

DATA PACKAGE

VOLATILE ORGANICS GENERAL CHEMISTRY METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS

PROJECT NAME : WALSH CO-032 SAMPLING

WALSH CONSTRUCTION COMPANY II, LLC

150 Clove Road 11th Fl

Little Falls, NJ - 07424

Phone No: 2016916000

ORDER ID : Q1907 ATTENTION : Jesse A. Sylvestri

Laboratory Certification ID # 20012

1) Signature Page	4
2) Case Narrative	5
2.1) VOC-TCLVOA-10- Case Narrative	5
2.2) TCLP VOA- Case Narrative	7
2.3) Gasoline Range Organics- Case Narrative	9
2.4) SVOC-TCL BNA -20- Case Narrative	11
2.5) TCLP BNA- Case Narrative	13
2.6) Pesticide-TCL- Case Narrative	15
2.7) TCLP Pesticide- Case Narrative	17
2.8) PCB- Case Narrative	19
2.9) Herbicide- Case Narrative	21
2.10) TCLP Herbicide- Case Narrative	23
2.11) TPH GC- Case Narrative	25
2.12) EPH_NF- Case Narrative	27
2.13) Metals-AES- Case Narrative	29
2.14) Metals-TCLP- Case Narrative	31
2.15) Genchem- Case Narrative	33
3) Qualifier Page	35
4) QA Checklist	37
5) VOC-TCLVOA-10 Data	38
6) TCLP VOA Data	44
7) Gasoline Range Organics Data	48
8) SVOC-TCL BNA -20 Data	51
9) TCLP BNA Data	62
10) Pesticide-TCL Data	71
11) TCLP Pesticide Data	76
12) PCB Data	81
13) Herbicide Data	85
14) TCLP Herbicide Data	89
15) TPH GC Data	94
16) EPH_NF Data	97
17) Metals-AES Data	102
18) Metals-TCLP Data	106
19) Genchem Data	110
20) Shipping Document	114

Table Of Contents for Q1907

20.1) CHAIN OF CUSTODY	115
20.2) Lab Certificate	116
20.3) Internal COC	117

Cover Page

- **Order ID :** Q1907
- Project ID : Walsh CO-032 Sampling
 - Client : Walsh Construction Company II, LLC

Lab Sample Number

Q1907-01 Q1907-02

Client Sample Number

CO-8R-WC CO-8R-WC

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following

signature.

Signature :

By Nimisha Pandya, QA/QC Supervisor at 9:11 am, May 08, 2025

Date: 5/8/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_Y were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The %RSD is greater than 20% in the Initial Calibration method (82Y042225S.M) for

Acetone is passing on Linear Regression.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TCLP VOA

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TCLP VOA.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of TCLP VOA was based on method 8260D and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID VX045985.D met the requirements except for Carbon Tetrachloride is failing high but no positive hit in associate sample therefore no corrective action taken.

The Tuning criteria met requirements.

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is >

20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature______By Nimisha Pandya, QA/QC Supervisor at 9:12 am, May 08, 2025

2.2

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: Gasoline Range Organics

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for Gasoline Range Organics.

C. Analytical Techniques:

The analysis performed on instrument FID_B were done using GC column RTX502.2 which is 60 meters, 0.53mm ID, 3.0 um df, cat#10909.The analysis of Gasoline Range Organics was based on method 8015D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: SVOC-TCL BNA -20

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOC-TCL BNA -20 was based on method 8270E and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The MS {Q1914-10MS} with File ID: BM050083.D recoveries met the requirements for all compounds except for 1,1-Biphenyl[51%], 2,2-oxybis(1-Chloropropane)[61%], 2,4-Dichlorophenol[128%], 2-Methylnaphthalene[-6%], 2-Nitroaniline[67%], 3,3-Dichlorobenzidine[12%], 4-Nitroaniline[54%], Acenaphthene[67%], Acenaphthylene[72%], Acetophenone[333%], Caprolactam[161%], Dimethylphthalate[67%], Di-n-butylphthalate[64%], Hexachlorobutadiene[128%], Hexachloroethane [283%], Isophorone [156%], Naphthalene [67%] and Nitrobenzene[128%] due to matrix interference. The MSD {01914-11MSD} with File ID: BM050084.D recoveries met the acceptable requirements except for 1,1-Biphenyl[56%], 2,2-oxybis(1-Chloropropane)[61%], 2,4-Dichlorophenol[139%], 2-Methylnaphthalene[6%], 3,3-Dichlorobenzidine[12%], Acenaphthylene[78%], Acetophenone[350%], bis(2-Ethylhexyl)phthalate[41%],

2 2.4

Caprolactam[156%], Di-n-butylphthalate[64%], Hexachlorobutadiene[139%], Hexachloroethane[289%], Isophorone[161%] and Nitrobenzene[139%] due to matrix interference.

The RPD met criteria.

The Blank Spike for {PB167803BS} with File ID: BM050081.D met requirements for all samples except for 3,3-Dichlorobenzidine[39%] but associated samples have not positive hit for these compounds therefore no corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The % RSD is greater than 20% in the Initial Calibration (8270-BM042825.M) for 2,4-Dinitrophenol and 4-Nitrophenol, these compound are passing on Linear Regression. The Continuous Calibration met the requirements .

The Tuning criteria met requirements.

Samples CO-8R-WC was reported with straight 5X dilution due to concentrated and viscous matrix.

Sample CO-8R-WC was diluted due to high concentration.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TCLP BNA

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TCLP BNA.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um dfThe samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of TCLP BNA was based on method 8270E and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CO-8R-WC [2,4,6-Tribromophenol - 322%, 2-Fluorobiphenyl - 253%, Terphenyl-d14 - 419%], CO-8R-WCRE [2,4,6-Tribromophenol - 619%, 2-Fluorobiphenyl - 519% and Terphenyl-d14 -3613%]. Sample reanalyzed to confirm results, Original and Reanalysis both are reported. The Internal Standards Areas met the acceptable requirements except for CO-8R-WC, CO-8R-WCRE. Sample reanalyzed to confirm results, Original and Reanalysis both are reported.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds .

The MSD recoveries met the acceptable requirements .

The RPD met criteria.

The Blank Spike met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination. The % RSD is greater than 20% in the Initial Calibration (8270-BF043025.M) for 2,4-Dinitrophenol, this compound is passing on Quadratic Regression.

The Continuous Calibration File ID BF142250.D met the requirements except for 2,4-Dinitrotoluene . But associated samples have not positive hit for this compound, therefore no corrective action was taken.

The Continuous Calibration File ID BF142274.D met the requirements except for 2,4-Dinitrotoluene . But associated samples have not positive hit for this compound, therefore no corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

APPROVED By Nimisha Pandya, QA/QC Supervisor at 9:26 am, May 08, 2025

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: Pesticide-TCL

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for Pesticide-TCL.

C. Analytical Techniques:

The analysis was performed on instrument ECD_D. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of Pesticide-TCLs was based on method 8081B and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds. The MSD recoveries met the acceptable requirements. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Phone: 908 789 8900 Fax: 908 789 8922

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TCLP Pesticide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TCLP Pesticide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_D. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of TCLP Pesticides was based on method 8081B and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds. The MSD recoveries met the acceptable requirements. The RPD met criteria. The Blank Spike met requirements for all samples. The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements. The Continuous Calibration met the requirements.

E. Additional Comments:

Q1907

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

2.7

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: PCB

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_P. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11.The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

2.8

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: Herbicide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for Herbicide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324The analysis of Herbicides was based on method 8151A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS {Q1906-05MS} with File ID: PS029999.D recoveries met the requirements for all compounds except for Dinoseb[0%] due to matrix interfernce . The MSD {Q1906-05MSD} with File ID: PS030000.D recoveries met the acceptable requirements except for Dinoseb[0%] due to matrix interference. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

The Continuous Calibration met the requirements .

E. Additional Comments:

Signature_

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Q1907

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TCLP Herbicide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TCLP Herbicide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324The analysis of TCLP Herbicides was based on method 8151A and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TPH GC

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TPH GC.

C. Analytical Techniques:

The analysis were performed on instrument FID_G. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 13302. The analysis of TPH GC was based on method 8015D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples.

The MS {Q1877-01MS} with File ID: FG015776.D recoveries met the requirements for all compounds except for Petroleum Hydrocarbons[-116%] due to matrix interference.

The MSD {Q1877-01MSD} with File ID: FG015777.D recoveries met the acceptable requirements except for Petroleum Hydrocarbons[-108%]due to matrix interference.

The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

Samples CO-8R-WC was diluted due to bad matrix.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2

CASE NARRATIVE

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: EPH_NF

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for EPH_NF.

C. Analytical Techniques:

The analysis were performed on instrument FID_C. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis were performed on instrument FID_E. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis of EPH_NFs was based on method NJEPH and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2 13

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: Metals ICP-TAL,Mercury

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for Metals ICP-TAL, Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010D, digestion based on method 3050 (soils). The analysis and digestion of Mercury was based on method 7471B.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (343MSD) analysis met criteria for all samples except for Aluminum,

Beryllium, Copper, Lead, Magnesium, Zinc due to matrix interference.

The Matrix Spike (343MS) analysis met criteria for all samples except for Antimony due to matrix interference.

The Matrix Spike Duplicate (343MSD) analysis met criteria for all samples except for Antimony due to matrix interference..

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2 1 4

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: TCLP Mercury, TCLP ICP Metals

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for TCLP Mercury, TCLP ICP Metals.

C. Analytical Techniques:

The analysis of TCLP ICP Metals was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of TCLP Mercury was based on method 7470A and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples. The Matrix Spike analysis met criteria for all samples. The Matrix Spike Duplicate analysis met criteria for all samples. The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements. The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2 2.14

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.15

Walsh Construction Company II, LLC Project Name: Walsh CO-032 Sampling Project # N/A Chemtech Project # Q1907 Test Name: Hexavalent Chromium,TS,Oil and Grease,Corrosivity,Paint Filter,Cyanide,TVS,Ammonia,COD,Ignitability,Reactive Cyanide,Reactive Sulfide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 04/28/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Ammonia, COD, Corrosivity, Cyanide, EPH_NF, Gasoline Range Organics, Herbicide, Hexavalent Chromium, Ignitability, Mercury, Metals ICP-TAL, METALS TAL+CN, Oil and Grease, Paint Filter, PCB, Pesticide-TCL, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, SVOC-TCL BNA -20, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP METALS, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TPH GC, TS, TVS and VOC-TCLVOA-10. This data package contains results for Hexavalent Chromium,TS,Oil and Grease,Corrosivity,Paint Filter,Cyanide,TVS,Ammonia,COD,Ignitability,Reactive Cyanide,Reactive Sulfide.

C. Analytical Techniques:

The analysis of Ignitability was based on method 1030, The analysis of TVS was based on method 160.4, The analysis of Hexavalent Chromium was based on method 7196A, The analysis of Cyanide,Reactive Cyanide was based on method 9012B, The analysis of Reactive Sulfide was based on method 9034, The analysis of Corrosivity was based on method 9045D, The analysis of Oil and Grease was based on method 9071B, The analysis of Paint Filter was based on method 9095B, The analysis of TS was based on method SM2540 B, The analysis of Ammonia was based on method SM4500-NH3 and The analysis of COD was based on method SM5220 D.

D. QA/ QC Samples:

The Holding Times were met for all samples except for CO-8R-WC of Corrosivity, As sample was received out of holding time The Blank Spike met requirements for all samples. The Duplicate analysis met criteria for all samples. The Matrix Spike analysis met criteria for all samples. The Matrix Spike Duplicate analysis met criteria for all samples. The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
U	Indicates the analyte was analyzed for, but not detected.
ND	Indicates the analyte was analyzed for, but not detected
E	Indicates the reported value is estimated because of the presence of interference
Μ	Indicates Duplicate injection precision not met.
Ν	Indicates the spiked sample recovery is not within control limits.
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).
*	Indicates that the duplicate analysis is not within control limits.
+	Indicates the correlation coefficient for the MSA is less than 0.995.
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
M OR	Methodqualifiers"P"for ICP instrument"PM"for ICP when Microwave Digestion is used"CV"for Manual Cold Vapor AA"AV"for automated Cold Vapor AA"CA"for MIDI-Distillation Spectrophotometric"AS"for Semi – Automated Spectrophotometric"T"for Manual Spectrophotometric"T"for Titrimetric"NR"for analyte not required to be analyzedIndicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
Q	Indicates the LCS did not meet the control limits requirements
Н	Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q1907

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u>✓</u>
Is the chain of custody signed and complete	✓ ✓ ✓
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u>✓</u>
Collect information for each project id from server. Were all requirements followed	
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u>✓</u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>√</u>
Do requested analyses on Chain of Custody agree with the log-in page	$\frac{\checkmark}{\checkmark}$
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u>√</u>
Were the samples received within hold time	<u>√</u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u>✓</u>
ANALYTICAL:	
Was method requirement followed?	<u>√</u>
Was client requirement followed?	<u>√</u>
Does the case narrative summarize all QC failure?	
All runlogs and manual integration are reviewed for requirements	<u>✓</u>
All manual calculations and /or hand notations verified	<u>✓</u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sheet SW-846

SDG No.:	Q1907
Client:	Walsh Construction Company II, LLC

Sample ID	Client ID	Matrix	Parameter	Concentr	ation	C N	MDL	RDL	Units
Client ID: Q1907-01	CO-8R-WC CO-8R-WC	SOIL	1-Methyl-4-(1-methylet	hyl)-cy(* 6.40		J	0	0	ug/Kg
Q1907-01	CO-8R-WC	SOIL	Cyclohexane, 1,3,5-trim	ethyl-, * 5.30		J	0	0	ug/Kg
Q1907-01	CO-8R-WC	SOIL	Cyclohexane, 1,3-dimet	hyl-, tra * 5.30		J	0	0	ug/Kg
Q1907-01	CO-8R-WC	SOIL	Cyclohexane, 1,1,3-trim	ethyl- * 7.40		J	0	0	ug/Kg
			Total Tics :		24.4				
			Total Concentration:		24.4				

B C D

A B C D

			1
Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907
Lab Sample ID:	Q1907-01	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	84.6
Sample Wt/Vol:	6.51 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY022085.D	1		04/30/25 16:18	VY043025	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
75-71-8	Dichlorodifluoromethane	1.00	U	1.00	4.50	ug/Kg
74-87-3	Chloromethane	1.00	U	1.00	4.50	ug/Kg
75-01-4	Vinyl Chloride	0.72	U	0.72	4.50	ug/Kg
74-83-9	Bromomethane	0.97	U	0.97	4.50	ug/Kg
75-00-3	Chloroethane	1.10	U	1.10	4.50	ug/Kg
75-69-4	Trichlorofluoromethane	1.10	U	1.10	4.50	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	0.96	U	0.96	4.50	ug/Kg
75-35-4	1,1-Dichloroethene	0.91	U	0.91	4.50	ug/Kg
67-64-1	Acetone	4.30	U	4.30	22.7	ug/Kg
75-15-0	Carbon Disulfide	0.96	U	0.96	4.50	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.66	U	0.66	4.50	ug/Kg
79-20-9	Methyl Acetate	1.40	U	1.40	4.50	ug/Kg
75-09-2	Methylene Chloride	3.20	U	3.20	9.10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.78	U	0.78	4.50	ug/Kg
75-34-3	1,1-Dichloroethane	0.73	U	0.73	4.50	ug/Kg
110-82-7	Cyclohexane	0.72	U	0.72	4.50	ug/Kg
78-93-3	2-Butanone	5.90	U	5.90	22.7	ug/Kg
56-23-5	Carbon Tetrachloride	0.88	U	0.88	4.50	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.68	U	0.68	4.50	ug/Kg
74-97-5	Bromochloromethane	1.00	U	1.00	4.50	ug/Kg
67-66-3	Chloroform	0.76	U	0.76	4.50	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.84	U	0.84	4.50	ug/Kg
108-87-2	Methylcyclohexane	0.83	U	0.83	4.50	ug/Kg
71-43-2	Benzene	0.72	U	0.72	4.50	ug/Kg
107-06-2	1,2-Dichloroethane	0.72	U	0.72	4.50	ug/Kg
79-01-6	Trichloroethene	0.74	U	0.74	4.50	ug/Kg
78-87-5	1,2-Dichloropropane	0.83	U	0.83	4.50	ug/Kg
75-27-4	Bromodichloromethane	0.71	U	0.71	4.50	ug/Kg
108-10-1	4-Methyl-2-Pentanone	3.30	U	3.30	22.7	ug/Kg
108-88-3	Toluene	0.71	U	0.71	4.50	ug/Kg

5

C D

Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907
Lab Sample ID:	Sample ID: Q1907-01		SOIL
Analytical Method:	SW8260	% Solid:	84.6
Sample Wt/Vol:	6.51 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VY022085.D	1		04/30/25 16:18	VY043025

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.59	U	0.59	4.50	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.56	U	0.56	4.50	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.84	U	0.84	4.50	ug/Kg
591-78-6	2-Hexanone	3.40	U	3.40	22.7	ug/Kg
124-48-1	Dibromochloromethane	0.79	U	0.79	4.50	ug/Kg
106-93-4	1,2-Dibromoethane	0.80	U	0.80	4.50	ug/Kg
127-18-4	Tetrachloroethene	0.95	U	0.95	4.50	ug/Kg
108-90-7	Chlorobenzene	0.83	U	0.83	4.50	ug/Kg
100-41-4	Ethyl Benzene	0.61	U	0.61	4.50	ug/Kg
179601-23-1	m/p-Xylenes	1.10	U	1.10	9.10	ug/Kg
95-47-6	o-Xylene	0.74	U	0.74	4.50	ug/Kg
100-42-5	Styrene	0.64	U	0.64	4.50	ug/Kg
75-25-2	Bromoform	0.78	U	0.78	4.50	ug/Kg
98-82-8	Isopropylbenzene	0.71	U	0.71	4.50	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.10	U	1.10	4.50	ug/Kg
541-73-1	1,3-Dichlorobenzene	1.60	U	1.60	4.50	ug/Kg
106-46-7	1,4-Dichlorobenzene	1.40	U	1.40	4.50	ug/Kg
95-50-1	1,2-Dichlorobenzene	1.30	U	1.30	4.50	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.70	U	1.70	4.50	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.70	U	2.70	4.50	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.90	U	2.90	4.50	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.5		63 - 155	101%	SPK: 50
1868-53-7	Dibromofluoromethane	50.3		70 - 134	101%	SPK: 50
2037-26-5	Toluene-d8	49.3		74 - 123	99%	SPK: 50
460-00-4	4-Bromofluorobenzene	38.1		38 - 136	76%	SPK: 50
INTERNAL STA						
363-72-4	Pentafluorobenzene	342000	7.707			
540-36-3	1,4-Difluorobenzene	634000	8.609			
3114-55-4	Chlorobenzene-d5	560000	11.414			
3855-82-1	1,4-Dichlorobenzene-d4	170000	13.346			

TENTATIVE IDENTIFIED COMPOUNDS

Q1907

C D

Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907
Lab Sample ID:	Q1907-01	Matrix:	SOIL
Analytical Method:	SW8260	% Solid:	84.6
Sample Wt/Vol:	6.51 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

	File ID/Qc Batch:	Dilution: H	Prep Date I		Date Analyzed	Prep Batch I	D
	VY022085.D	1			04/30/25 16:18	VY043025	
CAS Number Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)	
	002207-03-6	Cyclohexane, 1,3-dimethyl-, trans-	5.30	J		10.4	ug/Kg
	002207-03-6 003073-66-3	Cyclohexane, 1,3-dimethyl-, trans- Cyclohexane, 1,1,3-trimethyl-	5.30 7.40	J J		10.4 11.0	ug/Kg ug/Kg
				J J J			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

42 of 117

С

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri			OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL	VOC-TCLVOA-10	8260D	04/28/25		04/30/25	04/28/25
Q1907-02	CO-8R-WC	TCLP	TCLP VOA	8260D	04/28/25		04/30/25	04/28/25

Hit Summary Sheet SW-846

SDG No.:	Q1907							
Client:	Walsh Construc	tion Company II	, LLC					
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID: Q1907-02	CO-8R-WC CO-8R-WC	TCLP	2-Butanone	5.00	J	0.98	25.0	ug/L
			Total Voc :	5.00				
			Total Concentration:	5.00				

6

A B C D

Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907
Lab Sample ID:	Q1907-02	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Dilution: Prep Date Date Analyzed		Date Analyzed	Prep Batch ID	
VX046003.D	1			04/30/25 17:13	VX043025	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
70 02 2	2 D towns	5.00	т	0.00	25.0	. /T

75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	5.00	J	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	0.15	U	0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.8		74 - 125	110%	SPK: 50
1868-53-7	Dibromofluoromethane	51.8		75 - 124	104%	SPK: 50
2037-26-5	Toluene-d8	51.0		86 - 113	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.7		77 - 121	103%	SPK: 50
INTERNAL STAND	ARDS					
363-72-4	Pentafluorobenzene	61100	5.55			
540-36-3	1,4-Difluorobenzene	121000	6.757			
3114-55-4	Chlorobenzene-d5	114000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	47900	12.024			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

A B C

D

6

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP VOA	8260D			04/30/25	

SPK: 20

70%

TARGETS GRO	GRO	41.0		7.00		39.0	ug/kg
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weigh
FB031664.D	1				04/29/25 16:14	FB042925	
File ID/Qc Batch:	Dilution:				Date Analyzed	Prep Batch	ı ID
Prep Method :							
GPC Factor :		PH :					
Extraction Type:					Injection Volume :		
Soil Aliquot Vol:		uL			Test:	Gasoline Range Or	ganics
Sample Wt/Vol:	6.86 Uni	its: g			Final Vol:	5	mL
Analytical Method	d: 8015D GRO				% Solid:	84.6 Dec	canted:
Lab Sample ID:	Q1907-01				Matrix:	SOIL	
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907	
Project:	Walsh CO-032	Sampling			Date Received:	04/28/25	
Client:	Walsh Construe	ction Company II, I	LLC		Date Collected:	04/28/25	

50 - 150

Report of Analysis

SURROGATES98-08-8Alpha,Alpha,Alpha-Trifluoroto 14.0

Comments:

49 of 117

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Gasoline Range Organics	8015D			04/29/25	
			PCB	8082A		04/30/25	04/30/25	
			Pesticide-TCL	8081B		04/30/25	04/30/25	
			TPH GC	8015D		04/29/25	04/29/25	
			EPH_NF	NJEPH		05/01/25	05/01/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q1907

Client: Walsh Construction Company II, LLC

Client D: CO-8R-WC SOII. Naphalene 630.000 J 130 1000 ug/kg Q1907-01 CO-8R-WC SOII. 2-Methylnaphthalene 520.000 J 150 1000 ug/kg Q1907-01 CO-8R-WC SOII. Acenaphthylene 1,000.000 130 1000 ug/kg Q1907-01 CO-8R-WC SOII. Dibenzoftran 1,800.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOII. Phenanthrene 2,900.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOII. Phenanthrene 2,600.000 180 1000 ug/kg Q1907-01 CO-8R-WC SOII. Phenanthrene 2,400.000 1 20 1000 ug/kg Q1907-01 CO-8R-WC SOII. Phyrene 2,400.000 1 420 1000 ug/kg Q1907-01 CO-8R-WC SOII. Benzo(A)prenthene 1,300.000 100 000 ug/kg	Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
	Client ID :	CO-8R-WC							
Q1907-01 CO-SR-WC SOIL Acenaphthylene 1,000 000 170 1000 ug/kg Q1907-01 CO-SR-WC SOIL Acenaphthylene 2,600 000 130 1000 ug/kg Q1907-01 CO-SR-WC SOIL Dibenzofuran 1,800 000 150 1000 ug/kg Q1907-01 CO-SR-WC SOIL Phenanthrene 2,500 000 E 120 1000 ug/kg Q1907-01 CO-SR-WC SOIL Anthracene 5,700 000 E 180 1000 ug/kg Q1907-01 CO-SR-WC SOIL Fluoranthene 25,700 000 E 180 1000 ug/kg Q1907-01 CO-SR-WC SOIL Benzo(a)anthracene 10,200 000 140 1000 ug/kg Q1907-01 CO-SR-WC SOIL Benzo(a)anthracene 10,200 000 140 1000 ug/kg Q1907-01 CO-SR-WC SOIL Benzo(a)anthracene 10,000 000 120 1000 ug/kg <t< td=""><td>Q1907-01</td><td>CO-8R-WC</td><td>SOIL</td><td>Naphthalene</td><td>630.000</td><td>) J</td><td>130</td><td>1000</td><td>ug/Kg</td></t<>	Q1907-01	CO-8R-WC	SOIL	Naphthalene	630.000) J	130	1000	ug/Kg
Q1907-01 CO-SR-WC SOIL Acenaphthene 2,600.000 130 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Dibenzofuran 1,800.000 130 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Fluorene 2,900.000 E 120 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Anthracene 5,700.000 E 120 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Fluoranthene 25,700.000 E 180 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Fluoranthene 19,200.000 1420 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Benzo(a)antracene 19,200.000 120 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Benzo(a)antracene 19,200.000 130 1000 ug/Kg Q1907-01 CO-SR-WC SOIL Benzo(a)ayrene 9,800.000 130 1000 ug/Kg Q1907-01 <td>Q1907-01</td> <td>CO-8R-WC</td> <td>SOIL</td> <td>2-Methylnaphthalene</td> <td>520.000</td> <td>) J</td> <td>150</td> <td>1000</td> <td>ug/Kg</td>	Q1907-01	CO-8R-WC	SOIL	2-Methylnaphthalene	520.000) J	150	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Diberzofuran 1,800.00 130 1000 ug/kg Q1907-01 CO-8R-WC SOIL Floorene 26,900.000 F. 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Phenanthrene 26,900.000 F. 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Carbazole 1,800.000 180 1000 ug/kg Q1907-01 CO-8R-WC SOIL Pyrene 22,700.000 F. 180 1000 ug/kg Q1907-01 CO-8R-WC SOIL Pyrene 22,700.000 F. 180 1000 ug/kg Q1907-01 CO-8R-WC SOIL Berzo(a)anthracene 10,200.000 140 1000 ug/kg Q1907-01 CO-8R-WC SOIL Berzo(a)anthracene 10,000.00 130 1000 ug/kg Q1907-01 CO-8R-WC SOIL Berzo(a)hinarithene 3,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL	Q1907-01	CO-8R-WC	SOIL	Acenaphthylene	1,000.000)	170	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Fluorene 2,900,000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL Antracene 26,300,000 E 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Antracene 5,700,000 200 1000 ug/kg Q1907-01 CO-8R-WC SOIL Fluoranthene 2,5700,000 E 180 1000 ug/kg Q1907-01 CO-8R-WC SOIL Pyrene 2,400,000 E 210 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)nthracene 10,200,000 140 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)fluoranthene 13,300,000 110 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)fluoranthene 3,800,000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)fluoranthene 4,500,000 160 100 ug/kg Q1907-	Q1907-01	CO-8R-WC	SOIL	Acenaphthene	2,600.000)	130	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Phenanthrene 26,300.000 E 120 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene 5,700.000 200 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Carbazole 1,800.000 E 180 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Fluoranthene 25,700.000 E 210 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Burlybenzylphthalate 950.000 J 420 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,000.000 120 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(k)fluoranthene 3,800.000 130 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(g,h)pyrne 5,200.000 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,)pryrlene 6,500.000 160 100 ug/Kg <td>Q1907-01</td> <td>CO-8R-WC</td> <td>SOIL</td> <td>Dibenzofuran</td> <td>1,800.000</td> <td>)</td> <td>130</td> <td>1000</td> <td>ug/Kg</td>	Q1907-01	CO-8R-WC	SOIL	Dibenzofuran	1,800.000)	130	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Anthracene 5,700.000 200 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Carbazole 1,800.000 1.80 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Fluoranthene 22,400.000 E 210 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Byrene 22,400.000 E 210 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,200.000 140 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 11,300.000 110 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.000 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 5,200.000 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 6,500.000 150 1000 ug/Kg Q1907-01	Q1907-01	CO-8R-WC	SOIL	Fluorene	2,900.000)	150	1000	ug/Kg
Q1907-01CO-8R-WCSOILCarbazole1,800.0001801000ug/kgQ1907-01CO-8R-WCSOILFluoranthene25,700.00E1801000ug/kgQ1907-01CO-8R-WCSOILPyrene22,400.000E1401000ug/kgQ1907-01CO-8R-WCSOILButylbenzylphthalate950.000J4201000ug/kgQ1907-01CO-8R-WCSOILBenzo(a)nthracene10,200.0001401000ug/kgQ1907-01CO-8R-WCSOILBenzo(a)nthracene11,300.0001101000ug/kgQ1907-01CO-8R-WCSOILBenzo(a)pyrne9,800.0001301000ug/kgQ1907-01CO-8R-WCSOILBenzo(a)pyrne9,800.0001701000ug/kgQ1907-01CO-8R-WCSOILIndeno(1,2,3-cd)pyrne5,200.0001501000ug/kgQ1907-01CO-8R-WCSOILDibenzo(a,h)anthracene1,600.0001601000ug/kgQ1907-01CO-8R-WCSOILPitenzo(a,h)anthracene1,600.00010ug/kgQ1907-01CO-8R-WCSOIL9,10-Anthracenedione42,100.00010ug/kgQ1907-01CO-8R-WCSOIL9,10-Anthracenedione42,100.00000ug/kgQ1907-01CO-8R-WCSOIL9,10-Anthracenedione41,000.0000ug/kgQ1907-01CO-8R-WCSOIL9,	Q1907-01	CO-8R-WC	SOIL	Phenanthrene	26,300.000	E	120	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Fluoranthene 25,700.000 E 180 1000 ug/kg Q1907-01 CO-8R-WC SOIL Pyrene 22,400.000 E 210 1000 ug/kg Q1907-01 CO-8R-WC SOIL Butylbenzylphthalate 950.000 J 420 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,200.000 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 110 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 5,200.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,j)perylene 6,500.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione 4,600.000 0 ug/kg	Q1907-01	CO-8R-WC	SOIL	Anthracene	5,700.000)	200	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Pyrene 22,400.000 E 210 1000 ug/kg Q1907-01 CO-8R-WC SOIL Butylbenzylphthalate 950.000 J 420 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,200.000 140 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 11,300.000 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 130 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a,h)pyrene 5,200.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a,h)pyrene 6,500.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL Herxogr,h)perylene 6,300.000 J 0 ug/kg Q1907-	Q1907-01	CO-8R-WC	SOIL	Carbazole	1,800.000)	180	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Butylbenzylphthalate 950.000 J 420 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,200.000 140 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 110 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 3,800.000 130 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(h)fluoranthene 3,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 5,200.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(g)h)perylene 6,300.000 10 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracendione * 1,600.000 0 ug/kg Q1907-	Q1907-01	CO-8R-WC	SOIL	Fluoranthene	25,700.000	E	180	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo(a)anthracene 10,200.000 140 1000 ug/kg Q1907-01 CO-8R-WC SOIL Chrysene 10,000.000 120 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 110 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(k)fluoranthene 3,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a,h)anthracene 5,200.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenathrene * 6,300.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracenet * 1,600.000 J 0 0 ug/kg	Q1907-01	CO-8R-WC	SOIL	Pyrene	22,400.000	E	210	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Chrysene 10,000.000 120 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 110 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 3,800.000 130 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.000 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 9,800.000 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a,h)anthracene 1,600.000 160 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethylantracenet * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL HI-Cyclopropal[I]phenanthrene, 1a *<	Q1907-01	CO-8R-WC	SOIL	Butylbenzylphthalate	950.000) J	420	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo(b)fluoranthene 11,300.000 110 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(k)fluoranthene 3,800.000 130 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Harcyclopenta[def]phenanthrene 6,300.000 1 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracene(ander) 6,300.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracene(ander) 1,600.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene 1,600.000 J 0	Q1907-01	CO-8R-WC	SOIL	Benzo(a)anthracene	10,200.000)	140	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo(k)fluoranthene 3,800.00 130 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.00 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 5,200.00 170 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracenet 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC	Q1907-01	CO-8R-WC	SOIL	Chrysene	10,000.000)	120	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo(a)pyrene 9,800.00 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Indeno(1,2,3-cd)pyrene 5,200.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 870.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 1H-Fluoren, 2-methyl- * 1,000.000 J 0 ug/kg	Q1907-01	CO-8R-WC	SOIL	Benzo(b)fluoranthene	11,300.000)	110	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Inden((1,2,3-cd)pyrene 5,200.000 170 1000 ug/kg Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/kg Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/kg Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/kg Q1907-01 CO-8R-WC SOIL 9,11-Biorene,	Q1907-01	CO-8R-WC	SOIL	Benzo(k)fluoranthene	3,800.000)	130	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Dibenzo(a,h)anthracene 1,600.000 160 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo(a,h)anthracene 1,600.000 150 1000 ug/Kg Q1907-01 CO-8R-WC SOIL Henzo(a,h)anthracene 6,500.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL HH-Fluorene, 2-methyl- * 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL IH-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg <td>Q1907-01</td> <td>CO-8R-WC</td> <td>SOIL</td> <td>Benzo(a)pyrene</td> <td>9,800.000</td> <td>)</td> <td>170</td> <td>1000</td> <td>ug/Kg</td>	Q1907-01	CO-8R-WC	SOIL	Benzo(a)pyrene	9,800.000)	170	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo(g,h,i)perylene 6,500.000 150 1000 ug/Kg Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[I]phenanthrene,1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-terahydro- * 950	Q1907-01	CO-8R-WC	SOIL	Indeno(1,2,3-cd)pyrene	5,200.000)	170	1000	ug/Kg
Total Svoc : 150,700.00 Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren, 2-methyl- * 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthren, 1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J	Q1907-01	CO-8R-WC	SOIL	Dibenzo(a,h)anthracene	1,600.000)	160	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL 4H-Cyclopenta[def]phenanthrene * 6,300.00 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.00 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.00 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluorene, 2-methyl- 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthrene,1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene *	Q1907-01	CO-8R-WC	SOIL	Benzo(g,h,i)perylene	6,500.000)	150	1000	ug/Kg
Q1907-01 CO-8R-WC SOIL 9,10-Anthracenedione * 2,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluorene, 2-methyl- * 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthrene,1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.0				Total Svoc :	150,	700.	.00		
Q1907-01 CO-8R-WC SOIL 9,10-Bis(bromomethyl)anthracene* 1,600.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluorene, 2-methyl- * 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthrene,1a* 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 <t< td=""><td>Q1907-01</td><td>CO-8R-WC</td><td>SOIL</td><td>4H-Cyclopenta[def]phenanthren</td><td>e * 6,300.000</td><td>) J</td><td>0</td><td>0</td><td>ug/Kg</td></t<>	Q1907-01	CO-8R-WC	SOIL	4H-Cyclopenta[def]phenanthren	e * 6,300.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL 9H-Fluoren-9-one * 870.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL 9H-Fluoren, 2-methyl- * 1,100.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthrene,1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 <t< td=""><td>Q1907-01</td><td>CO-8R-WC</td><td>SOIL</td><td>9,10-Anthracenedione</td><td>* 2,100.000</td><td>) J</td><td>0</td><td>0</td><td>ug/Kg</td></t<>	Q1907-01	CO-8R-WC	SOIL	9,10-Anthracenedione	* 2,100.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL 9H-Fluorene, 2-methyl-* 1,100.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[1]phenanthrene,1a* 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl-* 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro-* 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl-* 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl-* 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl-* 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl-* 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene 1,600.000 J 0 <td< td=""><td>Q1907-01</td><td>CO-8R-WC</td><td>SOIL</td><td>9,10-Bis(bromomethyl)anthrace</td><td>ne * 1,600.000</td><td>) J</td><td>0</td><td>0</td><td>ug/Kg</td></td<>	Q1907-01	CO-8R-WC	SOIL	9,10-Bis(bromomethyl)anthrace	ne * 1,600.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL 1H-Cyclopropa[I]phenanthrene,1a * 1,400.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01	Q1907-01	CO-8R-WC	SOIL	9H-Fluoren-9-one	* 870.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL 1H-Indene, 2-phenyl- * 2,600.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Cyclopenta(def)phenanthrenone * 1,300.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL </td <td>Q1907-01</td> <td>CO-8R-WC</td> <td>SOIL</td> <td>9H-Fluorene, 2-methyl-</td> <td>* 1,100.000</td> <td>) J</td> <td>0</td> <td>0</td> <td>ug/Kg</td>	Q1907-01	CO-8R-WC	SOIL	9H-Fluorene, 2-methyl-	* 1,100.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Anthracene, 1,2,3,4-tetrahydro- * 950.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Cyclopenta(def)phenanthrenone * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl-	Q1907-01	CO-8R-WC	SOIL	1H-Cyclopropa[1]phenanthrene,	la* 1,400.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Anthracene, 2-ethyl- * 1,700.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 1,900.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Cyclopenta(def)phenanthrenone * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	1H-Indene, 2-phenyl-	* 2,600.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Benzo[e]pyrene * 2,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Cyclopenta(def)phenanthrenone * 1,900.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Anthracene, 1,2,3,4-tetrahydro-	* 950.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Cyclopenta(def)phenanthrenone * 1,900.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Anthracene, 2-ethyl-	* 1,700.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,300.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofuran, 4-methyl- * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Dibenzofhiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Benzo[e]pyrene	* 2,000.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Dibenzothiophene * 1,600.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Cyclopenta(def)phenanthrenone	* 1,900.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Phenanthrene, 1-methyl- * 4,000.000 J 0 0 ug/Kg Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Dibenzofuran, 4-methyl-	* 1,300.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Phenanthrene, 2,5-dimethyl- * 2,400.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Dibenzothiophene	* 1,600.000) J	0	0	ug/Kg
	Q1907-01	CO-8R-WC	SOIL	Phenanthrene, 1-methyl-	* 4,000.000) J	0	0	ug/Kg
Q1907-01 CO-8R-WC SOIL Phenanthrene, 2-methyl- * 5,100.000 J 0 0 ug/Kg	Q1907-01	CO-8R-WC	SOIL	Phenanthrene, 2,5-dimethyl-	* 2,400.000) J	0	0	ug/Kg
	Q1907-01	CO-8R-WC	SOIL	Phenanthrene, 2-methyl-	* 5,100.000) J	0	0	ug/Kg

B C

Hit Summary Sheet SW-846

Walsh Construction Client ID CO-8R-WC CO-8R-WC CO-8R-WC CO-8R-WC	Company II, L Matrix SOIL SOIL	LC Parameter Phenanthrene, 3,6-dimethyl-	Conc *	centration	С	MDL	RDL	Units
CO-8R-WC CO-8R-WC CO-8R-WC	SOIL			centration	С	MDL	RDI	Unite
CO-8R-WC CO-8R-WC		Phenanthrene, 3,6-dimethyl-	*				NDL	Units
CO-8R-WC	SOIL		•	830.000	J	0	0	ug/Kg
		unknown24.445	*	3,700.000	J	0	0	ug/Kg
CO-8R-WC	SOIL	Naphthalene, 2-phenyl-	*	2,300.000	J	0	0	ug/Kg
	SOIL	Perylene	*	9,300.000	J	0	0	ug/Kg
CO-8R-WC	SOIL	1-Methylnaphthalene	*	430.000	J	150	1000	ug/Kg
		Total Tics :		53,4	480.0)0		
		Total Concentration:		204,	180.	00		
CO-8R-WCDL								
CO-8R-WCDL	SOIL	Acenaphthene		2,700.000	JD	630	5000	ug/Kg
CO-8R-WCDL	SOIL	Fluorene		3,000.000	JD	750	5000	ug/Kg
CO-8R-WCDL	SOIL	Phenanthrene		25,200.000	D	620	5000	ug/Kg
CO-8R-WCDL	SOIL	Anthracene		5,500.000	D	980	5000	ug/Kg
CO-8R-WCDL	SOIL	Fluoranthene		25,300.000	D	890	5000	ug/Kg
CO-8R-WCDL	SOIL	Pyrene		25,200.000	D	1100	5000	ug/Kg
CO-8R-WCDL	SOIL	Benzo(a)anthracene		10,000.000	D	680	5000	ug/Kg
CO-8R-WCDL	SOIL	Chrysene		10,000.000	D	590	5000	ug/Kg
CO-8R-WCDL	SOIL	Benzo(b)fluoranthene		11,600.000	D	560	5000	ug/Kg
CO-8R-WCDL	SOIL	Benzo(k)fluoranthene		4,000.000	JD	660	5000	ug/Kg
CO-8R-WCDL	SOIL	Benzo(a)pyrene		9,300.000	D	870	5000	ug/Kg
CO-8R-WCDL	SOIL	Indeno(1,2,3-cd)pyrene		4,400.000	JD	860	5000	ug/Kg
CO-8R-WCDL	SOIL	Benzo(g,h,i)perylene		5,600.000	D	760	5000	ug/Kg
		Total Svoc :		,				
	CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL CO-8R-WCDL	CO-8R-WCDL SOIL CO-8R-WCDL SOIL	CO-8R-WCSOIL1-Methylnaphthalene Total Tics : Total Concentration:Total Concentration:CO-8R-WCDLCO-8R-WCDLSOILAcenaphtheneCO-8R-WCDLSOILFluoreneCO-8R-WCDLSOILPhenanthreneCO-8R-WCDLSOILAnthraceneCO-8R-WCDLSOILFluorantheneCO-8R-WCDLSOILPyreneCO-8R-WCDLSOILBenzo(a)anthraceneCO-8R-WCDLSOILBenzo(b)fluorantheneCO-8R-WCDLSOILBenzo(b)fluorantheneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyrene	CO-8R-WCSOIL1-Methylnaphthalene*Total Tics : Total Concentration:Total Concentration:CO-8R-WCDLSOILAcenaphtheneCO-8R-WCDLSOILFluoreneCO-8R-WCDLSOILPhenanthreneCO-8R-WCDLSOILPhenanthreneCO-8R-WCDLSOILPhenanthreneCO-8R-WCDLSOILPhenanthreneCO-8R-WCDLSOILFluorantheneCO-8R-WCDLSOILBenzo(a)anthraceneCO-8R-WCDLSOILBenzo(b)fluorantheneCO-8R-WCDLSOILBenzo(b)fluorantheneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(a)pyreneCO-8R-WCDLSOILBenzo(g,h,i)peryleneCO-8R-WCDLSOILBenzo(g,h,i)perylene	CO-8R-WC SOIL 1-Methylnaphthalene * 430.000 Total Tics : 53,4 Total Concentration: 204, CO-8R-WCDL CO-8R-WCDL SOIL Acenaphthene 2,700.000 CO-8R-WCDL SOIL Fluorene 3,000.000 CO-8R-WCDL SOIL Phenanthrene 25,200.000 CO-8R-WCDL SOIL Phenanthrene 25,300.000 CO-8R-WCDL SOIL Fluoranthene 25,300.000 CO-8R-WCDL SOIL Fluoranthene 25,200.000 CO-8R-WCDL SOIL Fluoranthene 25,200.000 CO-8R-WCDL SOIL Pyrene 25,200.000 CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 CO-8R-WCDL SOIL Benzo(b)fluoranthene 11,600.000 CO-8R-WCDL SOIL Benzo(a)pyrene 9,300.000 CO-8R-WCDL SOIL Benzo(a)pyrene 9,300.000 CO-8R-WCDL SOIL Benzo(g,h,i)perylene 5,600.000	CO-8R-WC SOIL I-Methylnaphthalene * 430.000 J Total Tics : 53,480.0 CO-8R-WCDL Total Concentration: 204,180.0 CO-8R-WCDL SOIL Acenaphthene 2,700.000 JD CO-8R-WCDL SOIL Fluorene 3,000.000 JD CO-8R-WCDL SOIL Fluorene 3,000.000 JD CO-8R-WCDL SOIL Phenanthrene 25,200.000 D CO-8R-WCDL SOIL Anthracene 5,500.000 D CO-8R-WCDL SOIL Fluoranthene 25,200.000 D CO-8R-WCDL SOIL Phenanthrene 25,200.000 D CO-8R-WCDL SOIL Fluoranthene 25,200.000 D CO-8R-WCDL SOIL Pyrene 25,200.000 D CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 D CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 D CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 D CO-8R-WCDL SOIL Benz	CO-8R-WC SOIL 1-Methylnaphthalene * 430.000 J 150 Total Tics : Total Concentration: 53,480.00 204,180.00 CO-8R-WCDL CO-8R-WCDL SOIL Acenaphthene 2,700.000 JD 630 CO-8R-WCDL SOIL Fluorene 3,000.000 JD 630 CO-8R-WCDL SOIL Fluorene 3,000.000 JD 630 CO-8R-WCDL SOIL Phenanthrene 25,200.000 D 620 CO-8R-WCDL SOIL Anthracene 5,500.000 D 980 CO-8R-WCDL SOIL Fluoranthene 25,200.000 D 890 CO-8R-WCDL SOIL Phenanthrene 25,300.000 D 890 CO-8R-WCDL SOIL Pyrene 25,200.000 D 1100 CO-8R-WCDL SOIL Pyrene 25,200.000 D 890 CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 D 680 CO-8R-WCDL SOIL Benzo(k)fluoranthene 11,600.000 D	CO-8R-WC SOIL I-Methylaphthalene * 430.000 J 150 1000 Total Tics : Total Concentration: 53,480.00 204,180.00 204,180.00 CO-8R-WCDL CO-8R-WCDL SOIL Acenaphthene 2,700.000 JD 630 5000 CO-8R-WCDL SOIL Acenaphthene 2,500.000 JD 630 5000 CO-8R-WCDL SOIL Pleoanthrene 25,200.000 D 620 5000 CO-8R-WCDL SOIL Phenanthrene 25,500.000 D 890 5000 CO-8R-WCDL SOIL Fluoranthene 25,200.000 D 890 5000 CO-8R-WCDL SOIL Fluoranthene 25,200.000 D 890 5000 CO-8R-WCDL SOIL Pyrene 25,200.000 D 890 5000 CO-8R-WCDL SOIL Benzo(a)anthracene 10,000.000 D 680 5000 CO-8R-WCDL SOIL Benzo(b)fluoranthene 11,600.000 D 560 5000 500

B C D

A B C D

CAS Number

TARGETS 100-52-7 108-95-2 111-44-4 95-57-8 95-48-7 108-60-1 98-86-2 65794-96-9 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 111-91-1 120-83-2 91-20-3 106-47-8 87-68-3 105-60-2 59-50-7 91-57-6 77-47-4 88-06-2 95-95-4 92-52-4 91-58-7

Report of Analysis

U

		Kepor	t of Alla	19515			
Client:	Walsh Construction C	Company II, LLC			Date Collected:	04/28/25	5
Project:	Walsh CO-032 Samp	ling			Date Received:	04/28/25	5
Client Sample ID	CO-8R-WC				SDG No.:	Q1907	
Lab Sample ID:	Q1907-01				Matrix:	SOIL	
Analytical Metho	od: SW8270				% Solid:	84.6	
Sample Wt/Vol:	30.04 Units:	g			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:		TCL BNA -20
-			(.1. N	T			CL BINA-20
Extraction Type :		Decan		4	Level :	LOW	
Injection Volume		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
BM050073.D	5	04/30/25 11	:00	05/01	1/25 20:39	PB167803	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight
ARGETS 100-52-7	Benzaldehyde	920	U	920		1900	ug/Kg
08-95-2	Phenol	130	U	130		1000	ug/Kg
11-44-4	bis(2-Chloroethyl)ether	140	U	140		1000	ug/Kg
95-57-8	2-Chlorophenol	140	U	140		1000	ug/Kg
95-48-7	2-Methylphenol	180	U	180		1000	ug/Kg
08-60-1	2,2-oxybis(1-Chloropropane)	220	U	220		1000	ug/Kg
98-86-2	Acetophenone	170	U	170		1000	ug/Kg
55794-96-9	3+4-Methylphenols	240	U	240		1900	ug/Kg
521-64-7	n-Nitroso-di-n-propylamine	280	U	280		470	ug/Kg
57-72-1	Hexachloroethane	100	U	100		1000	ug/Kg
98-95-3	Nitrobenzene	110	U	110		1000	ug/Kg
78-59-1	Isophorone	190	U	190		1000	ug/Kg
38-75-5	2-Nitrophenol	340	U	340		1000	ug/Kg
105-67-9	2,4-Dimethylphenol	380	U	380		1000	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	180	U	180		1000	ug/Kg
20-83-2	2,4-Dichlorophenol	170	U	170		1000	ug/Kg
91-20-3	Naphthalene	630	J	130		1000	ug/Kg
106-47-8	4-Chloroaniline	210	U	210		1000	ug/Kg
37-68-3	Hexachlorobutadiene	150	U	150		1000	ug/Kg
105-60-2	Caprolactam	310	U	310		1900	ug/Kg
59-50-7	4-Chloro-3-methylphenol	170	U	170		1000	ug/Kg
91-57-6	2-Methylnaphthalene	520	J	150		1000	ug/Kg
77-47-4	Hexachlorocyclopentadiene	680	U	680		1900	ug/Kg
88-06-2	2,4,6-Trichlorophenol	120	U	120		1000	ug/Kg
95-95-4	2,4,5-Trichlorophenol	170	U	170		1000	ug/Kg
92-52-4	1,1-Biphenyl	130	U	130		1000	ug/Kg
1597	2 Chlananankthalana	120	U U	120		1000	

88-74-4

131-11-3

2-Chloronaphthalene

Dimethylphthalate

2-Nitroaniline

U

U

U

130

280

160

1000

1000

1000

ug/Kg

ug/Kg

ug/Kg

130

280

160

Client:

Project:

Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch: BM050073.D

CAS Number

208-96-8

606-20-2

99-09-2

83-32-9

51-28-5

100-02-7 132-64-9

121-14-2

84-66-2

86-73-7

100-01-6

534-52-1

86-30-6

101-55-3

118-74-1

87-86-5

85-01-8

120-12-7

86-74-8

84-74-2

206-44-0 129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

Benzo(a)anthracene

Di-n-octyl phthalate

Benzo(b)fluoranthene

Chrysene

3,3-Dichlorobenzidine

Bis(2-ethylhexyl)phthalate

1912-24-9

7005-72-3

Date Collected:

04/28/25

Report of Analysis

Walsh Construction Company II, LLC

С

	Walsh CO-032 Sam	pling			Date Received:	04/28/25	
D:	CO-8R-WC				SDG No.:	Q1907	
	Q1907-01				Matrix:	SOIL	
ad					% Solid:		
od:	SW8270					84.6	
	30.04 Units:	g			Final Vol:	1000	uL
:		uL			Test:	SVOC-T	CL BNA -20
:		Decan	ited : N	I	Level :	LOW	
e :		GPC Factor :	1.0		GPC Cleanup :	N	PH :
	SW3541						
	Dilution:	Prep Date		Date A	Analyzed	Prep Batch	D
	5	04/30/25 1	1:00	05/01/	/25 20:39	PB167803	
Paramet	ter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight
Acenapl	hthylene	1000		170		1000	ug/Kg
	itrotoluene	200	U	200		1000	ug/Kg
3-Nitroaniline		270	U	270		1000	ug/Kg
Acenaphthene		2600		130		1000	ug/Kg
2,4-Dinitrophenol		1400	U	1400		1900	ug/Kg
4-Nitrop	phenol	630	U	630		1900	ug/Kg
Dibenzo	ofuran	1800		130		1000	ug/Kg
2,4-Dini	itrotoluene	300	U	300		1000	ug/Kg
Diethylp	phthalate	170	U	170		1000	ug/Kg
4-Chlore	ophenyl-phenylether	160	U	160		1000	ug/Kg
Fluorene		2900		150		1000	ug/Kg
4-Nitroa		380	U	380		1000	ug/Kg
-	itro-2-methylphenol	610	U	610		1900	ug/Kg
n-Nitros	sodiphenylamine	190	U	190		1000	ug/Kg
4-Brome	ophenyl-phenylether	160	U	160		1000	ug/Kg
Hexachl	lorobenzene	150	U	150		1000	ug/Kg
Atrazine		200	U	200		1000	ug/Kg
Pentach	lorophenol	300	U	300		1900	ug/Kg
Phenant	threne	26300	Е	120		1000	ug/Kg
Anthrac	ene	5700		200		1000	ug/Kg
Carbazo	ole	1800		180		1000	ug/Kg
Di-n-bu	tylphthalate	280	U	280		1000	ug/Kg
Fluorant	thene	25700	Е	180		1000	ug/Kg
Pyrene		22400	Е	210		1000	ug/Kg
Butylbe	enzylphthalate	950	J	420		1000	ug/Kg

Q1907

U

U

UQ

220

10200

10000

350

510

11300

220

140

120

350

510

110

1900

1000

1000

1000

1900

1000

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

A B C D

50-32-8 Benzo 193-39-5 Indeno 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di	Walsh Construction Con Walsh CO-032 Sampling CO-8R-WC Q1907-01 SW8270 30.04 Units: g uL SW3541 Dilution: 5 neter (k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene zo(a,h)anthracene	g Decant GPC Factor : Prep Date 04/30/25 111 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Date Collected: Date Received: SDG No.: Matrix: % Solid: Final Vol: Test: Level : GPC Cleanup : Analyzed (25 20:39	LOW N Prep Batch PB167803	uL TCL BNA -20 PH : ID
Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indeno 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluc	CO-8R-WC Q1907-01 SW8270 30.04 Units: g uL SW3541 Dilution: 5 neter o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	SDG No.: Matrix: % Solid: Final Vol: Test: Level : GPC Cleanup :	Q1907 SOIL 84.6 1000 SVOC-T LOW N Prep Batch PB167803	uL TCL BNA -20 PH : ID
Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluc	CO-8R-WC Q1907-01 SW8270 30.04 Units: g uL SW3541 Dilution: 5 neter o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Matrix: % Solid: Final Vol: Test: Level : GPC Cleanup :	SOIL 84.6 1000 SVOC-T LOW N Prep Batch PB167803	TCL BNA -20 PH : ID
Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indeno 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluc	Q1907-01 SW8270 30.04 Units: g uL SW3541 Dilution: 5 neter o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Matrix: % Solid: Final Vol: Test: Level : GPC Cleanup :	SOIL 84.6 1000 SVOC-T LOW N Prep Batch PB167803	TCL BNA -20 PH : ID
Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluc	SW8270 30.04 Units: g uL SW3541 Dilution: 5 meter b)(k)fluoranthene b)(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	% Solid: Final Vol: Test: Level : GPC Cleanup :	84.6 1000 SVOC-T LOW N Prep Batch PB167803	TCL BNA -20 PH : ID
Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluc	30.04 Units: g uL SW3541 Dilution: 5 neter o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Final Vol: Test: Level : GPC Cleanup :	1000 SVOC-T LOW N Prep Batch PB167803	TCL BNA -20 PH : ID
Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	uL SW3541 Dilution: 5 neter (k)fluoranthene (a)pyrene (1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Test: Level : GPC Cleanup : Analyzed	SVOC-T LOW N Prep Batch PB167803	TCL BNA -20 PH : ID
Extraction Type : Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	SW3541 Dilution: 5 neter o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	Decant GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	Level : GPC Cleanup : Analyzed	LOW N Prep Batch PB167803	PH : ID
Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 367-12-4 2-Fluct	Dilution: 5 neter 0(k)fluoranthene 0(a)pyrene 0(1,2,3-cd)pyrene	GPC Factor : Prep Date 04/30/25 11 Conc. 3800 9800	1.0	Date A 05/01/ MDL	GPC Cleanup : Analyzed	N Prep Batch PB167803	ID
Injection Volume : Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 367-12-4 2-Fluct	Dilution: 5 neter 0(k)fluoranthene 0(a)pyrene 0(1,2,3-cd)pyrene	Prep Date 04/30/25 11 Conc. 3800 9800	:00	05/01/ MDL	GPC Cleanup : Analyzed	N Prep Batch PB167803	ID
Prep Method : File ID/Qc Batch: BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluct	Dilution: 5 neter 0(k)fluoranthene 0(a)pyrene 0(1,2,3-cd)pyrene	Prep Date 04/30/25 11 Conc. 3800 9800		05/01/ MDL	Analyzed	Prep Batch PB167803	ID
BM050073.D CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluct	5 neter (k)fluoranthene (a)pyrene (1,2,3-cd)pyrene	04/30/25 11 Conc. 3800 9800		05/01/ MDL	-	PB167803	
CAS Number Param 207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	neter (k)fluoranthene (a)pyrene o(1,2,3-cd)pyrene	Conc. 3800 9800		MDL	25 20:39		
207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	3800 9800	Qualifier			LOQ / CRQL	
207-08-9 Benzo 50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	o(k)fluoranthene o(a)pyrene o(1,2,3-cd)pyrene	3800 9800	_				Units(Dry Weight
50-32-8 Benzo 193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	o(a)pyrene o(1,2,3-cd)pyrene	9800		120			
193-39-5 Indend 53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	o(1,2,3-cd)pyrene			130 170		1000 1000	ug/Kg ug/Kg
53-70-3 Diben 191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4		5200		170		1000	ug/Kg ug/Kg
191-24-2 Benzo 95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4		1600		160		1000	ug/Kg ug/Kg
95-94-3 1,2,4,5 123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4	(g,h,i)perylene	6500		150		1000	ug/Kg
123-91-1 1,4-Di 58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Fluct 2-Fluct	5-Tetrachlorobenzene	150	U	150 150		1000	ug/Kg ug/Kg
58-90-2 2,3,4,6 SURROGATES 367-12-4 2-Flue		270	U U	130 270		1000	
SURROGATES 367-12-4 2-Fluc	6-Tetrachlorophenol	270 160	U U	270 160		1000	ug/Kg ug/Kg
367-12-4 2-Fluc	o reducinorophenor	100	e	100		1000	"", ""D
	aranhenal	84.0		18 - 112		56%	SPK: 150
15127-00-5 11010		85.2		15 - 107		57%	SPK: 150
4165-60-0 Nitrob	benzene-d5	47.0		13 - 107 18 - 107		47%	SPK: 100
	probiphenyl	47.0		20 - 109		47%	SPK: 100
	Tribromophenol	77.3		10 - 116		4370 52%	SPK: 150
	enyl-d14	37.0		10 - 110		37%	SPK: 150
INTERNAL STANDARDS							
	ichlorobenzene-d4	261000	7.751				
	halene-d8	958000	10.539				
	aphthene-d10	664000	14.392				
	inthrene-d10	1390000	17.1392				
	ene-d12	1450000	21.386				
	ene-d12	1380000	24.38				
TENTATIVE IDENTIFIEI			-				
	hylnaphthalene	430	J			12.4	ug/Kg
	zofuran, 4-methyl-	1300	J			15.7	ug/Kg
	uorene, 2-methyl-	1100	J			16.5	ug/Kg
	uoren-9-one	870	J			16.8	ug/Kg
		950	J			16.9	ug/Kg
	acene 1234-tetrahydro-	1600	J			17.0	ug/Kg
000832-69-9 Phena	acene, 1,2,3,4-tetrahydro- zothiophene	1000	5			17.0	ug/Kg ug/Kg

8

		Repor	t of Analy	sis		
Client: Walsh Construction Compa		any II, LLC		Date Col	lected: 04/28/25	5
Project: Walsh CO-032 Sampling				Date Rec	ceived: 04/28/25	5
Client Sample ID: CO-8R-WC				SDG No	.: Q1907	
Lab Sample ID:	Q1907-01			Matrix:	SOIL	
Analytical Metho				% Solid:		
-						
Sample Wt/Vol:	30.04 Units: g			Final Vol	l: 1000	uL
Soil Aliquot Vol:	uL			Test:	SVOC-7	ГCL BNA -20
Extraction Type :		Decar	ited : N	Level :	LOW	
Injection Volume :		PC Factor :	1.0	GPC Cle	anup : N	PH :
Prep Method :	SW3541				-	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch	ID
			1 00	-		
BM050073.D	5	04/30/25 1	1:00	05/01/25 20:39	PB167803	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
002531-84-2	Phenanthrene, 2-methyl-	5100	J		18.1	ug/Kg
000949-41-7	1H-Cyclopropa[1]phenanthrene,1a,	9b-1400	J		18.1	ug/Kg
000203-64-5	4H-Cyclopenta[def]phenanthrene	6300	J		18.2	ug/Kg
004505-48-0	1H-Indene, 2-phenyl-	2600	J		18.3	ug/Kg
000612-94-2	Naphthalene, 2-phenyl-	2300	J		18.5	ug/Kg
000084-65-1	9,10-Anthracenedione	2100	J		18.6	ug/Kg
052251-71-5	Anthracene, 2-ethyl-	1700	J		18.8	ug/Kg
001576-67-6	Phenanthrene, 3,6-dimethyl-	830	J		18.8	ug/Kg
003674-66-6	Phenanthrene, 2,5-dimethyl-	2400	J		18.9	ug/Kg
034373-96-1	9,10-Bis(bromomethyl)anthracene	1600	J		19.0	ug/Kg
005737-13-3	Cyclopenta(def)phenanthrenone	1900	J		19.1	ug/Kg
000192-97-2	Benzo[e]pyrene	2000	J		23.7	ug/Kg

U = Not Detected

000198-55-0

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements

Perylene

unknown24.445

M = MS/MSD acceptance criteria did not meet requirements

Q1907

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

24.1

24.4

ug/Kg

ug/Kg

- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

9300

3700

J

J

	-	2

		Repor	t of Anal	ysis			
Client:	Walsh Construction	Company II, LLC			Date Collected:	04/28/25	
Project:	Walsh CO-032 Samp	oling			Date Received:	04/28/25	
-	-	Jung					
					SDG No.:	Q1907	
Lab Sample ID:	Q1907-01DL				Matrix:	SOIL	
Analytical Metho	od: SW8270				% Solid:	84.6	
Sample Wt/Vol:	30.04 Units:	g			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	SVOC-T	CL BNA -20
Extraction Type :		Decan	ted : N		Level :	LOW	
Injection Volume		GPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3541	OF C Factor .	1.0		Of C Cleanup .	IN	111.
Trep Wethou .	5 1 55 1						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch ID	
BM050098.D	25	04/30/25 11	1:00	05/05	5/25 13:40	PB167803	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weig
TARGETS	Dan-aldaharda	4600		4600		0700	
100-52-7	Benzaldehyde	4600	UD	4600		9700 5000	ug/Kg
108-95-2	Phenol	650 720	UD	650 720		5000	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	720	UD	720		5000	ug/Kg
95-57-8	2-Chlorophenol	720	UD	720		5000	ug/Kg
95-48-7	2-Methylphenol	880	UD	880		5000	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1100	UD	1100		5000	ug/Kg
98-86-2	Acetophenone	870	UD	870		5000	ug/Kg
65794-96-9	3+4-Methylphenols	1200	UD	1200		9700	ug/Kg
621-64-7	n-Nitroso-di-n-propylamine	1400	UD	1400		2400	ug/Kg
67-72-1	Hexachloroethane	520	UD	520		5000	ug/Kg
98-95-3	Nitrobenzene	540	UD	540		5000	ug/Kg
78-59-1	Isophorone	970	UD	970		5000	ug/Kg
88-75-5	2-Nitrophenol	1700	UD	1700		5000	ug/Kg
105-67-9	2,4-Dimethylphenol	1900	UD	1900		5000	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	910	UD	910		5000	ug/Kg
120-83-2	2,4-Dichlorophenol	840	UD	840		5000	ug/Kg
91-20-3	Naphthalene	670	UD	670		5000	ug/Kg
106-47-8	4-Chloroaniline	1000	UD	1000		5000	ug/Kg
87-68-3	Hexachlorobutadiene	750	UD	750		5000	ug/Kg
105-60-2	Caprolactam	1500	UD	1500		9700	ug/Kg
59-50-7	4-Chloro-3-methylphenol	850	UD	850		5000	ug/Kg ug/Kg
91-57-6	2-Methylnaphthalene	830 760	UD	830 760		5000	ug/Kg ug/Kg
77-47-4	Hexachlorocyclopentadiene	3400	UD	780 3400		3000 9700	
							ug/Kg
88-06-2	2,4,6-Trichlorophenol	580	UD	580 860		5000	ug/Kg
95-95-4	2,4,5-Trichlorophenol	860	UD	860		5000	ug/Kg
92-52-4	1,1-Biphenyl	640	UD	640		5000	ug/Kg
91-58-7	2-Chloronaphthalene	660	UD	660		5000	ug/Kg
88-74-4	2-Nitroaniline	1400	UD	1400		5000	ug/Kg
121 11 2	Dimathylahthalata	000	UD	000		5000	

131-11-3

Dimethylphthalate

UD

800

5000

ug/Kg

800

Client:

Project:

Prep Method :

BM050098.D

CAS Number

208-96-8

606-20-2

99-09-2

83-32-9

51-28-5

100-02-7

132-64-9

121-14-2

84-66-2

86-73-7

100-01-6

534-52-1

86-30-6

101-55-3

118-74-1

87-86-5

85-01-8

120-12-7

86-74-8

84-74-2

206-44-0

129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0 205-99-2 Di-n-octyl phthalate

Benzo(b)fluoranthene

1912-24-9

7005-72-3

Date Collected:

Date Received:

04/28/25

04/28/25

Report of Analysis

Walsh Construction Company II, LLC

Walsh CO-032 Sampling

Client Sample ID: SDG No .: Q1907 CO-8R-WCDL Lab Sample ID: Q1907-01DL Matrix: SOIL % Solid: Analytical Method: SW8270 84.6 Final Vol: uL Sample Wt/Vol: 30.04 Units: 1000 g Soil Aliquot Vol: uL Test: SVOC-TCL BNA -20 Extraction Type : Decanted : Ν Level : LOW PH : Injection Volume : GPC Factor : 1.0 GPC Cleanup : Ν SW3541 Dilution: File ID/Qc Batch: Prep Date Date Analyzed Prep Batch ID 04/30/25 11:00 25 05/05/25 13:40 PB167803 MDL Units(Dry Weight) Conc. Qualifier LOQ / CRQL Parameter 850 UD 850 5000 Acenaphthylene ug/Kg 2,6-Dinitrotoluene 990 UD 990 5000 ug/Kg 3-Nitroaniline 1400 UD 1400 5000 ug/Kg Acenaphthene 2700 JD 630 5000 ug/Kg 2,4-Dinitrophenol 6800 UD 6800 9700 ug/Kg 4-Nitrophenol 3200 UD 3200 9700 ug/Kg Dibenzofuran 670 UD 670 5000 ug/Kg UD 2.4-Dinitrotoluene 1500 1500 5000 ug/Kg Diethylphthalate 840 UD 840 5000 ug/Kg 790 UD 4-Chlorophenyl-phenylether 790 5000 ug/Kg Fluorene 3000 JD 750 5000 ug/Kg UD 4-Nitroaniline 1900 1900 5000 ug/Kg 4,6-Dinitro-2-methylphenol 3000 UD 3000 9700 ug/Kg n-Nitrosodiphenylamine 970 UD 970 5000 ug/Kg 4-Bromophenyl-phenylether 820 UD 820 5000 ug/Kg Hexachlorobenzene 750 UD 750 5000 ug/Kg Atrazine 1000 UD 1000 5000 ug/Kg Pentachlorophenol 1500 UD 1500 9700 ug/Kg Phenanthrene D 620 25200 5000 ug/Kg Anthracene 5500 D 980 5000 ug/Kg Carbazole 920 UD 920 5000 ug/Kg Di-n-butylphthalate 1400 UD 1400 5000 ug/Kg Fluoranthene 25300 D 890 5000 ug/Kg Pyrene 25200 D 1100 5000 ug/Kg 2100 UD 2100 5000 ug/Kg Butylbenzylphthalate 3,3-Dichlorobenzidine 1100 UDQ 1100 9700 ug/Kg 10000 D 680 Benzo(a)anthracene 5000 ug/Kg Chrysene 10000 D 590 5000 ug/Kg 1700 Bis(2-ethylhexyl)phthalate UD 1700 5000 ug/Kg

UD

2600

560

9700

5000

ug/Kg

ug/Kg

2600

11600

Report of Analysis

Client:	Walsh Construction) Company II, LLC			Date Collected:	04/28/25	;
Project:	Walsh CO-032 Sam				Date Received:	04/28/25	
Client Sample ID		.p			SDG No.:	Q1907	
					Matrix:	SOIL	
Lab Sample ID:	Q1907-01DL						
Analytical Metho					% Solid:	84.6	
Sample Wt/Vol:	30.04 Units:	g			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	SVOC-T	TCL BNA -20
Extraction Type :	:	Decant	ted : N		Level :	LOW	
Injection Volume	e :	GPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
BM050098.D	25	04/30/25 11	:00	05/05	5/25 13:40	PB167803	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight)
207-08-9	Benzo(k)fluoranthene	4000	JD	660		5000	ug/Kg
50-32-8	Benzo(a)pyrene	9300	D	870		5000	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	4400	JD	860		5000	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	810	UD	810		5000	ug/Kg
191-24-2	Benzo(g,h,i)perylene	5600	D	760		5000	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	760	UD	760		5000	ug/Kg
123-91-1	1,4-Dioxane	1300	UD	1300		5000	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	810	UD	810		5000	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	88.4		18 - 112		59%	SPK: 150
13127-88-3	Phenol-d6	95.5		15 - 107		64%	SPK: 150
4165-60-0	Nitrobenzene-d5	49.3		18 - 107		49%	SPK: 100
321-60-8	2-Fluorobiphenyl	46.9		20 - 109		47%	SPK: 100
118-79-6	2,4,6-Tribromophenol	84.2		10 - 116		56%	SPK: 150
1718-51-0	Terphenyl-d14	47.5		10 - 105		47%	SPK: 100
INTERNAL STAN							
3855-82-1	1,4-Dichlorobenzene-d4	373000	7.745				
1146-65-2	Naphthalene-d8	1490000					
15067-26-2	Acenaphthene-d10	1090000					
1517-22-2	Phenanthrene-d10	2310000	17.145				
1719-03-5	Chrysene-d12	2010000					
1520-96-3	Perylene-d12	1570000	24.38				
U = Not Detected			J.	= Estimated	Value		

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri			OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			SVOC-TCL BNA -20	8270E		04/30/25	05/01/25	
Q1907-01D	L CO-8R-WCDL	SOIL			04/28/25			04/28/25
			SVOC-TCL BNA -20	8270E		04/30/25	05/05/25	
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP BNA	8270E		04/30/25	05/02/25	
Q1907-02R	E CO-8R-WCRE	TCLP			04/28/25			04/28/25
			TCLP BNA	8270E		04/30/25	05/05/25	

B C D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

В	

9

Hit Summary Sheet SW-846

SDG No.:	Q1907						
Client:	Walsh Construction Company II, LLC						
Sample ID Client ID :	Client ID	Matrix	Parameter	Concentration C MDL	RDL Units		
				0.000			
			Total Svoc :	0.00			
			Total Concentration:	0.00			

A B C D

9
-

C D

			Report	of Anal	ysis			
Client:	Walsh Constructio	n Comp	any II, LLC			Date Collected:	04/30/25	
Project: Walsh CO-032 Sam		npling				Date Received:	04/30/25	
Client Sample ID: PB167774TB		1 0				SDG No.:	Q1907	
Lab Sample ID: PB167774TB						Matrix:	TCLP	
-	Analytical Method: SW8270					% Solid:	0	
-		Ŧ						Ŧ
Sample Wt/Vol:	100 Units:	mL				Final Vol:	1000	uL
Soil Aliquot Vol:		uL				Test:	TCLP B	NA
Extraction Type	:		Decan	ted : N		Level :	LOW	
Injection Volume	:	C	SPC Factor :	1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3541							
File ID/Qc Batch:	Dilution:		Prep Date		Date	Analyzed	Prep Batch l	D
BF142256.D	1		04/30/25 13	:15	05/01	/25 13:07	PB167810	
CAS Number	Parameter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine		12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene		5.30	U	5.30		50.0	ug/L ug/L
95-48-7	2-Methylphenol		11.2	U	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols		11.0	U	11.0		100	ug/L
67-72-1	Hexachloroethane		6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene		7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene		5.40	U	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol		5.10	U	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol		6.20	U	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene		12.2	U	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene		5.20	U	5.20		50.0	ug/L
87-86-5	Pentachlorophenol		15.8	U	15.8		100	ug/L
SURROGATES								
367-12-4	2-Fluorophenol		116		10 - 139		78%	SPK: 150
13127-88-3	Phenol-d6		116		10 - 134		77%	SPK: 150
4165-60-0	Nitrobenzene-d5		87.3		49 - 133		87%	SPK: 100
321-60-8	2-Fluorobiphenyl		72.1		52 - 132		72%	SPK: 100
118-79-6	2,4,6-Tribromophenol		131		44 - 137		87%	SPK: 150
1718-51-0	Terphenyl-d14		67.9		48 - 125		68%	SPK: 100
INTERNAL STAN								
3855-82-1	1,4-Dichlorobenzene-d4		218000	6.904				
1146-65-2	Naphthalene-d8		840000	8.186				
15067-26-2	Acenaphthene-d10		443000	9.945				
1517-22-2	Phenanthrene-d10		773000	11.427				
1719-03-5	Chrysene-d12		539000	14.068				
1520-96-3	Perylene-d12		394000	15.562				

С

			Repo	ort of A	naly	sis				
Client:	Walsh Cor	nstruction	Company II, LL	С			Date Collected:	(04/30/25	
Project:	Walsh CO	-032 Sam	pling				Date Received:	(04/30/25	
Client Sample ID:	PB167774	TB					SDG No.:	(Q1907	
Lab Sample ID:	PB167774	TB					Matrix:		ГCLP	
Analytical Method:	SW8270						% Solid:	()	
Sample Wt/Vol:	100	Units:	mL				Final Vol:		1000	uL
Soil Aliquot Vol:			uL				Test:		ICLP BNA	
Extraction Type :			Dec	canted :	Ν		Level :]	LOW	
Injection Volume :			GPC Factor	: 1.0			GPC Cleanup :	Ν	PH :	
Prep Method :	SW3541									
File ID/Qc Batch:	Dilution:		Prep Dat	te		Date A	nalyzed	Prej	Batch ID	
BF142256.D	1		04/30/25	5 13:15		05/01/2	25 13:07	PB1	67810	
CAS Number Para	meter		Conc.	Qua	lifier	MDL		LOQ /	CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

Q1907

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

9
<u> </u>

		Repor	t of Anal	ysis			
Client:	Walsh Construction	Company II, LLC			Date Collected:	04/28/25	
Project:	Walsh CO-032 Sam	pling			Date Received:	04/28/25	
Client Sample ID	CO-8R-WC				SDG No.:	Q1907	
Lab Sample ID:	Q1907-02				Matrix:	TCLP	
Analytical Metho					% Solid:	0	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	1000	uL
•							
Soil Aliquot Vol:		uL			Test:	TCLP B	NA
Extraction Type :		Decan	ited : N		Level :	LOW	
Injection Volume	:	GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
BF142282.D	1	04/30/25 13	3:15	05/02	2/25 14:51	PB167810	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine	12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L
95-48-7	2-Methylphenol	11.2	U	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.0	U	11.0		100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	U	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	U	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	U	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	U	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	U	5.20		50.0	ug/L
87-86-5	Pentachlorophenol	15.8	U	15.8		100	ug/L
SURROGATES				10 120		(20/	ODV 170
367-12-4	2-Fluorophenol	94.6		10 - 139		63%	SPK: 150
13127-88-3	Phenol-d6	33.9		10 - 134		23%	SPK: 150
4165-60-0	Nitrobenzene-d5	91.6 252	*	49 - 133		92%	SPK: 100
321-60-8	2-Fluorobiphenyl	253	*	52 - 132		253%	SPK: 100
118-79-6	2,4,6-Tribromophenol	483	*	44 - 137		322%	SPK: 150 SPK: 100
1718-51-0	Terphenyl-d14	419		48 - 125		419%	SPK: 100
NTERNAL STANI			6001				
3855-82-1	1,4-Dichlorobenzene-d4	205000	6.904				
1146-65-2	Naphthalene-d8	707000	8.186				
15067-26-2	Acenaphthene-d10	110000	9.939				
1517-22-2	Phenanthrene-d10	264000	11.427				
1719-03-5	Chrysene-d12	22800	14.063				
1520-96-3	Perylene-d12	209	15.557				

q

		Repor	t of Analy	rsis		
Client:	Walsh Construc	ction Company II, LLC		Date Collected:	04/28/25	
Project:	Walsh CO-032	Sampling		Date Received:	04/28/25	
Client Sample ID:	CO-8R-WC			SDG No.:	Q1907	
Lab Sample ID:	Q1907-02			Matrix:	TCLP	
Analytical Method:	SW8270			% Solid:	0	
Sample Wt/Vol:	100 Uni	its: mL		Final Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:	TCLP BNA	
Extraction Type :		Decar	nted : N	Level :	LOW	
Injection Volume :		GPC Factor :	1.0	GPC Cleanup :	N PH	:
Prep Method :	SW3541					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BF142282.D	1	04/30/25 1	3:15	05/02/25 14:51	PB167810	
CAS Number Para	meter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

Q1907

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

9
-

Client:	Walsh Constructi	on Company II, LLC			Date Collected:	04/28/25	
Project:	Walsh CO-032 S	ampling			Date Received:	04/28/25	
Client Sample II		1 0			SDG No.:	Q1907	
-							
Lab Sample ID:	Q1907-02RE				Matrix:	TCLP	
Analytical Metho	od: SW8270				% Solid:	0	
Sample Wt/Vol:	100 Units	: mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	TCLP B	NA
Extraction Type	:	Decar	nted : N		Level :	LOW	
Injection Volume		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Prep Method :	SW3541				····r·		
•				D.4.4		Data Data 1	D
File ID/Qc Batch:	Dilution:	Prep Date			analyzed	Prep Batch I	D
BP024530.D	1	04/30/25 1	3:15	05/05/2	25 18:07	PB167810	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine	12.8	U	12.8		50.0	ug/I
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L ug/L
95-48-7	2-Methylphenol	11.2	U	11.2		50.0	ug/L ug/L
65794-96-9	3+4-Methylphenols	11.2	U	11.2		100	ug/L ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L ug/L
87-68-3	Hexachlorobutadiene	5.40	U	7.00 5.40		50.0	ug/L ug/L
	2,4,6-Trichlorophenol	5.10	U	5.10		50.0	ug/L ug/L
88-06-2			U	6.20		50.0	ug/L ug/L
88-06-2 95-95-4		6 20	U	0.40		20.0	45/1
95-95-4	2,4,5-Trichlorophenol	6.20 12.2	I 1			50.0	110/I
95-95-4 121-14-2	2,4,5-Trichlorophenol 2,4-Dinitrotoluene	12.2	U U	12.2		50.0 50.0	ug/L
95-95-4	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene	12.2 5.20	U	12.2 5.20		50.0	ug/L
95-95-4 121-14-2 118-74-1 87-86-5	2,4,5-Trichlorophenol 2,4-Dinitrotoluene	12.2		12.2			
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol	12.2 5.20 15.8	U	12.2 5.20 15.8		50.0 100	ug/L ug/L
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol	12.2 5.20 15.8	U	12.2 5.20 15.8 10 - 139		50.0 100 73%	ug/L ug/L SPK: 15
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3	 2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 	12.2 5.20 15.8 109 21.9	U	12.2 5.20 15.8 10 - 139 10 - 134		50.0 100 73% 15%	ug/L ug/L SPK: 150 SPK: 150
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5	12.2 5.20 15.8 109 21.9 102	U	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133		50.0 100 73% 15% 102%	ug/L ug/L SPK: 150 SPK: 150 SPK: 100
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8	 2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 	12.2 5.20 15.8 109 21.9 102 519	U U	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132		50.0 100 73% 15% 102% 519%	ug/L ug/L SPK: 159 SPK: 159 SPK: 109 SPK: 109
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol	12.2 5.20 15.8 109 21.9 102 519 929	U U	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L ug/L SPK: 150 SPK: 100 SPK: 100 SPK: 150
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	12.2 5.20 15.8 109 21.9 102 519	U U *	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132		50.0 100 73% 15% 102% 519%	ug/L ug/L SPK: 15 SPK: 15 SPK: 10 SPK: 10 SPK: 15
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0 NTERNAL STAN	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 DARDS	12.2 5.20 15.8 109 21.9 102 519 929 3610	U U * *	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L ug/L SPK: 150 SPK: 100 SPK: 100 SPK: 150
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0 NTERNAL STAN 3855-82-1	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 DARDS 1,4-Dichlorobenzene-d4	12.2 5.20 15.8 109 21.9 102 519 929 3610 149000	U U * * * 7.71	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0 NTERNAL STAN 3855-82-1 1146-65-2	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 DARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8	12.2 5.20 15.8 109 21.9 102 519 929 3610 149000 499000	U U * * * * 7.71 10.481	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L ug/L SPK: 150 SPK: 100 SPK: 100 SPK: 150
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0 NTERNAL STAN 3855-82-1 1146-65-2 15067-26-2	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 DARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10	12.2 5.20 15.8 109 21.9 102 519 929 3610 149000 499000 59200	U U * * * 7.71 10.481 14.345	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L ug/L SPK: 15 SPK: 15 SPK: 10 SPK: 10 SPK: 15
95-95-4 121-14-2 118-74-1 87-86-5 SURROGATES 367-12-4 13127-88-3 4165-60-0 321-60-8 118-79-6 1718-51-0 NTERNAL STAN 3855-82-1 1146-65-2	2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 DARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8	12.2 5.20 15.8 109 21.9 102 519 929 3610 149000 499000	U U * * * * 7.71 10.481	12.2 5.20 15.8 10 - 139 10 - 134 49 - 133 52 - 132 44 - 137		50.0 100 73% 15% 102% 519% 619%	ug/L ug/L SPK: 15 SPK: 15 SPK: 10 SPK: 10 SPK: 15

	9

С

BP024530.D	1		04/30/25 1	3:15	05/05/	/25 18:07	PB167810	
File ID/Qc Batch:	Dilution:		Prep Date		Date A	Analyzed	Prep Batch	ı ID
Prep Method :	SW3541							
Injection Volume :			GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Extraction Type :			Decar	nted : N		Level :	LOW	
Soil Aliquot Vol:			uL			Test:	TCLP E	BNA
Sample Wt/Vol:	100	Units:	mL			Final Vol:	1000	uL
Analytical Method:	SW8270					% Solid:	0	
Lab Sample ID:	Q1907-02	RE				Matrix:	TCLP	
Client Sample ID:	CO-8R-W	CRE				SDG No.:	Q1907	
Project:	Walsh CO	-032 Sam	pling			Date Received:	04/28/2	25
Client:	Walsh Cor	nstruction	Company II, LLC			Date Collected:	04/28/2	25

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements
- Q1907

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

A B C

D

Q

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company Jesse A. Sylvestri	OrderDate: Project: Location:	4/28/2025 4:13:00 PM Walsh CO-032 Sampling L51,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-02	CO-8R-WC	TCLP	TCLP BNA	8270E	04/28/25	04/30/25	05/02/25	04/28/25
Q1907-02R	E CO-8R-WCRE	TCLP	TCLP BNA	8270E	04/28/25	04/30/25	05/05/25	04/28/25

Hit Summary Sheet SW-846

SDG No.:	Q1907			Order ID: Q1907			
Client:	Walsh Construction Company II, LLC		LLC	Project ID: Walsh CO-032 Sampling			
Sample ID	Client ID	Matrix	Parameter	Concentration C	MDL	RDL Units	
Client ID :	CO-8R-WC						
Q1907-01	CO-8R-WC	SOIL	Heptachlor epoxide	0.95 JP	0.22	2.00 ug/kg	
Q1907-01	CO-8R-WC	SOIL	4,4-DDE	2.00	0.17	2.00 ug/kg	
Q1907-01	CO-8R-WC	SOIL	Endrin	1.10 J	0.17	2.00 ug/kg	
Q1907-01	CO-8R-WC	SOIL	Endosulfan Sulfate	1.30 JP	0.15	2.00 ug/kg	
Q1907-01	CO-8R-WC	SOIL	alpha-Chlordane	4.30 P	0.14	2.00 ug/kg	
Q1907-01	CO-8R-WC	SOIL	gamma-Chlordane	2.70 P	0.18	2.00 ug/kg	
			Total Concentration:	12.350			

10

B C D

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type: GPC Factor :

Prep Method :

С Date Collected: 04/28/25 D Date Received: 04/28/25 SDG No.: Q1907 SOIL Matrix: % Solid: 84.6 Decanted: Final Vol: 10000 uL Test: Pesticide-TCL Injection Volume :

File ID/Qc Batch:	Dilution:	ation: Prep Date		Date Analyzed	Prep Batch	1 ID
PD088356.D	1	04/3	0/25 08:35	04/30/25 13:47	PB167795	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
319-84-6	alpha-BHC	0.15	U	0.15	2.00	ug/kg
319-85-7	beta-BHC	0.21	U	0.21	2.00	ug/kg
319-86-8	delta-BHC	0.46	U	0.46	2.00	ug/kg
58-89-9	gamma-BHC (Lindane)	0.17	U	0.17	2.00	ug/kg
76-44-8	Heptachlor	0.14	U	0.14	2.00	ug/kg
309-00-2	Aldrin	0.14	U	0.14	2.00	ug/kg
1024-57-3	Heptachlor epoxide	0.95	JP	0.22	2.00	ug/kg
959-98-8	Endosulfan I	0.17	U	0.17	2.00	ug/kg
60-57-1	Dieldrin	0.17	U	0.17	2.00	ug/kg
72-55-9	4,4-DDE	2.00		0.17	2.00	ug/kg
72-20-8	Endrin	1.10	J	0.17	2.00	ug/kg
33213-65-9	Endosulfan II	0.34	U	0.34	2.00	ug/kg
72-54-8	4,4-DDD	0.18	U	0.18	2.00	ug/kg
1031-07-8	Endosulfan Sulfate	1.30	JP	0.15	2.00	ug/kg
50-29-3	4,4-DDT	0.17	U	0.17	2.00	ug/kg
72-43-5	Methoxychlor	0.44	U	0.44	2.00	ug/kg
53494-70-5	Endrin ketone	0.22	U	0.22	2.00	ug/kg
7421-93-4	Endrin aldehyde	0.44	U	0.44	2.00	ug/kg
5103-71-9	alpha-Chlordane	4.30	Р	0.14	2.00	ug/kg
5103-74-2	gamma-Chlordane	2.70	Р	0.18	2.00	ug/kg
8001-35-2	Toxaphene	6.40	U	6.40	39.0	ug/kg
SURROGATES						
2051-24-3	Decachlorobiphenyl	12.5		20 - 144	63%	SPK: 20
877-09-8	Tetrachloro-m-xylene	12.3		19 - 148	61%	SPK: 20

Report of Analysis

Walsh Construction Company II, LLC

Walsh CO-032 Sampling

Units:

g

uL

PH :

CO-8R-WC

Q1907-01

SW8081

30.03

1.0

SW3541B

- 1 (

Client:	Walsh Construction Co	mpany II, LLC	Date Collected:	04/28/25	
Project:	Walsh CO-032 Samplin	ıg	Date Received:	04/28/25	
Client Sample ID:	CO-8R-WC		SDG No.:	Q1907	
Lab Sample ID:	Q1907-01		Matrix:	SOIL	
Analytical Method:	SW8081		% Solid:	84.6	Decanted:
Sample Wt/Vol:	30.03 Units: g		Final Vol:	10000	uL
Soil Aliquot Vol:	u	L	Test:	Pesticide-TC	CL
Extraction Type:			Injection Volume :		
GPC Factor :	1.0 PH	:			
Prep Method :	SW3541B				
File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep	Batch ID
PD088356.D	1	04/30/25 08:35	04/30/25 13:47	PB1	67795

Comments:

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- P = Indicates > 25% difference for detected
- concentrations between the two GC columns
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- S = Indicates estimated value where valid five-point calibration
- was not performed prior to analyte detection in sample.
- () = Laboratory InHouse Limit

LAB CHRONICLE

OrderID: Client: Contact:	Walsh Construction Company II, LLC			OrderDate: Project: Location:	4/28/2025 4:13: Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			PCB	8082A		04/30/25	04/30/25	
			Pesticide-TCL	8081B		04/30/25	04/30/25	
			TPH GC	8015D		04/29/25	04/29/25	

			Hit S	Immary Sheet SW-846	
SDG No.:	Q1907			Order ID: Q1907	В
Client:	Walsh Constructio	on Company II, LL	С	Project ID: Walsh CO-032 Sampling	C
Sample ID	Client ID	Matrix	Parameter	Concentration C MDL RDL Units	D
Client ID :					

Total Concentration:0.000

<u>SAMPLE</u> <u>DATA</u>

1	1

			port of An	•				
Client:	Walsh Construction	Company II, L	LC		Date Collected:			
Project:	Walsh CO-032 Sam	pling			Date Received:	05/01/25		
Client Sample ID:	PB167774TB	PB167774TB			SDG No.:	Q1907		
Lab Sample ID:	PB167774TB				Matrix:	TCLP		
Analytical Method	SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:				Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Pestici	de	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :			-			
Prep Method :	SW3541B							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep	Batch ID	
PD088372.D	1	05/0	1/25 08:56		05/01/25 14:06	PB16	57820	
AS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CI	RQL	Units
TARGETS								
58-89-9	gamma-BHC (Lindane)	0.037	U	0.037		0	0.50	ug/L
76-44-8	Heptachlor	0.027	U	0.027		0	0.50	ug/L
1024-57-3	Heptachlor epoxide	0.096	U	0.096		0	0.50	ug/L
72-20-8	Endrin	0.032	U	0.032		0	0.50	ug/L
72-43-5	Methoxychlor	0.11	U	0.11		0	0.50	ug/L
8001-35-2	Toxaphene	1.70	U	1.70		1	0.0	ug/L
57-74-9	Chlordane	0.88	U	0.88		5	5.00	ug/L
SURROGATES								
2051-24-3	Decachlorobiphenyl	19.1		43 - 140			6%	SPK: 20
877-09-8	Tetrachloro-m-xylene	18.9		77 - 126		9	4%	SPK: 20

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

Q1907

78 of 117

1	1
H	

С

Report of Analysis

Client:	Walsh Construction Company II, LLC				Date Collected:	04/28/25		
Project:	Walsh CO-032 Sar	Walsh CO-032 Sampling				04/28/25		
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907		
Lab Sample ID:	Q1907-02				Matrix:	TCLP		
Analytical Method	: SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Pesticio	le	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	SW3541B							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep	Batch ID	
PD088382.D	1	05/0	1/25 08:56		05/01/25 16:23	PB16	7820	
PD088382.D CAS Number	1 Parameter	05/0 Conc.	1/25 08:56 Qualifier	MDL	05/01/25 16:23	PB16 LOQ / CR		Units
CAS Number				MDL	05/01/25 16:23			Units
				MDL 0.037	05/01/25 16:23	LOQ / CR		Units ug/L
CAS Number TARGETS	Parameter	Conc.	Qualifier		05/01/25 16:23	LOQ / CF	QL	
CAS Number TARGETS 58-89-9	Parameter gamma-BHC (Lindane)	Conc. 0.037	Qualifier U	0.037	05/01/25 16:23	LOQ / CF 0 0	QL .50	ug/L
CAS Number TARGETS 58-89-9 76-44-8	Parameter gamma-BHC (Lindane) Heptachlor	Conc. 0.037 0.027	Qualifier U U	0.037 0.027	05/01/25 16:23	LOQ / CF 0 0 0	.50 .50	ug/L ug/L
CAS Number TARGETS 58-89-9 76-44-8 1024-57-3	Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	Conc. 0.037 0.027 0.096	Qualifier U U U	0.037 0.027 0.096	05/01/25 16:23	LOQ / CR 0 0 0 0 0	.50 .50 .50	ug/L ug/L ug/L
CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8	Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin	Conc. 0.037 0.027 0.096 0.032	Qualifier U U U U U	0.037 0.027 0.096 0.032	05/01/25 16:23	LOQ / CF 0 0 0 0 0 0 0	2QL .50 .50 .50 .50	ug/L ug/L ug/L ug/L
CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5	Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor	Conc. 0.037 0.027 0.096 0.032 0.11	Qualifier U U U U U U	0.037 0.027 0.096 0.032 0.11	05/01/25 16:23	LOQ / CF 0 0 0 0 0 0 1	2QL .50 .50 .50 .50 .50	ug/L ug/L ug/L ug/L ug/L
CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2	Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	Conc. 0.037 0.027 0.096 0.032 0.11 1.70	Qualifier U U U U U U U	0.037 0.027 0.096 0.032 0.11 1.70	05/01/25 16:23	LOQ / CF 0 0 0 0 0 0 1	2QL .50 .50 .50 .50 .50 .50 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
CAS Number TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9	Parameter gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	Conc. 0.037 0.027 0.096 0.032 0.11 1.70	Qualifier U U U U U U U	0.037 0.027 0.096 0.032 0.11 1.70		LOQ / CF 0 0 0 0 0 0 1 5	2QL .50 .50 .50 .50 .50 .50 0.0	ug/L ug/L ug/L ug/L ug/L ug/L

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

79 of 117

A B C D

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company Jesse A. Sylvestri	OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. /	Sampling				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Gasoline Range Organics	8015D			04/29/25	
			Herbicide	8151A		04/30/25	05/01/25	
			PCB	8082A		04/30/25	04/30/25	
			Pesticide-TCL	8081B		04/30/25	04/30/25	
			TPH GC	8015D		04/29/25	04/29/25	
			EPH_NF	NJEPH		05/01/25	05/01/25	
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP Pesticide	8081B		05/01/25	05/01/25	

			Hit Summary Shee SW-846	t			
SDG No.:	Q1907			Order ID: Q	1907		
Client:	Walsh Construction	Company II, l	LLC	Project ID:	Walsh CO-032	Sampling	
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID :	CO-8R-WC						
Q1907-01	CO-8R-WC	SOIL	Aroclor-1254	104	3.80	20.1	ug/kg
Q1907-01	CO-8R-WC	SOIL	Aroclor-1260	85.4	3.80	20.1	ug/kg
			Total Concentration:	189.400			

- B C

D

<u>SAMPLE</u> <u>DATA</u>

Client: Walsh Construction		ction Company	y II, LLC		Date Collected:	04/28/25		
Project:	Walsh CO-032	Sampling			Date Received:	04/28/25		
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907		
Lab Sample ID:	Q1907-01				Matrix:	SOIL		
Analytical Method	SW8082A				% Solid:	84.6	Decar	nted:
Sample Wt/Vol:	30.03 Ur	its: g			Final Vol:	10000	uL	_
Soil Aliquot Vol:		uL			Test:	РСВ		
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
		111.						
Prep Method :	SW3541B							
File ID/Qc Batch: Dilution:			Prep Date		Date Analyzed	Prep Batch ID		D
PP071659.D	1		04/30/25 08:	35	04/30/25 18:38	PB1	67794	
CAS Number	Parameter	Cor	ic. Qua	lifier MDL		LOQ / C	RQL	Units(Dry Weigh
TARGETS								
12674-11-2	Aroclor-1016	4.7	0 U	4.70			20.1	ug/kg
11104-28-2	Aroclor-1221	4.8	0 U	4.80			20.1	ug/kg
11141-16-5	Aroclor-1232	4.4	0 U	4.40			20.1	ug/kg
53469-21-9	Aroclor-1242	4.7	0 U	4.70			20.1	ug/kg
12672-29-6	Aroclor-1248	7.0	0 U	7.00			20.1	ug/kg
11097-69-1	Aroclor-1254	104	ļ	3.80			20.1	ug/kg
37324-23-5	Aroclor-1262	5.9		5.90			20.1	ug/kg
11100-14-4	Aroclor-1268	4.3		4.30			20.1	ug/kg
11096-82-5	Aroclor-1260	85.4	4	3.80			20.1	ug/kg
SURROGATES								
	- ·· ·	21	0	32 - 144			109%	SPK: 20
877-09-8	Tetrachloro-m-xylene	21.	0	52 - 144			107/0	51 K. 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration

was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri				4/28/2025 4:13: Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			PCB TPH GC	8082A 8015D		04/30/25 04/29/25	04/30/25 04/29/25	

Hit Summary Sheet SW-846										
SDG No.:	Q1907			Order ID:	Q19	07			В	
Client:	Walsh Constructio	n Company II, LLO	C	Project ID:	V	Walsh CO-032	2 Sampling		С	
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units	D	
Client ID :										

Total Concentration:0.000

<u>SAMPLE</u> <u>DATA</u>

	С
_	
	D
_	
_	

Client:	Walsh Constru	ction Company II,	LLC		Date Collected:	04/28/25	
Project:	Walsh CO-032	Sampling			Date Received:	04/28/25	
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907	
Lab Sample ID:	Q1907-01				Matrix:	SOIL	
Analytical Method	l: SW8151A				% Solid:	84.6 De	canted:
Sample Wt/Vol:	30.06 Un	its: g			Final Vol:	10000	uL
Soil Aliquot Vol:		uL			Test:	Herbicide	
Extraction Type:					Injection Volume :		
	4.0	DII			injection volume .		
GPC Factor :	1.0	PH :					
Prep Method :	8151A						
File ID/Qc Batch:	Dilution:	Prej	o Date		Date Analyzed	Prep Batc	h ID
PS030005.D	1	04/3	30/25 08:50		05/01/25 08:35	PB16779	5
CAS Number	Parameter	Conc.	Qualifie	er MDL		LOQ / CRQL	Units(Dry Weight)
TARGETS							
1918-00-9	DICAMBA	9.10	U	9.10		79.0	ug/Kg
120-36-5	DICHLORPROP	15.1	U	15.1		79.0	ug/Kg
94-75-7	2,4-D	10.7	U	10.7		79.0	ug/Kg
93-72-1	2,4,5-TP (Silvex)	10.7	U	10.7		79.0	ug/Kg
93-76-5	2,4,5-T	10.3	U	10.3		79.0	ug/Kg
94-82-6	2,4-DB	28.5	U	28.5		79.0	ug/Kg
88-85-7	DINOSEB	12.7	U	12.7		79.0	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	294		10 - 141		59%	SPK: 500

Report of Analysis

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

87 of 117

A B C

D

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri			OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Gasoline Range Organics	8015D			04/29/25	
			Herbicide	8151A		04/30/25	05/01/25	
			PCB	8082A		04/30/25	04/30/25	
			Pesticide-TCL	8081B		04/30/25	04/30/25	
			TPH GC	8015D		04/29/25	04/29/25	
			EPH_NF	NJEPH		05/01/25	05/01/25	
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP Pesticide	8081B		05/01/25	05/01/25	

Hit Summary Sheet SW-846									
SDG No.:	Q1907			Order ID:	Q1907			В	
Client:	Walsh Construction	on Company II, LL	С	Project ID:	Walsh CO-032	Sampling		С	
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units	D	
Client ID :									

Total Concentration:0.000

<u>SAMPLE</u> <u>DATA</u>

1	4

B C

D

		Re	port of An	nalysis				
Client:	Walsh Construction	on Company II, I	LLC		Date Collected:			
Project:	Walsh CO-032 Sa	mpling			Date Received:	05/05/25		
Client Sample ID:	PB167774TB				SDG No.:	Q1907		
Lab Sample ID:	PB167774TB				Matrix:	TCLP		
Analytical Method	: SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbic	eide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep	Batch ID	
PS030060.D	1	05/0	5/25 08:50		05/06/25 14:40	PB10	67871	
AS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CI	RQL	Units
TARGETS								
94-75-7	2,4-D	9.20	U	9.20			20.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.80	U	7.80		2	20.0	ug/L
SURROGATES								

39 - 175

118%

SPK: 500

Comments:

19719-28-9

2,4-DCAA

591

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

91 of 117

		Re	port of A	nalysis				
Client:	Walsh Construct	ion Company II, I	LLC		Date Collected:	04/28/25		
Project:	Walsh CO-032 S	Sampling			Date Received:	04/28/25		
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907		
Lab Sample ID:	Q1907-02				Matrix:	TCLP		
Analytical Method	SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units	s: mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herb	oicide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Prej	o Date		Date Analyzed	Pre	ep Batch ID	
PS030068.D	1	05/0)5/25 08:50		05/06/25 17:52	PB	167871	
CAS Number	Parameter	Conc.	Qualifie	er MDL		LOQ/	CRQL	Units
TARGETS								
94-75-7	2,4-D	9.20	U	9.20			20.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.80	U	7.80			20.0	ug/L
SURROGATES 19719-28-9	2,4-DCAA	795		39 - 17	5		159%	SPK: 500

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

92 of 117

A B C

D

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri			OrderDate: Project: Location:	4/28/2025 4:13:00 PM Walsh CO-032 Sampling L51,VOA Ref. #3 Water				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received	
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25	
			Gasoline Range Organics	8015D			04/29/25		
			Herbicide	8151A		04/30/25	05/01/25		
			PCB	8082A		04/30/25	04/30/25		
			Pesticide-TCL	8081B		04/30/25	04/30/25		
			TPH GC	8015D		04/29/25	04/29/25		
			EPH_NF	NJEPH		05/01/25	05/01/25		
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25	
			TCLP Herbicide	8151A		05/05/25	05/06/25		
			TCLP Pesticide	8081B		05/01/25	05/01/25		

D

Client:	Walsh Construction	n Company II, LI	LC		Date Collected:	04/28/25		
Project:	Walsh CO-032 San	npling			Date Received:	04/28/25		
Client Sample ID:	CO-8R-WC				SDG No.:	Q1907		
Lab Sample ID:	Q1907-01				Matrix:	SOIL		
Analytical Method	1: 8015D TPH				% Solid:	84.6	Deca	anted:
Sample Wt/Vol:	30.06 Units:	g			Final Vol:	1	n	nL
Soil Aliquot Vol:		uL			Test:	TPH GC		
Extraction Type:					Injection Volume :			
GPC Factor :		PH :						
Prep Method :	SW3541							
File ID/Qc Batch:	Dilution:	Prep 1	Date		Date Analyzed	Pre	p Batch	ID
FG015778.D	10	04/29	/25 10:49		04/29/25 21:42	PB	167783	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ/C	CRQL	Units(Dry Weight)
TARGETS PHC	Petroleum Hydrocarbons	111000		4530			33400	ug/kg
SURROGATES 16416-32-3	TETRACOSANE-d50	1.63		37 - 130			81%	SPK: 20

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

95 of 117

A B C

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Company II, LLC Jesse A. Sylvestri		alsh Construction Company II, LLC Project:					4/28/2025 4:13:00 PM Walsh CO-032 Sampling L51,VOA Ref. #3 Water					
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received					
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25					
			Gasoline Range Organics	8015D			04/29/25						
			PCB	8082A		04/30/25	04/30/25						
			Pesticide-TCL	8081B		04/30/25	04/30/25						
			TPH GC	8015D		04/29/25	04/29/25						
			EPH_NF	NJEPH		05/01/25	05/01/25						

В

Report of Analysis

Client: Project: Client Sample ID:	Walsh Constructic Walsh CO-032 Sa CO-8R-WC		ny II, LLC			Date Collected: Date Received: SDG No.:	04/28 04/28 Q190	8/25	
Lab Sample ID: Analytical Method:	Q1907-01 NJEPH					Matrix: % Solid:	Solic 84.6	I	
Sample Wt/Vol:	30.06 Units:	g				Final Vol:	2000	uL	
Soil Aliquot Vol: Prep Method :		uL				Test:	EPH	_NF	
Prep Date :			Date	Analyzed :				Prep Batch ID	
05/01/25 08:45			05/01	/25 14:18				PB167819	Datafile
CAS Number Paramet	ter	Conc.	Qualifier	Dilution	MDL	LOQ / C	RQL	Units(Dry Weight)	
-	liphatic C28-C40 liphatic C9-C28	22.6 31.2		1 1	1.39 1.07	2.36 4.72		., .,	FE053605.D FE053605.D
	otal AliphaticEPH otal EPH	53.8 53.8			2.46 2.46	7.08 7.08		mg/kg mg/kg	

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C40 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C40 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

		Report of	Analysi	is				
Client:	Walsh Co	onstruction Company II, LLC		Date (Collected:	04/28/25		
Project:	Walsh Co	O-032 Sampling		Date I	Received:	04/28/25		
Client Sample ID:	CO-8R-V	WC		SDG 1	No.:	Q1907		
Lab Sample ID:	Q1907-0	1		Matrix	K:	Solid		
Analytical Method:	NJEPH			% Sol	id:	84.6		
Sample Wt/Vol:	30.06	Units: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_NF		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :	Р	rep Batch ID	
FE053605.D	1	05/01/25		05/01/25		Р	B167819	
S Number Para	meter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
ARGETS								
liphatic C9-C28		Aliphatic C9-C28 Aliphatic C28-C40	31.2		1.07		4.72	mg/kg
liphatic C28-C40		Anphatic 020-040	22.6		1.39		2.36	mg/kg
URROGATES 383-33-2		1-chlorooctadecane (SURR)	25.9		40 - 140		52%	SPK: 50

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	Q1907-01	Acq On:	01 May 2025 14:18
Client Sample ID:	CO-8R-WC	Operator:	YP\AJ
Data file:	FE053605.D	Misc:	
Instrument:	FID_E	ALS Vial:	8
Dilution Factor:	1	Sample Multiplier:	1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.114	6.754	2166983	15.639	300	ug/ml
Aliphatic C12-C16	6.755	10.203	4954718	34.94	200	ug/ml
Aliphatic C16-C21	10.204	13.577	23562952	162.096	300	ug/ml
Aliphatic C21-C28	13.578	17.245	26198886	184.273	400	ug/ml
Aliphatic C28-C40	17.246	22.133	37116615	287.616	600	ug/ml
Aliphatic EPH	3.114	22.133	94000154	684.564		ug/ml
ortho-Terphenyl (SURR)	11.864	11.864	3704176	20.54		ug/ml
1-chlorooctadecane (SURR)	13.311	13.311	3502370	25.91		ug/ml
Aliphatic C9-C28	3.114	17.245	56883539	396.948	1200	ug/ml

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Gasoline Range Organics	8015D			04/29/25	
			PCB	8082A		04/30/25	04/30/25	
			Pesticide-TCL	8081B		04/30/25	04/30/25	
			TPH GC	8015D		04/29/25	04/29/25	
			EPH_NF	NJEPH		05/01/25	05/01/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.:	Q1907			Order ID:		Q1907		
Client:	Walsh Construction Co	ompany II, LLC		Project ID	:	Walsh CO-032 San	npling	
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID :	CO-8R-WC							
Q1907-01	CO-8R-WC	SOIL	Aluminum	5540		0.90	5.32	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Arsenic	5.22		0.20	1.06	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Barium	208		0.78	5.32	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Beryllium	1.58		0.027	0.32	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Cadmium	1.13		0.026	0.32	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Calcium	43900		11.8	106	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Chromium	22.8		0.050	0.53	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Cobalt	10.1		0.11	1.60	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Copper	257		0.23	1.06	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Iron	17100		4.25	5.32	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Lead	452		0.14	0.64	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Magnesium	3290		12.8	106	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Manganese	280		0.15	1.06	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Mercury	0.33		0.0090	0.015	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Nickel	33.2		0.14	2.13	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Potassium	1070		29.5	106	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Silver	0.44	J	0.13	0.53	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Sodium	254		19.0	106	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Vanadium	17.7		0.27	2.13	mg/Kg
Q1907-01	CO-8R-WC	SOIL	Zinc	877		0.25	2.13	mg/Kg

A B

17

С

<u>SAMPLE</u> <u>DATA</u>

A B C

Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25	С
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25	D
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907	
Lab Sample ID:	Q1907-01	Matrix:	SOIL	
Level (low/med):	low	% Solid:	84.6	

Report of Analysis

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry V	Veigh P)rep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	5540	*	1	0.90	5.32	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-36-0	Antimony	0.23	UN	1	0.23	2.66	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-38-2	Arsenic	5.22		1	0.20	1.06	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-39-3	Barium	208		1	0.78	5.32	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-41-7	Beryllium	1.58	*	1	0.027	0.32	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-43-9	Cadmium	1.13		1	0.026	0.32	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-70-2	Calcium	43900		1	11.8	106	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-47-3	Chromium	22.8		1	0.050	0.53	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-48-4	Cobalt	10.1		1	0.11	1.60	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-50-8	Copper	257	*	1	0.23	1.06	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7439-89-6	Iron	17100		1	4.25	5.32	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7439-92-1	Lead	452	*	1	0.14	0.64	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7439-95-4	Magnesium	3290	*	1	12.8	106	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7439-96-5	Manganese	280		1	0.15	1.06	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7439-97-6	Mercury	0.33		1	0.0090	0.015	mg/Kg	04/29/25 15:15	04/30/25 14:49	SW7471B	
7440-02-0	Nickel	33.2		1	0.14	2.13	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-09-7	Potassium	1070		1	29.5	106	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7782-49-2	Selenium	0.28	U	1	0.28	1.06	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-22-4	Silver	0.44	J	1	0.13	0.53	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-23-5	Sodium	254		1	19.0	106	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-28-0	Thallium	0.25	U	1	0.25	2.13	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-62-2	Vanadium	17.7		1	0.27	2.13	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050
7440-66-6	Zinc	877	*	1	0.25	2.13	mg/Kg	04/29/25 10:50	04/30/25 23:01	SW6010	SW3050

Color Before:	Brown	Clarity Before:	Texture: Medium				
Color After:	Yellow	Clarity After:	Artifacts:				
Comments:	METALS TAL+CN						
U = Not Detec			J = Estimated Value				
LOQ = Limit	of Quantitation		B = Analyte Found in Associated Method Blank				
MDL = Method	d Detection Limit		* = indicates the duplicate analysis is not within control limits.				
LOD = Limit of	of Detection		E = Indicates the reported value is estimated because of the presence				
D = Dilution			of interference.				
Q = indicates	LCS control criteria did not meet	requirements	OR = Over Range				
			N =Spiked sample recovery not within control limits				
Q1907		1	04 of 117				

LAB CHRONICLE

OrderID: Client: Contact:	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Mercury	7471B		04/29/25	04/30/25	
			Metals ICP-TAL	6010D		04/29/25	04/30/25	
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP ICP Metals	6010D		04/30/25	05/01/25	
			TCLP Mercury	7470A		04/30/25	05/01/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	Q1907 Walsh Constructi	on Company II, LLC		Order ID: Project ID:	:	Q1907 Walsh CO-032	2 Sampling	
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID :	CO-8R-WC							
Q1907-02	CO-8R-WC	TCLP	Barium	582		72.8	500	ug/L
Q1907-02	CO-8R-WC	TCLP	Cadmium	8.64	J	2.50	30.0	ug/L
Q1907-02	CO-8R-WC	TCLP	Lead	490		11.5	60.0	ug/L

18

В

С

<u>SAMPLE</u> <u>DATA</u>

Client:

18

С	J

D

Report of Analysis		
Walsh Construction Company II, LLC	Date Collected:	04/28/25
Walsh CO-032 Sampling	Date Received:	04/28/25

Project:	:	Wal	sh CO-	032 \$	Sampling			Date Received	: 04/2	8/25	
Client S	Sample ID:	CO	-8R-W0	2				SDG No.:	Q19	07	
Lab Sar	mple ID:	Q19	907-02					Matrix:	TCI	_P	
Level (l	low/med):	low						% Solid:	0		
Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
Cas 7440-38-2	Parameter Arsenic	Conc. 25.6	Qua. U	DF	MDL 25.6	LOQ / CRQL 100	Units ug/L	Prep Date 04/30/25 13:35	Date Ana. 05/01/25 19:45		Prep Met. SW3050
				DF 1 1				1		5 SW6010	1

/440-39-3	Darium	382		1	12.8	300	ug/L	04/30/23 13.33	03/01/23 19.43	SW0010	SW 3030
7440-43-9	Cadmium	8.64	J	1	2.50	30.0	ug/L	04/30/25 13:35	05/01/25 19:45	SW6010	SW3050
7440-47-3	Chromium	10.6	U	1	10.6	50.0	ug/L	04/30/25 13:35	05/01/25 19:45	SW6010	SW3050
7439-92-1	Lead	490		1	11.5	60.0	ug/L	04/30/25 13:35	05/01/25 19:45	SW6010	SW3050
7439-97-6	Mercury	0.76	U	1	0.76	2.00	ug/L	04/30/25 13:30	05/01/25 13:14	SW7470A	
7782-49-2	Selenium	48.2	U	1	48.2	100	ug/L	04/30/25 13:35	05/01/25 19:45	SW6010	SW3050
7440-22-4	Silver	8.10	U	1	8.10	50.0	ug/L	04/30/25 13:35	05/01/25 19:45	SW6010	SW3050

Color Before:	Colorless	Clarity Before:	Clear	Texture:
Color After:	Colorless	Clarity After:	Clear	Artifacts:
Comments:	TCLP-FULL			
MDL = MethoLOD = Limit oD = Dilution	of Quantitation od Detection Limit	meet requirements		 J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range N = Spiked sample recovery not within control limits
Q1907			108	of 117

A B C D

LAB CHRONICLE	
---------------	--

Client: Wa	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25			04/28/25
			Mercury	7471B		04/29/25	04/30/25	
			Metals ICP-TAL	6010D		04/29/25	04/30/25	
Q1907-02	CO-8R-WC	TCLP			04/28/25			04/28/25
			TCLP ICP Metals	6010D		04/30/25	05/01/25	
			TCLP Mercury	7470A		04/30/25	05/01/25	

Report of Analysis

Client:	Walsh Construction Company II, LLC	Date Collected:	04/28/25 11:50	В
Project:	Walsh CO-032 Sampling	Date Received:	04/28/25	С
Client Sample ID:	CO-8R-WC	SDG No.:	Q1907	
Lab Sample ID:	Q1907-01	Matrix:	SOIL	
		% Solid:	84.6	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	LOQ / CRQL Units(Dry Weight) Prep Date Date Ana.		Ana Met.	
Ammonia as N	2.50	U	1	2.50	5.80	mg/Kg	04/30/25 09:25	04/30/25 14:02	SM 4500-NH3
									B plus G-11
COD	5850		1	95.6	568	mg/Kg		05/06/25 13:17	SM 5220 D-11
Cyanide	0.19	J	1	0.049	0.29	mg/Kg	04/29/25 14:00	04/30/25 11:01	9012B
Hexavalent Chromium	0.082	U	1	0.082	0.47	mg/Kg	04/29/25 09:00	04/29/25 14:10	7196A
Oil and Grease	2480		1	6.86	29.5	mg/Kg		05/06/25 10:25	SW9071B
Paint Filter	1.00	U	1	1.00	1.00	ml/100gm		04/29/25 15:52	9095B
TS	88.6		1	1.00	5.00	%		04/29/25 11:00	SM 2540 B-15
TVS	4.10	J	1	1.00	10.0	%		04/29/25 15:30	160.4

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

111 of 117

^{* =} indicates the duplicate analysis is not within control limits.

Report of Analysis

Client:	Wal	sh Cons	structi]	Date Collected:	04/28/25 1	1:50		
Project:				ampling]	Date Received:	04/28/25		
Client Sample ID:	CO-	8R-WC	C			5	SDG No.:	Q1907	
Lab Sample ID:	Q19	07-02				I	Matrix:	SOIL	
						C	% Solid:	100	
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Corrosivity	8.41	Н	1	0	0	pН		04/29/25 09:44	9045D
Ignitability	NO		1	0	0	oC		04/30/25 14:22	1030
Reactive Cyanide	0.0083	U	1	0.0083	0.050	mg/Kg	04/30/25 08:50	04/30/25 11:46	9012B

Comments: pH result reported at temperature 20.9 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

A B C

LAB CHRONICLE

Client: V	Q1907 Walsh Construction Compan Jesse A. Sylvestri	y II, LLC		OrderDate: Project: Location:	4/28/2025 4:13 Walsh CO-032 L51,VOA Ref. #	Sampling		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1907-01	CO-8R-WC	SOIL			04/28/25 11:50			04/28/25
			Ammonia	SM4500-NH3		04/30/25	04/30/25 14:02	
			COD	SM5220 D			05/06/25 13:17	
			Cyanide	9012B		04/29/25	04/30/25 11:01	
			Hexavalent Chromium	7196A		04/29/25	04/29/25 14:10	
			Oil and Grease	9071B			05/06/25 10:25	
			Paint Filter	9095B			04/29/25 15:52	
			TS	SM2540 B			04/29/25 11:00	
			TVS	160.4			04/29/25 15:30	
Q1907-02	CO-8R-WC	SOIL			04/28/25 11:50			04/28/25
			Corrosivity	9045D			04/29/25 09:44	
			Ignitability	1030			04/30/25 14:22	
			Reactive Cyanide	9012B		04/30/25	04/30/25 11:46	
			Reactive Sulfide	9034		05/01/25	05/01/25 11:11	

<u>SHIPPING</u> DOCUMENTS

A	Inical GROUP				d Stree 39-890 www.		x (90	8) 78			092		Q	UOTE			4674	<u>)1907</u> 3	-
	CLIENT INFORMATION	CLIENT PROJECT INFORMATION									100	194		CLIEN	IT BILL	ING INF	ORMATION		
COMPANY:	REPORT TO BE SENT TO:	PROJECT NAME: Construction of Shafts ITB+18B BI										:0: LC	bish construction PO#:						
ADDRESS:	SO CLOVE Rd, 11th Floor	PROJE		o.: 2	2008	LOCA	ATION:	que.	ens, 1	NY	ADDR	ESS: 1	50	CLORE	Re	1, 11	m FLOOR		
CITY LAH	E FOLLS STATE: NJ ZIP: 07424	PROJE	<u>CT M</u>	ANAG	BER: Je	See 8	sulve	stri		3.3	CITY	WH	10 50	us		STA	TE: NJ	ZIP: 0742	4
100 C 100 C 100 C	Benve Dion Gokan				stri e				m	1					1.15	1000	DNE: 201-6		T
PHONE: 646	-285-7234 FAX:		-		1-974		AX::								Concession of the local division of the loca	ALYSIS			
FAX (RUSH) HARDCOPY (D EDD: *TO BE APPRC	DATA TURNAROUND INFORMATION DAYS* ATA PACKAGE): DAYS* DAYS* DAYS* DOCOCY TAT DAYS* DAYS* DVED BY CHEMTECH INDCOPY TURNAROUND TIME IS 10 BUSINESS	Leve	1 (Re 2 (Re 3 (Re aw Da	esults esults esults ta)	• DELIVEI • QC) □ + QC □ □	Level 4 (QC NJ Reduce	C+FullI d⊡U	Raw Data S EPA CI	P	Altras Altras Altras Altras	10000 000 000 000 000 000 000 000 000 0	ACCESSION OF THE PARTY OF THE P	Solution of the second			A Starter 19	Stade State	(0 112)	1000
ALLIANCE				IPLE		APLE	TES				PRES	SERVA	TIVES				-	MENTS Preservatives	
SAMPLE	PROJECT SAMPLE IDENTIFICATION	SAMPLE MATRIX	COMP	GRAB H	DATE	TIME	# OF BOTTLES	F+E	E 2	6	E	E 5	F+ € 6	E	E	E	A-HCI B-HN03 C-H2SO4	D-NaOH E-ICE F-OTHER meth	
1.	CO- 00812-WC	Soil	X	x	4/28/25	1150	25	x	X	X	X	X	×	X	×	x	1.1	2. 1×402	1
2.		1. 26	1														2x terra	cone sets	
3.	100 and the second			1	100	1					1	1						ne set	
4.		1.1		-		1	11		_	1	1 3	1				1		ALC: NO	1
5.		1		_		1.			100			1				1.8			
6.		1.1	_	-		18		-					1						
7.	5	100	1				-		-			-		-	-	-			
9.	And a second		-	-		-			-				-			-	1		1
10.		-	-	-	1			<u> </u>	-	1	-	-		-	1	-		-	-11
RELINQUISHED 1. A RELINQUISHED 2. Betwo RELINQUISHED 3 A	412825 1220 1. Boni DATE/TIME: RECEIVED BY: 41281250 2.00 PM 2. DATE		-)	LOW 400	Condition Commer 5 Full Base	ons of bottles	or cooler A Chi 1)e l'	s at receip socters st u # 1	t: 00 spics J.J.M B250 DVS	- Ign elers	non Non Non Non Non Non Non Non Non Non	Y, Co	nt on noison on +D		remp leachs 125	3	Shipment	Complete	
Q1907	WHITE - ALLIANC	CE COPY FC	RRET	URN T	O CLIENT	115 of	W-ALLI/	NCE CO	PΥ	PINK -	SAMPLER	COPY	2				4,10		1

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

LOGIN REPORT/SAMPLE TRANSFER

Client Contact : Invoice Name :		 Q1907 WALS01 Walsh Construction Compase Jesse A. Sylvestri Walsh Construction Compase Jesse A. Sylvestri 		Project Name :		4/28/2025 4:13:00 PM Walsh CO-032 Sampling	Project Mgr : Report Type : Level 2 level 1					
						4/28/2025 12:00:00 AM	В	xcel NY				
LAB ID	CLIEN		yivesiii	MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	Date Signoff : METHOD		FAX DATE	DUE DATES
Q1907-01		CO-8R-	WC	Solid	04/28/2025	11:50	VOC-TCLVOA-10	-	8260D	10 Bus. Days		

Relinguished By ; Date / Time : 4.

R Received By : 4/25/25 1645 Date / Time :

Storage Area : VOA Refridgerator Room