ave-West 50th S	t Site		Date Received:	04/09/25		
Client Sample ID:	PB167488TB				SDG No.:	Q1739		
Lab Sample ID:	PB167488TB				Matrix:	TCLP		
Analytical Method	: SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Pesticide	e	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :			5			
Pren Method ·	SW3541B							
Trep Wiethod .	5W 55+1D							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep B	atch ID	
		04/09/25 12:50						
PL095156.D	1	04/09	0/25 12:50		04/09/25 21:56	PB167	535	
PL095156.D CAS Number	1 Parameter	04/09 Conc.	0/25 12:50 Qualifier	MDL	04/09/25 21:56	PB167	2535 QL	Units
PL095156.D CAS Number	1 Parameter	04/09 Conc.	0/25 12:50 Qualifier	MDL	04/09/25 21:56	PB167	535 QL	Units
PL095156.D CAS Number TARGETS 58-89-9	1 Parameter gamma-BHC (Lindane)	04/09 Conc. 0.037	0/25 12:50 Qualifier U	MDL 0.037	04/09/25 21:56	PB167 LOQ / CRO 0.5	535 QL 50	Units ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8	1 Parameter gamma-BHC (Lindane) Heptachlor	04/09 Conc. 0.037 0.027	0/25 12:50 Qualifier U U	MDL 0.037 0.027	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5	535 QL 50 50	Units ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3	1 Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	04/09 Conc. 0.037 0.027 0.096	0/25 12:50 Qualifier U U U U	MDL 0.037 0.027 0.096	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5	535 QL 50 50 50	Units ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8	1 Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin	04/09 Conc. 0.037 0.027 0.096 0.032	0/25 12:50 Qualifier U U U U U U U	MDL 0.037 0.027 0.096 0.032	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5	535 QL 50 50 50 50	Units ug/L ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5	l Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor	04/09 Conc. 0.037 0.027 0.096 0.032 0.11	9/25 12:50 Qualifier U U U U U U U U U	MDL 0.037 0.027 0.096 0.032 0.11	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5 0.5 0.5	535 QL 50 50 50 50 50	Units ug/L ug/L ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2	l Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	04/09 Conc. 0.037 0.027 0.096 0.032 0.11 1.70	0/25 12:50 Qualifier U U U U U U U U U U U	MDL 0.037 0.027 0.096 0.032 0.11 1.70	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5 0.5 0.5 10	535 QL 50 50 50 50 50 .0	Units ug/L ug/L ug/L ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9	l Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene Chlordane	04/09 Conc. 0.037 0.027 0.096 0.032 0.11 1.70 0.88	0/25 12:50 Qualifier U U U U U U U U U U U U U U	MDL 0.037 0.027 0.096 0.032 0.11 1.70 0.88	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5 0.5 10 5.0	535 QL 50 50 50 50 50 50 .0 00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9 SURROGATES	l parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene Chlordane	04/09 Conc. 0.037 0.027 0.096 0.032 0.11 1.70 0.88	9/25 12:50 Qualifier U U U U U U U U U U U U	MDL 0.037 0.027 0.096 0.032 0.11 1.70 0.88	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5 0.5 10 5.0	535 QL 50 50 50 50 50 50 .0 00	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L
PL095156.D CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9 SURROGATES 2051-24-3	l Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene Chlordane Decachlorobiphenyl	04/09 Conc. 0.037 0.027 0.096 0.032 0.11 1.70 0.88 20.8	0/25 12:50 Qualifier U U U U U U U U U U U U	MDL 0.037 0.027 0.096 0.032 0.11 1.70 0.88 43 - 140	04/09/25 21:56	PB167 LOQ / CRO 0.5 0.5 0.5 0.5 10 5.0 10	535 QL 50 50 50 50 50 50 .0 00 4%	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L SPK: 20

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

Q1739

54 of 83

Report of Analysis

Client:	PARSONS Engine	ering of New Yo	rk, Inc.		Date Collected:	04/04/25		
Project:	Con Edison - 11th	Ave-West 50th S	st Site		Date Received:	04/04/25		
Client Sample ID:	WC-LIQUID-2025	50404			SDG No.:	Q1739		
Lab Sample ID:	Q1739-02				Matrix:	TCLP		
Analytical Method	l: SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol	100 Units:	mL			Final Vol:	10000	nL	
Sail Aliquet Vel	ioo onits.	uI			That:	TCL D Destisid	uL.	
Son Anquot vor:		uL			Test	ICLP Pesticia	e	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	SW3541B							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep F	Batch ID	
PL095144.D	1	04/09	9/25 12:50		04/09/25 18:45	PB167	7535	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CR	QL	Units
TARCETS								
58-89-9	gamma-BHC (Lindane)	0.037	U	0.037		0.	50	ug/L
76-44-8	Heptachlor	0.027	U	0.027		0.	50	ug/L
1024-57-3	Heptachlor epoxide	0.096	U	0.096		0.	50	ug/L
72-20-8	Endrin	0.032	U	0.032		0.	50	ug/L
72-43-5	Methoxychlor	0.11	U	0.11		0.	50	ug/L
8001-35-2	Toxaphene	1.70	U	1.70		10).0	ug/L
57-74-9	Chlordane	0.88	U	0.88		5.	00	ug/L
SURROGATES								
2051-24-3	Decachlorobiphenyl	17.2		43 - 140		86	5%	SPK: 20
877-09-8	Tetrachloro-m-xylene	12.7	*	77 - 126		63	3%	SPK: 20

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

55 of 83

C D

Α

B C D

OrderID:Q1739Client:PARSONS Engineering of New York, Inc.Contact:Stephen Liberatore		OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040 4	WATER			04/04/25			04/04/25
			PCB	8082A		04/08/25	04/08/25	
			TPH GC	8015D		04/08/25	04/08/25	
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
			TCLP Herbicide	8151A		04/09/25	04/09/25	
			TCLP Pesticide	8081B		04/09/25	04/09/25	

	-	
ы.		1

		Hit Summary Shee SW-846	t		
SDG No.:	Q1739		Order ID:	Q1739	
Client:	PARSONS Engineering of New You	rk, Inc.	Project ID:	Con Ediso	on - 11th Ave-West 50th St Si
Sample ID	Client ID	Parameter	Concentration	C MDL	RDL Units
Client ID : Q1739-01	WC-LIQUID-20250404 WC-LIQUID-202504(WATER	Aroclor-1254	13.5	5 0.97	5.20 ug/L
		Total Concentration:	13.500		

Client:

Project:

Client Sample ID:

Analytical Method: Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type:

File ID/Qc Batch:

GPC Factor : Prep Method :

Lab Sample ID:

10

Report of Analysis							
PARSONS Engi	neering of New York, Inc.	Date Collected:	04/04/25				
Con Edison - 11	h Ave-West 50th St Site	Date Received:	04/04/25				
WC-LIQUID-20	250404	SDG No.:	Q1739				
Q1739-01		Matrix:	WATER				
SW8082A		% Solid:	0	Decanted:			
970 Units	s: mL	Final Vol:	10000	uL			
	uL	Test:	РСВ				
		Injection Volume :					
1.0	PH :						
3510C							
Dilution:	Prep Date	Date Analyzed	Pro	ep Batch ID			
10	04/08/25 08-25	04/09/25 1(-20	DE	1(7515			

PO110314.D	10	04/0	8/25 08:25	04/08/25 16:39	PB167515	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
12674-11-2	Aroclor-1016	1.00	U	1.00	5.20	ug/L
11104-28-2	Aroclor-1221	1.30	U	1.30	5.20	ug/L
11141-16-5	Aroclor-1232	0.99	U	0.99	5.20	ug/L
53469-21-9	Aroclor-1242	1.20	U	1.20	5.20	ug/L
12672-29-6	Aroclor-1248	0.73	U	0.73	5.20	ug/L
11097-69-1	Aroclor-1254	13.5		0.97	5.20	ug/L
37324-23-5	Aroclor-1262	1.40	U	1.40	5.20	ug/L
11100-14-4	Aroclor-1268	1.10	U	1.10	5.20	ug/L
11096-82-5	Aroclor-1260	0.84	U	0.84	5.20	ug/L
SURROGATES						
877-09-8	Tetrachloro-m-xylene	13.0		16 - 158	65%	SPK: 20
2051-24-3	Decachlorobiphenyl	11.6		10 - 173	58%	SPK: 20

Comments:

U = Not Detected J = Estimated Value LOO = Limit of Quantitation B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound MDL = Method Detection Limit LOD = Limit of Detection * = Values outside of QC limits D = Dilution E = Value Exceeds Calibration Range P = Indicates > 25% difference for detected S = Indicates estimated value where valid five-point calibration concentrations between the two GC columns was not performed prior to analyte detection in sample. Q = indicates LCS control criteria did not meet requirements () = Laboratory InHouse Limit M = MS/MSD acceptance criteria did not meet requirements

59 of 83

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New Stephen Liberatore	York, Inc.		OrderDate: Project: Location:	4/4/2025 2:08:3 Con Edison - 1 L31,VOA Ref. #	31 PM 1th Ave-West 5 ¢3 Water	0th St Site	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040 4	WATER			04/04/25			04/04/25
			PCB	8082A		04/08/25	04/08/25	
			TPH GC	8015D		04/08/25	04/08/25	

			Hit Sı	ımmary Sheet SW-846			
SDG No.:	Q1739			Order ID:	Q1739		В
Client:	PARSONS Engine	ering of New York	, Inc.	Project ID	Con Edison - 1	11th Ave-West 50th St Si	С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

Total Concentration:

0.000

<u>SAMPLE</u> <u>DATA</u>

С

Report	of Ana	lysis
--------	--------	-------

Client:	PARSONS	S Engineering of N	lew York, Inc.		Date Collected:			
Project:	Con Edisc	on - 11th Ave-West	50th St Site		Date Received:	04/09/25		
Client Sample ID:	PB167488	STB			SDG No.:	Q1739		
Lab Sample ID:	PB167488	STB			Matrix:	TCLP		
Analytical Method	: SW8151A	L			% Solid:	0	Decanted:	
Sample Wt/Vol:	100	Units: mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbicic	de	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:		Prep Date]	Date Analyzed	Prep B	Batch ID	٦
PS029770.D	1		04/09/25 12:55	(04/09/25 23:22	PB167	7536	
PS029770.D CAS Number	1 Parameter	Со	04/09/25 12:55 nc. Qualifi	(ier MDL	04/09/25 23:22	PB167 LOQ / CRO	7536 QL Units	
PS029770.D CAS Number TARGETS	1 Parameter	Со	04/09/25 12:55 nc. Qualifi	(ier MDL	04/09/25 23:22	PB167 LOQ / CR(7536 QL Units	
PS029770.D CAS Number TARGETS 94-75-7	1 Parameter 2,4-D	Co 9.2	04/09/25 12:55 nc. Qualifi 20 U	(ier MDL 9.20	04/09/25 23:22	PB167 LOQ / CRG 20	7536 QL Units 0.0 ug/L	
PS029770.D CAS Number TARGETS 94-75-7 93-72-1	1 Parameter 2,4-D 2,4,5-TP (Silvex)	Co 9.2 7.8	04/09/25 12:55 nc. Qualifi 20 U 30 U	6 6 MDL 9.20 7.80	04/09/25 23:22	PB167 LOQ / CRO 20 20	7536 QL Units 0.0 ug/L 0.0 ug/L	

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

С	

D

Report of Analysis

Client:	PARSONS	Engineering of I	New York,	Inc.		Date Collected:	04/04/25		
Project:	Con Ediso	n - 11th Ave-Wes	t 50th St Si	te		Date Received:	04/04/25		
Client Sample ID:	WC-LIQU	ID-20250404				SDG No.:	Q1739		
Lab Sample ID:	Q1739-02					Matrix:	TCLP		
Analytical Method	: SW8151A					% Solid:	0	Decanted:	
Sample Wt/Vol:	100	Units: mL				Final Vol:	10000	uL	
Soil Aliquot Vol:		uL				Test:	TCLP Herbici	de	
Extraction Type:						Injection Volume :			
GPC Factor :	1.0	PH :							
Prep Method :	8151A								
File ID/Qc Batch:	Dilution:		Prep Dat	te	-	Date Analyzed	Prep I	Batch ID	
PS029765.D	1		04/09/25	5 12:55		04/09/25 21:22	PB16	7536	
CAS Number	Parameter	Co	onc.	Qualifier	MDL		LOQ / CR	QL	Units
TARGETS									
94-75-7	2,4-D	9.1	20	U	9.20		20	0.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.	80	U	7.80		20	0.0	ug/L
SURROGATES									

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

64 of 83

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received	
Q1739-01	WC-LIQUID-2025040 4	WATER			04/04/25			04/04/25	
			PCB	8082A		04/08/25	04/08/25		
			TPH GC	8015D		04/08/25	04/08/25		
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25	
			TCLP Herbicide	8151A		04/09/25	04/09/25		
			TCLP Pesticide	8081B		04/09/25	04/09/25		

1	в	

Client:	PARSONS Engineer	ing of New York	k, Inc.		Date Collected:	04/04/25		
Project:	Con Edison - 11th Av	ve-West 50th St	Site		Date Received:	04/04/25		
Client Sample ID:	WC-LIQUID-202504	404			SDG No.:	Q1739		
Lab Sample ID:	Q1739-01				Matrix:	Water		
Analytical Method	l: 8015D TPH				% Solid:	0	Decanted:	
Sample Wt/Vol:	980 Units:	mL			Final Vol:	5	mL	
Soil Aliquot Vol:		uL			Test:	TPH GC		
Extraction Type:					Injection Volume :			
GPC Factor :	I	PH :						
Prep Method :	SW3510							
File ID/Qc Batch:	Dilution:	Prep D	Date		Date Analyzed	Prep	Batch ID	
FF015762.D	500	04/08/	25 11:05		04/08/25 18:56	PB1	67520	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / C	RQL	Units
TARGETS PHC	Petroleum Hydrocarbons	3310000		29800			217000	ug/L
SURROGATES 16416-32-3	TETRACOSANE-d50	0.00	*	29 - 130		(0%	SPK: 20

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

67 of 83

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New York, Inc. Stephen Liberatore			OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received	
Q1739-01	WC-LIQUID-2025040 4	WATER			04/04/25			04/04/25	
	-		PCB	8082A		04/08/25	04/08/25		
			TPH GC	8015D		04/08/25	04/08/25		
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25	
			TCLP Herbicide	8151A		04/09/25	04/09/25		
			TCLP Pesticide	8081B		04/09/25	04/09/25		

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.:	Q1739			Order ID:	:	Q1739			
Client:	PARSONS Engineering of N	ew York, Inc.		Project ID):	Con Edison - 11th Ave-West 50th St Site			
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units	
Client ID :	WC-LIQUID-20250404								
Q1739-01	WC-LIQUID-20250404	Water	Aluminum	1580		28.3	50.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Barium	127		6.28	50.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Beryllium	0.54	J	0.13	3.00	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Calcium	30600		33.0	1000	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Chromium	7.19		0.66	5.00	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Cobalt	0.77	J	0.50	15.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Copper	15.1		7.07	10.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Iron	10100		18.5	50.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Lead	22.8		3.51	6.00	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Magnesium	5690		39.4	1000	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Manganese	821		1.46	10.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Mercury	0.11	J	0.076	0.20	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Nickel	2.39	J	0.85	20.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Potassium	5960		685	1000	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Silver	0.68	J	0.58	5.00	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Sodium	422000		237	1000	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Vanadium	20.5		3.06	20.0	ug/L	
Q1739-01	WC-LIQUID-20250404	Water	Zinc	49.6		1.75	20.0	ug/L	

B C

D

<u>SAMPLE</u> <u>DATA</u>

B C D

Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739
Lab Sample ID:	Q1739-01	Matrix:	Water
Level (low/med):	low	% Solid:	0

Report of Analysis

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	1580		1	28.3	50.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-36-0	Antimony	2.06	UN	1	2.06	25.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-38-2	Arsenic	3.48	U	1	3.48	10.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-39-3	Barium	127	Ν	1	6.28	50.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-41-7	Beryllium	0.54	JN	1	0.13	3.00	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-43-9	Cadmium	0.094	U	1	0.094	3.00	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-70-2	Calcium	30600		1	33.0	1000	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-47-3	Chromium	7.19		1	0.66	5.00	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-48-4	Cobalt	0.77	J	1	0.50	15.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-50-8	Copper	15.1		1	7.07	10.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7439-89-6	Iron	10100		1	18.5	50.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7439-92-1	Lead	22.8		1	3.51	6.00	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7439-95-4	Magnesium	5690	Ν	1	39.4	1000	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7439-96-5	Manganese	821		1	1.46	10.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7439-97-6	Mercury	0.11	JN	1	0.076	0.20	ug/L	04/10/25 14:20	04/11/25 10:49	SW7470A	
7440-02-0	Nickel	2.39	J	1	0.85	20.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-09-7	Potassium	5960		1	685	1000	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7782-49-2	Selenium	5.88	U	1	5.88	10.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-22-4	Silver	0.68	J	1	0.58	5.00	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-23-5	Sodium	422000		1	237	1000	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-28-0	Thallium	2.32	U	1	2.32	20.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-62-2	Vanadium	20.5		1	3.06	20.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010
7440-66-6	Zinc	49.6		1	1.75	20.0	ug/L	04/07/25 11:10	04/10/25 12:33	SW6010	SW3010

Color Before:	ore: Colorless Clar		Clear	Texture:				
Color After:	Colorless	Clarity After:	Clear	Artifacts:				
Comments:	METALS-TAL							
U = Not Detec	eted			J = Estimated Value				
LOQ = Limit of Quantitation				B = Analyte Found in Associated Method Blank				
MDL = Method Detection Limit				* = indicates the duplicate analysis is not within control limits.				
LOD = Limit of Detection				E = Indicates the reported value is estimated because of the presence				
D = Dilution				of interference.				
Q = indicates LCS control criteria did not meet requirements			OR = Over Range					
				N =Spiked sample recovery not within control limits				
Q1739 7			71 c	'1 of 83				

A B C D

1

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New Stephen Liberatore	OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1739-01	WC-LIQUID-2025040 4	Water			04/04/25			04/04/25
			Mercury	7470A		04/10/25	04/11/25	
			Metals ICP-TAL	6010D		04/07/25	04/10/25	
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25
			TCLP ICP Metals	6010D		04/07/25	04/08/25	
			TCLP Mercury	7470A		04/10/25	04/11/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	Q1739 PARSONS Engineering of No		Order ID: Project ID	:	Q1739 Con Edison - 11th Ave-West 50th St Site				
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units	
Client ID :	WC-LIQUID-20250404								
Q1739-02	WC-LIQUID-20250404	TCLP	Barium	163	J	62.8	500	ug/L	
Q1739-02	WC-LIQUID-20250404	TCLP	Chromium	10.7	J	6.60	50.0	ug/L	
Q1739-02	WC-LIQUID-20250404	TCLP	Lead	36.1	J	35.1	60.0	ug/L	

B C

D

14

<u>SAMPLE</u> <u>DATA</u>

Report of Analysis

		11y313		В
Client:	PARSONS Engineering of New York, Inc.	Date Collected:	04/04/25	С
Project:	Con Edison - 11th Ave-West 50th St Site	Date Received:	04/04/25	D
Client Sample ID:	WC-LIQUID-20250404	SDG No.:	Q1739	
Lab Sample ID:	Q1739-02	Matrix:	TCLP	
Level (low/med):	low	% Solid:	0	
		T to p p . p .		

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7440-38-2	Arsenic	34.8	U	1	34.8	100	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7440-39-3	Barium	163	JN*	1	62.8	500	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7440-43-9	Cadmium	0.94	U	1	0.94	30.0	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7440-47-3	Chromium	10.7	J	1	6.60	50.0	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7439-92-1	Lead	36.1	J	1	35.1	60.0	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7439-97-6	Mercury	0.76	U	1	0.76	2.00	ug/L	04/10/25 14:20	04/11/25 10:26	SW7470A	
7782-49-2	Selenium	58.8	U	1	58.8	100	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050
7440-22-4	Silver	5.80	U	1	5.80	50.0	ug/L	04/07/25 12:30	04/08/25 17:54	SW6010	SW3050

Color Before: Colorless		Clarity Before:	Clear	Texture:
Color After: Colorless Clarity After: Color		Clear	Artifacts:	
Comments: TCLP METALS				
U = Not Detect LOQ = Limit o MDL = Method LOD = Limit o D = Dilution Q = indicates L	red f Quantitation d Detection Limit f Detection .CS control criteria did not meet re	equirements		J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range N =Spiked sample recovery not within control limits

75 of 83

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New Stephen Liberatore	York, Inc.		OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water						
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received			
Q1739-01	WC-LIQUID-2025040 4	Water			04/04/25			04/04/25			
			Mercury	7470A		04/10/25	04/11/25				
			Metals ICP-TAL	6010D		04/07/25	04/10/25				
Q1739-02	WC-LIQUID-2025040 4	TCLP			04/04/25			04/04/25			
			TCLP ICP Metals	6010D		04/07/25	04/08/25				
			TCLP Mercury	7470A		04/10/25	04/11/25				

15

1	_	
	1	5

Report of Analysis

	DID	CONTR	ь.		X7 1 T			04/04/05 0	0.40		
Client:	PAR	SONS	Engir	neering of Ne	w York, Inc.		Date Collected:	04/04/25 0	04/04/25 09:40		
Project:	Con	Edisor	n - 11t	h Ave-West 5	0th St Site		Date Received:	04/04/25	04/04/25		
Client Sample ID:	WC-	LIQUI	(D-202	250404			SDG No.:	Q1739			
Lab Sample ID: Q		39-02					Matrix:	Water			
							% Solid:	0			
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.		
Flash Point	>212		1	0	0	o F		04/08/25 10:15	1010B		
pН	6.53	Н	1	0	0	pН		04/07/25 16:56	9040C		
Reactive Cyanide	0.00096	U	1	0.00096	0.0050	mg/L	04/07/25 15:00	04/08/25 11:28	9012B		
Reactive Sulfide	0.43	U	1	0.43	1.00	mg/L	04/08/25 12:50	04/08/25 15:38	9034		

Comments: Other method reference for flash point : Pensky-Martens Closed Cup Flash Point ASTM D 93 - IP 34, pH result reported at temperature

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	* = indicates the duplicate analysis is not within control limits.
LOD = Limit of Detection	E = Indicates the reported value is estimated because of the presence
D = Dilution	of interference.
Q = indicates LCS control criteria did not meet requirements	OR = Over Range
H = Sample Analysis Out Of Hold Time	N =Spiked sample recovery not within control limits
1700	

78 of 83

0	

LAB CHRONICLE	
---------------	--

OrderID: Client: Contact:	Q1739 PARSONS Engineering of New Stephen Liberatore	York, Inc.	OrderDate: Project: Location:	4/4/2025 2:08:31 PM Con Edison - 11th Ave-West 50th St Site L31,VOA Ref. #3 Water						
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received		
Q1739-02	WC-LIQUID-2025040	Water			04/04/25			04/04/25		
	4				09:40					
			Flash Point	1010B			04/08/25			
							10:15			
			рН	9040C			04/07/25			
							16:56			
			Reactive Cyanide	9012B		04/07/25	04/08/25			
							11:28			
			Reactive Sulfide	9034		04/08/25	04/08/25			
							15:38			

<u>SHIPPING</u> DOCUMENTS

16

TECH	Inical GROUP	284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 · Fax (908) 789-8922 www.chemtech.net											ALLIANCE PROJECT NO. QUOTE NO. COC Number 2045994 16				
	CLIENT INFORMATION			CLIENT F	PROJECT I	NFORM	ATION				1.2	Ú.	CLIE		ING INF	ORMATION	1
COMPANY:	REPORT TO BE SENT TO:	PROJE	CT N/	ME: Cor	Edl	1th A	ve			BILL	то: Р	arso	n S			PO#:	454053
ADDRESS:	301 Plainfied Rd	PROJEC	T NO.		LOC	ATION:	11th Ave	New	York, M	ADDF	RESS:	301	PL	ainfi	ed R	oad	
CITY Syr	acuse STATE: NY ZIP: 13212	PROJEC	<u>T MAN</u>	IAGER: S	eehen	L	bern	or t	1	CITY	Syr	acus	e .		STA	TE: NY	ZIP: 13212
ATTENTION:	Stephen Liberatore	e-mail:	Step	enalit	perato	rell	Arson	5.00	'n	ATTE	NTION:	Steph	ien L	beat	OR PHO	ONE: 315	- 552 - 97.38
PHONE: 31	5-552-9738 FAX:	PHONE			E	ΔX·								AN	ALYSIS	6	
	DATA TURNAROUND INFORMATION		DA		RABLE IN	VFORM	ATION	170	11075					10		Yr.	
FAX (RUSH) HARDCOPY (E EDD: *TO BE APPRO STANDARD HA	5 - day rush DAYS* DATA PACKAGE): 5 - day rush DAYS* 5 - day rus DAYS* DVED BY CHEMTECH ARDCOPY TURNAROUND TIME IS 10 BUSINESS	Level Level Level + Ra EDD {	1 (Resu 2 (Resu 3 (Resu w Data) FORMA	Its Only) 🔀 Its + QC) 🗆 Its + QC 💷	Level 4 (QI NJ Reduce NYS ASP / Other	C+Full ed II U: A II NY	Raw Dat S EPA C S ASP E		14.99	thesh	elbicity of the states	4.940 4.949 5.040 5.049	A 201 AMALE	A Cost of Cost	Wohlow Wohlow	Madelill UP Let	ato the superior
ALLIANCE	BBO IECT		SAMP	LE SA	MPLE	TLES		TCE	TUE	PRE	SERVA	TIVES				C ← Spec	OMMENTS
SAMPLE ID	SAMPLE IDENTIFICATION	MATRIX	COMP		TIME	/ OF BOT	H2504	建	Hand	E	E	E	HU	-HNO	ICE	A-HCI B-HN03	D-NaOH E-ICE
1.	WC-Liqvid_20250404	L	X	4/4/25	0940	16	X	X	X	X	X	×	X	Ň	X	0-112004	FOIRCE
2.											-		Ĩ,			1	
3.																	
4.																	
5.																	
6.																	
7.																	
8.																	
9.																	
10.																	
RELINQUISHED B 1. Francin RELINQUISHED B 2.	SAMPLE CUSTODY MUST BE DOC Y SAMPLER: DATE/TIME: 1400 RECEIVED BY: Ph.II:ps 414125 1 Y SAMPLER: DATE/TIME: RECEIVED BY: 2. 2.		BELO 14 1-4 -	Conditi	ME SAMF	or coolers	HANGE at receip		OMPLIANT	N INCL	OMPLIA Opari	COUP	COOLER T	ELIVEF	2 2 - 1	, с, с	
RELINCHISHED B	Y SAMPLER: DATE/TIME: 630 RECEIVED BY:				mp	d.	T CLIENT	rd J	Hand D	mcn elivered		GCA ther	00	*1	1KI	Shipmer	- Complete
3. 2024	<u> 7-4,25 3.</u>			Page	of	1					_ 0					D YES	
Q1739	V WHITE - ALLIAN	CE COPY FOR	RETURN	TO CLIENT	81 of 8	W - ALLIA 33	NCE COF	PΥ	PINK - S	SAMPLER	COPY						

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

LOGIN REPORT/SAMPLE TRANSFER

	Order ID :	Q1739	PARS02		()rder Date :	4/4/2025 2:08:31 PM		Project Mgr			
Client Name : PARSONS Engineering of 1			Pro	ject Name :	Con Edison - 11th Ave-W	es.	Report Type :	Results Only	Level 4			
Clien	Client Contact : Stephen Liberatore		Receive DateTime :		4/4/2025 <u>12:00:00 AM</u>		EDD Type :	Excel NY				
Invo	once Name :	PARSON:	S Engineering of f		Purch	lase Order :	04:50 PM	yg 04/11/25	Hard Copy Date :			
Invoice	e Contact :	Stephen L	Ideratore					04/11/	Date Signoii :)
LAB ID	CLIEN	T ID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q1739-01	wo	C-LIQUID-	20250404	Water	04/04/2025	09:40						
							VOC-TCLVOA-10		8260D	10 Bus. D	ays	

Relinguished By : Date/Time: 417/25 0915

Received By : Date / Time :

equis NgAS

16.3

Storage Area: VOA Refridgerator Room