284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Cover Page

Order ID :	Q2008
------------	-------

Project ID: Former Schlumberger Site Princeton NJ 2025

Client: JACOBS Engineering Group, Inc.

Lab Sample Number

Client Sample Number

Q2008-01 IDW-AQ-DRUM-633-05092025

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :		
Signature .	——————————————————————————————————————	: 5/15/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
В	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others. Indicates the analyte was found in the blank as well as the sample report as "12 B".
Е	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q2008

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	✓
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u>✓</u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature:	MAHESH PATEL	Date:	05/15/2025
----------------------	--------------	-------	------------

LAB CHRONICLE

OrderID: Q2008

Client: JACOBS Engineering Group, Inc.

Contact: Mary I. Murphy

OrderDate: 5/9/2025 3:21:23 PM

Project: Former Schlumberger Site Princeton NJ 2025

Location: L41,VOA Ref. #3 Water

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2008-01	IDW-AQ-DRUM-633-0 5092025	Water			05/09/25			05/09/25
			Diesel Range Organics	8015D		05/13/25	05/13/25	
			Gasoline Range Organics	8015D			05/12/25	

QC SUMMARY

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

WATER DIESEL RANGE ORGANICS SURROGATE RECOVERY

Lab Name:	Chemtech			Cli	ent:	JACC	OBS Engineering	Group, Inc.	
Lab Code:	CHEM	Case No	.: <u>Q2008</u>	SA	S No.:	Q200	SDG	No.: <u>Q200</u>	08
EP			S1		S2		S3	S4	тот
SAMPL	E NO.		TETRACOSANE-d	50					OUT
PIBLK-FF015	827.D		82						0
PIBLK-FF015	834.D		82						0
PB167981BL			83						0
PB167981BS			101						0
PB167981BSE)		99						0
IDW-AQ-DRU	JM-633-05092025		86						0

QC LIMITS

TETRACOSANE-d50

For Water : 29-130 For Soil : 37-130

^{*} Values outside of contract required QC limits

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

WATER DIESEL RANGE ORGANICS LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE

Lab Name:	Chemtech		Client:	JACOBS Engineering Group, Inc.		c.	
Lab Code:	CHEM	Cas No:	Q2008	SAS No:	Q2008	SDG No:	Q2008

PB167981BS Datafile: FF015831.D Matrix Spike - EPA Sample No:

COMPOUND	SPIKE ADDED ug/L	CONCENTRATION ug/L	LCS/LCSD CONCENTRATION ug/L	% REC	QC LIMITS
DRO	200	0	207	104	78-117

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

WATER DIESEL RANGE ORGANICS LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE

 Lab Name:
 Chemtech
 Client:
 JACOBS Engineering Group, Inc.

 Lab Code:
 CHEM
 Cas No:
 Q2008
 SAS No:
 Q2008
 SDG No:
 Q2008

Matrix Spike - EPA Sample No: PB167981BSD Datafile: FF015832.D

COMPOUND	SPIKE ADDED ug/L	CONCENTRATION ug/L	LCS/LCSD CONCENTRATION ug/L	% REC	QC LIMITS
DRO	200	0	203	102	78-117

LCS/LCSD % Recovery RPD : 2.0

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

4B

METHOD BLANK SUMMARY

EFA SE	МЕПЕ	NO.	
PB167981	.BL		

ab Name:	СНЕМТЕСН	Contract:	JACO05

Lab File ID: FF015830.D Lab Sample ID: PB167981BL

Instrument ID: FF Date Extracted: 05/13/2025

Matrix: (soil/water) Water Date Analyzed: 05/13/25

Level: (low/med) low Time Analyzed: 13:22

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
PB167981BS	PB167981BS	FF015831.D	05/13/25
PB167981BSD	PB167981BSD	FF015832.D	05/13/25
IDW-AQ-DRUM-633-05092025	Q2008-01	FF015833.D	05/13/25

COMMENTS:

SAMPLE DATA

Report of Analysis

Client: JACOBS Engineering Group, Inc.

Former Schlumberger Site Princeton NJ 2025

Client Sample ID: IDW-AQ-DRUM-633-05092025

Lab Sample ID: Q2008-01

Analytical Method: 8015D DRO

Sample Wt/Vol: 940 Units: ml

Soil Aliquot Vol: uL

Extraction Type:

FF015833.D

Project:

GPC Factor: PH:

Prep Method: SW3510

File ID/Qc Batch: Dilution:

Prep Date

Date Analyzed

Date Collected:

Date Received:

SDG No.:

Matrix:

% Solid:

Final Vol:

Injection Volume:

Test:

05/09/25

05/09/25

Q2008

Water

Prep Batch ID

Diesel Range Organics

Decanted:

mL

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	251		7.00	53.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	17.1		29 - 130	86%	SPK: 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

(QT Reviewed) Quantitation Report

> Instrument : FID_F

ClientSampleId :

IDW-AQ-DRUM-633-05092025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015833.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 15:54 Operator : YP\AJ

Sample : Q2008-01

Misc

ALS Vial : 74 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 14 05:51:07 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

Response Conc Units Compound R.T.

System Monitoring Compounds

9) S TETRACOSANE-d50 (SURR... 15.016 1930224 17.105 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

FF042225.M Wed May 14 17:27:11 2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015833.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 15:54

Operator : YP\AJ Sample : Q2008-01

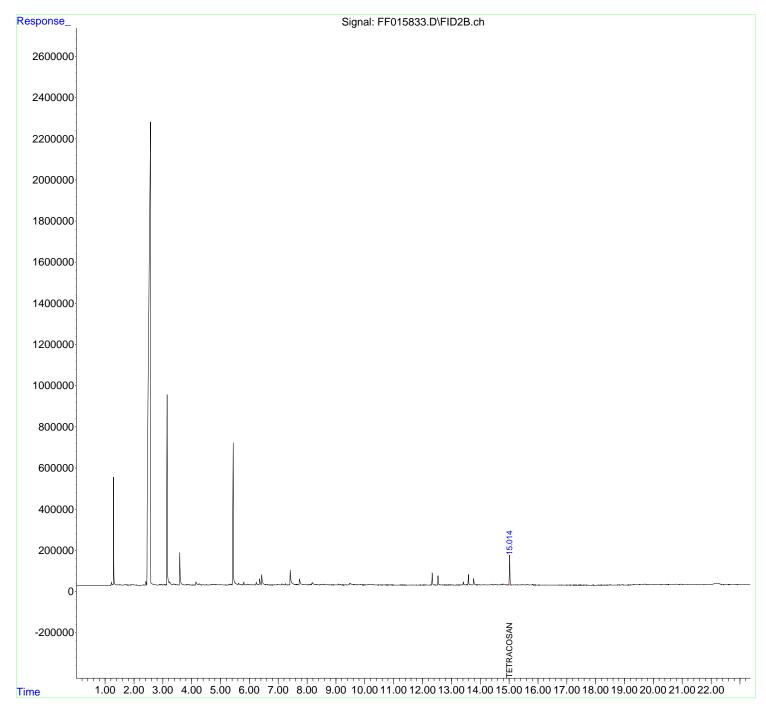
Misc

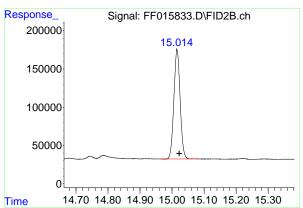
ALS Vial : 74 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:51:07 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

#9 TETRACOSANE-d50 (SURROGATE)

R.T.: 15.016 min

Delta R.T.: -0.007 mir<mark>Instrument:</mark>
Response: 1930224 FID_F
Conc: 17.10 ug/mIClientSampleId:
IDW-AQ-DRUM-633-05092025

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\
Data File : FF015833.D
Signal(s) : FID2B.ch
Acq On : 13 May 2025 15:54
Sample : Q2008-01

Misc ALS Vial : 74 Sample Multiplier: 1

Integration File: Sample.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Method Title

Si gnal : FI D2B. ch

peak #	R.T. min	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	4. 391 4. 413 4. 457 4. 506 4. 542	4. 347 4. 407 4. 454 4. 467 4. 535	4. 407 4. 454 4. 467 4. 535 4. 554	BV VV VV PV VV	1125 1001 172 811 415	18543 13869 487 20746 4177	0. 19% 0. 14% 0. 00% 0. 21% 0. 04%	0. 062% 0. 046% 0. 002% 0. 069% 0. 014%
6 7 8 9 10	4. 558 4. 573 4. 654 4. 685 4. 749	4. 554 4. 562 4. 610 4. 666 4. 730	4. 562 4. 610 4. 666 4. 730 4. 783	VV VV PV VV	319 584 1279 2735 4399	1549 8311 30044 77826 106291	0. 02% 0. 08% 0. 30% 0. 78% 1. 06%	0. 005% 0. 028% 0. 100% 0. 259% 0. 353%
11 12 13 14 15	4. 791 4. 869 4. 968 5. 022 5. 040	4. 783 4. 849 4. 954 5. 015 5. 030	4. 849 4. 954 5. 015 5. 030 5. 070	VV VV VV VV	3147 1954 2439 1529 1532	96020 92930 68761 13688 29475	0. 96% 0. 93% 0. 69% 0. 14% 0. 30%	0. 319% 0. 309% 0. 229% 0. 045% 0. 098%
16 17 18 19 20	5. 080 5. 121 5. 151 5. 169 5. 232	5. 070 5. 102 5. 140 5. 156 5. 226	5. 102 5. 140 5. 156 5. 226 5. 250	VV VV VV VV	1117 929 890 863 367	18291 18462 7269 24134 2673	0. 18% 0. 18% 0. 07% 0. 24% 0. 03%	0. 061% 0. 061% 0. 024% 0. 080% 0. 009%
21 22 23 24 25	5. 290 5. 329 5. 381 5. 441 5. 625	5. 250 5. 318 5. 362 5. 405 5. 607	5. 318 5. 362 5. 405 5. 607 5. 745	PV VV VV VV	2513 4997 5795 690618 9889	58072 79065 74445 9990937 323132	0. 58% 0. 79% 0. 75% 100. 00% 3. 23%	0. 193% 0. 263% 0. 247% 33. 205% 1. 074%
26 27 28 29 30	5. 762 5. 809 5. 874 5. 912 5. 938	5. 745 5. 779 5. 862 5. 879 5. 921	5. 779 5. 862 5. 879 5. 921 6. 003	VV VV VV VV	1576 14636 1101 3636 4504	29729 226240 9801 69988 150996	0. 30% 2. 26% 0. 10% 0. 70% 1. 51%	0. 099% 0. 752% 0. 033% 0. 233% 0. 502%
31 32 33 34 35	6. 006 6. 060 6. 116 6. 123 6. 176	6. 003 6. 034 6. 112 6. 122 6. 152	6. 034 6. 112 6. 122 6. 152 6. 220	VV VV VV VV	1726 2164 1139 1114 2638	29672 73105 6548 16944 56712	0. 30% 0. 73% 0. 07% 0. 17% 0. 57%	0. 099% 0. 243% 0. 022% 0. 056% 0. 188%
36	6. 238	6. 220	6. 255	VV	13678 Pag	155898 je 1	1. 56%	0. 518%

Page 1

					rte	res		
37 38 39 40	6. 259 6. 309 6. 353 6. 426	6. 255 6. 301 6. 321 6. 409	6. 301 6. 321 6. 409 6. 566	VV VV VV	5984 2235 28763 50709	94294 25065 597508 1141898	0. 94% 0. 25% 5. 98% 11. 43%	0. 313% 0. 083% 1. 986% 3. 795%
41 42 43 44 45	6. 572 6. 626 6. 694 6. 708 6. 735	6. 566 6. 605 6. 691 6. 703 6. 722	6. 605 6. 691 6. 703 6. 722 6. 753	VV VV VV VV	2181 4017 770 690 1083	46950 101519 5689 7532 15515	0. 47% 1. 02% 0. 06% 0. 08% 0. 16%	0. 156% 0. 337% 0. 019% 0. 025% 0. 052%
46 47 48 49 50	6. 769 6. 873 6. 940 6. 992 7. 036	6. 753 6. 830 6. 918 6. 977 7. 021	6. 830 6. 918 6. 977 7. 021 7. 059	VV VV VV VV	1591 2522 2846 2774 1811	43378 68222 78452 59812 34444	0. 43% 0. 68% 0. 79% 0. 60% 0. 34%	0. 144% 0. 227% 0. 261% 0. 199% 0. 114%
51 52 53 54 55	7. 069 7. 098 7. 129 7. 248 7. 335	7. 059 7. 082 7. 106 7. 230 7. 316	7. 082 7. 106 7. 230 7. 316 7. 368	VV VV VV VV	1423 1269 6318 7432 1535	16800 16626 192048 133500 37188	0. 17% 0. 17% 1. 92% 1. 34% 0. 37%	0. 056% 0. 055% 0. 638% 0. 444% 0. 124%
56 57 58 59 60	7. 396 7. 416 7. 612 7. 646 7. 679	7. 368 7. 401 7. 599 7. 636 7. 667	7. 401 7. 599 7. 636 7. 667 7. 717	VV VV VV VV	4504 73025 3624 3050 2483	42029 1712917 70531 50457 60918	0. 42% 17. 14% 0. 71% 0. 51% 0. 61%	0. 140% 5. 693% 0. 234% 0. 168% 0. 202%
61 62 63 64 65	7. 735 7. 852 7. 971 8. 041 8. 067	7. 717 7. 838 7. 947 8. 017 8. 048	7. 838 7. 947 8. 017 8. 048 8. 101	VV VV VV VV	29359 4458 2604 1585 3130	799338 192980 84333 27020 83330	8. 00% 1. 93% 0. 84% 0. 27% 0. 83%	2. 657% 0. 641% 0. 280% 0. 090% 0. 277%
66 67 68 69 70	8. 115 8. 145 8. 169 8. 191 8. 310	8. 101 8. 132 8. 155 8. 178 8. 299	8. 132 8. 155 8. 178 8. 299 8. 315	VV VV VV VV	2451 2570 9831 11970 2470	42955 33328 97406 388544 23292	0. 43% 0. 33% 0. 97% 3. 89% 0. 23%	0. 143% 0. 111% 0. 324% 1. 291% 0. 077%
71 72 73 74 75	8. 334 8. 435 8. 460 8. 507 8. 560	8. 315 8. 419 8. 440 8. 502 8. 521	8. 419 8. 440 8. 502 8. 521 8. 648	VV VV VV VV	3857 1433 3528 1623 4715	145462 17046 88958 17568 192038	1. 46% 0. 17% 0. 89% 0. 18% 1. 92%	0. 483% 0. 057% 0. 296% 0. 058% 0. 638%
76 77 78 79 80	8. 673 8. 698 8. 765 8. 861 8. 881	8. 648 8. 677 8. 747 8. 793 8. 870	8. 677 8. 747 8. 793 8. 870 8. 913	VV VV VV VV	2120 2506 2606 1707 1741	31908 79274 48458 65998 40665	0. 32% 0. 79% 0. 49% 0. 66% 0. 41%	0. 106% 0. 263% 0. 161% 0. 219% 0. 135%
81 82 83 84 85	8. 919 8. 999 9. 042 9. 076 9. 154	8. 913 8. 961 9. 027 9. 051 9. 135	8. 961 9. 027 9. 051 9. 135 9. 228	VV VV VV VV	1530 1159 1347 5409 4100	34894 40413 17336 121902 109487	0. 35% 0. 40% 0. 17% 1. 22% 1. 10%	0. 116% 0. 134% 0. 058% 0. 405% 0. 364%
86 87 88 89	9. 255 9. 268 9. 300 9. 328	9. 228 9. 265 9. 283 9. 309	9. 265 9. 283 9. 309 9. 346	VV VV VV	796 775 1285 1769 Pag	14851 7206 16203 32115 e 2	0. 15% 0. 07% 0. 16% 0. 32%	0. 049% 0. 024% 0. 054% 0. 107%

Page 2

					rter	es		
90	9. 359	9. 346	9. 395	VV	1427	38226	0. 38%	0. 127%
91 92 93 94 95	9. 434 9. 476 9. 568 9. 616 9. 704	9. 395 9. 459 9. 553 9. 604 9. 700	9. 459 9. 553 9. 604 9. 700 9. 730	VV VV VV VV	1694 10490 4492 3354 1653	54552 360845 113081 134271 28023	0. 55% 3. 61% 1. 13% 1. 34% 0. 28%	0. 181% 1. 199% 0. 376% 0. 446% 0. 093%
96 97 98 99 100	9. 749 9. 811 9. 839 9. 897 9. 929	9. 730 9. 791 9. 825 9. 881 9. 927	9. 791 9. 825 9. 881 9. 927 9. 989	VV VV VV VV	2378 2968 3132 2178 1616	63279 47753 84307 50832 54063	0. 63% 0. 48% 0. 84% 0. 51% 0. 54%	0. 210% 0. 159% 0. 280% 0. 169% 0. 180%
101 102 103 104 105	10. 001 10. 032 10. 073 10. 110 10. 176	9. 989 10. 018 10. 058 10. 086 10. 161	10. 018 10. 058 10. 086 10. 161 10. 219	VV VV VV VV	1466 1499 1394 3095 2326	23106 31870 21259 106988 68999	0. 23% 0. 32% 0. 21% 1. 07% 0. 69%	0. 077% 0. 106% 0. 071% 0. 356% 0. 229%
107 108	10. 245 10. 391 10. 416 10. 434 10. 507	10. 219 10. 376 10. 403 10. 432 10. 476	10. 376 10. 403 10. 432 10. 476 10. 523	VV VV VV VV	2479 1019 1119 1059 1099	160807 15733 17802 21885 25813	1. 61% 0. 16% 0. 18% 0. 22% 0. 26%	0. 534% 0. 052% 0. 059% 0. 073% 0. 086%
111 112 113 114 115	10. 538 10. 585 10. 662 10. 686 10. 726	10. 523 10. 571 10. 605 10. 682 10. 707	10. 571 10. 605 10. 682 10. 707 10. 766	VV VV VV VV	1472 921 1347 1054 1167	31427 16683 50112 13907 31389	0. 31% 0. 17% 0. 50% 0. 14% 0. 31%	0. 104% 0. 055% 0. 167% 0. 046% 0. 104%
117 118	10. 791 10. 844 10. 883 10. 943 10. 967	10. 766 10. 815 10. 854 10. 938 10. 956	10. 815 10. 854 10. 938 10. 956 11. 010	VV VV VV VV	866 1301 1520 813 884	22657 25505 56770 8900 21814	0. 23% 0. 26% 0. 57% 0. 09% 0. 22%	0. 075% 0. 085% 0. 189% 0. 030% 0. 072%
121 122 123 124 125	11. 040 11. 085 11. 125 11. 158 11. 167	11. 010 11. 072 11. 105 11. 144 11. 163	11. 072 11. 105 11. 144 11. 163 11. 175	VV VV VV VV	685 618 643 509 536	21524 10770 12043 5475 3290	0. 22% 0. 11% 0. 12% 0. 05% 0. 03%	0. 072% 0. 036% 0. 040% 0. 018% 0. 011%
127 128 129	11. 183 11. 221 11. 282 11. 323 11. 380	11. 175 11. 198 11. 248 11. 305 11. 371	11. 198 11. 248 11. 305 11. 371 11. 395	VV VV VV VV	629 1229 1033 1240 759	7389 26664 29437 33449 10381	0. 07% 0. 27% 0. 29% 0. 33% 0. 10%	0. 025% 0. 089% 0. 098% 0. 111% 0. 035%
131 132 133 134 135	11. 400 11. 431 11. 464 11. 501 11. 525	11. 395 11. 410 11. 461 11. 469 11. 521	11. 410 11. 461 11. 469 11. 521 11. 541	VV VV VV VV	751 1092 599 652 563	5950 21734 2814 18087 6302	0. 06% 0. 22% 0. 03% 0. 18% 0. 06%	0. 020% 0. 072% 0. 009% 0. 060% 0. 021%
	11. 545 11. 557 11. 610 11. 649 11. 656	11. 541 11. 552 11. 561 11. 645 11. 653	11. 552 11. 561 11. 645 11. 653 11. 670	VV VV VV VV	483 575 1085 467 441	3228 2912 31873 1870 4342	0. 03% 0. 03% 0. 32% 0. 02% 0. 04%	0. 011% 0. 010% 0. 106% 0. 006% 0. 014%
141	11. 695	11. 670	11. 743	VV	911 Page	24674 3	0. 25%	0. 082%

			rte	eres		
142 11. 759 143 11. 789 144 11. 811 145 11. 853	11. 743	VV VV VV	425 758 621 430	5544 12501 11056 4087	0. 06% 0. 13% 0. 11% 0. 04%	0. 018% 0. 042% 0. 037% 0. 014%
146 11. 902 147 11. 962 148 11. 981 149 12. 009 150 12. 046	11. 864 11. 955 11. 955 11. 978 11. 978 11. 987 11. 987 12. 030 12. 030 12. 076	VV VV VV VV	1212 659 648 926 879	41202 8400 3369 19365 20141	0. 41% 0. 08% 0. 03% 0. 19% 0. 20%	0. 137% 0. 028% 0. 011% 0. 064% 0. 067%
151 12. 105 152 12. 167 153 12. 185 154 12. 195 155 12. 282	12. 076 12. 148 12. 148 12. 174 12. 174 12. 190 12. 190 12. 221 12. 221 12. 304	VV VV VV VV	1820 523 552 506 1704	38880 6862 5023 8154 39086	0. 39% 0. 07% 0. 05% 0. 08% 0. 39%	0. 129% 0. 023% 0. 017% 0. 027% 0. 130%
156 12. 335 157 12. 402 158 12. 536 159 12. 654 160 12. 683	12. 304 12. 384 12. 384 12. 503 12. 503 12. 630 12. 630 12. 678 12. 678 12. 703	VV VV VV VV	58874 1675 46508 1286 968	742600 64594 688204 32248 14065	7. 43% 0. 65% 6. 89% 0. 32% 0. 14%	2. 468% 0. 215% 2. 287% 0. 107% 0. 047%
161 12. 722 162 12. 776 163 12. 804 164 12. 840 165 12. 849	12. 703	VV VV VV VV	1072 899 1021 909 904	31871 14810 17406 10341 12821	0. 32% 0. 15% 0. 17% 0. 10% 0. 13%	0. 106% 0. 049% 0. 058% 0. 034% 0. 043%
166 12. 920 167 12. 952 168 12. 987 169 13. 015 170 13. 075	12. 877 12. 946 12. 946 12. 966 12. 966 13. 012 13. 012 13. 056 13. 056 13. 106	VV VV VV VV	2565 908 1778 1217 833	52815 10146 36277 26236 20173	0. 53% 0. 10% 0. 36% 0. 26% 0. 20%	0. 176% 0. 034% 0. 121% 0. 087% 0. 067%
171 13. 112 172 13. 139 173 13. 182 174 13. 243 175 13. 284	13. 106 13. 125 13. 125 13. 153 13. 153 13. 223 13. 223 13. 267 13. 267 13. 296	VV VV VV VV	638 674 1233 1064 903	6642 10560 40337 23017 13641	0. 07% 0. 11% 0. 40% 0. 23% 0. 14%	0. 022% 0. 035% 0. 134% 0. 076% 0. 045%
176 13. 337 177 13. 366 178 13. 414 179 13. 449 180 13. 492	13. 296 13. 350 13. 350 13. 387 13. 387 13. 441 13. 441 13. 484 13. 484 13. 505	VV VV VV VV	1458 1640 15764 2274 1323	36451 31054 229832 46679 15457	0. 36% 0. 31% 2. 30% 0. 47% 0. 15%	0. 121% 0. 103% 0. 764% 0. 155% 0. 051%
181 13.531 182 13.589 183 13.660 184 13.769 185 13.875	13. 505 13. 557 13. 557 13. 655 13. 655 13. 729 13. 729 13. 868 13. 868 13. 895	VV VV VV VV	3350 52081 1975 32528 1659	65860 766412 67989 590451 25209	0. 66% 7. 67% 0. 68% 5. 91% 0. 25%	0. 219% 2. 547% 0. 226% 1. 962% 0. 084%
186 13. 915 187 13. 937 188 13. 957 189 14. 004 190 14. 017	13. 895 13. 934 13. 934 13. 945 13. 945 13. 997 13. 997 14. 008 14. 008 14. 023	VV VV VV VV	1855 1756 1848 1360 1468	39473 11057 52124 8626 12533	0. 40% 0. 11% 0. 52% 0. 09% 0. 13%	0. 131% 0. 037% 0. 173% 0. 029% 0. 042%
191 14. 027 192 14. 085 193 14. 118 194 14. 177	14. 023 14. 058 14. 058 14. 097 14. 097 14. 154 14. 154 14. 194	VV VV VV	1441 1361 2828 1568 Pag	28338 29066 61701 32937 ge 4	0. 28% 0. 29% 0. 62% 0. 33%	0. 094% 0. 097% 0. 205% 0. 109%

					r.t.o	roc		
195	14. 197	14. 194	14. 229	VV	1531	res 28358	0. 28%	0. 094%
196 197 198 199 200	14. 232 14. 265 14. 286 14. 366 14. 409	14. 229 14. 238 14. 281 14. 310 14. 390	14. 238 14. 281 14. 310 14. 390 14. 462	VV VV VV VV	1251 1413 1349 2328 4718	6899 31631 21212 84376 111336	0. 07% 0. 32% 0. 21% 0. 84% 1. 11%	0. 023% 0. 105% 0. 070% 0. 280% 0. 370%
201 202 203 204 205	14. 480 14. 530 14. 681 14. 744 14. 786	14. 462 14. 498 14. 638 14. 710 14. 764	14. 498 14. 638 14. 710 14. 764 14. 873	VV VV VV VV	2120 3703 2554 5099 5843	39147 172413 71090 92117 209523	0. 39% 1. 73% 0. 71% 0. 92% 2. 10%	0. 130% 0. 573% 0. 236% 0. 306% 0. 696%
	14. 878 14. 888 14. 918 15. 016 15. 064	14. 873 14. 885 14. 904 14. 979 15. 060	14. 885 14. 904 14. 979 15. 060 15. 095	VV VV VV VV	1842 1852 1780 144121 1674	12807 19577 70056 2002008 33055	0. 13% 0. 20% 0. 70% 20. 04% 0. 33%	0. 043% 0. 065% 0. 233% 6. 654% 0. 110%
211 212 213 214 215	15. 098 15. 107 15. 134 15. 144 15. 184	15. 095 15. 103 15. 120 15. 141 15. 162	15. 103 15. 120 15. 141 15. 162 15. 195	VV VV VV VV	1476 1439 1528 1482 1389	6388 14751 17754 17138 26221	0. 06% 0. 15% 0. 18% 0. 17% 0. 26%	0. 021% 0. 049% 0. 059% 0. 057% 0. 087%
216 217 218 219 220	15. 220 15. 287 15. 322 15. 357 15. 367	15. 195 15. 253 15. 318 15. 332 15. 365	15. 253 15. 318 15. 332 15. 365 15. 376	VV VV VV VV	2048 1465 1173 1241 1195	51025 49881 9640 22173 8069	0. 51% 0. 50% 0. 10% 0. 22% 0. 08%	0. 170% 0. 166% 0. 032% 0. 074% 0. 027%
221 222 223 224 225	15. 420 15. 454 15. 509 15. 577 15. 614	15. 376 15. 435 15. 489 15. 569 15. 584	15. 435 15. 489 15. 569 15. 584 15. 703	VV VV VV VV	1993 2566 2073 1025 4087	54286 60504 66977 8928 150872	0. 54% 0. 61% 0. 67% 0. 09% 1. 51%	0. 180% 0. 201% 0. 223% 0. 030% 0. 501%
	15. 706 15. 739 15. 773 15. 809 15. 881	15. 703 15. 720 15. 757 15. 784 15. 860	15. 720 15. 757 15. 784 15. 860 15. 912	VV VV VV VV	1169 1558 1421 4029 987	11727 29357 22215 84957 26170	0. 12% 0. 29% 0. 22% 0. 85% 0. 26%	0. 039% 0. 098% 0. 074% 0. 282% 0. 087%
231 232 233 234 235	15. 916 15. 924 15. 955 15. 981 16. 005	15. 912 15. 921 15. 945 15. 963 15. 991	15. 921 15. 945 15. 963 15. 991 16. 018	VV VV VV VV	959 883 745 860 851	4728 11238 7919 12690 12368	0. 05% 0. 11% 0. 08% 0. 13% 0. 12%	0. 016% 0. 037% 0. 026% 0. 042% 0. 041%
236 237 238 239 240	16. 035 16. 114 16. 130 16. 142 16. 169	16. 018 16. 105 16. 127 16. 136 16. 158	16. 105 16. 127 16. 136 16. 158 16. 196	VV VV VV VV	902 564 582 610 703	36066 6970 3006 7227 13972	0. 36% 0. 07% 0. 03% 0. 07% 0. 14%	0. 120% 0. 023% 0. 010% 0. 024% 0. 046%
241 242 243 244 245	16. 199 16. 212 16. 242 16. 284 16. 306	16. 196 16. 206 16. 222 16. 275 16. 292	16. 206 16. 222 16. 275 16. 292 16. 309	VV VV VV VV	623 588 969 640 663	3369 5061 23315 6130 6607	0. 03% 0. 05% 0. 23% 0. 06% 0. 07%	0. 011% 0. 017% 0. 077% 0. 020% 0. 022%
246	16. 316	16. 309	16. 355	VV	772 Pag	15096 le 5	0. 15%	0. 050%

247 248 249 250	16. 376 16. 415 16. 442 16. 468	16. 355 16. 401 16. 439 16. 460	16. 401 16. 439 16. 460 16. 508	VV VV VV	674 659 612 585	teres 14611 12862 6939 13338	0. 15% 0. 13% 0. 07% 0. 13%	0. 049% 0. 043% 0. 023% 0. 044%
251 252 253 254 255	16. 532 16. 546 16. 577 16. 603 16. 644	16. 508 16. 541 16. 566 16. 586 16. 628	16. 541 16. 566 16. 586 16. 628 16. 680	VV VV VV VV	676 666 636 877 622	11004 8818 7061 17258 16694	0. 11% 0. 09% 0. 07% 0. 17% 0. 17%	0. 037% 0. 029% 0. 023% 0. 057% 0. 055%
	16. 728 16. 798 16. 828 16. 897 16. 919	16. 680 16. 773 16. 820 16. 874 16. 917	16. 773 16. 820 16. 874 16. 917 16. 928	VV VV VV VV	948 1197 873 655 423	31826 24137 17203 12768 2369	0. 32% 0. 24% 0. 17% 0. 13% 0. 02%	0. 106% 0. 080% 0. 057% 0. 042% 0. 008%
261 262 263 264 265	16. 932 16. 940 16. 952 16. 991 17. 033	16. 928 16. 936 16. 948 16. 977 17. 001	16. 936 16. 948 16. 977 17. 001 17. 057	VV VV VV VV	340 350 284 235 926	1433 2055 4032 2725 20024	0. 01% 0. 02% 0. 04% 0. 03% 0. 20%	0. 005% 0. 007% 0. 013% 0. 009% 0. 067%
267 268 269	17. 070 17. 160 17. 168 17. 194 17. 281	17. 057 17. 146 17. 164 17. 172 17. 256	17. 146 17. 164 17. 172 17. 256 17. 309	VV VV VV VV	683 292 252 1082 249	18676 2377 949 20582 4360	0. 19% 0. 02% 0. 01% 0. 21% 0. 04%	0. 062% 0. 008% 0. 003% 0. 068% 0. 014%
271 272 273 274 275	17. 321 17. 341 17. 357 17. 384 17. 430	17. 309 17. 332 17. 347 17. 379 17. 392	17. 332 17. 347 17. 379 17. 392 17. 451	PV VV VV VV PV	185 212 206 56 331	1793 1513 2177 339 4109	0. 02% 0. 02% 0. 02% 0. 00% 0. 04%	0. 006% 0. 005% 0. 007% 0. 001% 0. 014%
276	17. 453	17. 451	17. 484 Sum	VV of c	172 orrected	1278 areas:	0. 01% 30088729	0. 004%

FF042225.M Wed May 14 06:54:07 2025

CALIBRATION SUMMARY

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

DIESEL RANGE ORGANICS INITIAL CALIBRATION SUMMARY

Lab Name:	Chemtech	Contract:	JACO05
DrainatID:	Former Cablumbarger Cita Drin coton NI 2025		

ProjectID: Former Schlumberger Site Princeton NJ 2025

Lab Code: CHEM Case No.: Q2008 SAS No.: Q2008 SDG No.: Q2008

Calibration Sequence : FF0422	25	Test : Diesel Rang	Test : Diesel Range Organics		
Concentration (PPM)	Area Count	Reference Factor	File ID		
1000	116059922	116060	FF015786.D		
500	58079559	116159	FF015787.D		
200	21235975	106180	FF015788.D		
100	11342548	113425	FF015789.D		
50	7274526	145491	FF015790.D		
AVG RF: 119463	0/0	RSD: 12.646	AVG RT: 15.0		

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

DIESEL RANGE ORGANICS CONTINUING CALIBRATION SUMMARY

50 PPM TRPH STD

Lab Name:	Chemtech			Contract:	JACO05		
ProjectID:	Former Schlumberger Si	ite Princeton NJ 20	25				
Lab Code:	СНЕМ	Case No.:	Q2008	SAS No.:	Q2008	SDG No.: Q2008	
DataFile:	FF015828.D		Analyst Name:	YP\AJ	Analy	est Date: 05-13-2025	_

Conc. (PPM)	Conc. (PPM) Area Count		Average RF	%D
500	63743979	127488	119463	6.718

Instrument :
FID_F

ClientSampleId:

50 PPM TRPH STD

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015828.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 11:40

Operator : YP\AJ

Sample : 50 PPM TRPH STD

Misc

ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:11 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

R.T. Compound Response Conc Units System Monitoring Compounds TETRACOSANE-d50 (SURR... 15.020 5888447 52.180 ug/ml Target Compounds N-DECANE 4.563 5958749 58.393 ug/ml 3) N-DODECANE 6.732 6221405 56.819 ug/ml N-TETRADECANE 6235954 4) 8.559 54.028 ug/ml 6335415 5) 10.167 N-HEXADECANE 53.681 ug/ml 6549695 52.066 ug/ml 6558792 50.275 ug/ml 6475635 50.837 ug/ml 6508827 51.744 ug/ml 11.610 6) N-OCTADECANE 7) 12.921 N-EICOSANE 8) N-DOCOSANE 14.120 15.223 16.245 10) N-TETRACOSANE 11) N-HEXACOSANE 16.245 6429876 52.748 ug/ml N-OCTACOSANE 17.196 6469631 54.675 ug/ml 12)

(f)=RT Delta > 1/2 Window

(m)=manual int.

FF042225.M Wed May 14 17:26:24 2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015828.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 11:40

Operator : YP\AJ

Sample : 50 PPM TRPH STD

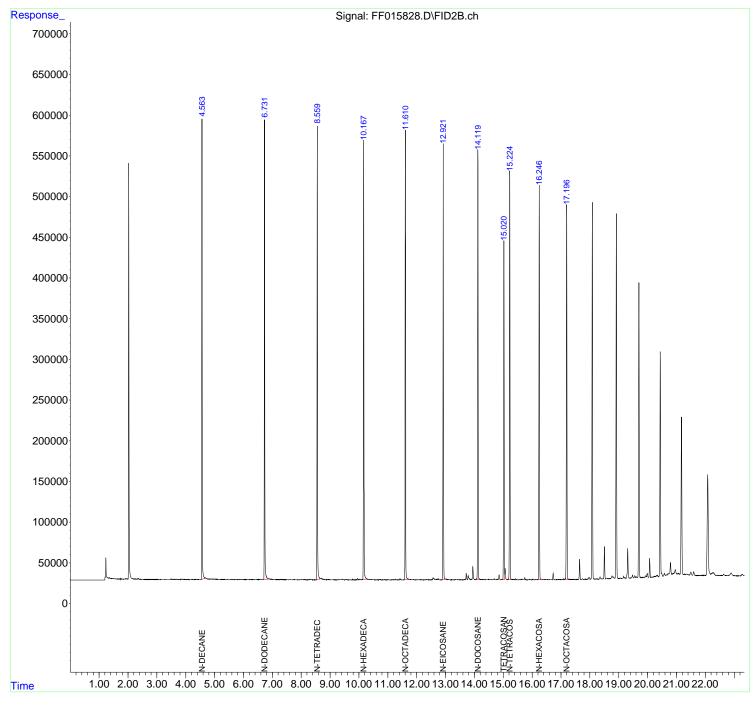
Misc

ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:11 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\
Data File : FF015828.D
Signal(s) : FID2B.ch
Acq On : 13 May 2025 11:40
Sample : 50 PPM TRPH STD

Misc : ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

: FI D2B. ch Si gnal

peak	R.T.	Start	End		peak	peak	peak	% of
#	min	min	mi n		hei ght	area	% max.	total
-	4. 563	4. 536	4. 669	BV	563385	5958749	90. 85%	8. 557%
	6. 732	6. 702	6. 897	BB	564349	6221405	94. 86%	8. 935%
	8. 559	8. 526	8. 677	BV	557031	6235954	95. 08%	8. 956%
	10. 167	10. 134	10. 311	PB	539501	6335415	96. 59%	9. 098%
	11. 610	11. 572	11. 726	BB	553370	6549695	99. 86%	9. 406%
7 8 9	12. 921 14. 120 15. 020 15. 223 16. 245	12. 882 14. 085 14. 937 15. 157 16. 192	13. 016 14. 202 15. 050 15. 306 16. 321	BB VB BV BB BB	534572 527669 416223 502593 484328	6558792 6475635 5888447 6508827 6429876	100.00% 98.73% 89.78% 99.24% 98.03%	9. 419% 9. 300% 8. 456% 9. 347% 9. 234%
11	17. 196	17. 122	17. 266 Sum	BB of co	458539 orrected	6469631 areas:	98. 64% 69632425	9. 291%

Sum of corrected areas:

FF042225. M Wed May 14 06: 40: 04 2025

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

DIESEL RANGE ORGANICS CONTINUING CALIBRATION SUMMARY

50 PPM TRPH STD

Lab Name:	Chemtech			Contract:	JACO05		
ProjectID:	Former Schlumberger S	Site Princeton NJ 20	025				
Lab Code:	СНЕМ	Case No.:	Q2008	SAS No.:	Q2008	SDG No.: <u>Q2008</u>	
DataFile:	FF015835.D		Analyst Name:	YP\AJ	Analyst Da	ate: 05-13-2025	

Conc. (PPM) Area Count		RF	Average RF	%D	
500	59789393	119579	119463	0.097	

Instrument :
FID_F

ClientSampleId:

50 PPM TRPH STD

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015835.D
Signal(s) : FID2B.ch

Acq On : 13 May 2025 16:53

Operator : YP\AJ

Sample : 50 PPM TRPH STD

Misc

ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e

Quant Time: May 14 05:51:25 2025
Quant Method : Z:\pestpcbsrv\HPCHEM1\FID F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

R.T. Compound Response Conc Units System Monitoring Compounds TETRACOSANE-d50 (SURR... 15.019 5541961 49.110 ug/ml Target Compounds N-DECANE 4.564 5585020 54.731 ug/ml 3) N-DODECANE 6.733 5797250 52.945 ug/ml 5816239 50.392 ug/ml N-TETRADECANE 4) 8.560 5908301 50.062 ug/ml 5) 10.167 N-HEXADECANE 6124561 48.686 ug/ml 6148088 47.127 ug/ml 6100209 47.890 ug/ml 6131229 48.743 ug/ml 6064363 49.750 ug/ml 6114133 51.670 ug/ml 11.610 6) N-OCTADECANE 7) 12.921 N-EICOSANE 8) N-DOCOSANE 14.119 15.223 16.245 10) N-TETRACOSANE 11) N-HEXACOSANE 16.245 N-OCTACOSANE 17.196 12)

(f)=RT Delta > 1/2 Window

(m)=manual int.

FF042225.M Wed May 14 17:27:25 2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015835.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 16:53

Operator : YP\AJ

Sample : 50 PPM TRPH STD

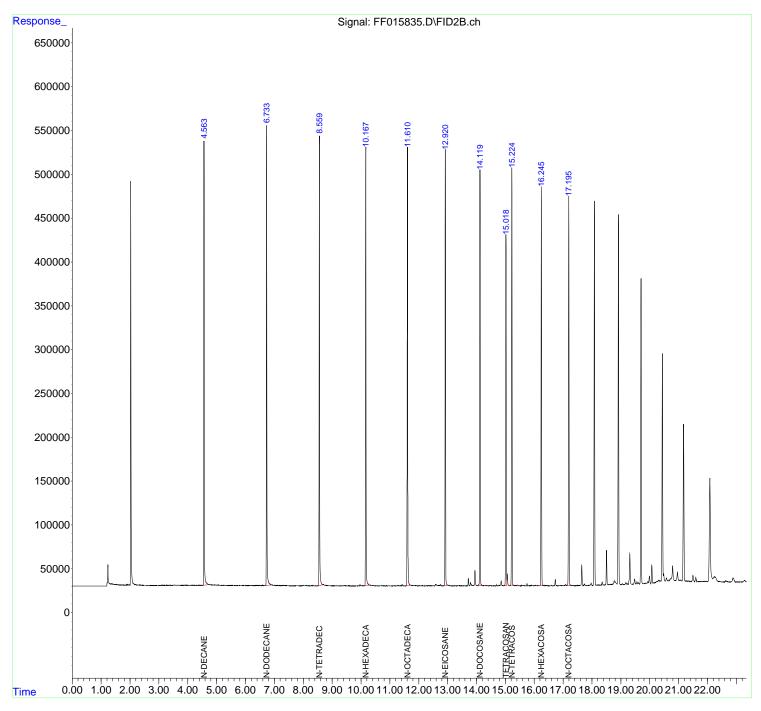
Misc

ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:51:25 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\
Data File : FF015835.D
Signal(s) : FID2B.ch
Acq On : 13 May 2025 16:53
Sample : 50 PPM TRPH STD

Misc : ALS Vial : 53 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak	R.T.	Start	End	PK	peak	peak	peak	% of
#	min	min	mi n	TY	hei ght	area	% max.	total
-	4. 564	4. 510	4. 734	BB	506736	5585020	90. 84%	8. 549%
	6. 733	6. 702	6. 900	BB	524627	5797250	94. 29%	8. 874%
	8. 560	8. 517	8. 679	BV	510768	5816239	94. 60%	8. 903%
	10. 167	10. 134	10. 310	BB	500393	5908301	96. 10%	9. 044%
	11. 610	11. 564	11. 730	BB	501026	6124561	99. 62%	9. 375%
7 8 9	12. 921 14. 119 15. 019 15. 223 16. 245	12. 880 14. 059 14. 934 15. 162 16. 180	13. 019 14. 210 15. 050 15. 312 16. 324	BB BB BV BB BB	497512 472208 400380 477052 455894	6148088 6100209 5541961 6131229 6064363	100.00% 99.22% 90.14% 99.73% 98.64%	9. 411% 9. 337% 8. 483% 9. 385% 9. 282%
11	17. 196	17. 124	17. 265 Sum	BB of c	443585 orrected	6114133 areas:	99. 45% 65331354	9. 359%

FF042225. M Wed May 14 06: 44: 56 2025

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Analytical Sequence

Client: JACOBS Engineering Group, Inc. SDG No.: Q2008

Project: Former Schlumberger Site Princeton NJ 2025 Instrument ID: FID_F

GC Column: RXI-1MS ID: 0.18 (mm)

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

MEAN SUROGATE RT FROM INITIAL CALIBRATION 15.02								
EPA SAMPLE NO.	LAB SAMPLE ID	DATE AND TIME ANALYZED	DATAFILE	RT	#			
PIBLK01	I.BLK01	13 May 2025 11:11	FF015827.D	15.020				
50 PPM TRPH STD	50 PPM TRPH STD	13 May 2025 11:40	FF015828.D	15.020				
PB167981BL	PB167981BL	13 May 2025 13:22	FF015830.D	15.018				
PB167981BS	PB167981BS	13 May 2025 13:51	FF015831.D	15.017				
PB167981BSD	PB167981BSD	13 May 2025 15:25	FF015832.D	15.015				
IDW-AQ-DRUM-633-05092025	Q2008-01	13 May 2025 15:54	FF015833.D	15.016				
PIBLK02	I.BLK02	13 May 2025 16:24	FF015834.D	15.021				
50 PPM TRPH STD	50 PPM TRPH STD	13 May 2025 16:53	FF015835.D	15.019				

QC SAMPLE DATA

Final Vol:

mL

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected:

Units:

Project: Former Schlumberger Site Princeton NJ 2025 Date Received:

Client Sample ID: PB167981BL SDG No.: Q2008

Lab Sample ID: PB167981BL Matrix: Water

Analytical Method: 8015D DRO % Solid: 0 Decanted:

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

1000

Prep Method: SW3510

Sample Wt/Vol:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

FF015830.D 1 05/13/25 08:56 05/13/25 13:22 PB167981

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	6.00	U	6.00	50.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	16.5		29 - 130	83%	SPK: 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Instrument : FID_F

ClientSampleld: PB167981BL

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015830.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 13:22 Operator : YP\AJ

Operator : YP\AJ Sample : PB167981BL

Misc

ALS Vial : 71 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:33 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S TETRACOSANE-d50 (SURR... 15.018 1864779 16.525 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

FF042225.M Wed May 14 17:26:44 2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015830.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 13:22

Operator : YP\AJ Sample : PB167981BL

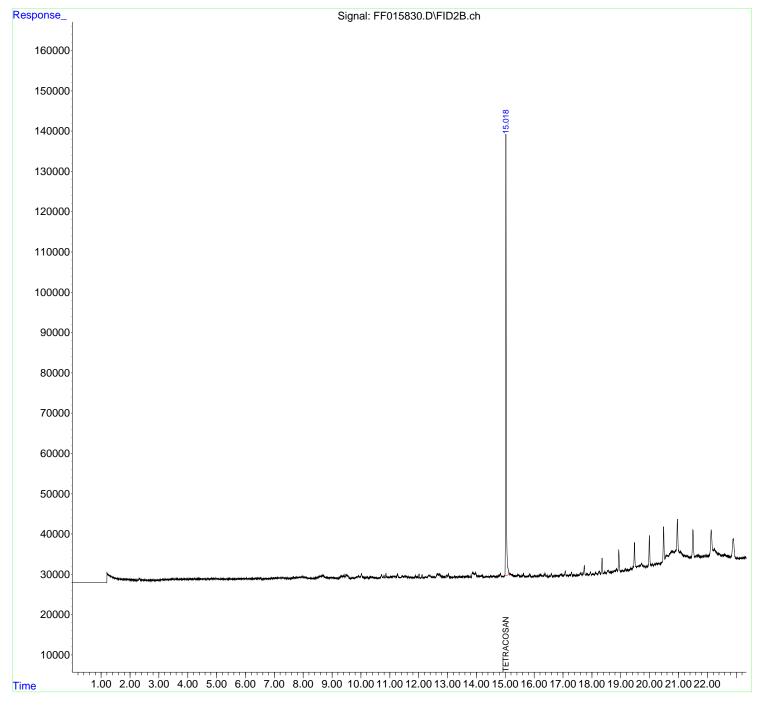
Misc

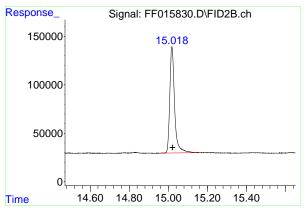
ALS Vial : 71 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:33 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

#9 TETRACOSANE-d50 (SURROGATE)

R.T.: 15.018 min

Delta R.T.: -0.004 mir<mark>Instrument:</mark>
Response: 1864779 FID_F
Conc: 16.52 ug/mIClientSampleId:
PB167981BL

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\ Data File : FF015830.D

Signal(s): FID2B.ch Acq On: 13 May 20

13 May 2025 13: 22 PB167981BL

Sample

Misc ALS Vial : 71 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak R.T. End % of Start PK peak peak peak TY height % max. # min min mi n area total _ _ _ _ 1 15.018 14. 962 15. 159 BB 109297 1864779 100.00%100.000%

Sum of corrected areas: 1864779

FF042225. M Wed May 14 06:41:08 2025

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected: 05/13/25

Project: Former Schlumberger Site Princeton NJ 2025

Date Received: 05/13/25

Water

Client Sample ID: PIBLK-FF015827.D SDG No.: Q2008

Lab Sample ID: I.BLK-FF015827.D Matrix:

Analytical Method: 8015D DRO % Solid:

Decanted: mL

Sample Wt/Vol: 1000

Final Vol:

Soil Aliquot Vol:

Test:

Diesel Range Organics

Extraction Type:

Injection Volume:

GPC Factor:

Units:

PH:

uL

Prep Method: SW3510

File ID/Qc Batch: Dilution: Date Analyzed

Prep Batch ID

FF015827.D

05/13/25

FF051325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	6.00	U	6.00	50.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	16.3		29 - 130	82%	SPK: 20

Prep Date

Comments:

U = Not Detected

LOO = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Quantitation Report (QT Reviewed)

Instrument : FID_F

I.BLK

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015827.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 11:11 Operator : YP\AJ

Operator : YP\AJ Sample : I.BLK

Misc

ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:01 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S TETRACOSANE-d50 (SURR... 15.020 1842353 16.326 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

FF042225.M Wed May 14 17:26:17 2025

Quantitation Report (QT Reviewed)

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015827.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 11:11

Operator : YP\AJ Sample : I.BLK

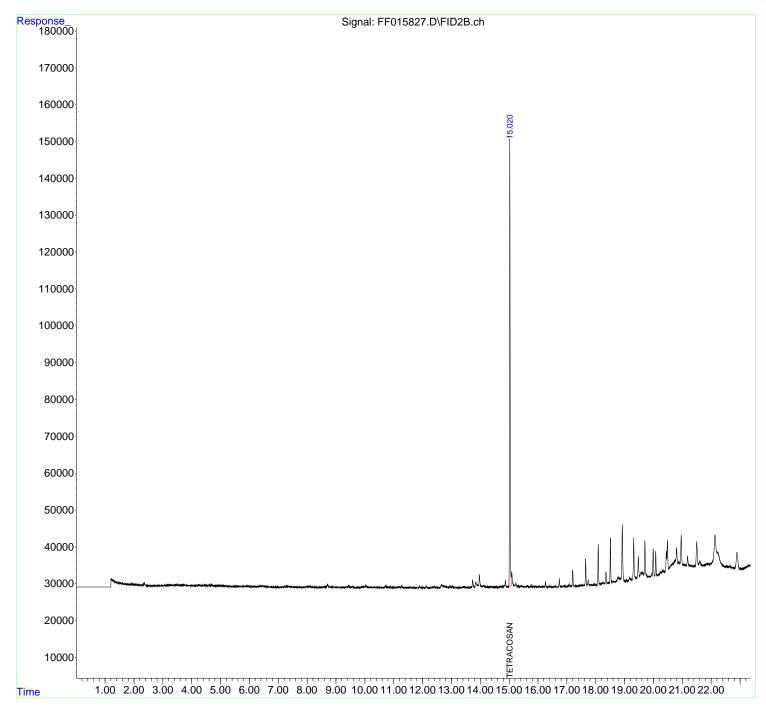
Misc

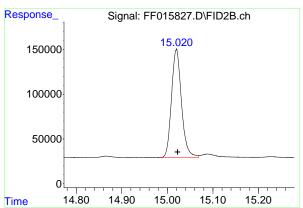
ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:01 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

#9 TETRACOSANE-d50 (SURROGATE)

R.T.: 15.020 min

Delta R.T.: -0.002 mir nstrument:

Response: 1842353 FID_F

Conc: 16.33 ug/miClientSampleld:

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\ Data File : FF015827.D

Signal (s) : FI D2B. ch Acq On : 13 May 20 13 May 2025 11:11

Sample I . BLK

Misc ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak R.T. End PK peak % of Start peak peak TY height mi n % max. # mi n mi n area total _ _ _ _ 1 15.020 14. 984 15.069 BV 121439 1842353 100.00%100.000%

Sum of corrected areas: 1842353

FF042225. M Wed May 14 06: 39: 21 2025

Report of Analysis

Client: JACOBS Engineering Group, Inc.

Date Collected: 05/13/25

Project:

Former Schlumberger Site Princeton NJ 2025

05/13/25

Client Sample ID:

PIBLK-FF015834.D

Lab Sample ID:

I.BLK-FF015834.D

Units:

Q2008 Water

Analytical Method:

8015D DRO

Matrix: % Solid:

SDG No.:

Date Received:

Decanted:

Sample Wt/Vol:

1000

Final Vol:

mL

Soil Aliquot Vol:

uL

Test: Diesel Range Organics

Extraction Type:

uL

Injection Volume:

GPC Factor:

PH:

Prep Method:

File ID/Qc Batch:

SW3510

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

FF015834.D

- 1

05/13/25

FF051325

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	6.00	U	6.00	50.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	16.4		29 - 130	82%	SPK: 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Quantitation Report (QT Reviewed)

Instrument : FID_F

I.BLK

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015834.D

Signal(s) : FID2B.ch

Acq On : 13 May 2025 16:24 Operator : YP\AJ

Operator : YP\AJ Sample : I.BLK

Misc

ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:51:15 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S TETRACOSANE-d50 (SURR... 15.021 1851737 16.409 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

FF042225.M Wed May 14 17:27:18 2025

Quantitation Report (QT Reviewed)

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015834.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 16:24

Operator : YP\AJ Sample : I.BLK

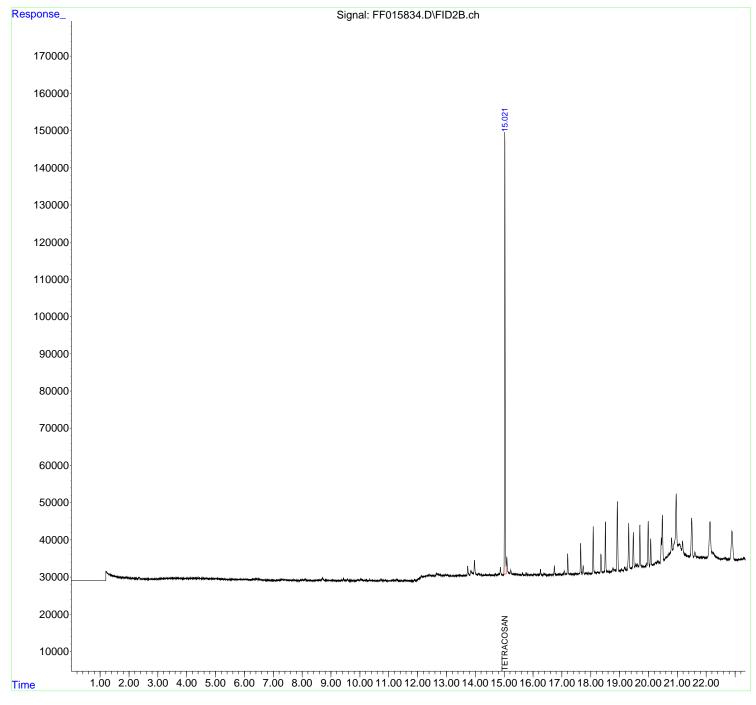
Misc

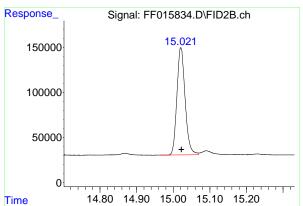
ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:51:15 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

#9 TETRACOSANE-d50 (SURROGATE)

R.T.: 15.021 min

Delta R.T.: -0.002 mir nstrument:

Response: 1851737 FID_F

Conc: 16.41 ug/miClientSampleld:

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\ Data File : FF015834.D

Signal(s): FID2B.ch Acq On: 13 May 20 13 May 2025 16: 24

Sample I . BLK

Misc ALS Vial : 52 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak R.T. End % of Start PK peak peak peak TY height mi n % max. # mi n mi n area total _ _ _ _ 1 15.021 14.964 15.069 BV 118622 1851737 100.00%100.000%

Sum of corrected areas: 1851737

FF042225. M Wed May 14 06: 43: 57 2025

% Solid:

Decanted:

Report of Analysis

Client: JACOBS Engineering Group, Inc. Date Collected:

Project: Former Schlumberger Site Princeton NJ 2025 Date Received:

Client Sample ID: PB167981BS SDG No.: Q2008

Lab Sample ID: PB167981BS Matrix: Water

Sample Wt/Vol: 1000 Units: mL Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

8015D DRO

Prep Method: SW3510

Analytical Method:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 FF015831.D
 1
 05/13/25 08:56
 05/13/25 13:51
 PB167981

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	207	6.00	50.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	20.2	29 - 130	101%	SPK: 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Quantitation Report (QT Reviewed)

Instrument : FID_F

PB167981BS

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015831.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 13:51

Operator : YP\AJ Sample : PB167981BS

Misc

ALS Vial : 72 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:42 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

R.T. Compound Response Conc Units System Monitoring Compounds TETRACOSANE-d50 (SURR... 15.017 2276385 20.172 ug/ml Target Compounds N-DECANE 4.563 2172601 21.291 ug/ml 3) N-DODECANE 6.731 2347847 21.442 ug/ml N-TETRADECANE 2344101 20.309 ug/ml 4) 8.558 2396754 5) 10.166 20.308 ug/ml N-HEXADECANE 2578387 11.608 6) N-OCTADECANE 20.496 ug/ml 2588305 7) 12.918 N-EICOSANE 19.840 ug/ml 2607435 8) N-DOCOSANE 14.116 20.470 ug/ml 2627111 15.221 16.242 10) N-TETRACOSANE 20.885 ug/ml 11) N-HEXACOSANE 16.242 2586042 21.215 ug/ml N-OCTACOSANE 17.193 2535471 21.427 ug/ml 12)

(f)=RT Delta > 1/2 Window

(m)=manual int.

FF042225.M Wed May 14 17:26:51 2025

Quantitation Report (QT Reviewed)

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015831.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 13:51

Operator : YP\AJ Sample : PB167981BS

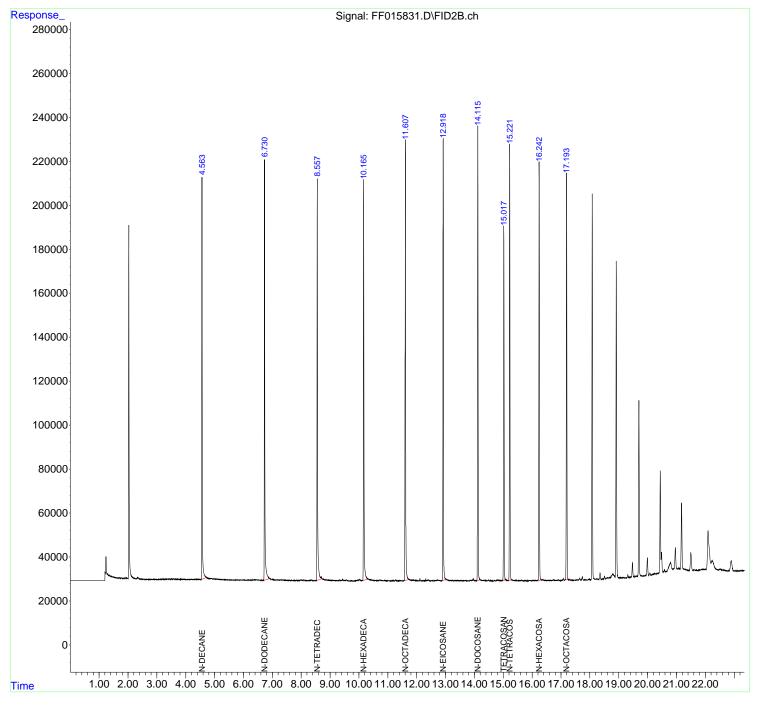
Misc :

ALS Vial : 72 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:42 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\
Data File : FF015831.D
Signal(s) : FID2B.ch
Acq On : 13 May 2025 13:51
Sample : PB167981BS

Misc : ALS Vial : 72 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak #	R.T. min	Start min	End mi n		peak hei ght	peak area	peak % max.	% of total
1	4. 563	4. 537	4.717	BB	182667	2172601	82.70%	8. 029%
2		6. 696	6. 909	BB	191402	2347847	89. 37%	8. 676%
3	8. 558	8. 527	8. 724	BB	182201	2344101	89. 23%	8. 662%
4	10. 166	10. 134	10. 304	BB	182453	2396754	91. 23%	8.857%
5	11. 608	11. 571	11. 734	BB	200133	2578387	98. 15%	9. 528%
6	12. 918	12. 882	13. 014	ВВ	200908	2588305	98. 52%	9. 565%
7	14. 116	14. 077	14. 207	BB	207030	2607435	99. 25%	9. 636%
8	15. 017	14. 979	15. 096	BB	161318	2276385	86. 65%	8. 412%
9	15. 221	15. 182	15. 297	BB	197234	2627111	100.00%	9. 708%
10	16. 242	16. 201	16. 317	BB	190113	2586042	98. 44%	9. 557%
11	17. 193	17. 149	17. 267	ВВ	184575	2535471	96. 51%	9. 370%
			Sum	of c	orrected	areas:	27060438	

FF042225. M Wed May 14 06: 42: 55 2025

Date Collected:

Date Received:

Report of Analysis

Client: JACOBS Engineering Group, Inc.

Project: Former Schlumberger Site Princeton NJ 2025

Client Sample ID: PB167981BSD SDG No.: Q2008
Lab Sample ID: PB167981BSD Matrix: Water

Analytical Method: 8015D DRO % Solid: 0 Decanted:

Sample Wt/Vol: 1000 Units: mL Final Vol: 1 mL

Soil Aliquot Vol: uL Test: Diesel Range Organics

Extraction Type: Injection Volume:

GPC Factor: PH:

Prep Method: SW3510

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 FF015832.D
 1
 05/13/25 08:56
 05/13/25 15:25
 PB167981

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
TARGETS DRO	DRO	203	6.00	50.0	ug/L
SURROGATES 16416-32-3	Tetracosane-d50	19.7	29 - 130	99%	SPK: 20

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Quantitation Report (QT Reviewed)

Instrument : FID_F

PB167981BSD

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015832.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 15:25

Operator : YP\AJ : PB167981BSD

Sample

Misc

ALS Vial : 73 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 14 05:50:55 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :

QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

	Compound	R.T.	Response	Conc Units	
•	Monitoring Compounds				
9) S	TETRACOSANE-d50 (SURR	15.015	2226568	19.731 ug/ml	
Target	Compounds				
2)	N-DECANE	4.553	2151211	21.081 ug/ml	
3)	N-DODECANE	6.724	2320115	21.189 ug/ml	
4)	N-TETRADECANE	8.553	2294216	19.877 ug/ml	
5)	N-HEXADECANE	10.162	2354193	19.948 ug/ml	
6)	N-OCTADECANE	11.605	2522613	20.053 ug/ml	
7)	N-EICOSANE	12.916	2524499	19.351 ug/ml	
8)	N-DOCOSANE	14.115	2536993	19.917 ug/ml	
10)	N-TETRACOSANE	15.219	2565009	20.392 ug/ml	
11)	N-HEXACOSANE	16.241	2527358	20.733 ug/ml	
12)	N-OCTACOSANE	17.192	2481462	20.971 ug/ml	

(f)=RT Delta > 1/2 Window

(m)=manual int.

FF042225.M Wed May 14 17:27:02 2025

Quantitation Report (QT Reviewed)

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\

Data File : FF015832.D Signal(s) : FID2B.ch

Acq On : 13 May 2025 15:25

Operator : YP\AJ Sample : PB167981BSD

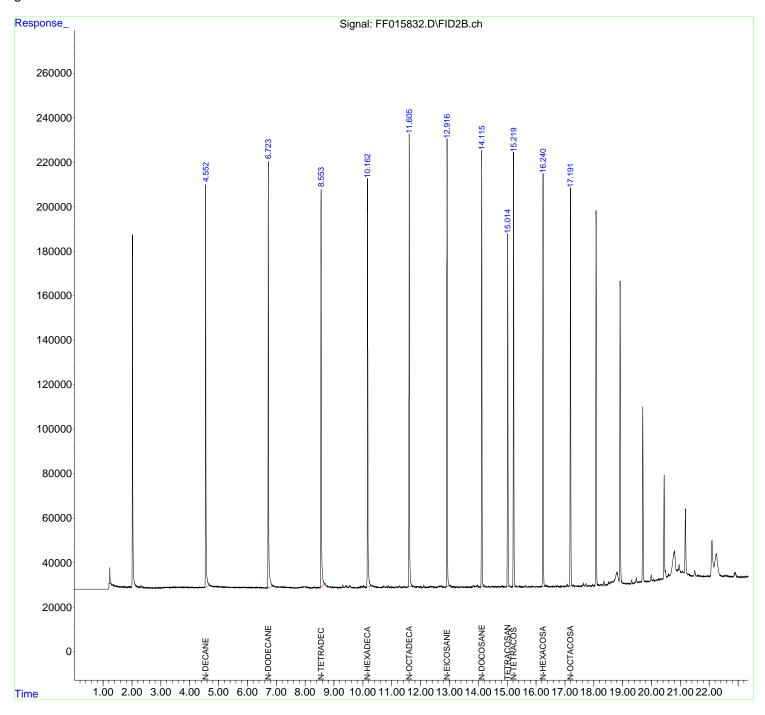
Misc

ALS Vial : 73 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 14 05:50:55 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Quant Title :


QLast Update : Tue Apr 22 11:27:50 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1uL Signal Phase : Rxi-1ms

Signal Info : 20mx0.18mmx0.18um

rteres

Area Percent Report

Data Path: Z:\pestpcbsrv\HPCHEM1\FID_F\Data\FF051325\
Data File: FF015832.D
Signal(s): FID2B.ch
Acq On: 13 May 2025 15:25
Sample: PB167981BSD

Misc : ALS Vial : 73 Sample Multiplier: 1

Integration File: autoint1.e

: Z:\pestpcbsrv\HPCHEM1\FID_F\Method\FF042225.M

Title

Si gnal : FI D2B. ch

peak	R.T.	Start	End	PK	peak	peak	peak	% of
#	min	min	mi n	TY	hei ght	area	% max.	total
-	4. 553	4. 526	4. 701	BB	180908	2151211	83. 87%	8. 116%
	6. 724	6. 697	6. 881	BB	191414	2320115	90. 45%	8. 754%
	8. 553	8. 526	8. 689	BB	178546	2294216	89. 44%	8. 656%
	10. 162	10. 109	10. 301	BB	183015	2354193	91. 78%	8. 882%
	11. 605	11. 551	11. 716	BB	203350	2522613	98. 35%	9. 518%
7 8 9	12. 916 14. 115 15. 015 15. 219 16. 241	12. 859 14. 062 14. 966 15. 164 16. 177	12. 999 14. 191 15. 114 15. 304 16. 322	BB BB BB BB	200811 196825 158086 195343 185249	2524499 2536993 2226568 2565009 2527358	98. 42% 98. 91% 86. 81% 100. 00% 98. 53%	9. 525% 9. 572% 8. 401% 9. 678% 9. 536%
11	17. 192	17. 112	17. 261 Sum	BB of c	178072 orrected	2481462 areas:	96. 74% 26504237	9. 363%

FF042225. M Wed May 14 06: 43: 24 2025

Manual Integration Report

Sample ID	ClientId ID	File ID	Sequence ID	Parameter	Supervised By	Supervised On	Reason
5 TRPH STD		FF015790.D	FF042225	N-TETRACONTANE	mohammad	4/24/2025 6:33:56 AM	Peak Integrated by Software incorrectly

Manual Integration Report

Sample ID	ClientId ID	File ID	Sequence ID	Parameter	Supervised By	Supervised On	Reason
Q1872-14		FF015846.D	FF051325	TETRACOSANE-d50 (SURROGA			Peak Integrated by Software incorrectly

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF042225

Review By you	gesh	Review On	4/22/2025 1:28:06 PM		
Supervise By mo	hammad	Supervise On	4/24/2025 6:33:56 AM		
SubDirectory FF	042225	HP Acquire Me	thod	HP Processing Method	FF042225
STD. NAME	STD REF.#				
Tune/Reschk Initial Calibration Stds	PP24467,PP24469,PP2	4470,PP24471,PP2447	2		
CCC Internal Standard/PEM ICV/I.BLK	PP24468,PP24473				
Surrogate Standard MS/MSD Standard LCS Standard					

Sr#	Sampleld	Data File Name	Date-Time	Operator	Status
1	MECL2	FF015784.D	22 Apr 2025 08:12	YP\AJ	Ok
2	I.BLK	FF015785.D	22 Apr 2025 08:42	YP\AJ	Ok
3	100 TRPH STD	FF015786.D	22 Apr 2025 09:11	YP\AJ	Ok
4	50 TRPH STD	FF015787.D	22 Apr 2025 09:40	YP\AJ	Ok
5	20 TRPH STD	FF015788.D	22 Apr 2025 10:09	YP\AJ	Ok
6	10 TRPH STD	FF015789.D	22 Apr 2025 10:39	YP\AJ	Ok
7	5 TRPH STD	FF015790.D	22 Apr 2025 11:08	YP\AJ	Ok,M
8	FF042225ICV	FF015791.D	22 Apr 2025 11:39	YP\AJ	Ok

M : Manual Integration

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF051325

Review By yogesh Review On 5/13/2025 1:15:36 PM Supervise By Supervise On SubDirectory FF051325 **HP Acquire Method HP Processing Method** FF042225 STD REF.# STD. NAME Tune/Reschk Initial Calibration Stds PP24467,PP24469,PP24470,PP24471,PP24472 CCC PP24469 Internal Standard/PEM PP24468,PP24473 ICV/I.BLK Surrogate Standard MS/MSD Standard LCS Standard

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	MECL2	FF015826.D	13 May 2025 10:42	YP\AJ	Ok
2	I.BLK	FF015827.D	13 May 2025 11:11	YP\AJ	Ok
3	50 PPM TRPH STD	FF015828.D	13 May 2025 11:40	YP\AJ	Ok
4	RT MARKER	FF015829.D	13 May 2025 12:13	YP\AJ	Ok
5	PB167981BL	FF015830.D	13 May 2025 13:22	YP\AJ	Ok
6	PB167981BS	FF015831.D	13 May 2025 13:51	YP\AJ	Ok
7	PB167981BSD	FF015832.D	13 May 2025 15:25	YP\AJ	Ok
8	Q2008-01	FF015833.D	13 May 2025 15:54	YP\AJ	Ok
9	I.BLK	FF015834.D	13 May 2025 16:24	YP\AJ	Ok
10	50 PPM TRPH STD	FF015835.D	13 May 2025 16:53	YP\AJ	Ok
11	Q1982-04	FF015836.D	13 May 2025 17:22	YP\AJ	Ok
12	Q1982-05	FF015837.D	13 May 2025 17:51	YP\AJ	Ok
13	Q1982-06	FF015838.D	13 May 2025 18:21	YP\AJ	Ok
14	Q1982-07	FF015839.D	13 May 2025 18:50	YP\AJ	Ok
15	Q1982-08	FF015840.D	13 May 2025 19:19	YP\AJ	Ok
16	I.BLK	FF015841.D	13 May 2025 19:49	YP\AJ	Ok
17	50 PPM TRPH STD	FF015842.D	13 May 2025 20:18	YP\AJ	Ok
18	PB167975BL	FF015843.D	13 May 2025 21:16	YP\AJ	Ok
19	PB167975BS	FF015844.D	13 May 2025 21:46	YP\AJ	Ok
20	Q1872-14	FF015845.D	13 May 2025 22:15	YP\AJ	Not Ok
21	Q1872-14	FF015846.D	13 May 2025 22:44	YP\AJ	Not Ok

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF051325

Review By you	gesh	Review On	5/13/2025 1:15:36 PM		
Supervise By		Supervise On			
SubDirectory FF	051325	HP Acquire Me	thod	HP Processing Method	FF042225
STD. NAME	STD REF.#				
Tune/Reschk Initial Calibration Stds	PP24467,PP24469,PP2	4470,PP24471,PP2447	2		
CCC Internal Standard/PEM	PP24469				
ICV/I.BLK Surrogate Standard	PP24468,PP24473				
MS/MSD Standard LCS Standard					

22	I.BLK	FF015847.D	13 May 2025 23:14	YP\AJ	Ok
23	50 PPM TRPH STD	FF015848.D	14 May 2025 00:12	YP\AJ	Ok

M : Manual Integration

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF042225

Review By	yogesh	Review On	4/22/2025 1:28:06 PM					
Supervise By	rvise By mohammad Superv		4/24/2025 6:33:56 AM					
SubDirectory	FF042225	HP Acquire Method	HP Processing Method	FF042225				
STD. NAME	STD REF.#							
Tune/Reschk Initial Calibration Stds	PP24467,PP24469,PP24	470,PP24471,PP24472						
CCC Internal Standard/PEM ICV/I.BLK Surrogate Standard MS/MSD Standard LCS Standard	PP24468,PP24473							

Sr#	SampleId	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	MECL2		FF015784.D	22 Apr 2025 08:12		YP\AJ	Ok
2	I.BLK		FF015785.D	22 Apr 2025 08:42		YP\AJ	Ok
3	100 TRPH STD		FF015786.D	22 Apr 2025 09:11		YP\AJ	Ok
4	50 TRPH STD		FF015787.D	22 Apr 2025 09:40		YP\AJ	Ok
5	20 TRPH STD		FF015788.D	22 Apr 2025 10:09		YP\AJ	Ok
6	10 TRPH STD		FF015789.D	22 Apr 2025 10:39		YP\AJ	Ok
7	5 TRPH STD		FF015790.D	22 Apr 2025 11:08		YP\AJ	Ok,M
8	FF042225ICV		FF015791.D	22 Apr 2025 11:39		YP\AJ	Ok

M : Manual Integration

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF051325

Review By	yogesh	Review On	5/13/2025 1:15:36 PM				
Supervise By	Supervise By		Supervise On				
SubDirectory	FF051325	HP Acquire Method	HP Processing Method	FF042225			
STD. NAME	STD REF.#						
Tune/Reschk							
Initial Calibration Stds	PP24467,PP24469,PP24	1470,PP24471,PP24472					
ccc	PP24469						
Internal Standard/PEM							
ICV/I.BLK	PP24468,PP24473						
Surrogate Standard							
MS/MSD Standard							
LCS Standard							

Sr#	SampleId	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	MECL2		FF015826.D	13 May 2025 10:42		YP\AJ	Ok
2	I.BLK		FF015827.D	13 May 2025 11:11		YP\AJ	Ok
3	50 PPM TRPH STD		FF015828.D	13 May 2025 11:40		YP\AJ	Ok
4	RT MARKER		FF015829.D	13 May 2025 12:13		YP∖AJ	Ok
5	PB167981BL		FF015830.D	13 May 2025 13:22		YP\AJ	Ok
6	PB167981BS		FF015831.D	13 May 2025 13:51		YP\AJ	Ok
7	PB167981BSD		FF015832.D	13 May 2025 15:25		YP\AJ	Ok
8	Q2008-01		FF015833.D	13 May 2025 15:54		YP\AJ	Ok
9	I.BLK		FF015834.D	13 May 2025 16:24		YP\AJ	Ok
10	50 PPM TRPH STD		FF015835.D	13 May 2025 16:53		YP∖AJ	Ok
11	Q1982-04		FF015836.D	13 May 2025 17:22		YP\AJ	Ok
12	Q1982-05		FF015837.D	13 May 2025 17:51		YP∖AJ	Ok
13	Q1982-06		FF015838.D	13 May 2025 18:21		YP∖AJ	Ok
14	Q1982-07		FF015839.D	13 May 2025 18:50		YP∖AJ	Ok
15	Q1982-08		FF015840.D	13 May 2025 19:19		YP\AJ	Ok
16	I.BLK		FF015841.D	13 May 2025 19:49		YP\AJ	Ok
17	50 PPM TRPH STD		FF015842.D	13 May 2025 20:18		YP\AJ	Ok
18	PB167975BL		FF015843.D	13 May 2025 21:16		YP\AJ	Ok

Instrument ID: FID_F

Daily Analysis Runlog For Sequence/QCBatch ID # FF051325

Review By yogesh		Review On	Review On 5/13/2025 1:15:36 PM				
Supervise By		Supervise On					
SubDirectory	FF051325	HP Acquire Method	HP Processing Method	FF042225			
STD. NAME	STD REF.#						
Tune/Reschk Initial Calibration Stds	PP24467,PP24469,PP24	1470,PP24471,PP24472					
CCC Internal Standard/PEM	PP24469						
ICV/I.BLK	PP24468,PP24473						
Surrogate Standard MS/MSD Standard LCS Standard							

19	PB167975BS	FF015844.D	13 May 2025 21:46		YP\AJ	Ok
20	Q1872-14	FF015845.D	13 May 2025 22:15	need 5x dilution	YP\AJ	Not Ok
21	Q1872-14	FF015846.D	13 May 2025 22:44		YP\AJ	Not Ok
22	I.BLK	FF015847.D	13 May 2025 23:14		YP\AJ	Ok
23	50 PPM TRPH STD	FF015848.D	14 May 2025 00:12		YP\AJ	Ok

M : Manual Integration

EXTRACTION LOGPAGE

SOP ID:

SOP ID:	M3510C,3580A-Extra	ction DRO-12							
Clean Up SOP #:	N/A				Extra	ction Start D	ate :	05/13/202	 25
Matrix :	Water				Extra	ction Start Ti	ime :	08:56	
Weigh By:	N/A	Extraction B	y: RS		Extra	ction End Dat	te :	05/13/202	25
Balance check:	N/A	Filter B	v: R1		Extraction End Time			-	.5
Balance ID:	N/A	pH Meter I							
pH Strip Lot#:	E3880					entration By:		EH	
pii Strip Lot#.	E300U	Hood II	D: 4,5,6,7		Super	visor By :		RUPESH	
Extraction Method:	Seperatory Funnel	Continio	ous Liquid/Lic	quid	Sor	lication	Waste	Dilution	Soxhi
Standared Name		MLS USED		Concentr	ation u	g/mL	STD RI	EF. # FROM	1 LOG
Surrogate		1.0ML		20 PPM			PP241		
Spike Sol 1		1.0ML		20 PPM			PP241		
N/A		N/A		N/A			N/A		
N/A		N/A		N/A			N/A		
N/A		N/A		N/A			N/A		
Chemical Used			ML/SAM	PLE USED			Lot N	umber	
Methylene Chloride			N/A		\rightarrow	E3930			
Baked Na2SO4			N/A			EP2611			
N/A			N/A			N/A			
N/A			N/A		\neg	N/A			
N/A			N/A			N/A			
N/A			N/A			N/A			
N/A			N/A			N/A			
N/A			N/A			N/A			
N/A N/A			N/A			N/A			
N/A			N/A			N/A			
N/A			N/A			N/A			
N/A			N/A N/A			N/A			
N/A			N/A			N/A N/A			
Extraction Conforman 1.5 ML Vial lot# 22104	ce/Non-Conformance								
KD Bath ID:	WATER BATH-1			Env	vap ID:	N	EVAP-02		
KD Bath Temperature:	60 °C	E		Env	vap Ten	nperature: _	40 °C		
Date / Time	Prepped Samp	le Relinquished	By/Locatio	n		Received	By/Loca	tion	
5/13/25		S(EX+ Cal		_		- C)	st-/ Pc	2 /	ab
13:15	Preparation Gr		V			1			w/s
		-up				Analysis G	гоир		

EXTRACTION LOGPAGE

PrepBatch ID: PB167981

Analytical Method:

M3510C,3580A-Extraction DRO-12

Concentration Date: 05/13/2025

Sample ID	Client Sample ID	Test	-160	ВН	PH Surr/	Spike By:	Final Vol.	JarID	Comments	Prep
Sample 15	Cheff Sample 15	lest	g/mL)	Pn	AddedBy	VerifiedBy	(mL)	Jailb	Comments	Pos
PB167981BL	PB167981BL	Diesel Range Organics	1000	6	RUPESH	ritesh	1			SEP-11
PB167981BS	PB167981BS	Diesel Range Organics	1000	6	RUPESH	ritesh	1			12
PB167981BS D	PB167981BSD	Diesel Range Organics	1000	6	RUPESH	ritesh	1			13
Q2008-01	IDW-AQ-DRUM-633-0509 2025	Diesel Range Organics	940	6	RUPESH	ritesh	1	Н		14

<u>RS</u> 5113

WORKLIST(Hardcopy Internal Chain)

WorkList ID: 189486 Q2008D WorkList Name:

Preservative Test Matrix

Department: Extraction

Date: 05-13-2025 08:50:44

Collect Date Method Raw Sample Location Storage

05/09/2025 8015D

141

JAC005

Cool 4 deg C

Diesel Range Organics

Water

IDW-AQ-DRUM-633-05092025

Q2008-01

Customer Sample

Sample

Customer

Page 1 of 1

Raw Sample Relinquished by: Raw Sample Received by:

Date/Time

5/13/25

Raw Sample Relinquished by:

Raw Sample Received by:

Date/Time

185×9/

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID: Q2008

Test: Diesel Range Organics

Prepbatch ID: PB167981,

Sequence ID/Qc Batch ID: FF051325,

Standard ID: EP2611,PP24162,PP24180,PP24467,PP24468,PP24469,PP24470,PP24471,PP24472,PP24473,
Chemical ID:
E3551,E3874,E3926,E3930,P11951,P11952,P11955,P11956,P13106,P13108,P13477,P13479,P13487,P13488,P13489,P13490,

Extractions STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Riteshkumar Patel
3923	Baked Sodium Sulfate	EP2611	05/09/2025	07/01/2025	RUPESHKUMA R SHAH	Extraction_SC ALE 2	None	05/09/2025
	4000 00000 (50554 5: 10				110.0.0	(EX-SC-2)		03/09/2023

FROM 4000.0000gram of E3551 = Final Quantity: 4000.000 gram

Recipe ID	<u>NAME</u>	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
3609	20 PPM DRO SPIKE SOLUTION (RESTEK)	PP24162	01/31/2025	07/30/2025	Yogesh Patel	None	None	01/31/2025

FROM 1.00000ml of P11955 + 1.00000ml of P11956 + 48.00000ml of E3874 = Final Quantity: 50.000 ml

Aliance

Fax: 908 789 8922

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	NAME.	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Ankita Jodhani
147	20 PPM DRO Surrogate Spike Solution	PP24180	02/03/2025	07/30/2025	Yogesh Patel	None	None	02/03/2025

FROM 1.00000ml of P13487 + 1.00000ml of P13488 + 1.00000ml of P13489 + 1.00000ml of P13490 + 196.00000ml of E3874 = Final Quantity: 200.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Abdul Mirza
433	100/100 PPM DRO (Restek)	PP24467	04/22/2025	10/08/2025	Yogesh Patel	None	None	
								05/08/2025

FROM 1.00000ml of P11951 + 1.00000ml of P11952 + 1.00000ml of P13477 + 7.00000ml of E3926 = Final Quantity: 10.000 ml

Pest/Pcb STANDARD PREPARATION LOG

1	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Abdul Mirza
3979 100/100 (RESTE	<u>PP24468</u>	04/22/2025	10/08/2025	Yogesh Patel	None	None	05/08/2025

FROM 1	1.00000ml of P13106 +	1.00000ml of P13108 + 1	.00000ml of P13479 +	· 7.00000ml of E3926	= Final Quantity: 10.000 n	nl
--------	-----------------------	-------------------------	----------------------	----------------------	----------------------------	----

Recipe	NAME	NO	Davis Data	Expiration	Prepared	01-10	Dis attalD	Supervised By
<u>ID</u>	NAME	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Abdul Mirza
435	50 PPM ICC DRO STD (Restek)	PP24469	04/22/2025	10/08/2025	Yogesh Patel	None	None	
								05/08/2025

FROM 0.50000ml of E3926 + 0.50000ml of PP24467 = Final Quantity: 1.000 ml

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Abdul Mirza
437	20 PPM ICC DRO STD (Restek)	PP24470	04/22/2025	10/08/2025	Yogesh Patel	None	None	05/08/2025
								00/00/2020

FROM 0.80000ml of E3926 + 0.20000ml of PP24467 = Final Quantity: 1.000 r

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Abdul Mirza
438	10 PPM ICC DRO STD (Restek)	PP24471	04/22/2025	10/08/2025	Yogesh Patel	None	None	
								05/08/2025

FROM 0.90000ml of E3926 + 0.10000ml of PP24467 = Final Quantity: 1.000 ml

Aliance

Fax: 908 789 8922

Pest/Pcb STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Abdul Mirza
439	5 PPM ICC DRO STD (Restek)	PP24472	04/22/2025	10/08/2025	Yogesh Patel	None	None	05/08/2025
								03/00/2023

FROM 0.900001111 01 E3926 + 0.100001111 01 FF24469 - Final Quantity. 1.000 111	FROM	0.90000ml of E3926 + 0.10000ml of PP24469 :	= Final Quantity: 1.000 m
---	------	---	---------------------------

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME.	NO.	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Abdul Mirza
3608	50 PPM ICV DRO STD (RESTEK)	PP24473	04/22/2025	10/08/2025	Yogesh Patel	None	None	
								05/08/2025

FROM 0.50000ml of E3926 + 0.50000ml of PP24468 = Final Quantity: 1.000 ml

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19631-100 / SODIUM SULFATE, ANHYDROUS, PEST GRADE, 1	313201	07/01/2025	01/03/2024 / Rajesh	07/20/2023 / Rajesh	E3551
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	25A0262002	07/30/2025	01/30/2025 / Rajesh	01/20/2025 / Rajesh	E3874
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	25A0262002	10/08/2025	04/08/2025 / Rajesh	02/07/2025 / Rajesh	E3926
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9644-A4 / Methylene Chloride,U-Resi, Cycle-Tainer (215L)	25A0262002	02/20/2026	05/02/2025 / RUPESH	03/09/2025 / RUPESH	E3930
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Restek	31266 / Florida TRPH Standard	A0186840	10/22/2025	04/22/2025 / yogesh	07/11/2022 / Yogesh	P11951
		Lot #	Expiration	Date Opened /	Received Date /	Chemtech
Supplier	ItemCode / ItemName	LOI #	Date	Opened By	Received By	Lot #

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31266 / Florida TRPH Standard	A0186840	07/31/2025	01/31/2025 / yogesh	07/11/2022 / Yogesh	P11955
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31266 / Florida TRPH Standard	A0186840	07/31/2025	01/31/2025 / yogesh	07/11/2022 / Yogesh	P11956
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Restek	31266 / Florida TRPH Standard	A0204859	10/22/2025	04/22/2025 / yogesh	01/12/2024 / Yogesh	P13106
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Restek	31266 / Florida TRPH Standard	A0204859	10/22/2025	04/22/2025 / yogesh	01/12/2024 / Yogesh	P13108
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	10/22/2025	04/22/2025 / yogesh	07/24/2024 / yogesh	P13477
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	10/22/2025	04/22/2025 / yogesh	07/24/2024 / yogesh	P13479

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	08/03/2025	02/03/2025 / yogesh	07/24/2024 / yogesh	P13487

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	08/03/2025	02/03/2025 / yogesh	07/24/2024 / yogesh	P13488

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	08/03/2025	02/03/2025 / yogesh	07/24/2024 / yogesh	P13489

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	72072 / n-Tetracosane-d50, 1000 ug/ml	101122	08/03/2025	02/03/2025 / yogesh	07/24/2024 / yogesh	P13490

MIRADOR 201, COL. MIRADOR MONTERREY, N.L. MEXICO CP 64070 TEL +62 81 13 52 57 57 www.pqm.com,mx

CERTIFICATE OF ANALYSIS

PRODUCT:

SODIUM SULFATE CRYSTALS ANHYDROUS

QUALITY:

ACS (CODE RMB3375)

FORMULA:

Na₂SO₄

SPECIFICATION NUMBER: 6399

RELEASE DATE:

ABR/21/2023

LOT NUMBER:

313201

TEST	SPECIFICATIONS	LOT VALUES
Assay (Na ₂ SO ₄)	Min. 99.0%	99.7 %
pH of a 5% solution at 25°C	5.2 - 9.2	6.1
Insoluble matter	Max. 0.01%	0.005 %
Loss on ignition	Max. 0.5%	0.1 %
Chloride (Cl)	Max. 0.001%	<0.001 %
Nitrogen compounds (as N)	Wax. 5 ppm	<5 ppm
Phosphate (PO ₄)	Max. 0.001%	<0.001 %
Heavy metals (as Pb)	Max. 5 ppm	<5 ppm
Iron (Fe)	Max. 0.001%	<0.001 %
Calcium (Ca)	Max. 0.01%	0.002 %
Magnesium (Mg)	Max. 0.005%	0.001 %
Potassium (K)	Max. 0.008%	0.003 %
Extraction-concentration suitability	Passes test	Passes test
Appearance	Passes test	Passes test
Identification	Passes test	Passes test
Solubility and foreing matter	Passes test	Passes test
Retained on US Standard No. 10 sieve	Max. 1%	0.1 %
Retained on US Standard No. 60 sieve	Min. 94%	97.3 %
Through US Standard No. 60 sieve	Max. 5%	25%
Through US Standard No. 100 sieve	Max. 10%	0.1 %

COMMENTS

QC: PhC Irma Belmares

If you need further details, please call our factory or contact our local distributor.

Recd. by Ri on 7/4/3 E 3551

RE-02-01, Del

PO: PO2-1178.2 PRODUCT CODE: SHIP DATE: 1/20/2025

Methylene Chloride
ULTRA RESI-ANALYZED
For Organic Residue Analysis
(dichloromethane)

Material No.: 9266-A4

Batch No.: 25A0262002

Manufactured Date: 2024-11-21

Expiration Date:2026-02-20

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	4
Assay (CH2Cl2) (by GC, exclusive of preservative, corrected for water)	>= 99.8 %	99.9 %
Color (APHA)	<= 10	10
Residue after Evaporation	<= 1.0 ppm	0.8 ppm
Fitrable Acid (µeq/g)	<= 0.3	<0.1
Chloride (CI)	<= 10 ppm	<5 ppm
Vater (by KF, coulometric)	<= 0.02 %	<0.01 %

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States

Packaging Site: Phillipsburg Mfg Ctr & DC

E 3874

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials, LLC

100 Matsonford Rd, Suite 200, Radnor, PA, 19087. U.S.A. Phone 610.386.1700

PO: PO2-1308 PRODUCT CODE: SHIP DATE: 2/7/25

Methylene Chloride ULTRA RESI-ANALYZED For Organic Residue Analysis (dichloromethane)

Material No.: 9266-A4

Batch No.: 25A0262002

Manufactured Date: 2024-11-21

Expiration Date: 2026-02-20

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	4
Assay (CH $_2$ Cl $_2$) (by GC, exclusive of preservative, corrected for water)	>= 99.8 %	99.9 %
Color (APHA)	<= 10	10
Residue after Evaporation	<= 1.0 ppm	0.8 ppm
Titrable Acid (µeq/g)	<= 0.3	<0.1
Chloride (Cl)	<= 10 ppm	<5 ppm
Water (by KF, coulometric)	<= 0.02 %	<0.01 %

For Laboratory,Research,or Manufacturing Use MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States

Packaging Site: Phillipsburg Mfg Ctr & DC

E 3926

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700 Avantor Performance Materials,LLC

100 Matsonford Rd, Suite 200, Radnor, PA, 19087.U.S.A. Phone 610.386.1700

PO: PO2-1178.2 PRODUCT CODE: SHIP DATE: 1/20/2025

Methylene Chloride
ULTRA RESI-ANALYZED
For Organic Residue Analysis
(dichloromethane)

Material No.: 9266-A4

Batch No.: 25A0262002

Manufactured Date: 2024-11-21

Expiration Date: 2026-02-20

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
FID-Sensitive Impurities (as 2-Octanol)Single Impurity Peak (ng/mL)	<= 5	1
ECD Sensitive Impurities (as HeptachlorEpoxide) Single Peak (pg/mL)	<= 10	4
Assay (CH ₂ Cl ₂) (by GC, exclusive of preservative, corrected for water)	>= 99.8 %	99.9 %
Color (APHA)	<= 10	10
Residue after Evaporation	<= 1.0 ppm	0.8 ppm
Titrable Acid (µeq/g)	<= 0.3	<0.1
Chloride (Cl)	<= 10 ppm	<5 ppm
Water (by KF, coulometric)	<= 0.02 %	<0.01 %

For Laboratory, Research, or Manufacturing Use
MEETS SPECIFICATIONS WITHIN THE EXPIRATION PERIOD

Country of Origin: United States

Packaging Site: Phillipsburg Mfg Ctr & DC

E3930

Jamie Croak Director Quality Operations, Bioscience Production

For questions on this Certificate of Analysis please contact Technical Services at 855.282.6867 or +1.610.386.1700

Avantor Performance Materials,LLC

100 Matsonford Rd, Suite 200, Radnor, PA, 19087. U.S.A. Phone 610.386.1700

CERTIFIED REFERENCE MATERIAL

Certificate #3222,01

Bellefonte, PA 16823-8812 Tel: (800)356-1688

110 Benner Circle

Fax: (814)353-1309

www.restek.com

Certificate of Analysis

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

the qualitative and/or quantitative determination of the analyte(s) listed. This Reference Material is intended for Laboratory Use Only as a standard for

Florida TRPH Standard Lot No.: A0186840

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Description: Catalog No.:

Expiration Date: Container Size : 2 mL July 31, 2029 Pkg Amt: Storage: Ship: > 1 mL 25°C nominal

Handling:

Sonicate prior to use.

Ambient

P11962

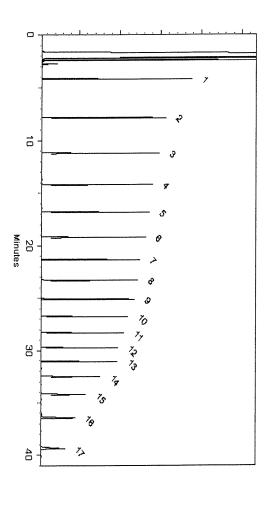
റ Z TIFIED VALUE

Elution Order	Com	Compound	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)	ncertainty (=2)	
1	n-Octane (C8) CAS # 111-65-9 Purity 99%	(Lot SHBN3807)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL	Gravimetric Unstressed Stressed
2	n-Decane (C10) CAS # 124-18-5 Purity 99%	(Lot SHBN8619)	503.0 µg/mL	+/- 2.9877 +/- 12.4968 +/- 14.9795	μg/mL μg/mL	Gravimetric Unstressed Stressed
ω	n-Dodecane (C12) CAS # 112-40-3 Purity 99%	(Lot SHBN7174)	503.5 μg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL	Gravimetric Unstressed Stressed
4	n-Tetradecane (C14) CAS # 629-59-4 Purity 99%	(Lot STBK2282)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	n-Hexadecane (C16) CAS # 544-76-3 Purity 98%	(Lot SHBM4146)	504.7 µg/mL	+/- 2.9978 +/- 12.5390 +/- 15.0301	µg/mL µg/mL	Gravimetric Unstressed Stressed
6	n-Octadecane (C18) CAS # 593-45-3 Purity 97%	(Lot VZKOJ)	504.4 µg/mL	+/- 2.9960 +/- 12.5316 +/- 15.0212	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
7	n-Eicosane (C20) CAS # 112-95-8 Purity 99%	(Lot MKCF7888)	503.5 µg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

01-Aug-2020 rev. 1 of 4 Hexane CAS # 110-54-3
Purity 99%

Column: 30m × 0.25mm × 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:


hydrogen-constant pressure 10 psi.

@ 10°C/min. (hold 10 min.) Temp. Program: 40°C (hold 2 min.) to 330°C

lnj. Temp:

Det. Temp: 330°C

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

S. Implude

Brittany Federinko - Operations Tech I

Date Mixed:

29-Jun-2022

Balance: 1128360905

の存物

Christie Mills - Operations Tech II - ARM QC

Date Passed:

01-Jul-2022

Manufactured under Restek's ISO 9001:2015
Registered Quality System
Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ μ ECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ➤
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed}=k\sqrt{U_{gravimetric}^2+U_{homogeneity}^2+U_{storage\ stability}^2+U_{shipping\ stability}^2}$$

coverage factor of 2, which gives a level of confidence of approximately 95%.

- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. Apply the certified combined stressed uncertainty value if the product was received under non-standard

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer) -20°C or colder (Deep Freezer)	< 25°C	≥ 25°C up to 7 days

- separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us. Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

Manufacturing Notes:

using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through

01-Aug-2020 rev. 4 of 4

CERTIFIED REFERENCE MATERIAL

Certificate #3222,01

Bellefonte, PA 16823-8812 Tel: (800)356-1688

110 Benner Circle

Fax: (814)353-1309

www.restek.com

Certificate of Analysis

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

the qualitative and/or quantitative determination of the analyte(s) listed. This Reference Material is intended for Laboratory Use Only as a standard for

Florida TRPH Standard Lot No.: A0186840

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Description: Catalog No.:

Expiration Date: Container Size : 2 mL July 31, 2029 Pkg Amt: Storage: Ship: > 1 mL 25°C nominal

Handling:

Sonicate prior to use.

Ambient

P11962

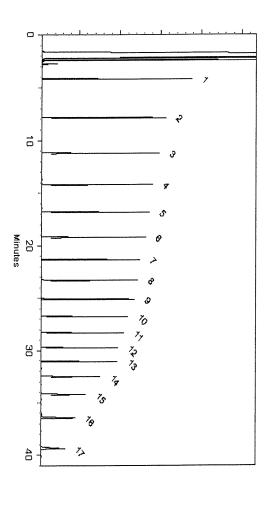
റ Z TIFIED VALUE

Elution Order	Com	Compound	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)	ncertainty (=2)	
1	n-Octane (C8) CAS # 111-65-9 Purity 99%	(Lot SHBN3807)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL	Gravimetric Unstressed Stressed
2	n-Decane (C10) CAS # 124-18-5 Purity 99%	(Lot SHBN8619)	503.0 µg/mL	+/- 2.9877 +/- 12.4968 +/- 14.9795	μg/mL μg/mL	Gravimetric Unstressed Stressed
ω	n-Dodecane (C12) CAS # 112-40-3 Purity 99%	(Lot SHBN7174)	503.5 μg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL	Gravimetric Unstressed Stressed
4	n-Tetradecane (C14) CAS # 629-59-4 Purity 99%	(Lot STBK2282)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	n-Hexadecane (C16) CAS # 544-76-3 Purity 98%	(Lot SHBM4146)	504.7 µg/mL	+/- 2.9978 +/- 12.5390 +/- 15.0301	µg/mL µg/mL	Gravimetric Unstressed Stressed
6	n-Octadecane (C18) CAS # 593-45-3 Purity 97%	(Lot VZKOJ)	504.4 µg/mL	+/- 2.9960 +/- 12.5316 +/- 15.0212	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
7	n-Eicosane (C20) CAS # 112-95-8 Purity 99%	(Lot MKCF7888)	503.5 µg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

01-Aug-2020 rev. 1 of 4 Hexane CAS # 110-54-3
Purity 99%

Column: 30m × 0.25mm × 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:


hydrogen-constant pressure 10 psi.

@ 10°C/min. (hold 10 min.) Temp. Program: 40°C (hold 2 min.) to 330°C

lnj. Temp:

Det. Temp: 330°C

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

S. Implude

Brittany Federinko - Operations Tech I

Date Mixed:

29-Jun-2022

Balance: 1128360905

の存物

Christie Mills - Operations Tech II - ARM QC

Date Passed:

01-Jul-2022

Manufactured under Restek's ISO 9001:2015
Registered Quality System
Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ μ ECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ➤
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed}=k\sqrt{U_{gravimetric}^2+U_{homogeneity}^2+U_{storage\ stability}^2+U_{shipping\ stability}^2}$$

coverage factor of 2, which gives a level of confidence of approximately 95%.

- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. Apply the certified combined stressed uncertainty value if the product was received under non-standard

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer) -20°C or colder (Deep Freezer)	< 25°C	≥ 25°C up to 7 days

- separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us. Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

Manufacturing Notes:

using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through

01-Aug-2020 rev. 4 of 4

CERTIFIED REFERENCE MATERIAL

Certificate #3222,01

Bellefonte, PA 16823-8812 Tel: (800)356-1688

110 Benner Circle

Fax: (814)353-1309

www.restek.com

Certificate of Analysis

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

the qualitative and/or quantitative determination of the analyte(s) listed. This Reference Material is intended for Laboratory Use Only as a standard for

Florida TRPH Standard Lot No.: A0186840

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Description: Catalog No.:

Expiration Date: Container Size : 2 mL July 31, 2029 Pkg Amt: Storage: Ship: > 1 mL 25°C nominal

Handling:

Sonicate prior to use.

Ambient

P11962

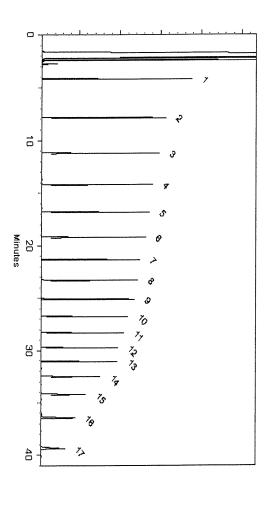
റ Z TIFIED VALUE

Elution Order	Com	Compound	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)	ncertainty (=2)	
1	n-Octane (C8) CAS # 111-65-9 Purity 99%	(Lot SHBN3807)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL	Gravimetric Unstressed Stressed
2	n-Decane (C10) CAS # 124-18-5 Purity 99%	(Lot SHBN8619)	503.0 µg/mL	+/- 2.9877 +/- 12.4968 +/- 14.9795	μg/mL μg/mL	Gravimetric Unstressed Stressed
ω	n-Dodecane (C12) CAS # 112-40-3 Purity 99%	(Lot SHBN7174)	503.5 μg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL	Gravimetric Unstressed Stressed
4	n-Tetradecane (C14) CAS # 629-59-4 Purity 99%	(Lot STBK2282)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	n-Hexadecane (C16) CAS # 544-76-3 Purity 98%	(Lot SHBM4146)	504.7 µg/mL	+/- 2.9978 +/- 12.5390 +/- 15.0301	µg/mL µg/mL	Gravimetric Unstressed Stressed
6	n-Octadecane (C18) CAS # 593-45-3 Purity 97%	(Lot VZKOJ)	504.4 µg/mL	+/- 2.9960 +/- 12.5316 +/- 15.0212	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
7	n-Eicosane (C20) CAS # 112-95-8 Purity 99%	(Lot MKCF7888)	503.5 µg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

01-Aug-2020 rev. 1 of 4 Hexane CAS # 110-54-3
Purity 99%

Column: 30m × 0.25mm × 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:


hydrogen-constant pressure 10 psi.

@ 10°C/min. (hold 10 min.) Temp. Program: 40°C (hold 2 min.) to 330°C

lnj. Temp:

Det. Temp: 330°C

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

S. Implude

Brittany Federinko - Operations Tech I

Date Mixed:

29-Jun-2022

Balance: 1128360905

の存物

Christie Mills - Operations Tech II - ARM QC

Date Passed:

01-Jul-2022

Manufactured under Restek's ISO 9001:2015
Registered Quality System
Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ μ ECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ➤
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed}=k\sqrt{U_{gravimetric}^2+U_{homogeneity}^2+U_{storage\ stability}^2+U_{shipping\ stability}^2}$$

coverage factor of 2, which gives a level of confidence of approximately 95%.

- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. Apply the certified combined stressed uncertainty value if the product was received under non-standard

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer) -20°C or colder (Deep Freezer)	< 25°C	≥ 25°C up to 7 days

- separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us. Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

Manufacturing Notes:

using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through

01-Aug-2020 rev. 4 of 4

CERTIFIED REFERENCE MATERIAL

Certificate #3222,01

Bellefonte, PA 16823-8812 Tel: (800)356-1688

110 Benner Circle

Fax: (814)353-1309

www.restek.com

Certificate of Analysis

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

the qualitative and/or quantitative determination of the analyte(s) listed. This Reference Material is intended for Laboratory Use Only as a standard for

Florida TRPH Standard Lot No.: A0186840

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Description: Catalog No.:

Expiration Date: Container Size : 2 mL July 31, 2029 Pkg Amt: Storage: Ship: > 1 mL 25°C nominal

Handling:

Sonicate prior to use.

Ambient

P11962

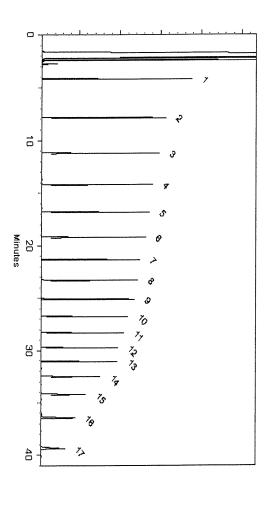
റ Z TIFIED VALUE

Elution Order	Com	Compound	Grav. Conc. (weight/volume)	Expanded Uncertainty (95% C.L.; K=2)	ncertainty (=2)	
1	n-Octane (C8) CAS # 111-65-9 Purity 99%	(Lot SHBN3807)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL	Gravimetric Unstressed Stressed
2	n-Decane (C10) CAS # 124-18-5 Purity 99%	(Lot SHBN8619)	503.0 µg/mL	+/- 2.9877 +/- 12.4968 +/- 14.9795	μg/mL μg/mL	Gravimetric Unstressed Stressed
ω	n-Dodecane (C12) CAS # 112-40-3 Purity 99%	(Lot SHBN7174)	503.5 μg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL	Gravimetric Unstressed Stressed
4	n-Tetradecane (C14) CAS # 629-59-4 Purity 99%	(Lot STBK2282)	505.0 µg/mL	+/- 2.9995 +/- 12.5465 +/- 15.0390	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
5	n-Hexadecane (C16) CAS # 544-76-3 Purity 98%	(Lot SHBM4146)	504.7 µg/mL	+/- 2.9978 +/- 12.5390 +/- 15.0301	µg/mL µg/mL	Gravimetric Unstressed Stressed
6	n-Octadecane (C18) CAS # 593-45-3 Purity 97%	(Lot VZKOJ)	504.4 µg/mL	+/- 2.9960 +/- 12.5316 +/- 15.0212	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed
7	n-Eicosane (C20) CAS # 112-95-8 Purity 99%	(Lot MKCF7888)	503.5 µg/mL	+/- 2.9906 +/- 12.5092 +/- 14.9944	μg/mL μg/mL μg/mL	Gravimetric Unstressed Stressed

01-Aug-2020 rev. 1 of 4 Hexane CAS # 110-54-3
Purity 99%

Column: 30m × 0.25mm × 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:


hydrogen-constant pressure 10 psi.

@ 10°C/min. (hold 10 min.) Temp. Program: 40°C (hold 2 min.) to 330°C

lnj. Temp:

Det. Temp: 330°C

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

S. Implude

Brittany Federinko - Operations Tech I

Date Mixed:

29-Jun-2022

Balance: 1128360905

の存物

Christie Mills - Operations Tech II - ARM QC

Date Passed:

01-Jul-2022

Manufactured under Restek's ISO 9001:2015
Registered Quality System
Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- GC/MS, LC/MS, RI, and/or melting point. Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ μ ECD
- correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. parent compound in solution. ➤
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

uncertainty value (includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula: The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified combined stressed

$$U_{combined\ stressed}=k\sqrt{U_{gravimetric}^2+U_{homogeneity}^2+U_{storage\ stability}^2+U_{shipping\ stability}^2}$$

coverage factor of 2, which gives a level of confidence of approximately 95%.

- standard temperature conditions. www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions as specified below. Apply the certified combined stressed uncertainty value if the product was received under non-standard

Label Conditions	Standard Conditions	Non-Standard Conditions
25°C Nominal (Room Temperature)	< 60°C	≥ 60°C up to 7 days
10°C or colder (Refrigerate)	< 40°C	≥ 40°C up to 7 days
0°C or colder (Freezer) -20°C or colder (Deep Freezer)	< 25°C	≥ 25°C up to 7 days

- separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us. Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed,
- that the minimum packaged amount can be sufficiently transferred The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure

Manufacturing Notes:

using NIST traceable weights, and/or dilutions with Class A glassware. Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily

Handling Notes:

most standards packed in 2mL ampules. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, information, with the knowledge/understanding that open product stability is subject to the specific handling and which includes complete instructions. environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through

01-Aug-2020 rev. 4 of 4

CERTIFIED REFERENCE MATERIAL

lac MRA

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

31266

Lot No.: A0204859

Description :

Florida TRPH Standard

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Container Size :

2 mL

Pkg Amt:

> 1 mL

Expiration Date:

December 31, 2030

Storage:

25°C nominal

Handling:

Sonicate prior to use.

Ship: Ambient

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	n-Octane (C8)	111-65-9	SHBP9758	99%	504.4 μg/mL	+/- 13.0305
2	n-Decane (C10)	124-18-5	SHBQ1342	99%	503.6 μg/mL	+/- 13.0098
3	n-Dodecane (C12)	112-40-3	SHBP7054	99%	503.6 μg/mL	+/- 13.0098
4	n-Tetradecane (C14)	629-59-4	STBK5437	99%	504.0 μg/mL	+/- 13.0201
5	n-Hexadecane (C16)	544-76-3	SHBP8192	99%	504.0 μg/mL	+/- 13.0201
6	n-Octadecane (C18)	593-45-3	UE5NG	98%	504.1 μg/mL	+/- 13.0230
7	n-Eicosane (C20)	112-95-8	MKCN8767	97%	504.0 μg/mL	+/- 13.0204
8	n-Docosane (C22)	629-97-0	MKCQ3882	99%	503.6 μg/mL	+/- 13.0098
9	n-Tetracosane (C24)	646-31-1	MKCQ8345	99%	504.0 μg/mL	+/- 13.0201
10	n-Hexacosane (C26)	630-01-3	MKCQ4814	99%	504.0 μg/mL	+/- 13.0201
11	n-Octacosane (C28)	630-02-4	BCCG0084	99%	504.0 μg/mL	+/- 13.0201
12	n-Triacontane (C30)	638-68-6	MKCQ9436	97%	504.0 μg/mL	+/- 13.0204
13	n-Dotriacontane (C32)	544-85-4	BCBW0661	99%	504.0 μg/mL	+/- 13.0201
14	n-Tetratriacontane (C34)	14167-59-0	OML4N	99%	504.4 μg/mL	+/- 13.0305
15	n-Hexatriacontane (C36)	630-06-8	Z27H018	99%	504.0 μg/mL	+/- 13.0201
16	n-Octatriacontane (C38)	7194-85-6	0000145137	96%	503.8 μg/mL	+/- 13.0152
17	n-Tetracontane (C40)	4181-95-7	OKEGA	99%	503.6 μg/mL	+/- 13.0098

Solvent:

Hexane

CAS# 110-54-3

Purity 99%

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psi.

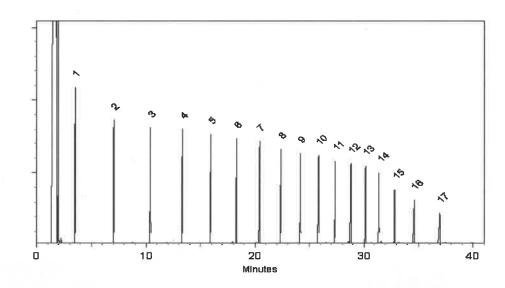
Temp. Program:

40°C (hold 2 min.) to 330°C @ 10°C/min. (hold 10 min.)

inj. Temp:

250°C

Det. Temp: 330°C


Det. Type:

Split Vent:

2 ml/min.

Inj. Vol

1μΙ

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Dakota Parson - Operations Technician I

Date Mixed:

29-Nov-2023 Balan

Balance Serial #

B442140311

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

01-Dec-2023

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- · Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k\sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure
that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

. 5

CERTIFIED REFERENCE MATERIAL

lac MRA

110 Benner Circle Bellefonte, PA 16823-8812 Tel: 1-814-353-1300 Fax: 1-814-353-1309

www.restek.com

Certificate of Analysis

chromatographic plus

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.

This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.

Catalog No.:

31266

Lot No.: A0204859

Description :

Florida TRPH Standard

Florida TRPH Standard 500µg/mL, Hexane, 1mL/ampul

Container Size :

2 mL

Pkg Amt:

> 1 mL

Expiration Date:

December 31, 2030

Storage:

25°C nominal

Handling:

Sonicate prior to use.

Ship: Ambient

CERTIFIED VALUES

Elution Order	Compound	CAS#	Lot#	Purity	Grav. Conc. (weight/volume)	Expanded Uncertainty * (95% C.L.; K=2)
1	n-Octane (C8)	111-65-9	SHBP9758	99%	504.4 μg/mL	+/- 13.0305
2	n-Decane (C10)	124-18-5	SHBQ1342	99%	503.6 μg/mL	+/- 13.0098
3	n-Dodecane (C12)	112-40-3	SHBP7054	99%	503.6 μg/mL	+/- 13.0098
4	n-Tetradecane (C14)	629-59-4	STBK5437	99%	504.0 μg/mL	+/- 13.0201
5	n-Hexadecane (C16)	544-76-3	SHBP8192	99%	504.0 μg/mL	+/- 13.0201
6	n-Octadecane (C18)	593-45-3	UE5NG	98%	504.1 μg/mL	+/- 13.0230
7	n-Eicosane (C20)	112-95-8	MKCN8767	97%	504.0 μg/mL	+/- 13.0204
8	n-Docosane (C22)	629-97-0	MKCQ3882	99%	503.6 μg/mL	+/- 13.0098
9	n-Tetracosane (C24)	646-31-1	MKCQ8345	99%	504.0 μg/mL	+/- 13.0201
10	n-Hexacosane (C26)	630-01-3	MKCQ4814	99%	504.0 μg/mL	+/- 13.0201
11	n-Octacosane (C28)	630-02-4	BCCG0084	99%	504.0 μg/mL	+/- 13.0201
12	n-Triacontane (C30)	638-68-6	MKCQ9436	97%	504.0 μg/mL	+/- 13.0204
13	n-Dotriacontane (C32)	544-85-4	BCBW0661	99%	504.0 μg/mL	+/- 13.0201
14	n-Tetratriacontane (C34)	14167-59-0	OML4N	99%	504.4 μg/mL	+/- 13.0305
15	n-Hexatriacontane (C36)	630-06-8	Z27H018	99%	504.0 μg/mL	+/- 13.0201
16	n-Octatriacontane (C38)	7194-85-6	0000145137	96%	503.8 μg/mL	+/- 13.0152
17	n-Tetracontane (C40)	4181-95-7	OKEGA	99%	503.6 μg/mL	+/- 13.0098

Solvent:

Hexane

CAS# 110-54-3

Purity 99%

Quality Confirmation Test

Column:

30m x 0.25mm x 0.25μm Rtx-5 (cat.#10223)

Carrier Gas:

hydrogen-constant pressure 10 psi.

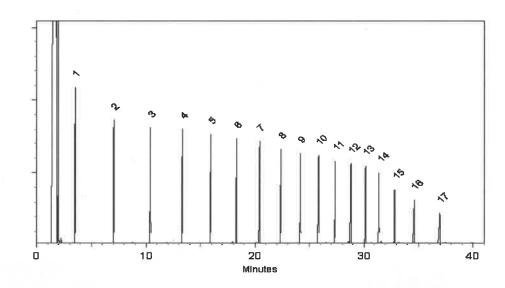
Temp. Program:

40°C (hold 2 min.) to 330°C @ 10°C/min. (hold 10 min.)

inj. Temp:

250°C

Det. Temp: 330°C


Det. Type:

Split Vent:

2 ml/min.

Inj. Vol

1μΙ

This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

Dakota Parson - Operations Technician I

Date Mixed:

29-Nov-2023 Balan

Balance Serial #

B442140311

Jennifer Pollino - Operations Tech III - ARM QC

Date Passed:

01-Dec-2023

Manufactured under Restek's ISO 9001:2015 Registered Quality System Certificate #FM 80397

General Certified Reference Material Notes

Expiration Notes:

- · Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

Purity Notes:

- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/µECD, GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than 99% have been weight corrected to compensate for impurities and/or salts. A
 correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the
 parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

Certified Uncertainty Value Notes:

The uncertainties are determined in accordance with ISO 17034 and Guide 35. The certified expanded
uncertainty value includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability
uncertainty and shipping stability uncertainty and were combined using the following formula:

$$U_{combined\ uncertainty} = k\sqrt{u_{gravimetric}^2 + u_{homogeneity}^2 + u_{storage\ stability}^2 + u_{shipping\ stability}^2}$$

k is a coverage factor of 2, which gives a level of confidence of approximately 95%.

The packaged amount is the minimum sample size for which uncertainty is valid. The ampuls are over-filled to ensure
that the minimum packaged amount can be sufficiently transferred.

Manufacturing Notes:

Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily
using NIST traceable weights, and/or dilutions with Class A glassware.

Handling Notes:

- Stability of the unopened product, when stored in compliance with the recommended conditions, is guaranteed through the expiration displayed on the product label and certificate. Contact Restek for additional opened product stability information, with the knowledge/understanding that open product stability is subject to the specific handling and environmental conditions to which the product is exposed. For your convenience Restek supplies deactivated vials with most standards packed in 2mL ampuls. Larger volume deactivated vials are available through Restek as a custom ordered item. Additionally, Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

. 5

ABSOLUTE STANDARDS, INC.

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

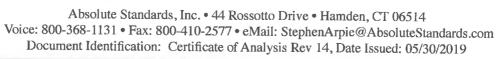
Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

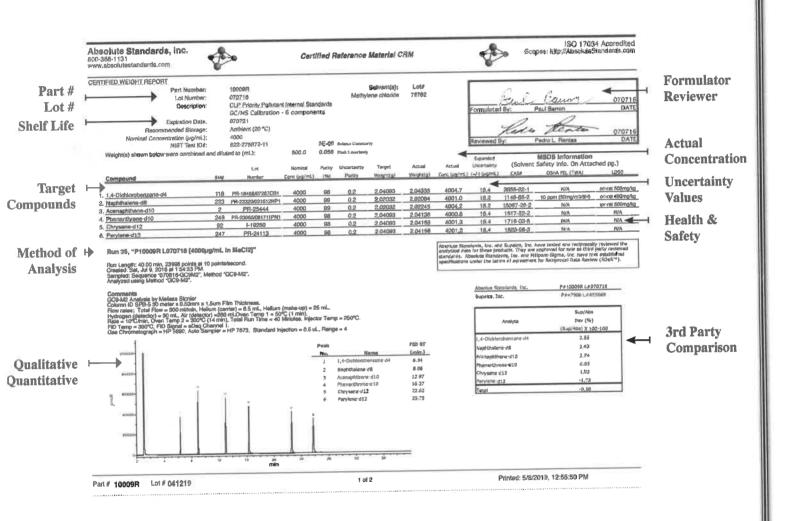

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2

ABSOLUTE STANDARDS, INC.


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

Absolute Standards, Inc. • 44 Rossotto Drive • Hamden, CT 06514

Voice: 800-368-1131 • Fax: 800-410-2577 • eMail: StephenArpie@AbsoluteStandards.com

Document Identification: Certificate of Analysis Rev 14, Date Issued: 05/30/2019

www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Expiration Date Part Number: Lot Number: Description: n-Tetracosane-d50 101132 101122 72072

Weight(s) shown below were combined and diluted to (mt.): Nominal Concentration (µg/mL): Hecommended Storage: NIST Test ID#: 1000 Ambient (20 °C)

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

Methylene chloride P13433-1 105345

Solvent(s):

Lot#

(15,96 J 67)24/24

Formulated By: 3 Prashant Chauhan wenter 101122 DATE 101122 DATE

Reviewed By: Pedro L. Rentas

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 Number 1000 98.7 8 Purity 0.2 (%D) 99.0 0.20471 Weight(g) 0.20482 Weight(g) Conc (µg/mL) 1000,6 (+/-) (µg/mL 4.1 16416-32-3 CAS# OSHA PEL (TWA) 1050

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

RM#

Conc (µg/mL)

Lot

Nominal

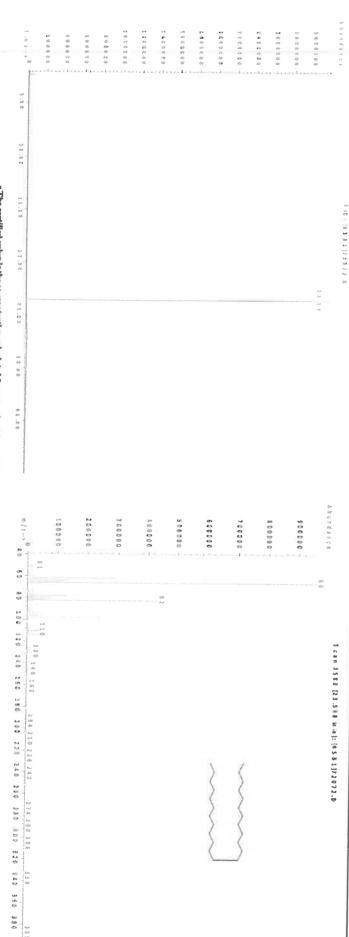
Purity

Uncertainty Assay

Target

Actual

Actual


Uncertainty

(Solvent Safety Info. On Attached pg.)

SDS Information

Expanded

200.0

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

ABSOLUTE STANDARDS, INC.

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

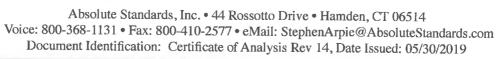
Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.

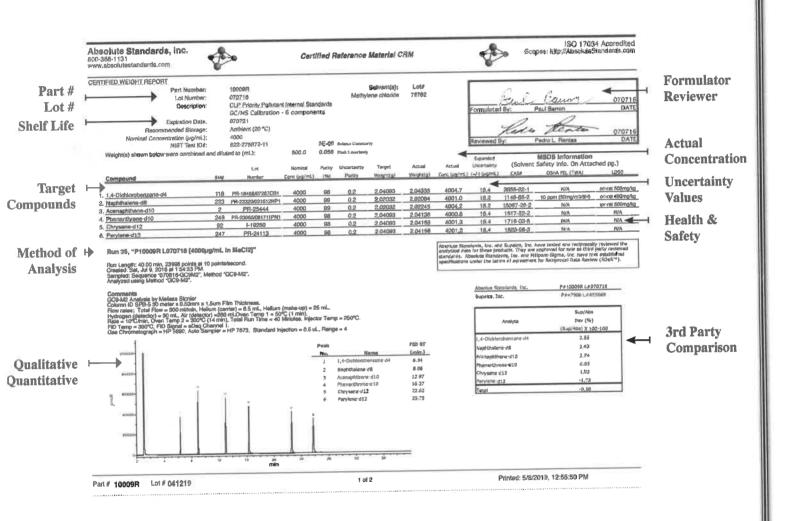
Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.


Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General

Page 1 of 2


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Nominal Concentration (µg/mL): Hecommended Storage: Expiration Date NIST Test ID#: Part Number: Lot Number: Description: 1000 Ambient (20 °C) n-Tetracosane-d50 101132 101122 72072

Methylene chloride P13433-1

Solvent(s):

Lot#

105345 Formulated By: 3

Pedro L. Rentas Prashant Chauhan wenter 101122 DATE 101122 DATE

(15,96 J 67)24/24

200.0 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Weight(s) shown below were combined and diluted to (mt.):

RM#

Number Lot

Conc (µg/mL)

8

(%D)

Weight(g)

Weight(g)

Conc (µg/mL)

(+/-) (µg/mL Uncertainty

CAS#

(Solvent Safety Info. On Attached pg.)

1050

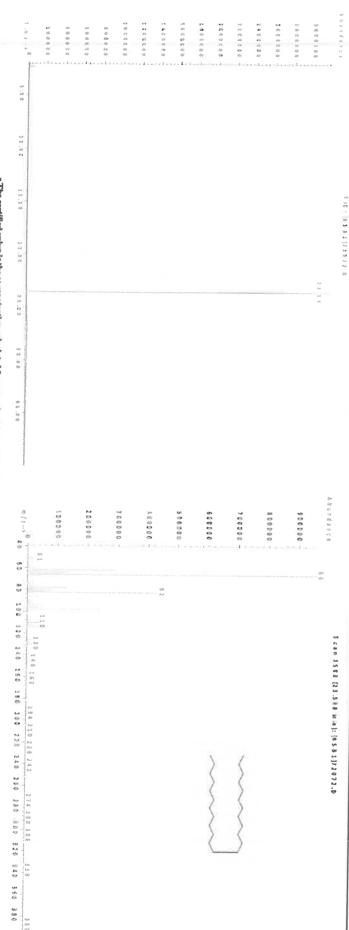
SDS Information

Target

Actual

Actual

Expanded


Nominal

Purity

Uncertainty Assay Purity

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 1000 98.7 0.2 99.0 0.20471 0.20482 1000,6 4.1 16416-32-3 OSHA PEL (TWA)

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

Lot # 101122

1 of 1

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

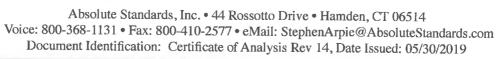
Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

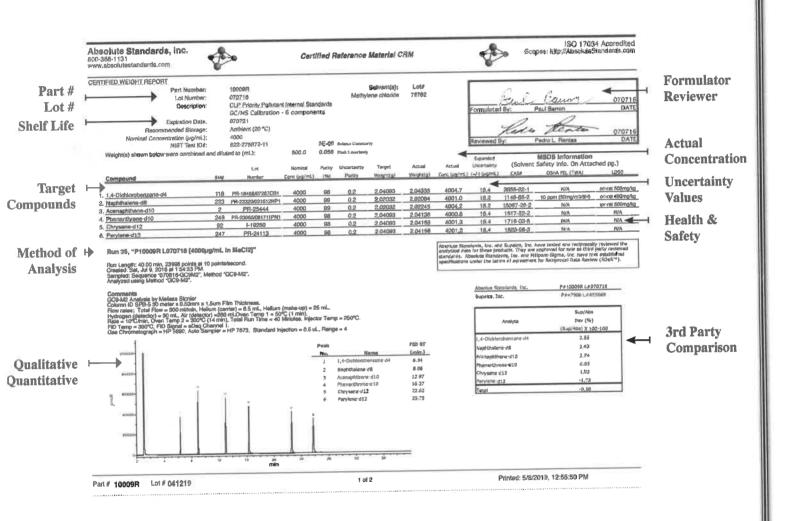
Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.


Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Nominal Concentration (µg/mL): Hecommended Storage: Expiration Date NIST Test ID#: Part Number: Lot Number: Description: 1000 Ambient (20 °C) n-Tetracosane-d50 101132 101122 72072

Methylene chloride P13433-1

Solvent(s):

Lot#

105345 Formulated By: 3

Pedro L. Rentas Prashant Chauhan wenter 101122 DATE 101122 DATE

(15,96 J 67)24/24

200.0 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Weight(s) shown below were combined and diluted to (mt.):

RM#

Number Lot

Conc (µg/mL)

8

(%D)

Weight(g)

Weight(g)

Conc (µg/mL)

(+/-) (µg/mL Uncertainty

CAS#

(Solvent Safety Info. On Attached pg.)

1050

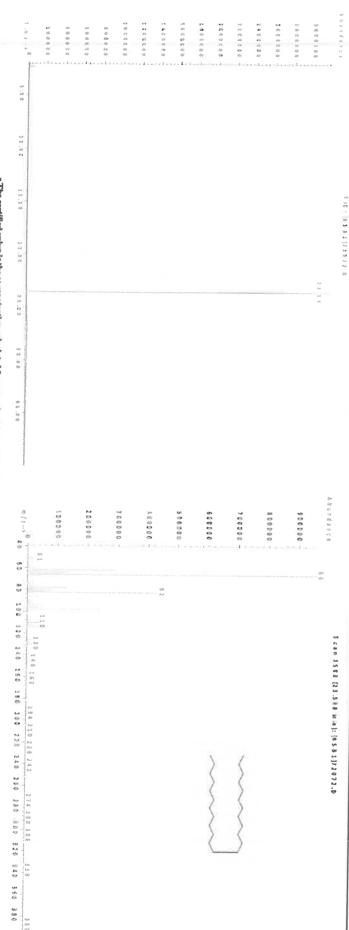
SDS Information

Target

Actual

Actual

Expanded


Nominal

Purity

Uncertainty Assay Purity

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 1000 98.7 0.2 99.0 0.20471 0.20482 1000,6 4.1 16416-32-3 OSHA PEL (TWA)

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

Lot # 101122

1 of 1

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

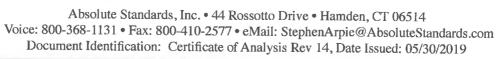
Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

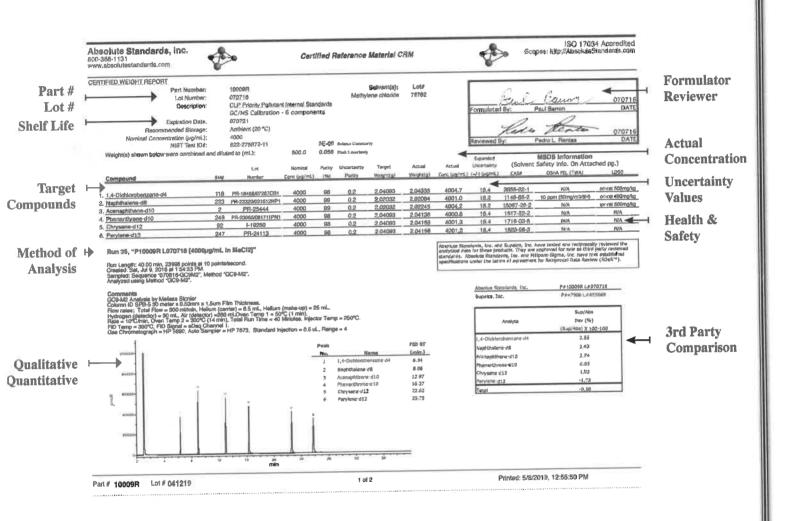
Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.


Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Nominal Concentration (µg/mL): Hecommended Storage: Expiration Date NIST Test ID#: Part Number: Lot Number: Description: 1000 Ambient (20 °C) n-Tetracosane-d50 101132 101122 72072

Methylene chloride P13433-1

Solvent(s):

Lot#

105345 Formulated By: 3

Pedro L. Rentas Prashant Chauhan wenter 101122 DATE 101122 DATE

(15,96 J 67)24124

200.0 0.058 Flask Uncertainty 5E-05 Balance Uncertainty Reviewed By:

Weight(s) shown below were combined and diluted to (mt.):

RM#

Number Lot

Conc (µg/mL)

8

(%D)

Weight(g)

Weight(g)

Conc (µg/mL)

(+/-) (µg/mL Uncertainty

CAS#

(Solvent Safety Info. On Attached pg.)

1050

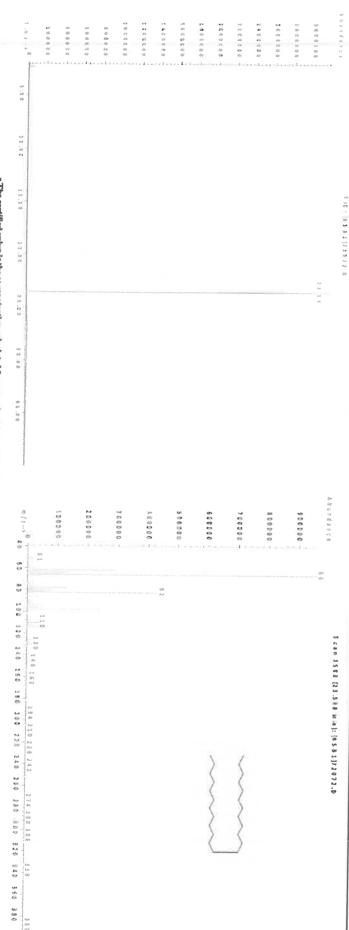
SDS Information

Target

Actual

Actual

Expanded


Nominal

Purity

Uncertainty Assay Purity

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 1000 98.7 0.2 99.0 0.20471 0.20482 1000,6 4.1 16416-32-3 OSHA PEL (TWA)

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

Lot # 101122

1 of 1

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

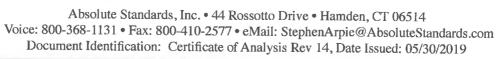
Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

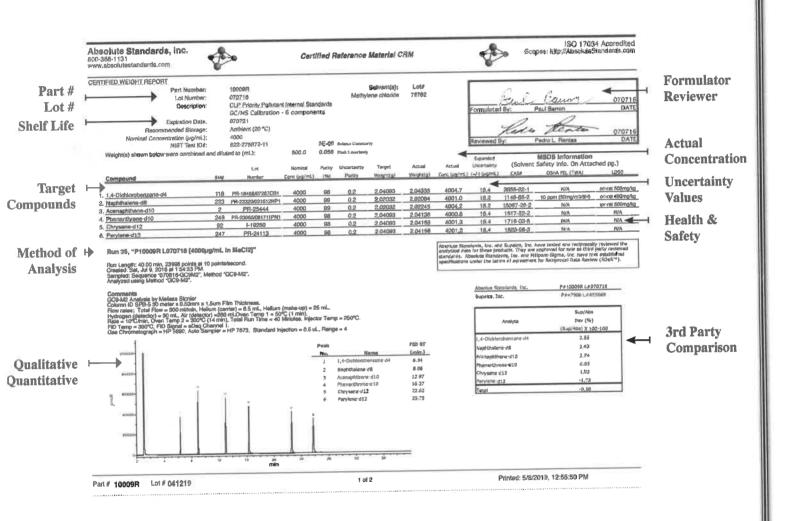
Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.


Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Expiration Date Part Number: Lot Number: Description: n-Tetracosane-d50 101132 101122 72072

Weight(s) shown below were combined and diluted to (mt.): Nominal Concentration (µg/mL): Hecommended Storage: NIST Test ID#: 1000 Ambient (20 °C)

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

Methylene chloride P13433-1 105345

Solvent(s):

Lot#

(15,96 J 67)24124

Formulated By: 3 Prashant Chauhan wenter 101122 DATE 101122 DATE

Reviewed By: Pedro L. Rentas

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 Number 1000 98.7 8 Purity 0.2 (%D) 99.0 0.20471 Weight(g) 0.20482 Weight(g) Conc (µg/mL) 1000,6 (+/-) (µg/mL 4.1 16416-32-3 CAS# OSHA PEL (TWA) 1050

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

RM#

Conc (µg/mL)

Lot

Nominal

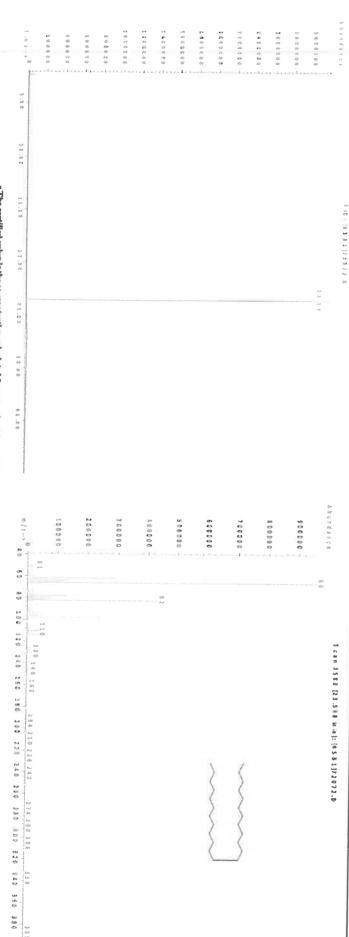
Purity

Uncertainty Assay

Target

Actual

Actual


Uncertainty

(Solvent Safety Info. On Attached pg.)

SDS Information

Expanded

200.0

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

ISO - 17034

Certificate of Analysis

Certified Reference Material (CRM)

Conformance: The "Certificate of Analysis" is applicable for CRM's, fulfilling the requirements in the current version of: ISO 17034.

Health & Safety: See the attached SDS & Certified Weight Report before use.

Intended Use: This Certified Reference Material (CRM) is intended primarily for use in the characterization of unknowns and the establishment of analyzer or instrument response factors by qualified personnel. Typical instrumental organic assays include: GC & LC, and inorganic assays include: ICP & AA. This product is for laboratory use only.

Characterization Values: In production, gravimetric/volumetric readings are certified to be within +/- 0.5% of the stated value & are valid between 18 °C & 30 °C. The measured characterization of uncertainty can be found on the Certified Weight Report. All product weighings are performed on an analytical balance that is calibrated to NIST Traceable standard weights & certified by the manufacturer. The volumetric glassware used is Class "A" type & conforms to ASTM E-288 unless otherwise stated. The solvents & compounds used are of the highest practical purity & typically meet or exceed ACS Reagent Grade & ACS Standards Grade specifications. The expanded uncertainty field on Certified Wt. Report represents CRM uncertainty as described in ISO 17034.

 $\textbf{Homogeneity:} \ Uncertainties \ that \ are \ due to the \ analytical \ procedure (s) \ are \ within + /-5\% \ unless \ specifically \ stated \ on the \ Certified \ Wt. \ Report.$

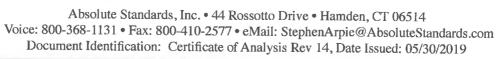
Verification: Uncertainties that are due to the analytical procedure(s) are within +/-5% unless specifically stated on the Certified Wt. Report.

Stability: Uncertainties for short-term stability are determined in accordance with ISO 17034. Long-term stability is determined in accordance with ISO 17034. The shelf life is limited by the stated expiration for each product. Expiration dates and additional technical information can be found on the Certified Weight Report and on the product label.

Uncertainty: UCRM is the expanded uncertainty which utilizes a K = 2 (coverage factor of 2), in accordance with ISO 17034 as listed above (Characterization, Homogeneity, Verification, and Stability).

Purity & Identity: Organic solutions are typically formulated from neat materials whose purity & identity have been characterized by GC-MSD & LC-PDA techniques with comparison to a NIST Traceable library of mass spectra when available. Additional characterization techniques may include but are not limited to: refractive index measurements of liquids, melting point measurements of solids, & GC-FID, ECD, PID, ELCD, LC-PDA measurements for purity. Inorganic solutions & neats are typically formulated from materials whose purity & identity have been characterized by ICPMS with comparison to a NIST SRM® when available. Additional characterization techniques may include but are not limited to: titrimetry, and densitometry.

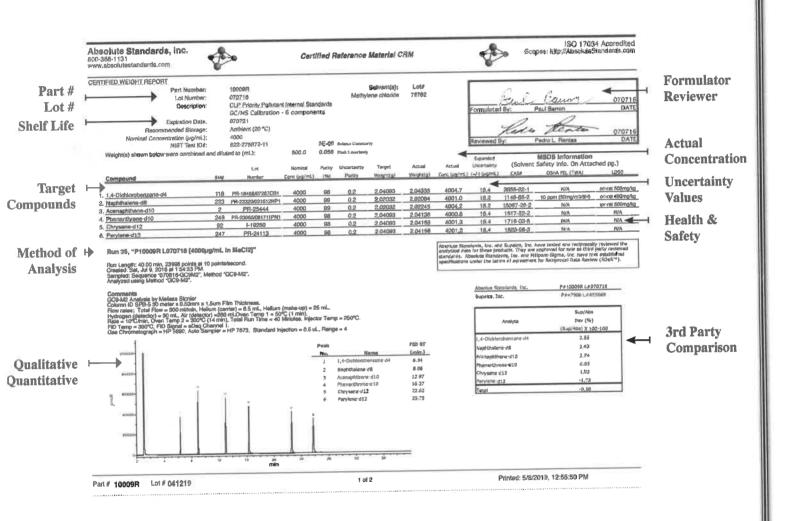
Storage: Sealed ampules and other containers should be stored in the dark and at temperatures indicated on the Certified Weight Report or product label. Certification by Absolute Standards, Inc. is typically valid for 3 years from the date of manufacture. Each product will show its own expiration date as the limit of certification. Certified values are not applicable to opened ampules or for any materials stored in re-sealable containers. Please see the "Certified Weight Report" for specific values and any exceptions.


Usage: Ampules & bottles should be brought to room temperature (18 to 30 °C) before opening. Sonication may be required for high concentration solutions or solutions that may precipitate during storage. After opening, care should be exercised to avoid concentration changes owing to evaporation of the solvent or essential components. We recommend that a suitable re-sealable container be available before opening an ampule to decant the standard for short-term storage and use.

Minimum Sample Size: 0.5 uL for analytical applications.

Legal Notice: Warranty of products are as described when shipped. No warranty as to fitness for any particular application is expressed or implied. Errant shipments and/or quality claims must be made within 10 days of receipt. Liability is limited solely to the replacement of the product or refund of purchase price.

Certifying Officer: Stephen J. Arpie, M.S., Director General


ISO - 17034

Understanding the Certified Weight Report

Each Certified Reference Material (CRM) is supported by a Certified Weight Report. Assigned values for concentrations and associated uncertainties are based upon NIST traceable masses & volumes used in production.

For More Information, Contact:

StephenArpie@AbsoluteStandards.com

Page 2 of 2

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT

Expiration Date Part Number: Lot Number: Description: n-Tetracosane-d50 101132 101122 72072

Weight(s) shown below were combined and diluted to (mt.): Nominal Concentration (µg/mL): Hecommended Storage: NIST Test ID#: 1000 Ambient (20 °C)

0.058 Flask Uncertainty 5E-05 Balance Uncertainty

Methylene chloride P13433-1 105345

Solvent(s):

Lot#

(15,96 J 67)24124

Formulated By: 3 Prashant Chauhan wenter 101122 DATE 101122 DATE

Reviewed By: Pedro L. Rentas

1. n-Tetracosane-d50 Method GC8MSD-3.M: Column:SPB-5 (30m X 0.25mm ID X 0.25μm film thickness) Temp 1 = 50°C (1min.), Temp 2 = 300°C (9min.), Rate = 10°C/min., Injector B= 250°C, Detector B = PR-26606 Number 1000 98.7 8 Purity 0.2 (%D) 99.0 0.20471 Weight(g) 0.20482 Weight(g) Conc (µg/mL) 1000,6 (+/-) (µg/mL 4.1 16416-32-3 CAS# OSHA PEL (TWA) 1050

275°C, Split Ratio = 100:1, Scan Rate = 2. Analysis performed by: Candice Warren.

RM#

Conc (µg/mL)

Lot

Nominal

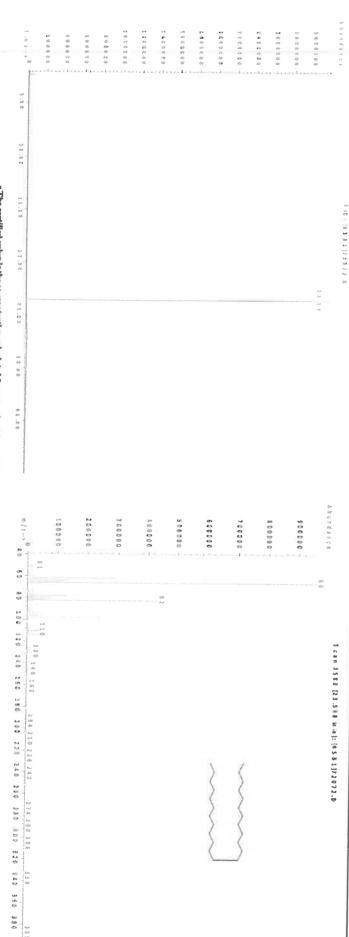
Purity

Uncertainty Assay

Target

Actual

Actual


Uncertainty

(Solvent Safety Info. On Attached pg.)

SDS Information

Expanded

200.0

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certified $(+\cdot)$ 0.5% of the stated value, unless otherwise stated.

 All Standards, after opening ampule, should be stored with caps tight and under appropriate laboratory conditions.
 Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994).

SHIPPING DOCUMENTS

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net

ALLIANCE PROJECT NO.
QUOTE NO.
COC Number 2047098

1201	CLIENT PROJECT INFORMATION							CLIENT BILLING INFORMATION										
	CLIENT INFORMATION REPORT TO BE SENT TO:																	
COMPANY:	PROJECT NAME: STC PRINCEON							BILL TO: MARY MARPHY @ SHORT LOND#:										
ADDRESS: 4	PROJECT NO. D386872 \ LOCATION: MWCSA JOSTAN ADDRESS:									Car U								
CITY MORE	PROJECT MANAGER: MARY MURPH							CITY STATE: ;ZIP:										
ATTENTION:	e-mail: MARY MURPHY & SACOBS - COM.							ATTENTION: PHONE:										
PHONE: 28																		
PHONE: -01	DATA DELIVERABLE INFORMATION									None State State								
FAX (BUSH)	DAVS*	□ Level 1 (Results Only) □ Level 4 (QC + Full Raw Data)																
HARDCOPY (D.	ATA PACKAGE) DAYS*	DATA DELIVERABLE INFORMATION Level 1 (Results Only) Level 4 (QC + Full Raw Data) Level 2 (Results + QC) NJ Reduced US EPA CLP Level 3 (Results + QC NYS ASP A NYS ASP B Haw Data) Other Other PRESERVATIVES ANALYSIS COMMENTS																
	VED BY CHEMTECH	Level 3 (Results - QC D NYS ASP A D NYS ASP B NYS ASP B D OCH THE Detection of the Detectio																
STANDARD HA	RDCOPY TURNAROUND TIME IS 10 BUSINESS	□ EDD FORMAT 15/2 3							4 5 6 7 8 9									
ALLIANCE	PROJECT	CAMPI 5	SAMPLE TYPE			IPLE CTION	TLES	_					Table 1			-		MMENTS fy Preservatives
SAMPLE	SAMPLE IDENTIFICATION	OAM LL	COMP	GRAB	DATE	TIME	OF BOTTLES	E	E	E	E	E	桩	AE	7E	i	A-HCI B-HN03	D-NaOH E-ICE
	IN	10	8	E-7			111	1	2	3	4	5	6	7 -	8	9	C-H2SO4	F-OTHER
1.	1DW-AQ-DRUM-633-0509205	AQ		X	5/9/105	1230	10	X	X	ス	X	X	X	X	X			
2.																		
3.																		-
4.															<u> </u>			
5.																		
6.						3												
7.																		
8.	- with				- I													
9.	Konk																	
10.		•																
	SAMPLE CUSTODY MUST BE DOCU	IMENTED															180	
RELINGUISHED BY	Y SAMPLER: DATE/TIME: RECEIVED BY:	A	50	1.20	Condition	s: LEVE	L Z	- I	DK	E CHIMIS	TED			OOLER TE	MP	3	-0	_°C
SCHILLS SINGUISHED BY SAMPLER: DATE/TIME: RECEIVED BY: DESCRIPTION OF CONTROL OF THE PROPERTY OF THE STATE O										+1,								
2. V PH 1:3 LOT ST 80A0441																		
REMNQUISHED BY	CLIENT:								Shipment Complete									
1	S-9-25 3.				Page _	of												□ NO

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

QA Control Code: A2070148

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: Q2008

JACO05

Order Date: 5/9/2025 3:21:23 PM

Project Mgr:

Client Name: JACOBS Engineering Grou

Project Name: Former Schlumberger Site I

Report Type: Level 4

Client Contact: Mary I. Murphy

Receive DateTime: 5/9/2025_12:00:00 AM

EDD Type: CH2MHILL

Invoice Name: JACOBS Engineering Grou

Purchase Order:

16:50

Hard Copy Date:

Invoice Contact: Mary I. Murphy

Date Signoff:

LAB ID	CLIENT ID	MATRIX SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD	FAX DATE	DUE DATES
Q2008-01	IDW-AQ-DRUM-633-05092025	Water 05/09/2025	12:30					
				VOC-TCLVOA-10		8260D	2 Bus. Davs	

Relinguished By:

Date / Time: 5/12/25 1000

Received By:

Storage Area: VOA Refridgerator Room