

DATA PACKAGE

GENERAL CHEMISTRY METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS VOLATILE ORGANICS

PROJECT NAME : 540 DEGRAW ST, BROOKLYN, NY - E9309

ENTACT

606 E. Baltimore Pike

Floor 3

Media, PA - 19063

Phone No: 4844440702

ORDER ID: Q1929

ATTENTION : Jarod Stanfield

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	5
2.1) TCLP VOA- Case Narrative	5
2.2) TCLP BNA- Case Narrative	7
2.3) TCLP Pesticide- Case Narrative	9
2.4) PCB- Case Narrative	11
2.5) TCLP Herbicide- Case Narrative	13
2.6) Metals-TCLP- Case Narrative	15
2.7) Genchem- Case Narrative	17
3) Qualifier Page	19
4) QA Checklist	21
5) TCLP VOA Data	22
6) TCLP BNA Data	30
7) TCLP Pesticide Data	41
8) PCB Data	48
9) TCLP Herbicide Data	54
10) Metals-TCLP Data	61
11) Genchem Data	67
12) Shipping Document	84
12.1) CHAIN OF CUSTODY	85
12.2) ROC	87
12.3) Lab Certificate	88

Client Sample Number

Cover Page

- **Order ID :** Q1929
- Project ID: 540 Degraw St, Brooklyn, NY E9309
 - Client : ENTACT

Lab Sample Number

Q1929-01	WC-A4-02-G
Q1929-02	WC-A4-02-C
Q1929-03	WC-A4-02-C
Q1929-04	WC-A4-02-C
Q1929-05	WC-A1-03-G
Q1929-06	WC-A1-03-C
Q1929-07	WC-A1-03-C
Q1929-08	WC-A1-03-C
Q1929-09	WC-A1-04-G
Q1929-10	WC-A1-04-C
Q1929-11	WC-A1-04-C
Q1929-12	WC-A1-04-C
Q1929-14	WC-A4-02-C
Q1929-15	WC-A1-03-C
Q1929-16	WC-A1-04-C

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following

signature.

Signature :

By Nimisha Pandya, QA/QC Supervisor at 1:50 pm, May 15, 2025

Date: 5/9/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labora	atory Name :	Alliance Technical G	iroup LLC	Client :	ENTACT					
Projec	t Location :	Brooklyn, NY		Project Number :	E9309					
	aboratory Sample ID(s) : Q1929 ist DKQP Methods Used (e.g., 8260,8270, et Cetra) Sampling Date(s) : 04/29/2025,04/30/2025 ,1030,1311,1311,ZHE,160.4,1664A,6010D,7470A,8081B,8082A,8151A,8260D, 8270E,9012B,9034,9045D,9071B,9095B,ASTM,SM2540 B.SM4500-NH3.SM5220 D									
1	specified QA/ explain any c	lytical method referen /QC performance crite riteria falling outside c of Known Quality perf	ria followed, includin f acceptable guidelin	g the requirement to es, as specified in th		V	Yes		No	
1A	Were the met	thod specified handlin	g, preservation, and	holding time requirer	ments met?		Yes	\checkmark	No	
1B		Was the EPH metho of respective DKQ me		significant modification	ons (see		Yes		No	☑ N/A
2		ples received by the la the associated chain-			at	\checkmark	Yes		No	
3	Were sample	s received at an appro	opriate temperature (4±2° C)?		\checkmark	Yes		No	□ N/A
4	Were all QA/0 standards ad	QC performance criter chieved?	ia specified in the N	IDEP DKQP			Yes	\checkmark	No	
5		ting limits specified or d to the laboratory pri				\checkmark	Yes		No	
	b)Were these	e reporting limits met?				\checkmark	Yes		No	□ N/A
6	results repor	lytical method referen ted for all constituents the DKQP documents	s identified in the met	hod-specific analyte		V	Yes		No	
7	Are project-s	pecific matrix spikes a	nd/or laboratory dupl	icates included in thi	s data set?		Yes	\checkmark	No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

2 2.1

CASE NARRATIVE

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: TCLP VOA

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for TCLP VOA.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UIThe analysis of TCLP VOA was based on method 8260D and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-A1-03-G [Dibromofluoromethane - 47%], WC-A1-03-GRE [Dibromofluoromethane - 22%], WC-A1-04-GRE [Dibromofluoromethane - 33%], These compounds did not meet the NJDKQP criteria and in-house criteria. For WC-A1-04-G [Dibromofluoromethane -73%], This compound meet the NJDKQP criteria but did not met the in-house criteria. Samples are reanalyzed to confirm results. Original and Reanalysis both are reported. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank Spike Duplicate met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements . The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

2.2

CASE NARRATIVE

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: TCLP BNA

A. Number of Samples and Date of Receipt:

15 Solid samples were received on 05/01/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for TCLP BNA.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um dfThe samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of TCLP BNA was based on method 8270E and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for WC-A1-03-C [2,4,6-Tribromophenol - 118%], WC-A1-04-C [2,4 and6-Tribromophenol - 119%]. These compounds did not meet the NJDKQP criteria but met the in-house criteria .

The Internal Standards Areas met the acceptable requirements except for WC-A1-03-C which is not associated for required compounds, therefore no corrective action was taken. The Retention Times were acceptable for all samples.

The MS {Q1916-04MS} with File ID: BF142284.D recoveries met the requirements for all compounds except for Pyridine[0%] due to matrix interference.

The MSD {Q1916-04MSD} with File ID: BF142285.D recoveries met the acceptable requirements except for Pyridine[0%] due to matrix interference.

The RPD met criteria.

The Blank Spike met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination. he % RSD is greater than 20% in the Initial Calibration (8270-BF043025.M) for 2,4-Dinitrotoluene, this compound is passing on Linear Regression. The Continuous Calibration met the requirements . The Tuning criteria met requirements.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2 2.3

CASE NARRATIVE

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: TCLP Pesticide

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for TCLP Pesticide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_D. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11.The analysis of TCLP Pesticides was based on method 8081B and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds. The MSD recoveries met the acceptable requirements. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

2.3

2 2.4

CASE NARRATIVE

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID# Q1929 Test Name: PCB

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_P. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11.The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds. The MSD recoveries met the acceptable requirements. The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

By Nimisha Pandya, QA/QC Supervisor at 1:52 pm, May 15, 2025

2 2.5

CASE NARRATIVE

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: TCLP Herbicide

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for TCLP Herbicide.

C. Analytical Techniques:

The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324The analysis of TCLP Herbicides was based on method 8151A and extraction was done based on method 3510 and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for B-167-SB01MS [2,4-DCAA(1) - 138%], B-167-SB01MSD [2,4-DCAA(1) - 138%], WC-A4-02-C [2,4-DCAA(2) - 62%], WC-A1-04-C [2 and4-DCAA(2) - 59%]. These compounds did not meet the NJDKQP criteria but met the in-house criteria .

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds .

The MSD {Q1901-08MSD} with File ID: PS030064.D recoveries met the acceptable requirements except for 2,4,5-TP(Silvex)[132%] and 2,4-D[134%]. These compounds did not meet the NJDKQP criteria but met the in-house criteria.

The RPD met criteria.

The Blank Spike met requirements for all samples .

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements .

The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.6

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: TCLPMetals Group2,TCLP Mercury

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for TCLPMetals Group2, TCLP Mercury.

C. Analytical Techniques:

The analysis of TCLPMetals Group2 was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of TCLP Mercury was based on method 7470A and TCLP extraction method was 1311.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (MH-MMMSD) analysis met criteria for all samples except for Mercury due to matrix interference.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

	APPROVED
Signature	By Nimisha Pandya, QA/QC Supervisor at 1:54 pm, May 15, 2025

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

27

ENTACT Project Name: 540 Degraw St, Brooklyn, NY - E9309 Project # N/A Order ID # Q1929 Test Name: ASTM Ammonia,TS,Oil and Grease,Corrosivity,pH,Paint Filter,ASTM TS,TVS,ASTM COD,Ignitability,ASTM Oil and Grease,Reactive Cyanide,Reactive Sulfide

A. Number of Samples and Date of Receipt:

12 Solid samples were received on 05/01/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: ASTM Ammonia, ASTM COD, ASTM Leach Extraction, ASTM Oil and Grease, ASTM TS, Corrosivity, Ignitability, Oil and Grease, Paint Filter, PCB, pH, RCRA CHARACTERISTICS, Reactive Cyanide, Reactive Sulfide, TCLP BNA, TCLP Extraction, TCLP Herbicide, TCLP ICP Metals, TCLP Mercury, TCLP Pesticide, TCLP VOA, TCLP ZHE Extraction, TCLP-FULL, TCLPMetals Group2, TS and TVS. This data package contains results for ASTM Ammonia,TS,Oil and Grease,Corrosivity,pH,Paint Filter,ASTM TS,TVS,ASTM COD,Ignitability,ASTM Oil and Grease,Reactive Cyanide,Reactive Sulfide.

C. Analytical Techniques:

The analysis of Ignitability was based on method 1030, The analysis of TVS was based on method 160.4, The analysis of ASTM Oil and Grease was based on method 1664A, The analysis of Reactive Cyanide was based on method 9012B, The analysis of Reactive Sulfide was based on method 9034, The analysis of Corrosivity,pH was based on method 9045D, The analysis of Oil and Grease was based on method 9071B, The analysis of Paint Filter was based on method 9095B, The analysis of ASTM TS,TS was based on method SM2540 B, The analysis of ASTM Ammonia was based on method SM4500-NH3 and The analysis of ASTM COD was based on method SM5220 D.

D. QA/ QC Samples:

The Holding Times were met for all samples except for WC-A1-03-C of Corrosivity, for WC-A1-04-C of Corrosivity.for WC-A4-02-C of Corrosivity. As these samples received out of hold.

The Blank Spike met requirements for all samples.

The Duplicate (WC-12DUP) analysis met criteria for all samples except for Reactive Cyanide but sample and Duplicate results are below reporting limit.

The Matrix Spike (WC-A4-02-CMS) analysis met criteria for all samples except for ASTM Ammonia due to matrix interference.

The Matrix Spike Duplicate analysis met criteria for all samples. The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements.

E. Additional Comments:

As per method 1664A, MS/MSD is required to be performed with the sample analysis. However, Lab did not receive sufficient volume to perform the MS/MSD therefore MS/MSD were not performed for this project.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).						
U	Indicates the analyte was analyzed for, but not detected.						
ND	Indicates the analyte was analyzed for, but not detected						
Ε	Indicates the reported value is estimated because of the presence of interference						
М	Indicates Duplicate injection precision not met.						
Ν	Indicates the spiked sample recovery is not within control limits.						
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).						
*	Indicates that the duplicate analysis is not within control limits.						
+	Indicates the correlation coefficient for the MSA is less than 0.995.						
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.						
M OR	Method qualifiers"P"for ICP instrument"PM"for ICP when Microwave Digestion is used"CV"for Manual Cold Vapor AA"AV"for automated Cold Vapor AA"CA"for MIDI-Distillation Spectrophotometric"AS"for Semi – Automated Spectrophotometric"C"for Manual Spectrophotometric"T"for Titrimetric"NR"for analyte not required to be analyzedIndicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.						
Q	Indicates the LCS did not meet the control limits requirements						
Н	Sample Analysis Out Of Hold Time						

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q1929

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u>✓</u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	✓
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u>✓</u>
All runlogs and manual integration are reviewed for requirements	<u>✓</u>
All manual calculations and /or hand notations verified	<u>✓</u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sheet SW-846

SDG No.:	Q1929
Client:	ENTACT

Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID:	WC-A4-02-G						
Q1929-01	WC-A4-02-G	TCLP	Benzene	15.4	0.15	5.00	ug/L
			Total Voc :	15.4			
			Total Concentration:	15.4			
Client ID:	WC-A1-03-G						
Q1929-05	WC-A1-03-G	TCLP	Benzene	77.1	0.15	5.00	ug/L
			Total Voc :	77.1			
			Total Concentration:	77.1			
Client ID:	WC-A1-03-GRE						
Q1929-05RE	WC-A1-03-GRE	TCLP	Benzene	60.3	0.15	5.00	ug/L
			Total Voc :	60.3	•		
			Total Concentration:	60.3			
Client ID:	WC-A1-04-G						
Q1929-09	WC-A1-04-G	TCLP	Benzene	8.80	0.15	5.00	ug/L
			Total Voc :	8.80)		
			Total Concentration:	8.80			
Client ID:	WC-A1-04-GRE						
Q1929-09RE	WC-A1-04-GRE	TCLP	Benzene	7.40	0.15	5.00	ug/L
			Total Voc :	7.40	1		
			Total Concentration:	7.40			

5

В

С

D

5

A B C D

Client:	ENTACT	Date Collected:	04/29/25
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25
Client Sample ID:	WC-A4-02-G	SDG No.:	Q1929
Lab Sample ID:	Q1929-01	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :	SW5035		

	TADCETS						
•	CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
	VX046027.D	1			05/02/25 15:01	VX050225	
	File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	

TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	0.98	U	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	15.4		0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.5		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	40.9		70 (75) - 130 (124)	82%	SPK: 50
2037-26-5	Toluene-d8	51.3		70 (86) - 130 (113)	103%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.5		70 (77) - 130 (121)	107%	SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	63800	5.55			
540-36-3	1,4-Difluorobenzene	124000	6.757			
3114-55-4	Chlorobenzene-d5	116000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	53200	12.024			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

B

Client:	ENTACT	Date Collected:	04/30/25
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25
Client Sample ID:	WC-A1-03-G	SDG No.:	Q1929
Lab Sample ID:	Q1929-05	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX046028.D	1			05/02/25 15:25	VX050225	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	0.98	U	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	77.1		0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.5		70 (74) - 130 (125)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	23.4	*	70 (75) - 130 (124)	47%	SPK: 50
2037-26-5	Toluene-d8	50.3		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	55.4		70 (77) - 130 (121)	111%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	64500	5.544			
540-36-3	1,4-Difluorobenzene	128000	6.757			
3114-55-4	Chlorobenzene-d5	121000	10.049			
3855-82-1	1,4-Dichlorobenzene-d4	55500	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

С

Client:	ENTACT	Date Collected:	04/30/25
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25
Client Sample ID:	WC-A1-03-GRE	SDG No.:	Q1929
Lab Sample ID:	Q1929-05RE	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086489.D	1			05/05/25 16:25	VN050525	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	0.98	U	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	60.3		0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.3		70 (74) - 130 (125)	99%	SPK: 50
1868-53-7	Dibromofluoromethane	10.9	*	70 (75) - 130 (124)	22%	SPK: 50
2037-26-5	Toluene-d8	51.8		70 (86) - 130 (113)	104%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.5		70 (77) - 130 (121)	107%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	146000	8.224			

U = Not Detecte	ed

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection

540-36-3

3114-55-4

3855-82-1

- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements

1,4-Difluorobenzene

1,4-Dichlorobenzene-d4

Chlorobenzene-d5

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution

9.1

11.865

13.788

281000

276000

128000

- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

26 of 88

B

Client:	ENTACT	Date Collected:	04/30/25
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25
Client Sample ID:	WC-A1-04-G	SDG No.:	Q1929
Lab Sample ID:	Q1929-09	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	DB-624UI ID: 0.18	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VX046029.D	1			05/02/25 15:48	VX050225	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	0.98	U	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	8.80		0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	51.1		70 (74) - 130 (125)	102%	SPK: 50
1868-53-7	Dibromofluoromethane	36.6		70 (75) - 130 (124)	73%	SPK: 50
2037-26-5	Toluene-d8	50.7		70 (86) - 130 (113)	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	55.4		70 (77) - 130 (121)	111%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	64500	5.544			
540-36-3	1,4-Difluorobenzene	125000	6.757			
3114-55-4	Chlorobenzene-d5	118000	10.055			
3855-82-1	1,4-Dichlorobenzene-d4	54300	12.018			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

С

Client:	ENTACT	Date Collected:	04/30/25
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25
Client Sample ID:	WC-A1-04-GRE	SDG No.:	Q1929
Lab Sample ID:	Q1929-09RE	Matrix:	TCLP
Analytical Method:	SW8260	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	TCLP VOA
GC Column:	RXI-624 ID : 0.25	Level :	LOW
Prep Method :	SW5035		

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086490.D	1			05/05/25 16:49	VN050525	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	5.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	5.00	ug/L
78-93-3	2-Butanone	0.98	U	0.98	25.0	ug/L
56-23-5	Carbon Tetrachloride	0.25	U	0.25	5.00	ug/L
67-66-3	Chloroform	0.25	U	0.25	5.00	ug/L
71-43-2	Benzene	7.40		0.15	5.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	5.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	5.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	5.00	ug/L
108-90-7	Chlorobenzene	0.12	U	0.12	5.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.8		70 (74) - 130 (125)	100%	SPK: 50
1868-53-7	Dibromofluoromethane	16.4	*	70 (75) - 130 (124)	33%	SPK: 50
2037-26-5	Toluene-d8	51.5		70 (86) - 130 (113)	103%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.6		70 (77) - 130 (121)	103%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	132000	8.218			
540-36-3	1,4-Difluorobenzene	251000	9.1			
3114-55-4	Chlorobenzene-d5	237000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	110000	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

28 of 88

5

A B C

D

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Stanfield			OrderDate: Project: Location:	5/1/2025 12:26 540 Degraw St, L41		- E9309	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-01	WC-A4-02-G	TCLP	TCLP VOA	8260D	04/29/25		05/02/25	05/01/25
Q1929-05	WC-A1-03-G	TCLP	TCLP VOA	8260D	04/30/25		05/02/25	05/01/25
Q1929-05R	E WC-A1-03-GRE	TCLP	TCLP VOA	8260D	04/30/25		05/05/25	05/01/25
Q1929-09	WC-A1-04-G	TCLP	TCLP VOA	8260D	04/30/25		05/02/25	05/01/25
Q1929-09R	E WC-A1-04-GRE	TCLP	TCLP VOA	8260D	04/30/25		05/05/25	05/01/25

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

В	
-	

6

			Hit Summary Sheet SW-846			
SDG No.: Client:	Q1929 ENTACT					
Sample ID Client ID :	Client ID	Matrix	Parameter	Concentration C MDL	RDL	Units
				0.000		
			Total Svoc : Total Concentration:	0.00 0.00		

6

A B C D

<u> </u>

A B C D

CI .				_	~ 11 .	A = · · · · ·	
Client:	ENTACT				Collected:	05/02/25	
Project:	540 Degraw St, Br	ooklyn, NY - E9309		Date I	Received:	05/02/25	
Client Sample ID	D: PB167815TB			SDG	No.:	Q1929	
Lab Sample ID:	PB167815TB			Matri	K:	TCLP	
Analytical Metho	od: SW8270			% Sol	id:	0	
Sample Wt/Vol:	100 Units:	mL		Final	Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:		TCLP BN	JA
Extraction Type :		Decan	ted : N			LOW	11
Injection Volume		GPC Factor :	1.0	GPC	Cleanup :	Ν	PH :
Prep Method :	SW3541						
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	1	Prep Batch II	D
BM050097.D	1	05/02/25 11	:10	05/05/25 12:57	7	PB167847	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine	12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L
95-48-7	2-Methylphenol	11.2	U	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.0	U	11.0		100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	U	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	U	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	U	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	U	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	U	5.20		50.0	ug/L
87-86-5	Pentachlorophenol	15.8	U	15.8		100	ug/L
SURROGATES						010/	
367-12-4	2-Fluorophenol	137		15 (10) - 110 (139		91%	SPK: 150
13127-88-3	Phenol-d6	134		15 (10) - 110 (134		89%	SPK: 150
4165-60-0	Nitrobenzene-d5	81.5		30 (49) - 130 (133	,	81%	SPK: 100
321-60-8	2-Fluorobiphenyl	78.3		30 (52) - 130 (132		78%	SPK: 100
118-79-6	2,4,6-Tribromophenol	148		15 (44) - 110 (137		98%	SPK: 150
1718-51-0	Terphenyl-d14	95.0		30 (48) - 130 (125))	95%	SPK: 100
INTERNAL STANI							
3855-82-1	1,4-Dichlorobenzene-d4	249000	7.745				
1146-65-2	Naphthalene-d8	869000	10.545				
15067-26-2	Acenaphthene-d10	612000	14.398				
1517-22-2	Phenanthrene-d10	1240000					
1719-03-5	Chrysene-d12	1110000	21.386				
1520-96-3	Perylene-d12	1190000	24.385				

		Repor	t of Analy	vsis		
Client:	ENTACT			Date Collected:	05/02/25	
Project:	540 Degraw St,	Brooklyn, NY - E9309		Date Received:	05/02/25	
Client Sample ID:	PB167815TB			SDG No.:	Q1929	
Lab Sample ID:	PB167815TB			Matrix:	TCLP	
Analytical Method:	SW8270			% Solid:	0	
Sample Wt/Vol:	100 Units	s: mL		Final Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:	TCLP BNA	
Extraction Type :		Decar	nted : N	Level :	LOW	
Injection Volume :		GPC Factor :	1.0	GPC Cleanup :	N PH	:
Prep Method :	SW3541					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BM050097.D	1	05/02/25 1	1:10	05/05/25 12:57	PB167847	
CAS Number Pa	rameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

6

B

6

ENTACT				Date Collected.	04/29/25	
	rooklyn NV - F9309					
Q1929-03				Matrix:	TCLP	
od: SW8270				% Solid:	0	
100 Units:	mL			Final Vol:	1000	uL
	uL			Test:	TCLP BI	NA
	Deca	nted · N	I	Level ·	LOW	
						PH :
	GPC Factor .	1.0		GPC Cleanup .	IN	rπ.
SW3541						
Dilution:	Prep Date		Date An	alyzed	Prep Batch I	ID
1	05/02/25 1	2:15	05/02/25	5 21:11	PB167847	
Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
Pyridine	12.8	IJ	12.8		50.0	ug/L
						ug/L ug/L
						ug/L
3+4-Methylphenols	11.0	U	11.0		100	ug/L
Hexachloroethane	6.50	U	6.50		50.0	ug/L
Nitrobenzene	7.60	U	7.60		50.0	ug/L
Hexachlorobutadiene	5.40	U	5.40		50.0	ug/L
2,4,6-Trichlorophenol	5.10	U	5.10		50.0	ug/L
2,4,5-Trichlorophenol	6.20	U	6.20		50.0	ug/L
2,4-Dinitrotoluene	12.2	U	12.2		50.0	ug/L
Hexachlorobenzene	5.20	U	5.20		50.0	ug/L
Pentachlorophenol	15.8	U	15.8		100	ug/L
						a
						SPK: 150
						SPK: 150
						SPK: 100
						SPK: 100
						SPK: 150
Ierphenyl-d14	85.1		30 (48) - 13	0 (125)	85%	SPK: 100
DARDS						
1,4-Dichlorobenzene-d4	198000	6.904				
Naphthalene-d8	757000	8.187				
		_				
Acenaphthene-d10	397000	9.939				
		9.939 11.428 14.063				
	S: WC-A4-02-C Q1929-03 od: SW8270 100 Units: 100 Units: S: SW3541 Dilution: 1 Parameter SW3541 Pyridine 1 1,4-Dichlorobenzene 2-Methylphenol 3+4-Methylphenols Hexachloroethane Nitrobenzene Hexachlorobutadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorobiphenol 2,4,6-Trichlorophenol 2-Fluorobiphenyl 2,4,6-Tribromophenol 14 DARDS D	540 Degraw St, Brooklyn, NY - E9309D:WC-A4-02-CQ1929-03od:SW8270100Units:mLuL:Deca:GPC Factor :SW3541SW3541ParameterConc.Pyridine105/02/25 1ParameterConc.Pyridine12.81,4-Dichlorobenzene5.302-Methylphenol11.23+4-Methylphenols11.0Hexachlorobtadiene5.402,4,6-Trichlorophenol5.102,4,5-Trichlorophenol5.102,4,5-Trichlorophenol15.82-Fluorophenol117Phenol-d6109Nitrobenzene-d596.92-Fluorobiphenyl76.92,4,6-Tribromophenol144Terphenyl-d1485.1DARDSSubara	540 Degraw St, Brooklyn, NY - E9309 WC-A4-02-C Q1929-03 ad: SW8270 100 Units: uL : uL : Cecanted : N SW3541 Dilution: Prep Date 1 05/02/25 12:15 Parameter Conc. Qualifier Pyridine 1.2.8 U 1,4-Dichlorobenzene 5.30 U 2-Methylphenol 11.2 U 3+4-Methylphenols 11.0 U Hexachlorobtataliene 5.40 U 2,4,6-Trichlorophenol 5.10 U 2,4,6-Trichlorophenol 15.8 U 2-Fluorophenol 117 Phenol-d6 109 Nitrobenzene-d5 96.9 2-Fluorobiphenyl 76.9 2,4,6-Tribromophenol 144 Terphenyl-d14 85.1	540 Degraw St, Brooklyn, NY - E9309 $WC-A4-02-C$ Q1929-03 od: SW8270 100 Units: uL : uL : Decanted : N : GPC Factor : 1.0 SW3541 SW3541 Date Arr 1 05/02/25 12:15 05/02/2 Parameter Conc. Qualifier MDL Pyridine 1.2.8 U 1.2.8 1,4-Dichlorobenzene 5.30 U 5.30 2-Methylphenol 11.2 U 11.2 3+4-Methylphenols 11.0 U 11.0 Hexachlorobtnane 6.50 U 6.50 Nitrobenzene 7.60 U 7.60 Hexachlorobutadiene 5.40 U 5.40 2,4,6-Trichlorophenol 5.10 U 5.20 Pentachlorobenzene 5.20 U 5.20 Pentachlorobenzene 5.20 U 5.20 Pentachlorobenzene 5.20 U 5.8 2-F	S40 Degraw St, Brooklyn, NY - E9309 Date Received: WC-A4-02-C SDG No.: Q1929-3 Matrix: od: SW8270 % Solid: 100 Units: mL final Vol: uL Test:	540 Degraw St, Brooklyn, NY - E9309 Date Received: 05/01/25 0: WC-A4-02-C SDG No.: Q1929 0d: SW3270 Matrix: TCLP od: SW3270 % Solid: 0 100 Units: mL Final Vol: 1000 uL uL Test: TCLP BC :: GPC Factor: 1.0 GPC Cleanup: N SW3541 SW3541 Dilution: Prep Date Date Analyzed Prep Batch.1 Parameter Conc. Qualifier MDL LOQ / CRQL Pyridine 1.2.8 U 12.8 50.0 1.4-Dichlorobenzene 5.30 U 5.30 S0.0 2.4-Dinitrobuezene 7.60 U 1.0 100 Hexachlorobutadiene 5.40 U 5.40 50.0 2.4-Diritrotoluene 5.20 U 5.20 50.0 2.4-Diritrotophenol 5.10 U 5.0 50.0 2.4-Diritrobuezene 7.60 U 7.60 50.0 2.4-Diritrotophenol </td

			Report	t of Ar	naly	sis					
Client:	ENTACT						Date Collected:		04/29/25		
Project:	540 Degraw S	St, Brooklyn,	NY - E9309				Date Received:		05/01/25		
Client Sample ID:	WC-A4-02-C						SDG No.:		Q1929		
Lab Sample ID:	Q1929-03						Matrix:		TCLP		
Analytical Method	l: SW8270						% Solid:		0		
Sample Wt/Vol:	100 U	nits: mL					Final Vol:		1000		uL
Soil Aliquot Vol:		uL					Test:		TCLP BN	NА	
Extraction Type :			Decant	ted :	Ν		Level :		LOW		
Injection Volume	:	G	PC Factor :	1.0			GPC Cleanup :	Ν		PH :	
Prep Method :	SW3541										
File ID/Qc Batch:	Dilution:		Prep Date			Date A	nalyzed	Pi	rep Batch I	D	
BF142293.D	1		05/02/25 12	2:15		05/02/2	25 21:11	Pl	B167847		
CAS Number	Parameter		Conc.	Qualif	lier	MDL		LOQ	/ CRQL		Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

6

С

3855-82-1 1146-65-2 15067-26-2 1517-22-2 1719-03-5 1520-96-3

Perylene-d12

Report of Analysis

ι.

		•		•		
Client:	ENTACT			Date Collected	: 04/30/25	5
Project:	540 Degraw St, B	rooklyn, NY - E9309		Date Received	: 05/01/25	5
Client Sample II	D: WC-A1-03-C			SDG No.:	Q1929	
Lab Sample ID:	Q1929-07			Matrix:	TCLP	
-	~			% Solid:		
Analytical Metho					0	
Sample Wt/Vol:	100 Units:	mL		Final Vol:	1000	uL
Soil Aliquot Vol:	:	uL		Test:	TCLP B	NA
Extraction Type	:	Decan	ted : N	Level :	LOW	
Injection Volume	2:	GPC Factor :	1.0	GPC Cleanup	: N	PH :
Prep Method :	SW3541			_		
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch	ID
BP024532.D	1	05/02/25 11	:10	05/05/25 19:28	PB167847	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
			_			
TARGETS 110-86-1	Pyridine	12.8	U	12.8	50.0	ug/I
106-46-7	1,4-Dichlorobenzene	5.30	U U	5.30	50.0	ug/L ug/L
95-48-7	2-Methylphenol	11.2	U	11.2	50.0	ug/L ug/L
65794-96-9	3+4-Methylphenols	11.0	U	11.0	100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50	50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60	50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	U	5.40	50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	U	5.10	50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	U	6.20	50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	U	12.2	50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	U	5.20	50.0	ug/L
87-86-5	Pentachlorophenol	15.8	U	15.8	100	ug/L
SURROGATES						_
367-12-4	2-Fluorophenol	128		15 (10) - 110 (139)	85%	SPK: 150
13127-88-3	Phenol-d6	102		15 (10) - 110 (134)	68%	SPK: 150
4165-60-0	Nitrobenzene-d5	94.0		30 (49) - 130 (133)	94%	SPK: 100
321-60-8	2-Fluorobiphenyl	93.0	ste	30 (52) - 130 (132)	93%	SPK: 100
118-79-6	2,4,6-Tribromophenol	177	*	15 (44) - 110 (137)	118%	SPK: 150
1718-51-0	Terphenyl-d14	95.2		30 (48) - 130 (125)	95%	SPK: 100
INTERNAL STAN						
3855-82-1	1,4-Dichlorobenzene-d4	134000	7.71			
1146-65-2	Naphthalene-d8	525000	10.481			
15067-26-2	Acenaphthene-d10	307000	14.339			
1517-22-2	Phenanthrene-d10	670000 845000	17.139			
1719-03-5	Chrysene-d12	845000	21.592			

24.921

480000

Report of Analysis						
Client:	ENTACT			Date Collected:	04/30/25	
Project:	540 Degraw St,	Brooklyn, NY - E9309		Date Received:	05/01/25	
Client Sample ID	WC-A1-03-C			SDG No.:	Q1929	
Lab Sample ID:	Q1929-07			Matrix:	TCLP	
Analytical Metho	d: SW8270			% Solid:	0	
Sample Wt/Vol:	100 Unit	s: mL		Final Vol:	1000	uL
Soil Aliquot Vol:		uL		Test:	TCLP BNA	
Extraction Type :		Decar	nted : N	Level :	LOW	
Injection Volume	:	GPC Factor :	1.0	GPC Cleanup :	N PH:	
Prep Method :	SW3541					
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
BP024532.D	1	05/02/25 1	1:10	05/05/25 19:28	PB167847	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

С

6

		Repo	rt of Ana	lysis			
Client:	ENTACT				Date Collected:	04/30/25	
Project:	ooklyn, NY - E930	9		Date Received:	05/01/25		
Client Sample ID): WC-A1-04-C				SDG No.:	Q1929	
Lab Sample ID:	Q1929-11				Matrix:	TCLP	
-							
Analytical Metho					% Solid:	0	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	1000	uL
Soil Aliquot Vol:		uL			Test:	TCLP BN	IA
Extraction Type :		Dec	anted : N	N	Level :	LOW	
Injection Volume	:	GPC Factor	: 1.0		GPC Cleanup :	N	PH :
Prep Method :	SW3541				Ĩ		
File ID/Qc Batch:	Dilution:	Prep Date	e	Date A	Analyzed	Prep Batch II	D
BP024533.D	1	05/02/25			/25 20:09	PB167847	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS 110-86-1	Pyridine	12.8	U	12.8		50.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.30	U	5.30		50.0	ug/L ug/L
95-48-7	2-Methylphenol	11.2	U	11.2		50.0	ug/L
65794-96-9	3+4-Methylphenols	11.0	U	11.0		100	ug/L
67-72-1	Hexachloroethane	6.50	U	6.50		50.0	ug/L
98-95-3	Nitrobenzene	7.60	U	7.60		50.0	ug/L
87-68-3	Hexachlorobutadiene	5.40	U	5.40		50.0	ug/L
88-06-2	2,4,6-Trichlorophenol	5.10	U	5.10		50.0	ug/L
95-95-4	2,4,5-Trichlorophenol	6.20	U	6.20		50.0	ug/L
121-14-2	2,4-Dinitrotoluene	12.2	U	12.2		50.0	ug/L
118-74-1	Hexachlorobenzene	5.20	U	5.20		50.0	ug/L
87-86-5	Pentachlorophenol	15.8	U	15.8		100	ug/L
SURROGATES 367-12-4	2-Fluorophenol	125		15 (10) - 1	10 (130)	83%	SPK: 150
13127-88-3	Phenol-d6	123		15 (10) - 1		83% 67%	SPK: 150 SPK: 150
4165-60-0	Nitrobenzene-d5	94.1		30 (49) - 1		07% 94%	SPK: 130 SPK: 100
321-60-8	2-Fluorobiphenyl	88.3		30 (49) - 1		88%	SPK: 100
118-79-6	2,4,6-Tribromophenol	179	*	15 (44) - 1		119%	SPK: 100
1718-51-0	Terphenyl-d14	97.9		30 (48) - 1		98%	SPK: 100
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichlorobenzene-d4	145000) 7.71				
1146-65-2	Naphthalene-d8	562000	0 10.481				
15067-26-2	Acenaphthene-d10	360000) 14.345				
1517-22-2	Phenanthrene-d10	778000) 17.139				
1719-03-5	Chrysene-d12	946000) 21.592				
	Perylene-d12	911000) 24.921				

Report of Analysis											
Client:	ENTACT						Date Collected:		04/30/25		
Project:	540 Degraw	St, Brooklyn,	NY - E9309				Date Received:		05/01/25		
Client Sample ID:	WC-A1-04-0	С					SDG No.:		Q1929		
Lab Sample ID:	Q1929-11						Matrix:		TCLP		
Analytical Method	l: SW8270						% Solid:		0		
Sample Wt/Vol:	100 U	Units: mL					Final Vol:		1000		uL
Soil Aliquot Vol:		uL					Test:		TCLP B	NA	
Extraction Type :			Decan	ted :	Ν		Level :		LOW		
Injection Volume	:	C	PC Factor :	1.0			GPC Cleanup :	Ν		PH :	
Prep Method :	SW3541										
File ID/Qc Batch:	Dilution:		Prep Date			Date A	nalyzed	Pi	rep Batch I	D	
BP024533.D	1		05/02/25 11	:10		05/05/2	25 20:09	Pl	B167847		
CAS Number	Parameter		Conc.	Qualif	lier	MDL		LOQ	/ CRQL		Units

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

С

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Stanfield			OrderDate: Project: Location:	5/1/2025 12:26 540 Degraw St L41		- E9309	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-03	WC-A4-02-C	TCLP			04/29/25			05/01/25
			TCLP BNA	8270E		05/02/25	05/02/25	
Q1929-07	WC-A1-03-C	TCLP			04/30/25			05/01/25
			TCLP BNA	8270E		05/02/25	05/05/25	
Q1929-11	WC-A1-04-C	TCLP			04/30/25			05/01/25
			TCLP BNA	8270E		05/02/25	05/05/25	

6

С

D

Q1929

			Hit St	ummary Sheet SW-846			Α
SDG No.:	Q1929			Order ID:	Q1929		В
Client:	ENTACT			Project ID:	540 Degraw St	, Brooklyn, NY - E9309	С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

0.000 **Total Concentration:**

A B C D

7

Report of Analysis Date Collected: Client: ENTACT Project: 540 Degraw St, Brooklyn, NY - E9309 Date Received: 05/02/25 Client Sample ID: PB167815TB SDG No.: Q1929 Lab Sample ID: PB167815TB Matrix: TCLP SW8081 % Solid: Decanted: Analytical Method: 0 Sample Wt/Vol: 100 Units: mL Final Vol: 10000 uL **TCLP** Pesticide Soil Aliquot Vol: uL Test: Extraction Type: Injection Volume : 1.0 PH : GPC Factor : SW3541B Prep Method : File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD088411.D 1 05/02/25 12:44 05/05/25 09:45 PB167848 Conc. Qualifier MDL LOQ / CRQL Units **CAS Number** Parameter TARGETS 58-89-9 gamma-BHC (Lindane) 0.037 U 0.037 0.50 ug/L 76-44-8 Heptachlor 0.027 U 0.027 0.50 ug/L 1024-57-3 Heptachlor epoxide U 0.096 0.50 0.096 ug/L 72-20-8 Endrin 0.032 U 0.032 0.50 ug/L U 72-43-5 Methoxychlor 0.11 0.11 0.50 ug/L U 8001-35-2 Toxaphene 1.70 1.70 10.0 ug/L 57-74-9 Chlordane 0.88 U 0.88 5.00 ug/L **SURROGATES** 2051-24-3 Decachlorobiphenyl 19.6 30 (43) - 150 (140) 98% SPK: 20 877-09-8 18.2 30 (77) - 150 (126) 91% SPK: 20 Tetrachloro-m-xylene

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit

M = MS/MSD acceptance criteria did not meet requirements

- 43 of 88

7

Report of Analysis

Client:	ENTACT				Date Collected:	04/29/25		
			200					
Project:	540 Degraw St, Br	ooklyn, NY - E9	1309		Date Received:	05/01/25		
Client Sample ID:	WC-A4-02-C				SDG No.:	Q1929		
Lab Sample ID:	Q1929-03				Matrix:	TCLP		
Analytical Method	: SW8081				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Pesticio	le	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	SW3541B							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep	Batch ID	
PD088416.D	1	-	2/25 12:44		05/05/25 10:53	PB16		
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CR	QL	Units
	Parameter	Conc.	Qualifier	MDL		LOQ / CR	QL	Units
CAS Number TARGETS 58-89-9		Conc. 0.037	Qualifier U	MDL 0.037			.50	
TARGETS	Parameter gamma-BHC (Lindane) Heptachlor		-			0		Units ug/L ug/L
TARGETS 58-89-9	gamma-BHC (Lindane)	0.037	U	0.037		0 0	.50	ug/L
TARGETS 58-89-9 76-44-8	gamma-BHC (Lindane) Heptachlor	0.037 0.027	U U	0.037 0.027		0 0 0	.50 .50	ug/L ug/L
TARGETS 58-89-9 76-44-8 1024-57-3	gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	0.037 0.027 0.096	U U U	0.037 0.027 0.096		0 0 0 0	.50 .50 .50	ug/L ug/L ug/L
TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8	gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin	0.037 0.027 0.096 0.032	U U U U	0.037 0.027 0.096 0.032		0 0 0 0 0	.50 .50 .50 .50	ug/L ug/L ug/L ug/L
TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5	gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor	0.037 0.027 0.096 0.032 0.11	U U U U U	0.037 0.027 0.096 0.032 0.11		0 0 0 0 0 1	.50 .50 .50 .50 .50	ug/L ug/L ug/L ug/L ug/L
TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9 SURROGATES	gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene Chlordane	0.037 0.027 0.096 0.032 0.11 1.70 0.88	U U U U U U	0.037 0.027 0.096 0.032 0.11 1.70		0 0 0 0 0 1 5	.50 .50 .50 .50 .50 0.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
TARGETS 58-89-9 76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9	gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	0.037 0.027 0.096 0.032 0.11 1.70	U U U U U U	0.037 0.027 0.096 0.032 0.11 1.70 0.88	- 150 (140)	0 0 0 0 0 1 5	.50 .50 .50 .50 .50 .50	ug/L ug/L ug/L ug/L ug/L ug/L

Comments:

J = Estimated Value
B = Analyte Found in Associated Method Blank
N = Presumptive Evidence of a Compound
* = Values outside of QC limits
D = Dilution
S = Indicates estimated value where valid five-point calibration
was not performed prior to analyte detection in sample.
() = Laboratory InHouse Limit

Q1929

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type:

Report of Analysis

7

С

Q1929 TCLP 0 Decanted: 10000 uL **TCLP** Pesticide

Prep Batch ID

04/30/25

05/01/25

Injection Volume :

Date Analyzed

Date Collected:

Date Received:

SDG No .:

Matrix:

% Solid:

Final Vol:

Test:

CAS Number	Parameter	Conc.	Qu
PD088419.D	1	05	5/02/25 12
File ID/Qc Batch:	Dilution:	Pı	ep Date
Prep Method :	SW3541B		
GPC Factor :	1.0	PH :	

ENTACT

WC-A1-03-C

Q1929-07

SW8081

100

540 Degraw St, Brooklyn, NY - E9309

mL

uL

Units:

PD088419.D	1	05/0	2/25 12:44	05/05/25 11:34	PB167848	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
58-89-9	gamma-BHC (Lindane)	0.037	U	0.037	0.50	ug/L
76-44-8	Heptachlor	0.027	U	0.027	0.50	ug/L
1024-57-3	Heptachlor epoxide	0.096	U	0.096	0.50	ug/L
72-20-8	Endrin	0.032	U	0.032	0.50	ug/L
72-43-5	Methoxychlor	0.11	U	0.11	0.50	ug/L
8001-35-2	Toxaphene	1.70	U	1.70	10.0	ug/L
57-74-9	Chlordane	0.88	U	0.88	5.00	ug/L
SURROGATES						
2051-24-3	Decachlorobiphenyl	21.4		30 (43) - 150 (140)	107%	SPK: 20
877-09-8	Tetrachloro-m-xylene	17.1		30 (77) - 150 (126)	85%	SPK: 20

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

Q1929

7

A B C D

Client:	ENTACT				Date Collected:	04/30/25	
Project:	540 Degraw St, Br	ooklyn, NY - E9	9309		Date Received:	05/01/25	
Client Sample ID:	WC-A1-04-C				SDG No.:	Q1929	
Lab Sample ID:	Q1929-11				Matrix:	TCLP	
Analytical Method	-				% Solid:		Decanted:
-							
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL
Soil Aliquot Vol:		uL			Test:	TCLP Pesticide	
Extraction Type:					Injection Volume :		
GPC Factor :	1.0	PH :					
Prep Method :	SW3541B						
Ttep Wethod .	5 W 55 TD						
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep Ba	tch ID
PD088420.D	1	05/02	2/25 12:44		05/05/25 11:48	PB1678	348
AS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQ	L Units
TARGETS							
58-89-9							
30-09-9	gamma-BHC (Lindane)	0.037	U	0.037		0.5	0 ug/L
76-44-8	gamma-BHC (Lindane) Heptachlor	0.037 0.027	U U	0.037 0.027		0.5) 0.5)	.,
							0 ug/L
76-44-8 1024-57-3	Heptachlor	0.027	U	0.027		0.5	0 ug/L 0 ug/L
76-44-8	Heptachlor Heptachlor epoxide	0.027 0.096	U U	0.027 0.096		0.5) 0.5)	0 ug/L 0 ug/L 0 ug/L
76-44-8 1024-57-3 72-20-8	Heptachlor Heptachlor epoxide Endrin	0.027 0.096 0.032	U U U	0.027 0.096 0.032		0.5) 0.5) 0.5)	0 ug/L 0 ug/L 0 ug/L 0 ug/L
76-44-8 1024-57-3 72-20-8 72-43-5	Heptachlor Heptachlor epoxide Endrin Methoxychlor	0.027 0.096 0.032 0.11	U U U U	0.027 0.096 0.032 0.11		0.5) 0.5) 0.5) 0.5)	0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L
76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2	Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	0.027 0.096 0.032 0.11 1.70	U U U U U	0.027 0.096 0.032 0.11 1.70		0.5) 0.5) 0.5) 0.5) 10.	0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L
76-44-8 1024-57-3 72-20-8 72-43-5 8001-35-2 57-74-9	Heptachlor Heptachlor epoxide Endrin Methoxychlor Toxaphene	0.027 0.096 0.032 0.11 1.70	U U U U U	0.027 0.096 0.032 0.11 1.70 0.88	- 150 (140)	0.5) 0.5) 0.5) 0.5) 10.	0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L 0 ug/L

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

Q1929

LAB CHRONICLE

OrderID: Client: Contact:	Client: ENTACT			OrderDate: Project: Location:		5/1/2025 12:26:00 PM 540 Degraw St, Brooklyn, NY - E9309 L41		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-02	WC-A4-02-C	SOIL			04/29/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-03	WC-A4-02-C	TCLP			04/29/25			05/01/25
			TCLP Herbicide	8151A		05/05/25	05/06/25	
			TCLP Pesticide	8081B		05/02/25	05/05/25	
Q1929-06	WC-A1-03-C	SOIL			04/30/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-07	WC-A1-03-C	TCLP			04/30/25			05/01/25
			TCLP Herbicide	8151A		05/05/25	05/06/25	
			TCLP Pesticide	8081B		05/02/25	05/05/25	
Q1929-10	WC-A1-04-C	SOIL			04/30/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-11	WC-A1-04-C	TCLP			04/30/25			05/01/25
			TCLP Herbicide TCLP Pesticide	8151A 8081B		05/05/25 05/02/25	05/06/25 05/05/25	

			Hit Sun	nmary Sheet SW-846			Α
SDG No.:	Q1929			Order ID:	Q1929		В
Client:	ENTACT			Project ID:	540 Degraw St,	Brooklyn, NY - E9309	С
Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL Units	D
Client ID :							

0.000 **Total Concentration:**

A B C D

ENTACT

540 Degraw St, Brooklyn, NY - E9309

Client:

Project:

Lab Sample ID:

Sample Wt/Vol:

GPC Factor : Prep Method

PP071742.D

CAS Number

TARGETS

12674-11-2

11104-28-2

11141-16-5

53469-21-9

12672-29-6

11097-69-1

37324-23-5

11100-14-4

11096-82-5

2051-24-3

SURROGATES 877-09-8

Date Collected:

Date Received:

04/29/25

05/01/25

Report of Analysis

Client Sample ID: WC-A4-02-C SDG No.: Q1929 Q1929-02 Matrix: SOIL % Solid: Analytical Method: SW8082A 86.7 Decanted: 30.05 Units: Final Vol: 10000 uL g PCB Soil Aliquot Vol: uL Test: Extraction Type: Injection Volume : PH : 1.0 SW3541B File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 05/02/25 09:45 05/02/25 14:42 PB167834 1 Units(Dry Weight) Parameter Conc. Qualifier MDL LOQ / CRQL Aroclor-1016 4.50 U 4.50 19.6 ug/kg Aroclor-1221 4.60 U 4.60 19.6 ug/kg Aroclor-1232 U 4.30 4.30 19.6 ug/kg Aroclor-1242 4.60 U 4.60 19.6 ug/kg Aroclor-1248 6.80 U 6.80 19.6 ug/kg Aroclor-1254 3.70 U 3.70 19.6 ug/kg Aroclor-1262 U 5.80 5.80 19.6 ug/kg Aroclor-1268 4.10 U 4.10 19.6 ug/kg U Aroclor-1260 3.70 3.70 19.6 ug/kg Tetrachloro-m-xylene 17.0 85% SPK: 20 30 (32) - 150 (144) Decachlorobiphenyl 16.3 30 (32) - 150 (175) 82% SPK: 20

Comments:

U = Not Detected

LOO = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration

was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Report	of A	Ana	lysis
1			•

	Client:	ENTACT					Date Collected:	04/30/25	
L	Project:	540 Degraw	St, Brook	dyn, NY -	E9309		Date Received:	05/01/25	
L	Client Sample ID:	WC-A1-03-	С				SDG No.:	Q1929	
L	Lab Sample ID:	Q1929-06					Matrix:	SOIL	
L	Analytical Method:	SW8082A					% Solid:	77.7 Dec	canted:
L	Sample Wt/Vol:	30.01	Units:	g			Final Vol:	10000	uL
L	Soil Aliquot Vol:			uL			Test:	РСВ	
L	Extraction Type:						Injection Volume :	102	
L	GPC Factor :	1.0	ום	H :			injection volume .		
L			PI	1.					
	Prep Method :	SW3541B							
ſ	File ID/Qc Batch:	Dilution:		Pr	ep Date		Date Analyzed	Prep Batcl	h ID
l	PP071743.D	1		05	/02/25 09:45		05/02/25 14:59	PB167834	L .
	CAS Number	Parameter		Conc.	Qualifier	MDL		LOQ / CRQL	Units(Dry Weight)
-									
-	TARGETS 12674-11-2	Aroclor-1016		5.10	U	5.10		21.9	ug/kg
				5.10 5.20	U U	5.10 5.20		21.9 21.9	ug/kg ug/kg
	12674-11-2	Aroclor-1016							
	12674-11-2 11104-28-2	Aroclor-1016 Aroclor-1221		5.20	U	5.20		21.9	ug/kg
-	12674-11-2 11104-28-2 11141-16-5	Aroclor-1016 Aroclor-1221 Aroclor-1232		5.20 4.80	U U	5.20 4.80		21.9 21.9	ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242		5.20 4.80 5.20	U U U	5.20 4.80 5.20		21.9 21.9 21.9	ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248		5.20 4.80 5.20 7.60	U U U U	5.20 4.80 5.20 7.60		21.9 21.9 21.9 21.9 21.9	ug/kg ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254		5.20 4.80 5.20 7.60 4.10	U U U U U U U	5.20 4.80 5.20 7.60 4.10		21.9 21.9 21.9 21.9 21.9 21.9	ug/kg ug/kg ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262		5.20 4.80 5.20 7.60 4.10 6.50	U U U U U	5.20 4.80 5.20 7.60 4.10 6.50		21.9 21.9 21.9 21.9 21.9 21.9 21.9	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262 Aroclor-1268 Aroclor-1260		5.20 4.80 5.20 7.60 4.10 6.50 4.60	U U U U U U U	5.20 4.80 5.20 7.60 4.10 6.50 4.60		 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4 11096-82-5	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262 Aroclor-1268	ne	5.20 4.80 5.20 7.60 4.10 6.50 4.60	U U U U U U U	5.20 4.80 5.20 7.60 4.10 6.50 4.60 4.20	- 150 (144)	 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9 	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 37324-23-5 11100-14-4 11096-82-5 SURROGATES	Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1262 Aroclor-1268 Aroclor-1260		5.20 4.80 5.20 7.60 4.10 6.50 4.60 4.20	U U U U U U U	5.20 4.80 5.20 7.60 4.10 6.50 4.60 4.20 30 (32)	- 150 (144) - 150 (175)	 21.9 	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

 $\mathbf{S}=\mathbf{Indicates}$ estimated value where valid five-point calibration

was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

ENTACT

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol:

Extraction Type:

File ID/Qc Batch:

PP071744.D

CAS Number

TARGETS

12674-11-2

11104-28-2

11141-16-5

53469-21-9

12672-29-6

11097-69-1

37324-23-5

11100-14-4

11096-82-5

2051-24-3

Comments:

SURROGATES 877-09-8

GPC Factor : Prep Method Date Collected:

04/30/25

Report of Analysis

540 Degraw St, Brooklyn, NY - E9309 Date Received: 05/01/25 WC-A1-04-C SDG No.: Q1929 Q1929-10 Matrix: SOIL % Solid: SW8082A 81.5 Decanted: 30.03 Units: Final Vol: 10000 uL g PCB uL Test: Injection Volume : PH : 1.0 SW3541B Dilution: Prep Date Date Analyzed Prep Batch ID 05/02/25 09:45 05/02/25 15:15 PB167834 1 LOQ / CRQL Units(Dry Weight) Parameter Conc. Qualifier MDL Aroclor-1016 4.80 U 4.80 20.8 ug/kg Aroclor-1221 4.90 U 4.90 20.8 ug/kg Aroclor-1232 U 4.60 4.60 20.8 ug/kg Aroclor-1242 4.90 U 4.90 20.8 ug/kg Aroclor-1248 7.30 U 7.30 20.8 ug/kg Aroclor-1254 3.90 U 3.90 20.8 ug/kg Aroclor-1262 U 6.20 6.20 20.8 ug/kg Aroclor-1268 4.40 U 4.40 20.8 ug/kg U Aroclor-1260 4.004.0020.8 ug/kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates > 25% difference for detected

concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

Tetrachloro-m-xylene

Decachlorobiphenyl

22.3

17.8

M = MS/MSD acceptance criteria did not meet requirements

Q1929

J = Estimated Value

30 (32) - 150 (144)

30 (32) - 150 (175)

- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

 $\mathbf{S}=\mathbf{Indicates}$ estimated value where valid five-point calibration

111%

89%

SPK: 20

SPK: 20

was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

A B C

D

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Stanfield		OrderDat Project: Location:		5/1/2025 12:26:00 PM 540 Degraw St, Brooklyn, NY - E9309 L41				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received	
Q1929-02	WC-A4-02-C	SOIL			04/29/25			05/01/25	
			PCB	8082A		05/02/25	05/02/25		
Q1929-03	WC-A4-02-C	TCLP			04/29/25			05/01/25	
			TCLP Herbicide	8151A		05/05/25	05/06/25		
			TCLP Pesticide	8081B		05/02/25	05/05/25		
Q1929-06	WC-A1-03-C	SOIL			04/30/25			05/01/25	
			PCB	8082A		05/02/25	05/02/25		
Q1929-07	WC-A1-03-C	TCLP			04/30/25			05/01/25	
			TCLP Herbicide	8151A		05/05/25	05/06/25		
			TCLP Pesticide	8081B		05/02/25	05/05/25		
Q1929-10	WC-A1-04-C	SOIL			04/30/25			05/01/25	
			PCB	8082A		05/02/25	05/02/25		
Q1929-11	WC-A1-04-C	TCLP			04/30/25			05/01/25	
			TCLP Herbicide	8151A		05/05/25	05/06/25		
			TCLP Pesticide	8081B		05/02/25	05/05/25		

			Hit Su	mmary Sheet SW-846	
SDG No.:	Q1929			Order ID: Q1929	В
Client:	ENTACT			Project ID: 540 Degraw St, Brooklyn, NY - E9309	С
Sample ID	Client ID	Matrix	Parameter	Concentration C MDL RDL Units	D
Client ID :					

0.000 **Total Concentration:**

A B C D

С

D

Report of Analysis

Client:	ENTACT				Date Collected:			
Project:	540 Degraw St, I	Brooklyn, NY - E9	309		Date Received:	05/05/25		
Client Sample ID:	PB167815TB				SDG No.:	Q1929		
Lab Sample ID:	PB167815TB				Matrix:	TCLP		
Analytical Method	l: SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units	s: mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbi	cide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Preț	Batch ID	
PS030061.D	1	05/05	5/25 08:50		05/06/25 15:04	PB1	67871	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / C	RQL	Units
TARGETS								
94-75-7	2,4-D	9.20	U	9.20		·	20.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.80	U	7.80			20.0	ug/L
SURROGATES 19719-28-9	2,4-DCAA	617		70 (39) -			123%	SPK: 500

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

9

		Re	port of An	alysis				
Client:	ENTACT				Date Collected:	04/29/25		
Project:	540 Degraw St, B	rooklyn, NY - E	9309		Date Received:	05/01/25		
Client Sample ID:	WC-A4-02-C				SDG No.:	Q1929		
Lab Sample ID:	Q1929-03				Matrix:	TCLP		
Analytical Method	: SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbi	cide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Pre	p Date		Date Analyzed	Prep	Batch ID	
PS030053.D	1	05/0	05/25 08:50		05/06/25 11:27	PB1	67871	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / C	RQL	Units
TARGETS								
94-75-7	2,4-D	9.20	U	9.20			20.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.80	U	7.80			20.0	ug/L
SURROGATES 19719-28-9	2,4-DCAA	420		70 (39)	- 130 (175)		84%	SPK: 500

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

9

Client: ENTACT Date Collected: 04/30/25 Project: 540 Degraw St, Brooklyn, NY - E9309 Date Received: 05/01/25 Client Sample ID: WC-A1-03-C SDG No .: Q1929 TCLP Lab Sample ID: Q1929-07 Matrix: Analytical Method: SW8151A % Solid: 0 Decanted: Final Vol: 10000 Sample Wt/Vol: 100 Units: mL uL Test: TCLP Herbicide Soil Aliquot Vol: uL Extraction Type: Injection Volume : 1.0 PH : GPC Factor : 8151A Prep Method : File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PS030054.D 1 05/05/25 08:50 05/06/25 12:09 PB167871 **CAS Number** Parameter Conc. Qualifier MDL LOQ / CRQL Units TARGETS 94-75-7 2,4-D 9.20 U 9.20 20.0 ug/L U 93-72-1 2,4,5-TP (Silvex) 7.80 7.80 20.0 ug/L **SURROGATES** 19719-28-9 2,4-DCAA 489 70 (39) - 130 (175) 98% SPK: 500

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

9

		R	eport of An	alysis				
Client:	ENTACT				Date Collected:	04/30/25		
Project:	540 Degraw St, B	rooklyn, NY - I	E9309		Date Received:	05/01/25		
Client Sample ID:	WC-A1-04-C				SDG No.:	Q1929		
Lab Sample ID:	Q1929-11				Matrix:	TCLP		
Analytical Method	: SW8151A				% Solid:	0	Decanted:	
Sample Wt/Vol:	100 Units:	mL			Final Vol:	10000	uL	
Soil Aliquot Vol:		uL			Test:	TCLP Herbi	cide	
Extraction Type:					Injection Volume :			
GPC Factor :	1.0	PH :						
Prep Method :	8151A							
File ID/Qc Batch:	Dilution:	Pre	p Date		Date Analyzed	Prep	Batch ID	
PS030055.D	1	05/	05/25 08:50		05/06/25 12:33	PB1	67871	
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / C	RQL	Units
TARGETS								
94-75-7	2,4-D	9.20	U	9.20			20.0	ug/L
93-72-1	2,4,5-TP (Silvex)	7.80	U	7.80			20.0	ug/L
SURROGATES 19719-28-9	2,4-DCAA	391		70 (39)	- 130 (175)		78%	SPK: 500

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

A B

D

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Stanfield			OrderDate: Project: Location:	5/1/2025 12:26 540 Degraw St L41		- E9309	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-02	WC-A4-02-C	SOIL			04/29/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-03	WC-A4-02-C	TCLP			04/29/25			05/01/25
			TCLP Herbicide	8151A		05/05/25	05/06/25	
			TCLP Pesticide	8081B		05/02/25	05/05/25	
Q1929-06	WC-A1-03-C	SOIL			04/30/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-07	WC-A1-03-C	TCLP			04/30/25			05/01/25
			TCLP Herbicide	8151A		05/05/25	05/06/25	
			TCLP Pesticide	8081B		05/02/25	05/05/25	
Q1929-10	WC-A1-04-C	SOIL			04/30/25			05/01/25
			PCB	8082A		05/02/25	05/02/25	
Q1929-11	WC-A1-04-C	TCLP			04/30/25			05/01/25
			TCLP Herbicide	8151A		05/05/25	05/06/25	
			TCLP Pesticide	8081B		05/02/25	05/05/25	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.:	Q1929			Order ID:	:	Q1929		
Client:	ENTACT			Project II):	540 Degraw St, B	rooklyn, NY - E93	09
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units
Client ID :	WC-A4-02-C							
Q1929-03	WC-A4-02-C	TCLP	Barium	179	J	72.8	500	ug/L
Q1929-03	WC-A4-02-C	TCLP	Chromium	28.7	J	10.6	50.0	ug/L
Client ID :	WC-A1-03-C							
Q1929-07	WC-A1-03-C	TCLP	Barium	426	J	72.8	500	ug/L
Q1929-07	WC-A1-03-C	TCLP	Lead	28.4	J	11.5	60.0	ug/L
Client ID :	WC-A1-04-C							
Q1929-11	WC-A1-04-C	TCLP	Barium	217	J	72.8	500	ug/L

B C

D

Report of Analysis

		arysis		В
Client:	ENTACT	Date Collected:	04/29/25	
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	D
Client Sample ID:	WC-A4-02-C	SDG No.:	Q1929	
Lab Sample ID:	Q1929-03	Matrix:	TCLP	
Level (low/med):	low	% Solid:	0	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
Arsenic	25.6	U	1	25.6	100	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Barium	179	J	1	72.8	500	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Cadmium	2.50	U	1	2.50	30.0	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Chromium	28.7	J	1	10.6	50.0	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Copper	23.0	U	1	23.0	100	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Lead	11.5	U	1	11.5	60.0	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Mercury	0.76	U*	1	0.76	2.00	ug/L	05/05/25 07:20	05/05/25 12:12	SW7470A	
Nickel	15.3	U	1	15.3	200	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Selenium	48.2	U	1	48.2	100	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Silver	8.10	U	1	8.10	50.0	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
Zinc	83.3	U	1	83.3	200	ug/L	05/02/25 12:05	05/05/25 20:41	SW6010	SW3050
	Arsenic Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	Arsenic 25.6 Barium 179 Cadmium 2.50 Chromium 28.7 Copper 23.0 Lead 11.5 Mercury 0.76 Nickel 15.3 Selenium 48.2 Silver 8.10	Arsenic 25.6 U Barium 179 J Cadmium 2.50 U Chromium 28.7 J Copper 23.0 U Lead 11.5 U Mercury 0.76 U* Nickel 15.3 U Selenium 48.2 U Silver 8.10 U	Arsenic 25.6 U 1 Barium 179 J 1 Cadmium 2.50 U 1 Chromium 28.7 J 1 Copper 23.0 U 1 Lead 11.5 U 1 Mercury 0.76 U* 1 Nickel 15.3 U 1 Selenium 48.2 U 1	Arsenic25.6U125.6Barium179J172.8Cadmium2.50U12.50Chromium28.7J110.6Copper23.0U123.0Lead11.5U111.5Mercury0.76U*10.76Nickel15.3U115.3Selenium48.2U148.2Silver8.10U18.10	Arsenic 25.6 U 1 25.6 100 Barium 179 J 1 72.8 500 Cadmium 2.50 U 1 2.50 30.0 Chromium 28.7 J 1 10.6 50.0 Copper 23.0 U 1 23.0 100 Lead 11.5 U 1 11.5 60.0 Mercury 0.76 U* 1 0.76 2.00 Nickel 15.3 U 1 15.3 200 Selenium 48.2 U 1 48.2 100 Silver 8.10 U 1 8.10 50.0	Arsenic 25.6 U 1 25.6 100 ug/L Barium 179 J 1 72.8 500 ug/L Cadmium 2.50 U 1 2.50 30.0 ug/L Chromium 28.7 J 1 10.6 50.0 ug/L Copper 23.0 U 1 23.0 100 ug/L Lead 11.5 U 1 11.5 60.0 ug/L Mercury 0.76 U* 1 0.76 2.00 ug/L Nickel 15.3 U 1 15.3 200 ug/L Selenium 48.2 U 1 48.2 100 ug/L Silver 8.10 U 1 8.10 50.0 ug/L	Arsenic25.6U125.6100ug/L05/02/2512:05Barium179J172.8500ug/L05/02/2512:05Cadmium2.50U12.5030.0ug/L05/02/2512:05Chromium28.7J110.650.0ug/L05/02/2512:05Copper23.0U123.0100ug/L05/02/2512:05Lead11.5U111.560.0ug/L05/02/2512:05Mercury0.76U*10.762.00ug/L05/02/2512:05Nickel15.3U115.3200ug/L05/02/2512:05Selenium48.2U148.2100ug/L05/02/2512:05Silver8.10U18.1050.0ug/L05/02/2512:05	Arsenic 25.6 U 1 25.6 100 ug/L 05/02/25 12:05 05/05/25 20:41 Barium 179 J 1 72.8 500 ug/L 05/02/25 12:05 05/05/25 20:41 Cadmium 2.50 U 1 2.50 30.0 ug/L 05/02/25 12:05 05/05/25 20:41 Chromium 28.7 J 1 10.6 50.0 ug/L 05/02/25 12:05 05/05/25 20:41 Copper 23.0 U 1 23.0 100 ug/L 05/02/25 12:05 05/05/25 20:41 Lead 11.5 U 1 13.5 60.0 ug/L 05/02/25 12:05 05/05/25 20:41 Mercury 0.76 U* 1 0.76 2.00 ug/L 05/02/25 12:05 05/05/25 12:12 Nickel 15.3 U 1 15.3 200 ug/L 05/02	Arsenic 25.6 U 1 25.6 100 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Barium 179 J 1 72.8 500 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Cadmium 2.50 U 1 2.50 30.0 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Chromium 28.7 J 1 10.6 50.0 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Copper 23.0 U 1 23.0 100 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Lead 11.5 U 1 11.5 60.0 ug/L 05/02/25 12:05 05/05/25 20:41 SW6010 Mercury 0.76 U* 1 0.76 2.00 ug/L 05/05/25 05/05/25 20:41 SW6010 Selenium<

Color Before:	Colorless	Clarity Before:	Clear	Texture:			
Color After:	r After: Colorless Clarity After:		Clear	Artifacts:			
Comments:	TCLP-FULL						
MDL = Metho $LOD = Limit o$ $D = Dilution$	of Quantitation d Detection Limit	ot meet requirements		 J = Estimated Value B = Analyte Found in Associated Method Blank * = indicates the duplicate analysis is not within control limits. E = Indicates the reported value is estimated because of the presence of interference. OR = Over Range 			
1929			63 (N =Spiked sample recovery not within control limits of 88			

Report of Analysis

Client:	ENTACT	Date Collected:	04/30/25	С						
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	D						
Client Sample ID:	WC-A1-03-C	SDG No.:	Q1929							
Lab Sample ID:	Q1929-07	Matrix:	TCLP							
Level (low/med):	low	% Solid:	0							

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7440-38-2	Arsenic	25.6	U	1	25.6	100	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-39-3	Barium	426	J	1	72.8	500	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-43-9	Cadmium	2.50	U	1	2.50	30.0	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-47-3	Chromium	10.6	U	1	10.6	50.0	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-50-8	Copper	23.0	U	1	23.0	100	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7439-92-1	Lead	28.4	J	1	11.5	60.0	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7439-97-6	Mercury	0.76	U*	1	0.76	2.00	ug/L	05/05/25 07:20	05/05/25 12:14	SW7470A	
7440-02-0	Nickel	15.3	U	1	15.3	200	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7782-49-2	Selenium	48.2	U	1	48.2	100	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-22-4	Silver	8.10	U	1	8.10	50.0	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050
7440-66-6	Zinc	83.3	U	1	83.3	200	ug/L	05/02/25 12:05	05/05/25 20:45	SW6010	SW3050

Color Before:	Clarity Before:	Clear	Texture:					
Color After:	Colorless Clarity After:			Artifacts:				
Comments:	TCLP-FULL							
U = Not Detec	eted			J = Estimated Value				
LOQ = Limit o	of Quantitation			B = Analyte Found in Associated Method Blank				
MDL = Metho	d Detection Limit			* = indicates the duplicate analysis is not within control limits.				
LOD = Limit of	of Detection			E = Indicates the reported value is estimated because of the presence				
D = Dilution				of interference.				
Q = indicates I	LCS control criteria did not meet	requirements	OR = Over Range					
			N =Spiked sample recovery not within control limits					
01000								

64 of 88

10

Report of Analysis

	Report of All	ary515		В
Client:	ENTACT	Date Collected:	04/30/25	C
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	D
Client Sample ID:	WC-A1-04-C	SDG No.:	Q1929	
Lab Sample ID:	Q1929-11	Matrix:	TCLP	
Level (low/med):	low	% Solid:	0	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
Arsenic	25.6	U	1	25.6	100	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Barium	217	J	1	72.8	500	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Cadmium	2.50	U	1	2.50	30.0	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Chromium	10.6	U	1	10.6	50.0	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Copper	23.0	U	1	23.0	100	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Lead	11.5	U	1	11.5	60.0	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Mercury	0.76	U*	1	0.76	2.00	ug/L	05/05/25 07:20	05/05/25 12:16	SW7470A	L
Nickel	15.3	U	1	15.3	200	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Selenium	48.2	U	1	48.2	100	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Silver	8.10	U	1	8.10	50.0	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
Zinc	83.3	U	1	83.3	200	ug/L	05/02/25 12:05	05/05/25 20:50	SW6010	SW3050
	Arsenic Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	Arsenic 25.6 Barium 217 Cadmium 2.50 Chromium 10.6 Copper 23.0 Lead 11.5 Mercury 0.76 Nickel 15.3 Selenium 48.2 Silver 8.10	Arsenic 25.6 U Barium 217 J Cadmium 2.50 U Chromium 10.6 U Copper 23.0 U Lead 11.5 U Mercury 0.76 U* Nickel 15.3 U Selenium 48.2 U Silver 8.10 U	Arsenic 25.6 U 1 Barium 217 J 1 Cadmium 2.50 U 1 Chromium 10.6 U 1 Copper 23.0 U 1 Lead 11.5 U 1 Mercury 0.76 U* 1 Nickel 15.3 U 1 Selenium 48.2 U 1 Silver 8.10 U 1	Arsenic25.6U125.6Barium217J172.8Cadmium2.50U12.50Chromium10.6U110.6Copper23.0U123.0Lead11.5U111.5Mercury0.76U*10.76Nickel15.3U115.3Selenium48.2U148.2Silver8.10U18.10	Arsenic 25.6 U 1 25.6 100 Barium 217 J 1 72.8 500 Cadmium 2.50 U 1 2.50 30.0 Chromium 10.6 U 1 10.6 50.0 Copper 23.0 U 1 23.0 100 Lead 11.5 U 1 11.5 60.0 Mercury 0.76 U* 1 0.76 2.00 Nickel 15.3 U 1 15.3 200 Selenium 48.2 U 1 48.2 100 Silver 8.10 U 1 8.10 50.0	Arsenic 25.6 U 1 25.6 100 ug/L Barium 217 J 1 72.8 500 ug/L Cadmium 2.50 U 1 2.50 30.0 ug/L Chromium 10.6 U 1 10.6 50.0 ug/L Copper 23.0 U 1 23.0 100 ug/L Lead 11.5 U 1 11.5 60.0 ug/L Mercury 0.76 U* 1 0.76 2.00 ug/L Nickel 15.3 U 1 15.3 200 ug/L Selenium 48.2 U 1 48.2 100 ug/L Silver 8.10 U 1 8.10 50.0 ug/L	Arsenic 25.6 U 1 25.6 100 ug/L 05/02/25 12:05 Barium 217 J 1 72.8 500 ug/L 05/02/25 12:05 Cadmium 2.50 U 1 2.50 30.0 ug/L 05/02/25 12:05 Chromium 10.6 U 1 10.6 50.0 ug/L 05/02/25 12:05 Copper 23.0 U 1 23.0 100 ug/L 05/02/25 12:05 Lead 11.5 U 1 11.5 60.0 ug/L 05/02/25 12:05 Mercury 0.76 U* 1 0.76 2.00 ug/L 05/02/25 07:20 Nickel 15.3 U 1 15.3 200 ug/L 05/02/25 12:05 Selenium 48.2 U 1 48.2 100 ug/L 05/02/25 12:05 Silver 8.10 U	Arsenic 25.6 U 1 25.6 100 ug/L 05/02/25 12:05 05/05/25 20:50 30 Barium 217 J 1 72.8 500 ug/L 05/02/25 12:05 05/05/25 20:50 Cadmium 2.50 U 1 2.50 30.0 ug/L 05/02/25 12:05 05/05/25 20:50 Chromium 10.6 U 1 10.6 50.0 ug/L 05/02/25 12:05 05/05/25 20:50 Copper 23.0 U 1 23.0 100 ug/L 05/02/25 12:05 05/05/25 20:50 Lead 11.5 U 1 11.5 60.0 ug/L 05/02/25 12:05 05/05/25 20:50 Mercury 0.76 U* 1 0.76 2.00 ug/L 05/05/25 07:20 05/05/25 12:05 05/05/25 12:05 05/05/25 12:05 05/05/25 12:05 05/05/	Arsenic 25.6 U 1 25.6 100 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Barium 217 J 1 72.8 500 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Cadmium 2.50 U 1 2.50 30.0 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Chromium 10.6 U 1 10.6 50.0 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Copper 23.0 U 1 23.0 100 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Lead 11.5 U 1 11.5 60.0 ug/L 05/02/25 12:05 05/05/25 20:50 SW6010 Mercury 0.76 U* 1 0.76 2.00 ug/L 05/05/25 05/05/25 20:50 SW6010 Nickel

Color Before:	Colorless	Clarity Before:	Clear	Texture:			
Color After:	Colorless	Clarity After:	Clear	Artifacts:			
Comments:	TCLP-FULL	·					
U = Not Detec	ted			J = Estimated Value			
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank			
MDL = Metho	d Detection Limit			* = indicates the duplicate analysis is not within control limits.			
LOD = Limit of	of Detection			E = Indicates the reported value is estimated because of the presence			
D = Dilution				of interference.			
Q = indicates	LCS control criteria did not meet	requirements	OR = Over Range				
			N =Spiked sample recovery not within control limits				
04000			67 -	4.00			

Q1929

10

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Stanfield			OrderDate: Project: Location:	5/1/2025 12:26 540 Degraw St L41		- E9309	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-03	WC-A4-02-C	TCLP			04/29/25			05/01/25
			TCLP Mercury	7470A		05/05/25	05/05/25	
			TCLPMetals Group2	6010D		05/02/25	05/05/25	
Q1929-07	WC-A1-03-C	TCLP			04/30/25			05/01/25
			TCLP Mercury	7470A		05/05/25	05/05/25	
			TCLPMetals Group2	6010D		05/02/25	05/05/25	
Q1929-11	WC-A1-04-C	TCLP			04/30/25			05/01/25
			TCLP Mercury	7470A		05/05/25	05/05/25	
			TCLPMetals Group2	6010D		05/02/25	05/05/25	

Report of Analysis

			04/20/25 12 00	1
Client:	ENTACT	Date Collected:	04/29/25 12:00	
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	
Client Sample ID:	WC-A4-02-C	SDG No.:	Q1929	
Lab Sample ID:	Q1929-02	Matrix:	SOIL	
		% Solid:	86.7	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry Weight) Prep Date	Date Ana.	Ana Met.
Oil and Grease	547		1	6.69	28.8	mg/Kg	05/06/25 10:25	SW9071B
Paint Filter	1.00	U	1	1.00	1.00	ml/100gm	05/02/25 09:39	9095B
pН	12.4		1	0	0	pH	05/01/25 15:30	9045D
TS	85.0		1	1.00	5.00	%	05/01/25 16:00	SM 2540 B-15
TVS	4.40	J	1	1.00	10.0	%	05/01/25 16:00	160.4

Comments: pH result reported at temperature 22.5 °C

U = Not Detect	ted
0 - N01 D000	ιcu

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

Client: ENTACT Date Collected:	04/20/25 12:00
	04/29/25 12:00
Project:540 Degraw St, Brooklyn, NY - E9309Date Received:	05/01/25
Client Sample ID: WC-A4-02-C SDG No.:	Q1929
Lab Sample ID: Q1929-03 Matrix:	SOIL
% Solid:	100
Parameter Conc. Qua. DF MDL LOQ / CRQL Units Prep Date	Date Ana. Ana Met.
Corrosivity 12.4 H 1 0 0 pH	05/01/25 15:30 9045D
Ignitability NO 1 0 0 oC	05/05/25 10:13 1030
Reactive Cyanide 0.0083 U 1 0.0083 0.049 mg/Kg 05/01/25 15:1:	5 05/02/25 10:05 9012B

Comments: pH result reported at temperature 22.5 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

В

Report of Analysis

Client:	EN	ГАСТ					Date Collected:	04/29/25 1	2:00
Project:	540	Degrav	v St, I	Brooklyn, N	Y - E9309		Date Received:	05/01/25	
Client Sample ID:	WC	C-A4-02	-C				SDG No.:	Q1929	
Lab Sample ID:	Q19	929-04					Matrix:	WATER	
							% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Parameter ASTM Ammonia	Conc. 0.28	Qua.	DF	MDL 0.030	LOQ / CRQL 0.10	Units mg/L	Prep Date 05/05/25 14:10	Date Ana. 05/06/25 09:47	Ana Met. SM 4500-NH3 B plus NH3 G-11
		Qua.	DF 1				•		SM 4500-NH3 B plus NH3
ASTM Ammonia	0.28	Qua. J	DF 1 1	0.030	0.10	mg/L	•	05/06/25 09:47	SM 4500-NH3 B plus NH3 G-11

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

Report of Analysis

Client:	ENTACT	Date Collected:	04/30/25 12:00	- P
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	
Client Sample ID:	WC-A1-03-C	SDG No.:	Q1929	
Lab Sample ID:	Q1929-06	Matrix:	SOIL	
_		% Solid:	77.7	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry Weight) Prep Date	Date Ana.	Ana Met.
Oil and Grease	571		1	7.46	32.1	mg/Kg	05/06/25 10:25	SW9071B
Paint Filter	1.00	U	1	1.00	1.00	ml/100gm	05/02/25 10:20	9095B
рН	12.3		1	0	0	pH	05/01/25 15:40	9045D
TS	77.2		1	1.00	5.00	%	05/01/25 16:00	SM 2540 B-15
TVS	4.30	J	1	1.00	10.0	%	05/01/25 16:00	160.4

Comments: pH result reported at temperature 22.4 °C

II =	Not	Detected
0-	INOL	Delected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

Client: ENTACT Date Collected: 04/30/25 12:00	
Project: 540 Degraw St, Brooklyn, NY - E9309 Date Received: 05/01/25	
Client Sample ID: WC-A1-03-C SDG No.: Q1929	
Lab Sample ID: Q1929-07 Matrix: SOIL	
% Solid: 100	
arameter Conc. Qua. DF MDL LOQ / CRQL Units Prep Date Date Ana. Ana	1et.
prosivity 12.3 H 1 0 0 pH 05/01/25 15:40 904	D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
J I	

Comments: pH result reported at temperature 22.4 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

В

Report of Analysis

Client:	Client: ENTACT						Date Collected:	04/30/25 1	2:00
Project:	540	Degrav	v St, I	Brooklyn, N	Y - E9309		Date Received:	05/01/25	
Client Sample ID:	WC	C-A1-03	-C				SDG No.:	Q1929	
Lab Sample ID:	Q19	929-08					Matrix:	WATER	
							% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Parameter ASTM Ammonia	Conc. 0.53	Qua.	DF	MDL 0.030	LOQ / CRQL 0.10	Units mg/L	Prep Date 05/05/25 14:10	Date Ana. 05/06/25 09:57	Ana Met. SM 4500-NH3 B plus NH3 G-11
		Qua.	DF 1				•		SM 4500-NH3 B plus NH3
ASTM Ammonia	0.53	Qua. J	DF 1 1	0.030	0.10	mg/L	•	05/06/25 09:57	SM 4500-NH3 B plus NH3 G-11

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

Report of Analysis

				E
Client:	ENTACT	Date Collected:	04/30/25 12:00	
Project:	540 Degraw St, Brooklyn, NY - E9309	Date Received:	05/01/25	
Client Sample ID:	WC-A1-04-C	SDG No.:	Q1929	
Lab Sample ID:	Q1929-10	Matrix:	SOIL	
		% Solid:	81.5	

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry Weight) Prep Date	Date Ana.	Ana Met.
Oil and Grease	1410		1	7.11	30.6	mg/Kg	05/06/25 10:25	SW9071B
Paint Filter	1.00	U	1	1.00	1.00	ml/100gm	05/02/25 10:28	9095B
рН	12.5		1	0	0	pH	05/01/25 15:50	9045D
TS	81.9		1	1.00	5.00	%	05/01/25 16:00	SM 2540 B-15
TVS	4.10	J	1	1.00	10.0	%	05/01/25 16:00	160.4

Comments: pH result reported at temperature 21.6 °C

$\mathbf{II} =$	Not Dete	ected
0-		cueu

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

ſ										
Client:	ENT	ENTACT			Date Collected:		04/30/25 12:00			
Project:	540	Degrav	v St, I	Brooklyn, NY	Y - E9309	1	Date Received:	05/01/25		
Client Sample ID:	WC	-A1-04	-C			SDG No.:		Q1929		
Lab Sample ID:	Q19	29-11				1	Matrix:	SOIL		
							% Solid:	100		
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Corrosivity	12.5	Н	1	0	0	pН		05/01/25 15:50	9045D	
Ignitability	NO		1	0	0	oC		05/05/25 10:27	1030	
Reactive Cyanide	0.0088	J	1	0.0083	0.050	mg/Kg	05/01/25 15:15	05/02/25 10:05	9012B	
Reactive Sulfide	4.78	J	1	0.20	10.0	mg/Kg	05/02/25 09:15	05/02/25 11:43	9034	

Comments: pH result reported at temperature 21.6 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

В

Report of Analysis

Client:	EN	ГАСТ					Date Collected:	04/30/25 12	2:00
Project:	540	Degrav	v St, I	Brooklyn, N	Y - E9309		Date Received:	05/01/25	
Client Sample ID:	WC	C-A1-04	-C				SDG No.:	Q1929	
Lab Sample ID:	Q19	929-12					Matrix:	WATER	
							% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Parameter ASTM Ammonia	Conc. 0.28	Qua.	DF	MDL 0.030	LOQ / CRQL 0.10	Units mg/L	Prep Date 05/05/25 14:10	Date Ana. 05/06/25 09:57	Ana Met. SM 4500-NH3 B plus NH3 G-11
		Qua.	DF 1				•		SM 4500-NH3 B plus NH3
ASTM Ammonia	0.28	Qua. J	DF 1 1	0.030	0.10	mg/L	•	05/06/25 09:57	SM 4500-NH3 B plus NH3 G-11

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

Lab Sample ID: Q1929-14 Matrix:	SOIL	
Client Sample ID: WC-A4-02-C SDG No.:	Q1929	

Comments: pH result reported at temperature 22.5 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

Client:	ENTACT		Date Colle	octed: 04/30/2:	5 12:00
Project:	540 Degraw St, Brooklyn, N	VY - E9309	Date Rece	ived: 05/01/2:	5
Client Sample ID:	WC-A1-03-C		SDG No.:	Q1929	
Lab Sample ID:	Q1929-15		Matrix:	SOIL	
			% Solid:	77.7	
Parameter	Conc. Qua. DF MDL	LOQ / CRQL	Units Prep	Date Date Ana.	Ana Met.
pН	12.3 H 1 0	0	pH	05/12/25 13:	35 9045D

Comments: pH result reported at temperature 22.4 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

Report of Analysis

			% Solid:	81.5	
Lab Sample ID:	Q1929-16		Matrix:	SOIL	
Client Sample ID:	WC-A1-04-C		SDG No.:	Q1929	
Project:	540 Degraw St, Brooklyn, N	Y - E9309	Date Received	d: 05/01/25	
Client:	ENTACT		Date Collecte	d: 04/30/25 12:00	l

Comments: pH result reported at temperature 21.6 °C

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

A B C

LAB CHRONICLE

OrderID: Client: Contact:	Q1929 ENTACT Jarod Star	field			OrderDate: Project: Location:	5/1/2025 12:26 540 Degraw St L41		- E9309	
LabID		ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q1929-02	2	WC-A4-02-C	SOIL			04/29/25 12:00			05/01/25
				Oil and Grease	9071B			05/06/25 10:25	
				Paint Filter	9095B			05/02/25 09:39	
				рН	9045D			05/01/25 15:30	
				TS	SM2540 B			05/01/25 16:00	
				TVS	160.4			05/01/25 16:00	
Q1929-03	3	WC-A4-02-C	SOIL			04/29/25 12:00			05/01/25
				Corrosivity	9045D			05/01/25 15:30	
				Ignitability	1030			05/05/25 10:13	
				Reactive Cyanide	9012B		05/01/25	05/02/25 10:05	
				Reactive Sulfide	9034		05/02/25	05/02/25 11:38	
Q1929-04	L .	WC-A4-02-C	WATER			04/29/25 12:00			05/01/25
				ASTM Ammonia	SM4500-NH3		05/05/25	05/06/25 09:47	
				ASTM COD	SM5220 D			05/06/25 13:10	
				ASTM Oil and Grease	1664A			05/05/25 12:10	

WC-A1-03-C

Q1929-06

LAB CHRONICLE

ASTM TS

Oil and Grease

Paint Filter

pН

ΤS

TVS

SOIL

					В
SM2540 B			05/05/25		С
			11:00		
	04/20/25			05/01/25	
	04/30/25 12:00			05/01/25	
9071B	12.00		05/06/25		
50712			10:25		
9095B			05/02/25		
			10:20		
9045D			05/01/25		
			15:40		
SM2540 B			05/01/25		
160.4			16:00		
160.4			05/01/25 16:00		
			10.00		
	04/30/25			05/01/25	
	12:00				
9045D			05/01/25		
1020			15:40		
1030			05/05/25 10:20		
9012B		05/01/25	05/02/25		
50120		05,01/25	10:05		
9034		05/02/25	05/02/25		

			100	10011			16:00	
Q1929-07	WC-A1-03-C	SOIL			04/30/25 12:00			05/01/25
			Corrosivity	9045D			05/01/25	
							15:40	
			Ignitability	1030			05/05/25	
							10:20	
			Reactive Cyanide	9012B		05/01/25	05/02/25 10:05	
			Reactive Sulfide	9034		05/02/25	05/02/25	
							11:40	
Q1929-08	WC-A1-03-C	WATER			04/30/25 12:00			05/01/25
			ASTM Ammonia	SM4500-NH3		05/05/25	05/06/25 09:57	
			ASTM COD	SM5220 D			05/06/25 13:12	
			ASTM Oil and Grease	1664A			05/05/25 12:10	
			ASTM TS	SM2540 B			05/05/25 11:00	
Q1929-10	WC-A1-04-C	SOIL			04/30/25 12:00			05/01/25
			Oil and Grease	9071B			05/06/25 10:25	

			LAB CHRONI	CLE				
			Paint Filter	9095B			05/02/25	
			pН	9045D			10:28 05/01/25	
							15:50	
			TS	SM2540 B			05/01/25 16:00	
			TVS	160.4			05/01/25	
							16:00	
Q1929-11	WC-A1-04-C	SOIL			04/30/25			05/01/25
			Corrosivity	9045D	12:00		05/01/25	
			conosivity	50130			15:50	
			Ignitability	1030			05/05/25	
							10:27	
			Reactive Cyanide	9012B		05/01/25	05/02/25	
			Desetive Cultide	0024		05/02/25	10:05	
			Reactive Sulfide	9034		05/02/25	05/02/25 11:43	
Q1929-12	WC-A1-04-C	WATER			04/30/25			05/01/25
Q-0-0					12:00			00,01,10
			ASTM Ammonia	SM4500-NH3		05/05/25	05/06/25	
							09:57	
			ASTM COD	SM5220 D			05/06/25	
			ASTM Oil and Grease	1664A			13:13 05/05/25	
			ASTA OF and Grease	10047			12:10	
			ASTM TS	SM2540 B			05/05/25	
							11:00	
Q1929-14	WC-A4-02-C	SOIL			04/29/25 12:00			05/01/25
			pН	9045D	12.00		05/12/25	
			r				13:30	
Q1929-15	WC-A1-03-C	SOIL			04/30/25			05/01/25
					12:00			
			рН	9045D			05/12/25	
							13:35	

С

LAB (CHRONICLE
-------	-----------

Q1929-16	WC-A1-04-C	SOIL		04/30/25 12:00	05/01/25
			рН	9045D	05/12/25
					13:38

<u>SHIPPING</u> DOCUMENTS

Q1929

12

	ance	284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax: (908) 788-9222 www.chemtech.net CHAIN OF CUSTODY RECORD					Alliance Project Number: Q1929 COC Number: 2042113 Page 1 of										
	CLIENT INFORMATION	PRO	JEC.	FINF	ORMAT	ION	-		191			В	ILLIN	IG IN	FOR	MAT	
COMPANY: ENTA	ACT. I I C	PROJECT NAME: 540	Degra	W St B	rookiyn	NY		BILL		NTACT	110	-	-	-	-	-	
	ay Street, Suite 806	PROJECT #: E9309	begie			ON: Brooki	vn. NY	BILL TO: ENTACT, LLC PO# E9309 Y ADDRESS: 999 Oakmont Plaza Drive, Suite 300									
CITY: Jersey Cit		PROJECT MANAGER	: Austii					_	West		_			-,			TE: IL ZIP: 60559
ATTENTION:	Austin Farmerie	E-MAIL: afarmerie@e	ntact.c	om				ATTE	INTIO	N: Wer	idy Mu	ray					NE: 800-936-8228
PHONE: 570-886-04	H2 FAX:	PHONE: 412-716-136	6		FAX:				-		AN	ALY	SIS				
DAT	A TURNAROUND INFORMATION	DATA DEI	IVER	ABL	E INFO	RMATIO	N		is.								1
HARD COPY: EDD * TO BE APPROV	3DAYS* DAYS* 3DAYS* ZED BY ALLIANCE VAROUND TIME IS 10 BUSINESS DAYS	RESEULTS ONL' RESULTS + QC New Jersey REDI New Jersey CLP	ONLY USEPA CLP QC New York State ASP "B" REDUCED New York State ASP "A"					TCLP VOCs	TCLP ICP Metais	TCLP Herb	TCLP Pest	TCLP SVOCs	P TCLP PH	2 /C/R	e PCBs	o Oil & Grease	-
		EDD Format								P	RESE	RVA	TIVE	S			COMMENTS
CHEMTECH	PROJECT	SAMPLE		APLE (PE		MPLE ECTION	of Bottles	E	E	E	Е	E	E	Е	Е	Е	 Specify Preservatives A-HCI B-HNO3 C-H2SO4 D-NaOH
SAMPLE SAMPLE IDENTIFICATION	MATRIX	COMP GRAB	DATE	TIME	# of B	1 2	2	3	4	5 6	6	7	8	9	E-ICE F-Other		
1.	WC-A4-02-G	Soil		X	4/29	12:00	1										
2.	WC-A4-02-C	Soil	X		4/29	12:00	11	X	x	X	X	х	х	х	х	X	
3.	WC-A1-03-G	Soil		X	4/30	12:00	1										
4.	WC-A1-03-C	Soil	X		4/30	12:00	11	X	X	X	X	х	Х	Х	Х	X	
<u>5</u> .	WC-A1-04-G	Soil		X	4/30	12:00	1	1									
δ.	WC-A1-04-C	Soil	X		4/30		11	X	х	X	x	х	Х	х	Х	X	
7.								1								1	
3.								1									
Э.			-					1			-	-					
). 10.			-			_		+				-					
	SAMPLE CUSTODY MUST BE DOCU	MENTED DELOW	EAOI	3 718-	CAN		IANOF	DDC	COL	0010	NI JAIO	1 1 2		001	1 Palie	DD	
ELINQUISHED B Austin Farm ELINQUISHED B	Y SAMPLER DATE/TIME RECEIVED BY		Cond	_	of bottles	s or cooler			-	_	ant	-	-	_	_	Coole	ust factor H
2. RELINQUISHED BY 3. DATE/TIME IZT 3. DATE/TIME IZT 3. 2. RECEIVED FOR LAB BY 3. 3.											Shipment Complete						

12 12.1

Alliance	www.chemtech.net							Alliance Project Number: Q1929 COC Number: 2042113									
CLIENT INFORM	MATION	PRO	DJECT	INFO	ORMATI	ON		-				BI	LLING	G INF	ORN	ATIC	Page 2 of 2 ON
COMPANY: ENTACT, LLC		PROJECT NAME: 540					-	BILL		TACT	11.0						
DDRESS: 150 Bay Street, Suite 806		PROJECT # E9309	Deglaw			N: Brookly	m NY	BILL TO: ENTACT, LLC PO# E9309 ADDRESS: 999 Oakmont Plaza Drive, Suite 300									E9309
TY Jersey City STATE:	NJ ZIP: 07302	PROJECT MANAGER:	Austin			in brookij			Westm			TIULU	Dilive	ounto		STAT	TE: IL ZIP: 60559
TENTION: Austin Farmerie		E-MAIL: afarmerie@en	itact.co	m				<u> </u>	NTION	_	iy Mur	ray					NE: 800-936-8228
IONE: 570-886-0442 FAX:		PHONE: 412-716-1366			FAX:					121	AN	ALYS	SIS				
DATA TURNAROUND II	NFORMATION	DATA DEI	LIVER	ABLE	INFOR	RMATION	ŧ.	ASTM COD	ionia-	co							1
ARD COPY:	COPY: DAYS* □ RESULT 3 DAYS* □ New Jerse								ASTM Ammonia- Nitrogen	ASTM O&G	ASTM TS	TS, TVS	Hd	Paint Filter			
o be approved by Alliance Andard Turnaround Time is 10	BUSINESS DAVS	C New Jersey CLP		• •	ther		-	10	11	12	13	14	15	16			
	DOSINESS DATS	EDD Format								P	RESE	RVA	TIVE	3			COMMENTS
			SAM TYI					E	Е	Е	Е	Е	E	Е			
	ROJECT DENTIFICATION	SAMPLE MATRIX	COMP	GRAB	DATE	TIME	# of Bottles	1	2	3	4	5	6	7	8	9	 Specify Preservatives A-HCI B-HNO3 C-H2SO4 D-NaOH E-ICE F-Other
WC-A4-02-G		Soil		Х	4/29	12:00	1										
WC-A4-02-C		Soil	х		4/29	12:00	11	X	Х	Х	Х	Х	Х	х			
WC-A1-03-G		Soil		Х	4/30	12:00	1										
WC-A1-03-C		Soil	Х		4/30	12:00	11	X	Х	X	X	X	X	Х			
WC-A1-04-G		Soil		Х	4/30	12:00	1										
WC-A1-04-C		Soil	Х		4/30	12:00	11	X	Х	X	Х	х	х	Х			
											_						
							_										
-																	
	DY MUST BE DOCL		EACH	TIM	E SAM	PLES CH	IANGE	PRO	SSES	SION	I INC	LUD	ING	COU	RIEF	R DE	LIVERY
INQUISHED BY SAMPLER Austin Farmerie INQUISHED BY DATE/TH	1030	5/1/25	Condit Comm		f bottles	or coolers	at recei	pt:	Co	mpliar	nt 🗆	Non	Comp	liant		I lee	Temp <u>5.3'(</u> in Cooler?: <u>y</u> 25+ FACHOR+1 らいい ザ1
LINQUISHED BY		AB BY	B BY Pageof				SHIPPED \ Allian	VIA: CLIENT: U Hand Delivered U Overnight								Shipment Complete	

12 12.2

From:	Caroline Panico <cpanico@entact.com></cpanico@entact.com>
Sent:	Wednesday, May 07, 2025 10:54 AM
To:	Yazmeen Gomez
Subject:	Former Fulton MGP Site - 540 Degraw Street, Brooklyn - Q1929
Attachments:	FAX - Q1929 - 05-06-25.pdf

Good Morning Yazmeen

Waste Management Inc. has requested that we rerun the pH for all three samples on the attached lab report (WC-A4-02, WC-A4-03 and WC-04-04).

Is this something you can arrange?

Caroline Panico ENTACT, LLC 999 Oakmont Plaza Drive | Suite 300 | Westmont, IL 60559 Direct: 630.413.9437 | Cell: 630.669.4257 cpanico@entact.com | www.entact.com

Environmental and Geotechnical Construction Services

1

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488