

DATA PACKAGE

GC SEMI-VOLATILES VOLATILE ORGANICS

PROJECT NAME : 38 ALEXANDER AVE, NUTLEY NJ

SCIACCA GENERAL CONTRACTORS, LLC

2 Shaw Court

Fairfield, NJ - 07004

Phone No: 201-933-6100

ORDER ID : Q2021 ATTENTION : Rosanne Scirica

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	5
2.1) VOC-TCLVOA-10- Case Narrative	5
2.2) EPH_F2- Case Narrative	7
2.3) TPH GC- Case Narrative	9
3) Qualifier Page	11
4) QA Checklist	12
5) VOC-TCLVOA-10 Data	13
6) EPH_F2 Data	19
7) TPH GC Data	39
8) Shipping Document	42
8.1) CHAIN OF CUSTODY	43
8.2) Lab Certificate	44
8.3) Internal COC	45

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

1

Laboratory Name :	Alliance Technical Group LLC	Client :	Sciacca General Contractors, LLC
Project Location :	NJ	Project Number :	- 38 Alexander Ave, Nutley NJ
Laboratory Sample ID(s): Q2021	Sampling Date(s) :	5/12/2025
List DKQP Methods Us	sed (e.g., 8260,8270, et Cetra)	8015D,8260D,NJEPH,SOP	
1 For each analy	tical method referenced in this lab	oratory report package, were all	

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?		Yes		No	
1A	Were the method specified handling, preservation, and holding time requirements met?	\checkmark	Yes		No	
1B	EPH Method: Was the EPH method conducted without significant modifications (see Section 11.3 of respective DKQ methods)	\checkmark	Yes		No	□ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?		Yes		No	
3	Were samples received at an appropriate temperature (4±2° C)?	\checkmark	Yes		No	□ N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?		Yes	\checkmark	No	
5	a)Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	\square	Yes		No	
	b)Were these reporting limits met?	\square	Yes		No	N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	V	Yes		No	
7	Are project-specific matrix spikes and/or laboratory duplicates included in this data set?		Yes	\checkmark	No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Client Sample Number

Cover Page

- **Order ID :** Q2021
- Project ID: 38 Alexander Ave, Nutley NJ
 - Client : Sciacca General Contractors, LLC

Lab Sample Number

Q2021-01	WASTE
Q2021-02	VOC
Q2021-03	1
Q2021-04	2
Q2021-05	3
Q2021-06	4
Q2021-07	5
Q2021-08	6

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Date: 5/21/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

Signature :

CASE NARRATIVE

Sciacca General Contractors, LLC Project Name: 38 Alexander Ave, Nutley NJ Project # N/A Order ID # Q2021 Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

8 Solid samples were received on 05/13/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2, TPH GC and VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_Y were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples. The RPD met criteria.

The Blank Spike for {VY0519SBS01} with File ID: VY022305.D met requirements for all samples except for Vinyl chloride[134%]. This compound did not meet the NJDKQP criteria and in-house criteria. Associated sample has no hit for this compound therefor no further corrective action was taken.

The Blank Spike Duplicate for {VY0519SBSD01} with File ID: VY022306.D met requirements for all samples except for Vinyl chloride[135%]. This compound did not meet the NJDKQP criteria and in-house criteria. Associated sample has no hit for this compound therefor no further corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID VY022303.D met the requirements except for Acetone. Associated samples do not have hit for this compound, therefore no further corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

CASE NARRATIVE

Sciacca General Contractors, LLC Project Name: 38 Alexander Ave, Nutley NJ Project # N/A Order ID # Q2021 Test Name: EPH_F2

A. Number of Samples and Date of Receipt:

8 Solid samples were received on 05/13/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2, TPH GC and VOC-TCLVOA-10. This data package contains results for EPH_F2.

C. Analytical Techniques:

The analysis were performed on instrument FID_G. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 13302. The analysis of EPH_F2s was based on method NJEPH and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.
The Surrogate recoveries met the acceptable criteria.
The Retention Times were acceptable for all samples.
The MS recoveries met the requirements for all compounds .
The MSD recoveries met the acceptable requirements .
The RPD met criteria .
The Blank Spike met requirements for all samples .
The Blank Spike Duplicate met requirements for all samples .
The Blank analysis did not indicate the presence of lab contamination.
The Initial Calibration met the requirements .
E. Additional Comments:

The soil samples results are based on a dry weight basis.

22

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_

2.3

CASE NARRATIVE

Sciacca General Contractors, LLC Project Name: 38 Alexander Ave, Nutley NJ Project # N/A Order ID # Q2021 Test Name: TPH GC

A. Number of Samples and Date of Receipt:

8 Solid samples were received on 05/13/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2, TPH GC and VOC-TCLVOA-10. This data package contains results for TPH GC.

C. Analytical Techniques:

The analysis of TPH GC was based on method 8015D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Retention Times were acceptable for all samples. The MS recoveries met the requirements for all compounds . The MSD recoveries met the acceptable requirements . The RPD met criteria . The Blank Spike met requirements for all samples . The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements . The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

Signature_

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

2.3

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.
Q	Indicates the LCS did not meet the control limits requirements

For thorough review, the report must have the following:

management lab chronicle, login page)

Is the chain of custody signed and complete

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q2021

GENERAL:

Are all original paperwork present (chain of custody, record of communication, airbill, sample Check chain-of-custody for proper relinquish/return of samples Check internal chain-of-custody for proper relinquish/return of samples /sample extracts Collect information for each project id from server. Were all requirements followed

COVER PAGE:

Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>✓</u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>✓</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u>✓</u>
Were the samples received within hold time	<u>✓</u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u>√</u>
ANALYTICAL:	
Was method requirement followed?	<u>✓</u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

SOHIL JODHANI **QA Review Signature:**

Completed

5

Hit Summary Sheet SW-846								Α	
SDG No.:	Q2021								В
Client:	Sciacca General	Contractors, LLC							С
_									D
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL	Units	
Client ID:									
				0					

Total Voc :

Total Concentration:

5

A B C D

Report of Analysis

Client:	Sciacca General Contractors, LLC	Date Collected:	05/12/25
Project:	38 Alexander Ave, Nutley NJ	Date Received:	05/13/25
Client Sample ID:	VOC	SDG No.:	Q2021
Lab Sample ID:	Q2021-02	Matrix:	SOIL
Analytical Method:	8260D	% Solid:	85.9
Sample Wt/Vol:	5.63 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY022325.D	1		05/19/25 17:43	VY051925	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
75-71-8	Dichlorodifluoromethane	1.20	U	1.20	5.20	ug/Kg
74-87-3	Chloromethane	1.20	U	1.20	5.20	ug/Kg
75-01-4	Vinyl Chloride	0.82	UQ	0.82	5.20	ug/Kg
74-83-9	Bromomethane	1.10	U	1.10	5.20	ug/Kg
75-00-3	Chloroethane	1.30	U	1.30	5.20	ug/Kg
75-69-4	Trichlorofluoromethane	1.30	U	1.30	5.20	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	1.10	U	1.10	5.20	ug/Kg
75-35-4	1,1-Dichloroethene	1.00	U	1.00	5.20	ug/Kg
67-64-1	Acetone	4.90	U	4.90	25.8	ug/Kg
75-15-0	Carbon Disulfide	1.10	U	1.10	5.20	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.75	U	0.75	5.20	ug/Kg
79-20-9	Methyl Acetate	1.60	U	1.60	5.20	ug/Kg
75-09-2	Methylene Chloride	3.60	U	3.60	10.3	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.89	U	0.89	5.20	ug/Kg
75-34-3	1,1-Dichloroethane	0.83	U	0.83	5.20	ug/Kg
110-82-7	Cyclohexane	0.82	U	0.82	5.20	ug/Kg
78-93-3	2-Butanone	6.80	U	6.80	25.8	ug/Kg
56-23-5	Carbon Tetrachloride	1.00	U	1.00	5.20	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.78	U	0.78	5.20	ug/Kg
74-97-5	Bromochloromethane	1.20	U	1.20	5.20	ug/Kg
67-66-3	Chloroform	0.87	U	0.87	5.20	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.96	U	0.96	5.20	ug/Kg
108-87-2	Methylcyclohexane	0.94	U	0.94	5.20	ug/Kg
71-43-2	Benzene	0.82	U	0.82	5.20	ug/Kg
107-06-2	1,2-Dichloroethane	0.82	U	0.82	5.20	ug/Kg
79-01-6	Trichloroethene	0.84	U	0.84	5.20	ug/Kg
78-87-5	1,2-Dichloropropane	0.94	U	0.94	5.20	ug/Kg
75-27-4	Bromodichloromethane	0.81	U	0.81	5.20	ug/Kg
108-10-1	4-Methyl-2-Pentanone	3.70	U	3.70	25.8	ug/Kg
108-88-3	Toluene	0.81	U	0.81	5.20	ug/Kg

5

C D

Report of Analysis

Client:	Sciacca General Contractors, LLC	Date Collected:	05/12/25
Project:	38 Alexander Ave, Nutley NJ	Date Received:	05/13/25
Client Sample ID:	VOC	SDG No.:	Q2021
Lab Sample ID:	Q2021-02	Matrix:	SOIL
Analytical Method:	8260D	% Solid:	85.9
Sample Wt/Vol:	5.63 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VY022325.D	1		05/19/25 17:43	VY051925	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
10061-02-6	t-1,3-Dichloropropene	0.67	U	0.67	5.20	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.64	U	0.64	5.20	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.95	U	0.95	5.20	ug/Kg
591-78-6	2-Hexanone	3.80	U	3.80	25.8	ug/Kg
124-48-1	Dibromochloromethane	0.90	U	0.90	5.20	ug/Kg
106-93-4	1,2-Dibromoethane	0.91	U	0.91	5.20	ug/Kg
127-18-4	Tetrachloroethene	1.10	U	1.10	5.20	ug/Kg
108-90-7	Chlorobenzene	0.94	U	0.94	5.20	ug/Kg
100-41-4	Ethyl Benzene	0.69	U	0.69	5.20	ug/Kg
179601-23-1	m/p-Xylenes	1.30	U	1.30	10.3	ug/Kg
95-47-6	o-Xylene	0.85	U	0.85	5.20	ug/Kg
100-42-5	Styrene	0.73	U	0.73	5.20	ug/Kg
75-25-2	Bromoform	0.89	U	0.89	5.20	ug/Kg
98-82-8	Isopropylbenzene	0.81	U	0.81	5.20	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.30	U	1.30	5.20	ug/Kg
541-73-1	1,3-Dichlorobenzene	1.80	U	1.80	5.20	ug/Kg
106-46-7	1,4-Dichlorobenzene	1.60	U	1.60	5.20	ug/Kg
95-50-1	1,2-Dichlorobenzene	1.50	U	1.50	5.20	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.90	U	1.90	5.20	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.10	U	3.10	5.20	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.30	U	3.30	5.20	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.6		70 (63) - 130 (155)	101%	SPK: 50
1868-53-7	Dibromofluoromethane	50.2		70 (70) - 130 (134)	100%	SPK: 50
2037-26-5	Toluene-d8	48.9		70 (74) - 130 (123)	98%	SPK: 50
460-00-4	4-Bromofluorobenzene	39.7		70 (38) - 130 (136)	79%	SPK: 50
INTERNAL STA						
363-72-4	Pentafluorobenzene	188000				
540-36-3	1,4-Difluorobenzene	335000				
3114-55-4	Chlorobenzene-d5	267000				
3855-82-1	1,4-Dichlorobenzene-d4	100000	13.346			

C D

Report of Analysis								
Client:	Sciacca General	Contractors, LLC		Date Collected:	05/12/25			
Project:	38 Alexander Av	38 Alexander Ave, Nutley NJ			05/13/25			
Client Sample ID:	VOC			SDG No.:	Q2021			
Lab Sample ID:	Q2021-02			Matrix:	SOIL			
Analytical Method:	8260D			% Solid:	85.9			
Sample Wt/Vol:	5.63 Units	: g		Final Vol:	5000	uL		
Soil Aliquot Vol:		uL		Test:	VOC-TCLVOA	-10		
GC Column:	RXI-624	ID: 0.25		Level :	LOW			
Prep Method :								
File ID/Qc Batch:	Dilution:	Prep Date	D	ate Analyzed	Prep Batch ID			
VY022325.D	1		0:	5/19/25 17:43	VY051925			
AS Number Para	ameter	Conc.	Qualifier MI	DL	LOQ / CRQL	Units		

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

17 of 45

5

LAB CHRONICLE

OrderID: Client: Contact:	Q2021CSciacca General Contractors, LLCPRosanne SciricaL				5/13/2025 12:3 38 Alexander A L41,VOA Ref. #	ve, Nutley NJ		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2021-02	voc	SOIL			05/12/25			05/13/25
			VOC-TCLVOA-10	8260D			05/19/25	

6

AS Number	Paramete	r		Conc.	Qualifier	Dilution	MDL	LOQ/	CRQL Units(D	Datanie Pry Weight)
05/15/	/25 13:40				05/16	6/25 16:24			PB10	58029 Datafile
Prep D	Date :				Date	Analyzed :			Prep	Batch ID
Prep Method :										
Soil Aliquot Vol	:			uL				Test:	EPH_F2	
Sample Wt/Vol:		30.03	Units:	g				Final Vol:	2000	uL
Analytical Meth	od:	NJEPH						% Solid:	87.2	
Lab Sample ID:		Q2021-03						Matrix:	Solid	
Client Sample II	D:	1						SDG No.:	Q2021	
Project:		38 Alexar	nder Ave,	Nutley 1	Ŋ			Date Received:	05/13/25	
Client:		Sciacca G	eneral Co	ontractor	rs, LLC			Date Collected:	05/12/25	

Report of Analysis

CAS TARGETS Aliphatic C9-C28 1 1.04 4.59 Aliphatic C9-C28 15.4 mg/kg FG015853.D Total EPH 1.04 Total EPH 15.4 4.59 mg/kg

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report	of Analys	is
--------	-----------	----

Client:	Sciacca General	Contractors, LLC		Date C	Collected:	05/12/25		
Project:	38 Alexander Ave	e, Nutley NJ		Date F	Received:	05/13/25		
Client Sample ID:	1			SDG N	No.:	Q2021		
Lab Sample ID:	Q2021-03			Matrix	c :	Solid		
Analytical Method:	NJEPH			% Sol	id:	87.2		
Sample Wt/Vol:	30.03 Units	: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :	Pr	ep Batch ID	
File ID : FG015853.D	Dilution: 1	Prep Date : 05/15/25		Date Analy 05/16/25	zed :		ep Batch ID 3168029	
FG015853.D	Dilution: 1 Imeter				zed : MDL			Units
FG015853.D	1			05/16/25			3168029	Units
FG015853.D AS Number Para	1 Imeter			05/16/25			3168029	Units mg/kg
FG015853.D AS Number Para FARGETS	1 meter Aliphat	05/15/25	Conc.	05/16/25	MDL		3168029 LOQ / CRQL	
FG015853.D AS Number Para FARGETS Aliphatic C9-C28	1 meter Aliphat Aliphat	05/15/25 tic C9-C28	Conc. 15.4	05/16/25	MDL		3168029 LOQ / CRQL 4.59	mg/kg

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	Q2021-03	Acq On:	16 May 2025 16:24
Client Sample ID:	1	Operator:	YP\AJ
Data file:	FG015853.D	Misc:	
Instrument:	FID_G	ALS Vial:	31
Dilution Factor:	1	Sample Multiplier:	1.00
		_	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	853981	7.523	300	ug/ml
Aliphatic C12-C16	6.776	10.226	4961952	42.51	200	ug/ml
Aliphatic C16-C21	10.227	13.601	6847246	56.033	300	ug/ml
Aliphatic C21-C28	13.602	17.272	11496642	95.69	400	ug/ml
Aliphatic C28-C40	17.273	22.179	31798831	287.946	600	ug/ml
Aliphatic EPH	3.136	22.179	55958652	489.701		ug/ml
ortho-Terphenyl (SURR)	11.891	11.891	5679734	38.15		ug/ml
1-chlorooctadecane (SURR)	13.335	13.335	4707869	40.87		ug/ml
Aliphatic C9-C28	3.136	17.272	24159821	201.756	1200	ug/ml

Client:	Sciacca General	Contractor	rs, LLC			Date Collected:	05/12/25		
Project:	38 Alexander Av	e, Nutley	NJ			Date Received:	05/13/25		
Client Sample ID:	2					SDG No.:	Q2021		
Lab Sample ID:	Q2021-04					Matrix:	Solid		
Analytical Method:	NJEPH					% Solid:	84.9		
Sample Wt/Vol:	30.1 Units	: g				Final Vol:	2000	uL	
Soil Aliquot Vol:		uL				Test:	EPH_F2		
Prep Method :									
Prep Date :			Date	Analyzed :			Prep	Batch ID	
05/15/25 13:40)		05/16	5/25 16:54			PB1	68029	
									Datafile
AS Number Paran	neter	Conc.	Qualifier	Dilution	MDL	LOQ / C	RQL Units(I	Ory Weigh	t)
TARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	8.91		1	1.07	4.69		mg/kg	FG015854.I

Report of Analysis

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

8.91

U = Not Detected

Total EPH

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Total EPH

J = Estimated Value

B = Analyte Found in Associated Method Blank

4.69

mg/kg

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

1.07

D = Dilution

Report	of Analysis
--------	-------------

Client:	Sciacca Ge	eneral Contractors, LLC		Date C	Collected:	05/12/25		
Project:	38 Alexand	der Ave, Nutley NJ		Date F	Received:	05/13/25		
Client Sample ID:	2			SDG N	No.:	Q2021		
Lab Sample ID:	Q2021-04			Matrix	C	Solid		
Analytical Method:	NJEPH			% Soli	id:	84.9		
Sample Wt/Vol:	30.1	Units: g		Final V	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :	E	Date Analy	zed :	Pr	ep Batch ID	
FG015854.D	1	05/15/25	0	5/16/25		PI	3168029	
AS Number Para	meter		Conc. Q	ualifier	MDL		LOQ / CRQL	Units
TARGETS					1.07		1.00	
Aliphatic C9-C28 Aliphatic C28-C40		Aliphatic C9-C28	8.91		1.07		4.69	mg/kg
A linhatic $\mathbf{U} / \mathbf{X}_{-} \mathbf{U} / \mathbf{U}$	P	Aliphatic C28-C40	11.6		1.39		2.35	mg/kg
SURROGATES 3383-33-2	1	-chlorooctadecane (SURR)	36.8		40 - 140		74%	SPK: 50

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Compound	R.T.	Response	Conc	highest_standard	τ
Dilution Factor:	1		Sample Multiplier:	1.00	
Instrument:	FID_G		ALS Vial:	32	
Data file:	FG015854.D		Misc:		
Client Sample ID:	2		Operator:	YP\AJ	
Lab Sample ID:	Q2021-04		Acq On:	16 May 2025 16:54	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	221663	1.953	300	ug/ml
Aliphatic C12-C16	6.776	10.226	2233000	19.13	200	ug/ml
Aliphatic C16-C21	10.227	13.601	5378930	44.018	300	ug/ml
Aliphatic C21-C28	13.602	17.272	6097076	50.748	400	ug/ml
Aliphatic C28-C40	17.273	22.179	16300069	147.601	600	ug/ml
Aliphatic EPH	3.136	22.179	30230738	263.449		ug/ml
ortho-Terphenyl (SURR)	11.890	11.890	5197779	34.91		ug/ml
1-chlorooctadecane (SURR)	13.334	13.334	4238522	36.79		ug/ml
Aliphatic C9-C28	3.136	17.272	13930669	115.849	1200	ug/ml

A B

6

С

Client:	Sciacca General	Contractors	s, LLC			Date Collected:	05/12/25		
Project:	38 Alexander Av	e, Nutley N	IJ			Date Received:	05/13/25		
Client Sample ID:	3					SDG No.:	Q2021		
Lab Sample ID:	Q2021-05					Matrix:	Solid		
Analytical Method:	NJEPH					% Solid:	88.7		
Sample Wt/Vol:	30.07 Units	: g				Final Vol:	2000	uL	
Soil Aliquot Vol:		uL				Test:	EPH_F2		
Prep Method :									
Prep Date :			Date	Analyzed :			Pre	p Batch ID	
05/15/25 13:40	0		05/16	/25 17:23			PB	168029	
									Datafile
AS Number Paran	neter	Conc.	Qualifier	Dilution	MDL	LOQ / C	RQL Units(Dry Weigh	t)
TARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	11.3		1	1.02	4.49		mg/kg	FG015855.I

Report of Analysis

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

11.3

U = Not Detected

Total EPH

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Total EPH

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

1.02

D = Dilution

4.49

mg/kg

В

Report of Analysis

Client:	Sciacca (General Contractors, LLC		Date (Collected:	05/12/25		
Project:	38 Alexa	ander Ave, Nutley NJ		Date I	Received:	05/13/25		
Client Sample ID:	3			SDG 1	No.:	Q2021		
Lab Sample ID:	Q2021-0	15		Matrix	K :	Solid		
Analytical Method:	NJEPH			% Sol	id:	88.7		
Sample Wt/Vol:	30.07	Units: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	ized :	р	rep Batch ID	
	=	r		Dute I mary	ZCU .	1	Tep Baten ID	
FG015855.D	1	05/15/25		05/16/25	200.		B168029	
		*	Conc.	05/16/25	MDL		•	Units
	1	*	Conc.	05/16/25			B168029	Units
AS Number Para	1	*	Conc. 11.3	05/16/25			B168029	Units mg/kg
CAS Number Para TARGETS	1	05/15/25		05/16/25	MDL		B168029	
CAS Number Para TARGETS Aliphatic C9-C28	1	05/15/25 Aliphatic C9-C28	11.3	05/16/25	MDL 1.02		B168029 LOQ / CRQL 4.49	mg/kg
CAS Number Para TARGETS Aliphatic C9-C28 Aliphatic C28-C40	1	05/15/25 Aliphatic C9-C28	11.3	05/16/25	MDL 1.02		B168029 LOQ / CRQL 4.49	mg/kg

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	Q2021-05	Acq On:	16 May 2025 17:23
Client Sample ID:	3	Operator:	YP\AJ
Data file:	FG015855.D	Misc:	
Instrument:	FID_G	ALS Vial:	33
Dilution Factor:	1	Sample Multiplier:	1.00
~ .	D.T. D.	G	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	233049	2.053	300	ug/ml
Aliphatic C12-C16	6.776	10.226	1104772	9.465	200	ug/ml
Aliphatic C16-C21	10.227	13.601	13053082	106.818	300	ug/ml
Aliphatic C21-C28	13.602	17.272	4105745	34.173	400	ug/ml
Aliphatic C28-C40	17.273	22.179	18708810	169.413	600	ug/ml
Aliphatic EPH	3.136	22.179	37205458	321.922		ug/ml
ortho-Terphenyl (SURR)	11.891	11.891	5200096	34.93		ug/ml
1-chlorooctadecane (SURR)	13.336	13.336	4197152	36.43		ug/ml
Aliphatic C9-C28	3.136	17.272	18496648	152.509	1200	ug/ml

6

В

Report of Analysis

Client:	Sciacca General	Contractor	rs, LLC			Date Collected:	05/12/25		
Project:	38 Alexander Ave	e, Nutley	NJ			Date Received:	05/13/25		
Client Sample ID:	4					SDG No.:	Q2021		
Lab Sample ID:	Q2021-06					Matrix:	Solid		
Analytical Method:	NJEPH					% Solid:	88.1		
Sample Wt/Vol:	30.04 Units	: g				Final Vol:	2000	uL	
Soil Aliquot Vol:		uL				Test:	EPH_F2		
Prep Method :									
Prep Date :			Date	Analyzed :			Prep	Batch ID	,
05/15/25 13	3:40		05/16	5/25 17:53			PB1	68029	
AS Number Par	rameter	Conc.	Qualifier	Dilution	MDL	LOQ / C	CRQL Units(I	Dry Weigl	Datafile nt)
FARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	6.69		1	1.03	4.53		mg/kg	FG015856.I
Total EPH	Total EPH	6.69			1.03	4.53		mg/kg	

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client:	Sciacca Genera	al Contractors, LLC		Date (Collected:	05/12/25		
Project:	38 Alexander A	Ave, Nutley NJ		Date I	Received:	05/13/25		
Client Sample ID:	4			SDG 1	No.:	Q2021		
Lab Sample ID:	Q2021-06			Matrix	x:	Solid		
Analytical Method:	NJEPH			% Sol	id:	88.1		
Sample Wt/Vol:	30.04 Uni	its: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	vzed :	Pro	ep Batch ID	
FG015856.D	1	05/15/25		05/16/25		PE	168029	
AS Number Para	meter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS								
Aliphatic C9-C28	Alipł	hatic C9-C28	6.69		1.03		4.53	mg/kg
	Alint	hatic C28-C40	10.0		1.34		2.27	mg/kg
Aliphatic C28-C40	Anpi	latic C28-C40	10.0					., .,
Aliphatic C28-C40 SURROGATES 3383-33-2 34-15-1	1-chl	lorooctadecane (SURR) D-Terphenyl (SURR)	38.5 37.1		40 - 140 40 - 140		77% 74%	SPK: 50 SPK: 50

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Compound	R.T.	Response	Conc	highest_standard	τ
Dilution Factor:	1		Sample Multiplier:	1.00	
Instrument:	FID_G		ALS Vial:	34	
Data file:	FG015856.D		Misc:		
Client Sample ID:	4		Operator:	YP\AJ	
Lab Sample ID:	Q2021-06		Acq On:	16 May 2025 17:53	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	237011	2.088	300	ug/ml
Aliphatic C12-C16	6.776	10.226	1780235	15.252	200	ug/ml
Aliphatic C16-C21	10.227	13.601	4975584	40.717	300	ug/ml
Aliphatic C21-C28	13.602	17.272	3914267	32.58	400	ug/ml
Aliphatic C28-C40	17.273	22.179	14648854	132.649	600	ug/ml
Aliphatic EPH	3.136	22.179	25555951	223.285		ug/ml
ortho-Terphenyl (SURR)	11.890	11.890	5522492	37.09		ug/ml
1-chlorooctadecane (SURR)	13.335	13.335	4435568	38.5		ug/ml
Aliphatic C9-C28	3.136	17.272	10907097	90.637	1200	ug/ml

6

Client:	Sciacca General	Contracto	rs, LLC			Date Collected:	05/12/25		
Project:	38 Alexander Ave	e, Nutley	NJ			Date Received:	05/13/25		
Client Sample ID:	5					SDG No.:	Q2021		
Lab Sample ID:	Q2021-07					Matrix:	Solid		
Analytical Method:	NJEPH					% Solid:	86.6		
Sample Wt/Vol:	30.08 Units	: g				Final Vol:	2000	uL	
Soil Aliquot Vol:		uL				Test:	EPH_F2		
Prep Method :									
Prep Date :			Date	Analyzed :			Prep	o Batch ID	
05/15/25 13:40			05/16	5/25 18:22			PB1	68029	
									Datafile
AS Number Param	eter	Conc.	Qualifier	Dilution	MDL	LOQ / C	RQL Units(Dry Weigh	t)
TARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	8.01		1	1.05	4.61		mg/kg	FG015857.I

Report of Analysis

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

8.01

U = Not Detected

Total EPH

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Total EPH

J = Estimated Value

B = Analyte Found in Associated Method Blank

4.61

mg/kg

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

1.05

D = Dilution

Α

В

Report of Analysis

Client:	Sciacca (General Contractors, LLC		Date (Collected:	05/12/25		
Project:	38 Alexa	nder Ave, Nutley NJ		Date I	Received:	05/13/25		
Client Sample ID:	5			SDG 1	No.:	Q2021		
Lab Sample ID:	Q2021-0	17		Matrix	x:	Solid		
Analytical Method:	NJEPH			% Sol	id:	86.6		
Sample Wt/Vol:	30.08	Units: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	vzed :	Р	Prep Batch ID	
FG015857.D	1	05/15/25		05/16/25		P	PB168029	
CAS Number P	arameter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS								
Aliphatic C9-C28		Aliphatic C9-C28	8.01		1.05		4.61	mg/kg
Aliphatic C28-C40		Aliphatic C28-C40	14.4		1.36		2.30	mg/kg
SURROGATES								
3383-33-2		1-chlorooctadecane (SURR)	38.5		40 - 140		77%	SPK: 50
5565-55-2		1-chlorooctadecane (SUKK)	38.3		40 - 140		////0	SF K. 50

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Compound	R.T.	Response	Conc	highest standard	1
Dilution Factor:	1		Sample Multiplier:	1.00	
Instrument:	FID_G		ALS Vial:	35	
Data file:	FG015857.D		Misc:		
Client Sample ID:	5		Operator:	YP\AJ	
Lab Sample ID:	Q2021-07		Acq On:	16 May 2025 18:22	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	260761	2.297	300	ug/ml
Aliphatic C12-C16	6.776	10.226	1330130	11.395	200	ug/ml
Aliphatic C16-C21	10.227	13.601	4965591	40.635	300	ug/ml
Aliphatic C21-C28	13.602	17.272	6012665	50.045	400	ug/ml
Aliphatic C28-C40	17.273	22.179	20667644	187.15	600	ug/ml
Aliphatic EPH	3.136	22.179	33236791	291.523		ug/ml
ortho-Terphenyl (SURR)	11.891	11.891	5563170	37.36		ug/ml
1-chlorooctadecane (SURR)	13.335	13.335	4439184	38.53		ug/ml
Aliphatic C9-C28	3.136	17.272	12569147	104.372	1200	ug/ml

6

Client:	Sciacca General	Contractor	rs, LLC			Date Collected:	05/12/25		
Project:	38 Alexander Av	e, Nutley	NJ			Date Received:	05/13/25		
Client Sample ID:	6					SDG No.:	Q2021		
Lab Sample ID:	Q2021-08					Matrix:	Solid		
Analytical Method:	NJEPH					% Solid:	87.6		
Sample Wt/Vol:	30.05 Units	: g				Final Vol:	2000	uL	
Soil Aliquot Vol:		uL				Test:	EPH_F2		
Prep Method :									
Prep Date :			Date	Analyzed :			Pre	p Batch ID	
05/15/25 13:40)		05/10	6/25 18:52			PB	168029	
									Datafile
AS Number Paran	neter	Conc.	Qualifier	Dilution	MDL	LOQ / C	RQL Units	Dry Weigh	nt)
TARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	13.4		1	1.04	4.56		mg/kg	FG015858.I

Report of Analysis

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

13.4

U = Not Detected

Total EPH

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Total EPH

J = Estimated Value

B = Analyte Found in Associated Method Blank

4.56

mg/kg

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

1.04

D = Dilution

Report	of Analys	is
--------	-----------	----

Client:	Sciacca Ge	eneral Contractors, LLC	Date Collected:		05/12/25			
Project:	38 Alexan	der Ave, Nutley NJ		Date I	Received:	05/13/25		
Client Sample ID:	6			SDG 1	No.:	Q2021		
Lab Sample ID:	Q2021-08			Matrix	K:	Solid		
Analytical Method:	NJEPH			% Sol	id:	87.6		
Sample Wt/Vol:	30.05	Units: g		Final	Vol:	2000	uL	
Soil Aliquot Vol:		uL		Test:		EPH_F2		
Prep Method :								
File ID :	Dilution:	Prep Date :		Date Analy	zed :	Pi	rep Batch ID	
FG015858.D	1	05/15/25		05/16/25		PI	B168029	
CAS Number Para	meter		Conc.	Qualifier	MDL		LOQ / CRQL	Units
TARGETS								
Aliphatic C9-C28	A	Aliphatic C9-C28	13.4		1.04		4.56	mg/kg
Aliphatic C28-C40	A	Aliphatic C28-C40	7.35		1.34		2.28	mg/kg
SURROGATES								
3383-33-2	1	-chlorooctadecane (SURR)	38.7		40 - 140		77%	SPK: 50
84-15-1	0	ortho-Terphenyl (SURR)	37.9		40 - 140		76%	SPK: 50

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID:	Q2021-08	Acq On:	16 May 2025 18:52
Client Sample ID:	6	Operator:	YP\AJ
Data file:	FG015858.D	Misc:	
Instrument:	FID_G	ALS Vial:	36
Dilution Factor:	1	Sample Multiplier:	1.00
~ .		~	

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.136	6.775	264176	2.327	300	ug/ml
Aliphatic C12-C16	6.776	10.226	2833405	24.274	200	ug/ml
Aliphatic C16-C21	10.227	13.601	13373426	109.439	300	ug/ml
Aliphatic C21-C28	13.602	17.272	4802835	39.975	400	ug/ml
Aliphatic C28-C40	17.273	22.179	10686008	96.764	600	ug/ml
Aliphatic EPH	3.136	22.179	31959850	272.78		ug/ml
ortho-Terphenyl (SURR)	11.891	11.891	5643536	37.9		ug/ml
1-chlorooctadecane (SURR)	13.335	13.335	4456676	38.69		ug/ml
Aliphatic C9-C28	3.136	17.272	21273842	176.015	1200	ug/ml

6

A B

С

6

LAB CHRONICLE

OrderID: Client: Contact:	Q2021 Sciacca General Contractors Rosanne Scirica	, LLC		OrderDate: Project: Location:	5/13/2025 12:3 38 Alexander A L41,VOA Ref. #	ve, Nutley NJ		
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2021-01	WASTE	SOIL			05/12/25			05/13/25
			TPH GC	8015D		05/16/25	05/16/25	
Q2021-03	1	Solid			05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-04	2	Solid			05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-05	3	Solid			05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-06	4	Solid		NJEPH	05/12/25		05/16/25	05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-07	5	Solid	EPH_F2	NJEPH	05/12/25	05/15/25	05/16/25	05/13/25
02021-00	6	Calid	LT11_1 Z	NJEF 11	05 (12 /25	03/13/23	03/10/23	05/12/25
Q2021-08	6	Solid	EPH_F2	NJEPH	05/12/25	05/15/25	05/16/25	05/13/25

7

7

A B

В

TARGETS PHC	Petroleum Hydrocarbons	29500		433		320	00 ug/kg
CAS Number	Parameter	Conc.	Qualifier	MDL		LOQ / CRQ	L Units(Dry Weight
FF015856.D	1	05/16	6/25 08:50		05/16/25 13:28	PB1680)42
File ID/Qc Batch:	Dilution:	Prep	Date		Date Analyzed	Prep Ba	atch ID
Prep Method :	SW3541						
GPC Factor :]	PH :					
Extraction Type:					Injection Volume :		
Soil Aliquot Vol:		uL			Test:	TPH GC	
Sample Wt/Vol:	30.05 Units:	g			Final Vol:	1	mL
Analytical Method	: 8015D TPH				% Solid:	88.5 I	Decanted:
Lab Sample ID:	Q2021-01				Matrix:	SOIL	
Client Sample ID:	WASTE				SDG No.:	Q2021	
Project:	38 Alexander Ave, N	lutley NJ			Date Received:	05/13/25	
Client:	Sciacca General Cor	tractors, LLC			Date Collected:	05/12/25	

Report of Analysis

Comments:

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	N = Presumptive Evidence of a Compound
LOD = Limit of Detection	* = Values outside of QC limits
E = Value Exceeds Calibration Range	D = Dilution
P = Indicates > 25% difference for detected	S = Indicates estimated value where valid five-point calibration
concentrations between the two GC columns	was not performed prior to analyte detection in sample.
Q = indicates LCS control criteria did not meet requirements	() = Laboratory InHouse Limit
M = MS/MSD acceptance criteria did not meet requirements	

40 of 45

A B C

LAB CHRONICLE

OrderID: Client: Contact:	Q2021 Sciacca General Contractors, LLC Rosanne Scirica			OrderDate: Project: Location:	5/13/2025 12:38:10 PM 38 Alexander Ave, Nutley NJ L41,VOA Ref. #2 Soil			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2021-01	WASTE	SOIL			05/12/25			05/13/25
			TPH GC	8015D		05/16/25	05/16/25	
Q2021-03	1	Solid			05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-04	2	Solid			05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-05	3	Solid		NICOL	05/12/25			05/13/25
			EPH_F2	NJEPH		05/15/25	05/16/25	
Q2021-06	4	Solid	EPH_F2	NJEPH	05/12/25	05/15/25	05/16/25	05/13/25
02021 07	-	C -114	Lrn_i z	NJEFTI	05 (12 (25	03/13/23	03/10/23	05/10/05
Q2021-07	5	Solid	EPH_F2	NJEPH	05/12/25	05/15/25	05/16/25	05/13/25
Q2021-08	6	Solid	=		05/12/25	00, 10, 20	00, 10, 20	05/13/25
47071-00	Ŭ.	5014	EPH_F2	NJEPH	55, 12, 25	05/15/25	05/16/25	55/15/25

<u>SHIPPING</u> DOCUMENTS

8

D	E	11	T	Ξ	d	
CHAIN	OF	CUS	STOR	Y	REC	ORI

2. 3.

										Ú) [),	\cup	5	1	1) (22	.02
		\$							2	>_9	6	A	1	2	40	2	Ser	_ A	.02 .vE
and the second s	JSTODY RECORD	284	Sheffield Stree (908) 789-8900 www.c) Fa	x (90)8) 78				emtec C Nur	h Proj nber	ect N	umb		X	(e) 8)	1	N	-
	CLIENT INFORMATIO	NC	PRO	JECT	INFO	RMAT	ION				100	BI	LLIN	G IN	EO	RMA	TION		
	Report to be sent to:		PROJECT NAME:						BILL	TO:			and an a state of the			PO#			- 14 C
COMPANY:			PROJECT #:			LOCATIO	DN:		-	ADDRESS:									
ADDRESS: CITY:	ANK 4 100		PROJECT MANAGER:						CITY:						STAT	'E:	ZIP:		
ATTENTION:	STATE:	ZIP;	E-MAIL:	_					ATTENTION:							field y			
PHONE:	FAX:		PHONE:			FAX:		No.	PHO	IE:									
	TURNAROUND INFO	RMATION		TA DE		RABL	E			/	1	1	AN/	ALVS	SIS	1	17	7	
FAX (RUSH) HARDCOPY (DATA I EDD: "TO BE APPROVED I STANDARD HARDO		DAYS* DAYS* DAYS* DAYS*	Level 1 (Results On Level 2 (Results + C Level 3 (Results + C Raw Data) EDD FORMAT	2C)	ON	J Reduce YS ASP	C + Full Raw C USE C NYS	PACLP	4	2 2		- 10 SER		1	8	6			
CHEMTECH	PROJEC	T	0.000	SAM			MPLE	8						120		-			
SAMPLE ID	SAMPLE IDENTI		SAMPLE MATRIX	TY WO	PE	DATE	TIME	of Bottles				-					A-HCI B-HNO3	D-NEOH E-ICE	auves
1	WASTE				6	1	0	323		2 :	3 4	5	6	7	8	9	C-H2SO4	F-OTHER	
0	VEDIE					42	5	,	×										
2.	VOC						9.10	1		×									
3.							11.4K	1			×					e:			
4.	.2						250	1		10	×	+				-			
5.	3					1	3.45	1		- 6	×	+-				-			
6,	4						11	1		-	in the second se	-				-			
7.	5						A.	3			×	-				-			

8.1

4						- hil		1				
5. 3					11	3.45		6				
6. 4												
7. 5					H^{-}	3		1	×			
8. (0					N	26	+	1	8			
9.					-	1			++			
10.												
RELINGUISHED BY SAMPLER	DATE/TIME		BELOW EA	CH TIME S Conditions of t Comments:	bottles or	ES CH/	NGE PR	OSSESS			OURIE	R DELIVERY
RELINGUISHED BY	DATE/TIME	PRECEIVED BY										
	DATE/TIME 1620 5-13.25	RECEIVED FOR LAB BY		Page	of		CLIENT: C		vered CI Oti Up	1er:		Shipment Complete
TOZOTA WHI	TE - CHEMTECH	COPY FOR RETURN TO	CLIENT	YELLOW -	CHEMTI	and the second division of the second divisio		and the second se	MPLER COF	γ		

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

LOGIN REPORT/SAMPLE TRANSFER

	Order ID: Q2021 SCIA01		Order Date :			5/13/2025 12:38:10 PM		Project Mgr :				
Clie	ent Name :	Sciacca Ge	neral Contractor:	Project Name :		38 Alexander Ave, Nutley	Ν	Report Type : R	lesults Only			
Client Contact : Rosanne Scirica		Receive DateTime :		5/13/2025 4:20:00 PM		EDD Type : E	EXCEL NJCLEANU	Р				
Invoice Name : Sciacca General Contractor:		Purchase Order :				Hard Copy Date :						
Invoice Contact : Rosanne Scirica							Date Signoff :					
LAB ID	CLIEN'	T ID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q2021-02		VOC		Solid	05/12/2025	14:15 16:15	VOC-TCLVOA-10		8260D	10 Bus. Days		

Relinguished By : Date / Time : 5/14

Received By : 9:40 Matt 6 E7:7 Date / Time : 💯

8.3

Storage Area : VOA Refridgerator Room