

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID: Q1774

Test: Mercury, Metals ICP-TAL

Prepbatch ID: PB167567,PB167569,

Sequence ID/Qc Batch ID: LB135388,LB135424,LB135424,

Standard ID:

MP84563,MP84564,MP84565,MP84566,MP85016,MP85017,MP85018,MP85019,MP85020,MP85021,MP85022,MP85023,MP85024,MP85025,MP85026,MP85030,MP85031,MP85156,MP85175,MP85176,MP85177,MP85178,MP85179,MP85180,MP85181,MP85182,MP85183,MP85184,MP85185,MP85186,MP85187,MP85187,MP8518

Chemical ID:

M4371,M4465,M4883,M4891,M4916,M5020,M5062,M5288,M5387,M5395,M5429,M5466,M5472,M5496,M5497,M5516,M5521,M5532,M5658,M5747,M5748,M5768,M5789,M5798,M5799,M5800,M5801,M5811,M5814,M5816,M5817,M5820,M5875,M5882,M5884,M5959,M5970,M5978,M5985,M6003,M6012,M6021,M6023,M6028,M6030,M6041,M6058,M6076,M6126,M6128,M6137,M6150,M6151,M6152,M6155,M6156,M6158,M6160,W3112,

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Janvi Patel
3965	2:1 H2SO4 : HNO3	MP84563	02/18/2025	06/03/2025	Mohan Bera	None	None	
								02/19/2025

FROM 1600.00000ml of M6041 + 800.00000ml of M6126 = Final Quantity: 3200.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Janvi Patel
65	POTASSIUM PERMANGANATE SOLUTION 5 %	MP84564	02/18/2025	08/18/2025	Mohan Bera	None	None	02/19/2025

FROM 100.00000gram of M4916 + 2000.00000ml of W3112 = Final Quantity: 2000.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Janvi Patel
66	POTASSIUM PERSULFATE SOLUTION 5 %	MP84565	02/18/2025	08/06/2025		METALS_SCA LE_3 (M SC-3)		02/19/2025

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Janvi Patel
67		MP84566	02/18/2025	06/25/2025		METALS_SCA		
	HYDROXYL- CHLORIDE					LE_3 (M SC-3)		02/19/2025

FROM

2000.00000ml of W3112 + 240.00000gram of M4371 + 240.00000gram of M5884 = Final Quantity: 2000.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
902	ICP AES CAL BLK (SO/ICB/CCB)	MP85016	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 125.00000ml of M6151 + 2350.00000ml of W3112 + 25.00000ml of M5789 = Final Quantity: 2500.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
907	ICP AES STD S (S5)	MP85017	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM

5.00000ml of M5395 + 5.00000ml of M5466 + 5.00000ml of M5472 + 5.00000ml of M5816 + 5.00000ml of M5875 + 5.00000ml of M5970 + 5.00000ml of M6076 + 5.00000ml of M6160 + 455.00000ml of MP85016 = Final Quantity: 500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
910	ICP AES STD S4	MP85018	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
909	ICP AES STD S3	MP85019	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 25.00000ml of MP85017 + 75.00000ml of MP85016 = Final Quantity: 100.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
3913	ICP AES STD S2	MP85020	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 16.00000ml of MP85017 + 184.00000ml of MP85016 = Final Quantity: 200.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
2950	ICP AES S1/CRI STOCK STD	MP85021	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM

 $0.03000 \text{ml of M5798} + 0.03000 \text{ml of M6028} + 0.04000 \text{ml of M6137} + 0.05000 \text{ml of M5496} + 0.05000 \text{ml of M5658} + 0.05000 \text{ml of M5811} + 0.05000 \text{ml of M6030} + 0.06000 \text{ml of M5747} + 0.10000 \text{ml of M4883} + 0.10000 \text{ml of M5472} + 0.10000 \text{ml of M5521} + 0.10000 \text{ml of M5801} + 0.10000 \text{ml of M5801} + 0.10000 \text{ml of M5820} + 0.10000 \text{ml of M5970} + 0.10000 \text{ml of M6128} + 0.15000 \text{ml of M5800} + 0.20000 \text{ml of M5748} + 0.20000 \text{ml of M5799} + 0.20000 \text{ml of M6021} + 0.20000 \text{ml of M6023} + 0.25000 \text{ml of M5466} + 0.25000 \text{ml of M5466} + 0.50000 \text{ml of M5387} + 0.50000 \text{ml of M5814} + 1.00000 \text{ml of M5288} + 1.00000 \text{ml of M5768} + 1.00000 \text{ml of M5978} + 1.00000 \text{ml of M6156} + 2.00000 \text{ml of M5816} + 77.68000 \text{ml of MP85016} = \text{Final Quantity: 100.000} \quad \text{ml}$

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
2951	ICP AES S1/CRI WORK STD	MP85022	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 2.00000ml of MP85021 + 98.00000ml of MP85016 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	<u>Prepared</u> <u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
912	ICP AES ICV SOLN	MP85023	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 0.02500ml of M5020 + 0.02500ml of M5429 + 0.02500ml of M5817 + 0.10000ml of M5466 + 0.25000ml of M5472 + 0.25000ml of M6058 + 10.00000ml of M6150 + 89.77500ml of MP85016 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
904	ICP AES ICSA SOLN	MP85024	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 25.00000ml of M6152 + 225.00000ml of MP85016 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
3494	ICP AES ICSAB SOLN-1	MP85025	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 0.01000ml of M5020 + 0.01000ml of M5817 + 0.10000ml of M5472 + 0.10000ml of M5970 + 0.10000ml of M6076 + 10.00000ml of M6152 + 10.00000ml of M6155 + 79.50000ml of MP85016 = Final Quantity: 100.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
911	ICP AES CCV SOLN	MP85026	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 50.00000ml of MP85016 + 50.00000ml of MP85017 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
919	ICP AES INTERNAL STD	MP85030	03/26/2025	04/26/2025	Kareem Khairalla	None	None	04/07/2025

FROM 1.00000ml of M5959 + 10.00000ml of M5985 + 1969.00000ml of W3112 + 20.00000ml of M5789 = Final Quantity: 2000.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
513	RINSE SOLN	MP85031	03/26/2025	04/26/2025	Kareem	None	None	,	
					Khairalla			04/07/2025	

FROM 200.00000ml of M5789 + 9800.00000ml of W3112 = Final Quantity: 10000.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
170	1:1HCL	MP85156	04/07/2025	08/18/2025	Kareem Khairalla	None	None	04/07/2025

FROM 1250.00000ml of M6151 + 1250.00000ml of W3112 = Final Quantity: 2500.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
871	MERCURY INTERMEDIATE B 250PPB WORKING STD.	MP85175	04/10/2025	04/11/2025	Mohan Bera	None	METALS_PIP ETTE_5 (HG		
	A)								

FROM 1.00000ml of M6158 + 2.50000ml of M5062 + 96.50000ml of W3112 = Final Quantity: 100.000 ml

Recipe				Expiration	Prepared			Supervised By	
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal	
1340	Hg 0.00 PPB STD	MP85176	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP		
							ETTE_5 (HG	04/15/2025	
	A)								

FROM 2.50000ml of M6158 + 247.50000ml of W3112 = Final Quantity: 250.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
1341	Hg 0.2 PPB STD	MP85177	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG		
	A)								

FROM 2.50000ml of M6158 + 247.30000ml of W3112 + 0.20000ml of MP85175 = Final Quantity: 250.000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1342	Hg 2.5 PPB STD	MP85178	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	04/15/2025

FROM 2.50000ml of M6158 + 245.0000ml of W3112 + 2.50000ml of MP85175 = Final Quantity: 250.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1343	Hg 5.0 PPB STD	MP85179	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	

FROM 2.50000ml of M6158 + 242.50000ml of W3112 + 5.00000ml of MP85175 = Final Quantity: 250.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1344	Hg 7.5 PPB STD	MP85180	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	04/15/2025

FROM 2.50000ml of M6158 + 240.00000ml of W3112 + 7.50000ml of MP85175 = Final Quantity: 250.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1345	Hg 10.0 PPB STD	MP85181	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M6158 + 237.50000ml of W3112 + 10.00000ml of MP85175 = Final Quantity: 250.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1346	Hg ICV SOLUTION	MP85182	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP	
							ETTE_5 (HG	04/15/2025

FROM 2.50000ml of M5532 + 2.50000ml of M6158 + 245.00000ml of W3112 = Final Quantity: 250.000 ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1351	ICB (Hg 0.00 PPB SOLUTION)	MP85183	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M6158 + 247.50000ml of W3112 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1358	CCV (Hg 5.0 PPB SOLUTION)	MP85184	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 485.00000ml of W3112 + 5.00000ml of M6158 + 10.00000ml of MP85175 = Final Quantity: 500.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1352	CCB (Hg 0.00 PPB SOLUTION)	MP85185	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 495.00000ml of W3112 + 5.00000ml of M6158 = Final Quantity: 500.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1349	CRA/CRI (Hg 0.2 PPB SOLUTION)	MP85186	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M6158 + 247.30000ml of W3112 + 0.20000ml of MP85175 = Final Quantity: 250.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1350	CHK STD (Hg 7.0 PPB SOLUTION)	MP85187	04/10/2025	04/11/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M6158 + 240.50000ml of W3112 + 7.00000ml of MP85175 = Final Quantity: 250.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
68	STANNOUS CHLORIDE SOLUTION	MP85196	04/11/2025	04/12/2025		METALS_SCA LE_3 (M SC-3)		04/15/2025

FROM 450.00000ml of W3112 + 50.00000gram of M5882 + 50.00000ml of M6151 = Final Quantity: 500.000 ml

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-2196-01 / Hydroxylamine Hydrochloride, Crystal (cs/4x500g)	0000215387	06/25/2025	07/01/2019 / RICHARD	06/07/2019 / RICHARD	M4371
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3238-05 / Potassium Persulfate (2.5kg)	0000234156	08/06/2025	07/23/2019 / manojkumar	07/25/2019 / manojkumar	M4465
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57034 / Se, 1000 PPM, 125 ml	070221	09/07/2025	08/06/2021 / jaswal	08/05/2021 / jaswal	M4883
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	031921	05/19/2025	08/25/2021 / bin	08/05/2021 / jaswal	M4891
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3227-05 / Potassium Permanganate (2.5kg)	210800	03/31/2026	11/30/2022 / mohan	07/28/2021 / mohan	M4916
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57115 / P, 10000 PPM, 125 ml	032921	05/17/2025	12/13/2021 / bin	12/09/2021 / bin	M5020

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	MSHG-10PPM / MERCURY HCI 125mL 10ug/mL	S2-HG709270	09/22/2026	05/28/2022 / mohan	01/27/2022 / mohan	M5062
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	071122	07/11/2025	09/01/2022 / jaswal	07/21/2022 / jaswal	M5288
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	072122	07/21/2025	11/01/2022 / jaswal	09/18/2022 / jaswal	M5387
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-3 / CLP CAL SOLUTION #3, 125mL	T2-MEB714159	01/13/2027	01/30/2024 / bin	09/19/2022 / bin	M5395
_		T2-MEB714159	01/13/2027 Expiration Date			M5395 Chemtech Lot #
Ventures	SOLUTION #3, 125mL		Expiration	bin Date Opened /	bin Received Date /	Chemtech
Ventures Supplier Absolute	SOLUTION #3, 125mL ItemCode / ItemName 57103 / Li, 10000 PPM,	Lot #	Expiration Date	Date Opened / Opened By 01/30/2023 /	Received Date / Received By 01/26/2023 /	Chemtech Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	, , , , , ,		08/29/2025	01/14/2025 / Jaswal	03/16/2023 / jaswal	M5472
Supplier	pplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Al, 10000 PPM, 500 ml	011623	01/16/2026	08/15/2023 / jaswal	03/17/2023 / bin	M5496
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	,		03/15/2026	03/18/2023 / bin	03/17/2023 / bin	M5497
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	58111 / Na, 10000 PPM, 500 ml	022123	11/06/2025	11/06/2024 / kareem	03/17/2023 / bin	M5516
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	102622	10/26/2025	11/21/2022 / bin	11/20/2022 / bin	M5521
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
EPA	ICV-5 / ICV (HG)STOCK	ICV5-0415	04/30/2025	01/02/2025 / mohan	03/30/2023 / mohan	M5532

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute 58024 / Chromium, Cr, 500 ml, 1000 PPM		060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Lead (Pb) 1000PPM	100923	10/09/2026	05/20/2024 / Jaswal	12/20/2023 / jaswal	M5747
Supplier	Supplier ItemCode / ItemName		Expiration Date Opened / Date Opened By		Received Date / Received By	Chemtech Lot #
Absolute / Nickel (Ni) 1000PPM Standards, Inc.		091223	09/12/2026	01/02/2024 / bin	12/20/2023 / jaswal	M5748
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	091823	09/18/2026	01/08/2024 / bin	01/03/2024 / bin	M5768
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	23G1262003	07/30/2025	02/08/2024 / Al-Terek	06/26/2023 / Al-Terek	M5789
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798

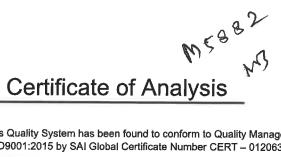
Fax: 908 789 8922

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	, , , , , , , , , , , , , , , , , , , ,		07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799
Supplier	oplier ItemCode / ItemName Lot		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800
Supplier	Supplier ItemCode / ItemName		Expiration Date			Chemtech Lot #
Absolute Standards, Inc.			11/13/2026	02/09/2024 / bin	02/09/2024 / bin	M5801
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58126 / Fe, 10000 PPM, 500 ml	051523	05/15/2026	02/06/2025 / kareem	01/03/2024 / jaswal	M5811
Supplier	ItemCode / ItemName	ItemCode / ItemName Lot #		Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57005 / B, 1000 PPM, 125 ml	071123	07/11/2026	03/26/2024 / Sohil	01/03/2024 / jaswal	M5814
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.			12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	, , , , , , , , , , , , , , , , , , , ,		07/11/2026	03/01/2024 / jaswal	02/09/2024 / jaswal	M5817
Supplier	upplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820
Supplier	Supplier ItemCode / ItemName		Expiration Date Opened / Opened By		Received Date /	Chemtech Lot #
Inorganic Ventures	-		01/27/2027	04/19/2024 / jaswal	02/22/2024 / jaswal	M5875
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3980-01 / Stannous Chloride (cs/4x500g)	232820	08/31/2028	04/30/2024 / mohan	04/25/2024 / mohan	M5882
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3624-05 / Sodium Chloride, Crystal (cs/4x2.5kg)		07/06/2026	04/30/2024 / mohan	04/25/2024 / mohan	M5884
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
	CGY10-1 / YTTRIUM	V2-Y740548	02/20/2029	07/01/2024 /	06/14/2024 /	M5959

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57003 / Li, 1000 PPM, 125 ml	061224	06/21/2027	07/01/2024 / Jaswal	07/01/2024 / Jaswal	M5970	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	CGTI1-1 / TITANIUM 125mL 1000ug/mL	T2-TI719972	06/17/2027	08/07/2024 / jaswal	02/22/2024 / Jaswal	M5978	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures			02/21/2028	10/08/2024 / Jaswal	06/14/2024 / Jaswal	M5985	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	WW-LFS-1 / Laboratory Fortified Stock Solution 1, 125 ml	T2-MEB723367	08/26/2025	02/26/2025 / Eman	05/14/2024 / Jaswal	M6003	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Inorganic Ventures	-		09/17/2025	03/17/2025 / Eman	05/14/2024 / Jaswal	M6012	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	, ,		06/27/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6023
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57048 / Cd, 1000 PPM, 125 ml	070124	07/01/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6028
Supplier	ItemCode / ItemName	Lot #	Expiration Date Opened / R		Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.			12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	23D2462010	03/20/2028	08/16/2024 / mohan	08/16/2024 / mohan	M6041
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Inorganic Ventures			01/29/2026	01/29/2025 / JANVI	08/22/2024 / Jaswal	M6058
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	Z9651Q / CHEM-CLP-4/.25L	V2-MEB746762	01/01/2026	01/01/2025 / kareem	09/19/2024 / kareem	M6076


Fax: 908 789 8922

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)		06/03/2025	12/03/2024 / Janvi	11/12/2024 / Janvi	M6126
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58025 / Mn, 1000 PPM, 500 ml	101124	10/11/2027	01/13/2025 / kareem	01/13/2025 / kareem	M6128
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	•		07/10/2029	01/14/2025 / Jaswal	10/03/2024 / Jaswal	M6137
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	ICV-1 / ICV (ICP/ICPMS) STOCK SOLN	ICV1-1014	07/07/2025	02/07/2025 / JANVI	04/20/2021 / JANVI	M6150
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Seidler Chemical	Seidler Chemical BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)		08/18/2025	02/18/2025 / Sagar	01/15/2025 / Sagar	M6151
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	EPA PART A / ICSA (ICP) STOCK SOLN		08/24/2025	02/24/2025 / kareem	04/20/2021 / kareem	M6152

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART B / ICSAB (ICP) STOCK SOLN	ICSB-0710	06/20/2025	02/10/2025 / kareem	02/09/2024 / kareem	M6155
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	032123	03/21/2026	11/06/2024 / JANVI	06/12/2024 / JANVI	M6156
Supplier	Supplier ItemCode / ItemName		Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	Seidler Chemical BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)		03/25/2029	03/10/2025 / Eman	02/02/2025 / Sagar	M6158
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	071724	03/24/2026	03/24/2025 / kareem	10/18/2024 / kareem	M6160
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical DIW / DI Water		Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112

1 Reagent Lane Fair Lawn, NJ 07410 201,796,7100 tel

Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System

Standard ISO9001:2015 by SAI Global Certificate Number CERT - 0120633 201,796,1329 fax

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

Catalog Number	T142	Quality Test / Release Date	08/17/2023				
Lot Number	232820						
Description	STANNOUS CHLORIDE, DIHYDRATE CERTIFIED ACS (Suitable for Mercury Determination)						
Country of Origin	United States	Suggested Retest Date	Aug/2028				
Chemical Origin	Inorganic-non animal						
BSE/TSE Comment	No animal products are used as starting raw material ingredients, or used in processing, including lubricants, processing aids, or any other material that might migrate to the finished product.						

N/A								
Result Name	Units	Specifications	Test Value					
APPEARANCE		REPORT	Clear crystals					
ASSAY	%	Inclusive Between 98 - 103	100.65					
CALCIUM	%	<= 0.005	0.0017					
IDENTIFICATION	PASS/FAIL	= PASS TEST	PASS TEST					
IRON (Fe)	%	<= 0.003	0.0011					
LEAD (Pb)	%	<= 0.01	0.0006					
MERCURY (Hg)	ppm	<= 0.05	<0.05					
POTASSIUM (K)	%	<= 0.005	0.0001					
SODIUM (Na)	%	<= 0.01	<0.01					
SOLUBILITY IN HCL	PASS/FAIL	= PASS TEST	PASS TEST					
SULFATE (SO4)	PASS/FAIL	= P.T. (ABOUT 0.003%)	P.T. (ABOUT 0.003%)					

Harout Sahagian - Quality Control Supervisor - Fair Lawn

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R 815/24

Solvent:

24002546

Nitric Acid

Lot #

M6028

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

57048 070124

Lot Number: Description:

Cadmium (Cd)

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB

1000

Recommended Storage:

Expiration Date:

070127 Ambient (20 °C)

Weight shown below was dliuted to (mL):

2000.07

0.100 Flask Uncertainty 5E-05 Balance Uncertainty

2%

40.0 (mL) Nitric Acid

Formulated By:

Alban PROBAN

Aleah O'Brady

070124

Reviewed By:

Pedro L. Rentas

070124

Expanded

Weight (g) Conc. (µg/mL) Uncertainty

Cadmium nitrate tetrahydrate (Cd)

IN024 CDM092021A1

1000

99.999

0.10

36.5

5.4797

5.4804

1000.1

2.0

10022-68-1

0.01 mg/m3

orl-rat 60.2mg/kg

3108

RM#

Number Lot

Conc. (µg/mL)

8

8

Weight (g)

Target

Actual

Actual

Nominal

Purity

Uncertainty Assay Purity (%)

+/- (µg/mL)

CAS#

SDS Information

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50

NIST SRM

m/z-> -z/m m/z-> 1.0E7 2.0E7 5.OE4 1.0E5 2.5E4 5.0M4 [1] Spectrum No.1 010 110 0 220 120 20 [12.514 sec]:58148.D# [Count] [Linear] 230 130 30 240 140 40 N00 150 50 2000 160 60 170 70 180 80 061 Ö 200 100

1 of 2

www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		₩ !	묤	Ве	ן ל	炗	As	. 0	ç	2		I		
	10.04	200	A (2)	10.02	0.02	3	4	20.02	3	♦ 0.02				
	2	2 8	3	Ţ.) {	,	င္ပ	2	?	2				
	70.02	2 6 6	8	40.02	20.02	3	<u>8</u> .92	2.0	5	H				
	- Au	} {	3	G	2	2	달	Ę	, t	Ų				
	20.02	3 6	3	40.02	20.02	3	8	40.02		0.02	The second second			
	20	2 5	,	4	ing.	4	5	Ho	:	H		L	4	
	20.02	20.02	3	∆ 0,2	<0.02	3	A Si	40.02	1 1	40.02	STORES STORES	I dec Me	-1	
	20	MIO	5,	He	Mn	, ,	₹	5	1	E	STATE OF THE PARTY	אפרשוט	5	
(T) = Target analyte	40,02	20.02	5	∆ 0.2	<0.02		≙ 01	40,02		40.00		vernica	1	
jet anal	×	7	,	9	Pd		<u>ک</u>	Ş	:	Z.		Con		
yte	A0.22	\$0.02		A) (2)	<0.02	10.00	3	<0.02	40.02	20.00		יטא וכף-		
	Sc	Sm	•	2	RЪ	1	<u> </u>	Re	1.1	P		MU		
	40.02	40.02		∆	∆ 0,02	20.02	3	40.02	10.02	000		Jg/mL)		
	Ta	S		ę	Z	200	>	S.	č	200	Spillings		ı	
	Ð.02	40.02	40.04	3	40.2	20.02	3	<u>0.02</u>	7.03	à				
	Ti	Sn	1111	7	7	1	3	i.	10					
	<0.02	40.02	20.07	3	₩	20.02	3	40.02	20.02	500	Age of the owner that the			
	Zt	Zn		<	¥	~	7	_ _	*					
	<0.02	<0.02	20.02	3	40.02	20.02		40.02	70.02		MATERIAL SECTION AND ADDRESS OF THE PERSON A			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57048

2 of 2

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CLPP-CAL-1

Lot Number: T2-MEB714417

Matrix: 5% (v/v) HNO3

Value / Analyte(s): 5 000 µg/mL ea:

Calcium, Potassium, Magnesium, Sodium,

2 000 µg/mL ea:

Aluminum, Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Nickel, Vanadium, Zinc, Cobalt,

Manganese, 250 μg/mL ea:

Silver, Copper,

200 μg/mL ea: Chromium, 50 μg/mL ea: Beryllium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 μg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.00 ± 0.26 μg/mL	Calcium, Ca	5 000 ± 22 μg/mL
Chromium, Cr	200.0 ± 1.0 μg/mL	Cobalt, Co	500.0 ± 2.4 μg/mL
Copper, Cu	250.0 ± 1.0 μg/mL	Iron, Fe	1 000 ± 4 μg/mL
Magnesium, Mg	5 000 ± 20 μg/mL	Manganese, Mn	500.0 ± 2.0 μg/mL
Nickel, Ni	500.0 ± 2.2 μg/mL	Potassium, K	5 000 ± 19 μg/mL
Silver, Ag	250.0 ± 1.1 μg/mL	Sodium, Na	5 000 ± 18 μg/mL
Vanadium, V	499.7 ± 2.2 μg/mL	Zinc, Zn	500.0 ± 2.2 μg/mL

Density: 1.118 g/mL (measured at 20 ± 4 °C)

Assay Information:

issay information.							
	ANALYTE	METHOD	NIST SRM#	SRM LOT#			
	Ag	ICP Assay	3151	160729			
	Ag	Volhard	999c	999c			
	Al	ICP Assay	3101a	140903			
	Al	EDTA	928	928			
	Ва	ICP Assay	3104a	140909			
	Ва	Gravimetric		See Sec. 4.2			
	Ве	ICP Assay	3105a	090514			
	Ве	Calculated		See Sec. 4.2			
	Ca	ICP Assay	3109a	130213			
	Ca	EDTA	928	928			
	Co	ICP Assay	3113	190630			
	Co	EDTA	928	928			
	Cr	ICP Assay	3112a	170630			
	Cr	Calculated		See Sec. 4.2			
	Cu	ICP Assay	3114	121207			
	Cu	EDTA	928	928			
	Fe	ICP Assay	3126a	140812			
	Fe	EDTA	928	928			
	K	ICP Assay	3141a	140813			
	K	Gravimetric		See Sec. 4.2			
	Mg	ICP Assay	3131a	140110			
	Mg	EDTA	928	928			
	Mn	ICP Assay	3132	050429			
	Mn	EDTA	928	928			
	Na	ICP Assay	3152a	120715			
	Na	Gravimetric		See Sec. 4.2			
	Ni	ICP Assay	3136	120619			
	Ni	EDTA	928	928			
	V	IC Assay	3165	160906			
	V	EDTA	928	928			
	Zn	ICP Assay	3168a	120629			
	Zn	EDTA	928	928			

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information.

https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 27, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 27, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT Bag Open Date:	
· Sealeo TCT Bao Oberi Dale	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

DD9784.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

CLPP-CAL-3 Catalog Number: T2-MEB714159 Lot Number: Matrix: 7% (v/v) HNO3 Value / Analyte(s):

> Arsenic, Lead, Selenium, Thallium,

500 µg/mL ea: Cadmium

1 000 µg/mL ea:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE 1 000 ± 8 µg/mL Cadmium, Cd $500.0 \pm 2.1 \,\mu g/mL$ Arsenic, As Lead, Pb 1 000 ± 5 µg/mL Selenium, Se 1 000 ± 8 µg/mL

Thallium, TI 1 000 ± 7 µg/mL

Density: 1.043 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
TI	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char} a)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} Xa = mean of Assay Method A with $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{\frac{1}{2}}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum ((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

 An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 13, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 13, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT Bag Open Date:	
· Sealeo TCT Bao Oberi Dale	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

20178Ci

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M5810 M5811

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Part Number: Lot Number: Description:

58126 051523 Iron (Fe)

R: 01/03/24

Solvent: 21110221 Lot # Nitric Acid

Formulated By:

J. Brans

であるから

5.0%

250.0

Nitric Acid

Giovanni Esposito

051523

Reviewed By:

Pedro L. Rentas

051523

Purity Uncertainty Assay 0.12 Flask Uncertainty Expanded SDS Information

Weight (g) Target Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS#

IN346 2302010-500 10000 99.995 0.10 100.0 50.0034 50.0111 10001.5 20.0 7439-89-6

1. Iron (Fe)

Compound

RM#

Number E E

Conc. (µg/mL)

36

Purity (%)

8

Nominal

Nominal Concentration (µg/mL):

NIST Test Number:

BTUB 10000

5E-05 Balance Uncertainty

Recommended Storage:

Ambient (20 °C) 051526

Expiration Date:

Weight shown below was diluted to (mL):

5000.1

Uncertainty

(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

SRM

5 mg/m3 orl-rat 7500mg/kg 3126a

70 BO 90

100

m/2->

10

20

30

40

S O

60

1.054

2.0E4

[1] Spectrum No.1 [30.763 sec]:58126.D# [Count] [Linear]

1.0E8

200

m/z->

110

120

130

5.0E7

1.0E8-

5.0E7

230 240

250

260

1 of 2

Lot # 051523

T/2->

210

220

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Sb Sb Ba Ba Ba	
	40.02 40.02 40.02 40.02 40.02	
	58555	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	Au Ge	
	40.02 40.02 40.02 40.02 40.02	
	# # # # # # # # # # # # # # # # # # #	
	40.22 40.22 40.22 40.22	Trace
	Man Man Li	Meta
_		ls Ve
(T) = Tarnet analyta	0.10 0.20 0.20	rificat
	N A S R a K X	tion t
1	40.02 40.02 40.02 40.02	y ICP-
	Rb Rb Sc	WS (L
	0850564	/g/m
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	۲
	Si Se Na Sr Sr Sr	
	40.02 40.02 40.02 40.02 40.02	
	4000 4000 4000 4000	-
	7	
	4002 4002 4002 4002 4002	

(I) = larger analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
* Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

M6000,M6001,M6002,M6003,M6004,M6005,M6006,M6007,M6008

Certificate of Analysis

Refine your results. Redefine your industry. RD:05/14/2024

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

WW-LFS-1

Lot Number:

T2-MEB723367

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

1 000 μg/mL ea: Potassium, 600 μg/mL ea: Phosphorus, 300 μg/mL ea:

Iron,

200 μg/mL ea:

Sodium,

Magnesium, Aluminum, Cerium, Selenium,

Thallium,

100 μg/mL ea:

Lead, Calcium,

80 µg/mL ea: Arsenic, 70 µg/mL ea: Mercury, 50 µg/mL ea: Nickel,

40 μg/mL ea: Chromium,

30 μg/mL ea:

Copper, Boron,

Vanadium,

20 μg/mL ea:

Zinc, Strontium,
Barium, Beryllium,
Cadmium, Cobalt,
Manganese, Lithium,

7.5 µg/mL ea: Silver

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 200.0 ± 0.7 µg/mL	ANALYTE Arsenic, As	CERTIFIED VALUE 80.0 ± 0.7 µg/mL
Barium, Ba	20.00 ± 0.09 μg/mL	Beryllium, Be	20.00 ± 0.13 μg/mL
Boron, B	30.00 ± 0.18 μg/mL	Cadmlum, Cd	20.00 ± 0.09 μg/mL
Calcium, Ca	100.0 ± 0.4 μg/mL	Cerium, Ce	200.0 ± 0.8 µg/mL
Chromium, Cr	40.00 ± 0.30 μg/mL	Cobalt, Co	20.00 ± 0.10 μg/mL
Copper, Cu	30.00 ± 0.13 μg/mL	Iron, Fe	300.0 ± 1.3 μg/mL
Lead, Pb	100.0 ± 0.4 μg/mL	Lithium, Li	20.00 ± 0.08 µg/mL
Magneslum, Mg	200.0 ± 0.8 μg/mL	Manganese, Mn	20.00 ± 0.08 µg/mL
Mercury, Hg	70.0 ± 0.3 µg/mL	Nickel, Ni	50.00 ± 0.22 μg/mL
Phosphorus, P	600.0 ± 2.7 μg/mL	Potassium, K	1 000 ± 4 µg/mL
Selenium, Se	200.0 ± 1.3 μg/mL	Silver, Ag	7.50 ± 0.03 µg/mL
Sodium, Na	300.0 ± 1.4 μg/mL	Strontium, Sr	20.01 ± 0.08 μg/mL
Thailium, Ti	200.0 ± 1.4 μg/mL	Vanadium, V	30.00 ± 0.13 μg/mL
Zinc, Zn	20.00 ± 0.09 μg/mL		

1.034 g/mL (measured at 20 \pm 4 °C) Density:

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Ag	Calculated		See Sec. 4.2
Al	ICP Assay	3101a	140903
Al	EDTA	928	928
As	ICP Assay	3103a	100818
В	ICP Assay	3107	190605
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Ве	ICP Assay	3105a	090514
Ca	ICP Assay	3109a	130213
Ca	EDTA	928	928
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Се	ICP Assay	3110	090504
Ce	EDTA	928	928
Co	ICP Assay	3113	190630
Со	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	121207
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
K	ICP Assay	3141a	140813
K	Gravimetric		See Sec. 4.2
Li	ICP Assay	3129a	100714
Li	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	Traceable to 3152A	S2-NA700842
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
P	ICP Assay	3139a	060717
P	Acidimetric	84L	84L
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
Sr	EDTA	928	928
Sr	ICP Assay	Traceable to 3153a	K2-SR650985
TI	ICP Assay	3158	151215
V	IC Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

Page 4 of 6

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

 X_i = mean of Assay Method i with standard uncertainty $u_{char\ i}$

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} is are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRMRM}, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char})$

X_g = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{tts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (slorage) u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar.

8.0 HAZARDOUS INFORMATION

Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

August 30, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- August 30, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Da	te:
--------------------------	-----

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines

Chairman / Senior Technical Director

DD978hi.

Certificate of Analysis

Refine your results. Redefine your industry. RD:05/14/2024

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 **ACCREDITATION / REGISTRATION**

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

WW-LFS-2

Lot Number:

U2-MEB731108

Matrix:

5% (v/v) HNO3

tr. HF

Value / Analyte(s):

200 µg/mL ea:

Silica,

80 µg/mL ea: Antimony, 70 µg/mL ea:

Tin,

40 µg/mL ea: Molybdenum, 20 µg/mL ea:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE Antimony, Sb **CERTIFIED VALUE** 80.1 ± 0.6 µg/mL

Titanium

ANALYTE Molybdenum, Mo **CERTIFIED VALUE** 40.03 ± 0.18 µg/mL

Silica, SIQ2

200.2 ± 1.3 μg/mL

Tin, Sn

 $70.0 \pm 0.4 \, \mu g/mL$

Titanium, Ti

20.01 ± 0.13 µg/mL

Density:

1.025 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE Mo	METHOD ICP Assay	NIST SRM# 3134	SRM LOT# 130418
Мо	Calculated		See Sec. 4.2
Sb	ICP Assay	3102a	140911
SiO2	ICP Assay	3150	130912
Sn	ICP Assay	3161a	140917
П	ICP Assay	3162a	130925
Ti	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

 $\mathbf{w_j}$ = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} \simeq k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{\frac{1}{2}}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of Individual results:

 $X_{CRM/RM} = (X_a) (u_{char e})$

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{bs} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 u_{char} a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/Δ

6.0 INTENDED USE

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>
 https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.Inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous.
 Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

March 17, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- March 17, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date 	
--	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control 3D978hi.

Certifying Officer:

Paul Gaines
Chairman / Senior Technical I

Chairman / Senior Technical Director

M4371

Hydroxylamine Hydrochloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Suitable for Mercury Determination (hydroxylammonium chloride)

Rec - 06.07.12

Material No.: 2196-01

Batch No.: 0000215387

Manufactured Date: 2018/06/27 Retest Date: 2025/06/25

Revision No: 1

Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

Test	Specification	Result
Assay (NH2OH·HCl) (by KMnO4 titrn)	>= 96.0 %	99.1
Clarity of Alcohol Solution	Passes Test	PT
Residue after Ignition	<= 0.050 %	0.017
Titrable Free Acid (meq/g)	<= 0.25	0.19
Ammonium (NH4)	Passes Test	PT
Sulfur Compounds (as SO ₄)	<= 0.005 %	< 0.003
Trace Impurities - ACS - Heavy Metals (as Pb)	<= 5 ppm	4
Trace Impurities - Iron (Fe)	<= 5 ppm	< 3
Trace Impurities - Mercury (Hg)	<= 0.050 ppm	< 0.005

For Laboratory, Research or Manufacturing Use

Country of Origin:

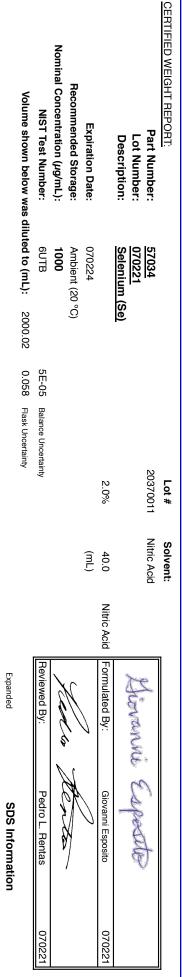
CN

Packaging Site:

Paris Mfg Ctr & DC

Phillipsburg, NJ 9001:2015, FSSC22000
Paris, KY 9001:2008
Mexico City, Mexico 9001:2008
Gliwice, Poland 9001:2015, 13485:2012
Selangor, Malaysia 9001:2008
Dehradun, India, 9001:2008, 14001:2004, 13485:2003
Mumbai, India, 9001:2015, 17025:2005
Panoli, India 9001:2015

Jamie Ethier
Vice President Global Quality


Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part Number

Lot Number

Vol. (mL)

Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL)

Conc. (µg/mL)

Expanded
Uncertainty
+/- (µg/mL)

CAS#

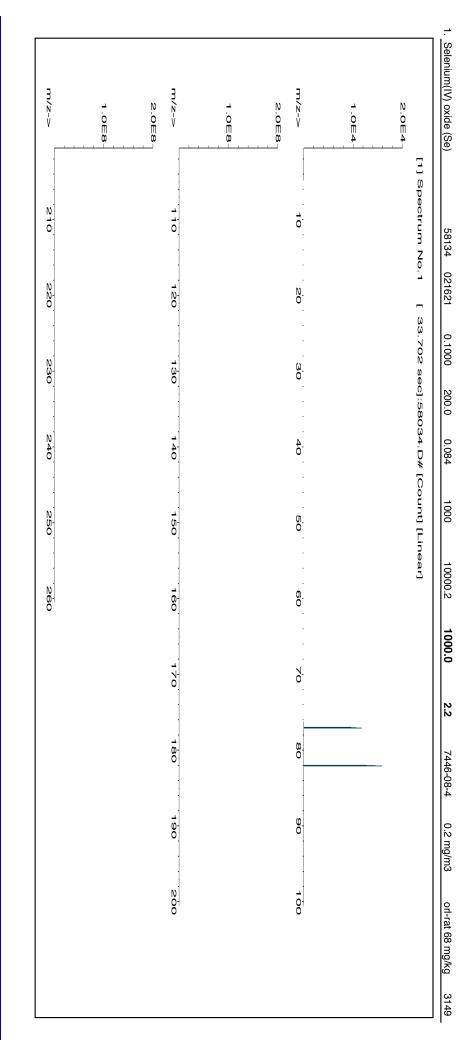
OSHA PEL (TWA)

LD50

SRM

(Solvent Safety Info. On Attached pg.)

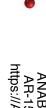
Dilution Factor


Initial

Uncertainty

Nominal

Initial


Final

Part # 57034

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

								Trace M	etals	Verifica	tion l	oy ICP-N	S (μς	₃/mL)						
>		<0.02	Cd	<0.02	Dν	<0.02	Hf	<0.02	Li	<0.02	N:	<0.02	Pr	<0.02	Se	T	- dT	<0.02	W	
Sb	ъ	< 0.02	Ca	<0.2	Εr	< 0.02	Но	< 0.02	Lu	<0.02	N _P	< 0.02	Re	< 0.02	S:	<0.02	Te	< 0.02	U	
⊳	S	<0.2	Се	< 0.02	Eu	< 0.02	Īn	<0.02	Mg	<0.01	Os	< 0.02	Rh	<0.02	Ag	<0.02	TI	< 0.02	<	
В	<u>8</u> 2	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	ΥЪ	
В	ė.	<0.01	Cr	<0.02	Ga	<0.02	Fe	<0.2	$_{\mathrm{Hg}}$	<0.2	P	<0.02	Ru	<0.02	S_{Γ}	<0.02	Tm	<0.02	Y	
В	<u>27.</u>	<0.02	Со	<0.02	Ge	< 0.02	La	< 0.02	Mo	< 0.02	P	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	Zn	
H	-	<0.02	Cu	< 0.02	Au	< 0.02	Рь	<0.02	Nd	< 0.02	K	<0.2	Sc	<0.02	Ta	<0.02	Ti	< 0.02	Zr	
ľ	ŀ						l			<u> </u>										

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: 58030 031921 Zinc (Zn) 031924 1000 Ambient (20 °C) 2000.02 0.058 5E-05 Balance Uncertainty Flask Uncertainty 20370011 Lot # 2.0% Nitric Acid Solvent: (mL)40.0 Nitric Acid Formulated By: Reviewed By: Giranie September 2 Pedro L. Rentas Giovanni Esposito ento 031921 031921

Number Part

Number Lot

Vol. (mL)

Pipette (mL) Uncertainty

Conc. (µg/mL)

Conc. (µg/mL)

Conc. (µg/mL)

+/- (µg/mL) Uncertainty Expanded

CAS#

OSHA PEL (TWA)

LD50

SRM NIST

(Solvent Safety Info. On Attached pg.)

SDS Information

Nominal

Initial

Final

Dilution Factor

Initial

m/z->	500-	m/z->	1.0E6-	m/z->	1.0E5-	2.0E5 - - -
210		110		10		[1] Spectrum No.1
N N- O		120] 20]		_
23- 0		130		30		32.814 sec
240		140		4.0		32.814 sec]:57030.D# [Count] [Linear]
250		150		50		[Count] [Li
N 00-1		160		60		inear]
		170		70		
		180		80		
		190		90		
		200		100		

Part # 58030

1 of 2

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	letals	Verifica	cation	by ICP-№	IS (µo	g/mL)						
Al	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Li	< 0.02	Z:	<0.02	Pr	<0.02	Se	<0.2	ть	<0.02	W	<0.02
Sb	<0.02	Ca	<0.2	Εŗ	<0.02	Но	< 0.02	Ŀ	< 0.02	N	<0.02	Re	<0.02	S:	< 0.02	Te	<0.02	U	<0.02
As	<0.2	င	< 0.02	Eu	<0.02	In	< 0.02	Mg	< 0.01	Os	<0.02	Rh	< 0.02	Ag	< 0.02	11	<0.02	<	<0.02
Ва	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	< 0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	ΥЪ	<0.02
Ве	< 0.01	Ç	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
B:	< 0.02	Со	< 0.02	Ge	<0.02	La	< 0.02	Мо	< 0.02	Pt	<0.02	Sm	<0.02	S	< 0.02	Sn	<0.02	Zn	Т
В	< 0.02	Cu	<0.02	Au	<0.02	Рь	<0.02	Nd	<0.02	K	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

M4913- 16

Certificate of Analysis

1 Reagent Lane Fair Lawn, NJ 07410 201.796.7100 tel 201.796.1329 fax

Thermo Fisher Scientific's Quality System has been found to conform to Quality Management System Standard ISO9001:2015 by SAI Global Certificate Number CERT – 0120632

This is to certify that units of the lot number below were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Thermo Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Products are for research use or further manufacturing. Not for direct administration to humans or animals. It is the responsibility of the final formulator and end user to determine suitability based upon the intended use of the end product. Products are tested to meet the analytical requirements of the noted grade. The following information is the actual analytical results obtained.

Catalog Number	P279	Quality Test / Release Date	01/12/2021
Lot Number	210306		
Description	POTASSIUM PERMANGANATE, A.C.S.		
Country of Origin	United States	Suggested Retest Date	Jan/2026

N/A			
Result Name	Units	Specifications	Test Value
APPEARANCE		REPORT	Dark purple to purple green crystals
ASSAY	%	>= 99	99.3
CHLORIDE & CHLORATE	%	<= 0.005	<0.005
IDENTIFICATION	PASS/FAIL	= PASS TEST	pass test
INSOLUBLE MATTER	%	<= 0.2	<0.2
MERCURY (Hg)	ppm	<= 0.05	<0.004
SULFATE (SO4)	%	<= 0.02	<0.02

Julian Burton

Julian Burton - Quality Control Manager - Fair Lawn

∯https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: 57115 032921

Solvent: 20370011

Nitric Acid

Lot #

2%

Nitric Acid

Formulated By:

Lawrence Barry

032921

Laronce

(mL) 60.0

Description: Phosphorous (P)

Recommended Storage: **Expiration Date:** Ambient (20 °C) 032924

NIST Test Number: **6UTB**

Nominal Concentration (µg/mL): Weight shown below was 10000 5E-05 Balance Uncertainty

	s diluted to (mL):	0
	3000.41	•
	3000.41 0.058 Flask Uncertainty	CE-US Balance Uncertainty
Expanded		Reviewed By:
SDS Information		Pedro L. Rentas
•	00000	032921

NIST SRM 3186

	1. Ammonium dihydrogen phosphate (P)			Compound		
	IN008 PV052018A1		Melle	RM#		
	V052018A1		1	Nimber	בסר	2
	10000		Conc. (July 1111)	Cone (we/m!)	Dillion	Nominal
	99.999		(90)	(2)	Purity	
	0.10		Punty (%)	2	Uncertainty Assay	
	27.3		(%)		ASSay	•
	109.9063		Weight (g)		larget	•
-	109.9093		Weight (g)		Actual	
	10000.3) Conc. (ug/mL) +/- (ug/ml) CAS#		Actual	
	20.0	() () () () () ()	+/- (ua/ml)	farmer or and	Uncertainty	exhanged
	20.0 7722-76-1	0,101	CAS#	1001	(5)	
	5 ma/m3	(441)	OSHA DEL (TWA)	(Solvent Salety Hills, Oll Attached bg.)	ant Safaty Info On Atta	SUS INFORMATION
LANI	NA A	רביטט	DEO	acried bg.)	ached on	3

m/z->	, 2500	m/z->	500	m/z->	2.564	5.0€4
				•		[1] Spe
210		110		0		[1] Spectrum No.1
220		120		N _O		
8		ā		30		12.074
230		130				sec]:581
240		140		6		15.D#[C
250		150		50		[12.074 sec]:58115.D# [Count] [Linear]
260		160		80		nearj
U						
		170		70		
		180		80		
		190		90		
		200				
		000		100		

		В	B:	Be	Ва	1 3	2	Sb	2		
		0.0	<0.02	0.0	٥.٥	6	3	- A	00		
		_	_								
		υ	င္ပ	Ω	S	3	2 6	<u>ن</u>	S		
		<0.02	40.02	<0.02	<0.02	<0.02	200	3	<0.02		
		Au	Ge	Ga	DQ.	Eu	1	ų į	Dγ		
		∆ 0.02	40.02	40.02	<0.02	<0.02	20.02	3 6	A)A		
		Р	<u></u>	ਸ਼ ਜ	r,	In	HO	: :	HF		
	1000	A) 03	40.02	A) 2	40.02	<0.02	<0.02	20.02	20.03	11900	1
		Z :	Mo de	H ₀	M	Mg	Lu			INCLU	Note:
	ŀ								1	V V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(T)= Target analyte	20.07	000	3 6	3	0.02	20.01	0.02	20.02	2		
rget an	7	۲ ;	ģ -	o ;	P	၀ွ	N _p	2			
alyte	7.03	20.02	3 -	10:01	400	40.02	<0.02	40.02		by ICP-I	
	Sc	mc	? 2	7 8	5	Rh	Re	7		D F	5
	40.02	40.02	40.02	\$0.02	3 8	8	A).02	<0.02		/g/mL)	
	Ta	· v.	y,	. 2	31.6	Ag	S:	Se			
	<0.02	40.02	<0.02	8	20.02	3	A) (2)	402			
	Ti	Sn	Tm	-	1 =	d ;	,	7			
	<0.02	<0.02	40.02	<0.02	20.02	9 9	A 89	<0.02	PART SERVICE SERVICE		
	Zr	Zn	×	4,4	<	; (=	W			
	<0.02	<0.02	<0.02	<0.02	20.02	2002	3	40.02			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Mass Spec Solution

Catalog Number:

MSHG-10PPM

Lot Number:

S2-HG709270

Matrix:

10% (v/v) HCI

Value / Analyte(s):

10 μg/mL ea:

Mercury

Starting Material:

Hg metal

Starting Material Lot#:

1959

Starting Material Purity:

99.9994%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10.001 \pm 0.053 \,\mu g/mL$

Density:

1.020 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
Ha	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

 $\mathbf{X_i}$ = mean of Assay Method i with standard uncertainty $\mathbf{u_{char}}$ i

w_i = the weighting factors for each method calculated using the inverse square of

the variance.

 $\mathbf{w_i} = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²char a + u²bb + u²lts + u²ts) 1/2

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
O Ag
          0.000011 M Eu <
                            0.000201 O Na
                                              0.000004 M Se <
                                                               0.015915 O Zn <
                                                                                 0.001510
0
   Al
          0.000001 O Fe
                            0.000001 M Nb <
                                              0.000201 O Si
                                                                0.000005 M Zr <
                                                                                 0.000201
M
   As <
          0.000402 M Ga <
                            0.000201 M Nd <
                                              0.000201 M Sm <
                                                               0.000201
M
   Au <
          0.003631 M Gd <
                            0.000201 M Ni <
                                              0.000402 M
                                                        Sn <
                                                               0.001007
M
   B <
          0.001208 M
                    Ge <
                            0.000201 M Os <
                                              0.000605 M
                                                        Sr <
                                                               0.000201
M Ba <
          0.000201 M Hf <
                            0.000201 O P <
                                              0.032370 M
                                                        Ta <
                                                               0.000201
M
  Be <
          0.000201 s
                                   M Pb <
                    Hq <
                                              0.000201 M Tb <
                                                               0.000201
M Bi <
          0.000201 M
                    Ho <
                            0.000201 M Pd <
                                              0.000403 M
                                                        Te <
                                                               0.002216
0
  Ca
          0.000007 M In <
                            0.000201 M Pr <
                                              0.000201 M Th <
                                                               0.000201
M
  Cd <
          0.000201 M Ir
                            0.000201 M
                                      Pt <
                                              0.000402 M Ti <
                                                               0.000402
                                              0.000201 O TI <
M
  Ce <
          0.000201 O K
                            0.000020 M
                                      Rb <
                                                               0.016508
  Co <
M
          0.000201 M La <
                            0.000201 M
                                      Re <
                                              0.000201 M Tm <
                                                               0.000201
  Cr <
0
          0.003021 O Li <
                            0.000107 M
                                      Rh <
                                              0.000201 M U <
                                                               0.008058
M
  Cs <
          0.001208 M Lu <
                            0.000201 M Ru <
                                              0.000201 M V <
                                                               0.000201
M
  Cu <
          0.000402 O
                    Mg
                            0.000001 O
                                      S <
                                             0.053950 M W <
                                                               0.000604
M Dy <
          0.000201 M Mn <
                            0.000604 M Sb <
                                             0.001208 M Y <
                                                               0.000201
M Er <
          0.000201 M Mo
                           0.000009 M Sc <
                                             0.000201 M Yb <
                                                               0.000201
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 200.59 +2 4 Hg(OH)(aq) 1+ **Chemical Compatibility -** Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water.

Stability - 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container.

Hg Containing Samples (Preparation and Solution) - Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation questions in further detail.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 202 amu	9 ppt	n/a	186W16O
ICP-OES 184.950 nm	0.03 / 0.005 μg/mL	1	
ICP-OES 194.227 nm	0.03 / 0.005 µg/mL	1	V
ICP-OES 253.652 nm	0.1 / 0.03 µg/mL	1	Ta, Co, Th, Rh, Fe,
			U

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 22, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 22, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT	Bag	Open Date:		

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong
Supervisor, Product Documentation

Mya Truong

Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Laines

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

Lot Number:

58119 071122

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

f O 12022

Lot #

Solvent: 20510011

Nitric Acid

Description: Potassium (K)

Recommended Storage: Ambient (20 °C)

Expiration Date:

Nominal Concentration (µg/mL): NIST Test Number: 10000

Weight shown below was diluted to (mL): 2000.02

071125 (<u>m</u>L

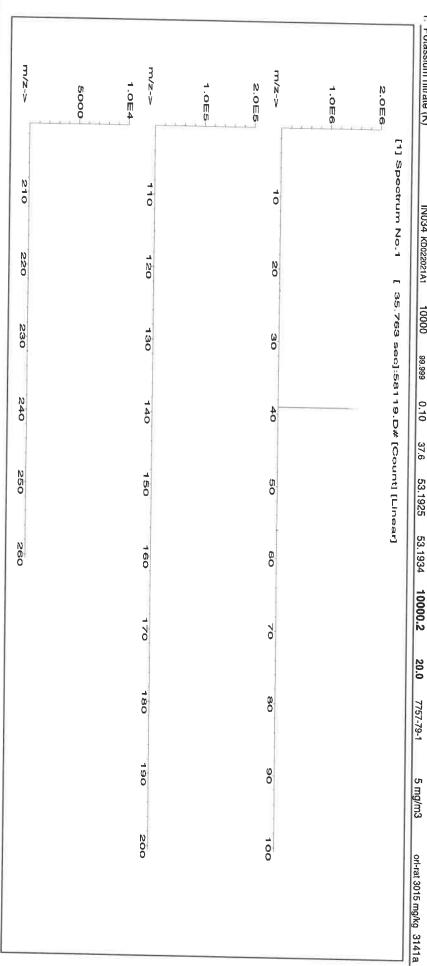
2%

40.0

Nitric Acid

Formulated By:

Lawrence Barry


071122

Herronce

6UTB 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Pedro L. Rentas 071122

 Potassium nitrate (K) IN034 KD022021A1 RM# Number Ĕ Conc. (µg/mL) 10000 Nominal 99.999 Purity Uncertainty Assay (%) Purity (%) (%) 37.6 Weight (g) Target Weight (g) Conc. (µg/mL) Actual +/- (μg/mL) Uncertainty CAS# SRM

Expanded SDS Information
(Solvent Safety Info. On Attached pg.)
LD50

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	/letals	Verifica	ation	by ICP-	Š	(µg/mL)			1		١	
A	20.00	2	200			711													
Al	<0.02	8	<0.02	Dy	<0.02	Ħ	<0.02	Ľ	<0.02	Z	<0.02	Ρŗ	<0.02	Se	<0.2	T)	<0.02	¥	<0.02
Sb	<0.02	C	<0.2	다	<0.02	땅	<0.02	L	<0.02	3	<0.02	R _e	<0.02	S:	<0.02	Te	<0.02	Ϥ	40.02
As	<0.2	Ç	<0.02	Εu	<0.02	ln	<0.02	Mg	<0.01	ွှ	<0.02	R.	<0.02	Ag	∆ 0.02	=	<0.02	<	<0.02
Ba	<0.02	Ĉ	<0.02	<u>G</u>	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	공 -	<0.02	Na (<0.2	7	♦ 0.02	≨	<0.02
Ве	<0.01	Ω	<0.02	Ga	<0.02	Fe	40.2	Hg	<0.2	P	<0.02	₽	<0.02	<u>~</u>	<0.02	1	A.03	≺	8
В	<0.02	င္ပ	<0.02	ଫୁ	<0.02	L	<0.02	Mo	<0.02	₽	<0.02	Sm	<0.02	S	<0.02	S	<0.03	7	A 03
В	<0.02	Cu	<0.02	Au	<0.02	Pъ	<0.02	M	<0.02	~	-	Sc	<0.02	II	<0.02	<u>:</u> ::	<0.02	2.	<0.02
									(T) Toward annihity					ı					

Physical Characterization:

(I)= larget analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
 * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST
 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58119

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

57056

Solvent:

20510011

Nitric Acid

200

40.0

Nitric Acid

Description: Lot Number:

072122 Barium (Ba)

Certified Reference Material CRM

Riograph 33

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Formulated By: Liovannie Giovanni Esposito appeal 2

072122

Reviewed By: Pedro L. Rentas 072122

IN023 BAD022019A1 RM# Number 5 Conc. (µg/mL) Nominal 1000 99.999 Purity 8 Uncertainty Assay Purity (%) 0.10 52.3 <u>8</u> Weight (g) 3.82417 Target Weight (g) Conc. (µg/mL) 3.82426 Actual 1000.0 Actual +/- (µg/mL) Uncertainty Expanded 2.0 10022-31-8 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information 0.5 mg/m3 orl-rat 355 mg/kg 3104a SRM TSIN

1. Barium nitrate (Ba)

Nominal Concentration (µg/mL):

1000

Ambient (20 °C) 072125

NIST Test Number:

Recommended Storage:

Expiration Date:

Weight shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

m/z-> **1/2-**2 17/2-Y 2.5E6 5.0E6 2.0E5 1.0ES 2.0E6 1.OE6 [1] Spectrum No.1 210 110 0 220 120 N O [12.514 sec]:58156.D# [Count] [Linear] 130 230 30 140 240 4 250 150 Ö. 160 260 00 170 8 180 80 190 90 200 100

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M.	otolo	Vorifico	201	F. CO	2						l	
							1	Cars	۱^		ייין כו	20	ug/mL)						
					The state of the s		The second second											ı	
IA IA	<0.02	ొ	<0.02	δ	<0.02	HF	<0.02	ï	<0.02	Z	<0.02	ď	<0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	32	6	É	89	1 487	000
Sb	<0.02	ű	<0.5	į.	200	H	70.00	-	200	11.11	000	,		3 ;	1	2	70.02	À	70.05
A	4	,	100	1 1	100	2	70.00	7	20:05	2	Z0:0>	2 2	40.02	2	<0.02	E e	<0.05	Þ	<0.02
AS	7.02	3	Z0:02	3	<0.02	드	<0.02	Ä	0.05	ő	<0.02	Kh.	2002	Αo	2007	F	500	7.7	5
Ha	€	ێ	2002	2	0000	,1	000	>	200	i			***************************************	Ď,	70:05	17	70.02	>	70:05
	٠.	3	-0.00	3	7000	=	70.0>	IMIM	70:0>		<0.02	8	\$0.05 \$0.05	Z	95	É	000	5	500
Be	<0.01	Ü	<0.02	Sa	<0.02	윤	40.2	He	<0.2	۵	2000	Ϋ́	2007	ů	60			; ;	70.00
B.	Q (Q)	2	2002	ď	000	-	600	2	400	. ,	***************************************	1	70'07	วี	70'05	EI T	Z0:02	-	Q.02
i	000	3	- N.O.	3	7000	Š	70'0>	Mo	Z0:02	=	<0.02	Sm	40.02	S	<0.02	S	SO 02	72	2007
20	<0.02	ð	<0.02	Au	₹ 0005	P	<0.02	Ž	<0.02	×	<0>	Ž,	2007	5	5	i	9 9	1	70.00
											100	3	70.07	101		_		-	

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions. Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Deference Metaric Com

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

<u>ئ</u>

Certified Reference Material CRM
[N 403 | 20 | 128 | 125 | 1

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com

070622 070622 Pedro L. Rentas Lawrence Barry Formulated By: Reviewed By: Nitric Acid Nitric Acid 20510011 Fot # 20.0 (mL) Solvent: 2% 0.058 Flask Uncertainty 5E-05 Balance Uncertainty 1000.12 Ambient (20 °C) Lithium (Li) Weight shown below was diluted to (mL): 57103 070622 070625 10000 **6UTB** Nominal Concentration (µg/mL): NIST Test Number: Lot Number: Description: Expiration Date: Recommended Storage: Part Number: CERTIFIED WEIGHT REPORT:

Γ						ar]	[9.619 sec]:58103.D# [Count] [Linear]	# [C	58103.D	sec]:(_	No.1	ctrum	[1] Spectrum No.1	
2	Byfill 0241 ischin	2					1000								
W	0.10 10.0 100.0134 100.0173 10000.4 20.0 7790-69-4 5 mg/m3 oct-24 1428 mg/m NA	5 ma/m3	7790-69-4	20.0	10000.4	100.0173	100.0134	10.0	0.10	99.999	10000 89.889 0.	IN019 LIZO42018A1	IN019		Lithium nitrate (Li)
SRM	LD50	RM# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA) LD50	CAS#	+/- (ug/mL)	Conc. (ug/mL)	Weight (g)	Weight (g)	(%)	Purity (%)	98	Conc. (µg/mL)	Number	RM#		Dunodino
L	Attached oo.)	(Solvent Safety Info, On Attached on.)	(Soly	Uncertainty	Actual	Actual	Target	ASSAY	Nominal Punty Uncertainty Assay Target	runty	Nominal	707	i		7
	ition	SDS Information		Expanded								-			

1.056	0.0 8	m/z->∕ 500 250	20° 20° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	m/z->>
L'ON EUROPE		.0	0	010
_		ON N	120	880
9.619 sec]:58103.D# [Count] [Linear]		.0	086	230
3103.D# [Cc		0	041	0.86
ount) (Linea		0 0	150	A Manual Corpo Increased
		.00	.0	- We related to Laboratory
		0	0 2	
		. <mark>0</mark>	180	
		.0	180	
		001	800	

Printed: 1/18/2023, 4:01:43 PM

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace Ma	stale	Varifics	tion	hy ICD	MC	(lm/m/)						
		STREET, STREET	THE RESIDENCE OF THE PERSON NAMED IN			-	THE PARTY		2011124		1	2	(M)						
F	200	3	2000	à	89	30	200	E	F	1	88	4		I.	-				
ŧ :	70'05	3	70.00	ŝ	70.07	1	70'05	3	1	Z,	70.02	Ħ	Z0:0>	3	Q 7	19	Q 05	≱	Ø.02
S	<0.02	రి	40.2	山	<0.02	H	40.02	Ē	40.02	£	40.02	2	Q .02	SS.	<0.02	ig.	<0.02	ח	40.02
As	₩.	ප	<0.02	뤕	<0.02	편	Z0.0≥	Mg	<0.01	ő	<0.02	AS	<0.02	Ag	<0.02	E	<0.02	>	40.02
Ba	<0.02	రో	<0.02	පු	<0.02	卢	<0.02	Mn	<0.02	Z	40.02	2	Ø.02	Z	40.2	É	200	\$	200
Be	<0.01	ඊ	<0.02	පී	₹0.02	B.	<0.2	黑	\$07	ρ.	<0.02	R	900	J.	<0.02	ع ا	800	>	200
<u> </u>	<0.02	රි	40.02	පී	20:0>	3	<0.02	₩ W	40.02	ठ	<0.02	Sm	<0.02	S	40.02	5	8	, E	200
В	<0.02	ರೆ	<0.02	Au	<0.02	2	<0.02	P	<0.02	24	<0.2	S	40.02	E C	<0.02	ï	000	7 1	2000 P

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57103

955 N R 2 03 /0

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

NIST SRM

Z

CERTIFIED WEIGHT REPORT 1. Cerium nitrate hexahydrate (Ce) Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): Recommended Storage: m/z-> m/z-> m/z-> 2,5E7-5.0E7 1.0E6-2.0E6-5.0EB-NIST Test Number: Expiration Date: Part Number: Description: Lot Number: [1] Spectrum No.1 [43.472 sec]:58158.D# [Count] [Linear] 210 10 5 IN146 Z512CEB1 24 061322 Cerlum (Ce) 000 061325 57058 Ambient (20 °C) Number 헏 220 120 20 Conc. (ug/mL) 1000.12 Nominal 9 230 130 30 99.999 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity 3 Uncertainty Assay Purity (%) 0.10 240 140 6 Solvent 22 3 8 20510011 3.04919 Weight (g) Target 250 S O [0] # 150 20.0 (mL) 3.04923 Nitric Acid Weight (g) Conc. (µg/mL) Nitric Acid Actual 260 160 60 1000.0 Actual 170 70 -/- (µg/m) Reviewed By: Formulated By: Uncertainty Expanded 20 10294-41-4 180 8 (Solvent Safety Info. On Attached pg.) Pedro L. Rentas Lawrence Barry OSHA PEL (TWA) SDS information 190 90 ₹ 200 100 **LD50** ₹ 061322 061322

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

L	1 50	, E	3	>	50	>		I	
F		- 10	<u>p</u>	5	_	_		ı	
20.02	A0.02	A 0.01	40.02	40.2	40.02	€0.02			
8	ა ზ	Ω	ొ	ర్ట	ర్జ	ы			
20.02	40.02	40.02	40.02	⊢ j	40.2	<0.02			
Ail	දි	୍ଥ	හි	댈	罩	Дy	7		
40,102	40.02	40.02	40.02	40.02	40.02	<0.02			
3	2	त	4	Ħ	Ж	Ж			
40.02	0.02	402	<0.02	40,02	40,02	<0.02		Hace M	75555
Nd	Mo	Hg	M	Mg	L	E		CIGIS	+
40.02	40.02	40.2	40.02	40,01	40.02	<0.02		vernical	ころいた
×	Þ	ď	2	Š	\$	Z		1011	; ;
40.2	0.02	40.02	40.02	40.02	<0.02	<0.02	20 X 20 X	y ICP-M	: 55 5
Sc	Sm	Ru	25	22	20	Pr	i	lug.	
40.02	40.02	<0.02	40.02	<0.02	40.02	<0.02		/mL)	
Ta	S	Ş	N	Ą	Si.	æ			
₹0.02	<0.02	40.02	A 02	40.02	40.02	40.2			
11	Sn	Ħ	7	Ħ	Te	4ľ			
<0.02	<0.02	<0.02	<0.02	<0.02	40.02	<0.02			
Z	Zn	Y	44	۷	c	¥			
40.02	40.02	40.02	∂ .02	<0.02	\$0.02	<0.02			

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Physical Characterization:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- *Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57058

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number:

Certified Reference Material CRM

7 20 23

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Lot #

Solvent: 20510011 Nitric Acid

2%

40.0 (<u>l</u>

Nitric Acid

Formulated By:

Giovanni Esposito

011623

Pedro L. Rentas

011623

Giovannie

Jacob P

Description: Aluminum (AI)

011623 58113

Expiration Date: 011626

Nominal Concentration (µg/mL): Recommended Storage: 10000 Ambient (20 °C)

Weight shown below was diluted to (mL): **NIST Test Number:** 6UTB 2000.02 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Compound ₽ ₩ Number ē Conc. (µg/mL) Nominal 10000 99.999 Purity Uncertainty Assay 38 Purity (%) 0.10 7.30 8 273.9779 Weight (g) Target 274.0078 Weight (g) Conc. (µg/mL) Actual 10001.1 Actual +/- (µg/mL) Uncertainty Expanded 20.0 7784-27-2 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information LD50 NIST SRM

1. Aluminum nitrate nonahydrate (Al) IN022 ALM112021A1 m/z-> m/z-> m/z-> 1.0 € 6 2.0 € 6 2.5E6 5.0E6 2.5E5 5.0E5 [1] Spectrum No.1 210 110 0 220 120 20 [15.014 sec]:58113.D# [Count] [Linear] 230 130 30 240 140 40 250 150 50 260 160 60 170 0 180 80 190 90 2 mg/m3 200 100 ori-rat 3671 mg/kg 3101a

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com 031523 031523 Giovanni Esposito Pedro L. Rentas Liovanni Formulated By: Reviewed By: Certified Reference Material CRM Nitric Acid Nitric Acid Solvent: 21110221 Lot # 60.0 (mL) % 5E-05 Balance Uncertainty 0.058 Flask Uncertainty 3000.41 Ambient (20 °C) Calcium (Ca) Weight shown below was diluted to (mL): 031523 031526 10000 **6UTB** Recommended Storage: Nominal Concentration (µg/mL): Part Number: Lot Number: Description: **Expiration Date:** NIST Test Number: CERTIFIED WEIGHT REPORT:

Compound	RM#	Lot Number	Nominal Purity Conc. (µg/mL) (%)	Punty (%)	Purity Uncertainty Assay (%) Purity (%) (%)		Target Weight (g)	Actual Weight (g)	Expanded Actual Actual Uncertainty (Sc Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS#	Expanded Uncertainty +/- (ug/mL)	(Solv	SDS Information (Solvent Safety Info. On Attached pg.) NS# OSHA PEL (TWA) LD50	Attached pg.) LD50	NIST
1. Calcium carbonate (Ca)	IN014	INO14 caboragezat	10000 99.999	666.66	0.10	38.9	75.1990	75.2093	10001.4	20.0	471-34-1	5 mg/m3	ort-rat	3109a
[1] S ₁	[1] Spectrum No.1		4.00	8ec]:6	12.514 sec]:58120.D# [Count] [Linear]	<u>0</u>	unti (Line	ari						
1.0E4														
m/z->	0	.0		000	.0	40000	0	0	2		0		001	
2. 5. 4.														
m/z->	0	120		90	140		150	160	071	0	180	190		
6.0E4														
m/z->	019	220		230	240		250	260						

Printed: 3/16/2023, 1:45:15 PM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace Me	tals	Verificat	io Io	by ICP-N	MS ((ng/mL)		T.				
SACTION OF	· · · · · · · · · · · · · · · · · · ·	NOT THE OWNER.	STATE OF THE STATE	1	THE PERSON NAMED IN	STORES OF	1500 NOT 150		THE STATE OF THE S	STATE OF THE PERSON NAMED IN	STATE	0		- Marine	THE PERSON AND PERSON				
Ι¥	<0.02	జ	<0.02	Ą	40.02	H	<0.02	LI	<0.02	Z	<0.02	P.	<0.02	Še	<0.2	13	<0.02	≱	<0.02
જ	<0.02	రే	F	占	₹0.02	윒	₹0.02	3	20.02	ź	<0.02	æ	<0.02	ន	<0.02	Te	40.02	Þ	₹0.02
As	<0.2	පී	₹0.02	超	<0.02	Я	<0.02	Mg	10.0>	ő	<0.02	招	<0.02	Ag	<0.02	F	<0.02	>	<0.02
Ba	<0.02	ඊ	<0.02	3	<0.02	卢	<0.002	Ma	40.02	Z	<0.02	8	<0.02	Z	<0.2	Ę	<0.02	χp	<0.02
Be	<0.01	Ö	<0.02	පී	40.02	Fe	40.2	Hg	<0.2	۵,	<0.02	R	<0.02	స	<0.02	Ę,	<0.02	¥	₹0.02
ã	<0.02	රි	40.02	පි	<0.02	2	<0.02	Mo	<0.02	盂	<0.02	Sm	<0.02	Ø	<0.02	Sn	<0.02	2	₹0.02
m	<0.02	₫	<0.02	Αŭ	<0.02	£	<0.02	PZ	<0.02	×	40.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Z	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Printed: 3/16/2023, 1:45:15 PM

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

All standard containers are meticulously cleaned prior to use. the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

B

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com Same

Nitric Acid

21110221

Solvent:

Sodium (Na)

Description:

Part Number: Lot Number:

CERTIFIED WEIGHT REPORT:

Expiration Date: Recommended Storage:

022123

Lot #

Lawrence Barry Formulated By:

022123

Pedro L. Rentas

022123

Reviewed By:

Nitric Acid 60.0 (mL) % Ambient (20 °C) 022126

10000

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB

5E-05 Balance Uncertainty 0.06 Flask Uncertainty 3000.41 Weight shown below was dijuted to (mL):

SIEM SIEM LD50 SDS Information (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) CAS# +/- (mg/ml) Expanded Uncertainty Conc. (ug/mt.) Actual Weight (g) Actual Weight (g) Target Uncertainty Assay 8 Purity (%) Purity (%) Conc. (ug/mL) Nominal Number 5 RM# Compound

orl-rat 3430 mg/kg 3152a 5 mg/m3 7631-99-4 20.0 100001 111.5410 111.5406 26.9 0.10 88.88 10000 IN036 NAV01201511 1. Sodium nitrate (Na)

8.935 sec]:58111.D# [Count] [Linear] [1] Spectrum No.1

100

06

5.0E6 2.5E6

120 110 M/z->

200

190

180

170

160

150

140

130

5.0E6 2.5E6

210 m/z->

Lot # 022123 Part # 58111

260

250

240

230

220

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Lace	detals	s Verifica		by ICP-N	MS (t	(ng/mL)						
-			STATE STATE OF THE PARTY OF THE	ALC: NO.		The same of			NAME OF PERSONS ASSESSED.	Second Second		EZURM	DOMESTICAL PROPERTY.	MICHIGA	HARMAGON WALL	No.		Table 1	THE PERSON NAMED IN
7	40.02	ಶ	40.02	Š		H	L	Ľ	<0.02	Z	<0.02	占	<0.02	B	40.2	£	<0.02	3	40.02
ß	₹0.02	ర	97	ф		유		2	400 2	ź	20'0>	2	<0.02	:53	Ø.02	မ	Ø 00	=	90
As	402	ප	Ø.02	超	_	ä		Mg	100>	ඊ	<0.02	뮖	<0.02	Ag	A	F	Ø 6	>	900
Ba	40.02	ථ	20:0 2	3	_	4		Mn	<0.02	B	<0.02	2	<0.00	ž	į-	Ę	600	\$	100
æ	10:0>	ඊ	Z0:0>	පී	₹0.02	8	₩	岩	Ø2	Δ,	40.02	콥	40.02	ķ	₹005	Ę	6 6 6	} >	7 6
五	₹0.02	රි	<0.02	පී	_	_3		Wo	40.02	盂	40,02	S	-Z000>	v.	8	5	8	, ,	100
B	₹0.02	ටි	40.02	Αn		£		Ž	₹005	×	8	S	₹0.05	(E	800	F	900	3 %	2 6
																		1	ANOTHER PROPERTY.

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

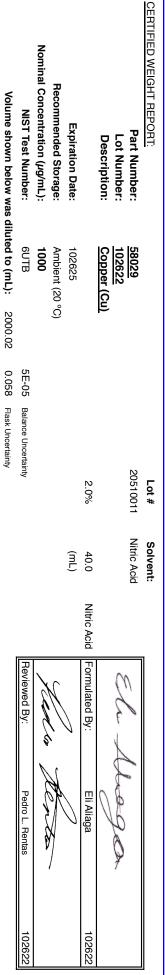
All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994). * All Standards should be stored with caps tight and under appropriate laboratory conditions.

Absolute Standards, Inc. 800-368-1131


www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Number Part

Number Lot

Vol. (mL)

Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL)

Conc. (µg/mL)

+/- (µg/mL) Uncertainty Expanded

CAS#

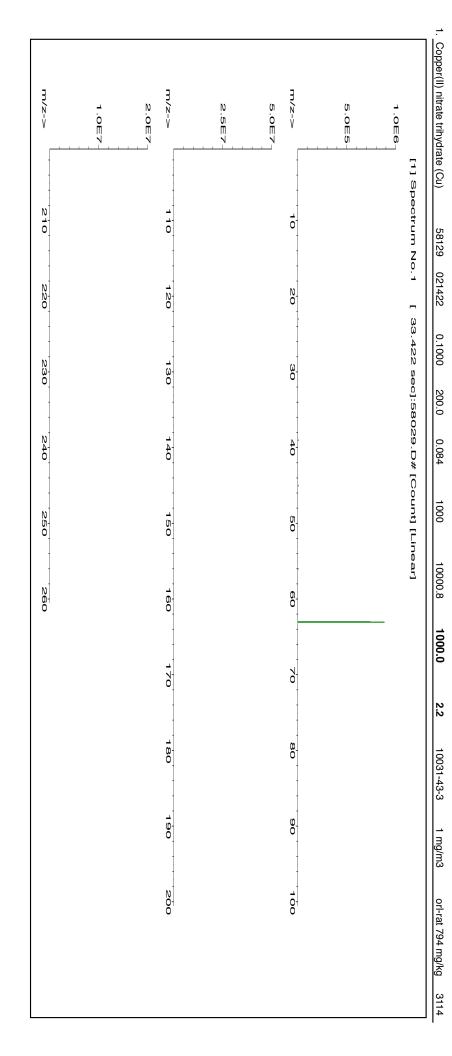
(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

NIST SRM

SDS Information

Dilution Factor


Initial

Uncertainty

Nominal

Initial

Final

Part # 58029

Lot # 102622

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

								Trace M	1etals	Verifica	tion I	oy ICP-N	IS (µo	J/mL)						
-	Al	<0.02	С	<0.02	Dy	<0.02	Ήf	<0.02	Li	<0.02	N:	<0.02	Pr	<0.02	Se	<0.2	ть	<0.02	W	<0.02
	Sb	<0.02	Ca	<0.2	Ęŗ	<0.02	Но	<0.02	Lu	<0.02	В	<0.02	Re	<0.02	S:	<0.02	Te	<0.02	U	<0.02
	As	<0.2	Се	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	Os	<0.02	Rh	<0.02	Ag	<0.02	TI	<0.02	٧	<0.02
	Ba	<0.02	Cs	<0.02	Gd	<0.02	ŀ	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	ΥЬ	<0.02
	Ве	<0.01	Cr	< 0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
	В:	<0.02	Co	<0.02	Ge	<0.02	La	<0.02	Мо	<0.02	Ρt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
	В	<0.02	Си	T	Au	<0.02	Рь	<0.02	Nd	<0.02	K	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02
- 1										(T)- Ta	(T)— Target analyte	alvto								

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION:

For use with the CLP SFAM01.0 SOW and revisions.

CAUTION:

Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals in Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in $\mu g/L$ (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

For ICP-AES analysis, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

Page 1 of 2

RMs ICV 1, 5, 6 SFAM (1)

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from $K_3Fe(CN)_6$, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

Element Cor (after	ncentration (µg/L)	
	er 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)
Al	2500	500
Sb	1000	200
As	1000	200
Ва	520	100
Be	510	100
Cd	510	100
Ca	10000	2000
Cr	520	100
Co	520	100
Cu	510	100
Fe	10000	2000
Pb	1000	2000
Mg	6000	1200
Mn	520	1200
Ni	530	110
K	9900	
Se	1000	2000
Ag	250	200
Na	10000	50
Ti	1000	2000
V	500	210
Zn	1000	100 200

	ICV5-0415		ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN-	99

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Part Number: Lot Number: Description: 58024 060523 Chromium (Cr) 21110221 Lot # Nitric Acid Solvent: Lavense

2.0% 40.0 Nitric Acid

(III)

Formulated By:

Lawrence Barry

060523

060523

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 Ambient (20 °C) 060526

Compound Volume shown below was diluted to (mL): NIST Test Number: Number Part **BTU9** Number Lot 2000.02 Factor Dilution Vol. (mL) Pipette (mL) Conc. (µg/mL) 0.058 5E-05 Initial Flask Uncertainty **Balance Uncertainty** Uncertainty Nominal Conc. (µg/mL) Conc. (µg/mL) Initial Final Reviewed By: +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) Pedro L. Rentas **SDS Information**

P20

TSIN SRM

3112a

 Chromium(III) nitrate nonahydrate (Cr) 58124 071122 0.1000 200.0 0.084 1000 10000.1 1000.0 12 7789-02-8 0.5 mg(Cr)/m3 ort-rat 3250 mg/kg

m/z->	N 5 10	5.0E5	5.0E5	m/z->	5000	1.004
				3		
N 0		110		o .		
h				7		(
N N N N		120		N. O		(
230		130		۵. ۵.		
						(
240		140		ò		
N		<u></u>		(h O		
250		150		0		
260		160		0		
		170		70		
		380		8 2.		
		0				
		190		90		
		N 0- 0		100		
		Ŏ		0		

Part # 58024

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			_				_			=
	B	ᄧ	Ве	В	As	Sb	Δ	Monthly		
	A).02	4 0.02	0,01	A .02	40.2	△0.02	△0.02			
	δ	පි	Ω	င္တ	දි	ర్జ	Ω			
	40.02	40.02)	40.02	40.02	40,2	△0.02			
	Æ	ဥ	වූ	ନ୍ଥ	멸	녆	Dy	80		
	40.02	40.02	40.02	<0.02	40.02	40.02	40.02	mineral differences		
	3	Ľ	स्र	Ħ	ď	ᅜ	Ж	Sheriff tool		
	40.02	40.02	40.2	A).02	<0.02	40.02	40.02		I race M	1
	폺	Мо	В.	Ķ	ВМ	Ē	П	MISSON ISSUE	Metals	1
3	A0.02	40.02	40.2	40.02	40,01	∆ .02	40.02	SI RECEIPTOR	Verification	
Towns and the	~	ን	70	2	ô	₹	3	SHEWNING.	Clon	-
	∆ 0.2	40.02	40.02	40,02	40.02	40.02	40.02	THE PARTY OF THE P	by ICP-M	
	Sc	Sm	잗	공	Rh	æ	Pr		S (Mi	5
	<0.02	<0.02	<0.02	40.02	40,02	40.02	<0.02		g/mL)	
	Ta	S	ñ	Z.	Ą	Si.	Se			
	40.02	<0.02	40.02	402	40.02	40.02	402			
	==	Sn	Tm	3	ᄇ	급	176			
	40,02	40.02	40,02	40,02	<0.02	40,02	<0.02	Contract Contraction		
	Zr	Zn	~	뀱	۷	Ϥ	W	可能を発展		
	<0.02	< 0.02	<0.02	<0.02	40.02	40.02	<0.02	SALES OF SALES		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number: **Lot Number:** Description:

57082 100923 Lead (Pb)

Certified Reference Material CRM

MSTHT

R: 12/20/23

Lot #

Solvent: 24002546 Nitric Acid

2% 60.0 Nitric Acid

1000 Ambient (20 °C)

Recommended Storage:

Expiration Date:

100926

Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): **NIST Test Number: BTU9** 3000.41 0.06 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Lot

Nominal

Purity

Uncertainty Assay

PV# Number Conc. (µg/mL) (%) Purity (%) (%) Weight (g) Conc. (µg/mL) +/- (µg/mL) CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SRM

Formulated By: Lawrence Barry 100923

Target Actual Actual		SDS Information
	a fee incommend	. 02:0 4: 10:10:00
Ī		
ņ		
E.	expanded	SPS INDINSTRUCT
Assay Target Actual Actual Lin		Column Cofety Into On Attacked on

		<u></u>
1.005		1. Lead(II) nitrate (Pb)
	[1] Spectrum No.1	IN029 PBD122016A1
	14.144	1000 99.999 0.10 62.5 4.80071 4.80077
	Sec]:58	99.999
	1082.D	0.10
	# [Coul	62.5
	nti (Line	4.80071
,	ar)	4.80077
		1000.0
		2.0
		10099-74-8
		0.05 mg/m3
		intryns-rat 93 mg/kg
		3128

m/z->	1.0E6	₽.OE	m/z->	5.0E4	1.0∈5	m/z->	5.0M4	1.0E5
						ä		
N -	and property of the second sec		110			ō		
022			120			0		
to.								
200			130			30		
240			140			40		
Ò			Ò			0		
250			150			5 1		
						*		
0			160			00		
			170			6		
			180			80		
			Ö.			o .		
			190			90		
			200			00		
			200			100		

Printed: 12/19/2023, 3:36:21 PM

r		<u>.</u>		_			_		The second second		
20.00	3 8	A 650	<u>&</u>	A.02	7.0	2 2	3	A.02			
1	? {	3 1	<u>Ω</u>	င္တ	E	5	3	2			
20.02	3 8	3 8	8	∆0,02	20.02	200	3	40,02			
Au	6	9 6	3	වී	Eu	ļ ļ	j į	Dγ			
20,02	20.02	3 6	3	40.02	<0.02	20.02		A) (72	MASSESSION STATES		
3	! <u>[</u>	1 6	FI I	Ħ'	Þ,	Но	:	Ħ			
l i	20.02	3 6	3	40.02	<0.02	40,02	20.00	AN OP		гасе ме	
Ä	MO	100	f	<u></u>	Mg	Ē	į			Tals	-
40.02	20.02	8		△	40.01	<0.02	10.02	200		Verifica	
K	7	, -	; ;	Ā.	ွှ	\$	2			TION	
40.2	<0.02	20.02	2000	3	40.02	40,02	20.02	200	ŀ	by ICP-I	
Sc	Sm	K	, §	9	꾿	Re	T		I.	S	
<0.02	40.02	<0.02	20.02	3	40.02	40.02	20.02	200	ľ	ra/mL)	
Ta	S	Sr	INE	, d	A	S:	ĕ		I		ı
40.02	40.02	40.02	402	3	40.02	40.02	202				
11	Sh	Tm	I	1	=	Te	5				
40.02	∆ 0.02	40.02	20.02		AD 072	∆ .02	40.02		-		
Zr	Zn	×	Ϋ́O	į .	<	d	×				
40.02	40.02	40.02	40.02	50.02	A 03	₩	40.02		STREET, SQUARE, SQUARE		

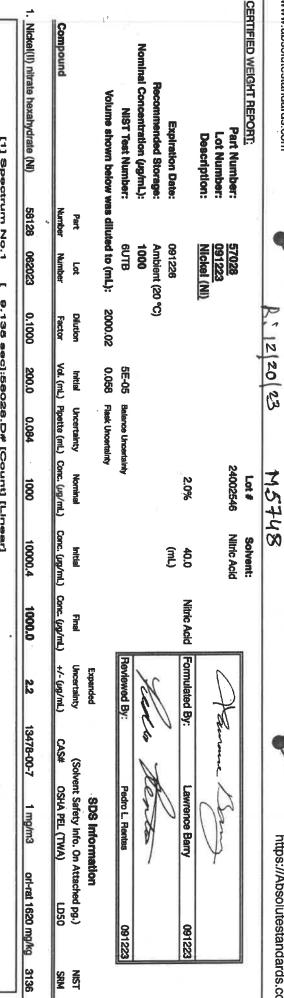
Physical Characterization:

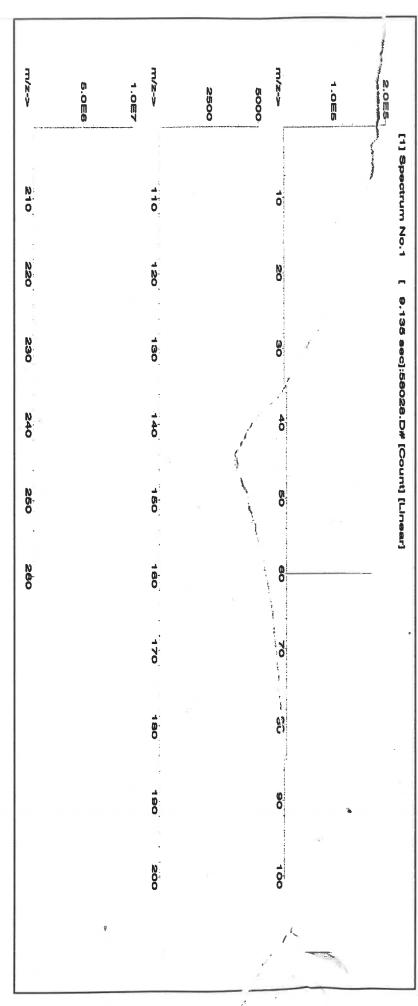
(1)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- * All standard containers are meticulously cleaned prior to use.


the preparation of all standards.


- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

800-368-1131

Absolute Standards, Inc.

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	1	-		-	-		-	-		-	-		7		-
		В	10	<u> </u>	Be	Ва	1	As	30	3	2				
		40.02	2000	5	<u>8</u>	40,02		40.2	70.02		40.02				
		ව	S	· ·	2	సి	. 8	څ -	2	,	2				
		D.02	40.02		48	6 .02	20.02	3	4 0.2	000	A)R)				
		Αu	ڇ	Ş	₽ -	ይ	2	ľ	Ę	5	7				
		∆ 002	<0,02	20.02	3	A)02	20,02	3	A),02	70.02	2000				
		3	F	17	<u>F</u>	F	ħ	7	뚱	12	W.	Service Service			
		∆ 0.02	0.02	, C	3	<u> </u>	20.02	3	<u>&</u>	20.02	2000		Hace in		
		Z.	₹	200	7	š	3		Ε.	ţ.			Jergis	1	
3		A	& 20.02	4	6.02	\$	<u>A</u>		A (2)	20.02			ARIIIC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Target	r	7	7	re	, ;	Z	S	, ;		2	۱		HODE		
arialvie	1.07	3	A	40.02	20.02	3	40.02	2000	3	Н			DY ICE-P		
	۶	9 -	î	R	2	ğ	Z	7	9	7			₹ E	,	
•	20.02	3 6	A 3	∆ 0.02	20.02	3	A	70.02	3	۵.02		ľ			
	I a	3 6	^	ş	N	1 6	Αg	2	?	જ	The same				
	20,02	68	3	<u>&</u>	8		≙	20.02	3	40.2	A STATE OF THE STA				
		1 1	?	ď	П	:	-1	ie.	3	7					
	40,02	20.02	3	40.02	40.02	6.06	3	20.02	100	4000					
	72	4	₹,	<u> </u>	5	-	<	_	: :	W	Mannager, or				
	<0.02	20.02	600	3	6002	20.02	3	∆ .02	200	200					

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this Kandard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Printed acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

M5768 [M576] (B) R:1/3/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Magnesium nitrate hexahydrate (Mg) IN030 марозгозат Compound Nominal Concentration (µg/mL): m/z-> ~-z/m m/z-> Weight shown below was diluted to (mL): Recommended Storage: 2.0≡4 1.0E4 5.0E5 1.0E6 1000 2000 NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 210 0 쭕 **BTUB** 58112 091823 10000 Ambient (20°C) (M5+18), (M5+16) 091826 Magnesium (Mg) Number 120 ğ 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.02 0.058 Flask Uncertainty 10000 Nominal 130 230 30 5E-05 Balance Uncertainty 99.999 Purity Uncertainty Assay 8 Purity (%) (%) 140 0.10 240 40 Solvent: 24002546 Nitric Acid 8.51 150 234.9118 Weight (g) Target Lot # Ē Weight (g) Conc. (µg/mL) 234.9126 Nitric Acid Actual 160 260 0 10000.0 Actual 170 6 +/- (µg/mL) Expanded Uncertainty Reviewed By: Formulated By: 20.0 180 80 13446-18-9 (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Pedro L. Rentas Lawrence Barry 190 **SDS Information** Ö Z 200 100 orl-rat 5440 mg/kg 3131a 091823 091823 SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	[171	<u></u>	(22)	5>	Sb	5>			
	۴	. 22.	<u>ਨੰ</u>	<u>a</u>	- 2	<u> </u>				
	40,02	0.02	10.00	<0.02	402	<0.02	<0.02			
	5	ප	유	Ĉ	ද	ದ್	Ω	i		
	A).02	40.02	40.02	40.02	△0.02	40.2	<0.02			
	Au	ල	Ga	2	E	戽	Dy			
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
	7	La	Fe	F	Б	Но	出			
	<0.02	40.02	40.2	△0.02	<0.02	<0.02	<0.02		Trace Mo	
	Æ	Mo	Hg	Mn	Mg	Ę	<u>.</u> :		letals	
Ì	<0.02	<0.02	40.2	<0.02]	<0.02	<0.02		Verifica	
	×	면	7	Pd	õ	\$	Z		tion	
	40.2	40.02	<0.02	40.02	<0.02	<0.02	<0.02		by ICP-N	
	જ	Sm	Ru	RЬ	25	R	77		n) Si	
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		g/mL)	
	Ta	rs.	Sr	Na	βA	ī.	Se			l
	<0.02	40.02	<0.02	<0.2	<0.02	<0.02	40.2			
	Ti	Sn	Im	Th	日	Te	σľ.			
	<0.02	40.02	40.02	40.02	40.02	40.02	<0.02			
	Zr	2	×	₩	<	c	¥			
	<0.02	40.02	<0.02	<0.02	A).02	40.02	40.02			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number: 57004 102523 02/09/24 Lot # Solvent:

24002546 Nitric Acid

2.0% (IE)

Nominal Concentration (µg/mL):

NIST Test Number:

BTU₉ 1000

Volume shown below was diluted to (mL):

2000.02

0.058

Flask Uncertainty Balance Uncertainty

5E-05

Number

Number Lot

Vol. (mL.)

Part

Dilution Factor

hitia

Uncertainty

Recommended Storage:

Ambient (20 °C) 102526

Expiration Date:

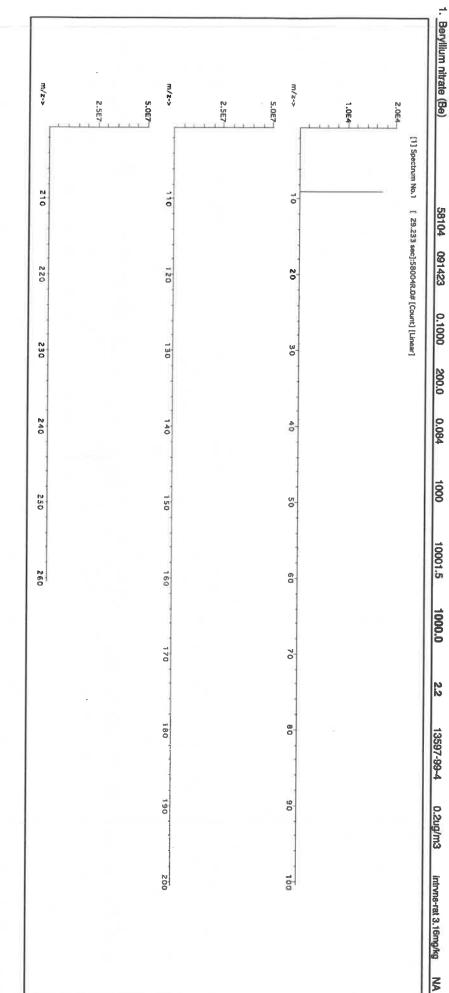
Lot Number: Description:

Beryllium (Be)

40.0

Nitric Acid

Benson Chan


102523

Formulated By:

Reviewed By:

Pedro L. Rentas 102523

Pipette (mL) Conc. (µg/mL) Nominal Conc. (µg/mL) Conc. (µg/mL) Final +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information LD50 NIST SRM

800-368-1131

Certified Reference Material CRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verifical	cation	by ICP-M	1) SI	ua/mL)						
	THE STATE		Prostanting.	AUTHORNSON.				STREET, STREET,	SERVICE SECURITY	SECTION SECTIO	HENCON BUILDING	NAME OF TAXABLE PARTY.	. ш					A STATE OF THE PARTY OF THE PAR	
ΙΥ	<0.02	3	<0.02	δ	<0.02	H	<0.02	Ľ	<0.02	ž	<0.02	左	<0.02	Se	<0.2	176	<0.02	M	<0.02
Sp	<0.02	J	40.2	à	40.02	Н	<0.02	3	<0.02	£	<0.02	Re	<0.02	š	<0.02	ę	₹0.02	ם	40.02
As	407	ඊ	<0.02	립	₹0.02	ជ	<0.02	Mg	<0.01	ő	<0.02	묎	<0.05	Ag	<0.02	F	<0.02	>	<0.02
Ba	<0.02	ర	<0.02	3	<0.02	ㅂ	₹0.02	Mn	<0.02	Z	₹0.05	8	<0.02	ğ	40.2	Ħ	<0.02	Ą.	<0.02
å	Т	Ö	<0.02	5	40.02	£	<0.7	Hg	<0.2	Δ,	<0.02	Ru	40.02	Ş	<0.02	Tm	₹0.02	>	<0.02
Ä	<0.02	රි	<0.02	පී	40.02	ڌ	40.02	Mo	<0.02	盂	40.02	Sm	40.02	S	<0.02	S	<0.02	77	<0.02
æ	<0.02	ರೆ	<0.02	Αm	<0.02	£	40.02	PN	<0.02	M	<0.2	Sc	40.02	Ta	<0.02	F	<0.02	Z	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

All standard containers are meticulously cleaned prior to use.

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

122

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number: Description: Lot Number: 57050 071123 Tin (Sn)

Salvents: 21110221

Nitric Acid Hydrochloric acid

Lot #

22D0562008

Nominal Concentration (µg/mL): Recommended Storage: **NIST Test Number:** Expiration Date: 1000 Ambient (20 °C) 071126

Weight shown below was diluted to (mL): **BTU9** 499.93

RM#

Number

Conc. (µg/mL) Nominal

(%)

Uncertainty Assay
Purity (%) (%)

Weight (g)

Target

ρţ

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

> 10.0 30.0

3 6%

Nitric Acid

Formulated By:

Benson Chan

071123

Hydrochloric acid

Reviewed By:

Pedro L. Rentas

071123

Weight (g)	ACTUAL	
Conc. (µg/ml.)	Actual Ur	
'- (µg/mL)	certainty	xpanded
CAS# OSHA PEL (TWA) LD50	(Solvent Safety	SUS
PEL (TWA)	y Info. On Attache	Information
LD50	d pg.)	
SRM	TSIN	

1. Ammonium hexafluorostannate(IV) (Sn) m/z-> ---X/m --Z/111 2.5E4 5.0E4 1.0ES 2.0E6 2.5E5 S.OEG [1] Spectrum No.1 210 110 0 IN010 SND042023A1 120 220 N [15.034 sec]:58150.D# [Count] [Linear] 1000 230 130 8 240 140 0.10 40 44.2 250 150 Ö 1.13107 1.13286 160 260 60 1001.6 170 70 2.0 180 80 16919-24-7 190 90 7 mg/m3 200 100 ₹ 3161a

Part # 57050

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		Г
	B B B B B B B B B B B B B B B B B B B	ı
	4000 4000 4000 4000 4000 4000 4000 400	
	585555	
	40.02 40.02 40.02 40.02 40.02	
	Dy C C E E E AL	
	40.02 40.02 40.02 40.02 40.02 40.02	
	## ## ## ## ##	
	4000 4000 4000 4000 4000 4000	Trace N
	Mo Mn Li	etal
(T) = Tamet analyte	4002 4002 4002 4002	s Verific
met en	K P P P S N N	ation
shoto	40.02 40.02 40.02 40.02 40.02	by CP-
	S R R R R R	SN
	4000 4000 4000 4000 4000	
	S IS & S S E	
	40.02 40.02 40.02 40.02 40.02	
	はなばははは	
	4002 4002 4002 4002	
	* > > \$ × 2 ×	
	600 600 600 600 600	

(I) = larget analyte

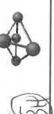
Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

R: 02109124

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com 091923 091923 (Solvent Safety Info On Attach SDS Information Pedro L. Rentas Lawrence Barry Formulated By: Reviewed By: Expanded Nitric Acid Final Nitric Acid 40.0 (III) hital 24002546 2.0% Nominal Balance Uncertainty Flask Uncertainty 5E-05 0.058 Initial 2000.02 Dilution Ambient (20 °C) Cobalt (Co) Volume shown below was diluted to (mL): 57027 091923 091926 ĕ 1000 **6UTB** Part Description: **Expiration Date:** Recommended Storage: Nominal Concentration (ug/mL): NIST Test Number: Part Number: Lot Number: CERTIFIED WEIGHT REPORT:

						100	10000	CHICAGO CONTROL CONTRO	URCH LABILLY	ianioc)	(Solvent Safety Into, On Attached pg.)	ttacned pg.)	22
Compound	Number	Number	Factor	Vol. (mL)	Pipette (mL) (conc. (ug/mL)	Conc. (µg/mL)	Conc. (ug/ml.)	+/- (ng/mL)	CAS#	Number Number Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL) CAS# OSHA PEL (TWA)	1050	SRM
Cobalt(II) nitrate hexahydrate (Co) 58127 050923 0,1000 200.0	58127	050923	0.1000		0.084	1000	10000	100001	00	10008.00.0	Company CO O	200	0770
								2000	1	0.770.001	O.UZ IIIgiritis	STEE SOCIETY OF HIGHER OF HIGHER OF HIGHER OF HIGHER	3113
(2									
			0 770		LA SPOLL NO	LOS ESTADOS NO CONTRACTOR SECTION TO CONTRACTOR CONTRAC	F 1						

1.056	5.0E5	m/z->	5.0E7	1.0E8	5.0E7
		0		0	
		0		120	
L 34-243 Secj.baok7.D# [Count] [Linear]		Ō		130	
		.0		140	
		.09		50	
		. O		160	
				170	
		02			
		80		160	
		00		081	
		001		500	

Lot # 091923

250

240

230

220

010

W/Z->

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifical	tion	by ICP-M	4S (F	g/mL)						
1							STREET, SQUARE, SQUARE,	No section lives	ALL DESCRIPTION OF THE PERSON	10.000	Market Mark	MINNSH.	Sanday Marine	NAME OF TAXABLE PARTY.	Service of the last	SECOND STATES		No.	A STATE OF STREET
IV	<0.02	ಶ	1	Š	40.02 Dy 40.02	Ħ	<0.02	П	<0.02	Z	<0.02	Æ	<0.02	B	<0.2	£	<0.02	M	<0.02
ౙ	40.02	రే	40 7	占	<0.02	H9	<0.02	.3	₹005	Ź	₹0.02	2	<0.02	Š	40.02	T _e	40.05	5	40.02
As	40.2	ප	40.02	呂	40.02	ų	<0.02	Mg	10.05	ő	₹0.02	됩	<0.02	Ag	40.02	F	<0.02	>	₩ 40.02
쯃	40.02	చ	40.02	3	4002	ㅂ	<0.02	Ma	<0.02	콘	₹000	2	40.02	N _a	40.2	Ę	20:0>	g,	Ø.02
2	10.05	ඊ	20.02	త్ర	40.02	હ	40.2	쁀	\$ 20	م	₹0.02	콥	<0.02	Şt	40.02	Tm	Ø.02	٨	Ø.02
遥	40 .02	රි	۳	Ğ,	4002	ដ	<0.02	Mo	40.02	Æ	20'0 >	S	<0.02	S	40.02	Sn	40.02	Zn	Ø.02
æ	<0.02	ට්	<0.02	Αn	<0.02	윤	Z0.0>	P	<0.02	м	40.2	S	₩	Fee Fee	40,02	Ħ	Ø.02	Z	Ø.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Lot # 091923

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

02/00/24 Certified Reference Material CRM

W 580

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: Expiration Date: Part Number: Description: Lot Number: 57033 111323 Arsenic (As) **BTUB** 1000 111326 Ambient (20 °C) 5E-05 Balance Uncertainty 24002546 Lot# 2.0% Nitric Acid Solvent: 80.0 Nitric Acid Formulated By: Reviewed By: Therence Pedro L. Rentas Lawrence Barry

1. Arsenic (As)

58133

020522

0.1000

400.0

0.084

1000

10001.0

1000.0

2.0

7440-38-2

0.5 mg/m3

orl-rat 500 mg/kg 3103a

Number Part

Number Lot

Vol. (mL)

Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL) Conc. (µg/mL)

+/- (µg/ml.) Uncertainty Expanded

(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

NIST SRM

SDS Information

111323

111323

Dilution Factor

initial

Uncertainty

Nominal

Initial

Final

Compound

Volume shown below was diluted to (mL):

4000.0

0.06

Flask Uncertainty

-z/x->	500	m/z->	N IN IN	m/z-> 5.0≣4	1.0厘5	≥.005
						3
Ŋ		110		ō		[] Speatrum No.1
						Z 0.1
N N N O		120		N.		á
230		130		3 0		[34.433 sec]:57033.D# [Count] [Linear]
		A second		er West A best		90]:570
240		140		ò		33.D#
N 0				50		[Count]
Ö		0		0		[Lines
N O		160		0.0		ā
		170		70		
		180		80		
		-		- W		
		190		90		
		N				
		200		100		

Part # 57033

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	- H H H > /0 >	8	-
	AS Sb Ba Bi Bi		
	4002 4002 4002 4002 4002		
	5 8 ជ ង 8 ជ ប		
	402 402 402 402 402 402		
	₹ ७८८ = = ⊅		
	6000 6000 6000 6000		
	322428		
	40.02 40.02 40.02 40.02 40.02	Trace N	
	N H M L L	letals	
9	40.2 40.2 40.2 40.2 40.2	Verifica	
= Target	M R P R O R R	E S S	
Target analyte	40.02 40.02 40.02 40.02	by ICP-N	
	S R R R R R	id) St	
R	4444 444 444 444 444 444 444 444 444 4	g/mL)	
	Ta Sr Na Se		
	40.2 40.2 40.2 40.2 40.2 40.2		
	######################################		
(+)	40.02 40.02 40.02 40.02 40.02 40.02		
	Z Z Y Z < C &		
	40.02 40.02 40.02 40.02 40.02		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

Solvent: MKBQ8597V Ammonium hydroxide

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: R - 02 00 124 M.5814

Part Number: Lot Number: 57005 071123

Description: Boron (B)

Nominal Concentration (µg/mL): Recommended Storage: 1000 Ambient (20 °C)

Expiration Date:

071126

2.0%

Ammonium hydroxide

Formulated By:

Benson Chan

071123

tento

40.0

Weight shown below was diluted to (mL): 1999.48 0.058 Flask Uncertainty

RM#

Number

Purity (%)

3

NIST Test Number: Ĕ Nominal Purity 5E-05 Balance Uncertainty Uncertainty Assay Target Actual Reviewed By: Expanded Pedro L. Rentas **SDS Information**

071123

1. Boric acid (B) IN018 BV092016A1 Conc. (µg/mL) 100 8 0.10 17.3 11.55772 Weight (g) 11.56201 1000.4 120 10043-35-3 2 mg/m3 orl-rat 2660 mg/kg 3107

Actual +/- (µg/mL) Uncertainty CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 OSHA PEL (TWA)

NIST SRM

Weight (g) Conc. (µg/mL)

[1] Spectrum No.1 [12.275 sec]:58105.D# [Count] [Linear]

17/Z-V <-Z/111 m/z-> 2.5EG 5.0E6 2.5E6 S.OE6 1.0E4 2.0≡4 110 1210 0 120 220 Ŋ 130 230 30 140 240 40 150 250 (I) O 200 160 60 170 70

180

190

200

80

90

100

Part # 57005

Printed: 2/8/2024, 5:01:07 PM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	B B B B B		
	40.02 40.02 40.02 40.02 40.02		
	58 ៦ ៦ ៦ ៦ ៦		
	40.02 40.02 40.02 40.02 40.02 40.02		
	A C C C E E Dy		
	40.02 40.02 40.02 40.02		
	322442	١.	
	402 402 402 402 402	Trace M	
	Hg Mh Nd	etals	
(T) = Target analyte	40.02 40.02 40.02 40.02	Verifica	
get ans	z z o z o z z	ation	
alyte	40.02 40.02 40.02 40.02 40.02 40.02	by ICP	
	S R R R R R	-MS (
	666666666666666666666666666666666666666	//g/mL)	
	Ta S Na Ag		
	40.02 40.02 40.02 40.02 40.02 40.02		
	T I I I		
	4444 4422 4422 4422 4422 4422 4422 442		
	\$ 2 × \$ × C \$		
	4000 4000 4000 4000		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- the preparation of all standards.
- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

R1 02/09/124 Certified Reference Material CRM

M5816

CERTIFIED WEIGHT REPORT

Part Number:

Lot Number: Description:

57016 122923

Solvent:

122923

ASTM Type 1 Water

Lot #

Expiration Date: 122926 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 1000

Recommended Storage:

Ambient (20 °C)

Weight shown below was diluted to (mL): 4000.0 5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Nominal

Purity

Uncertainty Assay

Target

Actual

Uncertainty

Expanded

Reviewed By:

Pedro L. Rentas

122923

tento

Formulated By:

Benson Chan

122923

 Ammonium sulfate (S) IN117 SLBR7225V Number Conc. (µg/mL) 1000 99.9 38 Purity (%) 0.10 24.3 38 Weight (g) 16.4979 Weight (g) Conc. (µg/mL) 16.4980 1000.0 +/- (µg/mL) 20 7783-20-2 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 ¥ orl-rat 4250mg/kg 3181 SRM

1/Z-V m/z-> m/z-> N.SES S.OEB 5.OE7 1.0**E**8 N. SES 5.0E5 [1] Spectrum No. 1 210 110 0 120 ななり 0 [33.603 sec]:57016.D# [Count] [Linear] 130 230 30 140 240 40 250 150 000 160 200 00 170 0 180 80 190 00 200 100

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Part # 57016

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

109/24

M5817

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: 071123 57116

Solvent:

071123

ASTM Type 1 Water

Burense

Formulated By:

Lawrence Barry

071123

Lot #

Expiration Date: Description: 071126 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 10000 Ambient (20 °C)

Recommended Storage:

EU1B

Weight shown below was diluted to (mL): 1999.48 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By: Pedro L. Rentas SDS Information

 Ammonium sulfate (S) IN117 SLBR7225V 10000 99.9 0.10 24.3 82.4675 82,4682 10000.1 20.0 7783-20-2 Z orl-rat 4250mg/kg 3181

Number Ĕ Conc. (µg/mL) Purity 8 Uncertainty Assay Purity (%) 8 Weight (g) Target Weight (g) Conc. (µg/mL) Actual Actual +/- (µg/mL) OSHA PEL (TWA)

Expanded

071123

Uncertainty (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 SRM NIST

m/z->	1.005	m/z-> 2.0E5	2.565	5.0E5	1000	2000
0		110		0		
N N O		120		20		
230		30		9 0		
240		140		40		
250		150		50		
260		160		8		
		170		70		
		180		8.		
		190		90		
		200		100		

Part # 57116

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	B B B B As Al	
	40.02 40.02 40.02 40.02	
•	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	5848888	
1	40.2 40.2 40.02 40.02	
	A C C C C C C C C C C C C C C C C C C C	
	40.02 40.02 40.02 40.02 40.02 40.02	
	# # # # # # # # # # # # # # # # # # #	_
	40.02 40.02 40.02 40.02 40.02	Trace Ma
	Ma Ma Ma Ma	200
(T)= Tarnet analyte	40.02 40.02 40.02 40.02 40.02	Variety.
hansh	K B B B B B B B B B B B B B B B B B B B	
Ď	402 402 402 402 402	
	 	
	4002 4002 4002 4002 4002 4002 4002	
	S S S S S	
	40.2 40.02 40.02 40.02 40.02 T	
	T I I I I	
	4000 4000 4000 4000 4000	
	Z	
	666666666666666666666666666666666666666	

Physical Characterization:

(1)= larger analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57116

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Lot #

Part Number: Lot Number: Description: 57015 091123 Phosphorous (P) Solvent: 24002546 2% 40.0 Nitric Acid Nitric Acid

Formulated By:

Lawrence Barry

091123

Pedro L. Rentas

091123

SDS information

rento

Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** 1000 091126 Ambient (20 °C) (JE)

Weight shown below was diluted to (mL): **NIST Test Number:** BITUB Lot 2000.02 Nominal 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Uncertainty Reviewed By: Expanded

 Ammonium dihydrogen phosphate (P) IN008 Pvos2018A1 [1] Spectrum No.1 RM# Number [12.074 sec]:58115.D# [Count] [Linear] Conc. (µg/mL) 1000 99.999 3 Purity (%) 0.10 27.5 3 Weight (g) 7.2729 Weight (g) Conc. (µg/mL) 7.2730 1000.0 +/- (µg/mL) 2.0 7722-76-1 CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 5 mg/m3 rl-rat >2000mg/ki 3186 SRM

Part # 57015

--z/m

210

220

230

240

250

260

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ľ	В	<u> </u>	Ħ.	뮸	200	Ę,	3		ş	2	4		
F		A 022	20.02	3	- 60 10	70.02	3	70		A	2002	200		
		<u>ნ</u>	8	,	Ω	Ç	?	ę		ვ. 	2	2		
		A 23	20705	3	A 20.02	20.02	3	40.02		2	20,02	3		
		Αu	Ę	1	္ဓ	2	2	달	2	Į,	Ų	1		
		3	40.02		3	♦0.02)	8	20.02	3	∆ .02			
		ÿ	<u>_</u>		₹1	4		<u> </u>	0.0	F .	H	1		
	2000	3	<u> </u>	4.4	3	∆ 02		6 002	20.02	3	40.02	-		Trace M
	i de	ž	š	200	Ç	¥	9	X	Į,	•	5			<u>P</u>
3	20,02	3	<u>8</u>	7.03	3	∆ 0,02	1000	<u>^</u>	40,02	2	A 0,02			Verifica
Target	Ŀ	4	7	7	,	Z	Ş	Ş	S		Z			†:
Target analyte	ê	9	A)	_		8	10:04	3	A0.02		A) (2)		3	אי וכפרו
	Se.	•	S	¥.	,	₽	2	P	₽	:	Ŗ	Manager Street	F	100
	40.02		A S	40.02		A	70.05	3	<u>\$</u> 0.02	***************************************	A		g/ IIIL)	7
	Ta	,	^	ş		Z.	A	•	S	ş	ß	SANSON COM		
	40.02	70.02	3	∆ 0,02	i d	3	20,02	3	∆	ć	3			
	111	ě	?	Ĭ'n	Ē	;	Η	!	7	č				
	40.02	70.02	3	∆0,02	2000	3	∆ 0.02	2	200	20.02	300			
	Zr	2	7	<u>~</u>	16	\$	\ -		9	*				
	40.02	20.02	3	20.02	70.0>	3	<u>6</u> 0.02		A) (2)	20.02				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Sodium Chloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Material No.: 3624-01

Batch No.: 0000281938

Manufactured Date: 2021-06-07

Retest Date: 2026-06-07

Revision No.: 1

Certificate of Analysis

Test	Specification	Result
Assay (NaCl) (by Ag titrn)	≥ 99.0 %	100.0 %
pH of 5% Solution at 25°C	5.0 - 9.0	6.3
Insoluble Matter	≤ 0.005 %	0.003 %
lodide (I)	≤ 0.002 %	< 0.002 %
Bromide (Br)	≤ 0.01 %	< 0.01 %
Chlorate and Nitrate (as NO ₃)	≤ 0.003 %	< 0.001 %
ACS - Phosphate (PO ₄)	≤ 5 ppm	< 5 ppm
Sulfate (SO ₄)	≤ 0.004 %	< 0.004 %
Barium (Ba)	Passes Test	Passes Test
ACS - Heavy Metals (as Pb)	≤ 5 ppm	< 5 ppm
ron (Fe)	≤ 2 ppm	< 1 ppm
Calcium (Ca)	≤ 0.002 %	< 0.001 %
Magnesium (Mg)	≤ 0.001 %	< 0.001 %
Potassium (K)	≤ 0.005 %	0.001 %

For Laboratory, Research, or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs Country of Origin: USA

Packaging Site: Paris Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

ACCREDITATION / REGISTRATION 1.0

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGY10

Lot Number:

V2-Y740548

Matrix:

2% (v/v) HNO3

Value / Analyte(s):

10 000 µg/mL ea:

Yttrium

Starting Material:

Yttrium Oxide

Starting Material Lot#:

2661 and 06230520YL

Starting Material Purity:

99.9984%

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Value:

 $10000 \pm 30 \mu g/mL$

Density:

1.032 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

10011 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

9997 ± 50 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 190730

Assay Method #3

9984 ± 31 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRMRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method I with standard uncertainty uchar i

; = the weighting factors for each method calculated using the inverse square of the variance:

$$w_i = (1/u_{char})^2 / (\Sigma (1/(u_{char})^2))$$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

u_{its} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

- ------

Characterization of CRM/RM by One Method
Gertified Value, Xanuary, where one method of characterizat

Gertified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

XCDM/DM = (Xa) (Uchar a)

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} a + u^2_{bb} + u^2_{lts} + u^2_{ts})^{V_2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Ag	<	0.004600	М	Eu		0.009037	М	Na		0.086360	M	Se	<	0.005200	M	Zn		0.030125
M	Al		0.014862	0	Fe		0.002410	М	Nb	<	0.000570	0	Si		0.024100	0	Zr	<	0.002600
М	As	<	0.003500	М	Ga	<	0.000570	M	Nd		0.000923	M	Sm		0.000461				
М	Au	<	0.001700	М	Gd	<	0.003500	M	Ni	<	0.005700	M	Sn	<	0.002300				
0	В		0.002209	M	Ge	<	0.005200	M	Os	<	0.001200	M	Sr	<	0.004600				
0	Ba	<	0.002500	М	Hf	<	0.000570	n	Р	<		M	Ta	<	0.000570				
0	Be	<	0.001400	М	Hg	<	0.000570	M	Pb		0.005020	M	Tb		0.001044				
M	Bi	<	0.003500	М	Но		0.009037	М	Pd	<	0.005100	М	Te	<	0.002300				
0	Ca		0.009841	М	In	<	0.002300	M	Pr	<	0.002300	М	Th	<	0.000570				
M	Cd	<	0.000570	М	lr	<	0.000570	M	Pt	<	0.000570	M	Ti	<	0.003500				
M	Ce	<	0.002300	0	K		0.018677	М	Rb	<	0.000570	М	TI	<	0.000570				
M	Co	<	0.000570	M	La		0.000461	М	Re	<	0.000570	М	Tm	<	0.003500				
M	Cr	<	0.004000	0	Li	<	0.009300	М	Rh	<	0.008000	M	U	<	0.000570				
M	Cs	<	0.000570	M	Lu		0.000582	М	Ru	<	0.000570	M	V		0.001265				
M	Си		0.002610	0	Mg		0.001486	n	S	<		M	W	<	0.002300				
М	Dy		0.003815	M	Mn		0.000582	М	Sb		0.005422	S	Υ	<					
M	Er		0.003615	M	Мо	<	0.005700	М	Sc	<	0.001200	M	Yb		0.001827				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.Inorganicventures.com/TCT

chemically stable for years in 2-5% HNO3 / LDPE container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.91 +3 6 Y(OH)(H2O)x+2 Chemical Compatibility -Soluble in HCl, H2SO4 and HNO3. Avoid HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids); Oxide (Dissolve by heating in H2O/ HNO3); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H2O / HCl or HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axiai view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 89 amu	0.8 ppt	N/A	73Ge16O, 178Hf+2
ICP-OES 360.073 nm	0.005 / 0.000036 μg/mL	1	Ce, Th
ICP-OES 371.030 nm	0.004 / 0.00007 µg/mL	1	Се
ICP-OES 377.433 nm	0.005 / 0.0009 µg/mL	1	Ta, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 20, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 20, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

_	Sealed TCT	Bag Ope	n Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 **NAMES AND SIGNATURES OF CERTIFYING OFFICERS** Certificate Prepared By:

Uyen Truong Custom Processing Supervisor

Mayyand Man Paul R. Laine

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

CERTIFIED WEIGHT REPORT:
Part Number:
Lot Number: Lithium nitrate (Li) Nominal Concentration (µg/mL): m/z-> Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date** [1] Spectrum No.1 [32.093 sec]:58003.D# [Count] [Linear] Description: 210 10 Part Lot Number Number 58103 070622 0.1000 57003 062124 Lithium (Li) 6UTB 062127 Ambient (20 °C) 1000 220 120 20 250.11 230 25.0 0.004 Initial Uncertainty Nominal Initial Final

Vol. (mL) Pipette (ml.) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) 0.016 Flask Uncertainty 5E-05 Balance Uncertainty HEBSON OF PSON 240 40 1000 24002546 Lot# 2.0% 250 150 50 Nitric Acid Solvent: 10000.4 (mL) 260 20 1000.0 Nitric Acid 7/01/24 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Giovannie Capacito 2.0 7790-69-4 5 mg/m3 orl-rat 1426 mg/kg NA SDS Information
(Solvent Safety Info. On Attached pg.)
CAS# OSHA PEL (TWA) LD50 Pedro L. Rentas Giovanni Esposito 9 0 062124 062124 SRM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

\$

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part # 57003 Lot # 062124

1 of 2

Printed: 6/24/2024, 11:20:08 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

40.02 40.02	A0.02	022	A 3		<0.02	<0.02			
3 5 5 5	3 ° °	ა ზ	ç		C C	Ω			
A A A A A A A A A A A A A A A A A A A	A0.02	2000		40.02	40.2	<0.02			
ද වූ	3	- 00	3	Eu	먁	Dy			
40.02	3	40.02	40.02	<0.02	<0.02	<0.02			
7	7	F.	4	F	Но	Н			
3	40.02	40.2	<0.02	40.02	<0.02	<0.02		Trace M	
Z.	Mo	Hg	Mn	Mg	Li			letals	
<0.02	<0.02	<0.2	<0.02	<0.01	<0.02	1	3	Verifica:	١
×	7	Þ	Ы	os Os	ß	N		tion	١
<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	3	y ICP-M	١
Sc	Sm	Ru	Rb	Rh	Re	7	T.	Brl) S	۱
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	20.02	200	/mL)	
Ta	s	Sr	Na	Ag	2	9 5	e	ı	١
<0.02	<0.02	<0.02	40.2	<0.02	20.02	6 8 E	A) 3		I
11	Sn	Tm	H	II	1 10	1	7		I
<0.02	<0.02	<0.02	<0.02	20.02	20.02	3	<0.02		
12	Zn	×	Ϋ́	<	: 0	1	W		
20.02	40.02	<0.02	<0.02	20.02	200	2000	<0.02		

(T) = Target analyte

Physical Characterization:

Al Sh As Ba Ba Bi

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

	Puri	굺
	Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in	certif
	cids,	fied va
•	18.2	alue is
=	ă	St
	egohr	he cc
	2	ž
•	lei.	en
	9	3
	ΣĖ	
	ä	9
	wate	calc
	Ţ	믔
	ca	E
	ğ	0
	ate.	TOTT
	C	g
	las	Ze.
	S	3
	9	2
	las	7
	ΝS	an c
	ar	7
	9	2
	nd	. 🗒
	the	
	hig	: =
	nes	usp.
	L b	ď
	Ē	. 5
	₹	5
	ra	2
	2	Č,
	ac	ŭ
	en	. 6
	als	- 0
	2	Y Y
	e	ď
	Se	100
	Ö	- 8
	5	

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* All standards on prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are prepared gravimetrically using balances that are calibrated.

* Standards are certified (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

Part # 57003 Lot # 062124

Printed: 6/24/2024, 11:20:08 PM

2 of 2

Certificate of Analysis 6652M , 8782M

MORGANIC NE NE SE SEGENE YOU TREST

info@inorganicventures.com P: 800-669-6799/540-585-3030 P: 540-585-3030 R:2/22/24

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

ACCREDITATION / REGISTRATION

Number QSR-1034). the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (GSR Certificate INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

PRODUCT DESCRIPTION

Catalog Number:

Single Analyte Custom Grade Solution Product Code:

CGTN

2% (v/v) HNO3 :xintsM T2-TI719972 Lot Number:

muineill 1 000 hg/mL ea: Value / Analyte(s): tr. HF

Starting Material Lot#: 2094 Starting Material: Ti Metal

Starting Material Purity: 99.9975%

1002 ± 5 µg/mL Certified Value: **CERTIFIED VALUES AND UNCERTAINTIES**

1.012 g/mL (measured at 20 \pm 4 °C) Density:

Assay Information:

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 µg/mL Assay Method #1

The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance $\frac{1}{1000}$

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mosn of individual results:

 $(x_{a}) \; (x_{a}) \; (x_{$

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expressed at approximately the 95% confidence level using a coverage factor of $K=\Sigma$.

Characterization of CRM/RM by One Method Characterization of CRM/RM by Two or More Methods

4.0 TRACEABILITY TO NIST

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWIRMs.

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of ore each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of the property of the property

e2 M 078220.0 > gN O 882000.0 > u3 M 8g < 0.000536 M Eu <

ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to

Page 2 of 4

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

> uA M 882000.0

> 9A M 886 0.000.0

> bq M 882000.0 > rq M 888200.0 > rq M 682000.0 > dg M 271100.0

> q O 181200.0 > dq M 182800.0

> iN O 882000.0 > aO M 841200.0

> dN O 322500.0 > N M 862000.0

M - Checked by ICP-MS

Mn < Mg < Li <

> 0H

> 6H

ΉŁ

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

M 976800.0 > 8 i 84500.0 M 576800.0 > 8 M 782600.0

by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

> mT M 882000.0 > U M 882000.0 > V M 682000.0 W M

> 6T M 882000.0 > AT M 882000.0

sT M 034450.0 > dT M E70100.0

s 852000.0 M 882000.0

O.000269 O

O.043560 O

n2 M 068010.0 89Z000.0 > mS M 89Z000.0

> II

JS

674000.0 228610.0

892000.0 892000.0

0.000268

699630.0

0.001341

892000.0

0.010560

960000'0

960000.0

73260.0 > nZ O 402100.0 038540.0 > nZ O 267400.0

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/ml)

7.7 Storage and Handling Recommendations

oM M 882000.0

0.000268 M K 0.000268 M K 0.000268 M K

0.000872 O Fe > 0.008586 M Ga <

O 892000.0

O S37000.0 M 882000.0

M 882000.0

M 603100.0

M 885800.0

M £83200.0 > 00 M GG8020 0.004577 M Gd <

INTENDED USE

W Et < O Cn <

O B <

IA O

4.1 Thermometer Calibration

volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is - This product is traceable to MIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMINM uncertainty error and the measurement, weighing and

Page 3 of 4

- Chemical Testing - Accredited / AZLA Certificate Number 863.01

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- QSR Certificate Number QSR-1034

1.01 ISO 9001 Qualify Management System Registration

MOITATY STANDARD DOCUMENTATION 0.01

Homogeneity data indicate that the end user should take a minimum ample size of 0.0.2 m L to assume

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. The Coth series alongs mirranament to be the Coth of the Coth series alongs mirranament to be the Coth series alongs mirranament.

HOMOGENEITY

Please refer to the Safety Data Sheet for information regarding this CRWRM.

NOITAMROANI SUOGRASAH HF Note: This standard should not be prepared or stored in glass.

Ollinger		C INTOTINATION (ICP_OEC n.	Idoseomeni	
ss radial/axial view):	are given	Estimated D.L. Estimated D.L.	Technique/Line	
Interferences (Underline 11)	Order	idq 41	ICP-MS 48 amu	
Interferences (underlined indicates severe) 32S16O, 32S14N,	A/N	add		
14N160180,				
14N17N2, 36Ar12C,				
48Ca, [96X=2				
7-V001 (no a				
(where X = Zr, Mo, Ru)]		10000 () 1900 ()	ICP-OES 323.452 nm	
Ce, Ar, Ni		Jm/gu Se000.0 \ +200.0	ICP-0ES 334.941 nm	
		m/pu 820000.0 \ 8500.0	ICP-OES 336.121 nm	
ла, Та, Сг, U М М9 Ω-	1 1		F Note: This standar	ŀ
W, Mo, Co		In/gy 4500000 \ cocos-	nous prepries sur secon	٠

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/a

1:1:1 H2O / HF./ H2SO4 or fuse ash with pyrosulfate if oxide is as plastic pigment and likely in brookite Volentily), Oxide - Northere are repetation; and sociation; restore (Dissolved by heating in 1737 HZO / HF / HZSO4); Oxide - Northere history (~800EC) brooklie (fuse in Pt0 with KZSZO7); Ores (fuse in Pt0 with KZZZO7); Ores (fuse in Pt0 with provide it as plastic pigment and likely in brooktie (fuse in Pt0 with provide it as plastic pigment and likely in brooktie TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts

HNO3 / LDPE container. 1-10,000 ppm single element solutions as the Ti(F)6-2 chemically stable for years in 2-5% HNO3 / trace HF in an LDPE container. with a fendency to hydrolyze forming the hydrated oxide in all dilute acids except HE.

Stability - 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1%

HNO3 / LDPE container. 1-10.000 ppm sincle element solutions as the Ti(F)8-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F-away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute adds except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HNO3. Avoid neutral to basic Atomic Weight, Valence; Coordination Number; Chemical Form in Solution - 47.87 +4 6 Ti(F)6-2

- For more information, visit www.inorganicventures.com/TCT

reported density. Do not pipette from the container. Do not refurn removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the renorded density. Do not biselfe from the container. Do not return removed alticular to container.

Twitte sociate in the secied 101 beg, trainspleaded for the orderiver in the shalfy concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - While stored in the sealed TCT bag, transpiration of this CRWRM is negligible. After opening the sealed TCT bag, transpiration in a negligible in the capture managed in the capture

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Chairman / Senior Technical Director

- Sealed TCT Bag Open Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- The date after which this CRM/RM should not be used.

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

norganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.859.5790; 540.855.3030, Fax: 540.555.3012; Inorga - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1.

stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in $Sec\ 7.1$. This certification is nullified if instructions in $Sec\ 7.1$ are not followed or if the CRWRM is damaged, confaminated, or otherwise modified.

Thomas Kozikowski Manager, Quality Control Certificate Approved By:

thibils Validity

- June 17, 2027 11.2 Lot Expiration Date

June 17, 2022 11.1 Certification Issue Date

Paul Gaines Certifying Officer:

0.Sr

0.11

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M5985 R:6/14/24

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGIN10

Lot Number:

U2-IN729349

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

10 000 μg/mL ea:

Indium

Starting Material:

Indium Metal

Starting Material Lot#:

2511

Starting Material Purity:

99.9995%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10022 \pm 30 \mu g/mL$

Density:

1.044 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

10021 ± 56 µg/mL

ICP Assay NIST SRM 3124a Lot Number: 110516

Assay Method #2

10035 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #3

10001 ± 33 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty uchar i

w_i = the weighting factors for each method calculated using the inverse square of

 $w_i = (1/u_{char\ i})^2 / (\Sigma (1/(u_{char\ i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Certified Value, $X_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

Characterization of CRM/RM by One Method

 $X_{CRM/RM} = (X_n) (u_{char})$

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ls}\right)^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

М	Ag	<	0.000760	М	Eu	<	0.000760	0	Na		0.012771	M	Se	<	0.023000	М	Zn	<	0.006100
М	Al		0.003385	0	Fe		0.004462	М	Nb	<	0.000760	0	Si		0.024619	М	Zr	<	0.000760
М	As	<	0.004600	М	Ga	<	0.000760	М	Nd	<	0.000760	М	Sm	<	0.000760				
М	Au	<	0.002300	М	Gd	<	0.000760	0	Ni	<	0.005100	М	Sn	<	0.000760				
0	В		0.003692	М	Ge	<	0.001600	М	Os	<	0.000760	0	Sr	<	0.000610				
М	Ba	<	0.001600	M	Hf	<	0.000760	n	Р	<		М	Ta	<	0.000760				
0	Be	<	0.000130	M	Hg	<	0.003100	M	Pb		0.001400	М	Tb	<	0.000760				
M	Bi	<	0.000760	М	Но	<	0.000760	М	Pd	<	0.001600	М	Te	<	0.000760				
0	Ca		0.004616	8	In	<		М	Pr	<	0.000760	М	Th	<	0.000760				
M	Cd	<	0.000760	М	lr	<	0.000760	M	Pt	<	0.000760	0	π	<	0.001100				
М	Ce	<	0.000760	0	K		0.007078	М	Rb	<	0.000760	М	TI	<	0.000760				
М	Co	<	0.000760	М	La	<	0.000760	М	Re	<	0.000760	М	Tm	<	0.000760				
0	Сг	<	0.001300	0	Li	<	0.000130	М	Rh	<	0.000760	М	U	<	0.000760				
М	Cs	<	0.000760	M	Lu	<	0.000760	М	Ru	<	0.000760	М	٧	<	0.001600				
М	Cu	<	0.003800	0	Mg		0.000707	n	S	<		М	W	<	0.001600				
М	Dy	<	0.000760	0	Mn		0.000149	M	Sb	<	0.000760	М	Υ	<	0.000760				
М	Er	<	0.000760	М	Мо	<	0.002300	М	Sc	<	0.000760	M	Yb	<	0.000760				

n - Not Checked For s - Solution Standard Element

M - Checked by ICP-MS O - Checked by ICP-OES

i - Spectral Interference

INTENDED USE 6.0

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 114.82 +3 6 In(H2O)6+3 Chemical Compatibility -Soluble in HCl, HNO3, and H2SO4. Avoid neutral and basic media. Stable with most metals and inorganic anions. The oxalate, sulfide, carbonate, hydroxide and phosphate are insoluble in water.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

In Containing Samples (Preparation and Solution) -Metal (Best dissolved in HCl / HNO3); Oxide (Soluble in mineral acids); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Sulfuric/peroxide digestion or dry ash and dissolution in dilute HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 115 amu	1 ppt	n/a	115Sn, 99Ru16O
ICP-OES 158.583 nm	0.05 / 0.002 μg/mL	1	
ICP-OES 230.606 nm	0.1 / 0.03 μg/mL	1	Ni, Os
ICP-OES 325.609 nm	0.2 / 0.05 μg/mL	1	Mn, Mo, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 21, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 21, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

0 TOT D 0	n Date:	
- Sealed TCT Bag Ope	en Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

20178hi

Sulfuric Acid
BAKER INSTRA-ANALYZED® Reagent
For Trace Metal Analysis
Low Selenium

Material No.: 9673-33

Batch No.: 23D2462010 Manufactured Date: 2023-03-22

Retest Date: 2028-03-20

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS - Assay (H2SO4)	95.0 - 98.0 %	96,1 %
Appearance	Passes Test	Passes Test
ACS - Color (APHA)	≤ 10	5
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm
ACS - Substances Reducing Permanganate (as SO2)	≤ 2 ppm	< 2 ppm
Ammonium (NH ₄)	≤ 1 ppm	1 ppm
Chloride (CI)	≤ 0.1 ppm	< 0.1 ppm
Nitrate (NO₃)	≤ 0.2 ppm	< 0.1 ppm
Phosphate (PO ₄)	≤ 0.5 ppm	< 0.1 ppm
Trace Impurities – Aluminum (Al)	≤ 30.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 4.0 ppb	< 2.0 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	8.5 ppb
Trace Impurities – Cadmium (Cd)	≤ 2.0 ppb	< 0.3 ppb
Trace Impurities - Chromium (Cr)	≤ 6.0 ppb	< 0.4 ppb
Trace Impurities - Cobalt (Co)	≤ 0.5 ppb	< 0.3 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities - Gold (Au)	≤ 10.0 ppb	0.5 ppb
Heavy Metals (as Pb)	≤ 500.0 ppb	< 100.0 ppb
Trace Impurities - Iron (Fe)	≤ 50.0 ppb	1.3 ppb
Trace Impurities - Lead (Pb)	≤ 0.5 ppb	< 0.5 ppb
Trace Impurities - Magnesium (Mg)	≤ 7.0 ppb	0.8 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities - Nickel (Ni)	≤ 2.0 ppb	0.3 ppb
Trace Impurities – Potassium (K)	≤ 500.0 ppb	< 2.0 ppb
Trace Impurities - Selenium (Se)	≤ 50.0 ppb	< 0.1 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	31.5 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb

>>> Continued on page 2 >>>

Sulfuric Acid BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis Low Selenium

Material No.: 9673-33 Batch No.: 23D2462010

Test	Specification	Result
Trace Impurities – Sodium (Na)	≤ 500.0 ppb	5.4 ppb
Trace Impurities – Strontium (Sr)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.8 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.4 ppb

For Laboratory, Research, or Manufacturing Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

ACCREDITATION / REGISTRATION 1.0

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CHEM-CLP-4

Lot Number:

V2-MEB746172

Matrix:

3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s):

1 000 µg/mL ea:

Boron,

Molybdenum,

Silicon,

Tin,

Titanium

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE Boron, B

CERTIFIED VALUE

ANALYTE Molybdenum, Mo **CERTIFIED VALUE**

1 000 ± 5 µg/mL

Silicon, Si

1 000 ± 5 µg/mL 1 000 ± 7 µg/mL

Tin. Sn

1 000 ± 5 µg/ml.

Titanium, Ti

1 000 ± 6 μg/mL

Density:

1.032 g/mL (measured at 20 ± 4 °C)

Assav Information:

,			
ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Мо	ICP Assay	traceable to 3134	U2-MO739068
Si	ICP Assay	Traceable to 3150	S2-S1702546
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRWRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) \{X_i\}$

X_i = mean of Assay Method i with standard uncertainty uchar i

 \mathbf{w}_{i} = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char\,i})^2/(\Sigma(1/(u_{char\,i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{bs}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = \left[\Sigma((w_i)^2 (u_{char})^2)\right]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

utts = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

 $X_a = mean$ of Assay Method A with $u_{char} = the$ standard uncertainty of characterization Method A $CRM/RM = the standard uncertainty ($^{\pm}$) = U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{tts} + u^2_{ts}\right)^{\frac{1}{2}} \\ k = coverage factor = 2 \\ u_{char} = the errors from characterization \\ u_{bb} = bottle to bottle homogeneity standard uncertainty \\ u_{lts} = long term stability standard uncertainty (storage) \\ u_{tg} = transport stability standard uncertainty$

Characterization of CRM/RM by One Method

is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

Certified Value, X_{CRM/RM}, where one method of characterization

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

 https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.lnorganicventures.com/TCT
 HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganic Ventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

August 12, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- August 12, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Sains

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

300 Technology Drive Christiansburg, VA 24073 USA

inorganicventures.com

Certificate of Analysis

M6074

M6075 M6076 M6077

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

EXP. 9/6/2029

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CHEM-CLP-4

Lot Number:

V2-MEB746762

Matrix:

3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s):

1 000 µg/mL ea:

Boron,

Molybdenum,

Silicon,

Tin,

Titanium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Boron, B **CERTIFIED VALUE**

ANALYTE Molybdenum, Mo **CERTIFIED VALUE**

1 000 ± 5 μg/mL

Silicon, Si

1 000 ± 5 µg/mL

Tin, Sn

1 000 ± 5 µg/mL

Titanium, Ti

1 000 ± 7 μg/mL

1 000 I 5 pg/mL

1 000 ± 6 µg/mL

Density:

1.033 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Мо	ICP Assay	traceable to 3134	U2-MO739068
Si	ICP Assay	Traceable to 3150	S2-SI702546
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma(1/(u_{char i})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRW/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (2) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

INTENDED USE 6.0

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669,6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 06, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 06, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT 	Bag Open Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Sains

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

R -> 11/12/24

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (HNO3)	69.0 – 70.0 %	69.7 %
Appearance	Passes Test	Passes Test
Color (APHA)	≤ 10	5
Residue after Ignition	≤ 2 ppm	1 ppm
Chloride (CI)	≤ 0.08 ppm	< 0.03 ppm
Phosphate (PO ₄)	≤ 0.10 ppm	< 0.03 ppm
Sulfate (SO ₄)	≤ 0.2 ppm	< 0.2 ppm
Trace Impurities - Aluminum (AI)	≤ 40.0 ppb	< 1.0 ppb
Arsenic and Antimony (as As)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Barium (Ba)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 50 ppb	< 1 ppb
Trace Impurities – Calcium (Ca)	≤ 50.0 ppb	2.3 ppb
Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Gallium (Ga)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Germanium (Ge)	≤ 20 ppb	< 10 ppb
Trace Impurities - Gold (Au)	≤ 20 ppb	< 5 ppb
Heavy Metals (as Pb)	≤ 100 ppb	100 ppb
Trace Impurities – Iron (Fe)	≤ 40.0 ppb	< 1.0 ppb
Trace Impurities - Lead (Pb)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Magnesium (Mg)	≤ 20 ppb	< 1 ppb
Trace Impurities – Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Nickel (Ni)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Nitric Acid 69% CMOS

Material No.: 9606-03 Batch No.: 24D1062002

Test Specification Result

For Microelectronic Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Cloak

Director Quality Operations, Bioscience Production

www.absolutestandards.com

Part Number:

Lot Number:

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Formulated By: Diovannie Giovanni Esposito 2 Septe 101124

Pedro L. Rentas

101124

Recommended Storage: **Expiration Date:** Description: 101124

Manganese (Mn)

Ambient (20 °°)

Manganese (20 °°) 1000

Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): **NIST Test Number:** ETUB ត្ត 4000.2 Nominal 0.10 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Actual Reviewed By: Uncertainty Expanded (Solvent Safety Info. On Attached pg.)

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

Weight (g) Conc. (µg/ml.)

+/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM NIST T SDS Information

 Manganese(II) nitrate hydrate (Mn) IN031 MNM082020A1 1000 99.999 0.10 20.8 19.2322 19.2344 1000.1 2. 0 15710-66-4 5 mg/m3 orl-rat >300mg/kg 3132

m/z->	5.0E7	1.0E8	5.0E7	1.0E8	7-2/2	N UI	5. OE6
							[1] 88
0		110			0		[1] Spectrum No.1
			•				NO.1
N N O		120			0		و
230		100			30		1.243
ō		Ō					ec]:57(
N 40		140			40		[34.243 sec]:57025.D# [Count] [Linear]
							Coun
N D		150			6		tj (Line
N O		300			0		2
J		•					
		170			70		
		-			Ó		
		0			80		
		90			0		
		N 0	on.		100		

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Г							Trace Me	etals	Verifica	tion	by ICP-	SM	(µg/mL)						
A	40.02	2	40.02	Dγ	40.02	H	<0.02	<u>E</u>	<0.02	Z	<0.02	꾸	<0.02	Se	40.2	<u>4</u>	<0.02	*	<0.02
dS	<0.02	ರಿ	<0.2	뎍	<0.02	Н	<0.02	Ę	40.02	ş	<0.02	Re	<0.02	ž.	40.02	Te	<0.02	c	<0.02
As	40.2	င္ပ	40.02	띹	<0.02	In	<0.02	Mg	40.01	0°	<0.02	쫑	<0.02	A	8,02	1	<0.02	<	40.02
Ba	40.02	ς,	<0.02	ନୁ	40.02	F.	40.02	Mn	H	Pd	<0.02	&	40.02	Z	40,2	1	<0.02	충	< 0.02
Ве	40.01	ប៉	40.02	ଦ୍ମ	40.02	7,	40.2	Hg	<0.2	Þ	<0.02	Ru	40.02	Sr	0.02	Tm	<0.02	×	<0.02
Bi	0.02	ဝ	<0.02	ନ୍ମ	40.02	La	<0.02	Mo	40.02	7	40.02	Sm	<0.02	S	A.02	Sn	<0.02	Zn	60.02
B	<0.02	Cu	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	×	40.2	S	<0.02	Ta	40.02	크	<0.02	Zr	<0.02
									}										

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Jon T. Mills

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M6137

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGSI1

Lot Number:

V2-SI744713

Matrix:

tr. HNO3

tr. HF

Value / Analyte(s):

1 000 µg/mL ea:

Silicon

Starting Material:

Silica

Starting Material Lot#:

1771

Starting Material Purity:

99.9981%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

999 ± 6 µg/mL

Density:

1.003 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

999 ± 5 µg/mL

ICP Assay NIST SRM Traceable to 3150 Lot Number: S2-Si702546

Assay Method #2

1000 ± 7 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

 $\mathbf{X_i}$ = mean of Assay Method \mathbf{i} with standard uncertainty \mathbf{u}_{char} \mathbf{i} \mathbf{w}_{i} = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{bs})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$

X, = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (1) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Ag	<	0.000310	M	Eu	<	0.000310	0	Na		0.001656	M	Se	<	0.022000	М	Zn	<	0.002500
M	Al		0.010787	M	Fe	<	0.027000	M	Nb	<	0.001300	s	Si	<		0	Zr	<	0.001900
М	As	<	0.001900	М	Ga	<	0.001300	M	Nd	<	0.000310	М	Sm	<	0.000310				
М	Au	<	0.000910	М	Gd	<	0.000310	M	Ni	<	0.005500	М	Sn		0.000096				
M	В		0.016180	M	Ge	<	0.001900	M	Os	<	0.000610	0	Sr		0.000092				
M	Ba		0.000096	M	Hf		0.000423	i	Р	<		M	Ta		0.002542				
0	Be	<	0.000570	M	Hg	<	0.000610	M	Pb	<	0.000310	М	Tb	<	0.000310				
M	Bi	<	0.000310	М	Но	<	0.000610	М	Pd	<	0.000610	M	Te	<	0.000910				
0	Ca		0.011557	M	ln	<	0.000310	M	Pr	<	0.000310	M	Th	<	0.001900				
M	Cd	<	0.000310	M	lr	<	0.000310	M	Pt	<	0.000310	М	Ti		0.001078				
M	Ce	<	0.000610	0	K		0.000577	M	Rb	<	0.009100	М	TI	<	0.000310				
M	Co	<	0.001600	M	La	<	0.000310	M	Re	<	0.000310	М	Tm	<	0.000310				
М	Cr	<	0.010000	0	Li	<	0.000460	М	Rh	<	0.000310	M	U	<	0.000310				
М	Cs	<	0.000310	M	Lu	<	0.000310	M	Ru	<	0.000310	0	V	<	0.001300				
М	Cu	<	0.002500	0	Mg		0.001348	0	S	<	0.570000	М	W	<	0.001900				
М	Dу	<	0.000310	М	Mn	<	0.002500	M	Sb	<	0.000310	M	Υ	<	0.000310				
M	Er	<	0.000310	M	Мо	<	0.000310	0	Sc	<	0.000590	M	Yb	<	0.000310				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 **INTENDED USE**

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Welght; Valence; Coordination Number; Chemical Form in Solution - 28.09 +4 6 Si(OH)x(F)y2-Chemical Compatibility -Soluble in HCl, HF, H3PO4 H2SO4 and HNO3 as the Si(OH)x(F)y2-. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F- away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated. Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic acid is soluble up to ∼100 ppm in water) in all dilute acids

Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH)x(F)y2-. 1-10,000 ppm single element solutions as the Si(OH)x(F)y2- chemically stable for years in 2-5 % HNO3 / trace HF in a LDPE container.

Si Containing Samples (Preparation and Solution) -Metal (Soluble in 1:1:1 H2O / HF / HNO3); Oxide - SiO2, amorphic (dissolve by heating in 1:1:1 H2O / HF / HNO3); Oxide - quartz (fuse in Pt0 with Na2CO3); Geological Samples(fuse in Pt0with Na2CO3 followed by HCI solution of the fuseate); Organic Matrices containing silicates and non volatile silicon compounds (dry ash at 4500C in Pt0 and dissolve by gently warming with 1:1:1 H2O / HF / H2SO4 or fuse / ash with Na2CO3 and dissolve fuseate with HCI / H2O); Silicone Oils - dimethyl silicones depolymerize to form volatile monomer units when heated (Measure directly in alcoholic KOH / xylene mixture where sample is treated first with the KOH at 60-1000C to "unzip" the Si- O-Si polymeric structure or digest with conc. H2SO4 / H2O2 followed by cooling and dissolution of the dehydrated silica with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethylcyclotrisiloxane. The KOH forms the K2+Si(CH3)2O= salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	•		
Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 28 amu	4000 - 8000 ppt	N/A	N2, 12C16O
ICP-OES 212.412 nm	0.02/0.01 µg/mL	1	Hf, Os, Mo, Ta
ICP-OES 251.611 nm	0.012/0.003 µg/mL	1	Ta, U, Zn, Th
ICP-OES 288.158 nm	0.03/0.004 µg/mL	1	Ta, Ce, Cr, Cd, Th

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 10, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 10, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0 Certificate Prepared By:

Uyen Truong Custom Processing Supervisor

Mayyand Man
Paul R. Laine

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R: 4/20/21

Instructions for QATS Reference Material: Inorganic ICV Solutions

QATS LABORATORY INORGANIC REFERENCE MATERIAL INITIAL CALIBRATION VERIFICATION SOLUTIONS (ICV1, ICV5, AND ICV6)

* M6150

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION:

For use with the CLP SFAM01.0 SOW and revisions.

CAUTION:

Read instructions carefully before opening bottle(s) and proceeding with

the analyses.

Contains Metals In Dilute Acidic or Cyanide in Basic Aqueous Solutions HAZARDOUS MATERIAL

> Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more Aqueous Inorganic Reference Materials containing various analyte concentrations. ICV1 and ICV5 are in a matrix of dilute nitric acid. ICV6 is in a matrix of dilute basic solution. For the reference material source in reporting ICVs use "USEPA". For the reference material lot number for the ICV1, ICV5, and ICV6 solutions use "ICV1-1014", "ICV5-0415", and "ICV6-0400", respectively.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The Initial Calibration Verification Solutions (ICVs) are to be used to evaluate the accuracy of the initial calibrations of ICP, AA, and Cyanide colorimetric instruments, and are to be used with the CLP SOWs and revisions. The values for each element in the ICVs are listed below in µg/L (ppb) for the resulting solution(s) after the dilution of the concentrate(s) according to the following instructions. Use Class 'A' glassware to prepare the solution(s).

ICV1-1014

<u>For ICP-AES analysis</u>, use a 10-fold dilution by pipetting 10 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid.

Page 1 of 2

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: Inorganic ICV Solutions

ICV1-1014

For ICP-MS analysis, use a 50-fold dilution by pipetting 2 mL of the ICV1 concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

ICV5-0415

For the cold vapor analysis of mercury by AA, use a 100-fold dilution by pipetting 1 mL of the ICV5 concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid.

ICV6-0400

For the analysis of cyanide, use a 100-fold dilution by pipetting 1 mL of the ICV6 concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₈, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

(D) CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

	ICV1-1014	
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)
Al	2500	500
Sb	1000	200
As	1000	200
Ba	520	100
Be	510	100
Cd	510	100
Ca	10000	2000
Cr	520	100
Co	520	100
Cu	510	100
Fe	10000	2000
Pb	1000	200
Mg	6000	1200
Mn	520	100
Ni	530	110
K	9900	2000
Se	1000	200
Ag	250	50
Na	10000	2000
TI	1000	210
V	500	100
Zn	1000	200

	ICV5-0415	SPILE/	ICV6-0400
Element	Concentration (µg/L) (after 100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN-	99

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

M6151

R-> 1/15/25

Material No.: 9530-33

Batch No.: 22G2862015 Manufactured Date: 2022-06-15

Retest Date: 2027-06-14

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS - Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	
ACS - Color (APHA)	50.5 - 36.0 % ≤ 10	37.9 %
ACS - Residue after Ignition	≤ 3 ppm	5
ACS - Specific Gravity at 60°/60°F		< 1 ppm
ACS – Bromide (Br)	1.185 - 1.192	1.191
ACS - Extractable Organic Substances	≤ 0.005 %	< 0.005 %
ACS - Free Chlorine (as Cl2)	≤ 5 ppm	< 1 ppm
Phosphate (PO ₄)	≤ 0.5 ppm	< 0.5 ppm
Sulfate (SO ₄)	≤ 0.05 ppm	< 0.03 ppm
Sulfite (SO₃)	≤ 0.5 ppm	< 0.3 ppm
Ammonium (NH ₄)	≤ 0.8 ppm	0.3 ppm
Trace Impurities - Arsenic (As)	≤ 3 ppm	< 1 ppm
Trace Impurities - Aluminum (AI)	≤ 0.010 ppm	< 0.003 ppm
Arsenic and Antimony (as As)	≤ 10.0 ppb	1.3 ppb
Trace Impurities - Barium (Ba)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities - Beryllium (Be)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Bismuth (Bi)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 20.0 ppb	< 5.0 ppb
Trace Impurities - Calcium (Ca)	≤ 1.0 ppb	< 0.3 ppb
	≤ 50.0 ppb	163.0 ppb
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	0.7 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Frace Impurities – Gold (Au)	≤ 4.0 ppb	0.6 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Frace Impurities – Iron (Fe)	≤ 15 ppb	6 ppb

>>> Continued on page 2 >>>

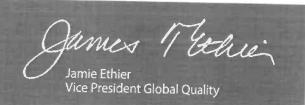
Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015

Test	Specification	Result
Trace Impurities – Lead (Pb)	≤ 1.0 ppb	< 0.5 ppb
Trace Impurities - Lithium (Li)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	2.9 ppb
Trace Impurities - Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 3.0 ppb
Trace Impurities - Nickel (Ni)	≤ 4.0 ppb	< 0.3 ppb
Trace Impurities - Niobium (Nb)	≤ 1.0 ppb	0.8 ppb
Trace Impurities - Potassium (K)	≤ 9.0 ppb	< 2.0 ppb
Trace Impurities - Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities - Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities - Silver (Ag)	≤ 1.0 ppb	0.5 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.3 ppb
Trace Impurities – Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	1.6 ppb
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	4.0 ppb
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	1.5 ppb
Trace Impurities – Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.8 ppb
Frace Impurities – Zirconium (Zr)	≤ 1.0 ppb	0.3 ppb

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015


Test

Specification

Result

For Laboratory, Research, or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Lot # 032123

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

R -> 6/12/24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->	1.OE6-	₽.OE6 ,	m/z-y	1000-	2000	m/z->	2.0E5 1.0E5	1. Ammonium molybdate (Mo)	Compound	Volume shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Expiration Date:		Lot Number: Description:	CERTIFIED WEIGHT REPORT:
210			110			10	[1] Spectrum No.1	58142	Part Number)w was dilut	ber:	nL):	ate:		on:	
220			120			20		112322	Lot Number	ed to (mL):	6UTB	1000	032126 Ambient (20 °C)		032123 Molybdenum (Mo)	67042
Ŋ			4			ω.	8.594	0.1000	Dilution Factor	3000.41		S	<u>ී</u>		ım (Mo)	
230			130			30	sec]:570	300.0	Initial Vol. (mL)	0.058						
240			140			40	8.594 sec]:57042.D# [Count] [Linear]	0.084	Uncertainty Nominal Pipette (mL) Conc. (µg/mL)	Flask Uncertainty	Balance Uncertainty					
250			150			50	Count] [t	1000	Nominal Conc. (µg/mL)	×	inty			0.5%	MKBC859/V	Lot #
260			1.00			60	_inear]	10001.4	Initial Conc. (µg/mL)				(mL)	15.0	Ammonium nyaroxide	
			170			70		1000.0	Final Conc. (µg/mL)					Ammonium hydroxide	OXIGE	
			0				ı	2.1	Uncertainty +/- (µg/mL)	Expanded	Reviewed By:	N)	Formulated By:	1	
			200			80		13106-76-8	CAS		³y:	de		By:	Geron	
			190			90		-8 5 mg(Mo)/m3	(Solvent Safety Info. On Attached pg.) # OSHA PEL (TWA) . LD50	SDS Information	Pedro L. Rentas	Rento	N	Lawrence Barry		
			000			100	×	orl-rat 333 mg/kg	n Attached pg.)) LD50	ation	00	,			I	
								g/kg 3134	NIST		032123			032123		

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	В	Bi	Ве	Ba	As	Sb	A		
	<0.02	<0.02	<0.01	<0.02	<0.2	<0.02	<0.02		
	δ	င္ပ	Ç	S.	င့	Ca	Cd		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.2	<0.02		
	Αш	ද	ନ୍ଥ	ନ୍ଥ	딸	झ्	Dy		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
	Pb	La	Æ	F	Ħ	Но	Hf		
	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02		Trace M
	꾪	Мо	Щ	M	Μg	Ţī	Ľ		etals
T(T)	<0.02	Н	<0.2	<0.02	<0.01	<0.02	<0.02		Verifica
(T)- Target analyte	~	7.	P	格	ဝွ	₽	Z.		tion
atyler	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		by ICP-N
	Sc	Sm	Ru	Rb	R.	Re	Pr		IS (µį
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		g/mL)
	Ta	S	Sr	Na	Ag	Si	Se	i	
	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.2		
	Ħ	Sn	Tm	닭	Ħ	Te	ъ		
	40.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
	Zī	Zn	Υ	44	<	U	₩		
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

R-02/02/2025

M-6158

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

Assay (HNOs) Appearance Appearance Passes Test Passes Test Passes Test Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (PO4) Sulfate (SO4) Sulfate (SO4) Arsenic and Antimony (as As) Arsenic in and Antimony (as As) Arsenic in and Antimony (as As) Arsenic in and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Interest Bismuth (Ba) Arace Impurities - Beryllium (Be) Arace Impurities - Beron (B) Arace Impurities - Boron (B) Arace Impurities - Cadnium (Cd) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Co) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Co) Arace Impurities - Lead (Pb) Arace Impurities - Lithium (Ll) Arace Impurities - Manganese (Mn) Arace Impurities - Manganese (Mn) Arace Impurities - Manganese (Mn) Arace Impurities - Nickel (Ni) Arace Impurities - Nickel (Ni) Arace Impurities - Manganese (Mn) Arace Impurities - Nickel (Ni) Arace Impurities - Nic	Test	Specification	Result
Appearance Color (APHA) Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (PO4) South (PO4) Sulfate (SO4) Trace Impurities - Aluminum (Al) Trace Impurities - Beryllium (Be) Trace Impurities - Colalt (Co) Trace Impurities - Lead (Pb) Trace Impuritie	Assay (HNO ₃)		
Color (APHA)	Appearance		
Residue after Ignition	Color (APHA)		
Chloride (Cf) Phosphate (PO ₄) Sulfate (SO ₄) Sulfate (SO ₄) Trace Impurities - Aluminum (Al) Arsenic and Antimony (as As) Trace Impurities - Beryllium (Ba) Trace Impurities - Beryllium (Be) Sulfate (SO ₄) Trace Impurities - Beryllium (Be) Trace Impurities - Beryllium (Be) Trace Impurities - Boron (B) Trace Impurities - Cadrium (Cd) Trace Impurities - Cadrium (Cd) Trace Impurities - Calcium (Ca) Trace Impurities - Chromium (Cr) Trace Impurities - Cobalt (Co) Trace Impurities - Cobalt (Co) Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Gold (Au) Expressible 10.0 ppb Trace Impurities - Gold (Au) Expressible 10.0 ppb Trace Impurities - Gold (Au) Expressible 10.0 ppb Trace Impurities - Lichium (Ce) Trace Impurities - Lichium (Li) Trace Impurities - Lichium (Li) Expressible 10.0 ppb Trace Impurities - Lichium (Li) Trace Impurities - Manganese (Mn) Frace Impurities - Nickel (Ni)	Residue after Ignition		5
Phosphate (PO ₄) ≤ 0.10 ppm < 0.03 ppm	Chloride (CI)		1 ppm
Sulfate (SO ₄) ≤ 0.2 ppm < 0.2 ppm Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb Arsenic and Antimony (as As) ≤ 5.0 ppb < 2.0 ppb Trace Impurities - Barium (Ba) < 10.0 ppb < 1.0 ppb Trace Impurities - Beryllium (Be) < 10.0 ppb < 1.0 ppb Trace Impurities - Bismuth (Bi) < 20.0 ppb < 10.0 ppb Trace Impurities - Boron (B) < 10.0 ppb < 5.0 ppb Trace Impurities - Cadmium (Cd) < 50 ppb < 1 ppb Trace Impurities - Calcium (Ca) < 50.0 ppb < 2.3 ppb Trace Impurities - Chromium (Cr) < 30.0 ppb < 1.0 ppb Trace Impurities - Cobalt (Co) < 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) < 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) < 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) < 10.0 ppb < 1.0 ppb Trace Impurities - Gold (Au) < 20 ppb < 10 ppb Trace Impurities - Foron (Fe) < 40.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Mangaese (Mn) < 10.0 ppb < 1.0 ppb	Phosphate (PO ₄)		< 0.03 ppm
Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb	Sulfate (SO ₄)	• •	< 0.03 ppm
Arsenic and Antimony (as As)	Trace Impurities - Aluminum (AI)		
Trace Impurities - Barium (Ba) ≤ 10.0 ppb < 1.0 ppb		• •	• •
Trace Impurities – Beryllium (Be) Trace Impurities – Bismuth (Bi) Trace Impurities – Boron (B) Trace Impurities – Cadmium (Cd) Trace Impurities – Cadmium (Cd) Trace Impurities – Calcium (Ca) Trace Impurities – Chromium (Cr) Trace Impurities – Chromium (Cr) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gallium (Ga) Trace Impurities – Gold (Au) Express of the sum of the su			• •
Trace Impurities – Bismuth (Bi)		• •	< 1.0 ppb
Trace Impurities – Boron (B)			< 1.0 ppb
Trace Impurities - Cadmium (Cd) Frace Impurities - Calcium (Ca) Frace Impurities - Chromium (Cr) Frace Impurities - Chromium (Cr) Frace Impurities - Cobalt (Co) Frace Impurities - Copper (Cu) Frace Impurities - Callium (Ga) Frace Impurities - Gallium (Ga) Frace Impurities - Germanium (Ge) Frace Impurities - Gold (Au) Frace Impurities - Gold (Au) Frace Impurities - Fron (Fe) Frace Impurities - Lead (Pb) Frace Impurities - Lithium (Li) Frace Impurities - Magnesium (Mg) Frace Impurities - Manganese (Mn) Frace Impurities - Nickel (Ni)		• • • • • • • • • • • • • • • • • • • •	• •
Trace Impurities - Calcium (Ca)		• •	< 5.0 ppb
Trace Impurities – Chromium (Cr) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Lithium (Li) Trace Impurities – Magnesium (Mg) Trace Impurities – Magnesium (Mg) Trace Impurities – Manganese (Mn) Trace Impurities – Manganese (Mn) Trace Impurities – Nickel (Ni)		• ,	< 1 ppb
Trace Impurities – Cobalt (Co)			2.3 ppb
Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Germanium (Ge) Trace Impurities - Gold (Au) Evaluation - Gold (< 1.0 ppb
Trace Impurities – Gallium (Ga)		• •	< 1.0 ppb
Trace Impurities – Germanium (Ge) Frace Impurities – Gold (Au) Heavy Metals (as Pb) Frace Impurities – Iron (Fe) Frace Impurities – Lead (Pb) Frace Impurities – Lead (Pb) Frace Impurities – Lithium (Li) Frace Impurities – Magnesium (Mg) Frace Impurities – Magnese (Mn) Frace Impurities – Mickel (Ni) Frace Impurities – Nickel (Ni)		• • • • • • • • • • • • • • • • • • • •	< 1.0 ppb
Trace Impurities – Gold (Au) 4 20 ppb 5 ppb 6 5 ppb 7 race Impurities – Iron (Fe) 6 40.0 ppb 6 20.0 ppb 7 race Impurities – Lithium (Li) 6 10.0 ppb 7 race Impurities – Magnesium (Mg) 6 20 ppb 7 race Impurities – Manganese (Mn) 7 race Impurities – Nickel (Ni) 8 20 ppb 8 20 ppb 8 21.0 ppb 9 21.0 ppb 9 21.0 ppb 9 21.0 ppb	· · ·		< 1.0 ppb
Heavy Metals (as Pb) Second Policy Second Policy Second Policy		• •	< 10 ppb
Trace Impurities – Iron (Fe) \$\leq\$ 40.0 ppb \$\leq\$ 40.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb \$\leq\$ 1.0 ppb \$\leq\$ 1.0 ppb \$\leq\$ 1.0 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb \$\leq\$ 21.0 ppb \$\leq\$ 21.0 ppb \$\leq\$ 21.0 ppb			< 5 ppb
Trace Impurities – Lead (Pb) \$\leq 20.0 \text{ ppb} \qquad < 1.0 \text{ ppb} \qquad < 10.0 \text{ ppb} \qquad < 1.0 \text{ ppb} \qquad < 1.0 \text{ ppb} \qquad < 1.0 \text{ ppb} \qquad < 1 \text{ ppb} \qquad < 1 \text{ ppb} \qquad < 1.0 \text{ ppb} \qquad \qquad < 1.0 \text{ ppb} \qquad \qquad < 1.0 \text{ ppb} \qquad \qqqq \qqqqq \qqqq \qqqqq \qqqq \qqqqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqqqq \qqqq \qq			100 ppb
Frace Impurities – Lithium (Li) Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) Frace Impurities – Manganese (Mn) Frace Impurities – Nickel (Ni) Frace Impurities – Nickel (Ni)			< 1.0 ppb
Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) ≤ 20 ppb ≤ 1.0 ppb < 1 ppb < 1.0 ppb < 1.0 ppb		••	< 10.0 ppb
Frace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb		• •	< 1.0 ppb
race Impurities - Nickel (Ni)		• •	< 1 ppb
≤ 20.0 ppb < 5.0 ppb		• •	< 1.0 ppb
	Tale imparities interest (INI)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	D 1
Trace Impurities - Niobium (Nb)		Result
Trace Impurities – Potassium (K)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 50 ppb	16 ppb
	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 5.0 ppb
Trace Impurities - Tantalum (Ta)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Thallium (TI)		< 5.0 ppb
Trace Impurities - Tin (Sn)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Titanium (Ti)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	
Particle Count - 0.5 µm and greater	≤ 60 par/mi	< 1.0 ppb
Particle Count – 1.0 µm and greater		10 par/ml
	≤ 10 par/ml	3 par/ml

Nitric Acid 69% **CMOS**

Material No.: 9606-03 Batch No.: 24D1062002

Test Specification Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Croak Director Quality Operations, Bioscience Production

www.absolutestandards.com 800-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

M6030

ANAB ISO 17034 Accredited

CERTIFIED WEIGHT REPORT: Part Number: Lot Number: 57047 122823 R = 8 | 5 | 24 Solvent: 24002546 Lot # Nitric Acid

Nominal Concentration (µg/mL): NIST Test Number: Recommended Storage: **Expiration Date:** 1000 **6UTB** Ambient (20 °C) 122826 5E-05 Balance Uncertainty 2%

> <u>E</u> 80.0

> > Nitric Acid

Formulated By:

Benson Chan

122823

Description:

Silver (Ag)

Weight shown below was diluted to (mL): 4000.30 0.058 Flask Uncertainty

1. Silver nitrate (Ag) Compound IN035 J0612AGA1 RM# Number 헏 Conc. (µg/mL) 1000.0 Nominal Purity Uncertainty Assay 8 Purity (%) 0.10 63.7 38 Weight (g) 6.27992 Target Weight (g) Conc. (µg/mL) 6.27998 Actual 1000.0 Actual +/- (µg/mL) Uncertainty Expanded 2.0 7761-88-B CAS# (Solvent Safety Info. On Attached pg.) SDS Information 10 ug/m3 Z 3151

m/z-> m/z-> W-2/m 5.0E6 5.0E5 1.0≡6 2.5E6 5.0E6 1.0€7 [1] Spectrum No.1 210 110 0 120 NNO NO [14.044 sec]:58147.D# [Count] [Linear] 230 130 30 140 240 ò 150 250 50 260 160 00 170 0 180 0 190 000 200 100

NIST SRM

Reviewed By: Pedro L. Rentas 122823

www.absolutestandards.com

							race Me	letals	Verificat	tion	by ICP-I	S	ug/mL)						
	The state of the s						The Park of	, J											
A	<0.02	Ω	<0.02	Dy	<0.02	出	<0.02	Ľ	<0.02	Z	<0.02	7	<0.02	Se	<0.2	4	40.02	W	<0.02
4S	40.02	ဂ္ဂ	40.2	덬	40.02	Ж	40.02	Li	<0.02	3	40.02	₽ Re	40.02	S:	40.02	ď	A 0.02	a	\$0.02
As	40.2	Ç	<0.02	땹	<0.02	In	<0.02	Mg	<0.01	တ္တ	40.02	짜	<0.02	Agr	7	∄	<0.02	<	40.02
Ва	<0.02	రి	40,02	8	<0.02	듁	40.02	Mn	<0.02	Pd	<0.02	R.	40.02	N	40.2	∄	<u>\$</u>	상	<0.02
Ве	40.01	Ω	<0.02	හු	<0.02	ਲੋਂ	40.2	Hg	40.2	Þ	40.02	R	A0.02	Ž,	40,02	ď	♦ 0.02	<	40.02
쯨	<0.02	င္ပ	40.02	ନ	<0.02	5	< 0.02	Mo	<0.02	77	40.02	Sin	△ 0.02	c/a	40.02	S	A) (2)	7,	40.07
В	<0.02	δ	<0.02	Au	<0.02	광	<0.02	Z	<0.02	*	40.2	Sc	<0.02	ī	<0.02	Ħ	<0.02	2	<0.02

Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

o soot to the manual crossing

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

Read instructions carefully before opening bottle(s) and proceeding with the

analyses,

N6152

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA and ICSAB mixture use "ICSA-1211+ICSB-0710".

CAUTION: The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY APTIM Federal Services, LLC 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

Page 1 of 2

RM ICP-AES ICSA-1211 B-0710 SFAM.docx

QATS Form 20-007F189R01, 01-17-2023

The Quality Assurance Technical Support (QATS) contract is operated by APTIM Federal Services, LLC.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO $_3$. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

"CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211, AND ICSA-1211 MIXED WITH ICSB-0710	Table 1.

HgiH timid (J\bu)	wod Limit (J\gy)	A haq 4 haq+ (J\by)	High Himid (A\g4)	Low Limit (µg/L)	A hsq (J\gy)	свог	Flement
285000	509000	247000	294000	216000	S22000	200	IA
117	979	818	0.09	0.09-	(0.0)	09	9S
120	4.88	104	0.01	0.01-	(0.0)	01	sA
757	337	(537)	506	⊅6 ŀ-	(0.9)	200	Ba
078	420	967	0.3	0.8-	(0.0)	0.8	Be
1120	928	279	0.8	0.4-	(0.1)	0.8	Cd
271000	188000	532000	282000	208000	242000	2000	БЭ
429	097	242	0.28	42.0	(0.23)	01	Cr
848	t0t	974	0.03	0.03-	(0.0)	09	0)
883	434	119	0.72	0.62-	(0.2)	52	nე
114500	84400	99300	116500	00998	101000	100	Еe
0.63	39.0	(0.64)	0.01	0.01-	(0.0)	01	dЯ
286000	210000	248000	294000	216000	S22000	2000	ВМ
78 9	430	703	22.0	0.8-	(0.7)	91	uΜ
1100	018	1 26	42.0	0.86-	(0.2)	07	!N
0.18	0.11	(0.94)	35.0	0.36-	(0.0)	35	əs
232	021	201	0.01	0.01-	(0.0)	01	₽A
133	0.88	(801)	0.82	0.82-	(0.0)	52	ΙL
999	714	167	0.03	0.08-	(0.0)	90	Λ
9601	608	796	0.09	0.09-	(0.0)	09	uZ

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request M6153

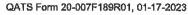
(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.


QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

Page 1 of 2

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

APTIM

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1. "CERTIFIED VALUES" FOR INTERFERENCE CHECK SAMPLE ICP-AES ICSA-1211, AND ICSA-1211 MIXED WITH ICSB-0710

Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
Al	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Ca	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Co	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

				071724				071724		
	1	TO SOUTH	}	Giovanni Esposito	0	d	Kento	Pedro L. Rentas		SDS Information
		Things A.	3	Nitric Acid Formulated By:	1	1	Medle	Reviewed By:		Expanded
				Nitric Acid						
Solvent:	Nitric Acid			40.0	(mL)					
Lot #	24002546			2.0%				Balance Uncertainty	Flask Uncertainty	
00)							5E-05	0.058	
X6/60			(QS)			0 °C)			2000.26	
	57051	071724	Antimony (Sb)		071727	Ambient (20 °C)	1000	eutb	diluted to (mL):	
CERTIFIED WEIGHT REPORT:	Part Number:	Lot Number:	Description:		Expiration Date:	Recommended Storage:	Nominal Concentration (µg/mL):	NIST Test Number:	Volume shown below was diluted to (mL):	

NIST SRM

LD50

OSHA PEL (TWA)

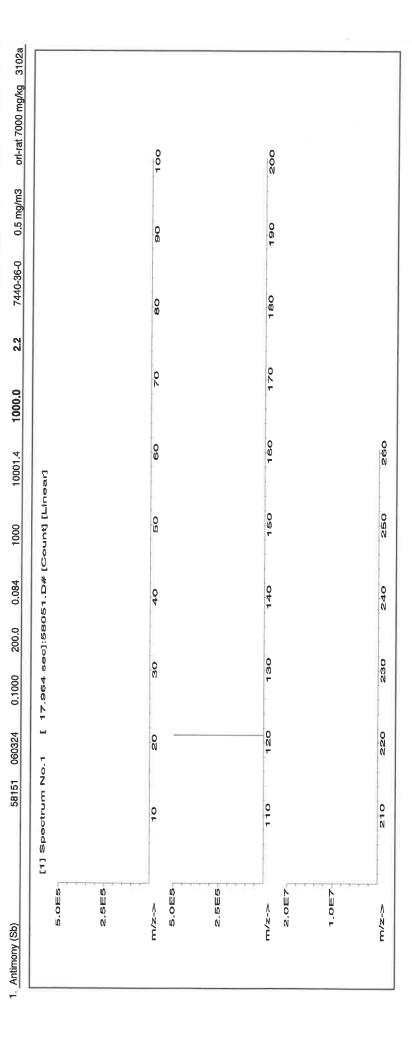
CAS#

+/- (µg/mL) Uncertainty Expanded

Conc. (µg/mL) Conc. (µg/mL)

Vol. (mL) Pipette (mL) Conc. (µg/mL)

Initial


Dilution Factor

Ľ

Number Part

Compound

(Solvent Safety Info. On Attached pg.)

Certified Reference Material CRM

Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	etals	Verifica	tion	by ICP-M	15 (4	ug/mL)						
Ш													ш					ı	
	<0.02	25	<0.02	Dy	<0.02	Ħ	<0.02	Li	<0.02	ž	<0.02	播	<0.02	Se	<0.2	TP	<0.02	≱	<0.02
	H	ű	<0.2	型	<0.02	Но	<0.02	ľ	<0.02	£	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	n	<0.02
	<0.2	రి	<0.02	E	<0.02	пĮ	<0.02	Mg	<0.01	ő	<0.02	Rh	<0.02	Ag	<0.02	F	<0.02	>	<0.02
	<0.02	ర	<0.02	B	<0.02	П	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Ή	<0.02	Yb	<0.02
	<0.01	ర్	<0.02	Ga	<0.02	윤	<0.2	Hg	<0.2	Ь	<0.02	Ru	<0.02	Sr	<0.02	Tu	<0.02	Y	<0.02
	<0.02	රි	<0.02	පී	<0.02	La	<0.02	Mo	<0.02	盂	<0.02	Sm	<0.02	S	<0.02	Sn	<0.02	Zu	<0.02
	<0.02	చ	<0.02	Αu	<0.02	Pb	<0.02	PN	<0.02	М	<0.2	Sc	<0.02	Ta	<0.02	Ë	<0.02	Zr	<0.02

(T) = Target analyte

Certified by:

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

the preparation of all standards.

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All Standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

ustry. R: 8/5/24

M6019

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGSR1

Lot Number:

U2-SR730227

Matrix:

0.1% (v/v) HNO3

Value / Analyte(s):

1 000 μg/mL ea:

Strontium

Starting Material:

SrCO3

Starting Material Lot#:

M2-2192

Starting Material Purity:

99.9993%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

1001 ± 3 µg/mL

Density:

1.000 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM Traceable to 3153a Lot Number: K2-SR650985

Assay Method #2

1001 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #3

1001 ± 2 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty uchar i

w = the weighting factors for each method calculated using the inverse square of the variance:

 $\mathbf{w_i} = (1/u_{\mathrm{char}\,i})^2/(\Sigma(1/(u_{\mathrm{char}\,i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty (stora

4.0 TRACEABILITY TO NIST

Characterization of CRM/RM by One Method

X_a = mean of Assay Method A with

 $X_{CRM/RM} = (X_a) (u_{char})$

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3 \ \mu m$.

М	Ag	<	0.001980	М	Eu	<	0.000495	0	Na		0.000200	M	Se	<	0.013862	0	Zn		0.000143
0	Al		0.000370	0	Fe		0.000410	M	Nb	<	0.000495	i	Si	<		М	Zr	<	0.000495
M	As	<	0.000495	М	Ga	<	0.000495	М	Nd	<	0.000495	M	Sm	<	0.000495				
M	Au	<	0.000989	М	Gd	<	0.000495	0	Ni	<	0.007631	M	Sn	<	0.000990				
M	В	<	0.039606	М	Ge	<	0.000495	М	Os	<	0.000494	s	Sr	<					
М	Ba		0.006486	M	Hf	<	0.000495	i	Р	<		М	Ta	<	0.000495				
М	Be	<	0.000990	M	Hg	<	0.000989	M	Pb	<	0.002970	М	Tb	<	0.000495				
М	Bi	<	0.000495	M	Но	<	0.000495	М	Pd	<	0.003957	М	Te	<	0.027724				
0	Ca		0.004255	M	ln	<	0.000495	M	Pr	<	0.000495	М	Th	<	0.000990				
M	Cd		0.001339	M	lr	<	0.000494	M	Pt	<	0.002970	М	Tī	<	0.005940				
М	Çe	<	0.004950	0	K	<	0.008184	М	Rb	<	0.002970	М	TI	<	0.000495				
М	Co	<	0.000495	M	La	<	0.000495	М	Re	<	0.000495	М	Tm	<	0.000495				
0	Cr	<	0.003207	0	Li	<	0.000884	0	Rh	<	0.012829	М	U	<	0.001485				
M	Cs	<	0.000990	M	Lu	<	0.002970	М	Ru	<	0.000989	М	٧	<	0.001980				
M	Cu		0.000099	0	Mg		0.000064	i	S	<		М	W	<	0.003960				
М	Dy	<	0.000495	0	Mn		0.000066	М	Sb	<	0.014852	0	Υ	<	0.000995				
М	Er	<	0.000495	М	Мо	<	0.001980	М	Sc	<	0.001980	М	Yb	<	0.000495				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale.

https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 87.62 +2 6 Sr(H2O)6+2 Chemical Compatibility - Soluble in HCl, and HNO3. Avoid H2SO4, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1 - 3.5% HNO3 / LDPE container.

Sr Containing Samples (Preparation and Solution) -Metal (Best dissolved in diluted HNO3); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Dry ash and dissolution in dilute HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 88 amu	1200 ppt	N/A	72Ge16O, 176Yb+2,
			176Lu+2 , 176Hf+2
ICP-OES 407.771 nm	0.0004 / 0.00006 µg/mL	1	U, Ce
ICP-OES 421.552 nm	0.0008 / 0.00004 μg/mL	1	Rb
ICP-OES 460.733 nm	0.07 / 0.003 μg/mL	1	Се

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Ve. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

March 03, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- March 03, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:	
-----------------------------	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director 20178hi

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M6023

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

		Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Expiration Date:		Description:	Lot Number:	Part Number:	CERTIFIED WEIGHT REPORT:
Lot		ted to (mL):	8TUB	1000	Ambient (20 °C)	062727		Thalllum (TI)	062724	57081	
Nominal		2000.1			င္ပိ						
Purity Uncertainty Assay		0.10 Flask Uncertainty	5E-05 Balance Uncertainty				2%			Solvent:	
Target						(mL)	40.0			Solvent: 24002546	Lot #
Actual							Nitric Acid			Nitric Acid	
Actual											
Uncertainty	Expanded		Reviewed By:	Juna	1		Formulated By:	4	TO SE	>	
(Solvent Safety Info. On Attached pg.)	SDS Information		Pedro L. Rentas	" freshies	A A		Aleah O'Brady	0	San O Basin	7	
ched pg.) NIST			062724				062724			,	
7											

RW#

Number

Conc. (µg/mL) (%)

Purity (%) (%)

Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

-z/m	5.0E5	1.0E6	m/z->	5000	1.0€4	1.0E6	2.0E6	
N			-1				El opegrum No.	
210			10		ö		3	
220			120		N O			
							4 0	
230			130		9		[]4.044 sec]:57081.D# [Count] [Linear]	
240			<u> </u>		4		57081.	
ō			140		40		<u> </u>	
250			1		OI.			
N			160		60			
			4		70			
			170		0			
			180		80			1000
			190		90			or any
			200		100			
			ŏ		ŏ			See all see al
								0

Part # 57081

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		œ	Id	: !	H.	52	į	As	30	2	2				
		40.02	20.02	5 8	200	20.02	e i	<u>۵</u>	20.02	3	40.02				
	ŀ	5	S	, (,	C	, {	3	Ç	>	5				
		4000	40.02	20.02	3	<0.02	0.02	3	2.0	>	<0.02				
		A	ද	Ç,	?	Gd	į	ŗ	돡	,	Þ		l		
	20,02	3	♦ 0.02	20.02	3	0.02	20.02	3	40.02		A0.02				
		ğ	L _a	7	1	=	Е	- - -	Но	!	H.		l.		
	70.02	3	∆ .02	7.05	5	∆ 0.02	20.02	3	A).02		40.02			race M	
		ź.	Mo	9H		š	1V192		Į,	ı	1.4	Service III		S	
(T) = Target analyte	20.02	3	A 0.02	40.2	,	∆ 0.02	10.02	2	&.02 20.02	40.04	2003	450 E 3 00 W	200	Serifics	
et anal	F	4 ;	P	70	· ¦	2	ç	,	Z	142	Z			₹. 2	
yte	2.05	0.01	3	<0.02	1000	<0.02	<0.02	,	∆ 0.02	20.00	3		200	200	
	Sc	E	3	R	i	ア	공		Re	2	P			ころと	
	A0.02	20.02	3	<0.02	40.04	<n 02<="" td=""><td>40.02</td><td>10101</td><td>2000</td><td>20.02</td><td>3000</td><td></td><td>/HI /Br</td><td></td><td></td></n>	40.02	10101	2000	20.02	3000		/HI /Br		
	Ta	ç	n	Ş	TAG	Z	Ag	Ş	2	č					
	40,02	20.02	3	∆.02	7.07	3	A).02	40.04	3	46					
	11	DC	?	ď	120	7	Ħ	č	ş-1	10					ı
	40.02	20.02	3	40.02	70.02	4	H	70.02	3	∆ 0.02					
	Zr	120	1	×	ID	ş	<	0	1	\$					
	40.02	40.02		A).02	20,02	8	A) (2)	70.02	3	<u>&</u>	THE RESIDENCE AND THE PERSON				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M6021

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT Part Number: Lot Number: 57023 062424 24002546 Nitric Acid Solvent:

Nitric Acid

Ambient (20 °C) 2.0% (III) 40.0

Formulated By:

Aleah O'Brady

062424

ASSET O DE LONG

Recommended Storage:

Expiration Date:

062427

Description:

Vanadium (V)

Nominal Concentration (µg/mL): Volume shown below was diluted to (mL): **NIST Test Number: 6UTB** 1000 2000.3 5E-05 0.06 Balance Uncertainty Flask Uncertainty Reviewed By:

Pedro L. Rentas

062424

Ammonium metavanadate (V) Compound 58123 Number Part 021224 Number ρţ 0.1000 Dilution Factor Vol. (mL) Pipette (mL) Conc. (µg/mL) 200.0 Initial Uncertainty 0.084 Nominal 1000 Conc. (µg/mL) Conc. (µg/mL) 10000.3 nitial 1000.0 Final +/- (µg/mL) Uncertainty Expanded 22 7803-55-6 CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) 0.05 mg/m3 **SDS Information** orl-rat 58.1mg/kg LD50 3165 NIST SRM

7	2.588	m/z->- 5.0E8	1.0E7	m/z->	1.006	2.0E6
210		110		ō		
220		, N		N.		
0		0				
200		130		90		
240		140		4.0		
0						
NG0		150		5		
260		160		60		
U						
		170		70		
		180		80		
		G				
		190		90		
		200		100		
		Ü		J		

Part # 57023

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	E	В	Ве	Ва	As	. 20	2 2			
	40,02	A),02	40.01	A).03	40.2	20.02	8 6 5	A PA		
	5	ပ	유	సి	೪	<u></u>	۶ د	2		
	40.02	40,02	<0.02	40.02	40.02	40.2	20.02	3		
	Au	ဂ္ဂ	స్ట	8	멸	耳	کِ ر		Trace Metals Verification k	
	40.02	40.02	40,02	40.02	60.02	<0.02	20.02			
	3	<u>.</u>	737	5	rī.	Но	H			
	40.02	40.02	40,2	0.02	40.02	∆ 0.02	40.02	INTERNATION OF THE PERSON NAMED IN		
	폽	Mo	He	Mn	Mg	댭	Σ			
	40.02	40.02	402	40,02	10.0	40.02	40.02			
	~	₽	ס	2	ဝ္ဂ	7	3	NAME AND ADDRESS OF		
	A0,2	A 20.02	A).02	& 0.02	40.02	40,02	40.02	INTERNATIONAL SERVICES	oy ICP-N	
	Sc	Sm	7	공 -	₽	Re	7		SI) SI	
	40.02	A (A :	40.02	A 0.02	<0.02	<0.02	20. C.	/mL)	
	ı, a	so s	?	Z,	Ag	ī.	Se.			
	40.02	A 6	3 6	40.2	A) ()2	8.02	<0.2			
	# 1	8	1	;	i	e e	4T			
	40.02	A 6.2	5 6 6	2 50	A 02	A 0.02	<0.02			
	27	7,	< 5	\$.	< 1	q	¥	SAN TOTAL PROPERTY.		
	6.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	2 5	3 6	3 ·	-) {	A 22	∆ 0.02	STREET, STREET		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).