DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labora	itory Name :								
Project	t Location :		Project Number :						
Labora	itory Sample ID(s	s): Q2125	Sampling Date(s):	5/23/2025					
List Dk	(QP Methods Use	ed (e.g., 8260,8270, et Cetra)	1312,8270E,NJEPH,SOP						
1	specified QA/Q0 explain any crite	ical method referenced in this labe C performance criteria followed, in eria falling outside of acceptable g Known Quality performance stand	ncluding the requirement to juidelines, as specified in the		V	Yes		No	
1A	Were the metho	d specified handling, preservation	n, and holding time requirements	s met?	V	Yes		No	
1B		as the EPH method conducted w 3 of respective DKQ methods)	ithout significant modifications		$\overline{\mathbf{A}}$	Yes		No	□ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?							No	
3	Were samples	received at an appropriate tempe	rature (4±2° C)?		V	Yes		No	□ N/A
4	Were all QA/QC standards achie	performance criteria specified in eved?	the NJDEP DKQP			Yes	\checkmark	No	
5		g limits specified or referenced or o the laboratory prior to sample re			V	Yes		No	
	b)Were these re	porting limits met?			$\overline{\checkmark}$	Yes		No	□ N/A
6	results reported	ical method referenced in this laborated in this laborated in the state of the constituents identified in the DKQP documents and/or site-sp	ne method-specific analyte lists		V	Yes		No	
7	Are project-spec	cific matrix spikes and/or laborato	ry duplicates included in this dat	a set?	V	Yes		No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Cover Page

Order ID: Q2125

Project ID: Seely

Client: G Environmental

Lab Sample Number	Client Sample Number
Q2125-01	GSB1
Q2125-02	GSB2
Q2125-03	GSB3
Q2125-04	GSB4
Q2125-05	GSB5
Q2125-07	GSB3
Q2125-08	GSB3

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :			
Signature .	—————— Dat	e:	6/13/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

G Environmental Project Name: Seely Project # N/A Order ID # Q2125

Test Name: SVOCMS Group1

A. Number of Samples and Date of Receipt:

7 Solid samples were received on 05/23/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2, SPLP BNA Group1, SPLP Extraction and SVOCMS Group1. This data package contains results for SVOCMS Group1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um dfThe samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOCMS Group1 was based on method 8270E and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements .

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was The soil samples results are based on a dry weight basis.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount

for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		
Signature		

CASE NARRATIVE

G Environmental Project Name: Seely Project # N/A Order ID # Q2125

Test Name: SPLP BNA Group1

A. Number of Samples and Date of Receipt:

7 Solid samples were received on 05/23/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2, SPLP BNA Group1, SPLP Extraction and SVOCMS Group1. This data package contains results for SPLP BNA Group1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_M using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SPLP BNA Group1 was based on method 8270E and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS {Q2125-08MS} with File ID: BM050241.D recoveries met the requirements for all compounds except for 2-Methylnaphthalene[300%], this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The MSD {Q2125-08MSD} with File ID: BM050242.D recoveries met the acceptable requirements except for 2-Methylnaphthalene[300%], this compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements .

The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Cianotura			
	Signature		

CASE NARRATIVE

G Environmental Project Name: Seely Project # N/A Order ID # Q2125

Test Name: EPH_F2

A. Number of Samples and Date of Receipt:

5 Solid samples were received on 05/23/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2. This data package contains results for EPH_F2.

C. Analytical Techniques:

The analysis were performed on instrument FID_C. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis of EPH_F2s was based on method NJEPH and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for GSB1DL [1-chlorooctadecane (SURR) - 0%, ortho-Terphenyl (SURR) - 0%], GSB3DL [1-chlorooctadecane (SURR) - 0% and ortho-Terphenyl (SURR) - 0%]. Due to high concentration of compounds, these samples required dilution. Therefore, samples were reanalyzed with dilution and reported

The Retention Times were acceptable for all samples.

The MS {Q2125-05MS} with File ID: FC069038.D recoveries met the requirements for all compounds except for Aliphatic C9-C28[27%] due to matrix interference .

The MSD $\{Q2125\text{-}05MSD\}$ with File ID: FC069039.D recoveries met the acceptable requirements except for Aliphatic C9-C28[25%] due to matrix interference .

The RPD met criteria.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements .

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

$Signature_{_}$		
Signature		

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
В	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others. Indicates the analyte was found in the blank as well as the sample report as "12 B".
Е	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q2125

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory	
Chronicle	
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature:	SOHIL JODHANI	Date:	06/13/2025
QA Keview Signature.	SOIIIL SODIIAM	Date.	00/13/202

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q2125

Client: G Environmental

Sample ID **Client ID** MDL RDL Units Matrix Parameter Concentration \mathbf{C} Client ID: GSB3 Q2125-07 GSB3 SOIL 2-Methylnaphthalene 860.000 190 ug/Kg 28.9 **Total Svoc:** 860.00 860.00 **Total Concentration:**

Е

ы

...

J

SAMPLE DATA

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3 SDG No.: Q2125 Lab Sample ID: Q2125-07 Matrix: **SOIL** % Solid: Analytical Method: 8270E 88.3 Sample Wt/Vol: 30.07 Final Vol: 1000 uL Units: g Soil Aliquot Vol: иL Test: SVOCMS Group1 Level: Extraction Type: Decanted: Ν LOW GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method: SW3541

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BP024920.D
 1
 06/04/25 09:10
 06/11/25 20:30
 PB168234

CAS Number Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
91-20-3	Naphthalene	25.6	U	25.6	190	ug/Kg
91-57-6	2-Methylnaphthalene	860		28.9	190	ug/Kg
SURROGATES						
4165-60-0	Nitrobenzene-d5	46.1		30 (18) - 130 (107)	46%	SPK: 100
321-60-8	2-Fluorobiphenyl	47.1		30 (20) - 130 (109)	47%	SPK: 100
1718-51-0	Terphenyl-d14	48.5		30 (10) - 130 (105)	49%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	365000	7.608			
1146-65-2	Naphthalene-d8	1420000	10.384			
15067-26-2	Acenaphthene-d10	870000	14.26			
1517-22-2	Phenanthrene-d10	1660000	17.072			
1719-03-5	Chrysene-d12	1830000	21.483			
1520-96-3	Perylene-d12	2100000	24.748			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

QC SUMMARY

Surrogate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: 8270E

Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Limi Low	its (%) High
PB168234BL	PB168234BL	Nitrobenzene-d5	5 100	75.3	75	30 (18)	130 (107)
		2-Fluorobipheny	100	71.9	72	30 (20)	130 (109)
		Terphenyl-d14	100	72.1	72	30 (10)	130 (105)
PB168234BS	PB168234BS	Nitrobenzene-d5	5 100	76.0	76	30 (18)	130 (107)
		2-Fluorobipheny	100	74.1	74	30 (20)	130 (109)
		Terphenyl-d14	100	80.6	81	30 (10)	130 (105)
Q2125-07	GSB3	Nitrobenzene-d5	100	46.1	46	30 (18)	130 (107)
		2-Fluorobipheny	100	47.1	47	30 (20)	130 (109)
		Terphenyl-d14	100	48.5	49	30 (10)	130 (105)
Q2159-01MS	TP05-MHO-WCMS	Nitrobenzene-d5	5 100	47.4	47	30 (18)	130 (107)
		2-Fluorobipheny	100	45.5	46	30 (20)	130 (109)
		Terphenyl-d14	100	35.2	35	30 (10)	130 (105)
Q2159-01MSD	TP05-MHO-WCMSD	Nitrobenzene-d5	100	45.8	46	30 (18)	130 (107)
		2-Fluorobipheny	100	45.1	45	30 (20)	130 (109)
		Terphenyl-d14	100	32.4	32	30 (10)	130 (105)

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: SW8270E

Parameter		Spike	Sample Result	Result	Units	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID:	Q2159-01MS		Client Sample ID	TP0	5-MHO-W	CMS			DataFile:	BF142605.I)	
Naphthalene		1200	0	1100	ug/Kg	92				70 (51)	130 (121)	
2-Methylnaphthale	ene	1200	0	1100	ug/Kg	92				70 (59)	130 (123)	

F

Н

J

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: SW8270E

Parameter	Spike	Sample Result	Result	Units	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID:	Q2159-01MSD	Client Sample ID:	TP	05-MHO-V	VCMSD			DataFile:	BF142606.D		
Naphthalene	1200	0	1000	ug/Kg	83		10		70 (51)	130 (121)	30 (20)
2-Methylnaphthale	ne 1200	0	1000	ug/Kg	83		10		70 (59)	130 (123)	30 (20)

В

D

G

Н

J

Fax: 908 789 8922

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: 8270E DataFile: BF142726.D

								RPD	Limits		
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB168234BS	Naphthalene	1700	1500	ug/Kg	88				70 (62)	130 (100)	
	2-Methylnaphthalene	1700	1500	ug/Kg	88				70 (60)	130 (104)	

В

— <mark>В</mark>

G

1

4B

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: CHEMTECH	Contract:	GENV01	
--------------------	-----------	--------	--

Lab File ID: BF142603.D Lab Sample ID: PB168234BL

Instrument ID: BNA_F Date Extracted: 06/04/2025

Matrix: (soil/water) SOIL Date Analyzed: 06/04/2025

Level: (low/med) LOW Time Analyzed: 13:05

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA	LAB	LAB	DATE
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
TP05-MHO-WCMS	Q2159-01MS	BF142605.D	06/04/2025
TP05-MHO-WCMSD	Q2159-01MSD	BF142606.D	06/04/2025
PB168234BS	PB168234BS	BF142726.D	06/11/2025
GSB3	Q2125-07	BP024920.D	06/11/2025

COMMENTS:

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH	Contract: GENV01	
Lab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
Lab File ID: BF142465.D	DFTPP Injection Date:	05/20/2025
Instrument ID: BNA_F	DFTPP Injection Time:	11:13

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	27.4
68	Less than 2.0% of mass 69	0.5 (1.9) 1
69	Mass 69 relative abundance	24.7
70	Less than 2.0% of mass 69	0.1 (0.5) 1
127	10.0 - 80.0% of mass 198	33.5
197	Less than 2.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	4.9
275	10.0 - 60.0% of mass 198	22.3
365	Greater than 1% of mass 198	3.1
441	Present, but less than mass 443	14.9
442	Greater than 50% of mass 198	100
443	15.0 - 24.0% of mass 442	19 (19) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDICC2.5	SSTDICC2.5	BF142467.D	05/20/2025	12:10
SSTDICC005	SSTDICC005	BF142468.D	05/20/2025	12:38
SSTDICC010	SSTDICC010	BF142469.D	05/20/2025	13:07
SSTDICC020	SSTDICC020	BF142470.D	05/20/2025	13:36
SSTDICCC040	SSTDICCC040	BF142471.D	05/20/2025	14:05
SSTDICC050	SSTDICC050	BF142472.D	05/20/2025	14:34
SSTDICC060	SSTDICC060	BF142473.D	05/20/2025	15:03
SSTDICC080	SSTDICC080	BF142474.D	05/20/2025	15:31

Fax: 908 789 8922

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab name: CHEMTECH	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BF142601.D	DFTPP Injection Date:	06/04/2025
Instrument ID: BNA F	DFTPP Injection Time:	11:59

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	29.2
68	Less than 2.0% of mass 69	0.5 (1.8)
69	Mass 69 relative abundance	25.4
70	Less than 2.0% of mass 69	0.2 (0.7) 1
127	10.0 - 80.0% of mass 198	35.2
197	Less than 2.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	5.3
275	10.0 - 60.0% of mass 198	22.8
365	Greater than 1% of mass 198	2.9
441	Present, but less than mass 443	15.5
442	Greater than 50% of mass 198	100
443	15.0 - 24.0% of mass 442	18.9 (18.9) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDCCC040	SSTDCCC040	BF142602.D	06/04/2025	12:27
PB168234BL	PB168234BL	BF142603.D	06/04/2025	13:05
TP05-MHO-WCMS	Q2159-01MS	BF142605.D	06/04/2025	14:08
TP05-MHO-WCMSD	Q2159-01MSD	BF142606.D	06/04/2025	14:38

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab name: CHEMTECH	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BF142710.D	DFTPP Injection Date:	06/10/2025
Instrument ID: BNA F	DFTPP Injection Time:	15:42

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	31.1
68	Less than 2.0% of mass 69	0.5 (1.7) 1
69	Mass 69 relative abundance	28.7
70	Less than 2.0% of mass 69	0.1 (0.2) 1
127	10.0 - 80.0% of mass 198	39.5
197	Less than 2.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	5.9
275	10.0 - 60.0% of mass 198	24.8
365	Greater than 1% of mass 198	3.3
441	Present, but less than mass 443	15.6
442	Greater than 50% of mass 198	100
443	15.0 - 24.0% of mass 442	19 (19) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDICC2.5	SSTDICC2.5	BF142712.D	06/10/2025	16:54
SSTDICC005	SSTDICC005	BF142713.D	06/10/2025	17:24
SSTDICC010	SSTDICC010	BF142714.D	06/10/2025	17:53
SSTDICC020	SSTDICC020	BF142715.D	06/10/2025	18:22
SSTDICCC040	SSTDICCC040	BF142716.D	06/10/2025	18:52
SSTDICC050	SSTDICC050	BF142717.D	06/10/2025	19:21
SSTDICC060	SSTDICC060	BF142718.D	06/10/2025	19:50
SSTDICC080	SSTDICC080	BF142719.D	06/10/2025	20:19

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: Chemtech	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BF142722.D	DFTPP Injection Date:	06/11/2025
Instrument ID: BNA_F	DFTPP Injection Time:	08:56

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10.0 - 80.0% of mass 198	32.5	
68	Less than 2.0% of mass 69	0.6 (1.9)	1
69	Mass 69 relative abundance	29.7	
70	Less than 2.0% of mass 69	0.1 (0.4)	1
127	10.0 - 80.0% of mass 198	41.8	
197	Less than 2.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 to 9.0% of mass 198	5.8	
275	10.0 - 60.0% of mass 198	24.4	
365	Greater than 1% of mass 198	3.2	
441	Present, but less than mass 443	15.4	
442	Greater than 50% of mass 198	100	
443	15.0 - 24.0% of mass 442	18.6 (18.6)	2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDCCC040	SSTDCCC040	BF142723.D	06/11/2025	09:24
PB168234BS	PB168234BS	BF142726.D	06/11/2025	10:51

51

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab name: CHEMTECH	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BP024859.D	DFTPP Injection Date:	06/06/2025
Instrument ID: BNA P	DFTPP Injection Time:	09:49

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51 68 69 70	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69	32.2 0.7 (1.9) 36.9 0.2 (0.6)	1
127 197	10.0 - 80.0% of mass 198 Less than 2.0% of mass 198	47.9 0.0	
198 199	Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198	100 6.6 31.2	
275 365 441	10.0 - 60.0% of mass 198 Greater than 1% of mass 198 Present, but less than mass 443	4.6 13.1	
442 443	Greater than 50% of mass 198 15.0 - 24.0% of mass 442	84 16.1 (19.2)	2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDICC2.5	SSTDICC2.5	BP024860.D	06/06/2025	10:30
SSTDICC005	SSTDICC005	BP024861.D	06/06/2025	11:11
SSTDICC010	SSTDICC010	BP024862.D	06/06/2025	11:52
SSTDICC020	SSTDICC020	BP024863.D	06/06/2025	12:33
SSTDICCC040	SSTDICCC040	BP024864.D	06/06/2025	13:14
SSTDICC050	SSTDICC050	BP024865.D	06/06/2025	13:56
SSTDICC060	SSTDICC060	BP024866.D	06/06/2025	14:37
SSTDICC080	SSTDICC080	BP024867.D	06/06/2025	15:18

Fax: 908 789 8922

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab name: CHEMTECH	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BP024904.D	DFTPP Injection Date:	06/11/2025
Instrument ID: BNA P	DFTPP Injection Time:	09:29

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	29.9
68	Less than 2.0% of mass 69	0.6 (1.8)
69	Mass 69 relative abundance	34.6
70	Less than 2.0% of mass 69	0.2 (0.5)
127	10.0 - 80.0% of mass 198	45.8
197	Less than 2.0% of mass 198	0.2
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	6.7
275	10.0 - 60.0% of mass 198	30.8
365	Greater than 1% of mass 198	4.4
441	Present, but less than mass 443	13.2
442	Greater than 50% of mass 198	84
443	15.0 - 24.0% of mass 442	16.1 (19.1)

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDCCC040	SSTDCCC040	BP024905.D	06/11/2025	10:09
GSB3	Q2125-07	BP024920.D	06/11/2025	20:30

Fax: 908 789 8922

8R

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/04/2025

Lab File ID: BF142602.D Time Analyzed: 12:27

Instrument ID: BNA_F GC Column: DB-UI ID: 0.18 (mm)

	 _						
		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	118699	6.898	454762	8.18	238732	9.94
	UPPER LIMIT	237398	7.398	909524	8.68	477464	10.439
	LOWER LIMIT	59349.5	6.398	227381	7.68	119366	9.439
	EPA SAMPLE NO.						
01	PB168234BL	131273	6.89	500088	8.18	273312	9.93
02	TP05-MHO-WCMS	119687	6.90	441391	8.18	218918	9.94
03	TP05-MHO-WCMSD	117119	6.90	429653	8.18	207287	9.94

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Fax: 908 789 8922

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/04/2025

Lab File ID: BF142602.D Time Analyzed: 12:27

Instrument ID: BNA F GC Column: DB-UI ID: 0.18 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	393948	11.427	204352	14.068	242845	15.562
	UPPER LIMIT	787896	11.927	408704	14.568	485690	16.062
	LOWER LIMIT	196974	10.927	102176	13.568	121423	15.062
	EPA SAMPLE NO.						
01	PB168234BL	477318	11.42	281764	14.06	248996	15.56
02	TP05-MHO-WCMS	322457	11.43	216030	14.07	272895	15.56
03	TP05-MHO-WCMSD	289513	11.42	207868	14.07	274922	15.56

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

Fax: 908 789 8922

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/11/2025

Lab File ID: BF142723.D Time Analyzed: 09:24

Instrument ID: BNA_F GC Column: DB-UI ID: 0.18 (mm)

							_	
		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #	
	12 HOUR STD	78219	6.892	306828	8.18	172169	9.94	
	UPPER LIMIT	156438	7.392	613656	8.681	344338	10.439	
	LOWER LIMIT	39109.5	6.392	153414	7.681	86084.5	9.439	
	EPA SAMPLE NO.							
)1	PB168234BS	83192	6.89	318279	8.18	176454	9.93	

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/11/2025

Lab File ID: BF142723.D Time Analyzed: 09:24

Instrument ID: BNA F GC Column: DB-UI ID: 0.18 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	291189	11.427	151467	14.068	144700	15.562
UPPER LIMIT	582378	11.927	302934	14.568	289400	16.062
LOWER LIMIT	145595	10.927	75733.5	13.568	72350	15.062
EPA SAMPLE NO.						
PB168234BS	298489	11.43	155305	14.07	159844	15.56

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

01

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Fax: 908 789 8922

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/11/2025

 Lab File ID:
 BP024905.D
 Time Analyzed:
 10:09

Instrument ID: BNA_P GC Column: ZB-GR ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
			·				
	12 HOUR STD	246136	7.607	989564	10.38	627529	14.25
	UPPER LIMIT	492272	8.107	1979130	10.878	1255060	14.754
	LOWER LIMIT	123068	7.107	494782	9.878	313765	13.754
	EPA SAMPLE NO.						
01	GSB3	364655	7.61	1419200	10.38	870320	14.26

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Fax: 908 789 8922

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/11/2025

Lab File ID: BP024905.D Time Analyzed: 10:09

Instrument ID: BNA P GC Column: ZB-GR ID: 0.25 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	1260450	17.06	1315010	21.501	1616000	24.765
UPPER LIMIT	2520900	17.56	2630020	22.001	3232000	25.265
LOWER LIMIT	630225	16.56	657505	21.001	808000	24.265
EPA SAMPLE NO.						
GSB3	1663800	17.07	1827900	21.48	2099390	24.75

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

01

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

QC SAMPLE DATA

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168234BL SDG No.: Q2125

Lab Sample ID: PB168234BL Matrix: SOIL

Analytical Method: 8270E % Solid: 100

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

Prep Method: SW3541

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF142603.D
 1
 06/04/25 09:10
 06/04/25 13:05
 PB168234

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
91-20-3	Naphthalene	22.7	U	22.7	170	ug/Kg
91-57-6	2-Methylnaphthalene	25.6	U	25.6	170	ug/Kg
SURROGATES						
4165-60-0	Nitrobenzene-d5	75.3		30 (18) - 130 (107)	75%	SPK: 100
321-60-8	2-Fluorobiphenyl	71.9		30 (20) - 130 (109)	72%	SPK: 100
1718-51-0	Terphenyl-d14	72.1		30 (10) - 130 (105)	72%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	131000	6.893			
1146-65-2	Naphthalene-d8	500000	8.175			
15067-26-2	Acenaphthene-d10	273000	9.934			
1517-22-2	Phenanthrene-d10	477000	11.422			
1719-03-5	Chrysene-d12	282000	14.063			
1520-96-3	Pervlene-d12	249000	15 563			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168234BS SDG No.: Q2125

Lab Sample ID: PB168234BS Matrix: SOIL

Analytical Method: 8270E % Solid: 100

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

Prep Method: SW3541

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF142726.D
 1
 06/04/25 09:10
 06/11/25 10:51
 PB168234

MDL LOQ / CRQL Units(Dry Weight) **CAS Number** Conc. Qualifier **Parameter TARGETS** 91-20-3 Naphthalene 1500 22.7 170 ug/Kg 91-57-6 2-Methylnaphthalene 1500 25.6 170 ug/Kg SURROGATES 76.0 76% 4165-60-0 Nitrobenzene-d5 30 (18) - 130 (107) SPK: 100 74% 321-60-8 2-Fluorobiphenyl 74.1 30 (20) - 130 (109) SPK: 100 81% 1718-51-0 Terphenyl-d14 80.6 30 (10) - 130 (105) SPK: 100 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 83200 6.893 1146-65-2 Naphthalene-d8 318000 8.181 15067-26-2 Acenaphthene-d10 176000 9.934 1517-22-2 Phenanthrene-d10 298000 11.428 1719-03-5 Chrysene-d12 155000 14.069 1520-96-3 Pervlene-d12 160000 15.563

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of OC limits

D = Dilution

() = Laboratory InHouse Limit

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/29/25 Project: Seely Date Received: 05/29/25 Client Sample ID: TP05-MHO-WCMS SDG No.: Q2125 Lab Sample ID: Q2159-01MS Matrix: **SOIL** Analytical Method: 8270E % Solid: 83 Sample Wt/Vol: 50.04 Final Vol: 1000 uL Units: g Soil Aliquot Vol: иL Test: SVOCMS Group1 Level: Extraction Type: Decanted: Ν LOW

Prep Method: SW3541

Injection Volume:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF142605.D
 1
 06/04/25 09:10
 06/04/25 14:08
 PB168234

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
91-20-3	Naphthalene	1100		16.4	120	ug/Kg
91-57-6	2-Methylnaphthalene	1100		18.5	120	ug/Kg
SURROGATES						
4165-60-0	Nitrobenzene-d5	47.4		30 (18) - 130 (107)	47%	SPK: 100
321-60-8	2-Fluorobiphenyl	45.5		30 (20) - 130 (109)	46%	SPK: 100
1718-51-0	Terphenyl-d14	35.2		30 (10) - 130 (105)	35%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	120000	6.898			
1146-65-2	Naphthalene-d8	441000	8.181			
15067-26-2	Acenaphthene-d10	219000	9.939			
1517-22-2	Phenanthrene-d10	322000	11.428			
1719-03-5	Chrysene-d12	216000	14.069			
1520-96-3	Pervlene-d12	273000	15.563			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/29/25 Project: Seely Date Received: 05/29/25 Client Sample ID: TP05-MHO-WCMSD SDG No.: Q2125 Lab Sample ID: Q2159-01MSD Matrix: **SOIL** Analytical Method: % Solid: 8270E 83 Sample Wt/Vol: 50.02 Final Vol: 1000 uL Units: g SVOCMS Group1 Soil Aliquot Vol: иL Test: Level: Extraction Type: Decanted: Ν LOW

Prep Method: SW3541

Injection Volume:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF142606.D
 1
 06/04/25 09:10
 06/04/25 14:38
 PB168234

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
91-20-3	Naphthalene	1000		16.4	120	ug/Kg
91-57-6	2-Methylnaphthalene	1000		18.5	120	ug/Kg
SURROGATES						
4165-60-0	Nitrobenzene-d5	45.8		30 (18) - 130 (107)	46%	SPK: 100
321-60-8	2-Fluorobiphenyl	45.1		30 (20) - 130 (109)	45%	SPK: 100
1718-51-0	Terphenyl-d14	32.4		30 (10) - 130 (105)	32%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	117000	6.898			
1146-65-2	Naphthalene-d8	430000	8.181			
15067-26-2	Acenaphthene-d10	207000	9.939			
1517-22-2	Phenanthrene-d10	290000	11.421			
1719-03-5	Chrysene-d12	208000	14.068			
1520-96-3	Perylene-d12	275000	15.562			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

CALIBRATION SUMMARY

Method Path : Z:\svoasrv\HPCHEM1\BNA_F\Methods\

Method File: 8270-BF052025.M

Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

2.5 5

10

20

40

50

Last Update : Tue May 20 16:26:47 2025 Response Via : Initial Calibration

Calibration Files

Compound

2.5 =BF142467.D 5 =BF142468.D 10 =BF142469.D 20 =BF142470.D 40 =BF142471.D 50 =BF142472.D 60 =BF142473.D 80 =BF1424

80

Avg

%RSD

60

74.D

	2.3	,	-0	20	40	50	00	00	748	701135
1) I	1,4-Dichlorobenzen			ISTI)					
2)	1,4-Dioxane	0.493	0.460	0.474	0.458	0.500	0.486	0.456	0.475	3.79
3)	Pvridine	1.237	1.150	1.212	1.170	1.273	1.234	1.190	1.210	3.52
4)	n-Nitrosodimet	0.612	0.593	0.627	0.619	0.673	0.652	0.621	0.628	4.21
5) S	2-Fluorophenol	1.264								5.03
6)	Aniline .	2.044	1.889	1.963	1.844	1.993	1.910	1.808	1.921	4.35
7) S	Phenol-d6	1.530	1.449	1.459	1.367	1.467	1.403	1.328	1.429	4.77
8)	2-Chlorophenol	1.345	1.293	1.315	1.252	1.338	1.285	1.223	1.293	3.44
9)	Benzaldehyde	1.035	0.975	0.969	0.817	0.872	0.758	0.591	0.859	17.81
10) C	Phenol	1.716	1.621	1.646	1.530	1.657	1.597	1.487	1.608	4.85
11)	<pre>bis(2-Chloroet 1,3-Dichlorobe</pre>	1.202	1.155	1.168	1.108	1.209	1.156	1.105	1.157	3.52
12)	1,3-Dichlorobe	1.562	1.470	1.473	1.389	1.482	1.407	1.317	1.443	5.48
13) C	1,4-Dichlorobe	1.540	1.476	1.491	1.407	1.495	1.430	1.335	1.453	4.70
14)	1,2-Dichlorobe	1.495								5.20
15)	Benzyl Alcohol	1.059								3.69
16)	2,2'-oxybis(1	2.082	1.978	1.983	1.868	2.011	1.898	1.786	1.944	5.11
17)	2,2'-oxybis(1 2-Methylphenol	1.040	0.992	1.026	0.976	1.053	1.015	0.965	1.010	3.27
18)	Hexachloroethane	0.533	0.503	0.523	0.489	0.529	0.497	0.477	0.507	4.23
19) P										4.69
20)	3+4-Methylphenols	1.412	1.319	1.337	1.246	1.337	1.250	1.149	1.293	6.59
21\ T	Naphthalene-d8 -			тсті	,					
21) I 22)	Acetophenone								0 442	5.98
22) 23) S	Nitrobenzene-d5									3.51
24)	Nitrobenzene	0.370	0.303	0.3/9	0.330	0.302	0.303	0.347	0.307	2.94
25)	Nitrobenzene Isophorone 2-Nitrophenol	0.556	0.520	0.550	0.525	0.343	0.551	0.510	0.551	3.26
26) C	2-Nitrophenol	0.030	0.013	0.020	0.333	0.038	0.007	0.303	0.013	4.44
27)	2,4-Dimethylph	0.315	0.170	0.100	0.173	0.130	0.102	0.175	0.177	3.22
28)	bis(2-Chloroet			0.394						4.63
29) C	2,4-Dichloroph			0.290						3.74
30)	1,2,4-Trichlor			0.317						4.89
31)	Naphthalene			1.020						5.94
32)	Benzoic acid	1.001		0.176						11.73
33)		0.424								6.87
34) C	Hexachlorobuta			0.197						4.52
35)	Caprolactam			0.083						4.29
36) C		0.304								4.02
37)	2-Methylnaphth	0.679								6.62
38)	1-Methylnaphth	0.703								7.19
•	- •									

Method File: 8270-BF052025.M

Method	File: 8270-BF052025.M		
39) I	Acenaphthene-d10 -	ISTD	
40)	1,2,4,5-Tetrac	0.592 0.580 0.588 0.552 0.592 0.573 0.544 0.574	3.39
41) P	Hexachlorocycl	0.318 0.350 0.383 0.393 0.430 0.425 0.411 0.387	10.57
42) S	2,4,6-Tribromo	0.230 0.225 0.234 0.211 0.233 0.218 0.202 0.222	5.39
43) C	2,4,6-Trichlor	0.387 0.373 0.406 0.371 0.406 0.388 0.379 0.387	3.69
44)	2,4,5-Trichlor	0.410 0.411 0.416 0.395 0.437 0.408 0.381 0.408	4.27
45) S	2-Fluorobiphenyl	1.726 1.619 1.558 1.387 1.480 1.396 1.268 1.490	10.46
46)	1,1'-Biphenyl	1.672 1.605 1.595 1.480 1.595 1.507 1.408 1.552	5.82
47)	<pre>2-Chloronaphth</pre>	1.218 1.170 1.177 1.094 1.183 1.122 1.061 1.146	4.84
48)	2-Nitroaniline	0.333 0.318 0.338 0.324 0.354 0.332 0.320 0.331	3.72
49)	Acenaphthylene	2.064 1.982 2.027 1.851 1.998 1.885 1.745 1.936	5.85
50)	Dimethylphthalate	1.441 1.340 1.367 1.255 1.366 1.256 1.211 1.320	6.16
51)	2,6-Dinitrotol	0.290 0.283 0.289 0.280 0.302 0.281 0.268 0.285	3.74
52) C	Acenaphthene	1.259 1.222 1.227 1.120 1.223 1.146 1.077 1.182	5.72
53)	3-Nitroaniline	0.320 0.309 0.327 0.299 0.330 0.305 0.287 0.311	5.02
54) P	2,4-Dinitrophenol	0.110 0.137 0.149 0.169 0.160 0.158 0.147	14.36
55)	Dibenzofuran	1.886 1.766 1.768 1.606 1.736 1.635 1.509 1.701	7.38
56) P	4-Nitrophenol	0.221 0.217 0.242 0.227 0.252 0.229 0.220 0.230	5.57
57)	2,4-Dinitrotol	0.372 0.367 0.387 0.364 0.398 0.372 0.344 0.372	4.62
58)	Fluorene	1.477 1.399 1.372 1.231 1.343 1.238 1.140 1.314	8.85
59)	2,3,4,6-Tetrac	0.347 0.336 0.360 0.333 0.361 0.333 0.317 0.341	4.71
60)	Diethylphthalate	1.422 1.310 1.359 1.231 1.343 1.218 1.140 1.289	7.51
61)	4-Chlorophenyl	0.724 0.678 0.676 0.609 0.653 0.612 0.566 0.646	8.25
62)	4-Nitroaniline	0.303 0.283 0.303 0.277 0.294 0.265 0.251 0.282	6.95
63)	Azobenzene	1.239 1.194 1.188 1.107 1.197 1.123 1.055 1.158	5.55
64) I	Phenanthrene-d10 -	ISTD	
65 ⁾	4,6-Dinitro-2	0.086 0.094 0.110 0.115 0.129 0.125 0.123 0.112	14.72
66) c	n-Nitrosodiphe	0.712 0.682 0.696 0.649 0.697 0.694 0.660 0.684	3.30
67 ⁾	4-Bromophenyl	0.240 0.235 0.239 0.222 0.246 0.243 0.230 0.236	3.45
68)	Hexachlorobenzene	0.265 0.267 0.263 0.251 0.273 0.262 0.250 0.262	3.19
69)	Atrazine	0.184 0.174 0.186 0.178 0.196 0.181 0.174 0.182	4.29
70) C	Pentachlorophenol	0.130 0.135 0.149 0.147 0.162 0.157 0.154 0.148	7.88
71)	Phenanthrene	1.196 1.094 1.100 1.012 1.085 1.033 0.964 1.069	7.00
72)	Anthracene	1.191 1.132 1.124 1.036 1.110 1.048 0.996 1.091	6.15
73)	Carbazole	1.030 0.968 0.982 0.889 0.950 0.877 0.832 0.933	7.39
74)	Di-n-butylphth	1.108 1.039 1.083 0.976 1.059 0.974 0.908 1.021	6.95
75) C	Fluoranthene	1.177 1.081 1.052 0.938 0.997 0.901 0.846 0.999	11.41
76) I	Chrysene-d12 -	ISTD	

76) I	Chrysene-d12	ISTD	
77)	Benzidine	0.670 0.782 0.903 0.797 0.805 0.698 0.556 0.744	15.12
78)	Pyrene	1.929 1.967 2.066 1.859 1.959 1.773 1.507 1.866	9.79
79) S	Terphenyl-d14	1.624 1.582 1.660 1.423 1.492 1.337 1.126 1.464	12.80
80)	Butylbenzylpht	0.462 0.453 0.525 0.526 0.575 0.550 0.517 0.516	8.54
81)	Benzo(a)anthra	1.424 1.287 1.403 1.278 1.391 1.327 1.238 1.336	5.36
82)	3,3'-Dichlorob	0.360 0.364 0.402 0.407 0.444 0.442 0.417 0.405	8.30
83)	Chrysene	1.222 1.204 1.193 1.145 1.255 1.223 1.158 1.200	3.20
84)	Bis(2-ethylhex	0.510 0.548 0.618 0.673 0.765 0.778 0.727 0.660	15.91
85) c	Di-n-octyl pht	0.958 1.108 1.266 1.432 1.542 1.437 1.290	17.30

Method Path : Z:\svoasrv\HPCHEM1\BNA_F\Methods\

Method File: 8270-BF052025.M

86) I Perylene-d12 -----ISTD-----ISTD-----

87) Indeno(1,2,3-c... 1.421 1.495 1.583 1.448 1.583 1.546 1.434 1.501 4.64 88) Benzo(b)fluora... 1.317 1.105 1.293 1.126 1.209 1.122 1.114 1.184 7.62

89) Benzo(k)fluora... 1.191 1.166 1.032 1.042 1.178 1.128 1.023 1.109 6.68

90) C Benzo(a)pyrene 1.154 1.081 1.114 1.081 1.185 1.133 1.062 1.116 4.00 91) Dibenzo(a,h)an... 1.152 1.228 1.275 1.184 1.290 1.245 1.149 1.218 4.67

92) Benzo(g,h,i)pe... 1.154 1.220 1.270 1.180 1.299 1.245 1.158 1.218 4.64

(#) = Out of Range

Method Path : Z:\svoasrv\HPCHEM1\BNA_F\Methods\

Method File: 8270-BF061125.M

Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

2.5 5.0 10

Last Update : Wed Jun 11 05:56:09 2025 Response Via : Initial Calibration

Calibration Files

Compound

2.5 =BF142712.D 5.0 =BF142713.D 10 =BF142714.D 20 =BF142715.D 40 =BF142716.D 50 =BF142717.D 60 =BF142718.D 80 =BF1427

80

Avg

%RSD

60

19.D

	Compound	2.5	3.0	-0	20	40	50	00	00	7,48	701130
1) I	1,4-Dichlorobenzen.				ISTI	D					
2)	1,4-Dioxane Pyridine n-Nitrosodimet 2-Fluorophenol		0.499	0.448	0.472	0.455	0.481	0.460	0.439	0.465	4.40
3)	Pyridine		1.172	1.129	1.159	1.160	1.222	1.193	1.122	1.165	3.00
4)	n-Nitrosodimet			0.558	0.590	0.591	0.633	0.617	0.588	0.596	4.36
5) S	2-Fluorophenol		1.238	1.170	1.199	1.161	1.220	1.156	1.075	1.174	4.55
6)	Aniline .		1.866	1.788	1.894	1.848	1.955	1.861	1.736	1.850	3.83
7) S	Phenol-d6		1.434	1.339	1.400	1.376	1.446	1.377	1.302	1.382	3.67
8)	2-Chlorophenol		1.288	1.254	1.300	1.290	1.347	1.286	1.219	1.283	3.09
9)	Benzaldehyde					0.839				0.856	11.52
10) C	Phenol		1.550	1.503	1.577	1.522	1.607	1.547	1.446	1.536	3.42
11)	<pre>bis(2-Chloroet 1,3-Dichlorobe 1,4-Dichlorobe</pre>		1.222	1.118	1.149	1.130	1.202	1.131	1.079	1.147	4.29
12)	1,3-Dichlorobe		1.557	1.483	1.504	1.451	1.513	1.411	1.333	1.465	5.08
13) C	1,4-Dichlorobe		1.596	1.483	1.519	1.454	1.528	1.431	1.349	1.480	5.34
14)	1,2-Dichlorobe		1.554	1.418	1.444	1.401	1.457	1.375	1.282	1.419	5.83
15)	Benzyl Alcohol 2,2'-oxybis(1 2-Methylphenol			0.970	1.049	1.059	1.121	1.061	1.007	1.045	4.95
16)	2,2'-oxybis(1		1.957	1.812	1.840	1.806	1.875	1.746	1.609	1.806	6.03
17)	2-Methylphenol		0.978	0.950	0.995	0.992	1.043	0.995	0.933	0.984	3.61
18)	Hexachloroethane		0.562								4.69
19) P		.885	0.912	0.870	0.886	0.878	0.921	0.863	0.823	0.880	3.43
20)	3+4-Methylphenols			1.261	1.285	1.246	1.299	1.218	1.134	1.240	4.80
21) I	Naphthalene-d8	-			ISTI	D					
22)	Acetophenone		0.475	0.451	0.458	0.435	0.454	0.433	0.408	0.445	4.79
23) S	Nitrobenzene-d5		0.381	0.363	0.369	0.358	0.378	0.363	0.346	0.365	3.24
24)	Nitrobenzene -		0.338	0.313	0.326	0.320	0.335	0.327	0.312	0.324	3.10
25)	Nitrobenzene Isophorone 2-Nitrophenol		0.657	0.621	0.628	0.603	0.630	0.606	0.585	0.619	3.77
26) C	2-Nitrophenol		0.1/2	0.1/4	0.183	0.181	0.192	0.18/	0.1/8	0.181	3.92
27)	2,4-Dimethylph										3.14
28)	bis(2-Chloroet										4.31
29) C	2,4-Dichloroph		0.284								3.51
30)	1,2,4-Trichlor					0.306					4.42
31)	Naphthalene		1.065			0.972					5.20
32)	Benzoic acid		0 400			0.174					12.16
33)	4-Chloroaniline		0.429								4.68
34) C	Hexachlorobuta		0.210			0.197					4.41
35)	Caprolactam 4-Chloro-3-met		0 34-	0.0//	0.0/9	0.075	0.0/9	0.0//	0.0/4	0.0//	2.82
36) C											4.76
37)	2-Methylnaphth										5.72
38)	1-Methylnaphth		0.727	0.666	0.669	0.629	0.650	9.619	0.580	0.649	7.16

20

40

50

Method File: 8270-BF061125.M

Method	File: 82/0-BF061125.N	1	
39) I	Acenaphthene-d10	ISTD	
40)	1,2,4,5-Tetrac	0.585 0.592 0.589 0.568 0.618 0.570 0.531 0.579	4.64
41) P	Hexachlorocycl	0.297 0.348 0.375 0.414 0.400 0.396 0.372	11.64
42) S	2,4,6-Tribromo	0.236 0.223 0.224 0.213 0.226 0.210 0.202 0.219	5.28
43) C	2,4,6-Trichlor	0.349 0.373 0.383 0.373 0.405 0.380 0.359 0.375	4.79
44)	2,4,5-Trichlor	0.404 0.404 0.413 0.400 0.431 0.399 0.383 0.405	3.61
45) S	2-Fluorobiphenyl	1.690 1.610 1.569 1.444 1.535 1.402 1.289 1.505	9.04
46)	1,1'-Biphenyl	1.630 1.617 1.587 1.506 1.622 1.500 1.409 1.553	5.39
47)	2-Chloronaphth	1.190 1.172 1.178 1.117 1.197 1.108 1.047 1.144	4.82
48)	2-Nitroaniline	0.320 0.321 0.333 0.323 0.345 0.325 0.311 0.325	3.38
49)	Acenaphthylene	2.053 1.986 2.003 1.881 1.991 1.847 1.744 1.929	5.65
50)	Dimethylphthalate	1.444 1.368 1.359 1.291 1.379 1.273 1.234 1.336	5.42
51)	2,6-Dinitrotol	0.307 0.283 0.295 0.285 0.299 0.283 0.268 0.289	4.49
52) C	Acenaphthene	1.266 1.222 1.224 1.170 1.237 1.155 1.099 1.196	4.80
53)	3-Nitroaniline	0.334 0.313 0.316 0.307 0.322 0.304 0.295 0.313	4.08
54) P	2,4-Dinitrophenol	0.123 0.154 0.157 0.176 0.170 0.169 0.158	12.18
55)	Dibenzofuran	1.855 1.777 1.783 1.643 1.741 1.607 1.517 1.703	6.93
56) P	4-Nitrophenol	0.203 0.219 0.210 0.222 0.212 0.208 0.212	3.42
57)	2,4-Dinitrotol	0.396 0.383 0.399 0.377 0.396 0.372 0.348 0.382	4.73
58)	Fluorene	1.547 1.429 1.397 1.279 1.357 1.240 1.167 1.345	9.49
59)	2,3,4,6-Tetrac	0.364 0.339 0.357 0.327 0.354 0.332 0.311 0.340	5.58
60)	Diethylphthalate	1.508 1.392 1.372 1.256 1.332 1.246 1.164 1.324	8.55
61)	4-Chlorophenyl	0.748 0.692 0.680 0.633 0.663 0.610 0.571 0.657	8.84
62)	4-Nitroaniline	0.297 0.281 0.294 0.270 0.283 0.275 0.261 0.280	4.58
63)	Azobenzene	1.290 1.186 1.178 1.115 1.187 1.094 1.045 1.157	6.89
,			
64) I	Phenanthrene-d10	ISTD	
65)	4,6-Dinitro-2	0.104 0.123 0.125 0.137 0.133 0.129 0.125	9.17
66) c	n-Nitrosodiphe	0.710 0.679 0.693 0.672 0.722 0.685 0.651 0.687	3.45
67)	4-Bromophenyl	0.240 0.229 0.238 0.231 0.252 0.236 0.227 0.236	3.52
68)	Hexachlorobenzene	0.270 0.261 0.263 0.255 0.275 0.260 0.251 0.262	3.17
69)	Atrazine	0.185 0.174 0.188 0.179 0.191 0.188 0.178 0.183	3.33
70) C	Pentachlorophenol	0.118 0.133 0.139 0.148 0.144 0.142 0.137	7.80
71)	Phenanthrene	1.165 1.100 1.094 1.036 1.091 1.035 0.978 1.071	5.61
72)	Anthracene	1.203 1.145 1.140 1.064 1.132 1.072 1.004 1.108	5.96
73)	Carbazole	1.003 0.960 0.968 0.898 0.931 0.903 0.832 0.928	6.07
74)	Di-n-butylphth	1.105 1.048 1.072 1.005 1.053 1.017 0.953 1.036	4.76
75) C	Fluoranthene	1.184 1.083 1.081 0.965 0.988 0.953 0.878 1.019	10.08
> -			
76) I	Chrysene-d12	ISTD	
77)	Benzidine	0.711 0.772 0.799 0.754 0.684 0.553 0.712	12.40
78)	Pyrene	2.014 1.918 1.928 1.883 1.878 1.753 1.635 1.859	6.75
79) S	Terphenyl-d14	1.609 1.562 1.556 1.462 1.430 1.327 1.247 1.456	9.11
80)	Butylbenzylpht	0.435 0.486 0.526 0.581 0.626 0.605 0.588 0.550	12.67
81)	Benzo(a)anthra	1.367 1.273 1.284 1.350 1.400 1.340 1.263 1.325	3.94
82)	3,3'-Dichlorob	0.370 0.403 0.442 0.473 0.459 0.418 0.427	8.88
83)	Chrysene	1.298 1.208 1.245 1.172 1.250 1.222 1.170 1.224	3.72
84)	Bis(2-ethylhex	0.616 0.709 0.756 0.895 0.977 0.926 0.896 0.825	16.02
85) c	Di-n-octyl pht	1.284 1.385 1.677 1.816 1.680 1.654 1.582	12.84

Method Path : Z:\svoasrv\HPCHEM1\BNA_F\Methods\

Method File: 8270-BF061125.M

86) I	Perylene-d12	ISID
071	Indona/1 2 2 c	1 420 1 406 1 450 1 400 1 602 1 514 1 460

8/)	Inaeno(1,2,3-c	1.438 1.406 1.458 1.498 1.602 1.514 1.460 1.482	4.31
88)	Benzo(b)fluora	1.256 1.094 1.112 1.162 1.230 1.251 1.139 1.178	5.71

Benzo(k)fluora... 89) 1.236 1.178 1.245 1.076 1.189 1.035 1.039 1.143 7.94 90) C Benzo(a)pyrene 3.70

Renzo(a)pyrene 1.164 1.085 1.122 1.104 1.184 1.111 1.068 1.120 Dibenzo(a,h)an... 1.134 1.176 1.214 1.236 1.318 1.222 1.172 1.210 Benzo(g,h,i)pe... 1.201 1.164 1.178 1.216 1.295 1.207 1.163 1.203 Dibenzo(a,h)an... 91) 4.87 3.77

92) Benzo(g,h,i)pe...

(#) = Out of Range

Method Path : Z:\svoasrv\HPCHEM1\BNA_P\Methods\

Method File: 8270E-BP060625.M

Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

2.5 5

10

20

40

50

Last Update : Fri Jun 06 16:20:27 2025 Response Via : Initial Calibration

Calibration Files

Compound

2.5 =BP024860.D 5 =BP024861.D 10 =BP024862.D 20 =BP024863.D 40 =BP024864.D 50 =BP024865.D 60 =BP024866.D 80 =BP0248

80

Avg

%RSD

60

67.D

	Compound 2:3	, ,	-0	20	40	50	00	00	7,49	7011315
1) I	1,4-Dichlorobenzen			IST	D					
2)	1,4-Dichiorobenzen 1,4-Dioxane Pyridine n-Nitrosodimet	0.564	0.529	0.524	0.495	0.546	0.515	0.517	0.527	4.21
3)	Pyridine	1.151	1.183	1.265	1.226	1.370	1.367	1.315	1.268	6.84
4)	n-Nitrosodimet		0.478	0.509	0.502	0.542	0.554	0.525	0.518	5.36
5) S	2-Fluorophenol	1.127	1.139	1.207	1.163	1.283	1.253	1.215	1.198	4.85
6)	Aniline	1.917	1.892	2.016	1.978	2.145	2.182	2.031	2.023	5.37
7) S	Phenol-d6	1.507	1.528	1.588	1.545	1.676	1.689	1.564	1.585	4.49
8)	2-Chlorophenol	1.336		1.346						4.29
9)	Benzaldehyde		1.038	1.071	0.873	0.985	0.869	0.646	0.914	16.98
10) C	Phenol	1.560	1.564	1.616	1.587	1.725	1.759	1.629	1.634	4.78
11)	<pre>bis(2-Chloroet</pre>	1.222	1.277	1.334	1.234	1.363	1.322	1.246	1.285	4.26
12)	<pre>bis(2-Chloroet 1,3-Dichlorobe</pre>	1.570	1.515	1.537	1.425	1.571	1.519	1.471	1.515	3.49
13) C	1,4-Dichlorobe	1.596	1.507	1.535	1.439	1.604	1.534	1.488	1.529	3.82
14)	1 2-Dichlorobe	1 529	1.637	1.488	1.401	1.540	1.492	1.422	1.501	5.25
15)	Benzyl Alcohol			1.185						5.63
16)	2,2'-oxybis(1	1.748		1.722						4.54
17)	Benzyl Alcohol 2,2'-oxybis(1 2-Methylphenol Hexachloroethane	1.053								4.94
18)	Hexachloroethane	0.591	0.565	0.581	0.545	0.611	0.574	0.562	0.576	3.73
19) P	n-Nitroso-di-n 0.98	4 1.101	1.105	1.107	1.043	1.141	1.113	1.029	1.078	4.93
20)	3+4-Methylphenols		1.507	1.548	1.493	1.631	1.648	1.515	1.557	4.29
21) I	Naphthalene-d8									
22)		0.506								4.58
23) S	Nitrobenzene-d5	0.407	0.397	0.423	0.404	0.444	0.423	0.383	0.412	4.89
24)	Nitrobenzene Isophorone 2-Nitrophenol	0.366	0.351	0.375	0.360	0.392	0.376	0.339	0.366	4.81
25)	Isophorone	0.704	0.678	0.724	0.694	0.764	0.726	0.704	0.713	3.91
26) C	2-Nitrophenol	0.154	0.157	0.178	0.180	0.201	0.195	0.198	0.180	10.62
27)	2,4-Dimethylph									5.12
28)	bis(2-Chloroet									4.70
29) C	2,4-Dichloroph			0.300						9.81
30)	1,2,4-Trichlor			0.335						4.16
31)	Naphthalene	1.071		1.044						4.86
32)	Benzoic acid			0.181						16.01
33)	4-Chloroaniline			0.435						6.72
34) C	Hexachlorobuta	0.203		0.208						4.76
35)	Caprolactam			0.109						6.91
36) C	4-Chloro-3-met								0.342	6.58
37)	2-Methylnaphth									4.54
38)	<pre>1-Methylnaphth</pre>	0.720	0.680	0.718	0.671	0.741	0.693	0.643	0.695	4.86

Method File: 8270E-BP060625.M

riectiou	111e . 02/0L-DF000023	•11	
39) I	Acenaphthene-d10	ISTD	
40)	1,2,4,5-Tetrac	0.568 0.561 0.568 0.538 0.601 0.574 0.562 0.568	3.31
41) P	Hexachlorocycl	0.259 0.315 0.337 0.404 0.369 0.394 0.346	15.74
42) S	2,4,6-Tribromo	0.256 0.264 0.279 0.267 0.298 0.286 0.285 0.277	5.26
43) C	2,4,6-Trichlor	0.342 0.352 0.386 0.375 0.411 0.404 0.396 0.381	6.86
44)	2,4,5-Trichlor	0.349 0.379 0.414 0.405 0.448 0.436 0.426 0.408	8.44
45) S	2-Fluorobiphenyl	1.542 1.507 1.517 1.390 1.563 1.464 1.409 1.485	4.44
46)	1,1'-Biphenyl	1.477 1.456 1.485 1.386 1.509 1.458 1.403 1.453	3.05
47)	2-Chloronaphth	1.123 1.104 1.135 1.069 1.171 1.136 1.081 1.117	3.16
48)	2-Nitroaniline	0.289 0.324 0.344 0.346 0.371 0.374 0.355 0.343	8.59
49)	Acenaphthylene	1.880 1.851 1.892 1.768 1.939 1.904 1.805 1.863	3.19
50)	Dimethylphthalate	1.515 1.450 1.501 1.400 1.550 1.473 1.438 1.475	3.45
51)	2,6-Dinitrotol	0.299 0.301 0.326 0.312 0.339 0.333 0.317 0.318	4.86
52) C	Acenaphthene	1.106 1.064 1.090 1.020 1.087 1.069 1.036 1.067	2.86
53)	3-Nitroaniline	0.263 0.292 0.337 0.338 0.367 0.364 0.349 0.330	11.74
54) P	2,4-Dinitrophenol	0.117 0.155 0.179 0.203 0.208 0.205 0.178	20.23
55)	Dibenzofuran	1.815 1.721 1.756 1.627 1.757 1.702 1.615 1.713	4.22
56) P	4-Nitrophenol	0.142 0.213 0.248 0.276 0.281 0.275 0.239	22.62
57 [°])	2,4-Dinitrotol	0.390 0.416 0.457 0.437 0.487 0.470 0.458 0.445	7.45
58)	Fluorene	1.437 1.394 1.420 1.304 1.434 1.370 1.329 1.384	3.77
59 [°])	2,3,4,6-Tetrac	0.343 0.350 0.360 0.354 0.395 0.381 0.370 0.365	5.04
60)	Diethylphthalate	1.501 1.474 1.487 1.393 1.545 1.444 1.449 1.470	3.27
61)	4-Chlorophenyl	0.711 0.668 0.689 0.637 0.709 0.665 0.658 0.677	4.06
62)	4-Nitroaniline	0.239 0.235 0.307 0.311 0.336 0.333 0.334 0.299	14.69
63)	Azobenzene	1.346 1.334 1.394 1.300 1.425 1.335 1.307 1.349	3.37
64) I	Phenanthrene-d10	ISTD	
65)	4,6-Dinitro-2	0.102 0.125 0.130 0.147 0.143 0.142 0.131	12.78
66) c	n-Nitrosodiphe	0.627 0.608 0.633 0.597 0.659 0.622 0.594 0.620	3.68
67)	4-Bromophenyl	0.224 0.215 0.226 0.213 0.246 0.229 0.226 0.226	4.83
68)	Hexachlorobenzene	0.278 0.268 0.272 0.260 0.290 0.275 0.272 0.274	3.31
69)	Atrazine	0.213 0.212 0.231 0.217 0.244 0.228 0.228 0.225	5.16
70) C	Pentachlorophenol	0.105 0.131 0.139 0.162 0.153 0.159 0.142	15.21
71)	Phenanthrene	1.158 1.108 1.110 1.056 1.161 1.102 1.041 1.105	4.12
72)	Anthracene	1.129 1.093 1.137 1.072 1.188 1.133 1.083 1.119	3.58
73)	Carbazole	1.023 1.013 1.057 0.998 1.112 1.052 1.007 1.038	3.83
74)	Di-n-butylphth	1.178 1.245 1.326 1.272 1.421 1.273 1.284 1.285	5.81
75) C	Fluoranthene	1.300 1.287 1.307 1.223 1.344 1.268 1.238 1.281	3.25
76) 7	Cl	TCTD	
76) I	Chrysene-d12	ISTD	40 -4
77)	Benzidine	0.512 0.669 0.653 0.690 0.663 0.529 0.619	12.54
78)	Pyrene	1.307 1.195 1.261 1.184 1.322 1.272 1.206 1.249	4.41
79) S	Terphenyl-d14	1.178 1.073 1.146 1.089 1.164 1.120 1.039 1.116	4.57
80)	Butylbenzylpht	0.508 0.529 0.581 0.561 0.641 0.596 0.589 0.572	7.74
81)	Benzo(a)anthra	1.312 1.234 1.288 1.219 1.347 1.310 1.243 1.279	3.73
82)	3,3'-Dichlorob	0.468 0.513 0.493 0.542 0.531 0.501 0.508	5.29
83)	Chrysene	1.252 1.174 1.229 1.144 1.279 1.238 1.168 1.212	4.13
84) 85) c	Bis(2-ethylhex Di-n-octyl pht	0.715 0.780 0.846 0.797 0.921 0.831 0.850 0.820	7.87
	III - N - OCTVI NNT	1.320 1.438 1.384 1.587 1.470 1.473 1.445	6.25

Method Path : Z:\svoasrv\HPCHEM1\BNA_P\Methods\

Method File: 8270E-BP060625.M

86) I	Perylene-d12	ISTD	
87)	Indeno(1,2,3-c	1.427 1.402 1.469 1.412 1.559 1.510 1.436 1.459	3.92
88)	Benzo(b)fluora	1.103 1.104 1.133 1.127 1.232 1.180 1.133 1.145	4.06
89)	Benzo(k)fluora	1.165 1.144 1.180 1.106 1.259 1.158 1.144 1.165	4.05
90) C	Benzo(a)pyrene	1.096 1.069 1.127 1.070 1.214 1.136 1.113 1.118	4.46
91)	Dibenzo(a,h)an	1.151 1.143 1.202 1.143 1.279 1.224 1.172 1.188	4.25
92)	Benzo(g,h,i)pe	1.172 1.127 1.183 1.136 1.261 1.214 1.157 1.179	3.95

(#) = Out of Range

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: GENV01

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG No.: Q2125

Instrument ID: BNA_F Calibration Date/Time: 06/04/2025 12:27

Lab File ID: BF142602.D Init. Calib. Date(s): 05/20/2025 05/20/2025

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:10 15:31

GC Column: DB-UI ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorophenol	1.187	1.156		-2.6	
Phenol-d6	1.429	1.374		-3.8	
Nitrobenzene-d5	0.367	0.346		-5.7	
Naphthalene	0.985	0.937		-4.9	
2-Methylnaphthalene	0.620	0.571		-7.9	
2-Fluorobiphenyl	1.490	1.357		-8.9	
2,4,6-Tribromophenol	0.222	0.201		-9.5	
Terphenyl-d14	1.464	1.299		-11.3	

All other compounds must meet a minimum RRF of 0.010.

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: GENV01

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG No.: Q2125

Instrument ID: BNA_F Calibration Date/Time: 06/11/2025 09:24

Lab File ID: BF142723.D Init. Calib. Date(s): 06/10/2025 06/10/2025

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 16:54 20:19

GC Column: DB-UI ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorophenol	1.174	1.141		-2.8	
Phenol-d6	1.382	1.367		-1.1	
Nitrobenzene-d5	0.365	0.358		-1.9	
Naphthalene	0.989	0.976		-1.3	
2-Methylnaphthalene	0.626	0.619		-1.1	
2-Fluorobiphenyl	1.505	1.452		-3.5	
2,4,6-Tribromophenol	0.219	0.218		-0.5	
Terphenyl-d14	1.456	1.502		3.2	

All other compounds must meet a minimum RRF of 0.010.

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: GENV01

Instrument ID: BNA_P Calibration Date/Time: 06/11/2025 10:09

Lab File ID: BP024905.D Init. Calib. Date(s): 06/06/2025 06/06/2025

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 10:30 15:18

GC Column: ZB-GR ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorophenol	1.198	1.226		2.3	
Phenol-d6	1.585	1.563		-1.4	
Nitrobenzene-d5	0.412	0.408		-1.0	
Naphthalene	1.025	1.019		-0.6	
2-Methylnaphthalene	0.650	0.650		0.0	
2-Fluorobiphenyl	1.485	1.486		0.1	
2,4,6-Tribromophenol	0.277	0.297		7.2	
Terphenyl-d14	1.116	1.127		1.0	

All other compounds must meet a minimum RRF of 0.010.

SAMPLE RAW DATA

Instrument : BNA_P

GSB3

ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_P\Data\BP061125\

Data File : BP024920.D

Acq On : 11 Jun 2025 20:30

Operator : RC/JU Sample : Q2125-07

Misc

ALS Vial : 17 Sample Multiplier: 1

Quant Time: Jun 12 01:59:16 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Fri Jun 06 16:20:27 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
 1,4-Dichlorobenzene-d4 	7.608	152	364655	20.000 ng	0.00
21) Naphthalene-d8	10.384	136	1419199	20.000 ng	# 0.00
39) Acenaphthene-d10	14.260	164	870320	20.000 ng	0.01
64) Phenanthrene-d10	17.072	188	1663800	20.000 ng	0.01
76) Chrysene-d12	21.483	240	1827902	20.000 ng	0.00
86) Perylene-d12	24.748	264	2099388	20.000 ng	0.03
System Monitoring Compounds					
5) 2-Fluorophenol	5.243	112	1639212	75.035 ng	0.00
7) Phenol-d6	6.819	99	2103172	72.763 ng	0.00
23) Nitrobenzene-d5	8.760	82	1347731	46.146 ng	0.00
42) 2,4,6-Tribromophenol	15.790	330	1034898	86.008 ng	0.00
45) 2-Fluorobiphenyl	12.866	172	3043416	47.107 ng	0.00
79) Terphenyl-d14	19.783	244	4948879	48.523 ng	-0.01
Target Compounds					Qvalue
37) 2-Methylnaphthalene	12.054	142	1047674	22.710 ng	98
38) 1-Methylnaphthalene	12.278	142	1126527	22.840 ng	100
52) Acenaphthene	14.325	154	166671	3.589 ng	# 85
58) Fluorene	15.331	166	369339	6.132 ng	# 85
71) Phenanthrene	17.113	178	1265783	13.767 ng	# 95

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Instrument : BNA_P

GSB3

ClientSampleId :

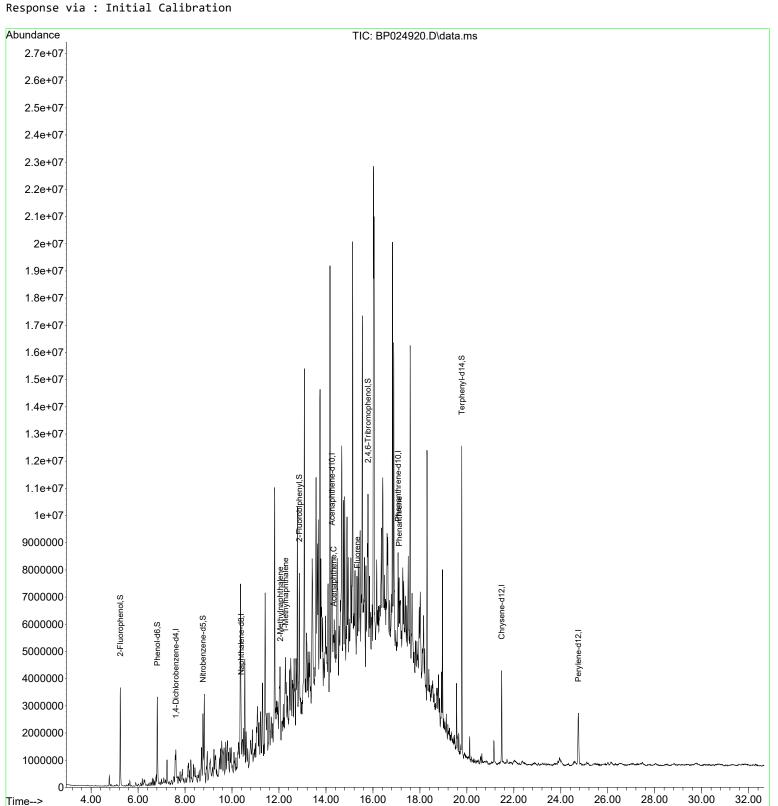
Data Path : Z:\svoasrv\HPCHEM1\BNA_P\Data\BP061125\

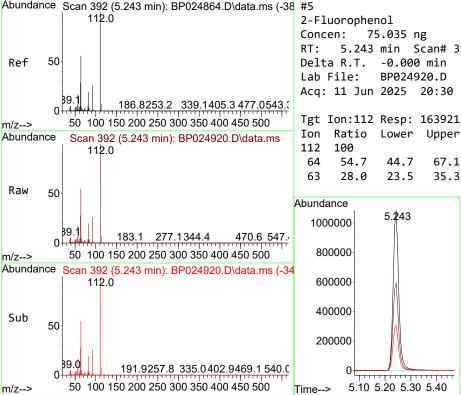
Data File : BP024920.D

Acq On : 11 Jun 2025 20:30

Operator : RC/JU Sample : Q2125-07

Misc

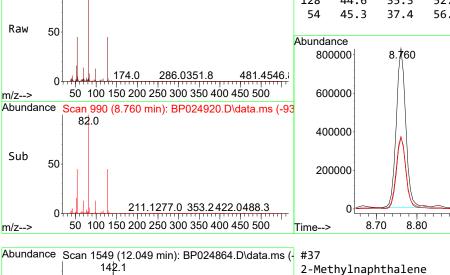

ALS Vial : 17 Sample Multiplier: 1

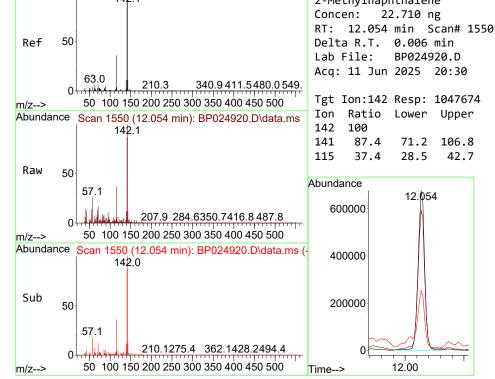

Quant Time: Jun 12 01:59:16 2025

 $\label{lem:quant_method} {\tt Quant\ Method: Z:\svoasrv\HPCHEM1\BNA_P\Methods\8270E-BP060625.M} \\$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Fri Jun 06 16:20:27 2025 Response via : Initial Calibration


10.40


m/z-->

Time-->

202.0 273.3 359.1425.0 495.8

50 100 150 200 250 300 350 400 450 500

14.20 14.30

m/z-->

50 100 150 200 250 300 350 400 450 500

Time-->

12.80 12.90 13.00

m/z-->

241.3

50 100 150 200 250 300 350 400 450 500

370.1 440.3 512.0

Time-->

Sub

m/z-->

50

230.2

50 100 150 200 250 300 350 400 450 500

359.8426.3494.9

50000

Time-->

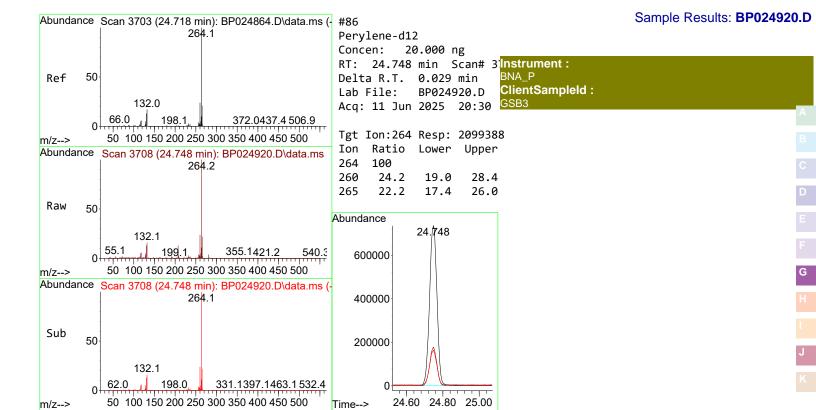
0

15.25 15.30 15.35

17.05 17.10 17.15

m/z-->

50 100 150 200 250 300 350 400 450 500


Time-->

19.70 19.80 19.90

m/z-->

50 100 150 200 250 300 350 400 450 500

Time-->

Instrument : BNA_F

PB168234BL

ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142603.D

: 04 Jun 2025 13:05 Acq On

Operator : RC/JU Sample : PB168234BL

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 04 13:37:53 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Uni	ts	Dev(Min)
Internal Standards						
 1,4-Dichlorobenzene-d4 	6.893	152	131273	20.000	ng	-0.01
21) Naphthalene-d8	8.175	136	500088	20.000	ng	-0.01
39) Acenaphthene-d10	9.934	164	273312	20.000	ng	-0.01
64) Phenanthrene-d10	11.422	188	477318	20.000	ng	-0.01
76) Chrysene-d12	14.063	240	281764	20.000	ng	#-0.01
86) Perylene-d12	15.563	264	248996	20.000	ng	0.00
System Monitoring Compounds						
5) 2-Fluorophenol	5.522	112	931257	119.517	ng	0.00
7) Phenol-d6	6.522	99	1120166	119.427	ng	-0.01
23) Nitrobenzene-d5	7.457	82	690335	75.273	ng	-0.02
42) 2,4,6-Tribromophenol	10.728	330	355604	117.229	ng	-0.01
45) 2-Fluorobiphenyl	9.257	172	1463491	71.852	ng	-0.01
79) Terphenyl-d14	13.010	244	1487213	72.129	ng	0.00
Target Compounds						Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Instrument : BNA_F

PB168234BL

ClientSampleId :

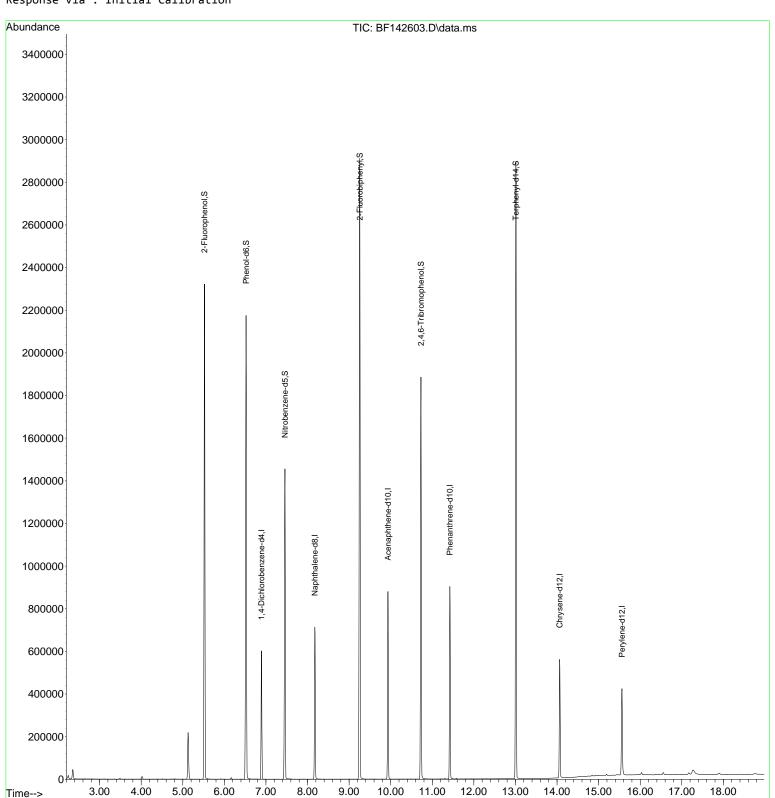
Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

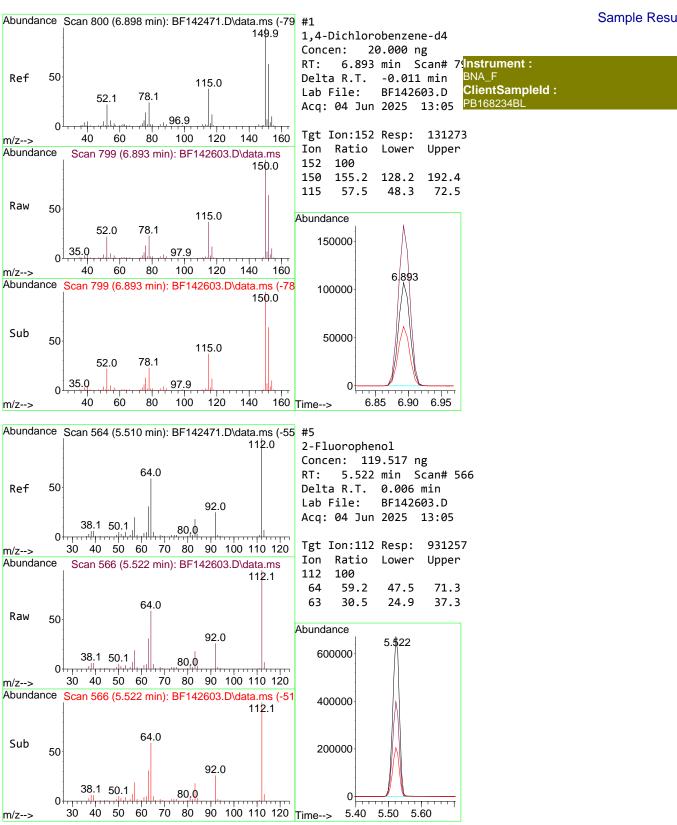
Data File : BF142603.D

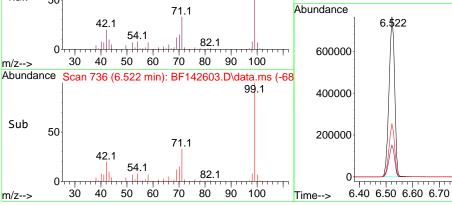
Acq On : 04 Jun 2025 13:05

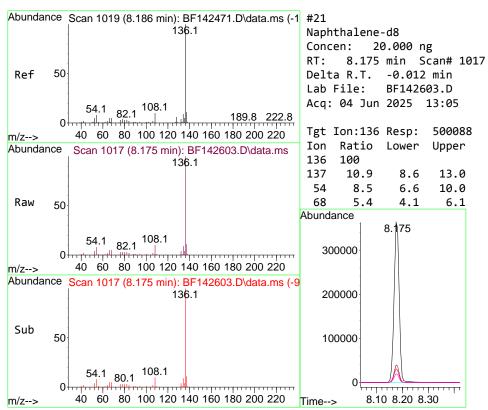
Operator : RC/JU Sample : PB168234BL

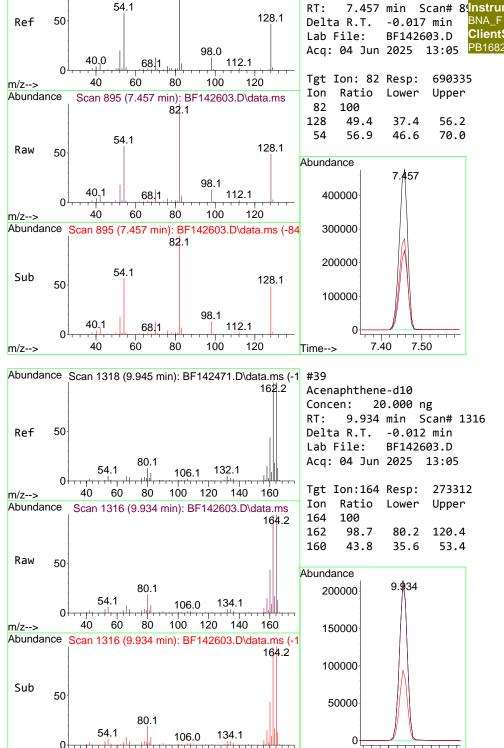
Misc


ALS Vial : 3 Sample Multiplier: 1


Quant Time: Jun 04 13:37:53 2025


 $\label{lem:quant_Method} {\tt Quant_Methods.} & 2:\\ {\tt Svoasrv\HPCHEM1\BNA_F\Methods.} & 8270-{\tt BF052025.M} \\ \\$


Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION


QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

80

60

m/z-->

100

120

140

160

Time-->

9.90

10.00

9.20

9.40

85.0

80

100 120

63.0

39.1

40

m/z-->

146.1

140 160 180 Time-->

120.1

14.00 14.10 14.20

50

m/z-->

100

150

200

250

Time-->

15.60

50

m/z-->

100

150

200

250

Time-->

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF061125\

Data File : BF142726.D

Acq On : 11 Jun 2025 10:51 Operator : RC/JU Sample : PB168234BS

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 11 11:39:56 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF061125.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 11 05:56:09 2025 Response via : Initial Calibration

Instrument : BNA_F ClientSampleId : PB168234BS	
	Α
Manual Integrations APPROVED	В
Reviewed By :Anahy Claudio 06/12/2025 Supervised By :Jagrut Upadhyay 06/12/2025	С
	D

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
1) 1,4-Dichlorobenzene-d4	6.893	152	83192	20.000 ng	0.00
21) Naphthalene-d8	8.181	136	318279	20.000 ng	
39) Acenaphthene-d10	9.934		176454	20.000 ng	
64) Phenanthrene-d10	11.428		298489	20.000 ng	
76) Chrysene-d12	14.069		155305	20.000 ng	
86) Perylene-d12	15.563		159844	20.000 ng	
System Monitoring Compounds					
5) 2-Fluorophenol	5.522	112	584197	119.599 ng	
7) Phenol-d6	6.528	99	691853	120.354 ng	
23) Nitrobenzene-d5	7.457		441985	75.999 ng	
42) 2,4,6-Tribromophenol	10.728		238472	123.311 ng	
45) 2-Fluorobiphenyl	9.257		984029	74.089 ng	
79) Terphenyl-d14	13.010	244	911215	80.583 ng	0.00
Target Compounds					Qvalue
2) 1,4-Dioxane	2.763	88	68122	35.240 ng	99
Pyridine	3.516	79	188401	38.870 ng	100
4) n-Nitrosodimethylamine	3.475	42	107977	43.540 ng	100
6) Aniline	6.557	93	201688	26.214 ng	96
8) 2-Chlorophenol	6.675	128	236557	44.316 ng	
9) Benzaldehyde	6.440	77	116066	32.604 ng	98
10) Phenol	6.540	94	269986	42.254 ng	
<pre>11) bis(2-Chloroethyl)ether</pre>	6.628	93	206382	43.243 ng	
<pre>12) 1,3-Dichlorobenzene</pre>	6.834	146	256435	42.095 ng	
13) 1,4-Dichlorobenzene	6.910	146	258872	42.048 ng	
<pre>14) 1,2-Dichlorobenzene</pre>	7.063	146	246901	41.837 ng	
15) Benzyl Alcohol	7.034	79	196868	45.311 ng	
16) 2,2'-oxybis(1-Chloropr	7.163	45	313231	41.685 ng	
17) 2-Methylphenol	7.145	107	184321	45.042 ng	
18) Hexachloroethane	7.404	117	92683	42.008 ng	
19) n-Nitroso-di-n-propyla	7.310	70	156371	42.729 ng	
20) 3+4-Methylphenols	7.298	107	229683	44.520 ng	
22) Acetophenone	7.304		311295	43.969 ng	
24) Nitrobenzene	7.475	77	232002	44.948 ng	
25) Isophorone	7.716	82	428493	43.516 ng	
26) 2-Nitrophenol	7.793		133453	46.328 ng	
27) 2,4-Dimethylphenol	7.828	122 93	219710	44.798 ng	
28) bis(2-Chloroethoxy)met			270365	44.224 ng	
29) 2,4-Dichlorophenol	8.034	162 180	208108	45.979 ng	
30) 1,2,4-Trichlorobenzene	8.116 8.198		218563	43.700 ng	
31) Naphthalene		128	689361	43.794 ng	
32) Benzoic acid33) 4-Chloroaniline	7.957	122 127	138145 65521m	50.015 ng	
34) Hexachlorobutadiene	8.245 8.316	225	138408	10.367 ng 43.427 ng	
35) Caprolactam	8.622	113	62727m	51.341 ng	
36) 4-Chloro-3-methylphenol	8.734	107	212482	45.148 ng	
37) 2-Methylnaphthalene	8.892	142	438004	43.962 ng	
38) 1-Methylnaphthalene	8.992	142	450044	43.902 ng	
40) 1,2,4,5-Tetrachloroben	9.057	216	222525	43.572 ng	
41) Hexachlorocyclopentadiene	9.045	237	288961	88.156 ng	
43) 2,4,6-Trichlorophenol	9.169	196	154341	46.686 ng	
13, 2,4,0 if Tellitor opticitor	J. 10J	100	エンマンマエ	-0.000 lig	100

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF061125\

Data File : BF142726.D

Acq On : 11 Jun 2025 10:51

Operator : RC/JU Sample : PB168234BS

Misc :

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 11 11:39:56 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 11 05:56:09 2025 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	2,4,5-Trichlorophenol	9.210	196	160942	45.074 ng	97
	1,1'-Biphenyl	9.357	154	606260	44.246 ng	100
	2-Chloronaphthalene	9.381	162	443000	43.885 ng	100
	2-Nitroaniline	9.475	65	130604	45.490 ng	100
,	Acenaphthylene	9.798	152	751339	44.143 ng	100
	Dimethylphthalate	9.657	163	544106	46.176 ng	100
	2,6-Dinitrotoluene	9.722	165	116765	45.850 ng	97
52)	Acenaphthene	9.969	154	521862m	49.451 ng	
53)	3-Nitroaniline	9.886	138	62297	22.553 ng	100
	2,4-Dinitrophenol	9.998	184	152241	109.132 ng	92
	Dibenzofuran	10.145	168	661023	43.987 ng	99
	4-Nitrophenol	10.057	139	185324	98.923 ng	99
	2,4-Dinitrotoluene	10.128	165	160597	47.695 ng	96
	Fluorene	10.486	166	523139	44.083 ng	100
	2,3,4,6-Tetrachlorophenol	10.263	232	136952	45.590 ng	99
	Diethylphthalate	10.357	149	541870	46.377 ng	100
	4-Chlorophenyl-phenyle	10.475	204	254023	43.831 ng	100
,	4-Nitroaniline	10.510	138	114731	46.428 ng	99
	Azobenzene	10.639	77	458707	44.952 ng	98
	4,6-Dinitro-2-methylph	10.539	198	92727	49.608 ng	96
	n-Nitrosodiphenylamine	10.598	169	457115	44.552 ng	99
	4-Bromophenyl-phenylether	10.969	248	159695	45.325 ng	99
,	Hexachlorobenzene	11.033	284	175582	44.895 ng	100
,	Atrazine	11.122	200	137490	50.262 ng	99
	Pentachlorophenol	11.233	266	194889	95.063 ng	98
,	Phenanthrene Anthracene	11.451 11.504	178 178	716195 733408	44.787 ng	100 100
,	Carbazole		167		44.335 ng	
	Di-n-butylphthalate	11.657 11.980	149	636667 755120	45.973 ng 48.831 ng	100 99
	Fluoranthene	12.639	202	691241	45.459 ng	99
,	Benzidine	12.757	184	118967	21.509 ng	99
	Pyrene	12.869	202	679006	47.047 ng	100
,	Butylbenzylphthalate	13.480	149	213703	50.072 ng	100
	Benzo(a)anthracene	14.057	228	466488	45.327 ng	99
	3,3'-Dichlorobenzidine	14.022	252	65244	19.659 ng	99
	Chrysene	14.098	228	434351	45.712 ng	100
,	Bis(2-ethylhexyl)phtha	14.039	149	297822	46.498 ng	99
	Di-n-octyl phthalate	14.657	149	552324	44.947 ng	100
	Indeno(1,2,3-cd)pyrene	17.086	276	552121	46.611 ng	100
88)	Benzo(b)fluoranthene	15.121	252	466805	49.597 ng	100
	Benzo(k)fluoranthene	15.151	252	405150	44.366 ng	99
	Benzo(a)pyrene	15.504	252	427694	47.794 ng	99
91)	Dibenzo(a,h)anthracene	17.104	278	461373	47.702 ng	99
92)	Benzo(g,h,i)perylene	17.545	276	443588	46.121 ng	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Sample Results: BF142726.D

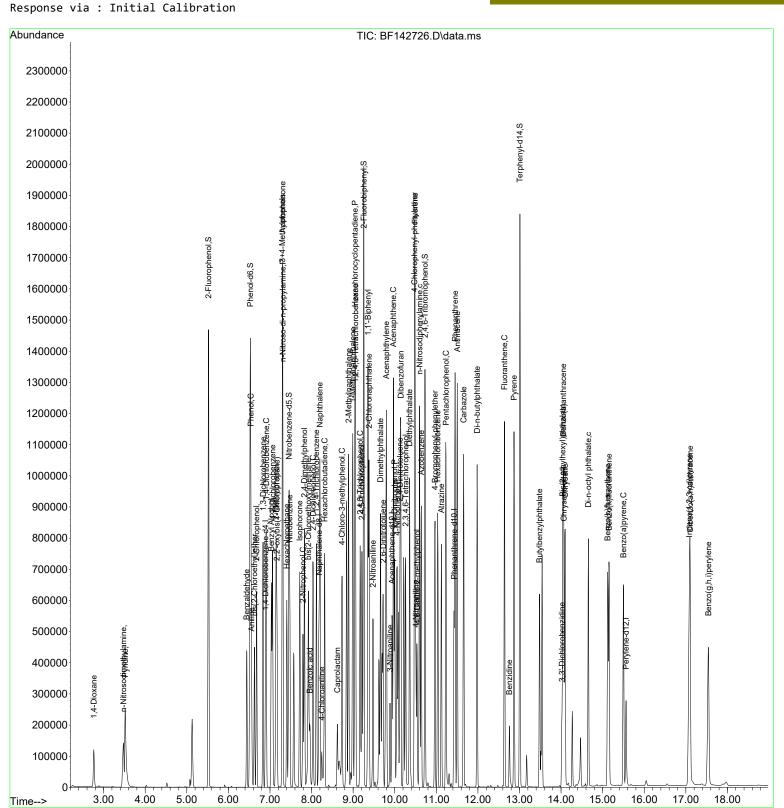
Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF061125\

Data File : BF142726.D

Acq On : 11 Jun 2025 10:51

Operator : RC/JU Sample : PB168234BS


Misc


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 11 11:39:56 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Wed Jun 11 05:56:09 2025 Response via : Initial Calibration

Instrument : BNA_F ClientSampleId :

TP05-MHO-WCMS

Sample Results: **BF142605.D**

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142605.D

Acq On : 04 Jun 2025 14:08

Operator : RC/JU Sample : Q2159-01MS

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 04 14:30:50 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

Compound		QIon	Response	Conc Units	Dev(Min)
Internal Standards					
1) 1,4-Dichlorobenzene-d4	6.898	152	119687	20.000 ng	0.00
21) Naphthalene-d8	8.181		441391	20.000 ng	0.00
39) Acenaphthene-d10	9.939		218918	20.000 ng	0.00
64) Phenanthrene-d10	11.428		322457	20.000 ng	0.00
76) Chrysene-d12	14.069		216030	20.000 ng	0.00
86) Perylene-d12	15.563		272895	20.000 ng	0.00
System Monitoring Compounds					
5) 2-Fluorophenol	5.522		530843	74.723 ng	0.00
7) Phenol-d6	6.528		650114	76.022 ng	
23) Nitrobenzene-d5	7.457		383796	47.414 ng	
42) 2,4,6-Tribromophenol	10.728		169656	69.826 ng	
45) 2-Fluorobiphenyl	9.251		742665	45.522 ng	
79) Terphenyl-d14	13.004	244	556976	35.233 ng	-0.01
Target Compounds	2 740	00	110700	44 707	Qvalue
2) 1,4-Dioxane	2.740		118790	41.787 ng	98
3) Pyridine	3.499		316918	43.778 ng	99
4) n-Nitrosodimethylamine	3.452	42	168372	44.795 ng	92
6) Aniline	6.557		298846	25.990 ng	
8) 2-Chlorophenol9) Benzaldehyde	6.681		347349	44.889 ng 36.812 ng	98
10) Phenol	6.446 6.540	77 94	189343 415471	43.177 ng	99 99
11) bis(2-Chloroethyl)ether	6.628		314166	45.357 ng	100
12) 1,3-Dichlorobenzene	6.840		380249	44.039 ng	98
13) 1,4-Dichlorobenzene	6.916	146	383221	44.059 ng	98
14) 1,2-Dichlorobenzene	7.069	146	367896	44.206 ng	99
15) Benzyl Alcohol	7.034	79	274957	43.508 ng	98
16) 2,2'-oxybis(1-Chloropr	7.169		509267	43.781 ng	98
17) 2-Methylphenol	7.151		263331	43.588 ng	99
18) Hexachloroethane	7.410		132286	43.558 ng	99
19) n-Nitroso-di-n-propyla	7.304		218117	41.155 ng	100
20) 3+4-Methylphenols	7.304		321533	41.561 ng	92
22) Acetophenone	7.304		437089	44.733 ng	98
24) Nitrobenzene	7.481	77	331446	45.400 ng	99
25) Isophorone	7.716	82	591291	43.690 ng	99
26) 2-Nitrophenol	7.792	139	184427	47.277 ng	98
27) 2,4-Dimethylphenol	7.834	122	298005	43.318 ng	98
<pre>28) bis(2-Chloroethoxy)met</pre>	7.928	93	383925	45.412 ng	99
29) 2,4-Dichlorophenol	8.040	162	282004	45.075 ng	99
30) 1,2,4-Trichlorobenzene	8.122	180	308170	45.387 ng	98
31) Naphthalene	8.204	128	976775	44.943 ng	100
32) Benzoic acid	7.945	122	191636m	45.762 ng	
33) 4-Chloroaniline	8.245	127	104729	11.892 ng	99
34) Hexachlorobutadiene	8.316	225	188185	44.388 ng	99
35) Caprolactam	8.616	113	81967	46.648 ng	95
36) 4-Chloro-3-methylphenol	8.734	107	274424	42.801 ng	96
37) 2-Methylnaphthalene	8.892	142	599114	43.817 ng	100
38) 1-Methylnaphthalene	8.992	142	615699	43.533 ng	99
40) 1,2,4,5-Tetrachloroben	9.063	216	301267	47.940 ng	99
41) Hexachlorocyclopentadiene	9.045	237	342158	80.712 ng	99
43) 2,4,6-Trichlorophenol	9.169	196	200860	47.400 ng	96

ClientSampleId :

TP05-MHO-WCMS

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142605.D

Acq On : 04 Jun 2025 14:08

Operator : RC/JU Sample : Q2159-01MS

Misc :

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 04 14:30:50 2025

 $\label{lem:quant_method} {\tt Quant\ Method: Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44) 2,4,5-Trichlorophenol	9.210	196	203775	45.596 ng	99
46) 1,1'-Biphenyl	9.357		804636	47.376 ng	100
47) 2-Chloronaphthalene	9.381	162	585929	46.693 ng	99
48) 2-Nitroaniline	9.475	65	167615	46.213 ng	98
49) Acenaphthylene	9.798	152	968879	45.726 ng	100
50) Dimethylphthalate	9.657	163	658805	45.608 ng	100
51) 2,6-Dinitrotoluene	9.722	165	141451	45.371 ng	96
52) Acenaphthene	9.969	154	628871	48.604 ng	99
53) 3-Nitroaniline	9.886	138	71689	21.053 ng	97
54) 2,4-Dinitrophenol	9.998	184	133984	83.183 ng	91
55) Dibenzofuran	10.145	168	836285	44.916 ng	98
56) 4-Nitrophenol	10.051	139	214603	85.412 ng	96
57) 2,4-Dinitrotoluene	10.122	165	189139	46.454 ng	99
58) Fluorene	10.486	166	634376	44.103 ng	99
59) 2,3,4,6-Tetrachlorophenol	10.263	232	160270	42.958 ng	98
60) Diethylphthalate61) 4-Chlorophenyl-phenyle	10.357 10.475	149 204	623187 311030	44.174 ng	99 98
62) 4-Nitroaniline	10.475	138	131676	44.018 ng 42.636 ng	96
63) Azobenzene	10.639	77	574383	45.330 ng	97
65) 4,6-Dinitro-2-methylph	10.533	198	85367	47.438 ng	96
66) n-Nitrosodiphenylamine	10.598	169	538608	48.823 ng	99
67) 4-Bromophenyl-phenylether	10.969	248	186780	48.987 ng	96
68) Hexachlorobenzene	11.033	284	199393	47.282 ng	99
69) Atrazine	11.122	200	155307	53.010 ng	99
70) Pentachlorophenol	11.228	266	206465	86.718 ng	99
71) Phenanthrene	11.451	178	789897	45.837 ng	100
72) Anthracene	11.504	178	808547	45.973 ng	99
73) Carbazole	11.657	167	685918	45.620 ng	100
74) Di-n-butylphthalate	11.980	149	806869	49.027 ng	100
75) Fluoranthene	12.639	202	702745	43.643 ng	99
77) Benzidine	12.757	184	198259	24.662 ng	99
78) Pyrene	12.869	202	706356	35.051 ng	100
80) Butylbenzylphthalate	13.480	149	265980	47.765 ng	99
<pre>81) Benzo(a)anthracene</pre>	14.057	228	657910	45.607 ng	99
82) 3,3'-Dichlorobenzidine	14.016	252	114456	26.159 ng	98
83) Chrysene	14.092	228	616958	47.597 ng	99
84) Bis(2-ethylhexyl)phtha	14.039	149	374143	52.486 ng	99
85) Di-n-octyl phthalate	14.657	149	697516	50.043 ng	100
87) Indeno(1,2,3-cd)pyrene	17.080	276	790401	38.580 ng	99
88) Benzo(b)fluoranthene	15.121	252	817498	50.615 ng	99
89) Benzo(k)fluoranthene	15.151	252	663669	43.872 ng	98
90) Benzo(a)pyrene	15.498	252	725008	47.622 ng	99
91) Dibenzo(a,h)anthracene 92) Benzo(g,h,i)perylene	17.098 17.533		643765 596123	38.743 ng 35.868 ng	99 97
	17.555		J9U1Z3	וו ססט.ככ	J/

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ClientSampleId :

TP05-MHO-WCMS

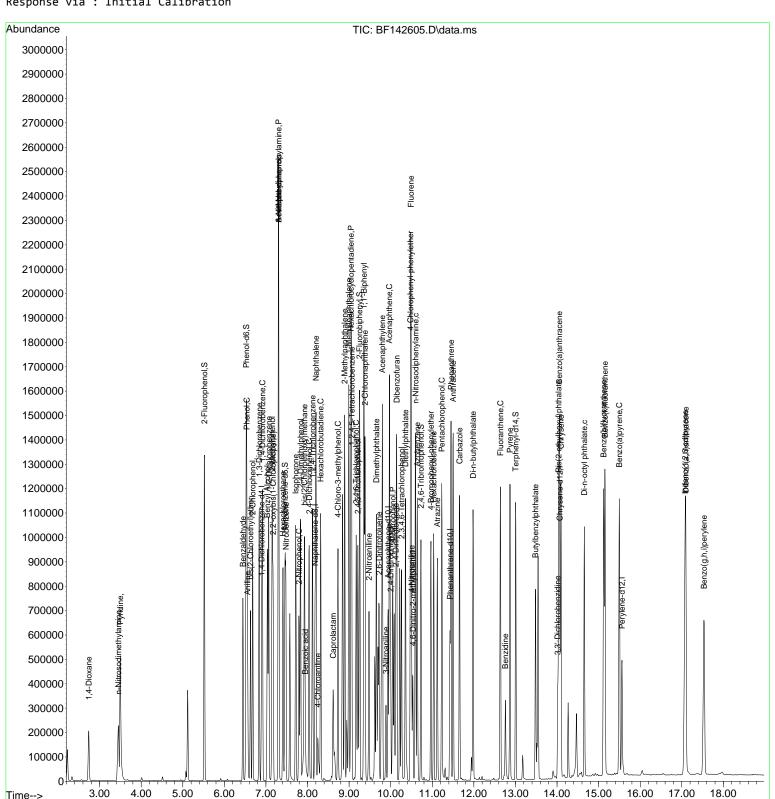
Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142605.D

Acq On : 04 Jun 2025 14:08

Operator : RC/JU Sample : Q2159-01MS

Misc


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 04 14:30:50 2025

 $\label{lem:quant_method} \mbox{Quant Method}: \mbox{Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

ClientSampleId :

TP05-MHO-WCMSD

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142606.D

Acq On : 04 Jun 2025 14:38

Operator : RC/JU Sample : Q2159-01MSD

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 04 15:05:17 2025

 $\label{lem:quant_bound} \mbox{Quant Method}: \mbox{Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

Compound			-	Conc Units	
Internal Standards					
1) 1,4-Dichlorobenzene-d4	6.898	152	117119	20.000 ng	0.00
21) Naphthalene-d8	8.181	136	429653	20.000 ng	0.00
39) Acenaphthene-d10	9.939		207287	20.000 ng	0.00
64) Phenanthrene-d10	11.421		289513	20.000 ng	
76) Chrysene-d12	14.068		207868	20.000 ng	
86) Perylene-d12	15.562		274922	20.000 ng	0.00
,					
System Monitoring Compounds					
5) 2-Fluorophenol	5.522	112	503033	72.361 ng	0.00
7) Phenol-d6	6.522	99	608782	72.750 ng	-0.01
23) Nitrobenzene-d5	7.457	82	360559	45.760 ng	-0.02
42) 2,4,6-Tribromophenol	10.727	330	150277	65.320 ng	-0.01
45) 2-Fluorobiphenyl	9.251	172	697253	45.136 ng	-0.02
79) Terphenyl-d14	13.004	244	493078	32.415 ng	-0.01
					_
Target Compounds					Qvalue
2) 1,4-Dioxane	2.734	88	112206	40.336 ng	98
3) Pyridine	3.493	79	294977	41.640 ng	
4) n-Nitrosodimethylamine	3.446	42	157867	42.921 ng	92
6) Aniline	6.557	93	290103	25.783 ng	97
8) 2-Chlorophenol	6.681	128	325299	42.961 ng	99
9) Benzaldehyde	6.445	77	176311	35.030 ng	99
10) Phenol	6.539	94	387871	41.193 ng	99
11) bis(2-Chloroethyl)ether	6.628	93	293970	43.371 ng	100
12) 1,3-Dichlorobenzene	6.839		354983	42.014 ng	98
13) 1,4-Dichlorobenzene	6.916	146	362483	42.591 ng	99
14) 1,2-Dichlorobenzene	7.069		349177	42.876 ng	99
15) Benzyl Alcohol16) 2,2'-oxybis(1-Chloropr	7.034 7.169	79 45	255956 479366	41.390 ng	98 98
17) 2-Methylphenol	7.165	107	244760	42.114 ng 41.402 ng	100
18) Hexachloroethane	7.143	117	125719	42.303 ng	99
19) n-Nitroso-di-n-propyla	7.304	70	205003	39.528 ng	100
20) 3+4-Methylphenols	7.298	107	301702	39.853 ng	97
22) Acetophenone	7.304	105	407703	42.866 ng	98
24) Nitrobenzene	7.481	77	309931	43.612 ng	98
25) Isophorone	7.716		554934	42.124 ng	99
26) 2-Nitrophenol	7.792	139	171622	45.196 ng	98
27) 2,4-Dimethylphenol	7.833	122	271650	40.566 ng	99
28) bis(2-Chloroethoxy)met	7.928		355801	43.235 ng	
29) 2,4-Dichlorophenol	8.039	162	265245	43.555 ng	99
30) 1,2,4-Trichlorobenzene	8.122	180	289455	43.796 ng	98
31) Naphthalene	8.204	128	913570	43.183 ng	99
32) Benzoic acid	7.939	122	168301	41.288 ng	96
33) 4-Chloroaniline	8.245	127	85937	10.025 ng	100
34) Hexachlorobutadiene	8.316	225	175291	42.476 ng	99
35) Caprolactam	8.616	113	75256	43.999 ng	98
36) 4-Chloro-3-methylphenol	8.733	107	251467	40.292 ng	96
37) 2-Methylnaphthalene	8.892	142	555494	41.736 ng	100
38) 1-Methylnaphthalene	8.992	142	568389	41.286 ng	100
40) 1,2,4,5-Tetrachloroben	9.057	216	281606	47.326 ng	99
41) Hexachlorocyclopentadiene	9.045	237	317173	79.016 ng	100
43) 2,4,6-Trichlorophenol	9.169	196	185819	46.311 ng	97

ClientSampleId :

TP05-MHO-WCMSD

Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142606.D

Acq On : 04 Jun 2025 14:38

Operator : RC/JU Sample : Q2159-01MSD

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 04 15:05:17 2025

 $\label{lem:quant_method} {\tt Quant\ Method: Z:\svoasrv\HPCHEM1\BNA_F\Methods\8270-BF052025.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	2,4,5-Trichlorophenol	9.210	196	182412	43.106 ng	98
	1,1'-Biphenyl	9.357	154	741150	46.086 ng	99
	2-Chloronaphthalene	9.380	162	542733	45.678 ng	99
	2-Nitroaniline	9.475	65	149998	43.676 ng	99
49)	Acenaphthylene	9.798	152	884211	44.071 ng	100
50)	Dimethylphthalate	9.657	163	597235	43.666 ng	100
51)	2,6-Dinitrotoluene	9.716	165	130411	44.177 ng	99
52)	Acenaphthene	9.969	154	566786	46.264 ng	100
53)	3-Nitroaniline	9.886	138	63685	19.751 ng	100
	2,4-Dinitrophenol	9.992	184	117271	76.892 ng	94
55)	Dibenzofuran	10.145	168	766850	43.498 ng	97
,	4-Nitrophenol	10.051	139	188095	79.063 ng	96
57)	2,4-Dinitrotoluene	10.122	165	168682	43.754 ng	100
,	Fluorene	10.486	166	572933	42.066 ng	99
	2,3,4,6-Tetrachlorophenol	10.263	232	143474	40.613 ng	98
	Diethylphthalate	10.357	149	559299	41.870 ng	99
	4-Chlorophenyl-phenyle	10.475	204	279681	41.802 ng	98
,	4-Nitroaniline	10.498	138	114406	39.123 ng	97
,	Azobenzene	10.639	77	517652	43.145 ng	96
	4,6-Dinitro-2-methylph	10.527	198	74396	46.046 ng	98
	n-Nitrosodiphenylamine	10.592	169	485968	49.064 ng	99
,	4-Bromophenyl-phenylether	10.969	248	164283	47.990 ng	97
,	Hexachlorobenzene	11.033	284	177585	46.903 ng	99
,	Atrazine	11.122	200	134893	51.281 ng	99
-	Pentachlorophenol	11.227	266	179072	83.771 ng	99
,	Phenanthrene	11.451	178	699348	45.200 ng	100
•	Anthracene	11.504	178	713117	45.161 ng	100
,	Carbazole	11.657	167	609293	45.135 ng	99
	Di-n-butylphthalate	11.980	149	707550	47.884 ng	99
	Fluoranthene	12.639	202	621123	42.963 ng	99
	Benzidine	12.757	184	184313	23.827 ng	99
	Pyrene	12.868	202	626053	32.286 ng	100
	Butylbenzylphthalate	13.480	149	239908	44.775 ng	99
	Benzo(a)anthracene	14.057	228	615470	44.341 ng	99
	3,3'-Dichlorobenzidine	14.015	252	114751	27.256 ng	98
,	Chrysene	14.092	228	572386	45.892 ng	99
	Bis(2-ethylhexyl)phtha	14.039	149	337322	49.178 ng	99
	Di-n-octyl phthalate	14.657	149	661412	49.316 ng	99
	Indeno(1,2,3-cd)pyrene	17.080	276	749576	36.318 ng	98
	Benzo(b)fluoranthene	15.121	252	708411	43.538 ng	98
	Benzo(k)fluoranthene	15.151	252	711519	46.688 ng	98
	Benzo(a)pyrene	15.498	252	700899	45.699 ng	99 98
	Dibenzo(a,h)anthracene	17.092	278 276	616586	36.834 ng	
92)	Benzo(g,h,i)perylene	17.533	2/6	554788	33.135 ng	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ClientSampleId :

TP05-MHO-WCMSD

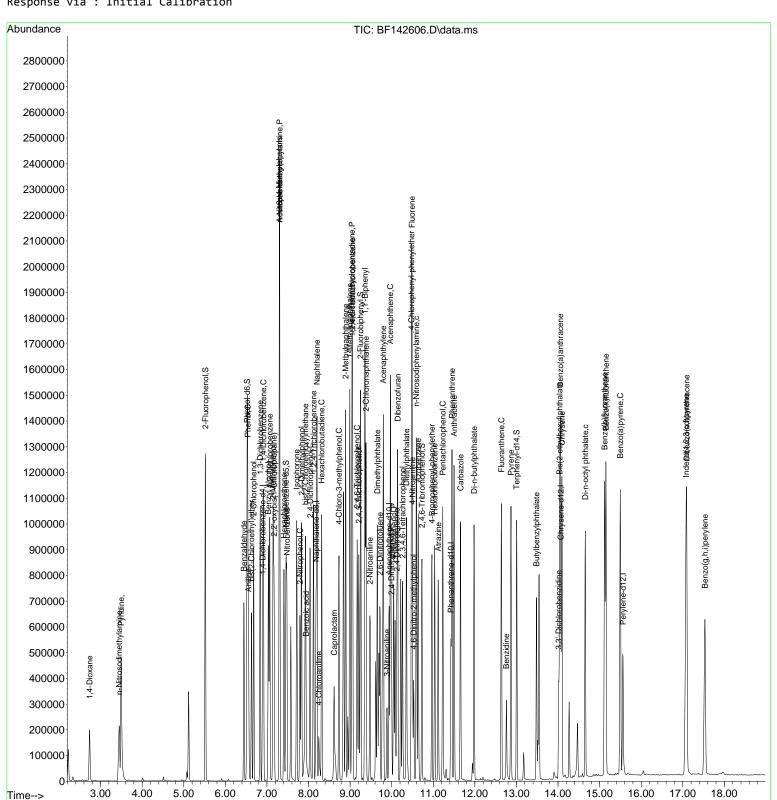
Data Path : Z:\svoasrv\HPCHEM1\BNA_F\Data\BF060425\

Data File : BF142606.D

Acq On : 04 Jun 2025 14:38

Operator : RC/JU Sample : Q2159-01MSD

Misc


ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 04 15:05:17 2025

 $\label{lem:quant_method} {\tt Quant_Methods.} & 2:\\ {\tt Svoasrv\HPCHEM1\BNA_F\Methods.} & 8270-{\tt BF052025.M} \\ \\$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Tue May 20 16:26:47 2025 Response via : Initial Calibration

	284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922 ECHNICAL GROUP										
	Manual Integration Report										
Sequence:		bf052025	Instrur	ment				BNA_f			
Sample ID	File ID	Parameter	Review By	Review On	Supervised	Supervised On	Reason				

5/21/2025 2:07:30 PM

Jagrut

Rahul

SSTDICC010

BF142469.D

Benzoic acid

5/21/2025 4:43:55 PM

Peak Integrated by Software

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 TECHNICAL GROUP									
	Manual Integration Report								
Sequence:	BF060425	Instrument	BNA_f						
	-	·							

A B C

D E F

G H I J

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDCCC040	BF142602.D	Benzoic acid	Rahul	6/5/2025 11:49:24 AM	Jagrut	6/5/2025 1:15:26 PM	Peak Integrated by Software
Q2159-01MS	BF142605.D	Benzoic acid	Rahul	6/5/2025 11:49:26 AM		6/5/2025 1:15:28 PM	Peak Integrated by Software

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 TECHNICAL GROUP									
	Manual Integration Report								
Sequence:	BF061125	Instrument	BNA_f						

В

D E F

G H

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDICC010	BF142714.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/11/2025 9:18:06 AM	Jagrut	6/11/2025 9:58:06 AM	Peak Integrated by Software
SSTDICC080	BF142719.D	Caprolactam	Rahul	6/11/2025 9:18:10 AM	Jagrut	6/11/2025 9:58:02 AM	Peak Integrated by Software
PB168234BS	BF142726.D	4-Chloroaniline	anahy	6/12/2025 9:39:14 AM	Jagrut	6/12/2025 11:37:34 AM	Peak Integrated by Software
PB168234BS	BF142726.D	Acenaphthene	anahy	6/12/2025 9:39:14 AM	Jagrut	6/12/2025 11:37:34 AM	Peak Integrated by Software
PB168234BS	BF142726.D	Caprolactam	anahy	6/12/2025 9:39:14 AM	Jagrut	6/12/2025 11:37:34 AM	Peak Integrated by Software

Alliance	284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922
Alliance	
TECHNICAL GROUP	

Sequence:

Manual Integration Report					
BP060625	Instrument	BNA_p			

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDICC005	BP024861.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/9/2025 10:51:15 AM	Jagrut	6/9/2025 12:08:47 PM	Peak Integrated by Software
SSTDICC005	BP024861.D	4-Nitroaniline	Rahul	6/9/2025 10:51:15 AM	Jagrut	6/9/2025 12:08:47 PM	Peak Integrated by Software
SSTDICC010	BP024862.D	Benzaldehyde	Rahul	6/9/2025 10:51:18 AM	Jagrut	6/9/2025 12:08:50 PM	Peak Integrated by Software
SSTDICC010	BP024862.D	Benzo(b)fluoranthene	Rahul	6/9/2025 10:51:18 AM	Jagrut	6/9/2025 12:08:50 PM	Peak Integrated by Software
SSTDICC010	BP024862.D	Benzoic acid	Rahul	6/9/2025 10:51:18 AM	Jagrut	6/9/2025 12:08:50 PM	Peak Integrated by Software
SSTDICC020	BP024863.D	Benzaldehyde	Rahul	6/9/2025 10:51:20 AM	Jagrut	6/9/2025 12:08:52 PM	Peak Integrated by Software
SSTDICV040	BP024868.D	Benzaldehyde	Rahul	6/9/2025 10:51:26 AM	Jagrut	6/9/2025 12:08:55 PM	Peak Integrated by Software

Aliance TECHNICAL GROUP	284 Sheffield Street, Mountai	nside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922					
		Manual Integration Report					
lequence: BP061125 Instrument BNA_p							

A B C

D E F

G H I J

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDCCC040	BP024905.D	4-Nitroaniline	anahy	6/12/2025 9:29:15 AM	mohammad	6/13/2025 9:04:12 AM	Peak Integrated by Software
SSTDCCC040	BP024905.D	Indeno(1,2,3-cd)pyrene	anahy	6/12/2025 9:29:15 AM	mohammad	6/13/2025 9:04:12 AM	Peak Integrated by Software

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF052025

Review By Ra	hul	Review On	5/21/	2025 2:52:20 PM		
Supervise By Jag	grut	Supervise On	5/21/	/2025 4:44:06 PM		
SubDirectory BF	052025	HP Acquire Met	thod	BNA_F	HP Processing Method	bf052025
STD. NAME	STD REF.#					
Tune/Reschk Initial Calibration Stds	SP6757 SP6784,SP6785,SP678	6,SP6787,SP6788,SP6	790,SP67	789,SP6791		
ccc	SP6787					
Internal Standard/PEM	S12665,10ul/1000ul san	nple				
ICV/I.BLK	SP6770					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

	<u> </u>	1			
Sr#	Sampleld	Data File Name	Date-Time	Operator	Status
1	DFTPP	BF142465.D	20 May 2025 11:13	RC/JU	Ok
2	SSTDCCC040	BF142466.D	20 May 2025 11:41	RC/JU	Not Ok
3	SSTDICC2.5	BF142467.D	20 May 2025 12:10	RC/JU	Ok
4	SSTDICC005	BF142468.D	20 May 2025 12:38	RC/JU	Ok
5	SSTDICC010	BF142469.D	20 May 2025 13:07	RC/JU	Ok,M
6	SSTDICC020	BF142470.D	20 May 2025 13:36	RC/JU	Ok
7	SSTDICCC040	BF142471.D	20 May 2025 14:05	RC/JU	Ok
8	SSTDICC050	BF142472.D	20 May 2025 14:34	RC/JU	Ok
9	SSTDICC060	BF142473.D	20 May 2025 15:03	RC/JU	Ok
10	SSTDICC080	BF142474.D	20 May 2025 15:31	RC/JU	Ok
11	SSTDICV040	BF142475.D	20 May 2025 16:31	RC/JU	Ok
12	PB168067TB	BF142476.D	20 May 2025 17:29	RC/JU	Ok

Daily Analysis Runlog For Sequence/QCBatch ID # BF060425

Review By Rahul Review On 6/5/2025 11:49:57 AM Supervise On Supervise By Jagrut 6/5/2025 1:15:58 PM SubDirectory BF060425 **HP Acquire Method HP Processing Method** bf052025 BNA_F STD. NAME STD REF.# Tune/Reschk SP6757 Initial Calibration Stds SP6784,SP6785,SP6786,SP6787,SP6788,SP6790,SP6789,SP6791 SP6787 CCC Internal Standard/PEM S12667,10ul/1000ul sample ICV/I.BLK SP6770 Surrogate Standard MS/MSD Standard LCS Standard

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	DFTPP	BF142601.D	04 Jun 2025 11:59	RC/JU	Ok
2	SSTDCCC040	BF142602.D	04 Jun 2025 12:27	RC/JU	Ok,M
3	PB168234BL	BF142603.D	04 Jun 2025 13:05	RC/JU	Ok
4	Q2159-01	BF142604.D	04 Jun 2025 13:39	RC/JU	Ok
5	Q2159-01MS	BF142605.D	04 Jun 2025 14:08	RC/JU	Ok,M
6	Q2159-01MSD	BF142606.D	04 Jun 2025 14:38	RC/JU	Ok
7	Q2160-05	BF142607.D	04 Jun 2025 15:17	RC/JU	Ok
8	Q2172-01	BF142608.D	04 Jun 2025 15:47	RC/JU	Ok
9	Q2160-01	BF142609.D	04 Jun 2025 16:17	RC/JU	Ok
10	Q2159-04	BF142610.D	04 Jun 2025 16:47	RC/JU	Ok
11	Q2160-04	BF142611.D	04 Jun 2025 17:17	RC/JU	Ok
12	Q2160-08	BF142612.D	04 Jun 2025 17:48	RC/JU	Ok
13	Q2173-06	BF142613.D	04 Jun 2025 18:18	RC/JU	Ok
14	Q2173-12	BF142614.D	04 Jun 2025 18:47	RC/JU	Ok
15	Q2173-18	BF142615.D	04 Jun 2025 19:17	RC/JU	Ok
16	Q2173-07	BF142616.D	04 Jun 2025 19:47	RC/JU	Ok,M
17	Q2173-13	BF142617.D	04 Jun 2025 20:17	RC/JU	Ok,M
18	Q2173-01	BF142618.D	04 Jun 2025 20:47	RC/JU	Ok,M
19	Q2172-04	BF142619.D	04 Jun 2025 21:17	RC/JU	Ok
20	Q2185-04	BF142620.D	04 Jun 2025 21:46	RC/JU	Ok
21	Q2185-08	BF142621.D	04 Jun 2025 22:16	RC/JU	Ok

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF060425

Review By Ra	hul	Review On	6/5/2	025 11:49:57 AM		
Supervise By Jag	grut	Supervise On	6/5/2	025 1:15:58 PM		
SubDirectory BF	060425	HP Acquire Me	thod	BNA_F	HP Processing Method	bf052025
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP678	6,SP6787,SP6788,SP6	790,SP67	789,SP6791		
CCC	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul san	nple				
ICV/I.BLK	SP6770					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

22	Q2182-01	BF142622.D	04 Jun 2025 22:45	RC/JU	Ok,M
23	Q2178-01	BF142623.D	04 Jun 2025 23:15	RC/JU	Dilution

Daily Analysis Runlog For Sequence/QCBatch ID # BF061125

Review By Ra	hul	Review On	6/11/	2025 9:54:45 AM		
Supervise By Jagrut		Supervise On	6/11/	2025 9:58:22 AM		
SubDirectory BF	061125	HP Acquire Me	thod	BNA_F	HP Processing Method	BF061125
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP678	86,SP6787,SP6788,SP6	790,SP67	789,SP6791		
CCC	SP6787					
Internal Standard/PEM	\$12668,10ul/1000ul sar	mnle				
ICV/I.BLK	пріс					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	DFTPP	BF142710.D	10 Jun 2025 15:42	RC/JU	Ok
2	SSTDCCC040	BF142711.D	10 Jun 2025 16:11	RC/JU	Not Ok
3	SSTDICC2.5	BF142712.D	10 Jun 2025 16:54	RC/JU	Ok
4	SSTDICC005	BF142713.D	10 Jun 2025 17:24	RC/JU	Ok
5	SSTDICC010	BF142714.D	10 Jun 2025 17:53	RC/JU	Ok,M
6	SSTDICC020	BF142715.D	10 Jun 2025 18:22	RC/JU	Ok
7	SSTDICCC040	BF142716.D	10 Jun 2025 18:52	RC/JU	Ok
8	SSTDICC050	BF142717.D	10 Jun 2025 19:21	RC/JU	Ok
9	SSTDICC060	BF142718.D	10 Jun 2025 19:50	RC/JU	Ok
10	SSTDICC080	BF142719.D	10 Jun 2025 20:19	RC/JU	Ok,M
11	SSTDICV040	BF142720.D	10 Jun 2025 20:49	RC/JU	Ok
12	PB168323BL	BF142721.D	10 Jun 2025 21:47	RC/JU	Ok
13	DFTPP	BF142722.D	11 Jun 2025 08:56	RC/JU	Ok
14	SSTDCCC040	BF142723.D	11 Jun 2025 09:24	RC/JU	Ok
15	PB168376BL	BF142724.D	11 Jun 2025 09:53	RC/JU	Ok
16	PB168376BS	BF142725.D	11 Jun 2025 10:22	RC/JU	Ok,M
17	PB168234BS	BF142726.D	11 Jun 2025 10:51	RC/JU	Ok,M
18	PB168285BS	BF142727.D	11 Jun 2025 11:21	RC/JU	Ok,M
19	PB168285BSD	BF142728.D	11 Jun 2025 11:50	RC/JU	Ok,M
20	PB168378BS	BF142729.D	11 Jun 2025 12:19	RC/JU	Ok,M
21	PB168378BSD	BF142730.D	11 Jun 2025 12:49	RC/JU	Ok,M

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF061125

Review By Ra	ahul	Review On	6/11/2025 9:54:45 A	M	
,	grut		6/11/2025 9:58:22 A		
	-	·		aivi	
SubDirectory BF	-061125	HP Acquire Meth	hod BNA_F	HP Processing Method	BF061125
STD. NAME	STD REF.#				
Tune/Reschk	SP6757				
Initial Calibration Stds	SP6784,SP6785,SP678	86,SP6787,SP6788,SP67	790,SP6789,SP6791		
CCC	SP6787				
Internal Standard/PEM	S12668,10ul/1000ul sai	mple			
ICV/I.BLK SP6770					
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

22	PB168378BL	BF142731.D	11 Jun 2025 13:18	RC/JU	Ok
23	Q2264-04	BF142732.D	11 Jun 2025 13:52	RC/JU	Ok
24	Q2268-10	BF142733.D	11 Jun 2025 14:21	RC/JU	Ok
25	Q2268-03	BF142734.D	11 Jun 2025 14:50	RC/JU	Dilution
26	Q2268-04MS	BF142735.D	11 Jun 2025 15:20	RC/JU	Ok,M
27	Q2268-05MSD	BF142736.D	11 Jun 2025 15:50	RC/JU	Ok
28	Q2268-06	BF142737.D	11 Jun 2025 16:19	RC/JU	Dilution
29	Q2268-07	BF142738.D	11 Jun 2025 16:49	RC/JU	Dilution
30	Q2268-08	BF142739.D	11 Jun 2025 17:19	RC/JU	Dilution
31	Q2273-01	BF142740.D	11 Jun 2025 17:49	RC/JU	Ok
32	Q2273-05	BF142741.D	11 Jun 2025 18:18	RC/JU	Ok
33	Q2273-05MS	BF142742.D	11 Jun 2025 18:48	RC/JU	Ok
34	Q2273-05MSD	BF142743.D	11 Jun 2025 19:18	RC/JU	Ok
35	Q2268-03DL	BF142744.D	11 Jun 2025 19:48	RC/JU	Ok
36	Q2268-03	BF142745.D	11 Jun 2025 20:17	RC/JU	Not Ok
37	Q2280-01	BF142746.D	11 Jun 2025 20:47	RC/JU	ReRun

Instrument ID: BNA_P

Daily Analysis Runlog For Sequence/QCBatch ID # BP060625

Review By Ra	hul	Review On	6/9/20	025 11:36:10 AM		
Supervise By Jag	grut	Supervise On	6/9/20	025 12:09:52 PM		
SubDirectory BP	060625	HP Acquire Met	:hod	BNA_P	HP Processing Method	BP060625
STD. NAME	STD REF.#					
Tune/Reschk Initial Calibration Stds	SP6757 SP6784,SP6785,SP678	6,SP6787,SP6788,SP6	790,SP678	89,SP6791		
CCC	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul san	nple				
ICV/I.BLK	SP6796					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	Sampleld	Data File Name	Date-Time	Operator	Status
1	DFTPP	BP024859.D	06 Jun 2025 09:49	RC/JU	Ok
2	SSTDICC2.5	BP024860.D	06 Jun 2025 10:30	RC/JU	Ok
3	SSTDICC005	BP024861.D	06 Jun 2025 11:11	RC/JU	Ok,M
4	SSTDICC010	BP024862.D	06 Jun 2025 11:52	RC/JU	Ok,M
5	SSTDICC020	BP024863.D	06 Jun 2025 12:33	RC/JU	Ok,M
6	SSTDICCC040	BP024864.D	06 Jun 2025 13:14	RC/JU	Ok
7	SSTDICC050	BP024865.D	06 Jun 2025 13:56	RC/JU	Ok
8	SSTDICC060	BP024866.D	06 Jun 2025 14:37	RC/JU	Ok
9	SSTDICC080	BP024867.D	06 Jun 2025 15:18	RC/JU	Ok
10	SSTDICV040	BP024868.D	06 Jun 2025 17:09	RC/JU	Ok,M
11	PB168259BL	BP024869.D	06 Jun 2025 17:50	RC/JU	Ok

Instrument ID: BNA_P

Daily Analysis Runlog For Sequence/QCBatch ID # BP061125

Review By ar	nahy	Review On	6/12/2	2025 9:31:34 AM		
Supervise By m	ohammad	Supervise On	6/13/2	2025 9:04:12 AM		
SubDirectory BF	2061125	HP Acquire Met	hod	BNA_P	HP Processing Method	BP060625
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP678	6,SP6787,SP6788,SP67	90,SP67	789,SP6791		
ccc	SP6787					
Internal Standard/PEM	S12668,10ul/1000ul sar	nple				
ICV/I.BLK	SP6796					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	DFTPP	BP024904.D	11 Jun 2025 09:29	RC/JU	Ok
2	SSTDCCC040	BP024905.D	11 Jun 2025 10:09	RC/JU	Ok,M
3	PB168300BL	BP024906.D	11 Jun 2025 10:50	RC/JU	Ok
4	PB168300BS	BP024907.D	11 Jun 2025 11:31	RC/JU	Ok
5	Q2176-03	BP024908.D	11 Jun 2025 12:18	RC/JU	Ok
6	Q2176-05	BP024909.D	11 Jun 2025 12:59	RC/JU	Ok
7	Q2207-01	BP024910.D	11 Jun 2025 13:40	RC/JU	Ok
8	Q2227-01	BP024911.D	11 Jun 2025 14:21	RC/JU	Ok
9	Q2228-01	BP024912.D	11 Jun 2025 15:02	RC/JU	Ok
10	Q2226-01	BP024913.D	11 Jun 2025 15:43	RC/JU	Ok
11	Q2244-01	BP024914.D	11 Jun 2025 16:24	RC/JU	Ok
12	Q2244-01MS	BP024915.D	11 Jun 2025 17:05	RC/JU	Ok
13	Q2244-01MSD	BP024916.D	11 Jun 2025 17:46	RC/JU	Ok
14	Q2177-02DL	BP024917.D	11 Jun 2025 18:27	RC/JU	Ok,M
15	Q2241-01	BP024918.D	11 Jun 2025 19:08	RC/JU	Ok
16	Q2198-03	BP024919.D	11 Jun 2025 19:49	RC/JU	Ok,M
17	Q2125-07	BP024920.D	11 Jun 2025 20:30	RC/JU	Ok
18	Q2241-05	BP024921.D	11 Jun 2025 21:11	RC/JU	Ok

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF052025

Review By Rahul		Review On	5/21/2025 2:52:20 PM		
Supervise By Jagrut		Supervise On	5/21/2025 4	5/21/2025 4:44:06 PM	
SubDirectory	BF052025	HP Acquire Method	BNA_F	HP Processing Method	bf052025
STD. NAME	STD REF.#				
Tune/Reschk Initial Calibration Stds	SP6757 SP6784,SP6785,SP6786	3,SP6787,SP6788,SP6790,SP6789,S	SP6791		
ccc	SP6787				
Internal Standard/PEM	S12665,10ul/1000ul sam	ple			
ICV/I.BLK	SP6770				
Surrogate Standard					
MS/MSD Standard	MS/MSD Standard				
LCS Standard					

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BF142465.D	20 May 2025 11:13		RC/JU	Ok
2	SSTDCCC040	SSTDCCC040	BF142466.D	20 May 2025 11:41	Fresh Calibration Required	RC/JU	Not Ok
3	SSTDICC2.5	SSTDICC2.5	BF142467.D	20 May 2025 12:10		RC/JU	Ok
4	SSTDICC005	SSTDICC005	BF142468.D	20 May 2025 12:38	Compound #32,54,85 removed from 5ppm	RC/JU	Ok
5	SSTDICC010	SSTDICC010	BF142469.D	20 May 2025 13:07		RC/JU	Ok,M
6	SSTDICC020	SSTDICC020	BF142470.D	20 May 2025 13:36		RC/JU	Ok
7	SSTDICCC040	SSTDICCC040	BF142471.D	20 May 2025 14:05	This calibration is good for both the methods, 8270E DOD and 625.1.	RC/JU	Ok
8	SSTDICC050	SSTDICC050	BF142472.D	20 May 2025 14:34		RC/JU	Ok
9	SSTDICC060	SSTDICC060	BF142473.D	20 May 2025 15:03		RC/JU	Ok
10	SSTDICC080	SSTDICC080	BF142474.D	20 May 2025 15:31		RC/JU	Ok
11	SSTDICV040	ICVBF052025	BF142475.D	20 May 2025 16:31		RC/JU	Ok
12	PB168067TB	PB168067TB	BF142476.D	20 May 2025 17:29		RC/JU	Ok

Fax: 908 789 8922

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF060425

Review By Rahul		Review On	6/5/2025 11:49:57 AM		
Supervise By Jagrut		Supervise On	6/5/2025 1:	6/5/2025 1:15:58 PM	
SubDirectory	BF060425	HP Acquire Method	BNA_F	HP Processing Method	bf052025
STD. NAME	STD REF.#				
Tune/Reschk Initial Calibration Stds			SP6791		
CCC Internal Standard/PEM	SP6787 S12667,10ul/1000ul san	nnle			
ICV/I.BLK	SP6770	пріс			
Surrogate Standard					
MS/MSD Standard	MS/MSD Standard				
LCS Standard					

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BF142601.D	04 Jun 2025 11:59		RC/JU	Ok
2	SSTDCCC040	SSTDCCC040	BF142602.D	04 Jun 2025 12:27		RC/JU	Ok,M
3	PB168234BL	PB168234BL	BF142603.D	04 Jun 2025 13:05		RC/JU	Ok
4	Q2159-01	TP05-MHO-WC	BF142604.D	04 Jun 2025 13:39		RC/JU	Ok
5	Q2159-01MS	TP05-MHO-WCMS	BF142605.D	04 Jun 2025 14:08		RC/JU	Ok,M
6	Q2159-01MSD	TP05-MHO-WCMSD	BF142606.D	04 Jun 2025 14:38		RC/JU	Ok
7	Q2160-05	TP05-MHH-WC	BF142607.D	04 Jun 2025 15:17		RC/JU	Ok
8	Q2172-01	TP06-MHQ	BF142608.D	04 Jun 2025 15:47		RC/JU	Ok
9	Q2160-01	TP04-MHG-WC	BF142609.D	04 Jun 2025 16:17		RC/JU	Ok
10	Q2159-04	TP05-MHO-WC	BF142610.D	04 Jun 2025 16:47		RC/JU	Ok
11	Q2160-04	TP04-MHG-WC	BF142611.D	04 Jun 2025 17:17		RC/JU	Ok
12	Q2160-08	TP05-MHH-WC	BF142612.D	04 Jun 2025 17:48		RC/JU	Ok
13	Q2173-06	OR-400-CF-402B-COM	BF142613.D	04 Jun 2025 18:18		RC/JU	Ok
14	Q2173-12	OR-400-CF-402B-COM	BF142614.D	04 Jun 2025 18:47		RC/JU	Ok
15	Q2173-18	OR-400-CF-402B-COM	BF142615.D	04 Jun 2025 19:17		RC/JU	Ok
16	Q2173-07	OR-400-CF-402B-COM	BF142616.D	04 Jun 2025 19:47		RC/JU	Ok,M
17	Q2173-13	OR-400-CF-402B-COM	BF142617.D	04 Jun 2025 20:17		RC/JU	Ok,M
18	Q2173-01	OR-400-CF-402B-COM	BF142618.D	04 Jun 2025 20:47		RC/JU	Ok,M

Fax: 908 789 8922

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF060425

Review By Rahul		Review On	6/5/2025 1	1:49:57 AM	
Supervise By Jagrut		Supervise On	6/5/2025 1:	:15:58 PM	
SubDirectory	BF060425	HP Acquire Method	BNA_F	HP Processing Method	bf052025
STD. NAME	STD REF.#				
Tune/Reschk	SP6757				
Initial Calibration Stds	SP6784,SP6785,SI	P6786,SP6787,SP6788,SP6790,SP6789,S	SP6791		
CCC	SP6787				
Internal Standard/PEM	S12667,10ul/1000u	ıl sample			
ICV/I.BLK	SP6770				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

19	Q2172-04	TP06-MHQ	BF142619.D	04 Jun 2025 21:17		RC/JU	Ok
20	Q2185-04	TP02-MHB-WC	BF142620.D	04 Jun 2025 21:46		RC/JU	Ok
21	Q2185-08	TP01-MHA-WC	BF142621.D	04 Jun 2025 22:16		RC/JU	Ok
22	Q2182-01	OR-03-06022025	BF142622.D	04 Jun 2025 22:45		RC/JU	Ok,M
23	Q2178-01	RT2929	BF142623.D	04 Jun 2025 23:15	Analyze with further 10X Dilution first & then decide	RC/JU	Dilution

Fax: 908 789 8922

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF061125

Review By Rahul		Review On	6/11/2025 9):54:45 AM	
Supervise By	Jagrut	Supervise On	6/11/2025 9	6/11/2025 9:58:22 AM	
SubDirectory	BF061125	HP Acquire Method	BNA_F	HP Processing Method	BF061125
STD. NAME	STD REF.#				
Tune/Reschk Initial Calibration Stds			P6791		
ccc	SP6787				
Internal Standard/PEM	S12668,10ul/1000ul sam	pple			
ICV/I.BLK	SP6770				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BF142710.D	10 Jun 2025 15:42		RC/JU	Ok
2	SSTDCCC040	SSTDCCC040	BF142711.D	10 Jun 2025 16:11	A Fresh Calibration is required.	RC/JU	Not Ok
3	SSTDICC2.5	SSTDICC2.5	BF142712.D	10 Jun 2025 16:54		RC/JU	Ok
4	SSTDICC005	SSTDICC005	BF142713.D	10 Jun 2025 17:24		RC/JU	Ok
5	SSTDICC010	SSTDICC010	BF142714.D	10 Jun 2025 17:53		RC/JU	Ok,M
6	SSTDICC020	SSTDICC020	BF142715.D	10 Jun 2025 18:22		RC/JU	Ok
7	SSTDICCC040	SSTDICCC040	BF142716.D	10 Jun 2025 18:52	Calibration is Good for 8270 E, 8270 DOD and 625.1 methods.	RC/JU	Ok
8	SSTDICC050	SSTDICC050	BF142717.D	10 Jun 2025 19:21		RC/JU	Ok
9	SSTDICC060	SSTDICC060	BF142718.D	10 Jun 2025 19:50		RC/JU	Ok
10	SSTDICC080	SSTDICC080	BF142719.D	10 Jun 2025 20:19	Compound #09 removed from 80 PPM.	RC/JU	Ok,M
11	SSTDICV040	ICVBF061125	BF142720.D	10 Jun 2025 20:49		RC/JU	Ok
12	PB168323BL	PB168323BL	BF142721.D	10 Jun 2025 21:47		RC/JU	Ok
13	DFTPP	DFTPP	BF142722.D	11 Jun 2025 08:56		RC/JU	Ok
14	SSTDCCC040	SSTDCCC040	BF142723.D	11 Jun 2025 09:24		RC/JU	Ok
15	PB168376BL	PB168376BL	BF142724.D	11 Jun 2025 09:53		RC/JU	Ok
16	PB168376BS	PB168376BS	BF142725.D	11 Jun 2025 10:22		RC/JU	Ok,M
17	PB168234BS	PB168234BS	BF142726.D	11 Jun 2025 10:51		RC/JU	Ok,M

D

E

Н

_

K

 ${\tt 284~Sheffield~Street,~Mountainside,~New~Jersey~07092,~Phone:908~789~8900,}\\$

Fax: 908 789 8922

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF061125

Review By Rahul		Review On	6/11/2025 9			
Supervise By Jagrut		Supervise On	6/11/2025 9	6/11/2025 9:58:22 AM		
SubDirectory	BF061125	HP Acquire Method	BNA_F	HP Processing Method	BF061125	
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SF	P6786,SP6787,SP6788,SP6790,SP6789,	SP6791			
CCC	SP6787					
Internal Standard/PEM	S12668,10ul/1000ul	l sample				
ICV/I.BLK	SP6770					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

18	PB168285BS	PB168285BS	BF142727.D	11 Jun 2025 11:21		RC/JU	Ok,M
19	PB168285BSD	PB168285BSD	BF142728.D	11 Jun 2025 11:50		RC/JU	Ok,M
20	PB168378BS	PB168378BS	BF142729.D	11 Jun 2025 12:19		RC/JU	Ok,M
21	PB168378BSD	PB168378BSD	BF142730.D	11 Jun 2025 12:49		RC/JU	Ok,M
22	PB168378BL	PB168378BL	BF142731.D	11 Jun 2025 13:18		RC/JU	Ok
23	Q2264-04	EF-WW	BF142732.D	11 Jun 2025 13:52	Surrogate and Internal Standard Failed	RC/JU	Ok
24	Q2268-10	FB-20250605	BF142733.D	11 Jun 2025 14:21		RC/JU	Ok
25	Q2268-03	MW-2-20250605	BF142734.D	11 Jun 2025 14:50	Need 2X Dilution	RC/JU	Dilution
26	Q2268-04MS	MW-2-20250605MS	BF142735.D	11 Jun 2025 15:20		RC/JU	Ok,M
27	Q2268-05MSD	MW-2-20250605MSD	BF142736.D	11 Jun 2025 15:50		RC/JU	Ok
28	Q2268-06	MW-2-20250605-A	BF142737.D	11 Jun 2025 16:19	Need 2X Dilution	RC/JU	Dilution
29	Q2268-07	MW-6-20250605	BF142738.D	11 Jun 2025 16:49	Internal Standard Fail, Need 2X Dilution	RC/JU	Dilution
30	Q2268-08	MW-3-20250605	BF142739.D	11 Jun 2025 17:19	Internal Standard Fail, Need 2X Dilution	RC/JU	Dilution
31	Q2273-01	WC-4	BF142740.D	11 Jun 2025 17:49		RC/JU	Ok
32	Q2273-05	WC-6	BF142741.D	11 Jun 2025 18:18		RC/JU	Ok
33	Q2273-05MS	WC-6MS	BF142742.D	11 Jun 2025 18:48		RC/JU	Ok
34	Q2273-05MSD	WC-6MSD	BF142743.D	11 Jun 2025 19:18		RC/JU	Ok
35	Q2268-03DL	MW-2-20250605DL	BF142744.D	11 Jun 2025 19:48		RC/JU	Ok

Fax: 908 789 8922

Instrument ID: BNA_F

Daily Analysis Runlog For Sequence/QCBatch ID # BF061125

Review By Rahul		Review On	6/11/2025 9	9:54:45 AM	
Supervise By	Jagrut	Supervise On	6/11/2025 9	9:58:22 AM	
SubDirectory	BF061125	HP Acquire Method	BNA_F	HP Processing Method	BF061125
STD. NAME	STD REF.#				
Tune/Reschk	SP6757				
Initial Calibration Stds	SP6784,SP6785,SP	6786,SP6787,SP6788,SP6790,SP6789,S	SP6791		
CCC	SP6787				
Internal Standard/PEM	S12668,10ul/1000ul	sample			
ICV/I.BLK	SP6770				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

36	Q2268-03	02268-03 MW-2-20250605 BF14274		11 Jun 2025 20:17	Already analyzed with OK status	RC/JU	Not Ok
37	Q2280-01	VNJ-210	BF142746.D	11 Jun 2025 20:47	Internal standard fail	RC/JU	ReRun

Instrument ID:

BNA_P

Daily Analysis Runlog For Sequence/QCBatch ID # BP060625

Review By	Rahul	Review On	6/9/2025 11:3		
Supervise By	Jagrut	Supervise On	6/9/2025 12:09:52 PM		
SubDirectory	BP060625	HP Acquire Method	BNA_P	HP Processing Method	BP060625
STD. NAME	STD REF.#				
Tune/Reschk	SP6757				
Initial Calibration Stds	SP6784,SP6785,SP6786	SP6787,SP6788,SP6790,SP6789,SP6	6791		
ccc	SP6787				
Internal Standard/PEM	S12667,10ul/1000ul samp	ble			
ICV/I.BLK	SP6796				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

_							
Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BP024859.D	06 Jun 2025 09:49		RC/JU	Ok
2	SSTDICC2.5	SSTDICC2.5	BP024860.D	06 Jun 2025 10:30		RC/JU	Ok
3	SSTDICC005	SSTDICC005	BP024861.D	06 Jun 2025 11:11		RC/JU	Ok,M
4	SSTDICC010	SSTDICC010	BP024862.D	06 Jun 2025 11:52		RC/JU	Ok,M
5	SSTDICC020	SSTDICC020	BP024863.D	06 Jun 2025 12:33	Calibration is Good for 8270 E, 8270 DOD and 625.1 methods.	RC/JU	Ok,M
6	SSTDICCC040	SSTDICCC040	BP024864.D	06 Jun 2025 13:14	Compound#54 & 56 are Kept on LR	RC/JU	Ok
7	SSTDICC050	SSTDICC050	BP024865.D	06 Jun 2025 13:56		RC/JU	Ok
8	SSTDICC060	SSTDICC060	BP024866.D	06 Jun 2025 14:37		RC/JU	Ok
9	SSTDICC080	SSTDICC080	BP024867.D	06 Jun 2025 15:18		RC/JU	Ok
10	SSTDICV040	ICVBP060625	BP024868.D	06 Jun 2025 17:09		RC/JU	Ok,M
11	PB168259BL	PB168259BL	BP024869.D	06 Jun 2025 17:50		RC/JU	Ok

Fax: 908 789 8922

Instrument ID: BNA_P

Daily Analysis Runlog For Sequence/QCBatch ID # BP061125

Review By anahy		Review On	6/12/2025 9	6/12/2025 9:31:34 AM				
Supervise By	Supervise By mohammad		6/13/2025	9:04:12 AM				
SubDirectory	BP061125	HP Acquire Method	BNA_P	HP Processing Method	BP060625			
STD. NAME	STD REF.#							
Tune/Reschk	SP6757							
Initial Calibration Stds	SP6784,SP6785,SP6786	S,SP6787,SP6788,SP6790,SP6789,S	P6791					
CCC	SP6787							
Internal Standard/PEM	S12668,10ul/1000ul sam	ple						
ICV/I.BLK	SP6796							
Surrogate Standard								
MS/MSD Standard								
LCS Standard								

Sr#	SampleId	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BP024904.D	11 Jun 2025 09:29		RC/JU	Ok
2	SSTDCCC040	SSTDCCC040	BP024905.D	11 Jun 2025 10:09		RC/JU	Ok,M
3	PB168300BL	PB168300BL	BP024906.D	11 Jun 2025 10:50		RC/JU	Ok
4	PB168300BS	PB168300BS	BP024907.D	11 Jun 2025 11:31		RC/JU	Ok
5	Q2176-03	TP-25	BP024908.D	11 Jun 2025 12:18		RC/JU	Ok
6	Q2176-05	TP-28	BP024909.D	11 Jun 2025 12:59		RC/JU	Ok
7	Q2207-01	BU-703-COMP-01	BP024910.D	11 Jun 2025 13:40		RC/JU	Ok
8	Q2227-01	TP07-MHH-WC	BP024911.D	11 Jun 2025 14:21		RC/JU	Ok
9	Q2228-01	TP08-MHI-WC	BP024912.D	11 Jun 2025 15:02		RC/JU	Ok
10	Q2226-01	TP06-MHI-WC	BP024913.D	11 Jun 2025 15:43		RC/JU	Ok
11	Q2244-01	TP03-MHC	BP024914.D	11 Jun 2025 16:24		RC/JU	Ok
12	Q2244-01MS	TP03-MHCMS	BP024915.D	11 Jun 2025 17:05		RC/JU	Ok
13	Q2244-01MSD	TP03-MHCMSD	BP024916.D	11 Jun 2025 17:46		RC/JU	Ok
14	Q2177-02DL	B-187-SB01DL	BP024917.D	11 Jun 2025 18:27		RC/JU	Ok,M
15	Q2241-01	TP-N	BP024918.D	11 Jun 2025 19:08		RC/JU	Ok
16	Q2198-03	B-207-SB02	BP024919.D	11 Jun 2025 19:49		RC/JU	Ok,M
17	Q2125-07	GSB3	BP024920.D	11 Jun 2025 20:30		RC/JU	Ok
18	Q2241-05	TP-S	BP024921.D	11 Jun 2025 21:11		RC/JU	Ok

Fax: 908 789 8922

Instrument ID: BNA_P

Daily Analysis Runlog For Sequence/QCBatch ID # BP061125

Review By anahy		Review On	6/12/2025 9	6/12/2025 9:31:34 AM				
Supervise By	mohammad	Supervise On	6/13/2025	9:04:12 AM				
SubDirectory	BP061125	HP Acquire Method	BNA_P	HP Processing Method	BP060625			
STD. NAME	STD REF.#							
Tune/Reschk	SP6757							
Initial Calibration Stds	SP6784,SP6785,SP	6786,SP6787,SP6788,SP6790,SP6789,	SP6791					
CCC	SP6787							
Internal Standard/PEM	S12668,10ul/1000ul	sample						
ICV/I.BLK	SP6796							
Surrogate Standard								
MS/MSD Standard								
LCS Standard								

EXTRACTION LOGPAGE

SOP ID:	M3541-ASE Extraction	on-14						
Clean Up SOP #:	N/A			Ex	traction Start I	Date :	06/04/202	5
Matrix :	Solid			Ex	traction Start 1	lme :	09:10	
Weigh By:	EH	Extraction By	v: R1		traction End Da			-
Balance check:	RJ	•					06/04/202	2
	<u>KJ</u>	Filter By	y: <u>RJ</u>	Ех	traction End Ti	me :	12:40	
Balance ID:	EX-SC-2	pH Meter II): N/A	Со	ncentration By	:	EH	
pH Strip Lot#:	N/A	Hood II	3,7	Su	pervisor By :		RUPESH	
Extraction Method:	Seperatory Funne	Continio	us Liquid/Lid	biup	Sonication	Waste	Dilution	√Soxhle
Standared Name		MLS USED		Concentratio	n ug/mL	STD R	EF. # FROM	LOG
Spike Sol 1		1.0ML		50/100 PPM		SP679	94	
Surrogate		1.0ML		100/150 PPM		SP675		
N/A		N/A		N/A		N/A		
N/A		N/A		N/A		N/A		
N/A		N/A		N/A		N/A		
Chemical Used			ML/SAM	PLE USED	T	Lot N	lumber	
MeCl2/Acetone/1:1			N/A		EP2612			
Baked Na2SO4			N/A		EP2620			$\overline{}$
Sand			N/A		EP2865			
Methylene Chloride			N/A		E3939			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A N/A		N/A			
N/A			N/A		N/A N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
extraction Conformar 1.5ML Vial Lot # 2210			ne.					
D Bath ID:	N/A			Envap	ID:	NEVAP-02	2	
D Bath Temperature	. N/A	.		Envap '	Temperature:	40 °C	<u> </u>	
Date / Time	Prepped Sam	ple Relinquished	By/Locatio	on .	Received	By/Loca	ation	
6/4/25		RS (Ext-la			0.1	i		
12:W					K.C/.	Svoc		
10.00	Preparation 0	Group			Analysis	Group		

Analysis Group

EXTRACTION LOGPAGE

PrepBatch ID: PB168234

Analytical Method: M3541-ASE Extraction-14 Concentration Date: 06/04/2025

Sample ID	Client Sample ID	Test	(g)/ mL	PH	Surr	/Spike By:	Final Vol.	JarID	Comments	Prep
Sample 10	Client Sample 1D	lest	Gy mr	"	AddedBy	VerifiedBy	(mL)	Jarin	Comments	Pos
PB168234BL	SBLK234	SVOC-TCL BNA -20	30.02	N/A	ritesh	Evelyn	1			U3-1
PB168234BS	SLCS234	SVOC-TCL BNA -20	30.03	N/A	ritesh	Evelyn	1			2
Q2125-07	GSB3	SVOCMS Group1	30.07	N/A	ritesh	Evelyn	1			3
Q2159-01	TP05-MHO-WC	SVOC-TCL BNA -20	50.07	N/A	ritesh	Evelyn	1	E		4
Q2159-01MS	TP05-MHO-WCMS	SVOC-TCL BNA -20	50.04	N/A	ritesh	Evelyn	1	E		5
Q2159-01MS D	TP05-MHO-WCMSD	SVOC-TCL BNA -20	50.02	N/A	ritesh	Evelyn	1	E		6
Q2160-01	TP04-MHG-WC	SVOC-TCL BNA -20	50.04	N/A	ritesh	Evelyn	1	E		U6-1
Q2160-05	TP05-MHG-WC	SVOC-TCL BNA -20	50.02	N/A	ritesh	Evelyn	1	E		2
Q2161-01	B27-SOIL-SAMPLE	SVOCMS Group1	30.06	N/A	ritesh	Evelyn	1	В		3
Q2161-02	B28-SOIL-SAMPLE	SVOCMS Group1	30.08	N/A	ritesh	Evelyn	1	В		4
Q2172-01	TP06-MHQ	SVOC-TCL BNA -20	50.05	N/A	ritesh	Evelyn	1	E		5
Q2173-01	OR-400-CF-402B-COMP-2 3	SVOC-TCL BNA -20	50.01	N/A	ritesh	Evelyn	1	E		6
Q2173-07	OR-400-CF-402B-COMP-2 4	SVOC-TCL BNA -20	50.02	N/A	ritesh	Evelyn	1	E		U1-1
Q2173-13	OR-400-CF-402B-COMP-2 5	SVOC-TCL BNA -20	50.06	N/A	ritesh	Evelyn	1	E		2
Q2176-01	TP-46	SVOC-TCL BNA -20	30.02	N/A	ritesh	Evelyn	1	Е		3
Q2176-02	TP-56	SVOC-TCL BNA -20	30.06	N/A	ritesh	Evelyn	1	E		4
Q2176-03	TP-25	SVOC-TCL BNA -20	30.05	N/A	ritesh	Evelyn	1	E		5
Q2176-04	TP-26	SVOC-TCL BNA -20	30.01	N/A	ritesh	Evelyn	1	E		6
Q2176-05	TP-28	SVOC-TCL BNA -20	30.05	N/A	ritesh	Evelyn	1	Е		U2-1
Q2176-06	TP-27	SVOC-TCL BNA -20	30.07	N/A	ritesh	Evelyn	1	Е		2
Q2176-07	TP-31	SVOC-TCL BNA -20	30.04	N/A	ritesh	Evelyn	1	Е		3
Q2176-08	TP-65	SVOC-TCL BNA -20	30.05	N/A	ritesh	Evelyn	1	Е		4
Q2185-01	TP02-MHB-WC	SVOC-TCL BNA -20	50.06	N/A	ritesh	Evelyn	1	В		5
Q2185-05	TP01-MHB-WC	SVOC-TCL BNA -20	50.02	N/A	ritesh	Evelyn	1	В		6

^{*} Extracts relinguished on the same date as received.

WORKLIST(Hardcopy Internal Chain)

WorkList Name:

Q2173

WorkList ID: 189861

Department: Extraction

Date: 06-04-2025 09:03:52

Sample	Customer Sample	Matrix	Test	Preservative	Customer	Raw Sample Storage Location	Collect Date	Method
Q2176-01	TP-46	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/28/2025	8270E
Q2176-02	TP-56	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-03	TP-25	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-04	TP-26	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-05	TP-28	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-06	TP-27	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-07	TP-31	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/29/2025	8270E
Q2176-08	TP-65	Solid	SVOC-TCL BNA -20	Cool 4 deg C	CAMP02	L41	05/30/2025	8270E
Q2125-07	GSB3	Solid	SVOCMS Group1	Cool 4 deg C	GENV01	L31	05/23/2025	8270E
Q2161-01	B27-SOIL-SAMPLE	Solid	SVOCMS Group1	Cool 4 deg C	SCAL01	L41	05/12/2025	8270E
Q2161-02	B28-SOIL-SAMPLE	Solid	SVOCMS Group1	Cool 4 deg C	SCAL01	L41	05/12/2025	8270E
Q2159-01	TP05-MHO-WC	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L41	05/29/2025	8270E
Q2160-01	TP04-MHG-WC	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L41	05/29/2025	8270E
Q2160-05	TP05-MHH-WC	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L41	05/29/2025	8270E
Q2172-01	TP06-MHQ	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	05/30/2025	8270E
Q2173-01	OR-400-CF-402B-COMP-23	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	05/30/2025	
Q2173-07	OR-400-CF-402B-COMP-24	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	05/30/2025	8270E
Q2173-13	OR-400-CF-402B-COMP-25	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	05/30/2025	8270E
Q2185-01	TP02-MHB-WC	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	06/02/2025	8270E
Q2185-05	TP01-MHB-WC	Solid	SVOC-TCL BNA -20	Cool 4 deg C	PSEG03	L31	06/02/2025	

Date/Time

Raw Sample Received by:

Raw Sample Relinquished by:

Date/Time

Raw Sample Received by:

Raw Sample Relinquished by:

LAB CHRONICLE

OrderID: Q2125

Client: G Environmental
Contact: Gary Landis

OrderDate: 5/23/2025 11:50:35 AM

Project: Seely Location: L31

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2125-07	GSB3	SOIL			05/23/25			05/23/25
_			SVOCMS Group1	8270E		06/04/25	06/11/25	
Q2125-08	GSB3	Water			05/23/25			05/23/25
4 === 3 63	2320		SPLP BNA Group1	8270E	,,	06/06/25	06/09/25	, - ,

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q2125

Client: G Environmental

Sample ID **Client ID** MDL RDL Units Parameter Concentration \mathbf{C} Client ID: GSB3 Q2125-08 GSB3 WATER 2-Methylnaphthalene 20.000 5 ug/L 0.56 **Total Svoc:** 20.00

Total Concentration: 20.00

SAMPLE DATA

Report of Analysis

Client: G Environmental Date Collected: 06/06/25 Project: Seely Date Received: 06/06/25 Client Sample ID: PB168340TB SDG No.: Q2125 Lab Sample ID: PB168340TB Matrix: Water Analytical Method: 8270E % Solid: 0 Sample Wt/Vol: 1000 Final Vol: 1000 uL Units: mLSoil Aliquot Vol: uL Test: SPLP BNA Group1 Level: Extraction Type: Decanted: Ν LOW GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method: SW3510C

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BM050239.D
 1
 06/06/25 09:15
 06/09/25 12:44
 PB168340

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
91-20-3	Naphthalene	0.50	U	0.50	5.00	ug/L
91-57-6	2-Methylnaphthalene	0.56	U	0.56	5.00	ug/L
SURROGATES						
4165-60-0	Nitrobenzene-d5	93.4		30 (67) - 130 (132)	93%	SPK: 100
321-60-8	2-Fluorobiphenyl	93.6		30 (52) - 130 (132)	94%	SPK: 100
1718-51-0	Terphenyl-d14	90.3		30 (42) - 130 (152)	90%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	296000	7.769			
1146-65-2	Naphthalene-d8	1100000	10.551			
15067-26-2	Acenaphthene-d10	626000	14.398			
1517-22-2	Phenanthrene-d10	1240000	17.133			
1719-03-5	Chrysene-d12	1300000	21.362			
1520-96-3	Perylene-d12	1380000	24.344			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3 SDG No.: Q2125 Lab Sample ID: Q2125-08 Matrix: Water Analytical Method: 8270E % Solid: 0 Sample Wt/Vol: 1000 Final Vol: 1000 uL Units: mLSoil Aliquot Vol: uL Test: SPLP BNA Group1 Level: Extraction Type: Decanted: Ν LOW GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method: SW3510C

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BM050240.D
 1
 06/06/25 09:15
 06/09/25 13:29
 PB168340

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
91-20-3	Naphthalene	0.50	U	0.50	5.00	ug/L
91-57-6	2-Methylnaphthalene	20.0		0.56	5.00	ug/L
SURROGATES						
4165-60-0	Nitrobenzene-d5	97.0		30 (67) - 130 (132)	97%	SPK: 100
321-60-8	2-Fluorobiphenyl	88.3		30 (52) - 130 (132)	88%	SPK: 100
1718-51-0	Terphenyl-d14	90.1		30 (42) - 130 (152)	90%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	259000	7.769			
1146-65-2	Naphthalene-d8	1010000	10.551			
15067-26-2	Acenaphthene-d10	582000	14.398			
1517-22-2	Phenanthrene-d10	1100000	17.133			
1719-03-5	Chrysene-d12	1120000	21.362			
1520-96-3	Pervlene-d12	1280000	24.338			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

QC SUMMARY

Fax: 908 789 8922

Surrogate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: 8270E

						Limi	its (%)
Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Low	High
PB168340BL	PB168340BL	Nitrobenzene-d	5 100	88.6	89	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	89.3	89	30 (52)	130 (132)
		Terphenyl-d14	100	86.4	86	30 (42)	130 (152)
PB168340BS	PB168340BS	Nitrobenzene-d	5 100	83.8	84	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	80.9	81	30 (52)	130 (132)
		Terphenyl-d14	100	82.7	83	30 (42)	130 (152)
PB168340TB	PB168340TB	Nitrobenzene-d5	5 100	93.4	93	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	93.6	94	30 (52)	130 (132)
		Terphenyl-d14	100	90.3	90	30 (42)	130 (152)
Q2125-08	GSB3	Nitrobenzene-d5	5 100	97.0	97	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	88.3	88	30 (52)	130 (132)
		Terphenyl-d14	100	90.1	90	30 (42)	130 (152)
Q2125-08MS	GSB3MS	Nitrobenzene-d5	5 100	90.9	91	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	85.0	85	30 (52)	130 (132)
		Terphenyl-d14	100	92.4	92	30 (42)	130 (152)
Q2125-08MSD	GSB3MSD	Nitrobenzene-d5	5 100	92.0	92	30 (67)	130 (132)
		2-Fluorobipheny	yl 100	85.8	86	30 (52)	130 (132)
		Terphenyl-d14	100	93.9	94	30 (42)	130 (152)

Fax: 908 789 8922

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: SW8270E

Parameter		Spike	Sample Result	Result	Units	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID:	Q2125-08MS		Client Sample ID:	: GS	B3MS				DataFile:	BM050241.	D	
Naphthalene		50	0	59.0	ug/L	118				70 (17)	130 (157)	
2-Methylnaphthale	ene :	50	20.0	170	ug/L	300	*			70 (38)	130 (146)	

F

. Т

Fax: 908 789 8922

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: SW8270E

Parameter	Spike	Sample Result	Result	Units	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID:	Q2125-08MSD	Client Sample ID	: GSI	B3MSD				DataFile:	BM050242.	D	
Naphthalene	50	0	59.1	ug/L	118		0		70 (17)	130 (157)	20 (20)

Fax: 908 789 8922

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.: **Q2125**

Client: G Environmental

Analytical Method: 8270E DataFile: BM050238.D

								RPD	Limits		
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB168340BS	Naphthalene	50	45.8	ug/L	92				70 (64)	130 (107)	
	2-Methylnaphthalene	50	47.5	ug/L	95				70 (64)	130 (107)	

В

D

E

1

4B

SEMIVOLATILE METHOD BLANK SUMMARY

LPA	SAMPLE	NO.	
1601	7.4 O D T		

	PB168340BL
•	

Lab Name: CHEMTECH Contract: GENV01

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

Lab File ID: BM050237.D Lab Sample ID: PB168340BL

Instrument ID: BNA_M Date Extracted: 06/06/2025

Matrix: (soil/water) Water Date Analyzed: 06/09/2025

Level: (low/med) LOW Time Analyzed: 11:26

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA	LAB	LAB	DATE
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
PB168340BS	PB168340BS	BM050238.D	06/09/2025
PB168340TB	PB168340TB	BM050239.D	06/09/2025
GSB3	Q2125-08	BM050240.D	06/09/2025
GSB3MS	Q2125-08MS	BM050241.D	06/09/2025
GSB3MSD	Q2125-08MSD	BM050242.D	06/09/2025

COMMENTS:

Fax: 908 789 8922

5 F

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH	Contract: GENV01	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BM050193.D	DFTPP Injection Date:	06/05/2025
Instrument ID: BNA_M	DFTPP Injection Time:	08:40

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	20.3
68	Less than 2.0% of mass 69	0.6 (1.6) 1
69	Mass 69 relative abundance	37.2
70	Less than 2.0% of mass 69	0.2 (0.6) 1
127	10.0 - 80.0% of mass 198	47.5
197	Less than 2.0% of mass 198	0.4
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	7
275	10.0 - 60.0% of mass 198	24.6
365	Greater than 1% of mass 198	3.2
441	Present, but less than mass 443	11.6
442	Greater than 50% of mass 198	100
443	15.0 - 24.0% of mass 442	14.8 (19.9) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDICC2.5	SSTDICC2.5	BM050194.D	06/05/2025	09:20
SSTDICC005	SSTDICC005	BM050195.D	06/05/2025	09:59
SSTDICC010	SSTDICC010	BM050196.D	06/05/2025	10:38
SSTDICC020	SSTDICC020	BM050197.D	06/05/2025	11:17
SSTDICCC040	SSTDICCC040	BM050198.D	06/05/2025	11:57
SSTDICC050	SSTDICC050	BM050199.D	06/05/2025	12:36
SSTDICC060	SSTDICC060	BM050200.D	06/05/2025	13:16
SSTDICC080	SSTDICC080	BM050201.D	06/05/2025	13:56

Fax: 908 789 8922

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH	Contract: GENVUI	
ab Code: CHEM	SAS No.: Q2125	SDG NO.: Q2125
ab File ID: BM050235.D	DFTPP Injection Date:	06/09/2025
Instrument ID: BNA_M	DFTPP Injection Time:	10:07

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10.0 - 80.0% of mass 198	20.7	
68	Less than 2.0% of mass 69	0.6 (1.6)	1
69	Mass 69 relative abundance	36.3	
70	Less than 2.0% of mass 69	0.2 (0.5)	1
127	10.0 - 80.0% of mass 198	46.9	
197	Less than 2.0% of mass 198	0.4	
198	Base Peak, 100% relative abundance	100	
199	5.0 to 9.0% of mass 198	6.9	
275	10.0 - 60.0% of mass 198	24.7	
365	Greater than 1% of mass 198	3.2	
441	Present, but less than mass 443	12.5	
442	Greater than 50% of mass 198	322	
443	15.0 - 24.0% of mass 442	16.1 (19.7)	2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDCCC040	SSTDCCC040	BM050236.D	06/09/2025	10:47
PB168340BL	PB168340BL	BM050237.D	06/09/2025	11:26
PB168340BS	PB168340BS	BM050238.D	06/09/2025	12:05
PB168340TB	PB168340TB	BM050239.D	06/09/2025	12:44
GSB3	Q2125-08	BM050240.D	06/09/2025	13:29
GSB3MS	Q2125-08MS	BM050241.D	06/09/2025	14:08
GSB3MSD	Q2125-08MSD	BM050242.D	06/09/2025	14:47

Fax: 908 789 8922

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/09/2025

Lab File ID: BM050236.D Time Analyzed: 10:47

Instrument ID: BNA_M GC Column: ZB-GR ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	371799	7.769	1449700	10.56	826607	14.40
	UPPER LIMIT	743598	8.269	2899400	11.057	1653210	14.898
	LOWER LIMIT	185900	7.269	724850	10.057	413304	13.898
	EPA SAMPLE NO.						
01	PB168340BL	308898	7.77	1157440	10.56	647360	14.40
02	PB168340BS	320774	7.77	1257050	10.56	743659	14.40
03	PB168340TB	295930	7.77	1103530	10.55	626432	14.40
04	GSB3	258819	7.77	1009930	10.55	581596	14.40
05	GSB3MS	289351	7.77	1143580	10.56	672610	14.40
06	GSB3MSD	281877	7.77	1107270	10.56	644595	14.40

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

Fax: 908 789 8922

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

EPA Sample No.: SSTDCCC040 Date Analyzed: 06/09/2025

Lab File ID: BM050236.D Time Analyzed: 10:47

Instrument ID: BNA M GC Column: ZB-GR ID: 0.25 (mm)

			•	<u> </u>			
		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	1554640	17.139	1640720	21.374	1782070	24.344
	UPPER LIMIT	3109280	17.639	3281440	21.874	3564140	24.844
	LOWER LIMIT	777320	16.639	820360	20.874	891035	23.844
	EPA SAMPLE NO.						
01	PB168340BL	1268440	17.13	1357310	21.37	1477670	24.34
02	PB168340BS	1440530	17.14	1506860	21.37	1650440	24.34
03	PB168340TB	1242520	17.13	1296950	21.36	1380170	24.34
04	GSB3	1095570	17.13	1122300	21.36	1282470	24.34
05	GSB3MS	1263270	17.14	1232810	21.37	1346660	24.34
06	GSB3MSD	1197070	17.14	1175820	21.37	1237450	24.34

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- $\mbox{\#}$ Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

QC SAMPLE DATA

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168340BL SDG No.: Q2125

Lab Sample ID: PB168340BL Matrix: Water
Analytical Method: 8270E % Solid: 0

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SPLP BNA Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

Prep Method: SW3510C

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BM050237.D
 1
 06/06/25 09:15
 06/09/25 11:26
 PB168340

Units **MDL CAS Number** Conc. Qualifier LOQ / CRQL **Parameter TARGETS** 91-20-3 Naphthalene 0.50 U 0.50 5.00 ug/L 91-57-6 2-Methylnaphthalene 0.56 U 0.56 5.00 ug/L SURROGATES 89% 4165-60-0 Nitrobenzene-d5 88.6 30 (67) - 130 (132) SPK: 100 89% 321-60-8 2-Fluorobiphenyl 89.3 30 (52) - 130 (132) SPK: 100 1718-51-0 Terphenyl-d14 86.4 30 (42) - 130 (152) 86% SPK: 100 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 309000 7.769 1146-65-2 Naphthalene-d8 1160000 10.557 15067-26-2 Acenaphthene-d10 647000 14.398 1517-22-2 Phenanthrene-d10 1270000 17.133 1719-03-5 Chrysene-d12 1360000 21.368 1520-96-3 Pervlene-d12 24.344 1480000

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of OC limits

D = Dilution

() = Laboratory InHouse Limit

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168340BS SDG No.: Q2125

Lab Sample ID: PB168340BS Matrix: Water
Analytical Method: 8270E % Solid: 0

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SPLP BNA Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

Prep Method: SW3510C

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BM050238.D 1 06/06/25 09:15 06/09/25 12:05 PB168340

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
91-20-3	Naphthalene	45.8		0.50	5.00	ug/L
91-57-6	2-Methylnaphthalene	47.5		0.56	5.00	ug/L
SURROGATES						
4165-60-0	Nitrobenzene-d5	83.8		30 (67) - 130 (132)	84%	SPK: 100
321-60-8	2-Fluorobiphenyl	80.9		30 (52) - 130 (132)	81%	SPK: 100
1718-51-0	Terphenyl-d14	82.7		30 (42) - 130 (152)	83%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	321000	7.769			
1146-65-2	Naphthalene-d8	1260000	10.557			
15067-26-2	Acenaphthene-d10	744000	14.398			
1517-22-2	Phenanthrene-d10	1440000	17.139			
1719-03-5	Chrysene-d12	1510000	21.374			
1520-96-3	Perylene-d12	1650000	24.344			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3MS SDG No.: Q2125 Lab Sample ID: Q2125-08MS Matrix: Water % Solid: Analytical Method: 8270E 0 Sample Wt/Vol: 1000 Final Vol: 1000 uL Units: mLSoil Aliquot Vol: uL Test: SPLP BNA Group1 Level: Extraction Type: Decanted: Ν LOW GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method: SW3510C

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BM050241.D
 1
 06/06/25 09:15
 06/09/25 14:08
 PB168340

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
T. D. C. D. C.						
TARGETS	N. 14.1	5 0.0		0.50	7 00	/T
91-20-3	Naphthalene	59.0		0.50	5.00	ug/L
91-57-6	2-Methylnaphthalene	170	E	0.56	5.00	ug/L
SURROGATES						
4165-60-0	Nitrobenzene-d5	90.9		30 (67) - 130 (132)	91%	SPK: 100
321-60-8	2-Fluorobiphenyl	85.0		30 (52) - 130 (132)	85%	SPK: 100
1718-51-0	Terphenyl-d14	92.4		30 (42) - 130 (152)	92%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	289000	7.769			
1146-65-2	Naphthalene-d8	1140000	10.557			
15067-26-2	Acenaphthene-d10	673000	14.398			
1517-22-2	Phenanthrene-d10	1260000	17.139			
1719-03-5	Chrysene-d12	1230000	21.368			
1520-96-3	Perylene-d12	1350000	24.344			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3MSD SDG No.: Q2125 Lab Sample ID: Q2125-08MSD Matrix: Water Analytical Method: 8270E % Solid: 0 Sample Wt/Vol: 1000 Final Vol: 1000 uL Units: mLSoil Aliquot Vol: uL Test: SPLP BNA Group1 Level: Extraction Type: Decanted: Ν LOW GPC Cleanup: Injection Volume: GPC Factor: 1.0 Ν PH:

Prep Method: SW3510C

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BM050242.D
 1
 06/06/25 09:15
 06/09/25 14:47
 PB168340

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
91-20-3	Naphthalene	59.1		0.50	5.00	ug/L
91-57-6	2-Methylnaphthalene	170	E	0.56	5.00	ug/L
SURROGATES						
4165-60-0	Nitrobenzene-d5	92.0		30 (67) - 130 (132)	92%	SPK: 100
321-60-8	2-Fluorobiphenyl	85.8		30 (52) - 130 (132)	86%	SPK: 100
1718-51-0	Terphenyl-d14	93.9		30 (42) - 130 (152)	94%	SPK: 100
INTERNAL STA	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	282000	7.769			
1146-65-2	Naphthalene-d8	1110000	10.557			
15067-26-2	Acenaphthene-d10	645000	14.398			
1517-22-2	Phenanthrene-d10	1200000	17.139			
1719-03-5	Chrysene-d12	1180000	21.368			
1520-96-3	Perylene-d12	1240000	24.344			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

CALIBRATION SUMMARY

Method Path : Z:\svoasrv\HPCHEM1\BNA_M\Methods\

Method File: 8270-BM060525.M

: ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Last Update : Thu Jun 05 16:20:25 2025 Response Via : Initial Calibration

Calibration Files

2.5 =BM050194.D 5 =BM050195.D 10 =BM050196.D 20 =BM050197.D 40 =BM050198.D 50 =BM050199.D 60 =BM050200.D 80 =BM0502

01.D

	Compound	2.5	5	10	20	40	50	60	80	Avg	%RSD
1) I	1,4-Dichlorobenzen.	••									
2)	1,4-Dioxane						0.511				7.69
3)	Pyridine						1.425				2.80
4)	n-Nitrosodimet						0.297				3.95
5) S	2-Fluorophenol						1.238				3.45
6)	Aniline						2.250				4.02
7) S	Phenol-d6						1.699				4.00
8)	2-Chlorophenol					-	1.418		1.288	1.319	4.02
9)	Benzaldehyde		1.188	1.080	1.096	0.878	0.975	0.804		1.003	14.43
10) C	Phenol		1.673	1.644	1.710	1.644	1.782	1.637	1.600	1.670	3.58
11)	bis(2-Chloroet		1.396	1.319	1.380	1.315	1.428	1.295	1.269	1.343	4.36
12)	1,3-Dichlorobe		1.516	1.462	1.491	1.412	1.545	1.485	1.409	1.474	3.46
13) C	1,4-Dichlorobe		1.619	1.544	1.564	1.450	1.591	1.525	1.444	1.534	4.34
14)	1,2-Dichlorobe		1.503	1.456	1.492	1.402	1.540	1.450	1.392	1.462	3.68
15)	Benzyl Alcohol		1.072	1.045	1.152	1.141	1.267	1.102	1.101	1.126	6.43
16)	2,2'-oxybis(1		1.012	0.949	0.974	0.909	0.978	0.863	0.845	0.933	6.68
17)	2-Methylphenol		1.078	1.042	1.133	1.108	1.207	1.077	1.068	1.102	4.96
18)	Hexachloroethane		0.564	0.544	0.552	0.533	0.593	0.559	0.543	0.556	3.51
19) P	n-Nitroso-di-n 0	.847									8.82
20)	3+4-Methylphenols						1.661				6.98
21) I	Naphthalene-d8				TCTI)					
22)	Acetophenone						0.519			0 500	4.03
23) S	Nitrobenzene-d5						0.414				5.42
24)	Nitrobenzene						0.370				4.10
25)	Isophorone						0.733				5.33
26) C	2-Nitrophenol						0.733				15.65
•											
27)	2,4-Dimethylph						0.332				3.80
28)	bis(2-Chloroet						0.470				4.42
29) C	2,4-Dichloroph						0.319				6.83
30)	1,2,4-Trichlor						0.337				3.72
31)	Naphthalene		1.111				1.061				4.79
32)	Benzoic acid						0.233				19.69
33)	4-Chloroaniline						0.477				4.37
34) C	Hexachlorobuta						0.202				3.74
35)	Caprolactam						0.112				13.48
36) C	4-Chloro-3-met						0.347				7.19
37)	<pre>2-Methylnaphth</pre>						0.679				4.78
38)	1-Methylnaphth		0.676	0.637	0.689	0.649	0.714	0.648	0.622	0.662	4.86

Method File: 8270-BM060525.M

39) I	Acenaphthene-d10	ISTD	
40)	1,2,4,5-Tetrac	0.586 0.561 0.585 0.541 0.589 0.607 0.574 0.578	3.71
41) P	Hexachlorocycl	0.295 0.305 0.339 0.341 0.382 0.401 0.392 0.351	12.02
42) S	2,4,6-Tribromo	0.210 0.213 0.238 0.231 0.254 0.233 0.214 0.227	6.99
43) C	2,4,6-Trichlor	0.346 0.347 0.379 0.375 0.414 0.402 0.396 0.380	6.93
44)	2,4,5-Trichlor	0.371 0.382 0.424 0.414 0.457 0.442 0.429 0.417	7.46
45) S	2-Fluorobiphenyl	1.589 1.536 1.532 1.377 1.463 1.480 1.364 1.477	5.67
46)	1,1'-Biphenyl	1.582 1.513 1.514 1.404 1.526 1.508 1.437 1.498	3.96
47)	2-Chloronaphth	1.221 1.194 1.180 1.084 1.171 1.177 1.123 1.164	3.94
48)	2-Nitroaniline	0.200 0.206 0.252 0.268 0.302 0.290 0.277 0.256	15.56
49)	Acenaphthylene	1.863 1.834 1.940 1.819 1.978 1.924 1.824 1.883	3.39
50)	Dimethylphthalate	1.339 1.285 1.398 1.343 1.474 1.344 1.284 1.353	4.92
51)	2,6-Dinitrotol	0.204 0.231 0.284 0.289 0.320 0.297 0.284 0.273	14.82
52) C	Acenaphthene	1.217 1.176 1.185 1.132 1.228 1.181 1.127 1.178	3.24
53)	3-Nitroaniline	0.231 0.252 0.312 0.323 0.360 0.336 0.314 0.304	15.16
54) P	2,4-Dinitrophenol	0.093 0.131 0.152 0.179 0.160 0.160 0.146	20.67
55)	Dibenzofuran	1.782 1.710 1.775 1.662 1.797 1.719 1.617 1.723	3.87
56) P	4-Nitrophenol	0.199 0.216 0.265 0.274 0.307 0.288 0.262 0.259	14.93
57)	2,4-Dinitrotol	0.250 0.283 0.365 0.396 0.447 0.398 0.380 0.360	19.28
58)	Fluorene	1.413 1.358 1.394 1.267 1.348 1.289 1.169 1.320	6.40
59)	2,3,4,6-Tetrac	0.338 0.330 0.370 0.365 0.401 0.371 0.350 0.361	6.60
60)	Diethylphthalate	1.314 1.272 1.416 1.346 1.490 1.317 1.238 1.342	6.43
61)	4-Chlorophenyl	0.675 0.656 0.667 0.611 0.660 0.623 0.573 0.638	5.81
62)	4-Nitroaniline	0.213 0.236 0.291 0.308 0.342 0.319 0.285 0.285	16.00
63)	Azobenzene	1.342 1.330 1.415 1.313 1.443 1.316 1.230 1.341	5.25
64) I	Phenanthrene-d10	ISTD	
65)	4,6-Dinitro-2	0.075 0.101 0.111 0.128 0.120 0.121 0.109	17.72
66) c	n-Nitrosodiphe	0.630 0.626 0.639 0.594 0.646 0.639 0.625 0.628	2.73
67)	4-Bromophenyl	0.207 0.204 0.215 0.204 0.228 0.217 0.218 0.213	4.13
68)	Hexachlorobenzene	0.249 0.240 0.253 0.238 0.261 0.255 0.249 0.249	3.29
69)	Atrazine	0.166 0.177 0.206 0.206 0.231 0.212 0.204 0.200	10.86
99)	ACI GETIIC	0.100 0.1// 0.200 0.200 0.251 0.212 0.204 0.200	10.00

66) c	n-Nitrosodiphe	0.630 0.	.626 0.639	0.594 0	.646 0.	.639	0.625	0.628	2.73
67)	4-Bromophenyl	0.207 0.	.204 0.215	0.204 0	.228 0.	.217	0.218	0.213	4.13
68)	Hexachlorobenzene	0.249 0.	.240 0.253	0.238 0	.261 0.	.255	0.249	0.249	3.29
69)	Atrazine	0.166 0.	.177 0.206	0.206 0	.231 0.	.212	0.204	0.200	10.86
70) C	Pentachlorophenol	0.133 0.	.138 0.165	0.164 0	.187 0.	.177	0.171	0.162	12.21
71)	Phenanthrene	1.239 1.	.156 1.160	1.071 1	.161 1.	144	1.068	1.143	5.14
72)	Anthracene	1.167 1.	.135 1.175	1.086 1	.181 1.	.165	1.092	1.143	3.46
73)	Carbazole	1.041 1.	.003 1.063	1.009 1	.103 1.	.085	0.985	1.041	4.30
74)	Di-n-butylphth	0.998 1.	.007 1.187	1.159 1	.300 1.	.187	1.093	1.133	9.53
75) C	Fluoranthene	1.180 1.	.139 1.231	1.178 1	.301 1.	284	1.121	1.205	5.77

76) I	Chrysene-d12	ISTD	
77)	Benzidine	0.381 0.568 0.617 0.689 0.600 0.520 0.562	18.64
78)	Pyrene	1.331 1.307 1.444 1.324 1.423 1.274 1.334 1.348	4.61
79) S	Terphenyl-d14	1.148 1.088 1.165 1.010 1.064 0.955 0.957 1.055	8.06
80)	Butylbenzylpht	0.322 0.347 0.460 0.490 0.563 0.480 0.485 0.450	18.95
81)	Benzo(a)anthra	1.271 1.231 1.298 1.218 1.338 1.280 1.225 1.266	3.47
82)	3,3'-Dichlorob	0.265 0.301 0.379 0.415 0.476 0.450 0.416 0.386	19.97
83)	Chrysene	1.235 1.184 1.225 1.151 1.256 1.217 1.161 1.204	3.27
84)	Bis(2-ethylhex	0.525 0.574 0.702 0.740 0.851 0.741 0.714 0.693	15.84
85) c	Di-n-octyl pht	0.641 0.729 0.936 1.114 1.359 1.245 1.169 1.028	26.08

Method Path : Z:\svoasrv\HPCHEM1\BNA_M\Methods\

Method File: 8270-BM060525.M

86) I Perylene-d12 -----ISTD-----

87) Indeno(1,2,3-c... 1.189 1.183 1.254 1.191 1.318 1.472 1.407 1.288 8.99 88) Benzo(b)fluora... 5.46 1.104 1.082 1.205 1.170 1.269 1.178 1.132 1.163

Benzo(k)fluora... 4.71 89) 1.141 1.149 1.222 1.167 1.295 1.190 1.144 1.187 90) C Benzo(a)pyrene 0.994 1.007 1.111 1.081 1.197 1.153 1.111 1.093 6.73

Dibenzo(a,h)an... 91) 0.954 0.966 1.021 0.972 1.075 1.188 1.141 1.045 8.83 8.57

92) Benzo(g,h,i)pe... 1.002 0.978 1.013 0.954 1.037 1.194 1.146 1.046

(#) = Out of Range

Fax: 908 789 8922

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: GENV01

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG No.: Q2125

Instrument ID: BNA_M Calibration Date/Time: 06/09/2025 10:47

Lab File ID: BM050236.D Init. Calib. Date(s): 06/05/2025 06/05/2025

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 09:20 13:56

GC Column: ZB-GR ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorophenol	1.199	1.191		-0.7	
Phenol-d6	1.578	1.515		-4.0	
Nitrobenzene-d5	0.385	0.385		0.0	
Naphthalene	1.034	0.973		-5.9	
2-Methylnaphthalene	0.624	0.587		-5.9	
2-Fluorobiphenyl	1.477	1.424		-3.6	
2,4,6-Tribromophenol	0.227	0.228		0.4	
Terphenyl-d14	1.055	0.983		-6.8	

All other compounds must meet a minimum RRF of 0.010.

SAMPLE RAW DATA

PB168340TB

ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050239.D

: 09 Jun 2025 12:44 Acq On

Operator : RC/JU Sample : PB168340TB

Misc

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 09 13:24:58 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Uni	its I	Dev(Min)
Internal Standards						
1) 1,4-Dichlorobenzene-d4	7.769	152	295930	20.000	ng	0.00
21) Naphthalene-d8	10.551	136	1103525	20.000	ng	0.00
39) Acenaphthene-d10	14.398	164	626432	20.000	ng	0.00
64) Phenanthrene-d10	17.133	188	1242521	20.000	ng	0.00
76) Chrysene-d12	21.362	240	1296945	20.000	ng	-0.01
86) Perylene-d12	24.344	264	1380174	20.000	ng	0.00
System Monitoring Compounds						
5) 2-Fluorophenol	5.357	112	2723065	153.498	ng	0.00
7) Phenol-d6	6.934	99	3368388	144.237	ng	0.00
23) Nitrobenzene-d5	8.916	82	1981708	93.396	ng	0.00
42) 2,4,6-Tribromophenol	15.880	330	1130617	158.678	ng	0.00
45) 2-Fluorobiphenyl	13.027	172	4330944	93.601	ng	0.00
79) Terphenyl-d14	19.768	244	6179766	90.295	ng	0.00
Target Compounds						Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

PB168340TB

ClientSampleId :

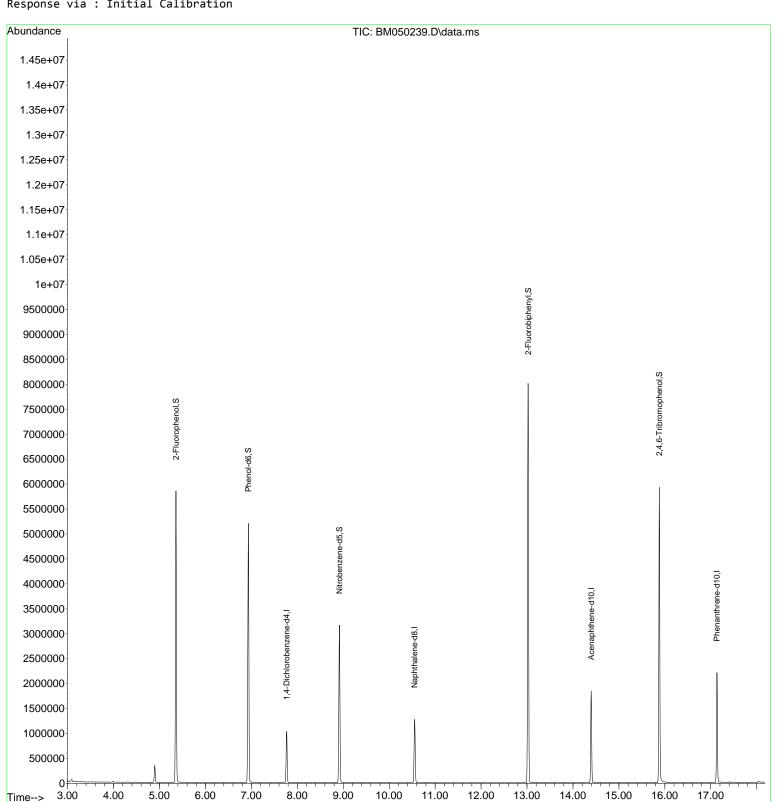
Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050239.D

Acq On : 09 Jun 2025 12:44

Operator : RC/JU Sample : PB168340TB

Misc


ALS Vial : 5 Sample Multiplier: 1

Quant Time: Jun 09 13:24:58 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

PB168340TB

ClientSampleId :

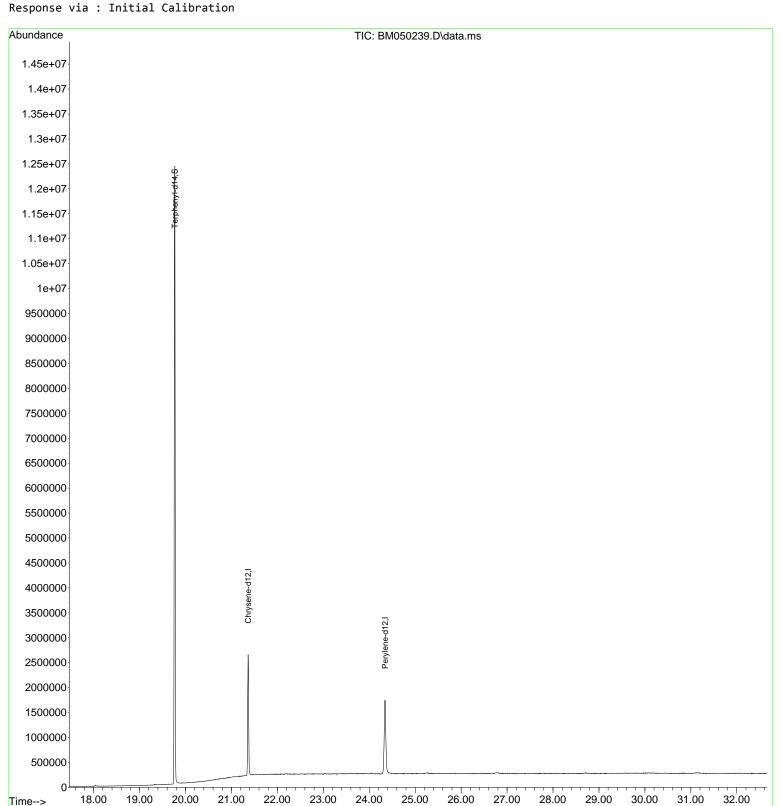
Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

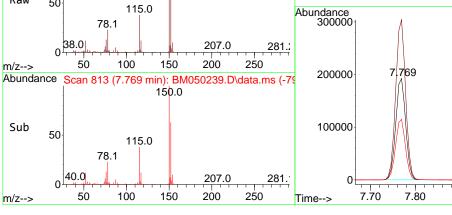
Data File : BM050239.D

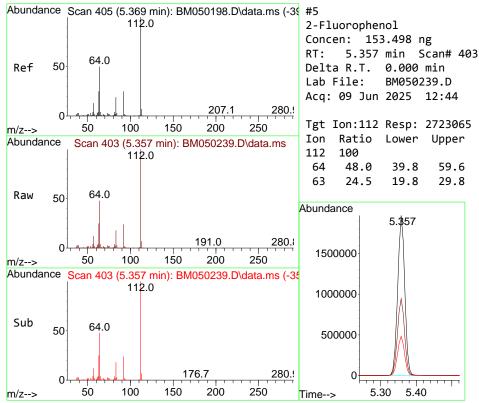
Acq On : 09 Jun 2025 12:44

Operator : RC/JU Sample : PB168340TB

Misc


ALS Vial : 5 Sample Multiplier: 1


Quant Time: Jun 09 13:24:58 2025


Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Mon Jun 09 11:54:38 2025
Response via: Initial Calibration

10.50 10.60 10.70

50

m/z-->

100

150

200

250

Time-->

14.898

14.40

400000

300000

200000

100000

Time-->

281.

281.

250

250

207.1

209.0

200

200

80.1

80.1

100

100

50

m/z-->

Sub

m/z-->

50

n.

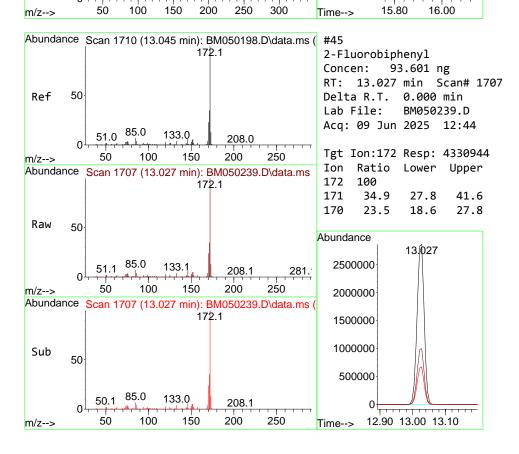
42.1

50

132.1

Abundance Scan 1940 (14.398 min): BM050239.D\data.ms (

132.1


150

150

164.2

400000

200000

Sub

50

62.0

141.0

221.9

274.8

181.9

21.40

m/z-->

120.1

Time-->

296.1 355.1

50 100 150 200 250 300 350 400

24.20 24.40 24.60

m/z-->

50 100 150 200 250 300 350 400

Time-->

GSB3

ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050240.D

Acq On : 09 Jun 2025 13:29

Operator : RC/JU Sample : Q2125-08

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 09 14:03:19 2025

 $\label{thm:policy} {\tt Quant\ Method: Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit	s D	ev(Min)
Internal Standards						
1) 1,4-Dichlorobenzene-d4	7.769	152	258819	20.000 r	ıg	0.00
21) Naphthalene-d8	10.551	136	1009931	20.000 r	_	0.00
39) Acenaphthene-d10	14.398	164	581596	20.000 r		0.00
64) Phenanthrene-d10	17.133	188	1095565	20.000 r	_	0.00
76) Chrysene-d12	21.362		1122304	20.000 r	0	-0.01
86) Perylene-d12	24.338	264	1282474	20.000 r	-	0.00
System Monitoring Compounds						
5) 2-Fluorophenol	5.351	112	1263506	81.436 r	ng	0.00
7) Phenol-d6	6.928	99	987737	48.360 r	ıg	0.00
23) Nitrobenzene-d5	8.916	82	1883291	96.983 r	ng	0.00
42) 2,4,6-Tribromophenol	15.880	330	1022118	154.510 r	ıg	0.00
45) 2-Fluorobiphenyl	13.022	172	3795297	88.348 r	ıg	0.00
79) Terphenyl-d14	19.762	244	5334082	90.067 r	ng	0.00
Target Compounds						Qvalue
37) 2-Methylnaphthalene	12.216	142	628927	19.966 r	ng	99
38) 1-Methylnaphthalene	12.439	142	813617	24.335 r	ng	100
50) Dimethylphthalate	13.857	163	1440398	36.620 r	ıg	100
52) Acenaphthene	14.463	154	101935	2.976 r	ıg	96
55) Dibenzofuran	14.798	168	110355	2.202 r	ıg	# 64
58) Fluorene	15.445	166	176099	4.588 r	ıg	# 94
60) Diethylphthalate	15.221	149	548102	14.044 r	ıg	99
70) Pentachlorophenol	16.786	266	20129	2.268 r	ıg	93
71) Phenanthrene	17.174	178	297659	4.756 r	ıg	98
74) Di-n-butylphthalate	18.115	149	638718			99
78) Pyrene	19.550	202	167785	2.218 r	ng 	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed

GSB3

ClientSampleId :

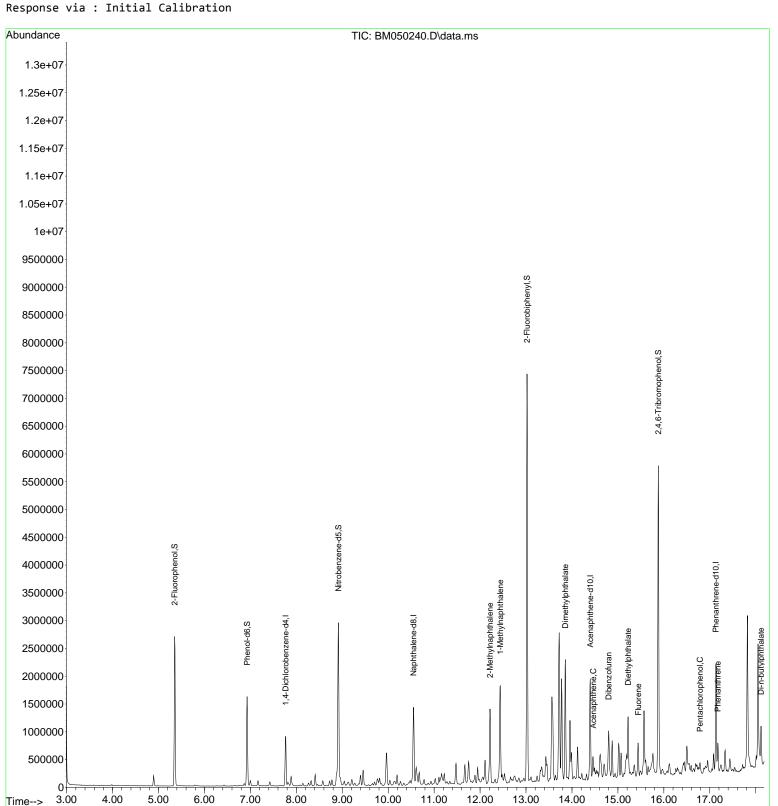
Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050240.D

Acq On : 09 Jun 2025 13:29

Operator : RC/JU Sample : Q2125-08

Misc


ALS Vial : 6 Sample Multiplier: 1

Quant Time: Jun 09 14:03:19 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025
Response via : Initial Calibration

GSB3

ClientSampleId :

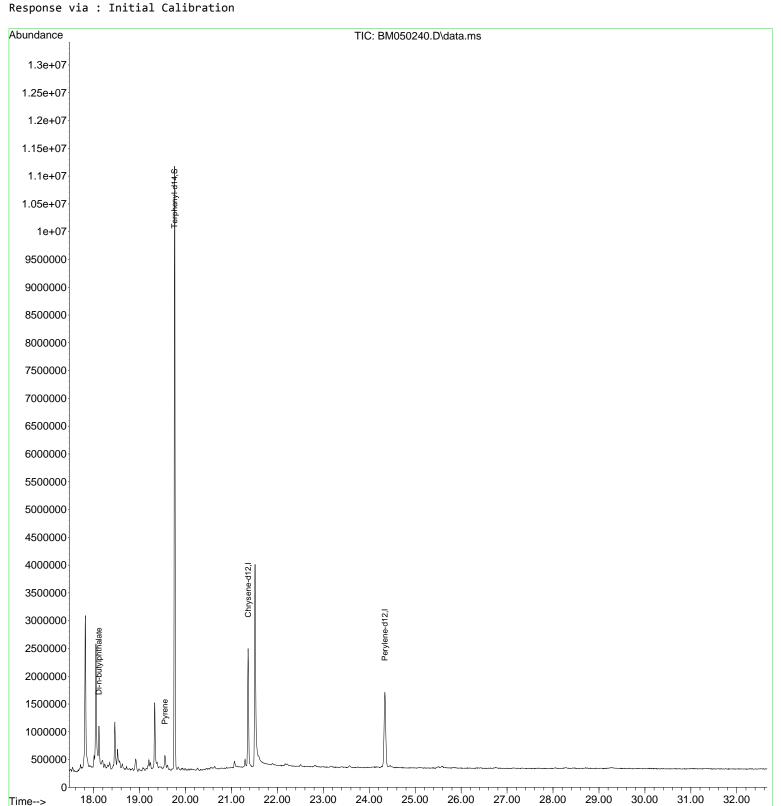
Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

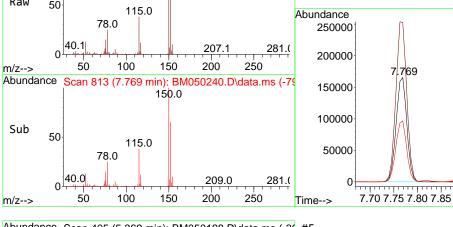
Data File : BM050240.D

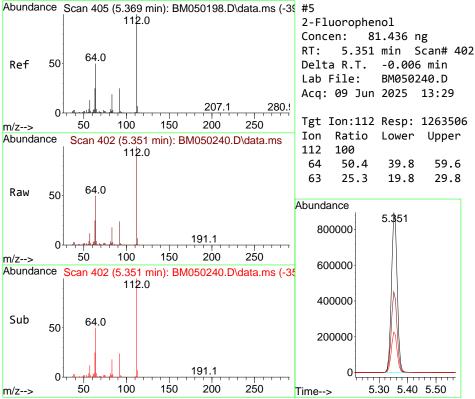
Acq On : 09 Jun 2025 13:29

Operator : RC/JU Sample : Q2125-08

Misc


ALS Vial : 6 Sample Multiplier: 1


Quant Time: Jun 09 14:03:19 2025


 $\label{lem:quant_Method} {\tt Quant_Methods\8270-BM060525.M}$

Quant Title : ASP BNA STANDARDS FOR $\frac{1}{5}$ POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025
Response via : Initial Calibration

10.50

10.60

50

m/z-->

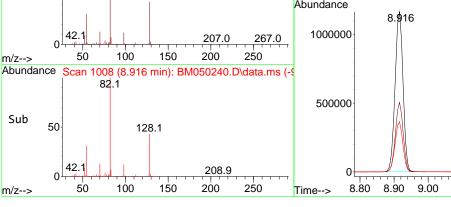
68.0

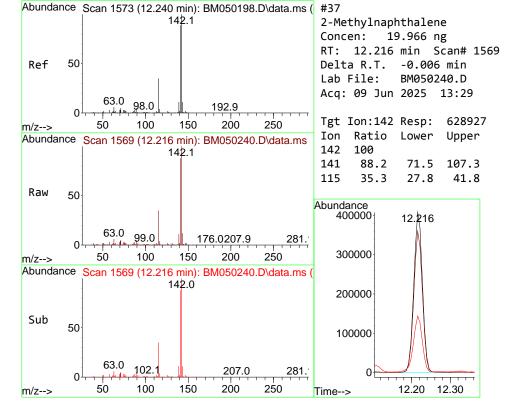
50

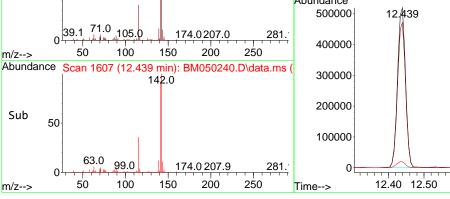
100.1

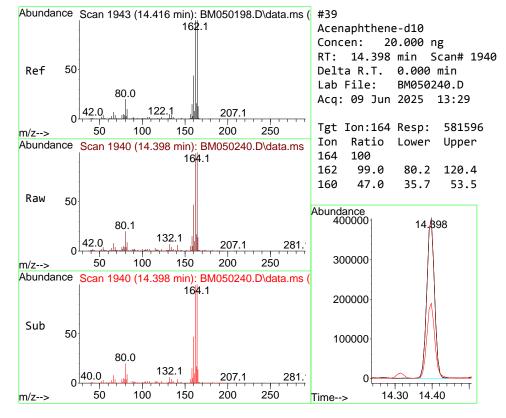
100

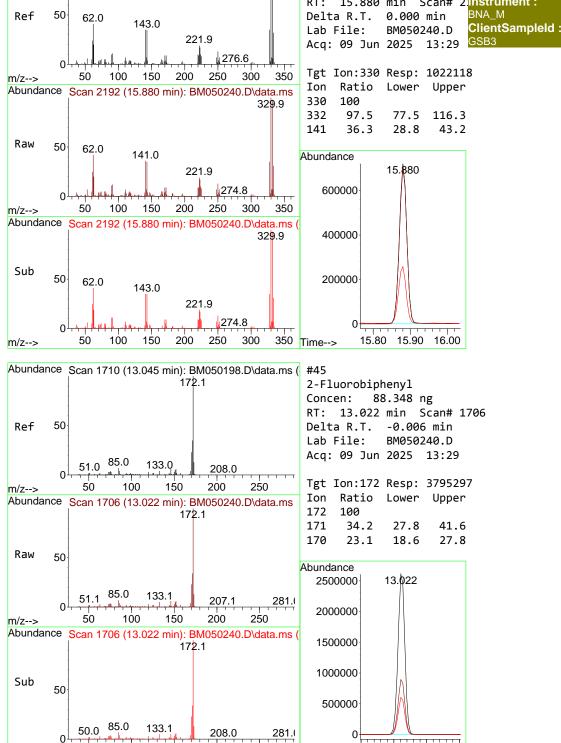
193.0


200


150


280.9

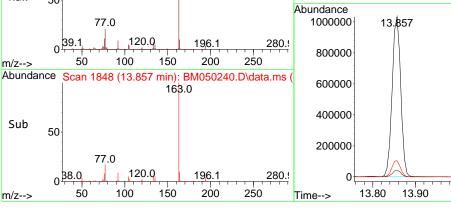

Time-->

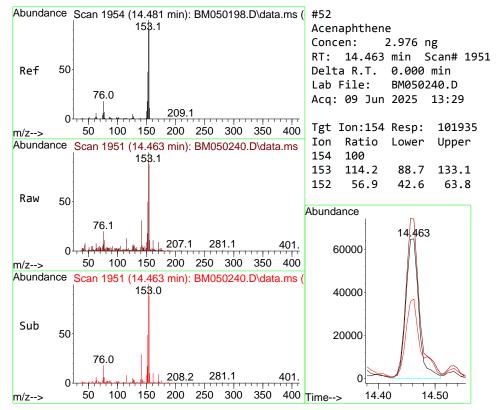

250

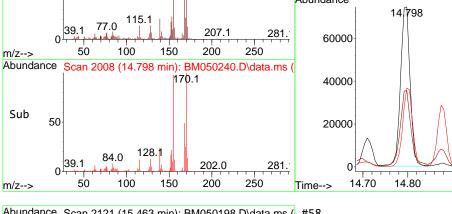
50

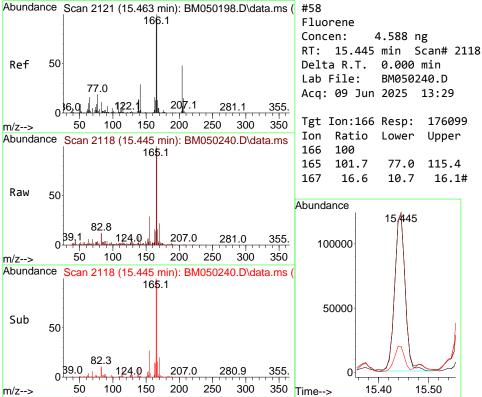
m/z-->

100


150


200


250

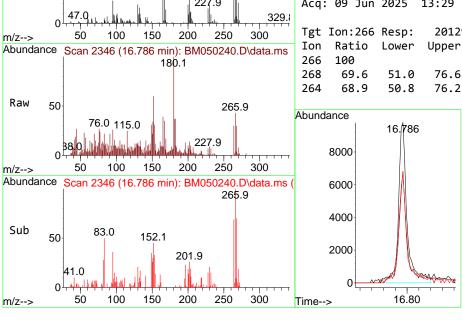

Time-->

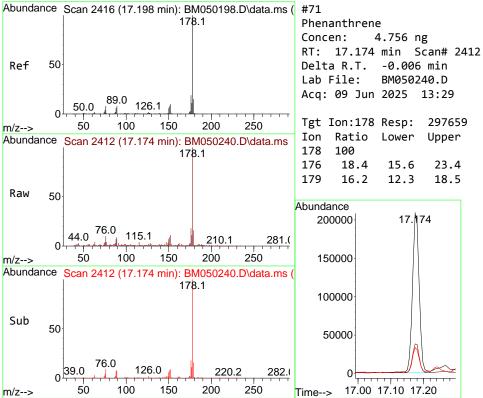
12.90 13.00 13.10

17.10

17.20

m/z-->

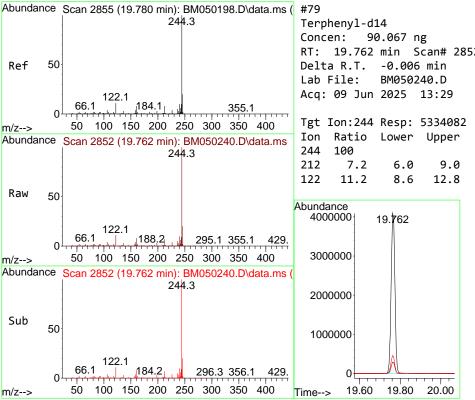

100

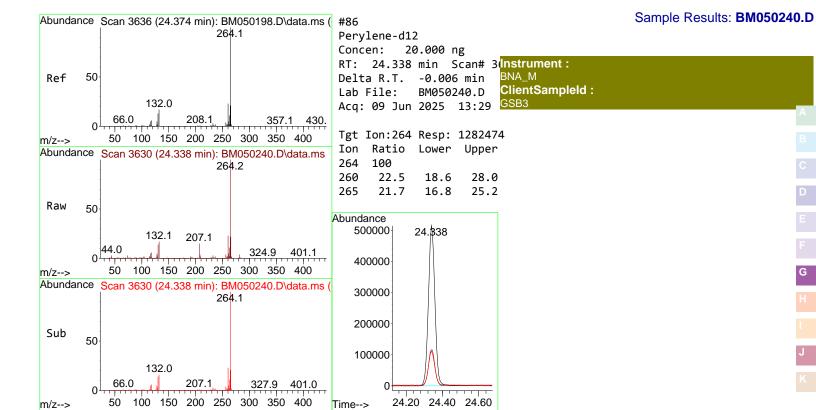

281.

Time-->

250

200




21.30 21.40 21.50

m/z-->

50 100 150 200 250 300 350 400

Time-->

Instrument : BNA_M

PB168340BL

ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050237.D

Acq On : 09 Jun 2025 11:26

Operator : RC/JU Sample : PB168340BL

Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 09 12:21:53 2025

 $\label{lem:quant_method} {\tt Quant\ Methods\ 2:\ Svoasrv\ HPCHEM1\ BNA_M\ Methods\ 8270-BM060525.M}$

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Uni	ts I	Dev(Min)
Internal Standards						
1) 1,4-Dichlorobenzene-d4	7.769	152	308898	20.000	ng	0.00
21) Naphthalene-d8	10.557	136	1157442	20.000	ng	0.00
39) Acenaphthene-d10	14.398	164	647360	20.000	ng	0.00
64) Phenanthrene-d10	17.133	188	1268443	20.000	ng	0.00
76) Chrysene-d12	21.368	240	1357312	20.000	ng	0.00
86) Perylene-d12	24.344	264	1477668	20.000	ng	0.00
System Monitoring Compounds						
5) 2-Fluorophenol	5.357	112	2728386	147.341	ng	0.00
7) Phenol-d6	6.934	99	3343794	137.173	ng	0.00
23) Nitrobenzene-d5	8.916	82	1971126	88.570	ng	0.00
42) 2,4,6-Tribromophenol	15.880	330	1112019	151.023	ng	0.00
45) 2-Fluorobiphenyl	13.027	172	4271637	89.335	ng	0.00
79) Terphenyl-d14	19.768	244	6189153	86.410	ng	0.00
Target Compounds						Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Instrument : BNA_M

PB168340BL

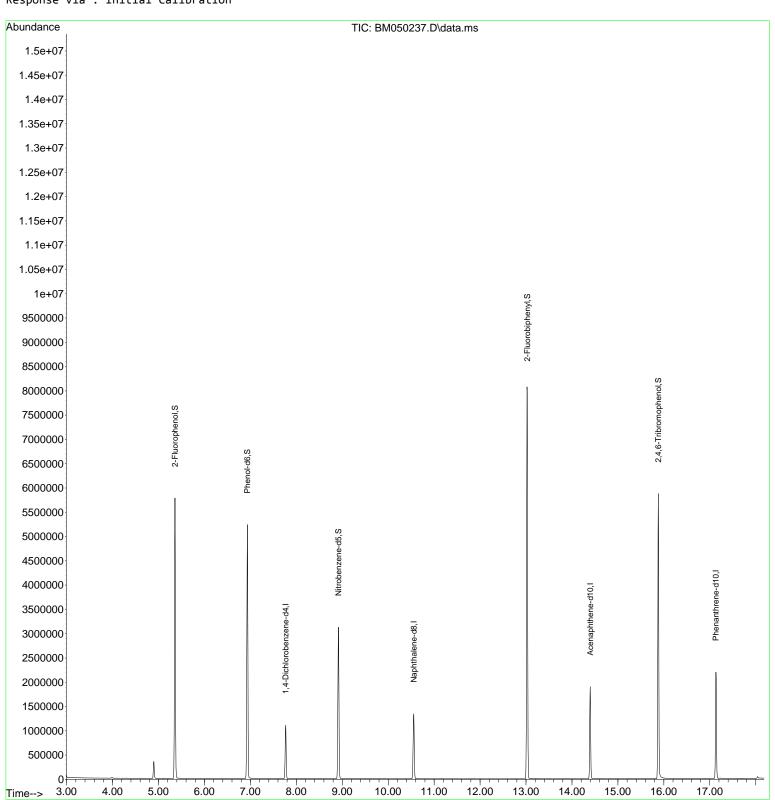
ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050237.D

Acq On : 09 Jun 2025 11:26

Operator : RC/JU Sample : PB168340BL


Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 09 12:21:53 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Instrument : BNA_M

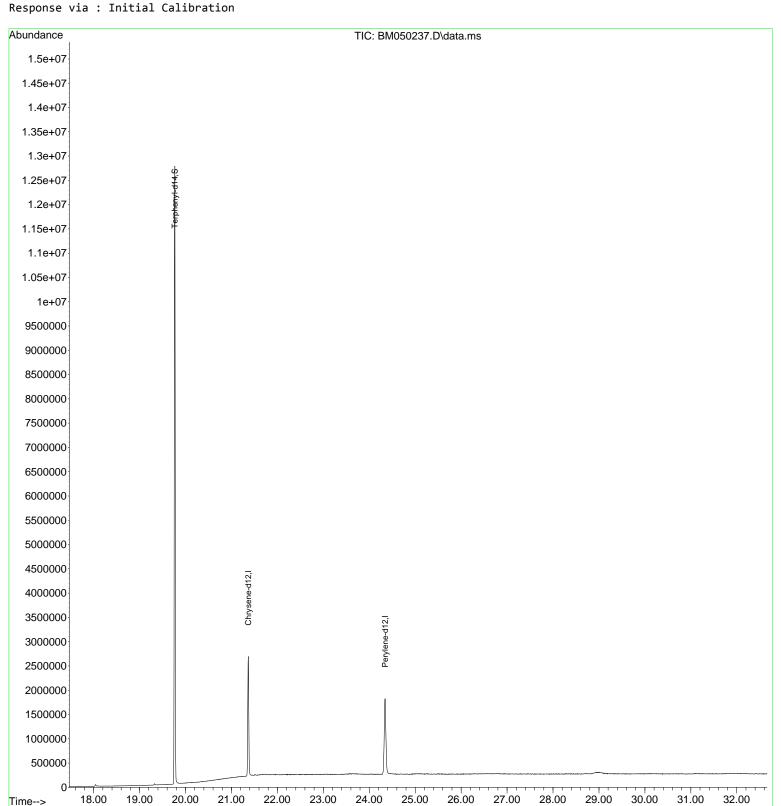
PB168340BL

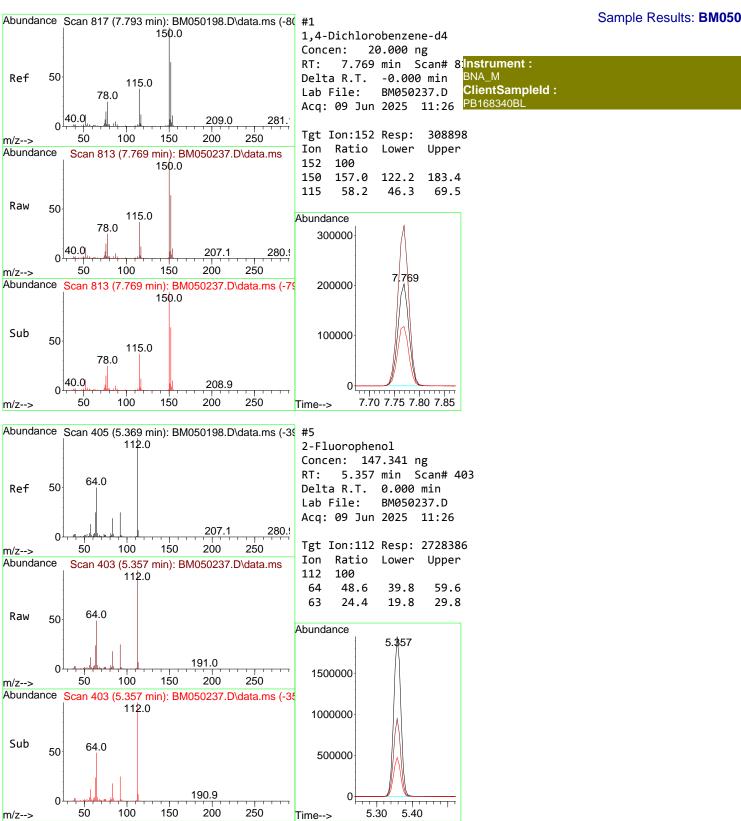
ClientSampleId :

Data Path : Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\

Data File : BM050237.D

Acq On : 09 Jun 2025 11:26


Operator : RC/JU Sample : PB168340BL


Misc

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Jun 09 12:21:53 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

10.50 10.60

68.1 100.0

100

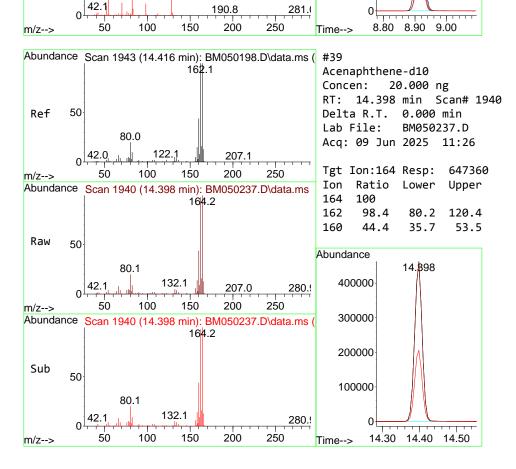
150

0

m/z-->

50

207.0

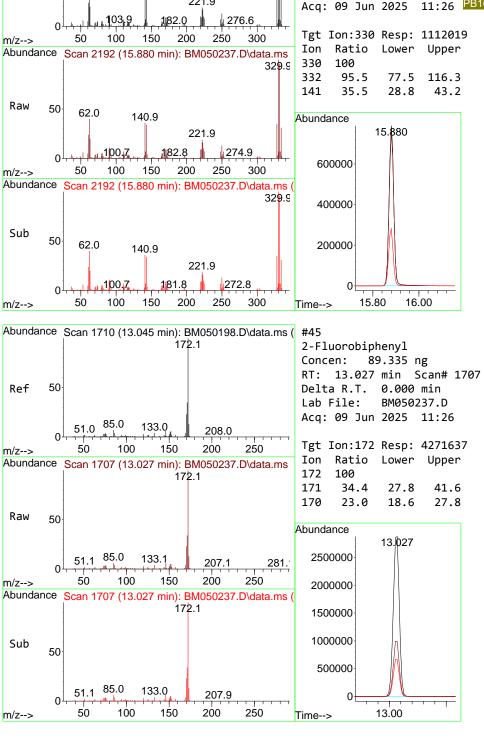

200

281.

Time-->

250

500000


Abundance Scan 1008 (8.916 min): BM050237.D\data.ms (-9

128.1

82.1

Sub

50

Sub

m/z-->

50

120.1

182.1

50 100 150 200 250 300 350 400

326.9

401.0

64.0

400000

200000

Time-->

21.40

21.60

24.20

24.40

m/z-->

132.0

207.1

50 100 150 200 250 300 350 400

326.9

415.1

Time-->

 ${\tt Data\ Path\ :\ Z:\svoasrv\HPCHEM1\BNA_M\Data\BM060925\Lambda}$

Data File : BM050238.D

Acq On : 09 Jun 2025 12:05 Operator : RC/JU Sar

Mi

Qua

cq On : 09 Jun 2025 12 perator : RC/JU ample : PB168340BS isc :	:05	Instrument : BNA_M ClientSampleId : PB168340BS
LS Vial : 4 Sample Mult uant Time: Jun 09 12:47:48		Manual Integrations APPROVED
		Reviewed By :Rahul Chavli 06/10/2025 Supervised By :Jagrut Upadhyay 06/10/2025
Compound	R.T. QIon Response Conc Unit	s Dev(Min)

		Q_0	•	COILC OHIECS	DC ((11211)
Internal Standards					
1) 1,4-Dichlorobenzene-d4	7.769	152	320774	20.000 ng	0.00
21) Naphthalene-d8	10.557	136	1257053	20.000 ng	0.00
39) Acenaphthene-d10	14.398		743659	20.000 ng	0.00
64) Phenanthrene-d10	17.139		1440533	20.000 ng	0.00
76) Chrysene-d12	21.374		1506864	20.000 ng	0.00
86) Perylene-d12	24.344		1650438	20.000 ng	0.00
60) Fel ylelle-ul2	24.344	204	1030436	20.000 ng	0.00
System Monitoring Compounds					
5) 2-Fluorophenol	5.357	112	2638389	137.206 ng	0.00
7) Phenol-d6	6.934	99	3384383	133.698 ng	0.00
23) Nitrobenzene-d5	8.916	82	2026373	83.837 ng	0.00
42) 2,4,6-Tribromophenol	15.886		1235095	146.017 ng	0.00
45) 2-Fluorobiphenyl	13.027		4443623	80.897 ng	0.00
79) Terphenyl-d14	19.768		6572801	82.659 ng	0.00
Target Compounds 2) 1,4-Dioxane	3.281	88	293881	34.865 ng	Qvalue 96
3) Pyridine	3.669	79	858280	39.320 ng	99
	3.581	42		44.828 ng	98
4) n-Nitrosodimethylamine	7.092		202342 1011663	30.231 ng	
6) Aniline		93			98
8) 2-Chlorophenol	7.334	128	1019547	48.202 ng	99
9) Benzaldehyde	6.904	77	515804	32.049 ng	96
10) Phenol	6.963	94	1284171	47.946 ng	99
11) bis(2-Chloroethyl)ether	7.192	93	982431	45.603 ng	97
12) 1,3-Dichlorobenzene	7.657	146	1055739	44.647 ng	98
13) 1,4-Dichlorobenzene	7.804	146	1085947	44.139 ng	99
14) 1,2-Dichlorobenzene	8.122	146	1048729	44.715 ng	99
15) Benzyl Alcohol	8.004	79	843230	46.704 ng	98
16) 2,2'-oxybis(1-Chloropr	8.298	45	715230	47.792 ng	97
17) 2-Methylphenol	8.204	107	846340	47.891 ng	99
18) Hexachloroethane	8.851	117	403890	45.332 ng	100
19) n-Nitroso-di-n-propyla	8.575	70	708387	45.730 ng	98
20) 3+4-Methylphenols	8.533	107	1131847	47.871 ng	98
22) Acetophenone	8.586	105	1454601	46.318 ng	# 99
24) Nitrobenzene	8.957	77	1057551	48.109 ng	97
25) Isophorone	9.486	82	1969912	47.220 ng	99
26) 2-Nitrophenol	9.669		472285	49.772 ng	99
27) 2,4-Dimethylphenol	9.733		963560	49.422 ng	99
<pre>28) bis(2-Chloroethoxy)met</pre>	9.969	93	1298501	47.646 ng	99
29) 2,4-Dichlorophenol	10.204	162	903658	50.086 ng	99
30) 1,2,4-Trichlorobenzene	10.422	180	926996	46.171 ng	99
31) Naphthalene	10.604	128	2974404	45.765 ng	99
32) Benzoic acid	9.863	122	640105	52.242 ng	99
33) 4-Chloroaniline	10.704	127	568403	20.514 ng	99
34) Hexachlorobutadiene	10.904	225	541097	45.310 ng	100
35) Caprolactam	11.480	113	292927m	51.211 ng	
36) 4-Chloro-3-methylphenol	11.833	107	971490	50.462 ng	100
37) 2-Methylnaphthalene	12.221	142	1860745	47.458 ng	99
38) 1-Methylnaphthalene	12.439	142	1952531	46.919 ng	99
40) 1,2,4,5-Tetrachloroben	12.592	216	1005342	46.817 ng	99
41) Hexachlorocyclopentadiene	12.580	237	1304356	100.018 ng	98
43) 2,4,6-Trichlorophenol	12.827	196	711376	50.375 ng	99
· · · ·				U	

Data File : BM050238.D

Acq On : 09 Jun 2025 12:05

Operator : RC/JU Sample : PB168340BS

Misc :

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 09 12:47:48 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

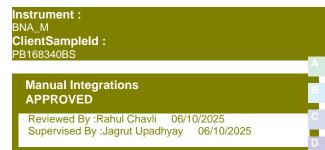
QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

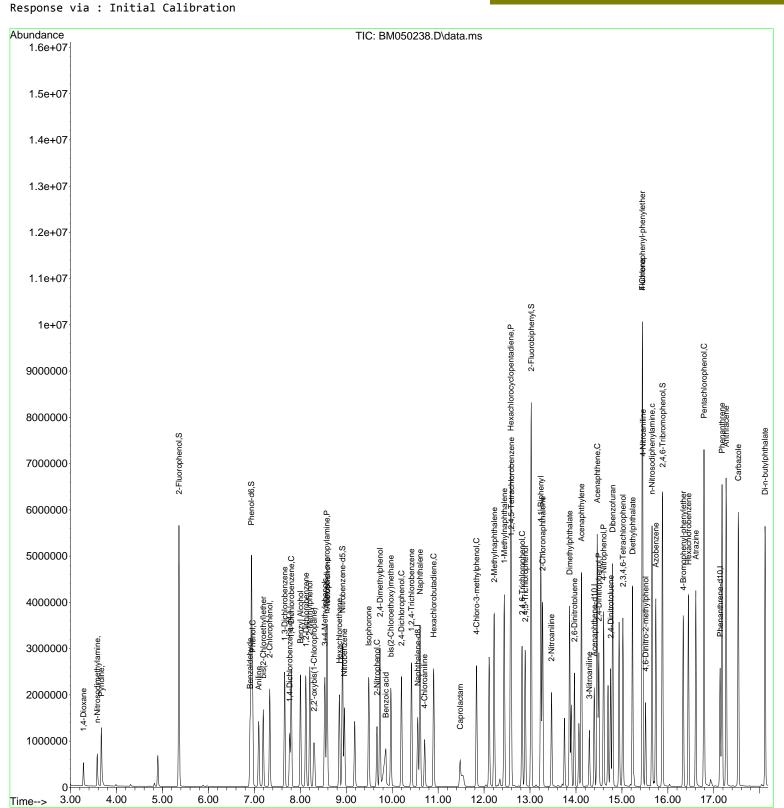
	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	2,4,5-Trichlorophenol	12.898	196	784491	50.597 ng	98
	1,1'-Biphenyl	13.233	154	2623701	47.117 ng	99
47)	2-Chloronaphthalene	13.274	162	2017409	46.601 ng	99
,	2-Nitroaniline	13.468	65	527217	55.341 ng	98
	Acenaphthylene	14.121	152	3401925	48.585 ng	100
	Dimethylphthalate	13.863	163	2523932	50.184 ng	100
•	2,6-Dinitrotoluene	13.968	165	543164	53.553 ng	97
,	Acenaphthene	14.462	154	2318364m	52.935 ng	
,	3-Nitroaniline	14.292	138	316006	27.955 ng	99
	2,4-Dinitrophenol	14.498	184	635352	114.006 ng	96
•	Dibenzofuran	14.798	168	3097423	48.342 ng	99
	4-Nitrophenol	14.604 14.757	139 165	1121805	116.598 ng	100
	2,4-Dinitrotoluene Fluorene	14.757	166	770010	57.552 ng	98 99
,	2,3,4,6-Tetrachlorophenol	15.445	232	2402646 698096	48.958 ng 52.041 ng	92
	Diethylphthalate	15.233	149	2578921	51.680 ng	99
	4-Chlorophenyl-phenyle	15.445	204	1160537	48.930 ng	99
	4-Nitroaniline	15.457	138	566413	53.462 ng	99
,	Azobenzene	15.739	77	2507403	50.272 ng	100
,	4,6-Dinitro-2-methylph	15.515	198	405706	51.564 ng	96
	n-Nitrosodiphenylamine	15.656	169	2191325	48.414 ng	100
	4-Bromophenyl-phenylether	16.339	248	746039	48.565 ng	98
68)	Hexachlorobenzene	16.451	284	875561	48.784 ng	96
69)	Atrazine	16.609	200	773565	53.638 ng	99
70)	Pentachlorophenol	16.786	266	1257952	107.804 ng	100
71)	Phenanthrene	17.180	178	3971003	48.255 ng	100
	Anthracene	17.268	178	4042950	49.109 ng	100
	Carbazole	17.533	167	3834360	51.125 ng	100
	Di-n-butylphthalate	18.115	149	4430714	54.294 ng	100
•	Fluoranthene	19.192	202	4523643	52.126 ng	99
,	Benzidine	19.374	184	1694498	39.989 ng	100
	Pyrene	19.556	202	4807428	47.334 ng	100
	Butylbenzylphthalate	20.468	149	1912953	56.466 ng	99
	Benzo(a)anthracene 3,3'-Dichlorobenzidine	21.356 21.274	228 252	4718074 927690	49.467 ng	100
•	Chrysene	21.274	228	4478849	31.895 ng 49.367 ng	100 99
,	Bis(2-ethylhexyl)phtha	21.413	149	2985953	57.220 ng	99
	Di-n-octyl phthalate	22.438	149	4874152	62.946 ng	100
	Indeno(1,2,3-cd)pyrene	27.709	276	5729953	53.920 ng	100
	Benzo(b)fluoranthene	23.415	252	4765849	49.666 ng	100
	Benzo(k)fluoranthene	23.480	252	4799784	48.998 ng	100
	Benzo(a)pyrene	24.209	252	4602184	51.011 ng	99
	Dibenzo(a,h)anthracene	27.773	278	4653553	53.949 ng	99
	Benzo(g,h,i)perylene	28.756	276	4644096	53.792 ng	100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : BM050238.D

Acq On : 09 Jun 2025 12:05


Operator : RC/JU Sample : PB168340BS


Misc

ALS Vial : 4 Sample Multiplier: 1

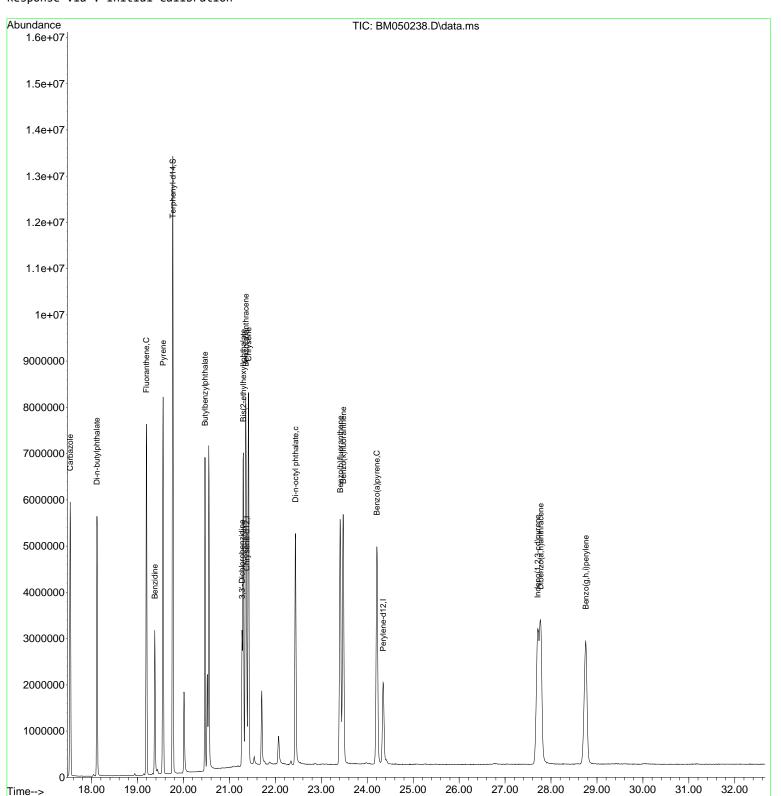
Quant Time: Jun 09 12:47:48 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Data File: BM050238.D

Acq On : 09 Jun 2025 12:05

Operator : RC/JU Sample : PB168340BS


Misc

ALS Vial : 4 Sample Multiplier: 1

Quant Time: Jun 09 12:47:48 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Data File : BM050241.D

Acq On : 09 Jun 2025 14:08 Operator : RC/JU : Q2125-08MS Sample

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 15:08:38 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

nstrument :	
NA_M ClientSampleId:	
SSB3MS	
Manual Integrations APPROVED	
Reviewed By :Rahul Chavli 06/10/2025 Supervised By :Jagrut Upadhyay 06/10/2025	

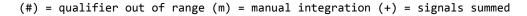
Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
 1,4-Dichlorobenzene-d4 	7.769	152	289351	20.000 ng	0.00
21) Naphthalene-d8	10.557	136	1143577	20.000 ng	0.00
39) Acenaphthene-d10	14.398	164	672610	20.000 ng	0.00
64) Phenanthrene-d10	17.139	188	1263274	20.000 ng	0.00
76) Chrysene-d12	21.368	240	1232808	20.000 ng	0.00
86) Perylene-d12	24.344	264	1346663	20.000 ng	0.00
System Monitoring Compounds					
5) 2-Fluorophenol	5.351		1255227	72.365 ng	0.00
7) Phenol-d6	6.928	99	1051650	46.056 ng	0.00
23) Nitrobenzene-d5	8.916	82	1998828	90.904 ng	0.00
42) 2,4,6-Tribromophenol	15.886	330	1206681	157.727 ng	
45) 2-Fluorobiphenyl	13.027	172	4225084	85.044 ng	0.00
79) Terphenyl-d14	19.768	244	6013290	92.434 ng	0.00
Target Compounds					Qvalue
2) 1,4-Dioxane	3.275	88	142755	18.775 ng	98
Pyridine	3.669	79	347991	17.673 ng	99
4) n-Nitrosodimethylamine	3.575	42	86452	21.233 ng	# 96
6) Aniline	7.093	93	733032	24.284 ng	99
8) 2-Chlorophenol	7.334		807950	42.347 ng	99
9) Benzaldehyde	6.904	77	516304	35.564 ng	98
10) Phenol	6.957	94	393327	16.280 ng	98
<pre>11) bis(2-Chloroethyl)ether</pre>	7.193	93	943092	48.531 ng	99
12) 1,3-Dichlorobenzene	7.657	146	926381	43.431 ng	98
13) 1,4-Dichlorobenzene	7.798	146	959761	43.247 ng	100
14) 1,2-Dichlorobenzene	8.116	146	936149	44.249 ng	99
15) Benzyl Alcohol	7.998	79	547664	33.628 ng	
<pre>16) 2,2'-oxybis(1-Chloropr</pre>	8.292	45	665085	49.268 ng	99
17) 2-Methylphenol	8.204	107	571452	35.848 ng	99
18) Hexachloroethane	8.845	117	448949	55.861 ng	99
<pre>19) n-Nitroso-di-n-propyla</pre>	8.569	70	700907	50.161 ng	99
20) 3+4-Methylphenols	8.528	107	677186	31.752 ng	97
22) Acetophenone	8.581	105	1570871	54.983 ng	# 97
24) Nitrobenzene	8.957	77	1007723	50.391 ng	99
25) Isophorone	9.486	82	1951003	51.408 ng	100
26) 2-Nitrophenol	9.669	139	465171	53.887 ng	99
27) 2,4-Dimethylphenol	9.734	122	833101	46.970 ng	100
<pre>28) bis(2-Chloroethoxy)met</pre>	9.969	93	1261615	50.886 ng	99
29) 2,4-Dichlorophenol	10.198	162	823441	50.169 ng	99
30) 1,2,4-Trichlorobenzene	10.416	180	886464	48.534 ng	99
31) Naphthalene	10.604	128	3489029	59.011 ng	99
32) Benzoic acid	9.810	122	180703	16.211 ng	89
33) 4-Chloroaniline	10.704	127	680776	27.007 ng	98
34) Hexachlorobutadiene	10.904		529682	48.755 ng	99
35) Caprolactam	11.486	113	54718	10.515 ng	92
36) 4-Chloro-3-methylphenol	11.833	107	831853	47.496 ng	
37) 2-Methylnaphthalene	12.222	142	6126319	171.755 ng	
38) 1-Methylnaphthalene	12.439	142	5031667	132.909 ng	
40) 1,2,4,5-Tetrachloroben	12.592	216	982068	50.564 ng	99
41) Hexachlorocyclopentadiene	12.580		1103973	93.595 ng	98
43) 2,4,6-Trichĺorophenol	12.827	196	672731	52.671 ng	

Data File : BM050241.D

Acq On : 09 Jun 2025 14:08

Operator : RC/JU Sample : Q2125-08MS

Misc :


ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 15:08:38 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

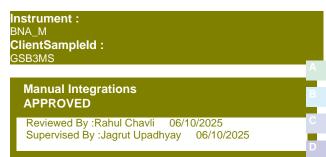
Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

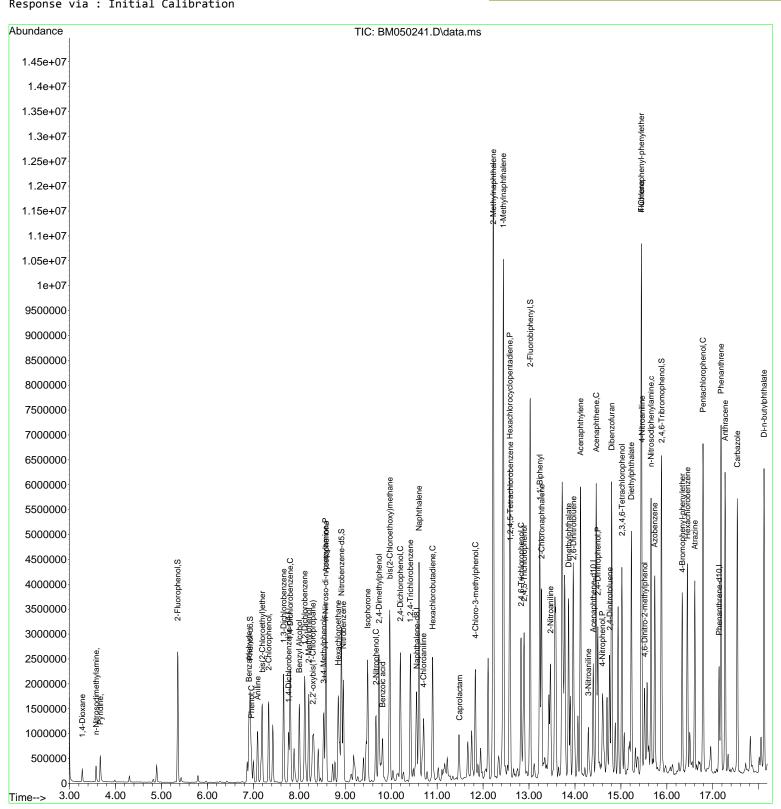
44) 2,4,5-Trichlorophenol 12.892 196 732097 52.205 ng 46) 1,1'-Biphenyl 13.233 154 2582829 51.283 ng 47) 2-Chloronaphthalene 13.275 162 1970253 50.319 ng 48) 2-Nitroaniline 13.469 65 506865 58.824 ng	98 98 100 98 98 100
46) 1,1'-Biphenyl 13.233 154 2582829 51.283 ng 47) 2-Chloronaphthalene 13.275 162 1970253 50.319 ng	98 100 98 98 100
47) 2-Chloronaphthalene 13.275 162 1970253 50.319 ng	100 98 98 100
_	98 98 100
	98 100
49) Acenaphthylene 14.121 152 3219411 50.835 ng	
	92
51) 2,6-Dinitrotoluene 13.969 165 492752 53.715 ng	
52) Acenaphthene 14.463 154 2423578m 61.183 ng	
53) 3-Nitroaniline 14.292 138 278218 27.212 ng	98
54) 2,4-Dinitrophenol 14.498 184 604886 122.615 ng	95
55) Dibenzofuran 14.798 168 3251696 56.110 ng	98
56) 4-Nitrophenol 14.598 139 401045 46.087 ng	99
57) 2,4-Dinitrotoluene 14.757 165 720272 59.521 ng #	96
58) Fluorene 15.445 166 2659647 59.920 ng	99
59) 2,3,4,6-Tetrachlorophenol 15.021 232 650150m 53.586 ng	
60) Diethylphthalate 15.227 149 2657786 58.887 ng	98
61) 4-Chlorophenyl-phenyle 15.445 204 1116837 52.062 ng	99
62) 4-Nitroaniline 15.457 138 504811 52.681 ng	97
63) Azobenzene 15.733 77 2343360 51.945 ng	98
65) 4,6-Dinitro-2-methylph 15.516 198 386478 56.013 ng	97
66) n-Nitrosodiphenylamine 15.657 169 2109439 53.144 ng	99
67) 4-Bromophenyl-phenylether 16.339 248 728512 54.078 ng	97
68) Hexachlorobenzene 16.451 284 825570 52.453 ng	96
69) Atrazine 16.610 200 739965 58.508 ng	99
70) Pentachlorophenol 16.786 266 1161426 113.498 ng	99
,	L00
72) Anthracene 17.268 178 3694142 51.169 ng	99
	L00
	L00
75) Fluoranthene 19.192 202 4150751 54.540 ng	98
77) Benzidine 19.374 184 569686 16.433 ng	99
, ,	L00
80) Butylbenzylphthalate 20.468 149 1864215 67.260 ng	99
81) Benzo(a)anthracene 21.350 228 4155727 53.257 ng	99
82) 3,3'-Dichlorobenzidine 21.274 252 1261208 53.001 ng	99
83) Chrysene 21.415 228 3876537 52.227 ng	99
, , , , , ,	L00
, , , ,	100
87) Indeno(1,2,3-cd)pyrene 27.709 276 5066448 58.431 ng #	93
88) Benzo(b)fluoranthene 23.415 252 4219935 53.897 ng 89) Benzo(k)fluoranthene 23.474 252 4143643 51.842 ng	99
- , (,	L00
90) Benzo(a)pyrene 24.209 252 4038417 54.859 ng 91) Dibenzo(a,h)anthracene 27.774 278 4134482 58.744 ng	99 99
91) Dibenzo(a,h)anthracene 27.774 278 4134482 58.744 ng 92) Benzo(g,h,i)perylene 28.750 276 4114165 58.404 ng	98
	. <u>-</u>

Data File : BM050241.D

Acq On : 09 Jun 2025 14:08

Operator : RC/JU Sample : Q2125-08MS


Misc


ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 15:08:38 2025

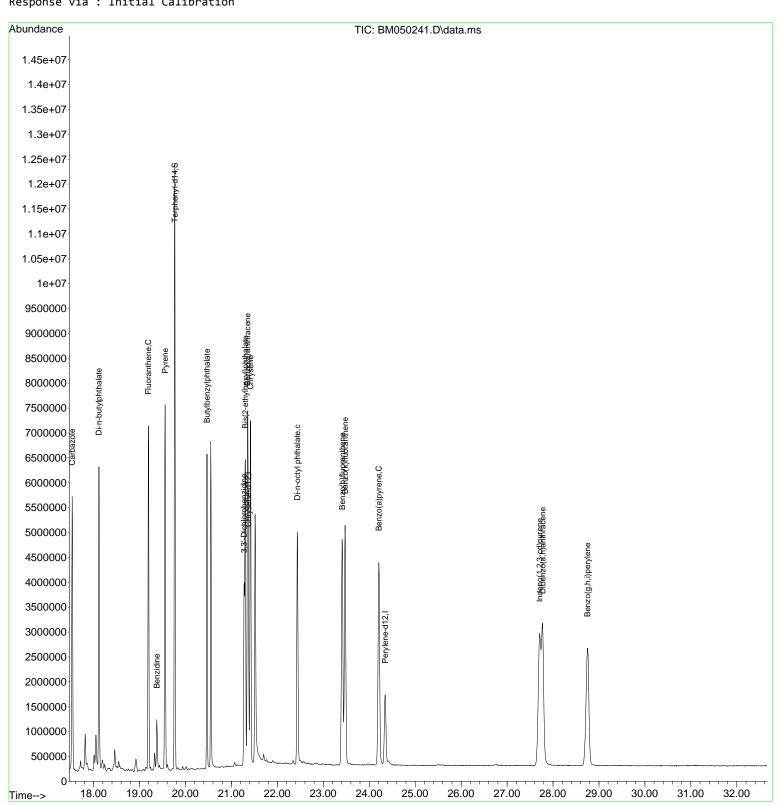
Quant Method: Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Data File: BM050241.D

Acq On : 09 Jun 2025 14:08

Operator : RC/JU Sample : Q2125-08MS


Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 09 15:08:38 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Data File : BM050242.D

Acq On : 09 Jun 2025 14:47

Operator : RC/JU Sample : Q2125-08MSD

Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 16:20:18 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

ientSampleld :	
BB3MSD	
Manual Integrations APPROVED	
Reviewed By :Rahul Chavl	i 06/10/2025 dhyay 06/10/2025

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards					
1) 1,4-Dichlorobenzene-d4	7.769	152	281877	20.000 ng	0.00
21) Naphthalene-d8	10.557	136	1107266	20.000 ng	
39) Acenaphthene-d10	14.398		644595	20.000 ng	
64) Phenanthrene-d10	17.139		1197069	20.000 ng	
76) Chrysene-d12	21.368		1175824	20.000 ng	
86) Perylene-d12	24.344		1237452	20.000 ng	
System Monitoring Compounds					
5) 2-Fluorophenol	5.351	112	1211116	71.674 ng	
7) Phenol-d6	6.928	99	1030995	46.349 ng	
23) Nitrobenzene-d5	8.916		1959264	92.026 ng	
42) 2,4,6-Tribromophenol	15.886		1167405	159.225 ng	
45) 2-Fluorobiphenyl	13.027		4087466	85.850 ng	
79) Terphenyl-d14	19.768	244	5823501	93.855 ng	0.00
Target Compounds					Qvalue
2) 1,4-Dioxane	3.275	88	136315	18.404 ng	99
Pyridine	3.669	79	334703	17.449 ng	99
4) n-Nitrosodimethylamine	3.575	42	83869	21.145 ng	
6) Aniline	7.092	93	693378	23.579 ng	99
8) 2-Chlorophenol	7.334	128	785509	42.262 ng	
9) Benzaldehyde	6.904	77	505297	35.729 ng	97
10) Phenol	6.957	94	381059	16.191 ng	99
<pre>11) bis(2-Chloroethyl)ether</pre>	7.192	93	908767	48.005 ng	
12) 1,3-Dichlorobenzene	7.657	146	893261	42.989 ng	
13) 1,4-Dichlorobenzene	7.804	146	923145	42.700 ng	99
14) 1,2-Dichlorobenzene	8.116	146	911084	44.206 ng	
15) Benzyl Alcohol	7.998	79	535429	33.748 ng	
16) 2,2'-oxybis(1-Chloropr	8.298	45	635679	48.338 ng	
<pre>17) 2-Methylphenol</pre>	8.204		559356	36.019 ng	
18) Hexachloroethane	8.845	117	435909	55.677 ng	
19) n-Nitroso-di-n-propyla	8.575	70	671445	49.326 ng	
20) 3+4-Methylphenols	8.533		675295	32.503 ng	
22) Acetophenone	8.581	105	1531014	55.346 ng	
24) Nitrobenzene	8.957	77	977949	50.506 ng	
25) Isophorone	9.486	82	1898052	51.652 ng	
26) 2-Nitrophenol	9.669		451831	54.058 ng	
27) 2,4-Dimethylphenol	9.733	122	817519	47.603 ng	
28) bis(2-Chloroethoxy)met	9.969	93	1220579	50.845 ng	
29) 2,4-Dichlorophenol	10.204	162	807193	50.791 ng	
30) 1,2,4-Trichlorobenzene	10.422	180	865818	48.958 ng	
31) Naphthalene	10.604	128	3384046	59.112 ng	
32) Benzoic acid	9.810	122	176121	16.318 ng	
33) 4-Chloroaniline	10.704	127	667566	27.351 ng	
34) Hexachlorobutadiene	10.904	225	513215	48.788 ng	
35) Caprolactam	11.486	113	50996 802212	10.121 ng	
36) 4-Chloro-3-methylphenol	11.833	107	802313	47.312 ng	
37) 2-Methylnaphthalene38) 1-Methylnaphthalene	12.221	142	5947123	172.199 ng	
40) 1,2,4,5-Tetrachloroben	12.439 12.592	142	4887345	133.330 ng	
		216	953327 1057601	51.218 ng	
41) Hexachlorocyclopentadiene43) 2,4,6-Trichlorophenol	12.580 12.827	237 196	1057601 659289	93.561 ng	
43) 2,4,6-11:101:opheno1	14.04/	190	033263	53.862 ng	צב

Data File: BM050242.D

Acq On : 09 Jun 2025 14:47

Operator : RC/JU Sample : Q2125-08MSD

Misc :

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 16:20:18 2025

Quant Method : Z:\svoasrv\HPCHEM1\BNA_M\Methods\8270-BM060525.M

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update : Mon Jun 09 11:54:38 2025 Response via : Initial Calibration

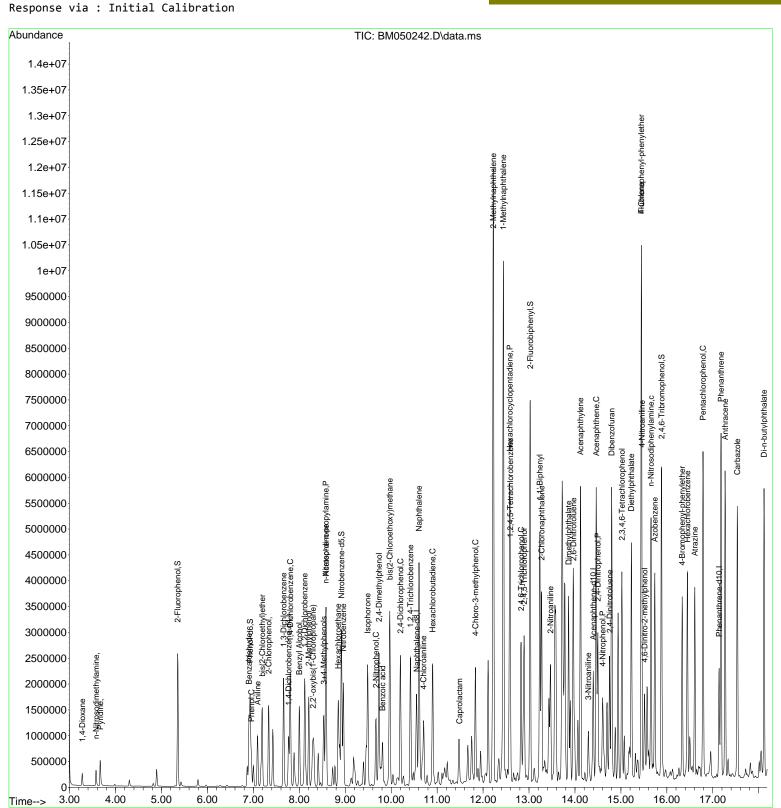
	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
44)	2,4,5-Trichlorophenol	12.892	196	710689	52.881 ng	99
	1,1'-Biphenyl	13.233	154	2517319	52.155 ng	99
	2-Chloronaphthalene	13.274	162	1902019	50.688 ng	99
48)	2-Nitroaniline	13.468	65	493666	59.783 ng	98
49)	Acenaphthylene	14.121	152	3125267	51.493 ng	98
	Dimethylphthalate	13.863	163	2309291	52.973 ng	99
	2,6-Dinitrotoluene	13.968	165	475465	54.083 ng	94
	Acenaphthene	14.463	154	2356807m	62.083 ng	
,	3-Nitroaniline	14.292	138	272471	27.809 ng	98
	2,4-Dinitrophenol	14.498	184	581083	123.046 ng	96
	Dibenzofuran	14.798	168	3107541	55.953 ng	98
,	4-Nitrophenol	14.604	139	383346	45.968 ng	92
	2,4-Dinitrotoluene	14.757	165	692300	59.696 ng	# 95
	Fluorene	15.445	166	2556767	60.106 ng	99
	2,3,4,6-Tetrachlorophenol	15.021	232	622482	53.535 ng	91
	Diethylphthalate	15.227 15.445	149 204	2438141	56.368 ng 52.566 ng	99 98
	4-Chlorophenyl-phenyle4-Nitroaniline	15.457	138	1080680 475975	52.500 ng	97
,	Azobenzene	15.739	77	2230978	51.604 ng	96
	4,6-Dinitro-2-methylph	15.515	198	376940	57.652 ng	99
	n-Nitrosodiphenylamine	15.657	169	2023507	53.798 ng	99
	4-Bromophenyl-phenylether	16.333	248	697999	54.679 ng	99
	Hexachlorobenzene	16.451	284	789740	52.951 ng	96
	Atrazine	16.609	200	702108	58.585 ng	98
	Pentachlorophenol	16.786	266	1106939	114.156 ng	100
,	Phenanthrene	17.180	178	4099259	59.944 ng	99
	Anthracene	17.268	178	3582894	52.373 ng	100
73)	Carbazole	17.533	167	3368785	54.052 ng	100
74)	Di-n-butylphthalate	18.115	149	4343044	64.044 ng	100
75)	Fluoranthene	19.192	202	3982272	55.220 ng	99
77)	Benzidine	19.374	184	665705	20.133 ng	99
•	Pyrene	19.556	202	4214773	53.183 ng	100
	Butylbenzylphthalate	20.468	149	1809144	68.437 ng	99
	Benzo(a)anthracene	21.350	228	3971807	53.367 ng	100
	3,3'-Dichlorobenzidine	21.274	252	1179338	51.963 ng	99
	Chrysene	21.415	228	3707097	52.364 ng	99
	Bis(2-ethylhexyl)phtha	21.303	149	2791744	68.560 ng	100
	Di-n-octyl phthalate	22.433	149	4554629	75.379 ng	100
	Indeno(1,2,3-cd)pyrene	27.709	276	4614589	57.916 ng	100
	Benzo(b)fluoranthene	23.409	252	3972361	55.213 ng	99
	Benzo(k)fluoranthene	23.474	252	3838081	52.257 ng	99
	Benzo(a)pyrene Dibenzo(a,h)anthracene	24.209 27.768	252 278	3724602 3760168	55.061 ng 58.279 ng	99 99
91)	Benzo(g,h,i)perylene	28.744	276	3769168 3759055	58.072 ng	99
<i>∍∠)</i> 	Delizo(8) II, pei ytelie				J0.0/2 lig	

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data File : BM050242.D

Acq On : 09 Jun 2025 14:47

Operator : RC/JU Sample : Q2125-08MSD


Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 16:20:18 2025

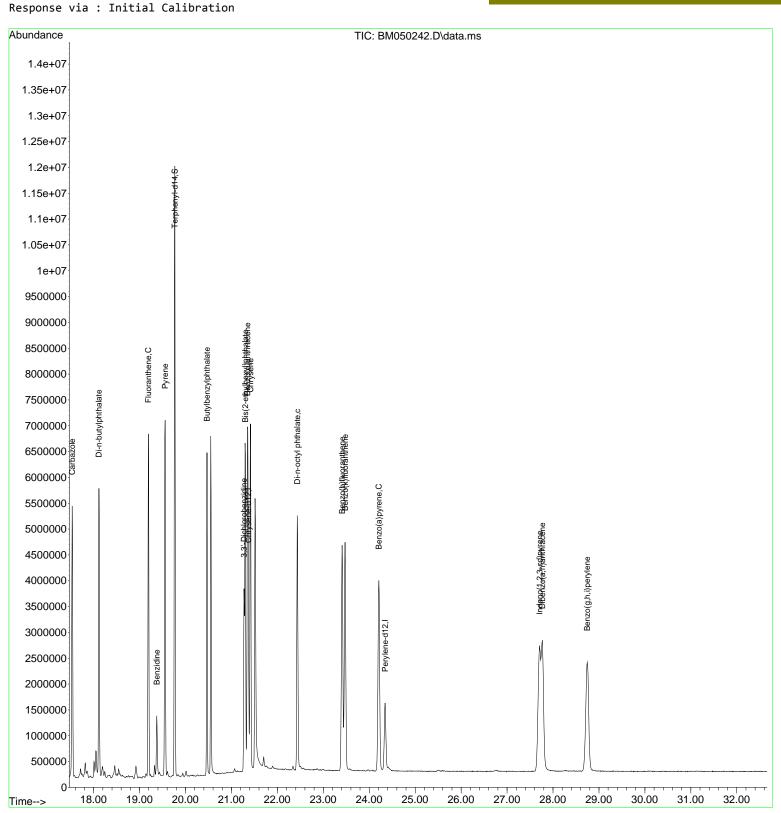
Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

Data File: BM050242.D

Acq On : 09 Jun 2025 14:47

Operator : RC/JU Sample : Q2125-08MSD

Misc


ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jun 09 16:20:18 2025

Quant Title : ASP BNA STANDARDS FOR 5 POINT CALIBRATION

QLast Update: Mon Jun 09 11:54:38 2025

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 TECHNICAL GROUP						
Manual Integration Report						
Sequence:	BM060525	Instrument	BNA_m			

В

D E F

H J K

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDICC005	BM050195.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/6/2025 12:19:17 PM	Jagrut	6/6/2025 1:16:08 PM	Peak Integrated by Software
SSTDICC005	BM050195.D	Benzaldehyde	Rahul	6/6/2025 12:19:17 PM	Jagrut	6/6/2025 1:16:08 PM	Peak Integrated by Software
SSTDICC010	BM050196.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/5/2025 4:48:25 PM	Jagrut	6/6/2025 1:16:10 PM	Peak Integrated by Software
SSTDICC020	BM050197.D	Benzaldehyde	Rahul	6/6/2025 12:19:19 PM	Jagrut	6/6/2025 1:16:13 PM	Peak Integrated by Software
SSTDICCC040	BM050198.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/5/2025 4:48:28 PM	Jagrut	6/6/2025 1:16:15 PM	Peak Integrated by Software
SSTDICV040	BM050202.D	Benzaldehyde	Rahul	6/5/2025 4:48:30 PM	Jagrut	6/6/2025 1:16:18 PM	Peak Integrated by Software

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922 TECHNICAL GROUP								
	Manual Integration Report							
Sequence:	bm060925	Instrument	BNA_m					
·			_					

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
SSTDCCC040	BM050236.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/10/2025 5:09:05 PM	Jagrut	6/10/2025 5:10:15 PM	Peak Integrated by Software
PB168340BS	BM050238.D	Acenaphthene	Rahul	6/10/2025 5:09:07 PM	Jagrut	6/10/2025 5:10:18 PM	Peak Integrated by Software
PB168340BS	BM050238.D	Caprolactam	Rahul	6/10/2025 5:09:07 PM	Jagrut	6/10/2025 5:10:18 PM	Peak Integrated by Software
Q2125-08MS	BM050241.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/10/2025 5:09:10 PM	Jagrut	6/10/2025 5:10:21 PM	Peak Integrated by Software
Q2125-08MS	BM050241.D	Acenaphthene	Rahul	6/10/2025 5:09:10 PM	Jagrut	6/10/2025 5:10:21 PM	Peak Integrated by Software
Q2125-08MSD	BM050242.D	Acenaphthene	Rahul	6/10/2025 5:09:12 PM	Jagrut	6/10/2025 5:10:23 PM	Peak Integrated by Software
SSTDCCC040	BM050245.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/10/2025 5:09:14 PM	Jagrut	6/10/2025 5:10:26 PM	Peak Integrated by Software
SSTDCCC040	BM050262.D	2,3,4,6-Tetrachlorophen ol	Rahul	6/10/2025 5:09:18 PM	Jagrut	6/10/2025 5:10:33 PM	Peak Integrated by Software

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060525

Review By Rahul		Review On	6/6/20	025 12:27:19 PM		
Supervise By Jagrut		Supervise On	6/6/20	025 1:16:37 PM		
SubDirectory BM	1060525	HP Acquire Me	thod	BNA_M	HP Processing Method	bm060525
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP678	6,SP6787,SP6788,SP6	790,SP678	89,SP6791		
ccc	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul san	nple				
ICV/I.BLK SP6796						
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	DFTPP	BM050193.D	05 Jun 2025 08:40	RC/JU	Ok
2	SSTDICC2.5	BM050194.D	05 Jun 2025 09:20	RC/JU	Ok
3	SSTDICC005	BM050195.D	05 Jun 2025 09:59	RC/JU	Ok,M
4	SSTDICC010	BM050196.D	05 Jun 2025 10:38	RC/JU	Ok,M
5	SSTDICC020	BM050197.D	05 Jun 2025 11:17	RC/JU	Ok,M
6	SSTDICCC040	BM050198.D	05 Jun 2025 11:57	RC/JU	Ok,M
7	SSTDICC050	BM050199.D	05 Jun 2025 12:36	RC/JU	Ok
8	SSTDICC060	BM050200.D	05 Jun 2025 13:16	RC/JU	Ok
9	SSTDICC080	BM050201.D	05 Jun 2025 13:56	RC/JU	Ok
10	SSTDICV040	BM050202.D	05 Jun 2025 14:36	RC/JU	Ok,M
11	PB168224TB	BM050203.D	05 Jun 2025 16:35	RC/JU	Ok
12	SP6794	BM050204.D	05 Jun 2025 17:15	RC/JU	Ok

M : Manual Integration

Instrument ID:

BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060925

Review By Ra	hul	Review On	6/10/	2025 5:10:05 PM		
Supervise By Jag	grut	Supervise On	6/10/	2025 5:10:49 PM		
SubDirectory BM	1060925	HP Acquire Me	thod	BNA_M	HP Processing Method	BM060625
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP678	6,SP6787,SP6788,SP6	790,SP67	789,SP6791		
ccc	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul san	nple				
ICV/I.BLK						
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	DFTPP	BM050235.D	09 Jun 2025 10:07	RC/JU	Ok
2	SSTDCCC040	BM050236.D	09 Jun 2025 10:47	RC/JU	Ok,M
3	PB168340BL	BM050237.D	09 Jun 2025 11:26	RC/JU	Ok
4	PB168340BS	BM050238.D	09 Jun 2025 12:05	RC/JU	Ok,M
5	PB168340TB	BM050239.D	09 Jun 2025 12:44	RC/JU	Ok
6	Q2125-08	BM050240.D	09 Jun 2025 13:29	RC/JU	Ok
7	Q2125-08MS	BM050241.D	09 Jun 2025 14:08	RC/JU	Ok,M
8	Q2125-08MSD	BM050242.D	09 Jun 2025 14:47	RC/JU	Ok,M
9	Q2226-04	BM050243.D	09 Jun 2025 15:39	RC/JU	Ok
10	DFTPP	BM050244.D	09 Jun 2025 16:24	RC/JU	Ok
11	SSTDCCC040	BM050245.D	09 Jun 2025 17:03	RC/JU	Ok,M
12	PB168311TB	BM050246.D	09 Jun 2025 17:43	RC/JU	Ok
13	Q2227-04	BM050247.D	09 Jun 2025 18:22	RC/JU	Ok
14	Q2236-07	BM050248.D	09 Jun 2025 19:01	RC/JU	Ok
15	Q2228-04	BM050249.D	09 Jun 2025 19:40	RC/JU	Ok
16	Q2226-04MS	BM050250.D	09 Jun 2025 20:19	RC/JU	Ok,M
17	Q2226-04MSD	BM050251.D	09 Jun 2025 20:58	RC/JU	Ok
18	Q2235-03	BM050252.D	09 Jun 2025 21:38	RC/JU	Ok
19	Q2236-03	BM050253.D	09 Jun 2025 22:17	RC/JU	Ok
20	Q2236-11	BM050254.D	09 Jun 2025 22:56	RC/JU	Ok
21	Q2236-15	BM050255.D	09 Jun 2025 23:35	RC/JU	Ok

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060925

Review By Ra	ahul	Review On	6/10/2025 5:10:05 F	PM			
Supervise By Ja	grut	Supervise On	6/10/2025 5:10:49 F	PM			
SubDirectory BN	ло60925	HP Acquire Met	thod BNA_M	HP Processing Method	BM060625		
STD. NAME	STD REF.#						
Tune/Reschk Initial Calibration Stds	SP6757 ds SP6784,SP6785,SP6786,SP6787,SP6788,SP6790,SP6789,SP6791						
CCC	SP6787						
Internal Standard/PEM	S12667,10ul/1000ul sar	mple					
ICV/I.BLK	SP6796						
Surrogate Standard							
MS/MSD Standard							
LCS Standard							

22	Q2236-19	BM050256.D	10 Jun 2025 00:15	RC/JU	Ok,M
23	Q2241-04	BM050257.D	10 Jun 2025 00:54	RC/JU	Ok
24	Q2241-08	BM050258.D	10 Jun 2025 01:33	RC/JU	Ok
25	Q2260-04	BM050259.D	10 Jun 2025 02:12	RC/JU	Ok
26	Q2265-04	BM050260.D	10 Jun 2025 02:51	RC/JU	Ok
27	DFTPP	BM050261.D	10 Jun 2025 04:09	RC/JU	Ok
28	SSTDCCC040	BM050262.D	10 Jun 2025 04:48	RC/JU	Ok,M
29	PB168352BL	BM050263.D	10 Jun 2025 05:28	RC/JU	Ok
30	PB168352BS	BM050264.D	10 Jun 2025 06:07	RC/JU	Ok,M
31	PB168333TB	BM050265.D	10 Jun 2025 06:46	RC/JU	Ok
32	Q2242-04	BM050266.D	10 Jun 2025 07:25	RC/JU	Ok
33	Q2244-04	BM050267.D	10 Jun 2025 08:04	RC/JU	Ok
34	Q2266-04	BM050268.D	10 Jun 2025 08:43	RC/JU	Ok
35	Q2266-08	BM050269.D	10 Jun 2025 09:22	RC/JU	ReRun
36	Q2240-04	BM050270.D	10 Jun 2025 10:01	RC/JU	Ok
37	Q2240-08	BM050271.D	10 Jun 2025 10:41	RC/JU	Ok
38	Q2240-12	BM050272.D	10 Jun 2025 11:20	RC/JU	Ok
39	Q2231-02DL	BM050273.D	10 Jun 2025 11:59	RC/JU	Dilution
40	Q2202-03DL	BM050274.D	10 Jun 2025 12:38	RC/JU	Ok
41	Q2231-02DL2	BM050275.D	10 Jun 2025 13:28	RC/JU	Ok

M : Manual Integration

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060525

Review By	Review By Rahul		6/6/2025 12	6/6/2025 12:27:19 PM		
Supervise By	Jagrut	Supervise On	6/6/2025 1:	16:37 PM		
SubDirectory	BM060525	HP Acquire Method	BNA_M	HP Processing Method	bm060525	
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SF	P6786,SP6787,SP6788,SP6790,SP6789,S	SP6791			
CCC	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul	I sample				
ICV/I.BLK	SP6796					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BM050193.D	05 Jun 2025 08:40		RC/JU	Ok
2	SSTDICC2.5	SSTDICC2.5	BM050194.D	05 Jun 2025 09:20		RC/JU	Ok
3	SSTDICC005	SSTDICC005	BM050195.D	05 Jun 2025 09:59	Compound #32,54,65,77 removed from 5PPM	RC/JU	Ok,M
4	SSTDICC010	SSTDICC010	BM050196.D	05 Jun 2025 10:38	Compound #54 kept on QR	RC/JU	Ok,M
5	SSTDICC020	SSTDICC020	BM050197.D	05 Jun 2025 11:17		RC/JU	Ok,M
6	SSTDICCC040	SSTDICCC040	BM050198.D	05 Jun 2025 11:57	The compound # 85 failed in the Calibration.	RC/JU	Ok,M
7	SSTDICC050	SSTDICC050	BM050199.D	05 Jun 2025 12:36		RC/JU	Ok
8	SSTDICC060	SSTDICC060	BM050200.D	05 Jun 2025 13:16		RC/JU	Ok
9	SSTDICC080	SSTDICC080	BM050201.D	05 Jun 2025 13:56	Compound #9 removed from 80PPM	RC/JU	Ok
10	SSTDICV040	ICVBM060525	BM050202.D	05 Jun 2025 14:36		RC/JU	Ok,M
11	PB168224TB	PB168224TB	BM050203.D	05 Jun 2025 16:35		RC/JU	Ok
12	SP6794	SP6794	BM050204.D	05 Jun 2025 17:15		RC/JU	Ok

M : Manual Integration

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060925

Review By	Rahul	Review On	6/10/2025 \$	6/10/2025 5:10:05 PM		
Supervise By	Jagrut	Supervise On	6/10/2025 5	5:10:49 PM		
SubDirectory	BM060925	HP Acquire Method	BNA_M	HP Processing Method	BM060625	
STD. NAME	STD REF.#					
Tune/Reschk	SP6757					
Initial Calibration Stds	SP6784,SP6785,SP6	786,SP6787,SP6788,SP6790,SP6789,S	SP6791			
CCC	SP6787					
Internal Standard/PEM	S12667,10ul/1000ul s	ample				
ICV/I.BLK	SP6796					
Surrogate Standard						
MS/MSD Standard						
LCS Standard						

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	DFTPP	DFTPP	BM050235.D	09 Jun 2025 10:07		RC/JU	Ok
2	SSTDCCC040	SSTDCCC040	BM050236.D	09 Jun 2025 10:47		RC/JU	Ok,M
3	PB168340BL	PB168340BL	BM050237.D	09 Jun 2025 11:26		RC/JU	Ok
4	PB168340BS	PB168340BS	BM050238.D	09 Jun 2025 12:05		RC/JU	Ok,M
5	PB168340TB	PB168340TB	BM050239.D	09 Jun 2025 12:44		RC/JU	Ok
6	Q2125-08	GSB3	BM050240.D	09 Jun 2025 13:29		RC/JU	Ok
7	Q2125-08MS	GSB3MS	BM050241.D	09 Jun 2025 14:08		RC/JU	Ok,M
8	Q2125-08MSD	GSB3MSD	BM050242.D	09 Jun 2025 14:47		RC/JU	Ok,M
9	Q2226-04	TP06-MHI-WC	BM050243.D	09 Jun 2025 15:39		RC/JU	Ok
10	DFTPP	DFTPP	BM050244.D	09 Jun 2025 16:24		RC/JU	Ok
11	SSTDCCC040	SSTDCCC040	BM050245.D	09 Jun 2025 17:03		RC/JU	Ok,M
12	PB168311TB	PB168311TB	BM050246.D	09 Jun 2025 17:43		RC/JU	Ok
13	Q2227-04	TP07-MHH-WC	BM050247.D	09 Jun 2025 18:22		RC/JU	Ok
14	Q2236-07	WC-A2-04-C	BM050248.D	09 Jun 2025 19:01		RC/JU	Ok
15	Q2228-04	TP08-MHI-WC	BM050249.D	09 Jun 2025 19:40		RC/JU	Ok
16	Q2226-04MS	TP06-MHI-WCMS	BM050250.D	09 Jun 2025 20:19		RC/JU	Ok,M
17	Q2226-04MSD	TP06-MHI-WCMSD	BM050251.D	09 Jun 2025 20:58		RC/JU	Ok
18	Q2235-03	WC-A2-08-C	BM050252.D	09 Jun 2025 21:38		RC/JU	Ok

С

Е

G

H

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060925

Review By	Review By Rahul		6/10/2025 5				
Supervise By	Jagrut	Supervise On	6/10/2025 5				
SubDirectory	SubDirectory BM060925		BNA_M	HP Processing Method	BM060625		
STD. NAME	STD REF.#						
Tune/Reschk	SP6757						
Initial Calibration Stds	SP6784,SP6785,SP	SP6784,SP6785,SP6786,SP6787,SP6788,SP6790,SP6789,SP6791					
CCC	SP6787						
Internal Standard/PEM	S12667,10ul/1000ul	sample					
ICV/I.BLK	SP6796						
Surrogate Standard							
MS/MSD Standard							
LCS Standard							

19	Q2236-03	WC-A4-05A-C	BM050253.D	09 Jun 2025 22:17		RC/JU	Ok
20	Q2236-11	WC-A2-05-C	BM050254.D	09 Jun 2025 22:56		RC/JU	Ok
21	Q2236-15	WC-A2-06-C	BM050255.D	09 Jun 2025 23:35		RC/JU	Ok
22	Q2236-19	WC-A2-07-C	BM050256.D	10 Jun 2025 00:15		RC/JU	Ok,M
23	Q2241-04	TP-N	BM050257.D	10 Jun 2025 00:54		RC/JU	Ok
24	Q2241-08	TP-S	BM050258.D	10 Jun 2025 01:33		RC/JU	Ok
25	Q2260-04	TP10-MHG-WC	BM050259.D	10 Jun 2025 02:12		RC/JU	Ok
26	Q2265-04	TP11-MHL-WC	BM050260.D	10 Jun 2025 02:51		RC/JU	Ok
27	DFTPP	DFTPP	BM050261.D	10 Jun 2025 04:09		RC/JU	Ok
28	SSTDCCC040	SSTDCCC040	BM050262.D	10 Jun 2025 04:48		RC/JU	Ok,M
29	PB168352BL	PB168352BL	BM050263.D	10 Jun 2025 05:28		RC/JU	Ok
30	PB168352BS	PB168352BS	BM050264.D	10 Jun 2025 06:07		RC/JU	Ok,M
31	PB168333TB	PB168333TB	BM050265.D	10 Jun 2025 06:46		RC/JU	Ok
32	Q2242-04	TP09-MHJ	BM050266.D	10 Jun 2025 07:25		RC/JU	Ok
33	Q2244-04	TP03-MHC	BM050267.D	10 Jun 2025 08:04		RC/JU	Ok
34	Q2266-04	WC-3	BM050268.D	10 Jun 2025 08:43		RC/JU	Ok
35	Q2266-08	WC-5	BM050269.D	10 Jun 2025 09:22	Internal Standard Failed & Surrogates failed for low IS recoveries.	RC/JU	ReRun
36	Q2240-04	TP-3	BM050270.D	10 Jun 2025 10:01		RC/JU	Ok

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Instrument ID: BNA_M

Daily Analysis Runlog For Sequence/QCBatch ID # BM060925

Review By	Rahul	Review On	6/10/2025 5:10:05 PM					
Supervise By	Jagrut	Supervise On	6/10/2025 5	6/10/2025 5:10:49 PM				
SubDirectory	BM060925	HP Acquire Method	BNA_M	HP Processing Method	BM060625			
STD. NAME	STD REF.#							
Tune/Reschk	SP6757							
Initial Calibration Stds	SP6784,SP6785,SF	SP6784,SP6785,SP6786,SP6787,SP6788,SP6790,SP6789,SP6791						
CCC	SP6787							
Internal Standard/PEM	S12667,10ul/1000u	I sample						
ICV/I.BLK	SP6796							
Surrogate Standard								
MS/MSD Standard								
LCS Standard								

37	Q2240-08	TP-2	BM050271.D	10 Jun 2025 10:41		RC/JU	Ok
38	Q2240-12	TP-1	BM050272.D	10 Jun 2025 11:20		RC/JU	Ok
39	Q2231-02DL	MW-14-20250604DL	BM050273.D	10 Jun 2025 11:59	Need further 5X dilution	RC/JU	Dilution
40	Q2202-03DL	MW-12-20250603DL	BM050274.D	10 Jun 2025 12:38		RC/JU	Ok
41	Q2231-02DL2	MW-14-20250604DL2	BM050275.D	10 Jun 2025 13:28		RC/JU	Ok

M : Manual Integration

SPLP EXTRACTION LOGPAGE

TECHNICAL GROUP

SOP ID:

M1312-SPLP-10

SDG No:

N/A

Weigh By:

JΡ

JΡ

WC

T-2

Balance ID:

WC SC-7

pH Meter ID :

WC PH METER-1

Extraction By: JP

Filter By:

Pippete ID:

Tumbler ID:

TCLP Filter ID: 115525

End Prep Date: 06/05/2025 Time: 09:20

Combination Ratio: 20

ZHE Cleaning Batch: N/A

Initial Room Temperature: 24 °C

Final Room Temperature: 22 °C

TCLP Technician Signature:

Supervisor By :

Standared Name	MLS USED	STD REF. # FROM LOG	
N/A	N/A	N/A	

Chemical Used	ML/SAMPLE U	Lot Number	
SPLP FLUID	WP112802	N/A	
N/A	N/A	N/A	
HNO3-TCLP,1N	N/A	WP112799	
pH Strips	N/A	W1931,W1934,W3171,W3172	
N/A	N/A	N/A	
1 Liter Amber	N/A	90924-08	
N/A	N/A	N/A	
N/A	N/A	N/A	

Extraction Conformance/Non-Conformance Comments:

TUMBLER T-2 checked,30 rpm.

Date / Time	Prepped Sample Relinquished By/Location	Received By/Location
6105125 1140	30 100 A0 cm	RS 15+t
	Preparation Group	Analysis Group DOD

SPLP EXTRACTION LOGPAGE

PB168273

Sample ID	ClientID	TCLP Vessel ID	Sample Wt (g)	Volume Extraction Fluid #1 (mL)	Multi phasic	Phase Miscible	Phases Combined	Final Leachate PH	Metals Leachate Adj. PH	Prep Pos
PB168273TB	LEB273	17	N/A	2000	N/A	N/A	N/A	4.22		
Q2125-08	GSB3	1.0			1,711	14/7	IVA	4.23	N/A	T-2
-	1	16	100.05	2000	N/A	N/A	N/A	5.0	N/A	T-2

F

Н

J

SampleID	ClientID							
	Chencib	Sample Weight (g)	Filter Weight (g)	Filtrate (mL)	Filter + Solid (After 100°C)	% solids	% Dry Solids	
PB168273TB	LEB273	N/A	N/A	N/A	N/A			
02125-08	GSB3			19/7	IVA	N/A	N/A	
QLILD 00	6363	N/A	N/A	N/A	N/A	100	NIZA	

E

F

Н

J

k

SPLP Fluid Determination

PB168273

Hot Block ID: N/A

Thermometer ID: FLASHPOINT

SampleID	ClientID	Sample Weight (g)	Volume DI Water (mL)	PH after 5 min stir	PH after 10 min stir	Extraction Fluid 1 or	Extraction
PB168273TB	LEB273	N/A	N/A	N/A	N/A	#1	Fluid 4.23
Q2125-08	GSB3	N/A	N/A	N/A	N/A	#1	4.23

7

"

WORKLIST(Hardcopy Internal Chain)

WorkList Name :

splp q2125

WorkList ID: 189937

Department: TCLP Extraction

Date : 06.04.2025.42.47.00

						Date: 06-04-2025 13:17:0		
Sample	Customer Sample	Matrix	Test	Preservative	Customer	Raw Sample Storage Location	Collect Date	Method
Q2125-08	GSB3	Solid	SPLP Extraction	1:1 HNO3 to pH < 2	OFN/04			
				1.1 TINOS to pri < 2	GENV01		05/23/2025	1312

Raw Sample Received by:

Raw Sample Relinquished by:

Raw Sample Received by:

Raw Sample Relinquished by:

Page 1 of 1

EXTRACTION LOGPAGE

14:20

Preparation Group

SOP ID:	M3510C,3580A-Extra	ction SVOC-20						
Clean Up SOP #:	N/A			Ð	ctraction Start D	ato ·	06/06/20	25
Matrix :	Water				traction Start T			25
Weigh By:	N/A	Extraction E					09:15	
Balance check:					ktraction End Date :		06/06/2025	
	N/A	Filter E	By: RS Ext		xtraction End Time :		14:15	
Balance ID:	N/A	pH Meter I	D: N/A	Co	ncentration By:		EH	
pH Strip Lot#:	E3880	Hood I	D: 4,6,7	Su	pervisor By :		rajesh	
Extraction Method:	Seperatory Funnel	Contini	ous Liquid/Lid	quid	Sonication	Waste	Dilution	Soxhl
Standared Name		MLS USED		Concentratio	n ug/mL	STD RI	EF. # FROM	M LOG
Spike Sol 1		1.0ML		50/100 PPM		SP679		
Surrogate		1.0ML		100/150 PPM		SP675		
N/A		N/A		N/A		N/A		
N/A		N/A		N/A		N/A		
N/A		N/A		N/A		N/A		
Chemical Used			ML/SAM	PLE USED		Lot N	umber	
Methylene Chloride			N/A		E3939			
Baked Na2SO4			N/A		EP2620			
H2SO4 1:1			N/A		EP2610			
10N NaoH			N/A		EP2609			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A			
N/A			N/A N/A		N/A			
N/A			N/A		N/A			
N/A			N/A		N/A N/A			
	ce/Non-Conformanc		1 with 10 N	NaOH.				
D Bath ID:	WATER BATH-1,2			Envap 1	ID: N	E VAP-02	2	
D Bath Temperature	60 °C	c		Envap 1	Temperature:	40 °C		
Date / Time	Prepped Samp	le Relinquished	By/Locatio	n	Received	By/Local	tion	
6 6 25		S (But-lab)						
11.126					J4/5	VUC		

Analysis Group

EXTRACTION LOGPAGE

PrepBatch ID: PB168340

Analytical Method:

M3510C,3580A-Extraction SVOC-20

Concentration Date: 06/06/2025

Sample ID	Client Sample ID	Test	g /(mL)	РН	Surr/Spike By:		Final Vol.	[[Prep
		1050	97(11)	""	AddedBy	VerifiedBy	(mL)	JarID	Comments	Pos
PB168340BL	PB168340BL	SPLP BNA Group1	1000	6	RUPESH	ritesh	1			SEP-1
PB168340BS	PB168340BS	SPLP BNA Group1	1000	6	RUPESH	ritesh	1			2
PB168340TB	PB168340TB	SPLP BNA Group1	1000	6	RUPESH	ritesh	1			3
Q2125-08	GSB3	SPLP BNA Group1	1000	6	RUPESH	ritesh	1	А		4
Q2125-08MS	GSB3MS	SPLP BNA Group1	1000	6	RUPESH	ritesh	1	Α		5
Q2125-08MS D	GSB3MSD	SPLP BNA Group1	1000	6	RUPESH	ritesh	1	A		6

616

^{*} Extracts relinguished on the same date as received.

SPLP EXTRACTION LOGPAGE

PB168273

Sample ID	ClientID	TCLP Vessel ID	Sample Wt (g)	Volume Extraction Fluid #1 (mL)	Multi phasic	Phase Miscible	Phases Combined	Final Leachate PH	Metals Leachate Adj. PH	Prep Pos
PB168273TB	LEB273	17	N/A	2000	N/A	N/A	N/A	4.23	N/A	T-2
Q2125-08	GSB3	16	100.05	2000	N/A	N/A	N/A	5.0	N/A	T-2

Ε

G

J

k

06105129

LAB CHRONICLE

OrderID: Q2125

Client: G Environmental
Contact: Gary Landis

OrderDate: 5/23/2025 11:50:35 AM

Project: Seely Location: L31

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2125-08	GSB3	Water			05/23/25			05/23/25
			SPLP BNA Group1	8270E		06/06/25	06/09/25	

R

С

D

G

Н

ī

K

SAMPLE DATA

Raw Data: FC069033.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB1 SDG No.: Q2125 Lab Sample ID: Q2125-01 Matrix: Solid Analytical Method: % Solid: 89.3 **NJEPH** Sample Wt/Vol: 30.06 Final Vol: 2000 Units: uL g Soil Aliquot Vol: uL Test: EPH F2 Prep Method:

 Prep Date :
 Date Analyzed :
 Prep Batch ID

 05/28/25 09:35
 05/29/25 10:18
 PB168182

 Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C28 Total EPH	Aliphatic C9-C28 Total EPH	1740 1740		50	50.8 50.8	224 224	mg/kg FC069045.D mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069033.D

Prep Method:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB1 SDG No.: Q2125 Lab Sample ID: Q2125-01 Matrix: Solid Analytical Method: NJEPH % Solid: 89.3 Sample Wt/Vol: 30.06 Units: Final Vol: 2000 uL g Soil Aliquot Vol: uL Test: EPH_F2

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069033.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C	C28	Aliphatic C9-C28	1470	E	1.02	4.47	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	11.1		1.32	2.24	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	42.7		40 - 140	85%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	37.8		40 - 140	76%	SPK: 50

Raw Data: FC069033.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-01 Acq On: 28 May 2025 16:01

Client Sample ID: GSB1 Operator: YP/AJ

Data file: FC069033.D Misc:

Instrument: FID_C ALS Vial: 18

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	175739057	1660	300	ug/ml
Aliphatic C12-C16	6.639	10.038	1032023439	10100	200	ug/ml
Aliphatic C16-C21	10.039	13.404	745685410	7620	300	ug/ml
Aliphatic C21-C28	13.405	17.066	28999431	309.149	400	ug/ml
Aliphatic C28-C40	17.067	22.060	14011861	148.369	600	ug/ml
Aliphatic EPH	3.339	22.060	1996459198	19900		ug/ml
ortho-Terphenyl (SURR)	11.724	11.724	4667008	37.84		ug/ml
1-chlorooctadecane (SURR)	13.145	13.145	3834019	42.74		ug/ml
Aliphatic C9-C28	3.339	17.066	1982447337	19700	1200	ug/ml

Raw Data: FC069045.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB1DLSDG No.: Q2125 Lab Sample ID: Q2125-01DL Matrix: Solid Analytical Method: NJEPH % Solid: 89.3 Sample Wt/Vol: 30.06 Units: Final Vol: 2000 uL g

Soil Aliquot Vol: uL Test: EPH_F2

 $Prep\ Method:$

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069045.D
 50
 05/28/25
 05/29/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C	C28	Aliphatic C9-C28	1740		50.8	224	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	65.9	U	65.9	111	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	0.00		40 - 140	0%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	0.00		40 - 140	0%	SPK: 50

Raw Data: FC069045.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-01DL Acq On: 29 May 2025 10:18

Client Sample ID: GSB1DL Operator: YP/AJ

Data file: FC069045.D Misc:

Instrument: FID_C ALS Vial: 11

Dilution Factor: 50 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.340	6.639	4593712	43.453	300	ug/ml
Aliphatic C12-C16	6.640	10.038	27301823	267.703	200	ug/ml
Aliphatic C16-C21	10.039	13.405	15390186	157.259	300	ug/ml
Aliphatic C21-C28	13.406	17.069	391277	4.171	400	ug/ml
Aliphatic C28-C40	17.070	22.063	133813	1.417	600	ug/ml
Aliphatic EPH	3.340	22.063	47810811	474.003		ug/ml
ortho-Terphenyl (SURR)	0.000	0.000	0	0		ug/ml
1-chlorooctadecane (SURR)	0.000	0.000	0	0		ug/ml
Aliphatic C9-C28	3.340	17.069	47676998	472.586	1200	ug/ml

Raw Data: FC069034.D

Datafile

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client:	G Environmental	Date Collected: 05/2	3/25
Project:	Seely	Date Received: 05/2	3/25
Client Sample ID:	GSB2	SDG No.: Q212	25
Lab Sample ID:	Q2125-02	Matrix: Solid	i
Analytical Method:	NJEPH	% Solid: 88.2	
Sample Wt/Vol:	30.04 Units: g	Final Vol: 2000) uL
Soil Aliquot Vol:	uL	Test: EPH	_F2
Prep Method:			

 Prep Date :
 Date Analyzed :
 Prep Batch ID

 05/28/25 09:35
 05/28/25 16:39
 PB168182

CAS Number Parameter Conc. Qualifier Dilution MDL LOQ / CRQL Units(Dry Weight) **TARGETS** Aliphatic C9-C28 Aliphatic C9-C28 5.83 1 1.03 FC069034.D 4.53 mg/kg Total EPH 1.03 Total EPH 5.83 4.53 mg/kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

Raw Data: FC069034.D

uL

EPH_F2

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Test:

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB2 SDG No.: Q2125 Lab Sample ID: Q2125-02 Matrix: Solid Analytical Method: NJEPH % Solid: 88.2 Sample Wt/Vol: 2000 30.04 Units: Final Vol: g

uL

Soil Aliquot Vol: Prep Method :

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069034.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
Aliphatic C9-C	228	Aliphatic C9-C28	5.83	1.03	4.53	mg/kg
Aliphatic C28-	C40	Aliphatic C28-C40	5.18	1.34	2.26	mg/kg
SURROGATES	3					
3383-33-2		1-chlorooctadecane (SURR)	44.8	40 - 140	90%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	41.5	40 - 140	83%	SPK: 50

Raw Data: FC069034.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-02 Acq On: 28 May 2025 16:39

Client Sample ID: GSB2 Operator: YP/AJ

Data file: FC069034.D Misc:

Instrument: FID_C ALS Vial: 19
Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	338961	3.206	300	ug/ml
Aliphatic C12-C16	6.639	10.038	720238	7.062	200	ug/ml
Aliphatic C16-C21	10.039	13.404	5038486	51.484	300	ug/ml
Aliphatic C21-C28	13.405	17.066	1442800	15.381	400	ug/ml
Aliphatic C28-C40	17.067	22.060	6482246	68.639	600	ug/ml
Aliphatic EPH	3.339	22.060	14022731	145.773		ug/ml
ortho-Terphenyl (SURR)	11.707	11.707	5112894	41.45		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	4022116	44.83		ug/ml
Aliphatic C9-C28	3.339	17.066	7540485	77.133	1200	ug/ml

Raw Data: FC069035.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3 SDG No.: Q2125 Lab Sample ID: Q2125-03 Matrix: Solid Analytical Method: % Solid: 88.3 **NJEPH** Sample Wt/Vol: 30.1 Final Vol: 2000 Units: uL g Soil Aliquot Vol: иL Test: EPH F2 Prep Method:

 Prep Date :
 Date Analyzed :
 Prep Batch ID

 05/28/25 09:35
 05/29/25 10:55
 PB168182

Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C28 Total EPH	Aliphatic C9-C28 Total EPH	2560 2560		50	51.4 51.4	226 226	mg/kg FC069046.D mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069035.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB3 SDG No.: Q2125 Lab Sample ID: Q2125-03 Matrix: Solid Analytical Method: NJEPH % Solid: 88.3 Sample Wt/Vol: 30.1 Units: Final Vol: 2000 uL g Soil Aliquot Vol: uL Test: EPH_F2 Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069035.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C	C28	Aliphatic C9-C28	2250	E	1.03	4.51	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	5.43		1.33	2.26	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	61.8		40 - 140	124%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	50.2		40 - 140	100%	SPK: 50

Raw Data: FC069035.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-03 Acq On: 28 May 2025 17:17

Client Sample ID: GSB3 Operator: YP/AJ

Data file: FC069035.D Misc:

Instrument: FID_C ALS Vial: 20
Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	232464004	2200	300	ug/ml
Aliphatic C12-C16	6.639	10.038	1615087479	15800	200	ug/ml
Aliphatic C16-C21	10.039	13.404	1117364580	11400	300	ug/ml
Aliphatic C21-C28	13.405	17.066	40071720	427.186	400	ug/ml
Aliphatic C28-C40	17.067	22.060	6810539	72.116	600	ug/ml
Aliphatic EPH	3.339	22.060	3011798322	30000		ug/ml
ortho-Terphenyl (SURR)	11.734	11.734	6196727	50.24		ug/ml
1-chlorooctadecane (SURR)	13.149	13.149	5540280	61.75		ug/ml
Aliphatic C9-C28	3.339	17.066	3004987783	29900	1200	ug/ml

Raw Data: FC069046.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: $\mathsf{GSB3DL}$ SDG No.: Q2125 Lab Sample ID: Q2125-03DL Matrix: Solid Analytical Method: NJEPH % Solid: 88.3 Sample Wt/Vol: 30.1 Units: Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH_F2

g

Prep Method:

File ID: Dilution: Prep Date: Prep Batch ID Date Analyzed: FC069046.D 50 05/28/25 05/29/25 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C	C28	Aliphatic C9-C28	2560		51.4	226	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	66.6	U	66.6	112	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	0.00		40 - 140	0%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	0.00		40 - 140	0%	SPK: 50

Raw Data: FC069046.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-03DL Acq On: 29 May 2025 10:55

Client Sample ID: GSB3DL Operator: YP/AJ

Data file: FC069046.D Misc:

Instrument:FID_CALS Vial:12Dilution Factor:50Sample Multiplier:1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.340	6.639	5758996	54.475	300	ug/ml
Aliphatic C12-C16	6.640	10.038	41920078	411.04	200	ug/ml
Aliphatic C16-C21	10.039	13.405	21043830	215.029	300	ug/ml
Aliphatic C21-C28	13.406	17.069	289851	3.09	400	ug/ml
Aliphatic C28-C40	17.070	22.063	136299	1.443	600	ug/ml
Aliphatic EPH	3.340	22.063	69149054	685.077		ug/ml
ortho-Terphenyl (SURR)	0.000	0.000	0	0		ug/ml
1-chlorooctadecane (SURR)	0.000	0.000	0	0		ug/ml
Aliphatic C9-C28	3.340	17.069	69012755	683.634	1200	ug/ml

Raw Data: FC069036.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB4 SDG No.: Q2125 Lab Sample ID: Q2125-04 Matrix: Solid Analytical Method: % Solid: 93.3 **NJEPH** Sample Wt/Vol: 30.08 Final Vol: 2000 Units: uL g Soil Aliquot Vol: uL Test: EPH F2 Prep Method:

 Prep Date :
 Date Analyzed :
 Prep Batch ID

 05/28/25 09:35
 05/28/25 17:54
 PB168182

Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C2 Total EPH	8 Aliphatic C9-C28 Total EPH	2.60 2.60	J J	1	0.97 0.97	4.28 4.28	mg/kg FC069036.D mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069036.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Test:

EPH_F2

Fax: 908 789 8922

uL

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB4 SDG No.: Q2125 Lab Sample ID: Q2125-04 Matrix: Solid Analytical Method: NJEPH % Solid: 93.3 Sample Wt/Vol: 30.08 Units: Final Vol: 2000 uL g

Soil Aliquot Vol: Prep Method :

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069036.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							_
Aliphatic C9-C	28	Aliphatic C9-C28	2.60	J	0.97	4.28	mg/kg
Aliphatic C28-0	C40	Aliphatic C28-C40	3.83		1.26	2.14	mg/kg
SURROGATES							
3383-33-2		1-chlorooctadecane (SURR)	46.4		40 - 140	93%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	43.4		40 - 140	87%	SPK: 50

Raw Data: FC069036.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-04 Acq On: 28 May 2025 17:54

Client Sample ID: GSB4 Operator: YP/AJ

Data file: FC069036.D Misc:

Instrument: FID_C ALS Vial: 21

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	462682	4.377	300	ug/ml
Aliphatic C12-C16	6.639	10.038	744541	7.3	200	ug/ml
Aliphatic C16-C21	10.039	13.404	949232	9.699	300	ug/ml
Aliphatic C21-C28	13.405	17.066	1425737	15.199	400	ug/ml
Aliphatic C28-C40	17.067	22.060	5074625	53.734	600	ug/ml
Aliphatic EPH	3.339	22.060	8656817	90.31		ug/ml
ortho-Terphenyl (SURR)	11.708	11.708	5347810	43.36		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	4165506	46.43		ug/ml
Aliphatic C9-C28	3.339	17.066	3582192	36.575	1200	ug/ml

Raw Data: FC069037.D

Datafile

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB5 SDG No.: Q2125 Lab Sample ID: Q2125-05 Matrix: Solid % Solid: Analytical Method: **NJEPH** 87 Sample Wt/Vol: 30.02 Final Vol: 2000 Units: uL g Soil Aliquot Vol: uL Test: EPH F2 Prep Method:

 Prep Date :
 Date Analyzed :
 Prep Batch ID

 05/28/25 09:35
 05/29/25 11:33
 PB168182

LOQ / CRQL Units(Dry Weight) **CAS Number Parameter** Conc. Qualifier Dilution MDL **TARGETS** Aliphatic C9-C28 Aliphatic C9-C28 226 5 5.22 23.0 mg/kg FC069047.D Total EPH Total EPH 226 5.22 23.0 mg/kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

Raw Data: FC069037.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25

Project: Seely Date Received: 05/23/25

Client Sample ID: GSB5 SDG No.: Q2125

Lab Sample ID: Q2125-05 Matrix: Solid

Analytical Method: NJEPH % Solid: 87

Sample Wt/Vol: 30.02 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069037.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C2	28	Aliphatic C9-C28	210	E	1.04	4.60	mg/kg
Aliphatic C28-C	240	Aliphatic C28-C40	3.91		1.36	2.30	mg/kg
SURROGATES							
3383-33-2		1-chlorooctadecane (SURR)	39.3		40 - 140	79%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	38.5		40 - 140	77%	SPK: 50

Raw Data: FC069037.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-05 Acq On: 28 May 2025 18:31

Client Sample ID: GSB5 Operator: YP/AJ

Data file: FC069037.D Misc:

Instrument: FID_C ALS Vial: 22
Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	18297011	173.075	300	ug/ml
Aliphatic C12-C16	6.639	10.038	138896873	1360	200	ug/ml
Aliphatic C16-C21	10.039	13.404	113499969	1160	300	ug/ml
Aliphatic C21-C28	13.405	17.066	5084428	54.203	400	ug/ml
Aliphatic C28-C40	17.067	22.060	4816690	51.003	600	ug/ml
Aliphatic EPH	3.339	22.060	280594971	2800		ug/ml
ortho-Terphenyl (SURR)	11.709	11.709	4750316	38.51		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	3522060	39.26		ug/ml
Aliphatic C9-C28	3.339	17.066	275778281	2750	1200	ug/ml

Raw Data: FC069047.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected: 05/23/25 Project: Seely Date Received: 05/23/25 Client Sample ID: GSB5DLQ2125 SDG No.: Lab Sample ID: Q2125-05DL Matrix: Solid Analytical Method: % Solid: 87 NJEPH Sample Wt/Vol: 30.02 Units: Final Vol: 2000 uL g

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069047.D
 5
 05/28/25
 05/29/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							_
Aliphatic C9-C	228	Aliphatic C9-C28	226		5.22	23.0	mg/kg
Aliphatic C28-0	C40	Aliphatic C28-C40	6.78	U	6.78	11.5	mg/kg
SURROGATES							
3383-33-2		1-chlorooctadecane (SURR)	8.08		40 - 140	81%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	7.50		40 - 140	75%	SPK: 50

Raw Data: FC069047.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-05DL Acq On: 29 May 2025 11:33

Client Sample ID: GSB5DL Operator: YP/AJ

Data file: FC069047.D Misc:

Instrument:FID_CALS Vial:13Dilution Factor:5Sample Multiplier:1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.340	6.639	3737379	35.353	300	ug/ml
Aliphatic C12-C16	6.640	10.038	29754407	291.752	200	ug/ml
Aliphatic C16-C21	10.039	13.405	24769171	253.095	300	ug/ml
Aliphatic C21-C28	13.406	17.069	1034258	11.026	400	ug/ml
Aliphatic C28-C40	17.070	22.063	823849	8.724	600	ug/ml
Aliphatic EPH	3.340	22.063	60119064	599.948		ug/ml
ortho-Terphenyl (SURR)	11.703	11.703	924753	7.5		ug/ml
1-chlorooctadecane (SURR)	13.137	13.137	725007	8.08		ug/ml
Aliphatic C9-C28	3.340	17.069	59295215	591.226	1200	ug/ml

QC SUMMARY

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

SOIL EPH SURROGATE RECOVERY

Lab Name: CHEMTECH Contract: GENV01

Run Number: FC052825AL

Client SAMPLE NO.	1-chlorooctadecane (SURR)	ortho-Terphenyl (SURR)	TOT
PB168182BL	72	68	0
PB168182BS	85	79	0
PB168182BSD	82	76	0
GSB1	85	76	0
GSB2	90	83	0
GSB3	124	100	0
GSB4	93	87	0
GSB5	79	77	0
GSB5MS	62	61	0
GSB5MSD	60	58	0

QC LIMITS

1-chlorooctadecane (SURR) (40-140)

ortho-Terphenyl (SURR) (40-140)

Column to be used to flag recovery values

* Values outside of contract required QC Limits

D Surrogate diluted out

Fax: 908 789 8922

SOIL EPH SURROGATE RECOVERY

Lab Name: CHEMTECH Contract: GENV01

Run Number: FC052925AL

Client SAMPLE NO.	1-chlorooctadecane (SURR)		ortho-Terphenyl	(SURR)	TOT
GSB1DL	0 *		0	*	2
GSB3DL	0 *		0	*	2
GSB5DL	81		75		0

QC LIMITS

1-chlorooctadecane (SURR) (40-140)

ortho-Terphenyl (SURR) (40-140)

Column to be used to flag recovery values

* Values outside of contract required QC Limits

D Surrogate diluted out

SOIL EPH SURROGATE RECOVERY

QC LIMITS

1-chlorooctadecane (SURR) (40-140)

ortho-Terphenyl (SURR) (40-140)

Column to be used to flag recovery values

A

В

C

E

I

^{*} Values outside of contract required QC Limits

D Surrogate diluted out

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

SOLID EPH_F2 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	Chemtech		Client:	G Environmental				
Lab Code:	СНЕМ	Cas No:	Q2125	SAS No:	Q2125	SDG No:	Q2125	
Sample No:	O2125-05MS	Datafile:	FC069038.D	Client ID :	GSB5MS			

COMPOUND	SPIKE ADDED mg/kg	SAMPLE CONCENTRATION mg/kg	MS/MSD CONCENTRATION mg/kg	% REC	Qual	QC LIMITS
Aliphatic C28-C40	34.4	3.91	28.3	71		(40-140)
Aliphatic C9-C28	114.7	210	241	27	*	(40-140)

Α

F

G

H

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

SOLID EPH_F2 MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	Chemtech		Client:	G Environmental				
Lab Code:	СНЕМ	Cas No:	Q2125	SAS No:	Q2125	SDG No:	Q2125	
Cample No.	O2125 05MSD	Datafila.	EC060030 D	Client ID .	CCD5MCD			

COMPOUND	SPIKE ADDED mg/kg	SAMPLE CONCENTRATION mg/kg	MS/MSD CONCENTRATION mg/kg	% REC	Qual	RPD	QC LIMITS	QC Limit Of RPD
Aliphatic C28-C40	34.4	3.91	30.1	76		7.07	(40-140)	50
Aliphatic C9-C28	114.7	210	239	25	*	7.6	(40-140)	50

Α

C

G

Н .

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

SOLID EPH_F2 LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

G Environmental Chemtech **Client:** Lab Name: Lab Code: CHEM Cas No: Q2125 SAS No: Q2125 SDG No: Q2125 PB168182BS FC069031.D PB168182BS Sample No: Datafile: Client ID:

COMPOUND	SPIKE ADDED mg/kg	LCS/LCSD CONCENTRATION mg/kg	% REC	Qual	QC LIMITS
Aliphatic C28-C40	30.0	23.6	79		(40-140)
Aliphatic C9-C28	99.9	79.0	79		(40-140)

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

SOLID EPH_F2 LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

G Environmental Chemtech **Client:** Lab Name: Lab Code: CHEM Cas No: Q2125 SAS No: Q2125 SDG No: Q2125 PB168182BSD FC069032.D PB168182BSD Sample No: Datafile: Client ID:

COMPOUND	SPIKE ADDED mg/kg	LCS/LCSD CONCENTRATION mg/kg	% REC	Qual	RPD	QC LIMITS	QC Limit Of RPD
Aliphatic C28-C40	30.0	21.7	72		8.4	(40-140)	25
Aliphatic C9-C28	100.1	75.9	76		3.7	(40-140)	25

4B METHOD BLANK SUMMARY

EPA	SAMPLE	NO.	
PB16	8182BL		

Lab Name: CHEMTECH	Contract: GENV01
--------------------	------------------

Lab Code: CHEM Case No.: Q2125 SAS No.: Q2125 SDG NO.: Q2125

Instrument ID: FID_C Lab Sample ID: PB168182BL

Matrix: (soil/water) Solid Date Extracted: 5/28/2025 9:35:00 A

Level: (low/med) low

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID
PB168182BS	PB168182BS
PB168182BSD	PB168182BSD
GSB1	Q2125-01
GSB2	Q2125-02
GSB3	Q2125-03
GSB4	Q2125-04
GSB5	Q2125-05
GSB5MS	Q2125-05MS
GSB5MSD	Q2125-05MSD

COMMENTS:		

QC SAMPLE DATA

Raw Data: FC069030.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BL SDG No.: Q2125

Lab Sample ID: PB168182BL Matrix: Solid

Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.01 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH F2

Prep Method:

Prep Date : Date Analyzed : Prep Batch ID

Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C28 Total EPH	Aliphatic C9-C28 Total EPH	0.91 0.91	U U	1	0.91 0.91	4.00 4.00	mg/kg FC069030.D mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069030.D

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BL SDG No.: Q2125
Lab Sample ID: PB168182BL Matrix: Solid
Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.01 Units: g Final Vol: 2000

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069030.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-C	C28	Aliphatic C9-C28	0.91	U	0.91	4.00	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	1.18	U	1.18	2.00	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	35.9		40 - 140	72%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	33.9		40 - 140	68%	SPK: 50

Raw Data: FC069030.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: PB168182BL Acq On: 28 May 2025 14:08

Client Sample ID: PB168182BL Operator: YP/AJ

Data file: FC069030.D Misc:

Instrument: FID_C ALS Vial: 15

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	0	0	300	ug/ml
Aliphatic C12-C16	6.639	10.038	0	0	200	ug/ml
Aliphatic C16-C21	10.039	13.404	0	0	300	ug/ml
Aliphatic C21-C28	13.405	17.066	0	0	400	ug/ml
Aliphatic C28-C40	17.067	22.060	0	0	600	ug/ml
Aliphatic EPH	3.339	22.060	0	0		ug/ml
ortho-Terphenyl (SURR)	11.706	11.706	4180455	33.89		ug/ml
1-chlorooctadecane (SURR)	13.139	13.139	3217371	35.86		ug/ml
Aliphatic C9-C28	3.339	17.066	0	0	1200	ug/ml

Raw Data: FC069031.D

Datafile

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BS SDG No.: Q2125
Lab Sample ID: PB168182BS Matrix: Solid

Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.02 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

Prep Date : Date Analyzed : Prep Batch ID

05/28/25 09:35 05/28/25 14:46 PB168182

LOQ / CRQL Units(Dry Weight) **CAS Number Parameter** Conc. Qualifier Dilution MDL **TARGETS** Aliphatic C9-C28 Aliphatic C9-C28 79.0 1 0.91 3.99 FC069031.D mg/kg Total EPH 79.0 0.91 Total EPH 3.99 mg/kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

Raw Data: FC069031.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BS SDG No.: Q2125
Lab Sample ID: PB168182BS Matrix: Solid
Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.02 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069031.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
Aliphatic C9-0	C28	Aliphatic C9-C28	79.0	0.91	3.99	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	23.6	1.18	2.00	mg/kg
SURROGATES	S					
3383-33-2		1-chlorooctadecane (SURR)	42.6	40 - 140	85%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	39.4	40 - 140	79%	SPK: 50

Raw Data: FC069031.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: PB168182BS Acq On: 28 May 2025 14:46

Client Sample ID: PB168182BS Operator: YP/AJ

Data file: FC069031.D Misc:

Instrument: FID_C ALS Vial: 16

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	22014737	208.241	300	ug/ml
Aliphatic C12-C16	6.639	10.038	27614549	270.77	200	ug/ml
Aliphatic C16-C21	10.039	13.404	30222427	308.817	300	ug/ml
Aliphatic C21-C28	13.405	17.066	37359587	398.273	400	ug/ml
Aliphatic C28-C40	17.067	22.060	33452926	354.228	600	ug/ml
Aliphatic EPH	3.339	22.060	150664226	1540		ug/ml
ortho-Terphenyl (SURR)	11.707	11.707	4860614	39.41		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	3820055	42.58		ug/ml
Aliphatic C9-C28	3.339	17.066	117211300	1190	1200	ug/ml

Raw Data: FC069032.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

report of finally sis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BSD SDG No.: Q2125

Lab Sample ID: PB168182BSD Matrix: Solid

Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.01 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH F2

Prep Method:

Prep Date : Date Analyzed : Prep Batch ID

05/28/25 09:35 05/28/25 15:24 PB168182

Datafile

CAS Number Pa	arameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)	
TARGETS Aliphatic C9-C28 Total EPH	Aliphatic C9-C28 Total EPH	75.9 75.9		1	0.91 0.91	4.00 4.00	mg/kg mg/kg	FC069032.D

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069032.D

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: PB168182BSD SDG No.: Q2125
Lab Sample ID: PB168182BSD Matrix: Solid
Analytical Method: NJEPH % Solid: 100

Sample Wt/Vol: 30.01 Units: g Final Vol: 2000

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069032.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
Aliphatic C9-C2	28	Aliphatic C9-C28	75.9	0.91	4.00	mg/kg
Aliphatic C28-C	C40	Aliphatic C28-C40	21.7	1.18	2.00	mg/kg
SURROGATES						
3383-33-2		1-chlorooctadecane (SURR)	41.2	40 - 140	82%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	38.1	40 - 140	76%	SPK: 50

Raw Data: FC069032.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: PB168182BSD Acq On: 28 May 2025 15:24

Client Sample ID: PB168182BSD Operator: YP/AJ

Data file: FC069032.D Misc:

Instrument: FID_C ALS Vial: 17
Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	21688252	205.153	300	ug/ml
Aliphatic C12-C16	6.639	10.038	26550579	260.337	200	ug/ml
Aliphatic C16-C21	10.039	13.404	28785148	294.131	300	ug/ml
Aliphatic C21-C28	13.405	17.066	35471472	378.145	400	ug/ml
Aliphatic C28-C40	17.067	22.060	30769174	325.81	600	ug/ml
Aliphatic EPH	3.339	22.060	143264625	1460		ug/ml
ortho-Terphenyl (SURR)	11.708	11.708	4694412	38.06		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	3699949	41.24		ug/ml
Aliphatic C9-C28	3.339	17.066	112495451	1140	1200	ug/ml

Raw Data: **FC069038.D**

Datafile

mg/kg

mg/kg

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

242

242

Client Sample ID: GSB5MS SDG No.: Q2125

Lab Sample ID: Q2125-05MS Matrix: Solid % Solid: Analytical Method: **NJEPH** 87

Sample Wt/Vol: 30.06 Final Vol: 2000 Units: uL g

Soil Aliquot Vol: uL Test: EPH F2

Prep Method:

Prep Date: Date Analyzed: Prep Batch ID

05/28/25 09:35 05/28/25 19:09 PB168182

LOQ / CRQL Units(Dry Weight) **CAS Number Parameter** Conc. Qualifier Dilution MDL **TARGETS** Aliphatic C9-C28 Aliphatic C9-C28 E 1 1.04 4.59 FC069038.D

* As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

Total EPH

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

Total EPH

J = Estimated Value

1.04

B = Analyte Found in Associated Method Blank

4.59

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069038.D

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

g

Client Sample ID: GSB5MS SDG No.: Q2125 Lab Sample ID: Q2125-05MS Matrix: Solid

Analytical Method: NJEPH % Solid: 87 Sample Wt/Vol: 30.06 Units: Final Vol: 2000

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

File ID: Dilution: Prep Date: Date Analyzed: Prep Batch ID FC069038.D 1 05/28/25 05/28/25 PB168182

CAS Number	Parameter		Conc. Q	ualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-0	C28	Aliphatic C9-C28	242	E	1.04	4.59	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	28.3		1.35	2.29	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	31.2		40 - 140	62%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	30.6		40 - 140	61%	SPK: 50

Raw Data: FC069038.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-05MS Acq On: 28 May 2025 19:09

Client Sample ID: GSB5MS Operator: YP/AJ

Data file: FC069038.D Misc:

Instrument:FID_CALS Vial:23Dilution Factor:1Sample Multiplier:1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	33405567	315.989	300	ug/ml
Aliphatic C12-C16	6.639	10.038	134755448	1320	200	ug/ml
Aliphatic C16-C21	10.039	13.404	112873615	1150	300	ug/ml
Aliphatic C21-C28	13.405	17.066	34445368	367.206	400	ug/ml
Aliphatic C28-C40	17.067	22.060	34909931	369.656	600	ug/ml
Aliphatic EPH	3.339	22.060	350389929	3530		ug/ml
ortho-Terphenyl (SURR)	11.709	11.709	3773295	30.59		ug/ml
1-chlorooctadecane (SURR)	13.140	13.140	2799762	31.21		ug/ml
Aliphatic C9-C28	3.339	17.066	315479998	3160	1200	ug/ml

Raw Data: FC069039.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID: GSB5MSD SDG No.: Q2125

Lab Sample ID: Q2125-05MSD Matrix: Solid

Analytical Method: NJEPH % Solid: 87

Sample Wt/Vol: 30.07 Units: g Final Vol: 2000 uL

Soil Aliquot Vol: uL Test: EPH F2

Prep Method:

Prep Date : Date Analyzed : Prep Batch ID

05/28/25 09:35 05/28/25 19:46 PB168182

Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C28	•	239	E	1	1.04	4.59	mg/kg FC069039.D
Total EPH	Total EPH	239			1.04	4.59	mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Raw Data: FC069039.D

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: G Environmental Date Collected:

Project: Seely Date Received:

Client Sample ID:GSB5MSDSDG No.:Q2125Lab Sample ID:Q2125-05MSDMatrix:SolidAnalytical Method:NJEPH% Solid:87

Sample Wt/Vol: 30.07 Units: g Final Vol: 2000

Soil Aliquot Vol: uL Test: EPH_F2

Prep Method:

 File ID :
 Dilution:
 Prep Date :
 Date Analyzed :
 Prep Batch ID

 FC069039.D
 1
 05/28/25
 05/28/25
 PB168182

CAS Number	Parameter		Conc. Q	Qualifier	MDL	LOQ / CRQL	Units
TARGETS							
Aliphatic C9-0	C28	Aliphatic C9-C28	239	E	1.04	4.59	mg/kg
Aliphatic C28-	-C40	Aliphatic C28-C40	30.1		1.35	2.29	mg/kg
SURROGATES	S						
3383-33-2		1-chlorooctadecane (SURR)	29.8		40 - 140	60%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	28.9		40 - 140	58%	SPK: 50

Raw Data: FC069039.D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2125-05MSD Acq On: 28 May 2025 19:46

Client Sample ID: GSB5MSD Operator: YP/AJ

Data file: FC069039.D Misc:

Instrument: FID_C ALS Vial: 24

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.339	6.638	34135858	322.897	300	ug/ml
Aliphatic C12-C16	6.639	10.038	131129190	1290	200	ug/ml
Aliphatic C16-C21	10.039	13.404	110519682	1130	300	ug/ml
Aliphatic C21-C28	13.405	17.066	36508617	389.201	400	ug/ml
Aliphatic C28-C40	17.067	22.060	37174227	393.632	600	ug/ml
Aliphatic EPH	3.339	22.060	349467574	3520		ug/ml
ortho-Terphenyl (SURR)	11.708	11.708	3569626	28.94		ug/ml
1-chlorooctadecane (SURR)	13.139	13.139	2676937	29.84		ug/ml
Aliphatic C9-C28	3.339	17.066	312293347	3130	1200	ug/ml

CALIBRATION SUMMARY

Fax: 908 789 8922

Inital Calibration Report for SequenceID : FC052425AL

AreaCount

Parameter Range	FC068998.D	FC068999.D	FC069000.D	FC069001.D	FC069002.D	
Aliphatic C9-C12	30972986.000	14697820.000	6552580.000	3389981.000	1577245.000	
Aliphatic C12-C16	19730095.000	9409770.000	4233296.000	2174844.000	1026044.000	
Aliphatic C16-C21	27989044.000	13592271.000	6091143.000	3134146.000	1491343.000	
Aliphatic C21-C28	35203824.000	17414178.000	7749092.000	4002009.000	1940505.000	
Aliphatic C28-C40	51848700.000	25927287.000	11552782.000	6038750.000	3073121.000	
Aliphatic EPH	165744649.000	81041326.000	36178893.000	18739730.000	9108258.000	

AVG Response Factor

Parameter Range	AVG RF	% RSD		
Aliphatic C9-C12	105717.490666	5.423		
Aliphatic C12-C16	101985.435	5.679		
Aliphatic C16-C21	97865.0806664	5.889		
Aliphatic C21-C28	93803.915	6.254		
Aliphatic C28-C40	94439.0346664	8.107		
Aliphatic EPH	97587.1362218	6.302		

Concentration

Parameter Range	FC068998.D	FC068999.D	FC069000.D	FC069001.D	FC069002.D	
Aliphatic C9-C12	300.000	150.000	60.000	30.000	15.000	
Aliphatic C12-C16	200.000	100.000	40.000	20.000	10.000	
Aliphatic C16-C21	300.000	150.000	60.000	30.000	15.000	
Aliphatic C21-C28	400.000	200.000	80.000	40.000	20.000	
Aliphatic C28-C40	600.000	300.000	120.000	60.000	30.000	
Aliphatic EPH	1800.000	900.000	360.000	180.000	90.000	

Response Factor

Parameter Range	FC068998.D	FC068999.D	FC069000.D	FC069001.D	FC069002.D	
Aliphatic C9-C12	103243.286666	97985.466666	109209.666666	112999.366666	105149.666666	
Aliphatic C12-C16	98650.475000	94097.700000	105832.400000	108742.200000	102604.400000	
Aliphatic C16-C21	93296.813333	90615.140000	101519.050000	104471.533333	99422.866666	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Inital Calibration Report for SequenceID : FC052425AL

Aliphatic C21-C28	88009.560000	87070.890000	96863.650000	100050.225000	97025.250000	
Aliphatic C28-C40	86414.500000	86424.290000	96273.183333	100645.833333	102437.366666	
Aliphatic EPH	92080.360555	90045.917777	100496.925000	104109.611111	101202.866666	

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Continuing Calibration Report for SequenceID: FC052825AL

Parameter	AreaCount	Conc.	RT_Min	RT_Max	Response Factor	AVGRF	%DEV
File ID : FC	069029.D						
Aliphatic C9-C12	6313437.000	60.000	3.339	6.638	105223.950	105717.491	0.467
Aliphatic C12-C16	4039143.000	40.000	6.639	10.038	100978.575	101985.435	0.987
Aliphatic C16-C21	5809366.000	60.000	10.039	13.404	96822.767	97865.081	1.065
Aliphatic C21-C28	7842342.000	80.000	13.405	17.066	98029.275	93803.915	-4.504
Aliphatic C28-C40	11834102.000	120.000	17.067	22.060	98617.517	94439.035	-4.425
Aliphatic EPH	35838390.000	360.000	3.339	22.060	99551.083	97587.136	-2.013

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Lab Sample ID: 20 PPM ALIPHATIC HC \(\) Acq On: 28 May 2025 13:31

Client Sample ID: Operator: YP/AJ

Data file: FC069029.D Misc:

Instrument: FID_C ALS Vial: 2

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R	2.T.	Response	Conc	Units
Aliphatic C9-C12	3.339	6.638	6313437.000	60.000	ug/ml
Aliphatic C12-C16	6.639	10.038	4039143.000	40.000	ug/ml
Aliphatic C16-C21	10.039	13.404	5809366.000	60.000	ug/ml
Aliphatic C21-C28	13.405	17.066	7842342.000	80.000	ug/ml
Aliphatic C28-C40	17.067	22.060	11834102.000	120.000	ug/ml
Aliphatic EPH	3.339	22.060	35838390.000	360.000	ug/ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Continuing Calibration Report for SequenceID: FC052825AL

Parameter	AreaCount	Conc.	RT_Min	RT_Max	Response Factor	AVGRF	%DEV	
File ID: FC069041.D								
Aliphatic C9-C12	6298433.000	60.000	3.339	6.638	104973.883	105717.491	0.703	
Aliphatic C12-C16	3921712.000	40.000	6.639	10.038	98042.800	101985.435	3.866	
Aliphatic C16-C21	5539983.000	60.000	10.039	13.404	92333.050	97865.081	5.653	
Aliphatic C21-C28	7504980.000	80.000	13.405	17.066	93812.250	93803.915	-0.009	
Aliphatic C28-C40	11206658.000	120.000	17.067	22.060	93388.817	94439.035	1.112	
Aliphatic EPH	34471766.000	360.000	3.339	22.060	95754.906	97587.136	1.878	

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Lab Sample ID: 20 PPM ALIPHATIC HC \(\) Acq On: 28 May 2025 21:37

Client Sample ID: Operator: YP/AJ

Data file: FC069041.D Misc:

Instrument: FID_C ALS Vial: 2

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	F	R.T.	Response	Conc	Units
Aliphatic C9-C12	3.339	6.638	6298433.000	60.000	ug/ml
Aliphatic C12-C16	6.639	10.038	3921712.000	40.000	ug/ml
Aliphatic C16-C21	10.039	13.404	5539983.000	60.000	ug/ml
Aliphatic C21-C28	13.405	17.066	7504980.000	80.000	ug/ml
Aliphatic C28-C40	17.067	22.060	11206658.000	120.000	ug/ml
Aliphatic EPH	3.339	22.060	34471766.000	360.000	ug/ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Continuing Calibration Report for SequenceID: FC052925AL

Parameter	AreaCount	Conc.	RT_Min	RT_Max	Response Factor	AVGRF	%DEV		
File ID : FC	File ID: FC069044.D								
Aliphatic C9-C12	6533923.000	60.000	3.340	6.639	108898.717	105717.491	-3.009		
Aliphatic C12-C16	4085377.000	40.000	6.640	10.038	102134.425	101985.435	-0.146		
Aliphatic C16-C21	5764892.000	60.000	10.039	13.405	96081.533	97865.081	1.822		
Aliphatic C21-C28	7723703.000	80.000	13.406	17.069	96546.288	93803.915	-2.924		
Aliphatic C28-C40	11446094.000	120.000	17.070	22.063	95384.117	94439.035	-1.001		
Aliphatic EPH	35553989.000	360.000	3.340	22.063	98761.081	97587.136	-1.203		

 ${\tt 284~Sheffield~Street,~Mountainside,~New~Jersey~07092,~Phone:908~789~8900,}\\$

Fax: 908 789 8922

Lab Sample ID: 20 PPM ALIPHATIC HC \(\) Acq On: 29 May 2025 09:40

Client Sample ID: Operator: YP/AJ

Data file: FC069044.D Misc:

Instrument: FID_C ALS Vial: 2

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.	т.	Response	Conc	Units
Aliphatic C9-C12	3.340	6.639	6533923.000	60.000	ug/ml
Aliphatic C12-C16	6.640	10.038	4085377.000	40.000	ug/ml
Aliphatic C16-C21	10.039	13.405	5764892.000	60.000	ug/ml
Aliphatic C21-C28	13.406	17.069	7723703.000	80.000	ug/ml
Aliphatic C28-C40	17.070	22.063	11446094.000	120.000	ug/ml
Aliphatic EPH	3.340	22.063	35553989.000	360.000	ug/ml

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Continuing Calibration Report for SequenceID: FC052925AL

Parameter	AreaCount	Conc.	RT_Min	RT_Max	Response Factor	AVGRF	%DEV	
File ID: FC069049.D								
Aliphatic C9-C12	6414070.000	60.000	3.340	6.639	106901.167	105717.491	-1.120	
Aliphatic C12-C16	4116698.000	40.000	6.640	10.038	102917.450	101985.435	-0.914	
Aliphatic C16-C21	5871755.000	60.000	10.039	13.405	97862.583	97865.081	0.003	
Aliphatic C21-C28	7782994.000	80.000	13.406	17.069	97287.425	93803.915	-3.714	
Aliphatic C28-C40	11520103.000	120.000	17.070	22.063	96000.858	94439.035	-1.654	
Aliphatic EPH	35705620.000	360.000	3.340	22.063	99182.278	97587.136	-1.635	

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone: \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Lab Sample ID: 20 PPM ALIPHATIC HC \(\) Acq On: 29 May 2025 12:48

Client Sample ID: Operator: YP/AJ

Data file: FC069049.D Misc:

Instrument: FID_C ALS Vial: 2

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R	R.T.	Response	Conc	Units
Aliphatic C9-C12	3.340	6.639	6414070.000	60.000	ug/ml
Aliphatic C12-C16	6.640	10.038	4116698.000	40.000	ug/ml
Aliphatic C16-C21	10.039	13.405	5871755.000	60.000	ug/ml
Aliphatic C21-C28	13.406	17.069	7782994.000	80.000	ug/ml
Aliphatic C28-C40	17.070	22.063	11520103.000	120.000	ug/ml
Aliphatic EPH	3.340	22.063	35705620.000	360.000	ug/ml

SAMPLE RAW DATA

Instrument : FID_C

GSB1

ClientSampleId :

APPROVED

Manual Integrations

Reviewed By: Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File : FC069033.D

Signal(s) : FID1A.ch Acq On : 28 May 2025 16:01

Operator : YP/AJ Sample : Q2125-01

Misc

ALS Vial : 18 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:45:05 2025

 $\label{thm:condition} Quant \ \mbox{Method}: Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S ortho-Terphenyl (SURR) 11.724 4667008 37.837 ug/mlm Spiked Amount 50.000 Recovery = 75.67% 12) S 1-chlorooctadecane (S... 13.145 3834019 42.736 ug/ml Spiked Amount 50.000 Recovery = 85.47%

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069033.D
Signal(s) : FID1A.ch

Acq On : 28 May 2025 16:01

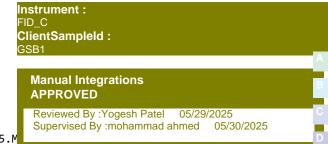
Operator : YP/AJ Sample : Q2125-01

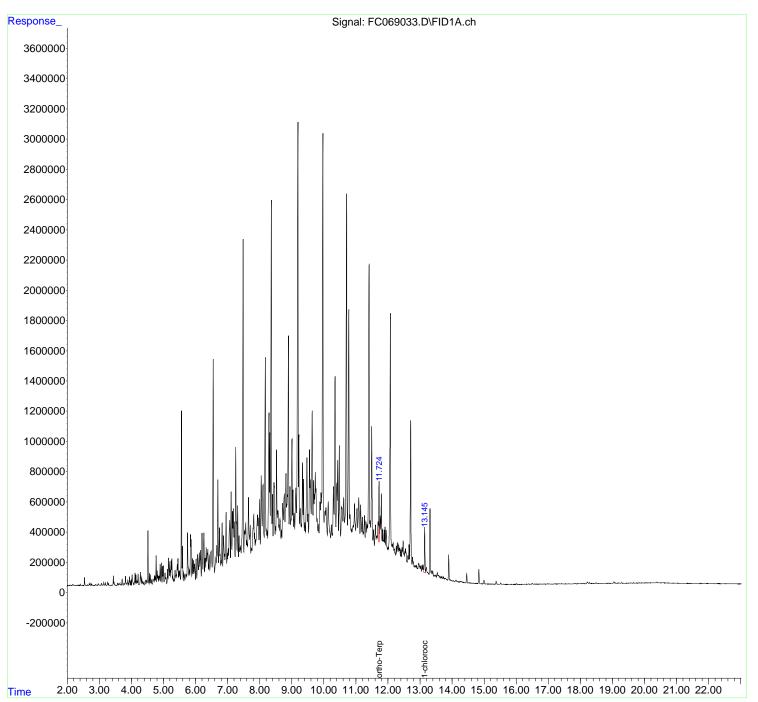
Misc

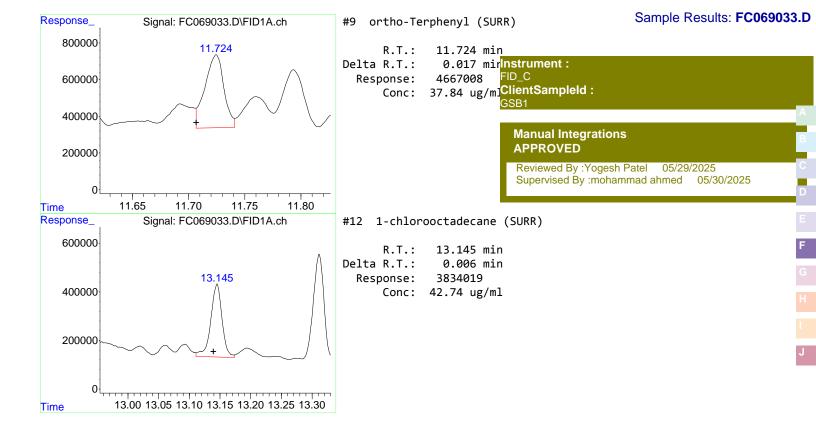
ALS Vial : 18 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:45:05 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables


QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

D

rteres

Instrument : FID_C ClientSampleId :

Area Percent Report

Manual IntegrationsAPPROVED

Reviewed By :Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC05282
Data File : FC069033.D

FI D1A. ch 28 May 2025 16: 01 Q2125-01 Signal(s): Acq On:

Sample

Misc ALS Vial : 18 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M : GC Extractables

Title

: FID1A.ch Si gnal

peak #	R. T. mi n	Start min	End mi n		peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 261 3. 285 3. 333 3. 387 3. 438	3. 233 3. 275 3. 305 3. 358 3. 401	3. 275 3. 305 3. 358 3. 401 3. 452	PV VV VV PV VV	21533 13238 2439 3970 64312	245758 117769 40951 39853 607577	0. 43% 0. 21% 0. 07% 0. 07% 1. 07%	0. 012% 0. 006% 0. 002% 0. 002% 0. 030%
6 7 8 9 10	3. 460 3. 487 3. 541 3. 569 3. 592	3. 452 3. 476 3. 521 3. 550 3. 582	3. 476 3. 521 3. 550 3. 582 3. 607	VV VV PV VV	21786 6384 2067 15588 12369	185743 71367 18759 161336 120187	0. 33% 0. 13% 0. 03% 0. 28% 0. 21%	0. 009% 0. 004% 0. 001% 0. 008% 0. 006%
11 12 13 14 15	3. 640 3. 711 3. 768 3. 815 3. 888	3. 607 3. 672 3. 741 3. 787 3. 861	3. 672 3. 741 3. 787 3. 861 3. 922	VV VV VV VV	14971 41162 14902 61109 35104	290701 618772 253530 937889 596583	0. 51% 1. 09% 0. 45% 1. 65% 1. 05%	0. 014% 0. 031% 0. 013% 0. 047% 0. 030%
16 17 18 19 20	3. 938 3. 989 4. 023 4. 114 4. 142	3. 922 3. 973 4. 004 4. 078 4. 129	3. 973 4. 004 4. 078 4. 129 4. 161	VV VV VV VV	59058 34849 71281 83385 70332	769193 312341 1192310 1090327 737155	1. 35% 0. 55% 2. 10% 1. 92% 1. 30%	0. 038% 0. 015% 0. 059% 0. 054% 0. 037%
21 22 23 24 25	4. 178 4. 210 4. 280 4. 323 4. 361	4. 161 4. 191 4. 233 4. 308 4. 348	4. 191 4. 233 4. 308 4. 348 4. 400	VV VV VV VV	30689 76108 86944 54708 25470	395968 849720 1395074 718195 430433	0. 70% 1. 49% 2. 45% 1. 26% 0. 76%	0. 020% 0. 042% 0. 069% 0. 036% 0. 021%
26 27 28 29 30	4. 433 4. 473 4. 516 4. 561 4. 590	4. 400 4. 452 4. 492 4. 542 4. 575	4. 452 4. 492 4. 542 4. 575 4. 608	VV VV VV VV	34028 35592 358096 80044 71582	546214 553168 3599088 808521 774478	0. 96% 0. 97% 6. 33% 1. 42% 1. 36%	0. 027% 0. 027% 0. 179% 0. 040% 0. 038%
31 32 33 34 35	4. 622 4. 676 4. 720 4. 743 4. 772	4. 608 4. 650 4. 703 4. 732 4. 754	4. 650 4. 703 4. 732 4. 754 4. 789	VV VV VV VV	37007 41440 65634 54202 196647	505450 929049 789049 605562 2058502	0. 89% 1. 63% 1. 39% 1. 07% 3. 62%	0. 025% 0. 046% 0. 039% 0. 030% 0. 102%
36	4. 804	4. 789	4. 839	VV	97042 Pag	1767974 je 1	3. 11%	0. 088%

Page 1

						Instrum FID_C ClientS:	ent : ampleld :	
37 38 39 40	4. 851 4. 897 4. 934 4. 972	4. 839 4. 862 4. 914 4. 954	4. 862 VV 4. 914 VV 4. 954 VV 4. 985 VV	rt 63014 141268 151668 126524	eres 654341 2207679 1942536 1396248	GSB1 1. 15% Manu	0. 032% ual IntegrationsAPPROVED	e e
41 42 43 44 45	4. 998 5. 049 5. 129 5. 161 5. 198	4. 985 5. 019 5. 102 5. 142 5. 185	5. 019 VV 5. 102 VV 5. 142 VV 5. 185 VV 5. 227 VV	130628 83002 108241 181855 157749	1533870 2217889 1283877 2924921 2518297		oved By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025 0. 064% 0. 145% 0. 125%	
46	5. 241	5. 227	5. 251 VV	162126	1652480	2. 91%	0. 082%	F
47	5. 262	5. 251	5. 307 VV	177310	2861057	5. 03%	0. 142%	
48	5. 322	5. 307	5. 341 VV	42335	728068	1. 28%	0. 036%	
49	5. 362	5. 341	5. 391 VV	101233	1940093	3. 41%	0. 096%	
50	5. 430	5. 391	5. 440 VV	138730	2665035	4. 69%	0. 132%	
51	5. 453	5. 440	5. 470 VV	179044	2138425	3. 76%	0. 106%	J
52	5. 487	5. 470	5. 501 VV	95520	1442893	2. 54%	0. 072%	
53	5. 511	5. 501	5. 534 VV	90557	1294475	2. 28%	0. 064%	
54	5. 563	5. 534	5. 581 VV	1138657	12157492	21. 38%	0. 603%	
55	5. 593	5. 581	5. 615 VV	257110	3124949	5. 50%	0. 155%	
56	5. 631	5. 615	5. 668 VV	87693	1895438	3. 33%	0. 094%	
57	5. 698	5. 668	5. 709 VV	72217	1425389	2. 51%	0. 071%	
58	5. 718	5. 709	5. 727 VV	69229	697493	1. 23%	0. 035%	
59	5. 751	5. 727	5. 789 VV	347796	5965680	10. 49%	0. 296%	
60	5. 808	5. 789	5. 821 VV	102185	1657298	2. 92%	0. 082%	
61	5. 845	5. 821	5. 855 VV	338104	4394292	7. 73%	0. 218%	
62	5. 862	5. 855	5. 884 VV	301296	3293088	5. 79%	0. 163%	
63	5. 903	5. 884	5. 920 VV	177027	2637436	4. 64%	0. 131%	
64	5. 934	5. 920	5. 951 VV	164577	2233058	3. 93%	0. 111%	
65	5. 970	5. 951	5. 998 VV	140889	2819734	4. 96%	0. 140%	
66	6. 018	5. 998	6. 040 VV	174253	2641304	4. 65%	0. 131%	
67	6. 065	6. 040	6. 092 VV	201442	4264886	7. 50%	0. 212%	
68	6. 118	6. 092	6. 134 VV	215722	4056049	7. 13%	0. 201%	
69	6. 159	6. 134	6. 179 VV	232053	4216430	7. 42%	0. 209%	
70	6. 203	6. 179	6. 230 VV	344950	5531109	9. 73%	0. 274%	
71	6. 261	6. 230	6. 280 VV	348436	6810943	11. 98%	0. 338%	
72	6. 298	6. 280	6. 317 VV	177244	3339622	5. 87%	0. 166%	
73	6. 334	6. 317	6. 350 VV	248742	3755379	6. 61%	0. 186%	
74	6. 383	6. 350	6. 405 VV	239139	6027691	10. 60%	0. 299%	
75	6. 428	6. 405	6. 447 VV	202780	3791401	6. 67%	0. 188%	
76	6. 483	6. 447	6. 518 VV	225032	7253082	12. 76%	0. 360%	
77	6. 551	6. 518	6. 595 VV	1497756	21170300	37. 24%	1. 050%	
78	6. 637	6. 595	6. 647 VV	182020	4447262	7. 82%	0. 221%	
79	6. 663	6. 647	6. 676 VV	262852	3707157	6. 52%	0. 184%	
80	6. 697	6. 676	6. 718 VV	699914	9426748	16. 58%	0. 468%	
81	6. 747	6. 718	6. 786 VV	381759	9302995	16. 36%	0. 462%	
82	6. 829	6. 786	6. 849 VV	412152	8537103	15. 02%	0. 424%	
83	6. 874	6. 849	6. 917 VV	328498	9315349	16. 39%	0. 462%	
84	6. 954	6. 917	6. 975 VV	483690	9461505	16. 64%	0. 469%	
85	6. 989	6. 975	7. 000 VV	211992	2833416	4. 98%	0. 141%	
86 87 88 89	7. 019 7. 068 7. 111 7. 153	7. 000 7. 033 7. 091 7. 133	7. 033 VV 7. 091 VV 7. 133 VV 7. 166 VV	244441 429043 618028 483919 Pa	4143340 11113618 9598775 7336906 ge 2	7. 29% 19. 55% 16. 88% 12. 91%	0. 206% 0. 551% 0. 476% 0. 364%	

					Instrument : FID_C ClientSampleId :
90	7. 180	7. 166	7. 197 VV	rteres 508510 785262	GSB1 4 13. 81% 0. 390%
91 92 93 94 95	7. 210 7. 255 7. 315 7. 358 7. 407	7. 197 7. 233 7. 296 7. 339 7. 375	7. 233 VV 7. 296 VV 7. 339 VV 7. 375 VV 7. 422 VV	912423 1750050 526503 888018 328643 564751	8
96 97 98 99 100	7. 484 7. 527 7. 566 7. 598 7. 652	7. 422 7. 506 7. 548 7. 587 7. 623	7. 506 VV 7. 548 VV 7. 587 VV 7. 623 VV 7. 689 VV	357952 802450 409630 821709 296740 586848	4 14. 11% 0. 398% 0 14. 45% 0. 408% 1 10. 32% 0. 291%
101 102 103 104 105	7. 706 7. 816 7. 871 7. 933 7. 958	7. 689 7. 725 7. 859 7. 880 7. 948	7. 725 VV 7. 859 VV 7. 880 VV 7. 948 VV 7. 979 VV	469420 2536037 300728 367500 464011 1544270	4 44.61% 1.258% 6 6.46% 0.182% 2 27.16% 0.766%
106 107 108 109 110	8. 001 8. 049 8. 104 8. 176 8. 238	7. 979 8. 021 8. 079 8. 144 8. 222	8. 021 VV 8. 079 VV 8. 144 VV 8. 222 VV 8. 251 VV	723997 1710772 663301 1814799 1513308 3189426	7 30. 09% 0. 849% 5 31. 92% 0. 900% 7 56. 10% 1. 583%
111 112 113 114 115	8. 290 8. 316 8. 363 8. 400 8. 449	8. 251 8. 304 8. 331 8. 384 8. 418	8. 304 VV 8. 331 VV 8. 384 VV 8. 418 VV 8. 482 VV	1015837 1213583 2565173 4095896 600476 985714	2 21. 35%
116 117 118 119 120	8. 527 8. 563 8. 632 8. 681 8. 717	8. 482 8. 550 8. 615 8. 665 8. 693	8. 550 VV 8. 615 VV 8. 665 VV 8. 693 VV 8. 739 VV	495443 1686161 435452 1196203 360772 574460	8
121 122 123 124 125	8. 769 8. 820 8. 897 8. 946 9. 007	8. 739 8. 790 8. 850 8. 918 8. 966	8. 790 VV 8. 850 VV 8. 918 VV 8. 966 VV 9. 026 VV	737431 2051484 1650147 3495716 645256 1457634	3 36.08% 1.018% 8 61.49% 1.735% 0 25.64% 0.723%
126 127 128 129 130	9. 039 9. 076 9. 128 9. 193 9. 223	9. 026 9. 059 9. 094 9. 146 9. 210	9. 059 VV 9. 094 VV 9. 146 VV 9. 210 VV 9. 246 VV	476688 891190 642724 1610587 3119764 5685250	4 15.68% 0.442% 6 28.33% 0.799% 1 100.00% 2.821%
131 132 133 134 135	9. 265 9. 338 9. 370 9. 412 9. 475	9. 246 9. 298 9. 355 9. 395 9. 429	9. 298 VV 9. 355 VV 9. 395 VV 9. 429 VV 9. 496 VV	804854 1881859 703714 1234279 412337 786105	2 33. 10% 0. 934% 0 21. 71% 0. 612% 4 13. 83% 0. 390%
136 137 138 139 140	9. 506 9. 555 9. 581 9. 637 9. 682	9. 496 9. 528 9. 572 9. 607 9. 663	9. 528 VV 9. 572 VV 9. 607 VV 9. 663 VV 9. 698 VV	893571 1671999 696532 1260861 1155426 2496919	2 29. 41% 0. 830% 6 22. 18% 0. 626% 3 43. 92% 1. 239%
141	9. 735	9. 698	9. 785 VV	744004 3044784 Page 3	8 53.56% 1.511%

			Instrument : FID_C ClientSampleId :
142 9. 794 9. 785 143 9. 829 9. 816 144 9. 880 9. 851 145 9. 914 9. 895	9.816 VV 9.851 VV 9.895 VV 9.933 VV	rteres 439154 7492668 403369 7892243 545489 12623283 609334 12894240	Manual IntegrationsAPPROVED
146 9. 971 9. 933 147 10. 038 10. 010 148 10. 069 10. 051 149 10. 139 10. 111 150 10. 237 10. 214	10. 010 VV 10. 051 VV 10. 111 VV 10. 214 VV 10. 259 VV	2955729 56285348 487579 11215627 511974 15798737 550796 24844589 397856 9499104	19 27.79% 0.784% 243.70% 1.233%
151 10. 300 10. 259 152 10. 352 10. 321 153 10. 406 10. 378 154 10. 436 10. 419 155 10. 484 10. 461	10. 321 VV 10. 378 VV 10. 419 VV 10. 461 VV 10. 526 VV	648906 17427879 1378596 27876610 669922 13783046 822131 15448153 921879 21806193	0 49.03% 1.383% 0 24.24% 0.684% 27.17% 0.767%
156 10. 555 10. 526 157 10. 621 10. 596 158 10. 710 10. 648 159 10. 780 10. 741 160 10. 817 10. 805	10. 741 VV	518016 18926087 573250 15052043 2592728 56093008 1839776 36720677 463034 16651992	3 26.48% 0.747% 3 98.66% 2.783% 64.59% 1.822%
161 10. 915 10. 874 162 10. 959 10. 925 163 11. 035 10. 998 164 11. 091 11. 058 165 11. 150 11. 128	10. 925 VV 10. 998 VV 11. 058 VV 11. 128 VV 11. 186 VV	391212 11342730 534820 18594188 504148 16130376 576898 19306213 523964 14605475	3 32.71% 0.923% 5 28.37% 0.800% 6 33.96% 0.958%
166 11. 204 11. 186 167 11. 268 11. 225 168 11. 310 11. 289 169 11. 353 11. 336 170 11. 411 11. 368	11. 368 VV	446822 9177924 456678 14402683 413196 10651915 398156 7333623 2107614 38142952	25.33%
171 11. 441 11. 431 172 11. 494 11. 461 173 11. 552 11. 531 174 11. 611 11. 576 175 11. 655 11. 631	11. 461 VV 11. 531 VV 11. 576 VV 11. 631 VV 11. 671 VV	423549 7417869 1045035 24453975 360612 8496038 396838 10995969 323106 7685290	5 43.01% 1.213% 3 14.94% 0.422% 9 19.34% 0.546%
176 11.694 11.671 177 11.724 11.703 178 11.761 11.742 179 11.794 11.775 180 11.830 11.816	11. 703 VV 11. 742 VV 11. 775 VV 11. 816 VV 11. 858 VV	413512 7168972 684114 11625828 455470 8119888 601519 11151002 363191 7935606	3 20.45% 0.577% 3 14.28% 0.403% 2 19.61% 0.553%
181 11.879 11.858 182 11.911 11.894 183 11.944 11.928 184 12.076 11.991 185 12.128 12.118	11.894 VV 11.928 VV 11.991 VV 12.118 VV 12.141 VV	361047 6885807 382771 6608485 360185 10701729 1762434 40433657 265682 3537819	5 11.62% 0.328% 9 18.82% 0.531% 7 71.12% 2.006%
186 12. 162 12. 141 187 12. 196 12. 188 188 12. 261 12. 240 189 12. 295 12. 275 190 12. 335 12. 318	12. 188 VV 12. 240 VV 12. 275 VV 12. 318 VV 12. 355 VV	273517 7140097 232110 6786009 257329 4755676 278374 6476717 263631 541030	0 11.94% 0.337% 6 8.36% 0.236% 7 11.39% 0.321%
191 12. 368 12. 355 192 12. 403 12. 388 193 12. 440 12. 420 194 12. 475 12. 461	12. 388 VV 12. 420 VV 12. 461 VV 12. 511 VV	240798 4347730 229130 4016718 246051 5525979 291188 6916123 Page 4	3 7. 07% 0. 199% 9 9. 72% 0. 274%

							ent : ampleld :	
195 12.548	12. 511	12. 601	VV	rt 239111	eres 10650950	GSB1 18. 73%	0. 528%	
196 12.623 197 12.658 198 12.708 199 12.767 200 12.843	12. 601 12. 637 12. 674 12. 749 12. 824	12. 674 12. 749 12. 824	VV VV VV VV	193842 265681 1084536 180989 130138	3756500 4753233 19186131 6607237 4094430	3; Revie	wed By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025	
201 12.896 202 12.957 203 13.019 204 13.061 205 13.092	12. 880 12. 930 13. 003 13. 041 13. 077	13. 003 13. 041 13. 077	VV VV VV VV	130477 141913 124886 127664 131135	3423074 5480525 2483520 2363125 2367041	6. 02% 9. 64% 4. 37% 4. 16% 4. 16%	O. 170% O. 272% O. 123% O. 117% O. 117%	
206 13. 145 207 13. 194 208 13. 241 209 13. 276 210 13. 312	13. 111 13. 173 13. 230 13. 263 13. 284	13. 230 13. 263 13. 284	VV VV VV VV	376705 116175 81854 74989 499869	6783691 3353283 1554259 924185 7345659	11. 93% 5. 90% 2. 73% 1. 63% 12. 92%	0. 337% 0. 166% 0. 077% 0. 046% 0. 364%	
211 13. 354 212 13. 396 213 13. 460 214 13. 489 215 13. 538	13. 337 13. 376 13. 441 13. 474 13. 510	13. 441 13. 474 13. 510	VV VV VV VV	91315 92355 63782 61689 81023	1967607 2791010 1160292 1255600 2108974	3. 46% 4. 91% 2. 04% 2. 21% 3. 71%	0. 098% 0. 138% 0. 058% 0. 062% 0. 105%	
216 13.583 217 13.615 218 13.653 219 13.687 220 13.733	13. 564 13. 604 13. 634 13. 671 13. 713	13. 634 13. 671 13. 713	VV VV VV VV	61125 52545 52978 53198 51848	1349771 875188 1068272 1194566 1316490	2. 37% 1. 54% 1. 88% 2. 10% 2. 32%	0. 067% 0. 043% 0. 053% 0. 059% 0. 065%	
221 13. 782 222 13. 844 223 13. 893 224 13. 951 225 13. 974	13. 764 13. 833 13. 863 13. 938 13. 966	13. 863 13. 938 13. 966	VV VV VV VV	41796 33261 197525 31432 28411	1580199 558710 3339960 501962 845875	2. 78% 0. 98% 5. 87% 0. 88% 1. 49%	0. 078% 0. 028% 0. 166% 0. 025% 0. 042%	
226 14.037 227 14.119 228 14.187 229 14.223 230 14.259	14. 021 14. 083 14. 174 14. 204 14. 238	14. 174 14. 204 14. 238	VV VV VV VV	25875 29879 19457 18372 22039	841420 1270510 335551 362272 582201	1. 48% 2. 23% 0. 59% 0. 64% 1. 02%	0. 042% 0. 063% 0. 017% 0. 018% 0. 029%	
231 14.304 232 14.367 233 14.454 234 14.523 235 14.561	14. 288 14. 350 14. 428 14. 501 14. 542	14. 428 14. 501 14. 542	VV VV VV VV	19040 15020 71042 11387 10810	602657 595681 1216296 271060 260933	1. 06% 1. 05% 2. 14% 0. 48% 0. 46%	0. 030% 0. 030% 0. 060% 0. 013% 0. 013%	
236 14.586 237 14.624 238 14.659 239 14.739 240 14.833	14. 584 14. 611 14. 640 14. 731 14. 788	14. 640 14. 731 14. 788	VV VV VV VV	10349 9350 10028 7609 101711	153477 147076 452684 235384 1503770	0. 27% 0. 26% 0. 80% 0. 41% 2. 65%	0. 008% 0. 007% 0. 022% 0. 012% 0. 075%	
241 14.889 242 14.935 243 14.994 244 15.034 245 15.090	14. 872 14. 912 14. 955 15. 021 15. 062	14. 955 15. 021 15. 062	VV VV VV VV	5176 7124 27582 4272 3962	118183 143383 465101 92964 114248	0. 21% 0. 25% 0. 82% 0. 16% 0. 20%	0. 006% 0. 007% 0. 023% 0. 005% 0. 006%	
246 15. 132	15. 117	15. 163	VV	2953 Pa	74187 ge 5	0. 13%	0. 004%	

						Instrument : FID_C ClientSampleId :	
247 15. 184 248 15. 242 249 15. 278 250 15. 334	15. 163 15. 221 15. 274 15. 298	15. 221 15. 274 15. 298 15. 345	VV VV VV	rter 2990 3006 2371 2189	res 88735 80434 29005 56188	GSB1 0. 16% 0. 004% Manual Integration	
251 15. 373 252 15. 452 253 15. 514 254 15. 600 255 15. 647	15. 345 15. 444 15. 474 15. 558 15. 629	15. 444 15. 474 15. 558 15. 629 15. 677	VV VV VV VV	21061 1591 11123 2321 959	375316 23436 200271 64361 17450	Reviewed By :Yogesl Supervised By :mohal 0. 35%	E
256 15. 699 257 15. 779 258 15. 837 259 15. 891 260 15. 941	15. 677 15. 730 15. 816 15. 862 15. 931	15. 730 15. 816 15. 862 15. 931 15. 961	VV VV VV VV	769 1395 1029 1165 488	19820 44487 20803 27129 6753	0. 03% 0. 001% 0. 08% 0. 002% 0. 04% 0. 001% 0. 05% 0. 001% 0. 01% 0. 000%	F G
261 15. 971 262 16. 015 263 16. 074 264 16. 153 265 16. 212	15. 961 15. 982 16. 052 16. 138 16. 170	15. 982 16. 052 16. 138 16. 170 16. 248	VV VV VV VV PV	410 5842 599 319 722	4334 81324 19908 4732 21492	0. 01% 0. 000% 0. 14% 0. 004% 0. 04% 0. 001% 0. 01% 0. 000% 0. 04% 0. 001%	J
266 16. 269 267 16. 323 268 16. 387 269 16. 459 270 16. 496	16. 248 16. 302 16. 344 16. 438 16. 470	16. 302 16. 344 16. 438 16. 470 16. 544	VV VV VV VV	1231 1324 4295 1245 6502	26034 24479 94749 18685 130754	0. 05% 0. 001% 0. 04% 0. 001% 0. 17% 0. 005% 0. 03% 0. 001% 0. 23% 0. 006%	
271 16. 581 272 16. 627 273 16. 658 274 16. 744 275 16. 813	16. 544 16. 611 16. 645 16. 685 16. 777	16. 611 16. 645 16. 685 16. 777 16. 838	VV VV VV VV	3573 1574 1125 2420 2165	65926 23535 22288 78649 55730	0. 12% 0. 003% 0. 04% 0. 001% 0. 04% 0. 001% 0. 14% 0. 004% 0. 10% 0. 003%	
276 16.870 277 16.966 278 17.019 279 17.092 280 17.119	16. 838 16. 906 16. 993 17. 067 17. 102	16. 906 16. 993 17. 067 17. 102 17. 140	VV VV VV VV	3690 4165 3459 1493 1691	77628 101146 98953 29345 32665	0. 14%	
281 17. 195 282 17. 267 283 17. 293 284 17. 333 285 17. 370	17. 140 17. 257 17. 276 17. 303 17. 362	17. 257 17. 276 17. 303 17. 362 17. 386	VV VV VV VV	3598 1674 1929 4423 2377	154450 17289 29051 105408 31373	0. 27% 0. 008% 0. 03% 0. 001% 0. 05% 0. 001% 0. 19% 0. 005% 0. 06% 0. 002%	
286 17. 415 287 17. 480 288 17. 538 289 17. 596 290 17. 641	17. 386 17. 448 17. 518 17. 575 17. 617	17. 448 17. 518 17. 575 17. 617 17. 675	VV VV VV VV	5208 2475 2797 2384 4304	115916 92341 82952 56320 101500	0. 20% 0. 006% 0. 16% 0. 005% 0. 15% 0. 004% 0. 10% 0. 003% 0. 18% 0. 005%	
291 17.692 292 17.719 293 17.785 294 17.810 295 17.855	17. 675 17. 704 17. 741 17. 794 17. 831	17. 704 17. 741 17. 794 17. 831 17. 884	VV VV VV VV	2219 2243 3378 3525 4510	37213 46796 85152 71220 107010	0. 07% 0. 002% 0. 08% 0. 002% 0. 15% 0. 004% 0. 13% 0. 004% 0. 19% 0. 005%	
296 17.916 297 17.947 298 17.974 299 18.012	17. 884 17. 929 17. 965 17. 981	17. 929 17. 965 17. 981 18. 030	VV VV VV	3755 3727 3002 3700 Page	83649 73042 29133 98745	0. 15% 0. 004% 0. 13% 0. 004% 0. 05% 0. 001% 0. 17% 0. 005%	

						Instrument : FID_C
300 18.073	18. 030	18. 123	VV	rtere 5993	es 225826	ClientSampleld: GSB1 0. 40% 0. 011%
301 18. 142 302 18. 215 303 18. 279 304 18. 383 305 18. 416	18. 123 18. 161 18. 261 18. 314 18. 405	18. 161 18. 261 18. 314 18. 405 18. 445	VV VV VV VV	3328 15068 11660 6093 4631	70956 455920 216834 252481 97910	Manual IntegrationsAPPROVED Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025
306 18. 490 307 18. 528 308 18. 554 309 18. 632 310 18. 683	18. 445 18. 521 18. 538 18. 596 18. 656	18. 521 18. 538 18. 596 18. 656 18. 711	VV VV VV VV	9803 4039 4099 4715 5617	257302 38146 132302 151126 162281	O. 45% O. 013% O. 07% O. 002% O. 23% O. 007% O. 27% O. 007% O. 29% O. 008%
311 18. 725 312 18. 759 313 18. 799 314 18. 889 315 18. 942	18. 711 18. 738 18. 768 18. 839 18. 931	18. 738 18. 768 18. 839 18. 931 18. 968	VV VV VV VV	4300 4457 6152 7419 4690	66579 78580 229858 288992 97299	0. 12% 0. 003% 0. 14% 0. 004% 0. 40% 0. 011% 0. 51% 0. 014% 0. 17% 0. 005%
316 18. 982 317 19. 046 318 19. 098 319 19. 140 320 19. 188	18. 968 18. 994 19. 079 19. 125 19. 152	18. 994 19. 079 19. 125 19. 152 19. 208	VV VV VV VV	4561 14622 7562 5935 7180	70481 438965 186771 92948 211648	0. 12% 0. 003% 0. 77% 0. 022% 0. 33% 0. 009% 0. 16% 0. 005% 0. 37% 0. 011%
321 19. 227 322 19. 283 323 19. 327 324 19. 350 325 19. 407	19. 208 19. 251 19. 318 19. 342 19. 372	19. 251 19. 318 19. 342 19. 372 19. 418	VV VV VV VV	7417 9217 5580 5314 5477	164764 269477 78198 92697 142818	O. 29% O. 008% O. 47% O. 013% O. 14% O. 004% O. 16% O. 005% O. 25% O. 007%
326 19. 476 327 19. 515 328 19. 547 329 19. 580 330 19. 661	19. 418 19. 489 19. 523 19. 560 19. 628	19. 489 19. 523 19. 560 19. 628 19. 694	VV VV VV VV	5928 6257 6867 8322 8709	236876 120949 146568 270393 275189	O. 42% O. 012% O. 21% O. 006% O. 26% O. 007% O. 48% O. 013% O. 48% O. 014%
331 19.730 332 19.776 333 19.825 334 19.846 335 19.904	19. 694 19. 748 19. 794 19. 836 19. 874	19. 748 19. 794 19. 836 19. 874 19. 913	VV VV VV VV	6883 6536 7662 7603 7139	199316 169715 169650 162016 162592	O. 35% O. 010% O. 30% O. 008% O. 30% O. 008% O. 28% O. 008% O. 29% O. 008%
336 19. 926 337 19. 955 338 20. 031 339 20. 104 340 20. 155	19. 913 19. 944 19. 981 20. 059 20. 125	19. 944 19. 981 20. 059 20. 125 20. 181	VV VV VV VV	7374 6830 8585 7948 7302	131544 146092 341925 286187 237519	0. 23% 0. 007% 0. 26% 0. 007% 0. 60% 0. 017% 0. 50% 0. 014% 0. 42% 0. 012%
341 20. 196 342 20. 213 343 20. 248 344 20. 267 345 20. 289	20. 181 20. 204 20. 241 20. 258 20. 278	20. 204 20. 241 20. 258 20. 278 20. 303	VV VV VV VV	7385 7348 7192 7350 7328	99372 157686 71259 86147 112259	O. 17% O. 005% O. 28% O. 008% O. 13% O. 004% O. 15% O. 004% O. 20% O. 006%
346 20. 322 347 20. 383 348 20. 459 349 20. 494 350 20. 554	20. 303 20. 345 20. 424 20. 491 20. 504	20. 345 20. 424 20. 491 20. 504 20. 595	VV VV VV VV	7797 12013 7230 7011 8310	187350 419050 280154 55395 417089	0. 33%
351 20.605	20. 595	20. 668	VV	7016 Page	285363 7	0. 50% 0. 014%

						Instrume FID_C		
				rte		GSB1	ampleld :	
352 20. 693 353 20. 780 354 20. 827 355 20. 894	20. 668 20. 745 20. 824 20. 851	20. 745 20. 824 20. 851 20. 956	VV VV VV	6178 6172 5289 5564	273407 271268 81777 318316		O. 014% al IntegrationsAPPROVED wed By :Yogesh Patel 05/29/2025	B C
356 20. 987 357 21. 034 358 21. 077 359 21. 113 360 21. 198	20. 956 21. 024 21. 061 21. 093 21. 180	21. 024 21. 061 21. 093 21. 180 21. 208	VV VV VV VV	4917 4388 4217 4107 3893	191503 92174 79863 201895 61725		0. 004% 0. 010% 0. 003%	D E F
361 21. 218 362 21. 294 363 21. 314 364 21. 402 365 21. 451	21. 208 21. 267 21. 305 21. 391 21. 409	21. 267 21. 305 21. 391 21. 409 21. 611	VV VV VV VV	3796 3483 3307 2979 3233	124830 77143 158749 30967 325531	0. 22% 0. 14% 0. 28% 0. 05% 0. 57%	0. 006% 0. 004% 0. 008% 0. 002% 0. 016%	G H
366 21.626 367 21.699 368 21.738 369 21.767 370 21.836	21. 611 21. 678 21. 728 21. 759 21. 808	21. 678 21. 728 21. 759 21. 808 21. 849	VV VV VV VV	2328 2219 2234 1794 1606	84163 59715 32916 46073 37099	0. 15% 0. 11% 0. 06% 0. 08% 0. 07%	0. 004% 0. 003% 0. 002% 0. 002% 0. 002%	J
371 21.861 372 21.965 373 22.031 374 22.113 375 22.145	21. 849 21. 891 22. 007 22. 080 22. 136	21. 891 22. 007 22. 080 22. 136 22. 221	VV VV VV VV	1593 1826 1180 1023 764	37398 102765 43200 27780 32910	0. 07% 0. 18% 0. 08% 0. 05% 0. 06%	0. 002% 0. 005% 0. 002% 0. 001% 0. 002%	
376 22. 254 377 22. 283 378 22. 320 379 22. 382 380 22. 412	22. 221 22. 281 22. 314 22. 371 22. 401	22. 281 22. 314 22. 371 22. 401 22. 424	VV VV VV VV	827 543 395 263 158	22624 8083 9592 2896 1300	0. 04% 0. 01% 0. 02% 0. 01% 0. 00%	0. 001% 0. 000% 0. 000% 0. 000% 0. 000%	
381 22.438	22. 424	22. 454 Sum	VV of corr	110 ected a	1052 reas: 201	0.00% 5379439	0. 000%	

Aliphatic EPH 052425.M Thu May 29 06:45:14 2025

GSB1DL

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069045.D

Signal(s) : FID1A.ch

Acq On : 29 May 2025 10:18 Operator : YP/AJ

Sample : Q2125-01DL 50X

Misc

ALS Vial : 11 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 30 03:26:51 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Response Conc Units

Compound R.T.

System Monitoring Compounds

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

GSB1DL

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069045.D Signal(s) : FID1A.ch

Acq On : 29 May 2025 10:18

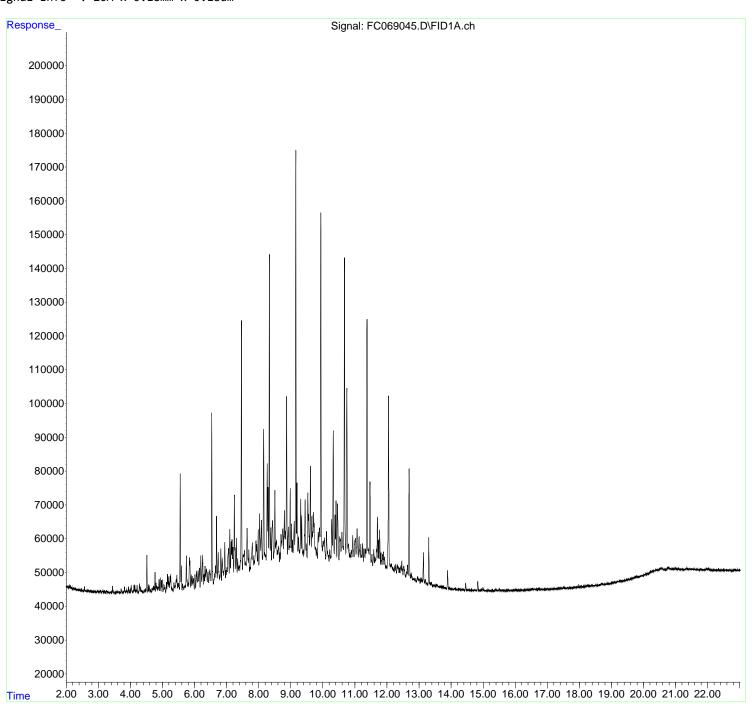
Operator : YP/AJ

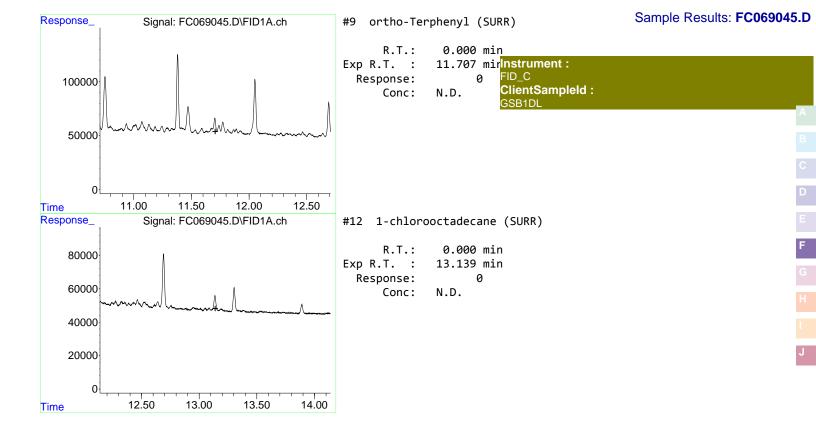
Sample : Q2125-01DL 50X

Misc

ALS Vial : 11 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 30 03:26:51 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$


Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path: Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\
Data File: FC069045.D
Signal(s): FID1A.ch
Acq On: 29 May 2025 10:18
Sample: Q2125-01DL 50X

Misc ALS Vial Sample Multiplier: 1 : 11

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

peak #	mi n	Start min	End mi n		peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 263 3. 288 3. 391 3. 440 3. 490	3. 205 3. 278 3. 368 3. 405 3. 480	3. 278 3. 368 3. 405 3. 480 3. 529	BV VV PV VV	664 352 157 1973 207	6615 4670 1615 24374 1468	0. 41% 0. 29% 0. 10% 1. 50% 0. 09%	0. 014% 0. 010% 0. 003% 0. 051% 0. 003%
6 7 8 9 10	3. 571 3. 593 3. 641 3. 686 3. 712	3. 529 3. 583 3. 608 3. 674 3. 693	3. 583 3. 608 3. 674 3. 693 3. 743	VV VV VV VV	497 408 440 133 1253	4860 3412 7958 1009 16252	0. 30% 0. 21% 0. 49% 0. 06% 1. 00%	0. 010% 0. 007% 0. 017% 0. 002% 0. 034%
11 12 13 14 15	3. 770 3. 816 3. 889 3. 939 3. 990	3. 743 3. 791 3. 862 3. 923 3. 974	3. 791 3. 862 3. 923 3. 974 4. 005	PV VV VV VV	434 1841 1069 1707 999	6474 26738 16421 21472 8528	0. 40% 1. 64% 1. 01% 1. 32% 0. 52%	0. 014% 0. 056% 0. 034% 0. 045% 0. 018%
16 17 18 19 20	4. 024 4. 114 4. 141 4. 179 4. 209	4. 005 4. 080 4. 129 4. 161 4. 191	4. 080 4. 129 4. 161 4. 191 4. 232	VV VV VV VV	2155 2431 2124 877 2303	34693 31880 21461 11232 24451	2. 13% 1. 96% 1. 32% 0. 69% 1. 50%	0. 073% 0. 067% 0. 045% 0. 023% 0. 051%
21 22 23 24 25	4. 281 4. 323 4. 360 4. 433 4. 474	4. 232 4. 308 4. 348 4. 400 4. 451	4. 308 4. 348 4. 400 4. 451 4. 490	VV VV VV PV VV	2634 1652 731 991 1012	40216 21348 11389 14579 14610	2. 47% 1. 31% 0. 70% 0. 89% 0. 90%	0. 084% 0. 045% 0. 024% 0. 030% 0. 031%
26 27 28 29 30	4. 514 4. 560 4. 589 4. 621 4. 675	4. 490 4. 542 4. 574 4. 608 4. 651	4. 542 4. 574 4. 608 4. 651 4. 701	VV VV VV VV	11141 2389 2038 1035 1258	109903 23019 23096 13229 24612	6. 74% 1. 41% 1. 42% 0. 81% 1. 51%	0. 230% 0. 048% 0. 048% 0. 028% 0. 051%
31 32 33 34 35	4. 718 4. 742 4. 769 4. 802 4. 848	4. 701 4. 731 4. 752 4. 787 4. 836	4. 731 4. 752 4. 787 4. 836 4. 860	VV VV VV VV	1911 1482 5993 2789 1735	22616 16236 60090 47896 17868	1. 39% 1. 00% 3. 69% 2. 94% 1. 10%	0. 047% 0. 034% 0. 126% 0. 100% 0. 037%
36	4. 894	4. 860	4. 911	VV	3876 Page	58985 1	3. 62%	0. 123%

Page 1

37 38 39 40	4. 931 4. 970 4. 995 5. 047	4. 911 4. 952 4. 982 5. 015	4. 952 4. 982 5. 015 5. 100	VV VV VV	rter 4336 3542 3782 2199	53959 37433 41757 54304	3. 31% 2. 30% 2. 56% 3. 33%	0. 113% 0. 078% 0. 087% 0. 114%
41 42 43 44 45	5. 125 5. 157 5. 195 5. 238 5. 258	5. 100 5. 138 5. 182 5. 224 5. 247	5. 138 5. 182 5. 224 5. 247 5. 304	PV VV VV VV	3003 5242 4521 4632 5227	31323 80991 69166 44294 75359	1. 92% 4. 97% 4. 24% 2. 72% 4. 62%	0. 065% 0. 169% 0. 145% 0. 093% 0. 158%
46 47 48 49 50	5. 318 5. 358 5. 427 5. 449 5. 483	5. 304 5. 337 5. 387 5. 437 5. 466	5. 337 5. 387 5. 437 5. 466 5. 497	VV VV VV VV	870 2671 3614 4828 2371	12904 44517 65403 57149 34199	0. 79% 2. 73% 4. 01% 3. 51% 2. 10%	0. 027% 0. 093% 0. 137% 0. 120% 0. 072%
51 52 53 54 55	5. 508 5. 554 5. 589 5. 626 5. 647	5. 497 5. 529 5. 575 5. 611 5. 639	5. 529 5. 575 5. 611 5. 639 5. 663	VV VV VV VV	2182 34411 7417 2109 1449	27101 361788 86343 22686 14560	1. 66% 22. 20% 5. 30% 1. 39% 0. 89%	0. 057% 0. 757% 0. 181% 0. 047% 0. 030%
56 57 58 59 60	5. 694 5. 746 5. 803 5. 841 5. 899	5. 663 5. 704 5. 785 5. 817 5. 880	5. 704 5. 785 5. 817 5. 880 5. 916	VV VV VV VV	1487 10131 2328 9694 4631	26183 171143 35463 208574 63423	1. 61% 10. 50% 2. 18% 12. 80% 3. 89%	0. 055% 0. 358% 0. 074% 0. 436% 0. 133%
61 62 63 64 65	5. 931 5. 966 6. 013 6. 060 6. 112	5. 916 5. 947 5. 994 6. 036 6. 087	5. 947 5. 994 6. 036 6. 087 6. 129	VV VV VV VV	4124 3471 4561 5358 5738	52985 60944 58184 101876 100637	3. 25% 3. 74% 3. 57% 6. 25% 6. 18%	0. 111% 0. 127% 0. 122% 0. 213% 0. 210%
66 67 68 69 70	6. 153 6. 197 6. 255 6. 296 6. 329	6. 129 6. 174 6. 224 6. 275 6. 312	6. 174 6. 224 6. 275 6. 312 6. 345	VV VV VV VV	6466 9931 10206 4328 6788	104568 140691 180562 80069 94789	6. 42% 8. 63% 11. 08% 4. 91% 5. 82%	0. 219% 0. 294% 0. 378% 0. 167% 0. 198%
71 72 73 74 75	6. 377 6. 421 6. 476 6. 538 6. 629	6. 345 6. 399 6. 441 6. 511 6. 587	6. 399 6. 441 6. 511 6. 587 6. 640	VV VV VV VV	6052 5150 5617 52043 4400	148162 88841 172491 607090 97811	9. 09% 5. 45% 10. 58% 37. 25% 6. 00%	0. 310% 0. 186% 0. 361% 1. 269% 0. 205%
76 77 78 79 80	6. 656 6. 687 6. 739 6. 821 6. 865	6. 640 6. 667 6. 709 6. 779 6. 841	6. 667 6. 709 6. 779 6. 841 6. 909	VV VV VV VV	6748 21316 10644 11625 8634	86904 264812 235206 209302 230482	5. 33% 16. 25% 14. 43% 12. 84% 14. 14%	0. 182% 0. 554% 0. 492% 0. 438% 0. 482%
81 82 83 84 85	6. 944 6. 981 7. 011 7. 059 7. 101	6. 909 6. 967 6. 993 7. 023 7. 082	6. 967 6. 993 7. 023 7. 082 7. 123	VV VV VV VV	13468 5146 5885 11589 17213	240293 67071 91477 297669 260944	14. 74% 4. 12% 5. 61% 18. 26% 16. 01%	0. 502% 0. 140% 0. 191% 0. 622% 0. 546%
86 87 88 89	7. 143 7. 170 7. 199 7. 243	7. 123 7. 156 7. 187 7. 225	7. 156 7. 187 7. 225 7. 286	VV VV VV	13551 14084 11834 27282 Page	198232 209187 185800 483092	12. 16% 12. 84% 11. 40% 29. 64%	0. 415% 0. 437% 0. 389% 1. 010%

A

С

G

Н

I

90	7. 304	7. 286	7. 329	VV	rte 14335	res 230648	14. 15%	0. 482%
91 92 93 94 95	7. 346 7. 397 7. 464 7. 556 7. 586	7. 329 7. 365 7. 412 7. 496 7. 575	7. 365 7. 412 7. 496 7. 575 7. 611	VV VV VV VV	8252 6146 78674 10676 7336	138683 157335 1095869 410102 144476	8. 51% 9. 65% 67. 24% 25. 16% 8. 87%	0. 290% 0. 329% 2. 292% 0. 858% 0. 302%
96 97 98 99 100	7. 640 7. 695 7. 728 7. 803 7. 831	7. 611 7. 677 7. 714 7. 746 7. 821	7. 677 7. 714 7. 746 7. 821 7. 847	VV VV VV VV	17061 10673 5525 12734 8821	401978 172919 101832 406729 119973	24. 67% 10. 61% 6. 25% 24. 96% 7. 36%	0. 841% 0. 362% 0. 213% 0. 851% 0. 251%
101 102 103 104 105	7. 859 7. 916 7. 942 7. 986 8. 032	7. 847 7. 869 7. 931 7. 963 8. 006	7. 869 7. 931 7. 963 8. 006 8. 065	VV VV VV VV	7385 13201 12179 16379 21192	91743 367147 187060 270857 468537	5. 63% 22. 53% 11. 48% 16. 62% 28. 75%	0. 192% 0. 768% 0. 391% 0. 566% 0. 980%
106 107 108 109 110	8. 087 8. 157 8. 218 8. 267 8. 295	8. 065 8. 127 8. 203 8. 233 8. 282	8. 127 8. 203 8. 233 8. 282 8. 312	VV VV VV VV	19032 46385 8889 35891 28600	467905 883197 153878 577714 355309	28. 71% 54. 19% 9. 44% 35. 45% 21. 80%	0. 978% 1. 847% 0. 322% 1. 208% 0. 743%
111 112 113 114 115	8. 335 8. 381 8. 431 8. 507 8. 560	8. 312 8. 362 8. 400 8. 466 8. 528	8. 362 8. 400 8. 466 8. 528 8. 577	VV VV VV VV	98036 16763 18762 27787 12941	1212254 280352 536803 527796 341100	74. 38% 17. 20% 32. 94% 32. 39% 20. 93%	2. 535% 0. 586% 1. 122% 1. 104% 0. 713%
116 117 118 119 120	8. 588 8. 628 8. 665 8. 699 8. 753	8. 577 8. 599 8. 649 8. 678 8. 722	8. 599 8. 649 8. 678 8. 722 8. 772	VV VV VV VV	9903 11072 9214 14571 16051	122712 287018 137499 307707 420807	7. 53% 17. 61% 8. 44% 18. 88% 25. 82%	0. 257% 0. 600% 0. 288% 0. 643% 0. 880%
121 122 123 124 125	8. 803 8. 872 8. 926 8. 986 9. 021	8. 772 8. 836 8. 898 8. 946 9. 006	8. 836 8. 898 8. 946 9. 006 9. 041	VV VV VV VV	21478 55337 16531 28055 17388	582913 940158 372220 573700 271722	35. 77% 57. 69% 22. 84% 35. 20% 16. 67%	1. 219% 1. 966% 0. 778% 1. 200% 0. 568%
126 127 128 129 130	9. 057 9. 109 9. 159 9. 196 9. 244	9. 041 9. 073 9. 125 9. 181 9. 224	9. 073 9. 125 9. 181 9. 224 9. 271	VV VV VV VV	12671 18111 127141 29805 13292	208959 411238 1629726 459331 306750	12. 82% 25. 23% 100. 00% 28. 18% 18. 82%	0. 437% 0. 860% 3. 408% 0. 961% 0. 641%
131 132 133 134 135	9. 313 9. 344 9. 393 9. 450 9. 487	9. 271 9. 330 9. 377 9. 409 9. 474	9. 330 9. 377 9. 409 9. 474 9. 508	VV VV VV VV	24558 19507 9545 24182 11150	492927 341223 167826 561529 195208	30. 25% 20. 94% 10. 30% 34. 46% 11. 98%	1. 031% 0. 714% 0. 351% 1. 174% 0. 408%
136 137 138 139 140	9. 535 9. 557 9. 615 9. 663 9. 715	9. 508 9. 549 9. 587 9. 642 9. 680	9. 549 9. 587 9. 642 9. 680 9. 764	VV VV VV VV	26144 20012 34050 19133 20337	416818 349314 654762 341000 745339	25. 58% 21. 43% 40. 18% 20. 92% 45. 73%	0. 872% 0. 730% 1. 369% 0. 713% 1. 559%
141	9. 776	9. 764	9. 796	VV	10006 Pag	177427 je 3	10. 89%	0. 371%

ь

С

F

Н

I

142 143 144 145	9. 811 9. 858 9. 896 9. 938	9. 796 9. 833 9. 875 9. 914	9. 833 9. 875 9. 914 9. 989	VV VV VV	rte 9492 14252 15594 108597	182424 288086 329966 1601131	11. 19% 17. 68% 20. 25% 98. 25%	0. 381% 0. 602% 0. 690% 3. 348%
146 147 148 149 150	10. 009 10. 048 10. 116 10. 216 10. 279	9. 989 10. 030 10. 091 10. 195 10. 235	10. 030 10. 091 10. 195 10. 235 10. 299	VV VV VV VV	11526 12579 14441 8938 17944	261716 355122 545940 178425 416839	16. 06% 21. 79% 33. 50% 10. 95% 25. 58%	0. 547% 0. 743% 1. 142% 0. 373% 0. 872%
151 152 153 154 155	10. 327 10. 382 10. 414 10. 458 10. 529	10. 299 10. 356 10. 398 10. 437 10. 503	10. 356 10. 398 10. 437 10. 503 10. 539	VV VV VV VV	43949 19114 23284 22228 12577	748000 346107 366935 526970 208253	45. 90% 21. 24% 22. 52% 32. 33% 12. 78%	1. 564% 0. 724% 0. 767% 1. 102% 0. 435%
156 157 158 159 160	10. 548 10. 597 10. 677 10. 751 10. 798	10. 539 10. 569 10. 643 10. 718 10. 781	10. 569 10. 643 10. 718 10. 781 10. 829	VV VV VV VV	11903 13838 95535 56361 10034	185387 472205 1434627 991011 250173	11. 38% 28. 97% 88. 03% 60. 81% 15. 35%	0. 388% 0. 987% 3. 000% 2. 072% 0. 523%
161 162 163 164 165	10. 839 10. 893 10. 936 11. 016 11. 071	10. 829 10. 852 10. 909 10. 975 11. 038	10. 852 10. 909 10. 975 11. 038 11. 109	VV VV VV VV	7147 8318 12625 11668 14524	92469 253383 341209 359910 418441	5. 67% 15. 55% 20. 94% 22. 08% 25. 68%	0. 193% 0. 530% 0. 713% 0. 753% 0. 875%
	11. 132 11. 186 11. 244 11. 290 11. 330	11. 109 11. 167 11. 220 11. 265 11. 315	11. 167 11. 220 11. 265 11. 315 11. 345	VV VV VV VV	12128 9816 10099 8455 8144	300295 231257 207119 210893 132390	18. 43% 14. 19% 12. 71% 12. 94% 8. 12%	0. 628% 0. 484% 0. 433% 0. 441% 0. 277%
171 172 173 174 175	11. 380 11. 471 11. 533 11. 590 11. 629	11. 345 11. 441 11. 508 11. 556 11. 611	11. 441 11. 508 11. 556 11. 611 11. 650	VV VV VV VV	76242 28195 6575 8162 5332	1191622 554619 143494 182445 112589	73. 12% 34. 03% 8. 80% 11. 19% 6. 91%	2. 492% 1. 160% 0. 300% 0. 382% 0. 235%
177 178	11. 676 11. 703 11. 739 11. 772 11. 815	11. 650 11. 683 11. 722 11. 755 11. 799	11. 683 11. 722 11. 755 11. 799 11. 848	VV VV VV VV	8045 17423 10745 13613 6860	130840 252371 157716 227049 141875	8. 03% 15. 49% 9. 68% 13. 93% 8. 71%	0. 274% 0. 528% 0. 330% 0. 475% 0. 297%
181 182 183 184 185	11. 866 11. 889 11. 923 11. 991 12. 051	11. 848 11. 877 11. 907 11. 971 12. 003	11. 877 11. 907 11. 971 12. 003 12. 112	VV VV VV VV	6400 7017 5523 2814 52842	90013 97801 143929 49250 858684	5. 52% 6. 00% 8. 83% 3. 02% 52. 69%	0. 188% 0. 205% 0. 301% 0. 103% 1. 796%
	12. 141 12. 179 12. 244 12. 275 12. 325	12. 112 12. 169 12. 225 12. 257 12. 301	12. 169 12. 225 12. 257 12. 301 12. 341	VV VV VV VV	3237 2328 2557 2968 2882	94290 57786 36175 51088 47851	5. 79% 3. 55% 2. 22% 3. 13% 2. 94%	0. 197% 0. 121% 0. 076% 0. 107% 0. 100%
191 192 193 194	12. 355 12. 389 12. 429 12. 464	12. 341 12. 375 12. 407 12. 448	12. 375 12. 407 12. 448 12. 501	VV VV VBA	2378 1900 2244 3984 Pag	35738 24466 43092 64185 e 4	2. 19% 1. 50% 2. 64% 3. 94%	0. 075% 0. 051% 0. 090% 0. 134%

Α

С

G

Н

I

195 12	2. 524	12. 501	12. 591	BV	rtere 2599	es 61879	3. 80%	0. 129%
197 12 198 12 199 12	2. 612 2. 640 2. 691 2. 754 2. 812	12. 591 12. 621 12. 660 12. 737 12. 802	12. 621 12. 660 12. 737 12. 802 12. 821	PV VV VV VV	1493 3676 32339 1812 211	16556 51670 415743 32125 1849	1. 02% 3. 17% 25. 51% 1. 97% 0. 11%	0. 035% 0. 108% 0. 869% 0. 067% 0. 004%
202 12 203 12 204 13	2. 839 2. 882 2. 949 3. 011 3. 052	12. 821 12. 871 12. 923 12. 996 13. 031	12. 871 12. 923 12. 996 13. 031 13. 069	VV VV PV VV	541 755 1497 990 1268	10410 8965 38245 12581 15836	0. 64% 0. 55% 2. 35% 0. 77% 0. 97%	0. 022% 0. 019% 0. 080% 0. 026% 0. 033%
207 13 208 13 209 13	3. 086 3. 137 3. 190 3. 262 3. 303	13. 069 13. 102 13. 167 13. 253 13. 275	13. 102 13. 167 13. 253 13. 275 13. 338	VV VV VV VV PV	1519 9127 1346 173 14026	17970 119434 28547 1433 169679	1. 10% 7. 33% 1. 75% 0. 09% 10. 41%	0. 038% 0. 250% 0. 060% 0. 003% 0. 355%
212 13 213 13 214 13	3. 346 3. 384 3. 450 3. 481 3. 533	13. 338 13. 366 13. 430 13. 465 13. 506	13. 366 13. 430 13. 465 13. 506 13. 561	VV VV PV VV PV	747 922 335 300 748	9396 15540 3197 3931 13295	0. 58% 0. 95% 0. 20% 0. 24% 0. 82%	0. 020% 0. 032% 0. 007% 0. 008% 0. 028%
217 13 218 13 219 13	3. 574 3. 607 3. 648 3. 682 3. 731	13. 561 13. 601 13. 633 13. 667 13. 715	13. 601 13. 633 13. 667 13. 715 13. 761	VV VV VV VV	464 184 381 444 454	7446 2424 3870 7320 7914	0. 46% 0. 15% 0. 24% 0. 45% 0. 49%	0. 016% 0. 005% 0. 008% 0. 015% 0. 017%
222 13 223 13 224 13	3. 782 3. 793 3. 839 3. 890 3. 948	13. 761 13. 789 13. 826 13. 856 13. 941	13. 789 13. 826 13. 856 13. 941 13. 985	VV VV VV PV VV	280 309 223 5371 205	4075 4425 2506 68322 3982	0. 25% 0. 27% 0. 15% 4. 19% 0. 24%	0. 009% 0. 009% 0. 005% 0. 143% 0. 008%
227 14 228 14 229 14	3. 988 4. 008 4. 044 4. 118 4. 184	13. 985 13. 998 14. 035 14. 085 14. 170	13. 998 14. 035 14. 085 14. 170 14. 241	VV VV VV PV VV	184 152 109 380 144	1002 2398 1005 9934 3405	0. 06% 0. 15% 0. 06% 0. 61% 0. 21%	0. 002% 0. 005% 0. 002% 0. 021% 0. 007%
232 14 233 14 234 14	1. 261 1. 307 1. 364 1. 453 1. 524	14. 241 14. 291 14. 345 14. 427 14. 505	14. 291 14. 345 14. 427 14. 505 14. 555	VV VV VV PV VV	286 184 147 1936 103	5753 4339 3542 25312 2052	0. 35% 0. 27% 0. 22% 1. 55% 0. 13%	0. 012% 0. 009% 0. 007% 0. 053% 0. 004%
237 14 238 14 239 14	1. 580 1. 658 1. 707 1. 766 1. 832	14. 555 14. 641 14. 698 14. 754 14. 805	14. 641 14. 698 14. 754 14. 805 14. 874	VV VV VV PV VV	131 159 72 85 2808	4202 2392 2188 1363 38144	0. 26% 0. 15% 0. 13% 0. 08% 2. 34%	0. 009% 0. 005% 0. 005% 0. 003% 0. 080%
242 14 243 14 244 15	1. 901 1. 934 1. 994 5. 097 5. 145	14. 874 14. 911 14. 958 15. 067 15. 115	14. 911 14. 958 15. 067 15. 115 15. 219	PV VV VV VV	122 172 837 121 147	1092 2692 16044 1370 4766	0. 07% 0. 17% 0. 98% 0. 08% 0. 29%	0. 002% 0. 006% 0. 034% 0. 003% 0. 010%
246 15	5. 225	15. 219	15. 231	VV	71 Page	352 5	0. 02%	0. 001%

А

С

F

Н

1

248 249	15. 245 15. 276 15. 310 15. 329	15. 231 15. 265 15. 302 15. 319	15. 265 15. 302 15. 319 15. 343	VV VV VV PV	rtere 95 83 71 99	1444 1502 750 1046	0. 09% 0. 09% 0. 05% 0. 06%	0. 003% 0. 003% 0. 002% 0. 002%
	15. 381 15. 515 15. 557 15. 594 15. 652	15. 343 15. 464 15. 549 15. 576 15. 645	15. 464 15. 549 15. 576 15. 645 15. 731	VV VV VV VV	501 428 115 201 81	14017 8352 1390 4500 2561	0. 86% 0. 51% 0. 09% 0. 28% 0. 16%	0. 029% 0. 017% 0. 003% 0. 009% 0. 005%
	15. 757 15. 808 15. 832 15. 892 15. 957	15. 731 15. 802 15. 818 15. 872 15. 921	15. 802 15. 818 15. 872 15. 921 15. 987	VV VV VV PV VV	156 111 59 81 144	3997 514 1013 1355 3108	0. 25% 0. 03% 0. 06% 0. 08% 0. 19%	0. 008% 0. 001% 0. 002% 0. 003% 0. 006%
263	16. 018 16. 083 16. 107 16. 154 16. 189	15. 987 16. 058 16. 098 16. 132 16. 174	16. 058 16. 098 16. 132 16. 174 16. 209	VV VV PV VV	262 133 89 87 163	5548 1748 1242 2049 2279	0. 34% 0. 11% 0. 08% 0. 13% 0. 14%	0. 012% 0. 004% 0. 003% 0. 004% 0. 005%
267 268 269	16. 255 16. 332 16. 362 16. 393 16. 498	16. 209 16. 298 16. 337 16. 375 16. 431	16. 298 16. 337 16. 375 16. 431 16. 533	VV PV VV VV	151 124 109 144 402	4557 1599 1869 3536 11808	0. 28% 0. 10% 0. 11% 0. 22% 0. 72%	0. 010% 0. 003% 0. 004% 0. 007% 0. 025%
272 273	16. 581 16. 643 16. 680 16. 717 16. 762	16. 533 16. 629 16. 655 16. 701 16. 754	16. 629 16. 655 16. 701 16. 754 16. 791	VV VV VV VV	270 189 270 156 117	9726 2394 4734 3484 1914	0. 60% 0. 15% 0. 29% 0. 21% 0. 12%	0. 020% 0. 005% 0. 010% 0. 007% 0. 004%
	16. 865 16. 926 16. 964 17. 014 17. 051	16. 791 16. 905 16. 943 17. 001 17. 038	16. 905 16. 943 17. 001 17. 038 17. 078	VV VV VV VV	200 141 235 184 155	8515 2567 5147 2794 2164	0. 52% 0. 16% 0. 32% 0. 17% 0. 13%	0. 018% 0. 005% 0. 011% 0. 006% 0. 005%
281 282 283 284 285	17. 087 17. 201 17. 268 17. 309 17. 352	17. 078 17. 141 17. 238 17. 276 17. 336	17. 141 17. 238 17. 276 17. 336 17. 398	VV PV VV VV	115 178 138 178 188	2120 5751 2293 3591 5495	0. 13% 0. 35% 0. 14% 0. 22% 0. 34%	0. 004% 0. 012% 0. 005% 0. 008% 0. 011%
288	17. 417 17. 451 17. 522 17. 595 17. 643	17. 398 17. 439 17. 470 17. 559 17. 628	17. 439 17. 470 17. 559 17. 628 17. 711	VV VV VV PV VV	240 113 222 144 207	3852 1388 6574 3265 3795	0. 24% 0. 09% 0. 40% 0. 20% 0. 23%	0. 008% 0. 003% 0. 014% 0. 007% 0. 008%
291 292 293 294 295	17. 724 17. 855 17. 965 18. 136 18. 231	17. 711 17. 763 17. 894 18. 108 18. 159	17. 763 17. 894 18. 108 18. 159 18. 255	VV VV PV VV PV	105 242 465 134 328	1369 6658 13908 3269 9743	0. 08% 0. 41% 0. 85% 0. 20% 0. 60%	0. 003% 0. 014% 0. 029% 0. 007% 0. 020%
296 297 298 299	18. 283 18. 394 18. 494 18. 711	18. 255 18. 325 18. 451 18. 537	18. 325 18. 451 18. 537 18. 767	VV VV VV PV	299 162 186 328 Page	6103 6043 3472 13659	0. 37% 0. 37% 0. 21% 0. 84%	0. 013% 0. 013% 0. 007% 0. 029%

					rt	teres		
300	18. 792	18. 767	18. 814	PV	131	2506	0. 15%	0.005%
301	18. 900	18. 814	18. 925	VV	106	5329	0. 33%	0. 011%
302	19.054	18. 925	19. 075	VV	398	15516	0. 95%	0.032%
303	19. 093	19. 075	19. 120	VV	317	8114	0.50%	0.017%
			Sum	of o	corrected	areas:	47822090	

Aliphatic EPH 052425.M Fri May 30 10:52:40 2025

D

F

G

Н

1

GSB2

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069034.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 16:39 Operator : YP/AJ Sample : Q2125-02

Misc

ALS Vial : 19 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:45:25 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

R.T. Compound Response Conc Units

System Monitoring Compounds
9) S ortho-Terphenyl (SURR) 11.707 5112894 41.452 ug
Spiked Amount 50.000 Recovery = 82.90%
12) S 1-chlorooctadecane (S... 13.140 4022116 44.833 ug
Recovery = 89.67% 5112894 41.452 ug/ml 4022116 44.833 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

GSB2

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069034.D Signal(s) : FID1A.ch

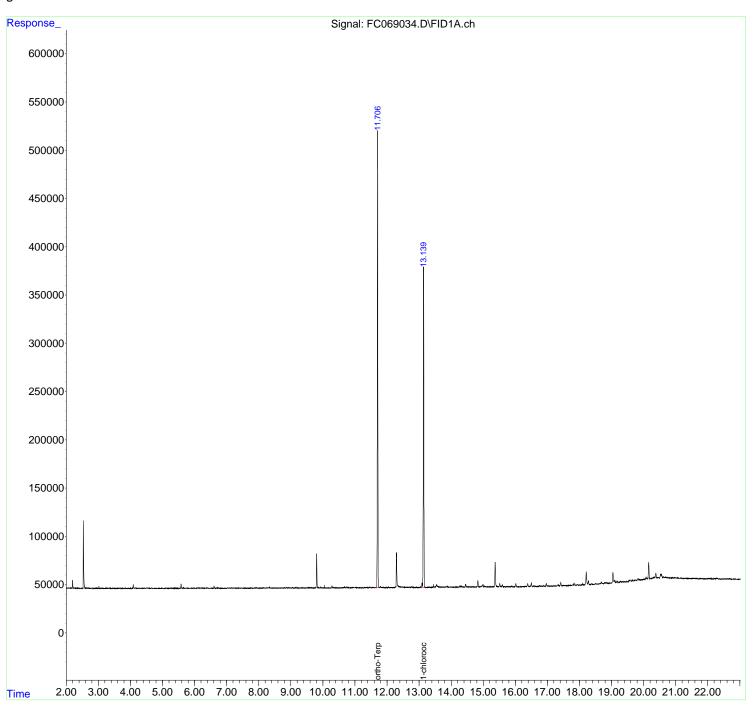
Acq On : 28 May 2025 16:39

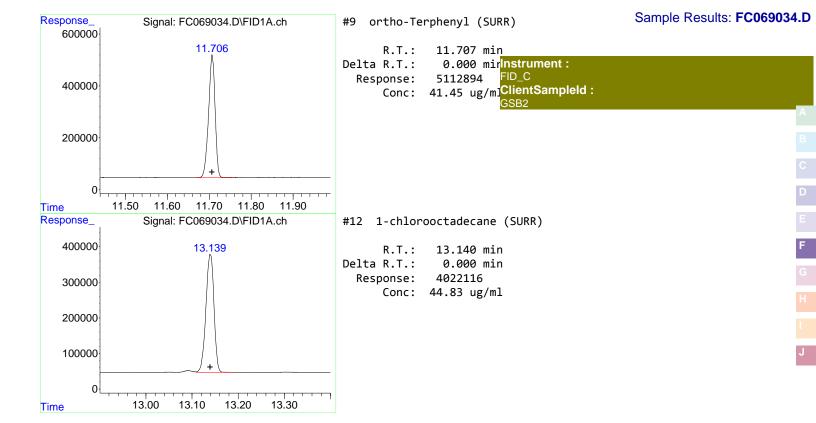
Operator : YP/AJ Sample : Q2125-02

Misc :

ALS Vial : 19 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:45:25 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$


Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path: Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File: FC069034.D
Signal(s): FID1A.ch
Acq On: 28 May 2025 16:39
Sample: Q2125-02

Misc ALS Vial Sample Multiplier: 1 : 19

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

peak #	R. T. mi n	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 320 3. 444 3. 524 3. 576 3. 638	3. 294 3. 409 3. 503 3. 560 3. 592	3. 409 3. 503 3. 560 3. 592 3. 664	PV VV VV VV	292 108 99 100 145	8861 3585 1361 1151 3678	0. 17% 0. 07% 0. 03% 0. 02% 0. 07%	0. 046% 0. 019% 0. 007% 0. 006% 0. 019%
6 7 8 9 10	3. 668 3. 687 3. 718 3. 741 3. 773	3. 664 3. 674 3. 703 3. 729 3. 765	3. 674 3. 703 3. 729 3. 765 3. 842	VV VV VV VV	99 142 81 115 86	465 1540 975 1788 3553	0. 01% 0. 03% 0. 02% 0. 03% 0. 07%	0. 002% 0. 008% 0. 005% 0. 009% 0. 018%
11 12 13 14 15	3. 856 3. 904 3. 965 4. 030 4. 088	3. 842 3. 874 3. 953 3. 995 4. 071	3. 874 3. 953 3. 995 4. 071 4. 120	VV VV VV VV	103 137 161 128 3841	1473 3102 1624 3291 34753	0. 03% 0. 06% 0. 03% 0. 06% 0. 68%	0. 008% 0. 016% 0. 008% 0. 017% 0. 181%
16 17 18 19 20	4. 135 4. 221 4. 245 4. 324 4. 355	4. 120 4. 211 4. 235 4. 294 4. 338	4. 211 4. 235 4. 294 4. 338 4. 384	VV VV VV VV	445 204 127 184 181	14529 2287 4504 3468 3683	0. 28% 0. 04% 0. 09% 0. 07% 0. 07%	0. 076% 0. 012% 0. 023% 0. 018% 0. 019%
21 22 23 24 25	4. 393 4. 435 4. 483 4. 515 4. 555	4. 384 4. 422 4. 450 4. 501 4. 536	4. 422 4. 450 4. 501 4. 536 4. 637	VV VV VV VV	184 168 246 679 301	2442 2033 5537 7979 11263	0. 05% 0. 04% 0. 11% 0. 16% 0. 22%	0. 013% 0. 011% 0. 029% 0. 041% 0. 059%
26 27 28 29 30	4. 659 4. 700 4. 794 4. 857 4. 908	4. 637 4. 688 4. 778 4. 838 4. 875	4. 688 4. 778 4. 838 4. 875 4. 974	VV VV VV VV	547 163 106 165 101	7457 5407 2589 1874 2735	0. 15% 0. 11% 0. 05% 0. 04% 0. 05%	0. 039% 0. 028% 0. 013% 0. 010% 0. 014%
31 32 33 34 35	4. 979 5. 002 5. 031 5. 091 5. 229	4. 974 4. 984 5. 020 5. 070 5. 161	4. 984 5. 020 5. 070 5. 161 5. 241	VV PV VV VV	39 91 59 202 131	157 1173 1122 5634 3677	0. 00% 0. 02% 0. 02% 0. 11% 0. 07%	0. 001% 0. 006% 0. 006% 0. 029% 0. 019%
36	5. 255	5. 241	5. 281	VV	108 Page	2144	0. 04%	0. 011%

37 38 39 40	5. 290 5. 374 5. 428 5. 498	5. 281 5. 300 5. 419 5. 474	5. 300 5. 419 5. 474 5. 515	VV VV PV VV	rtere 79 572 102 110	689 10145 2311 1582	0. 01% 0. 20% 0. 05% 0. 03%	0. 004% 0. 053% 0. 012% 0. 008%
41 42 43 44 45	5. 528 5. 580 5. 659 5. 738 5. 855	5. 515 5. 544 5. 639 5. 716 5. 814	5. 544 5. 639 5. 716 5. 814 5. 884	VV VV VV VV	118 4141 954 234 176	1206 46448 12899 8840 4858	0. 02% 0. 91% 0. 25% 0. 17% 0. 09%	0. 006% 0. 241% 0. 067% 0. 046% 0. 025%
46 47 48 49 50	5. 900 5. 966 6. 107 6. 203 6. 254	5. 884 5. 938 6. 033 6. 164 6. 231	5. 938 6. 033 6. 164 6. 231 6. 278	VV VV PV VV	159 145 491 270 436	3521 4070 18212 8521 6585	0. 07% 0. 08% 0. 36% 0. 17% 0. 13%	0. 018% 0. 021% 0. 095% 0. 044% 0. 034%
51 52 53 54 55	6. 300 6. 341 6. 383 6. 466 6. 539	6. 278 6. 328 6. 354 6. 451 6. 521	6. 328 6. 354 6. 451 6. 521 6. 578	VV VV VV VV	231 169 470 129 274	5302 2578 12575 3348 5252	0. 10% 0. 05% 0. 25% 0. 07% 0. 10%	0. 028% 0. 013% 0. 065% 0. 017% 0. 027%
56 57 58 59 60	6. 608 6. 689 6. 815 6. 872 6. 918	6. 578 6. 671 6. 783 6. 844 6. 904	6. 671 6. 783 6. 844 6. 904 6. 969	VV VV VV VV	2076 303 180 143 97	25986 9581 4002 2895 1979	0. 51% 0. 19% 0. 08% 0. 06% 0. 04%	0. 135% 0. 050% 0. 021% 0. 015% 0. 010%
61 62 63 64 65	7. 049 7. 138 7. 199 7. 243 7. 305	6. 969 7. 121 7. 159 7. 223 7. 291	7. 121 7. 159 7. 223 7. 291 7. 366	VV VV VV VV	319 225 394 339 143	18112 3955 8233 7183 4909	0. 35% 0. 08% 0. 16% 0. 14% 0. 10%	0. 094% 0. 021% 0. 043% 0. 037% 0. 026%
66 67 68 69 70	7. 387 7. 463 7. 519 7. 588 7. 638	7. 366 7. 441 7. 504 7. 568 7. 618	7. 441 7. 504 7. 568 7. 618 7. 678	VV VV PV VV	166 525 116 148 139	4153 7385 3188 3062 2161	0. 08% 0. 14% 0. 06% 0. 06% 0. 04%	0. 022% 0. 038% 0. 017% 0. 016% 0. 011%
71 72 73 74 75	7. 755 7. 805 7. 881 7. 920 7. 995	7. 678 7. 794 7. 848 7. 898 7. 970	7. 794 7. 848 7. 898 7. 970 8. 011	VV VV VV VV	607 126 333 708 118	9136 2379 5775 11432 2034	0. 18% 0. 05% 0. 11% 0. 22% 0. 04%	0. 047% 0. 012% 0. 030% 0. 059% 0. 011%
76 77 78 79 80	8. 033 8. 156 8. 299 8. 335 8. 382	8. 011 8. 061 8. 181 8. 318 8. 364	8. 061 8. 181 8. 318 8. 364 8. 418	VV VV VV VV	189 427 535 875 177	2855 11238 21191 11179 3164	0. 06% 0. 22% 0. 41% 0. 22% 0. 06%	0. 015% 0. 058% 0. 110% 0. 058% 0. 016%
81 82 83 84 85	8. 463 8. 508 8. 699 8. 753 8. 805	8. 418 8. 494 8. 570 8. 734 8. 775	8. 494 8. 570 8. 734 8. 775 8. 850	VV VV VV VV	170 207 243 169 620	5769 4972 11284 3640 12520	0. 11% 0. 10% 0. 22% 0. 07% 0. 24%	0. 030% 0. 026% 0. 059% 0. 019% 0. 065%
86 87 88 89	8. 873 8. 942 9. 055 9. 108	8. 850 8. 903 8. 972 9. 088	8. 903 8. 972 9. 088 9. 130	VV VV VV	728 807 564 356 Page	10532 12685 17303 5635 2	0. 21% 0. 25% 0. 34% 0. 11%	0. 055% 0. 066% 0. 090% 0. 029%

90	9. 158	9. 130	9. 181	VV	rt 1034	eres 14108	0. 28%	0. 073%
91 92 93 94 95	9. 196 9. 279 9. 349 9. 443 9. 537	9. 181 9. 230 9. 321 9. 418 9. 474	9. 230 9. 321 9. 418 9. 474 9. 598	VV VV VV VV	289 192 399 164 555	4752 7304 9050 3828 18345	0. 09% 0. 14% 0. 18% 0. 07% 0. 36%	0. 025% 0. 038% 0. 047% 0. 020% 0. 095%
96 97 98 99 100	9. 613 9. 697 9. 809 9. 873 9. 937	9. 598 9. 642 9. 751 9. 857 9. 914	9. 642 9. 751 9. 857 9. 914 9. 991	VV VV VV VV	390 307 35351 415 1104	7094 13199 371987 8388 16662	0. 14% 0. 26% 7. 26% 0. 16% 0. 33%	0. 037% 0. 069% 1. 933% 0. 044% 0. 087%
101 102 103 104 105	10. 057 10. 170 10. 214 10. 283 10. 326	9. 991 10. 149 10. 198 10. 248 10. 304	10. 149 10. 198 10. 248 10. 304 10. 354	VV VV PV VV	1180 135 57 2046 735	12491 1758 1502 22952 11395	0. 24% 0. 03% 0. 03% 0. 45% 0. 22%	0. 065% 0. 009% 0. 008% 0. 119% 0. 059%
108	10. 377 10. 469 10. 542 10. 676 10. 749	10. 354 10. 438 10. 502 10. 611 10. 721	10. 438 10. 502 10. 611 10. 721 10. 884	VV VV VV VV	413 217 293 1039 1082	11254 6118 12151 27051 29502	0. 22% 0. 12% 0. 24% 0. 53% 0. 58%	0. 058% 0. 032% 0. 063% 0. 141% 0. 153%
111 112 113 114 115	10. 937 11. 011 11. 071 11. 231 11. 312	10. 884 10. 977 11. 058 11. 168 11. 264	10. 977 11. 058 11. 168 11. 264 11. 334	VV VV VV VV	582 386 261 211 582	13648 11292 10794 7452 9482	0. 27% 0. 22% 0. 21% 0. 15% 0. 19%	0. 071% 0. 059% 0. 056% 0. 039% 0. 049%
116 117 118 119 120	11. 380 11. 465 11. 542 11. 624 11. 707	11. 334 11. 424 11. 505 11. 601 11. 650	11. 424 11. 505 11. 601 11. 650 11. 757	VV VV VV VV	963 595 379 127 471478	17833 16557 12458 3576 5120337	0. 35% 0. 32% 0. 24% 0. 07% 100. 00%	0. 093% 0. 086% 0. 065% 0. 019% 26. 614%
121 122 123 124 125	11. 796 11. 866 11. 978 12. 049 12. 099	11. 757 11. 847 11. 951 12. 006 12. 078	11. 847 11. 951 12. 006 12. 078 12. 117	VV VV PV VV	1481 761 128 664 130	30330 14986 2800 12896 2418	0. 59% 0. 29% 0. 05% 0. 25% 0. 05%	0. 158% 0. 078% 0. 015% 0. 067% 0. 013%
126 127 128 129 130	12. 141 12. 296 12. 498 12. 592 12. 624	12. 117 12. 215 12. 480 12. 564 12. 608	12. 215 12. 480 12. 564 12. 608 12. 664	VV VV VV VV	344 34633 603 578 474	7347 521643 21642 10058 11548	0. 14% 10. 19% 0. 42% 0. 20% 0. 23%	0. 038% 2. 711% 0. 112% 0. 052% 0. 060%
131 132 133 134 135	12. 690 12. 758 12. 914 12. 952 13. 139	12. 664 12. 732 12. 861 12. 934 12. 978	12. 732 12. 861 12. 934 12. 978 13. 225	VV VV VV VV	865 881 307 133 331618	16283 28289 3726 2152 4099099	0. 32% 0. 55% 0. 07% 0. 04% 80. 06%	0. 085% 0. 147% 0. 019% 0. 011% 21. 306%
136 137 138 139 140	13. 253 13. 304 13. 446 13. 541 13. 688	13. 225 13. 281 13. 348 13. 463 13. 674	13. 281 13. 348 13. 463 13. 674 13. 728	VV PV VV VV	152 706 863 2959 346	2531 11472 17261 116901 11519	0. 05% 0. 22% 0. 34% 2. 28% 0. 22%	0. 013% 0. 060% 0. 090% 0. 608% 0. 060%
141	13. 746	13. 728	13. 787	VV	401 Pa	10534 ige 3	0. 21%	0. 055%

142 13. 840 143 13. 890 144 14. 017 145 14. 116	13. 787 13. 866 13. 931 14. 061	13. 866 13. 931 14. 061 14. 163	VV VV VV	rter 1083 997 595 231	20314 16321 16373 9518	0. 40% 0. 32% 0. 32% 0. 19%	0. 106% 0. 085% 0. 085% 0. 049%
146 14. 185 147 14. 279 148 14. 327 149 14. 454 150 14. 555	14. 163 14. 213 14. 306 14. 418 14. 500	14. 213 14. 306 14. 418 14. 500 14. 604	VV VV VV VV	232 1624 1135 3011 617	4202 31679 26499 47085 24860	0. 08% 0. 62% 0. 52% 0. 92% 0. 49%	0. 022% 0. 165% 0. 138% 0. 245% 0. 129%
151 14.616 152 14.673 153 14.743 154 14.831 155 14.992	14. 604 14. 641 14. 714 14. 775 14. 901	14. 641 14. 714 14. 775 14. 901 15. 019	VV VV VV VV	339 640 310 6733 2760	6027 14768 9665 104706 72692	0. 12% 0. 29% 0. 19% 2. 04% 1. 42%	0. 031% 0. 077% 0. 050% 0. 544% 0. 378%
156 15. 037 157 15. 137 158 15. 238 159 15. 371 160 15. 514	15. 019 15. 118 15. 221 15. 281 15. 488	15. 118 15. 221 15. 281 15. 488 15. 564	VV VV VV VV	826 430 350 25709 3669	25022 18994 9951 386127 60875	0. 49% 0. 37% 0. 19% 7. 54% 1. 19%	0. 130% 0. 099% 0. 052% 2. 007% 0. 316%
161 15. 595 162 15. 644 163 15. 737 164 15. 786 165 15. 834	15. 564 15. 624 15. 713 15. 774 15. 807	15. 624 15. 713 15. 774 15. 807 15. 854	VV VV VV VV	2299 298 277 217 252	35513 10616 7048 3106 4784	0. 69% 0. 21% 0. 14% 0. 06% 0. 09%	0. 185% 0. 055% 0. 037% 0. 016% 0. 025%
166 15. 890 167 16. 015 168 16. 157 169 16. 208 170 16. 321	15. 854 15. 966 16. 114 16. 178 16. 258	15. 966 16. 114 16. 178 16. 258 16. 342	VV VV VV PV VV	949 3297 110 128 393	19586 51020 2089 3924 7564	0. 38% 1. 00% 0. 04% 0. 08% 0. 15%	0. 102% 0. 265% 0. 011% 0. 020% 0. 039%
171 16. 386 172 16. 499 173 16. 581 174 16. 633 175 16. 750	16. 342 16. 431 16. 548 16. 610 16. 688	16. 431 16. 548 16. 610 16. 688 16. 787	VV VV VV VV	3180 3791 1056 220 808	52591 64166 15470 5016 16923	1. 03% 1. 25% 0. 30% 0. 10% 0. 33%	0. 273% 0. 334% 0. 080% 0. 026% 0. 088%
176 16. 805 177 16. 869 178 16. 966 179 17. 043 180 17. 118	16. 787 16. 831 16. 911 16. 998 17. 089	16. 831 16. 911 16. 998 17. 089 17. 141	VV VV VV VV	349 872 2888 454 98	5811 16426 46078 13176 1730	0. 11% 0. 32% 0. 90% 0. 26% 0. 03%	0. 030% 0. 085% 0. 240% 0. 068% 0. 009%
181 17. 250 182 17. 331 183 17. 416 184 17. 505 185 17. 581	17. 141 17. 277 17. 375 17. 464 17. 554	17. 277 17. 375 17. 464 17. 554 17. 611	PV VV VV VV	193 1485 3430 404 173	8831 30123 54787 12708 3833	0. 17% 0. 59% 1. 07% 0. 25% 0. 07%	0. 046% 0. 157% 0. 285% 0. 066% 0. 020%
186 17. 642 187 17. 697 188 17. 810 189 17. 854 190 17. 942	17. 611 17. 664 17. 718 17. 830 17. 884	17. 664 17. 718 17. 830 17. 884 17. 988	VV PV VV VV	147 230 1223 1940 1012	2663 5338 27717 28095 20991	0. 05% 0. 10% 0. 54% 0. 55% 0. 41%	0. 014% 0. 028% 0. 144% 0. 146% 0. 109%
191 18. 092 192 18. 211 193 18. 280 194 18. 375	17. 988 18. 151 18. 258 18. 351	18. 151 18. 258 18. 351 18. 427	VV VV VV	1304 13805 4043 938 Page	35063 245023 71385 23296 4	0. 68% 4. 79% 1. 39% 0. 45%	0. 182% 1. 274% 0. 371% 0. 121%

A

С

G

Н

195	18. 49	5 18.	427	18. 544	VV	r1 1042	teres 35359	0. 69%	0. 184%
196 197 198 199 200	18. 56 18. 63 18. 68 18. 80 18. 85	34 18. 34 18. 36 18.	544 586 651 744 834	18. 586 18. 651 18. 744 18. 834 18. 913	VV VV VV VV	491 933 2040 1408 1466	10056 22086 59223 58153 44348	0. 20% 0. 43% 1. 16% 1. 14% 0. 87%	0. 052% 0. 115% 0. 308% 0. 302% 0. 231%
201 202 203 204 205	19. 04 19. 09 19. 16 19. 28 19. 33	7 19. 8 19. 8 19.	913 078 134 206 314	19. 078 19. 134 19. 206 19. 314 19. 359	VV VV VV VV	11523 3126 2047 2455 1790	269395 77334 71136 104830 42314	5. 26% 1. 51% 1. 39% 2. 05% 0. 83%	1. 400% 0. 402% 0. 370% 0. 545% 0. 220%
207 208 209	19. 38 19. 47 19. 58 19. 64 19. 73	72 19. 31 19. 39 19.	359 454 491 614 678	19. 454 19. 491 19. 614 19. 678 19. 751	VV VV VV VV	1857 1886 3273 2878 2804	89282 36551 170053 93339 109616	1. 74% 0. 71% 3. 32% 1. 82% 2. 14%	0. 464% 0. 190% 0. 884% 0. 485% 0. 570%
	19. 77 19. 81 19. 93 20. 09 20. 15	9 19. 8 19. 9 19.	751 794 914 964 123	19. 794 19. 914 19. 964 20. 123 20. 194	VV VV VV VV	2712 4096 2987 4882 20427	67939 234024 87853 345670 400424	1. 33% 4. 57% 1. 72% 6. 75% 7. 82%	0. 353% 1. 216% 0. 457% 1. 797% 2. 081%
217 218 219	20. 21 20. 33 20. 38 20. 45 20. 53	5 20. 31 20. 51 20.	194 248 352 421 488	20. 248 20. 352 20. 421 20. 488 20. 594	VV VV VV VV	3978 5319 9157 4485 7897	122085 280569 247483 171781 379106	2. 38% 5. 48% 4. 83% 3. 35% 7. 40%	0. 635% 1. 458% 1. 286% 0. 893% 1. 971%
222 223 224	20. 61 20. 68 20. 73 20. 77 20. 82	34 20. 34 20. 70 20.	594 661 719 761 805	20. 661 20. 719 20. 761 20. 805 20. 873	VV VV VV VV	4808 4479 4047 3926 3700	180974 146178 100095 98710 143889	3. 53% 2. 85% 1. 95% 1. 93% 2. 81%	0. 941% 0. 760% 0. 520% 0. 513% 0. 748%
227 228 229	20. 89 20. 97 21. 04 21. 16 21. 31	6 20. 9 21. 0 21.	873 931 024 131 274	20. 931 21. 024 21. 131 21. 274 21. 358	VV VV VV VV	3774 3674 3335 2850 2581	124543 190800 198430 225524 119389	2. 43% 3. 73% 3. 88% 4. 40% 2. 33%	0. 647% 0. 992% 1. 031% 1. 172% 0. 621%
232 233 234	21. 38 21. 42 21. 58 21. 62 21. 77	25 21. 33 21. 25 21.	358 406 476 608 731	21. 406 21. 476 21. 608 21. 731 21. 921	VV VV VV VV	2317 2311 2151 1996 1646	66404 90648 161570 120022 150415	1. 30% 1. 77% 3. 16% 2. 34% 2. 94%	0. 345% 0. 471% 0. 840% 0. 624% 0. 782%
237	21. 96 22. 03 22. 28	0 21.	921 988 180	21. 988 22. 180 22. 394 Sum	VV VV VV	1254 1300 1017 corrected	46623 116440 87108 areas:	0. 91% 2. 27% 1. 70% 19239035	0. 242% 0. 605% 0. 453%

Aliphatic EPH 052425.M Thu May 29 06:46:10 2025

GSB3

ClientSampleId :

APPROVED

Manual Integrations

Reviewed By: Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069035.D
Signal(s) : FID1A.ch

Acq On : 28 May 2025 17:17

Operator : YP/AJ Sample : Q2125-03

Misc

ALS Vial : 20 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:45:39 2025

 $\label{thm:condition} Quant \ \mbox{Method}: Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$

Quant Title : GC Extractables

QLast Update: Tue May 27 01:48:55 2025 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S ortho-Terphenyl (SURR) 11.734 6196727 50.239 ug/mlm Spiked Amount 50.000 Recovery = 100.48% 12) S 1-chlorooctadecane (S... 13.149 5540280 61.755 ug/ml

Spiked Amount 50.000 Recovery = 123.51%

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

Quantitation Report (QT Reviewed)

Sample Results: FC069035.D

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069035.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 17:17

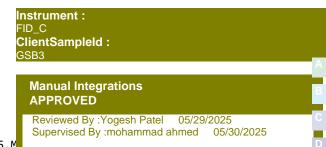
Operator : YP/AJ Sample : Q2125-03

Misc

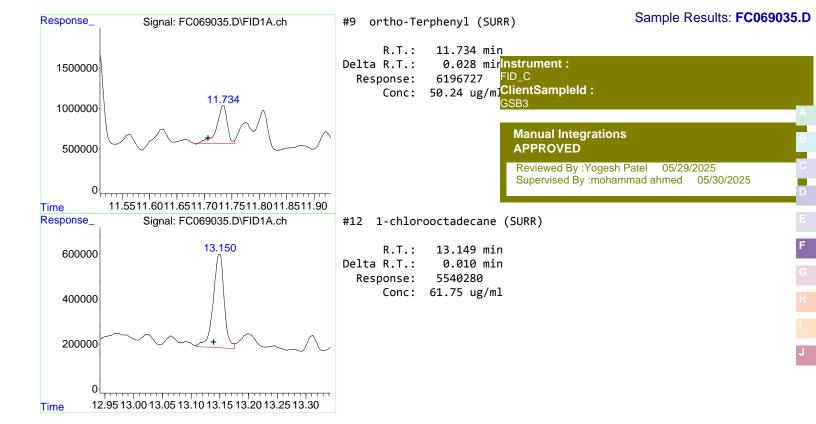
ALS Vial : 20 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:45:39 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables


QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

D

rteres

Instrument : FID_C ClientSampleId :

Area Percent Report

Manual IntegrationsAPPROVED

Reviewed By :Yogesh Patel 05/29/2025 Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC05282
Data File : FC069035.D

FI D1A. ch 28 May 2025 17: 17 Q2125-03 Signal(s): Acq On:

Sample

Misc ALS Vial 20 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables

Title

Si gnal : FID1A. ch

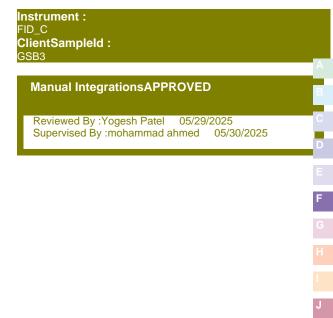
peak #	R.T. min	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 225 3. 261 3. 285 3. 316 3. 333	3. 201 3. 233 3. 275 3. 306 3. 321	3. 233 3. 275 3. 306 3. 321 3. 358	BV PV VV VV	176 37573 21398 2614 4254	-14241 420627 195313 18912 48711		-0. 000% 0. 014% 0. 006% 0. 001% 0. 002%
6 7 8 9 10	3. 387 3. 437 3. 460 3. 487 3. 541	3. 358 3. 400 3. 448 3. 476 3. 521	3. 400 3. 448 3. 476 3. 521 3. 550	PV VV VV VV PV	5633 29918 34662 9729 2990	56838 318572 324479 110298 27665	0. 07% 0. 41% 0. 42% 0. 14% 0. 04%	0. 002% 0. 010% 0. 011% 0. 004% 0. 001%
11 12 13 14 15	3. 568 3. 592 3. 640 3. 710 3. 768	3. 550 3. 581 3. 607 3. 672 3. 741	3. 581 3. 607 3. 672 3. 741 3. 787	VV VV VV VV	24126 20369 25191 66834 24620	247481 198117 482484 1014155 414387	0. 32% 0. 26% 0. 62% 1. 31% 0. 53%	0. 008% 0. 006% 0. 016% 0. 033% 0. 014%
16 17 18 19 20	3. 815 3. 888 3. 938 3. 988 4. 024	3. 787 3. 860 3. 923 3. 971 4. 004	3. 860 3. 923 3. 971 4. 004 4. 078	VV VV VV VV	104193 57946 67104 53167 78478	1533027 988224 799138 483541 1607854	1. 97% 1. 27% 1. 03% 0. 62% 2. 07%	0. 050% 0. 032% 0. 026% 0. 016% 0. 053%
21 22 23 24 25	4. 113 4. 142 4. 178 4. 210 4. 280	4. 078 4. 129 4. 160 4. 192 4. 233	4. 129 4. 160 4. 192 4. 233 4. 308	VV VV VV VV	109782 73157 47709 105087 135923	1506414 818682 639138 1185869 2176767	1. 94% 1. 05% 0. 82% 1. 53% 2. 80%	0. 049% 0. 027% 0. 021% 0. 039% 0. 071%
26 27 28 29 30	4. 323 4. 360 4. 433 4. 473 4. 515	4. 308 4. 348 4. 399 4. 452 4. 493	4. 348 4. 399 4. 452 4. 493 4. 541	VV VV VV VV	85591 39041 51574 56386 141432	1120517 671344 859767 896220 1802708	1. 44% 0. 86% 1. 11% 1. 15% 2. 32%	0. 037% 0. 022% 0. 028% 0. 029% 0. 059%
31 32 33 34 35	4. 560 4. 590 4. 622 4. 676 4. 720	4. 541 4. 575 4. 609 4. 650 4. 703	4. 575 4. 609 4. 650 4. 703 4. 732	VV VV VV VV	86860 97725 50132 64390 98208	946492 1105507 717859 1443714 1208778	1. 22% 1. 42% 0. 92% 1. 86% 1. 56%	0. 031% 0. 036% 0. 024% 0. 047% 0. 040%
36	4. 743	4. 732	4. 754	VV	81627	919256	1. 18%	0. 030%

Page 1

Teres 37							Instrument : FID_C	
37 4, 773 4, 754 4, 789 VV 293040 3094238 3, 96% 0, 101% 4799 4, 14597 261500					rt	eres	ClientSampleId :	
39 4, 852					293040	3094238	3. 98% 0. 101%	
1	39	4.852	4.840	4.862 VV	94223	987098	Manual IntegrationsAPPROVED	
42 4 973 4 955 4 985 W 178878 1947386 43 4 998 4 985 5 0.19 W 190604 2282247 44 5 0.071 5 0.03 5 1.03 W 121365 1924369 44 5 0.071 5 0.03 5 1.03 W 121365 1924369 45 5 0.071 5 0.03 5 1.03 W 121365 1924369 46 5 1.29 5 1.03 5 1.42 W 152000 1834191 47 5 1.61 5 1.42 5 1.89 W 256781 4480101 5 7.7% 0 147% 48 5 2.17 5 1.89 5 2.27 W 148156 2578725 3 .32% 0 0.85% 49 5 241 5 2.27 5 253 W 250528 2698110 3 .47% 0 0.85% 50 5 2.63 5 .253 5 .307 5 .341 W 256528 2698110 3 .47% 0 0.085% 50 5 2.63 5 .253 5 .307 5 .341 W 256528 2944703 3 .47% 0 0.085% 51 5 3.22 5 .307 5 .311 5 .391 W 153625 2944703 5 .2944703 52 5 .362 5 .341 5 .391 W 25655 399995 4 .12% 0 .133% 53 5 .454 5 .541 5 .471 W 20555 399995 4 .12% 0 .133% 54 5 .454 5 .541 5 .471 W 20555 399995 4 .12% 0 .133% 55 5 .548 5 .579 5 .616 W 421169 5272635 6 .79% 0 .173% 56 5 .512 5 .550 5 .563 5 .668 W 139121 2083053 2 .68% 0 .066% 58 5 .595 5 .579 5 .616 W 421169 5272635 6 .79% 0 .173% 50 5 .699 5 .668 5 .727 W 108864 3284662 4 .23% 0 .085% 54 5 .847 5 .823 5 .886 W 3167134 12136949 15 .63% 0 .315% 55 5 .937 5 .922 5 .954 W 224559 3886875 5 .018% 56 5 .937 5 .922 5 .954 W 224559 3886875 5 .018% 57 5 .504 5 .823 5 .886 W 541734 12136949 15 .63% 0 .315% 56 5 .937 5 .922 5 .954 W 224559 3886875 5 .018% 57 5 .568 6 .688 W 541734 12136949 15 .63% 0 .315% 58 5 .997 6 .632 6 .600 W 2248413 4215991 5 .63% 0 .315% 59 5 .632 5 .616 5 .628 W 341734 12136949 15 .63% 0 .315% 59 5 .632 5 .616 5 .628 W 341734 12136949 15 .63% 0 .315% 50 5 .699 5 .648 6 .722 W 284513 9774016 12 .2590 50 6 .611 6 .035 6 .618 W 247169 5974858 7 .69% 0 .193% 50 6 .699 6 .6117 6 .003 6 .135 W 421073 6833517 8 .80% 0 .224% 50 6 .6117 6 .003 6 .635 W 421073 6833517 8 .80% 0 .224% 50 6 .6117 6 .693 6 .618 W 32534 4203133 5 .53% 0 .141% 50 6 .699 6 .6117 6 .693 6 .651 6 .959 W 32514 4862084 6 .266 0 .150% 50 6 .699 6 .686 6 .650 6 .697 W 32534 48628 4 .68335 1 .698 0 .098% 50 6 .688 6 .695 6 .688 W 4074818 1 .5213766 1 .959 0 .203% 50 6 .699 6 .686 6 .699 W 325314 8 .806 0 .688 6 .695 0 .000 W 325314 8 .806 0 .688 6 .								
44 5 0.049 5 0.109 5 0.103 5 1.03 W 121365 1924369 2 4.8% 0.063% 44 5 5.071 5 0.063 5 1.103 W 76465 1399590 1.80% 0.046% 46 5.129 5.103 5 1.103 W 152000 1834191 2 .36% 0.060% 47 5 1.61 5 1.142 5 1.89 W 256781 4480101 5 .77% 0.147% 48 5 2.17 5 1.89 5 .227 W 148156 2578725 3 .32% 0.085% 49 5 .241 5 .227 5 .253 W 250528 2698110 3 .47% 0.085% 50 5 .263 5 .253 5 .307 W 193233 3484645 4 .49% 0.114% 51 5 .322 5 .307 5 .341 W 64693 1124697 1 .45% 0.037% 52 5 .562 5 .341 5 .341 5 .391 W 153625 2944703 3 .79% 0.097% 52 5 .543 5 .341 5 .391 W 153625 2944703 3 .79% 0.097% 53 5 .453 5 .441 5 .471 W 265555 3199995 4 .12% 0.105% 55 5 .488 5 .471 5 .501 W 147007 2213442 2 .85% 0.073% 55 5 .488 5 .471 5 .501 W 147007 2213442 2 .85% 0.073% 59 5 .632 5 .566 5 .556 5 .579 W 490038 6352126 8 .18% 0.208% 59 5 .632 5 .616 5 .668 W 136710 2970839 3 .83% 0.097% 60 5 .699 5 .666 5 .668 W 136710 2970839 3 .83% 0.097% 60 5 .699 5 .668 5 .727 W 108864 3284662 4 .23% 0.108% 64 5 .904 5 .886 5 .922 W 284613 4215991 5 .43% 0.138% 66 5 .937 5 .922 5 .954 6 .000 W 225723 8 .808 0.088% 64 5 .904 5 .886 5 .922 W 284613 4215991 5 .43% 0.138% 66 5 .937 5 .922 5 .954 6 .000 W 225723 868675 5 .01% 0.127% 66 5 .973 5 .924 6 .000 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .042 6 .042 6 .002 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .042 6 .002 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .042 6 .002 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .042 6 .002 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .042 6 .007 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .002 W 292873 4505544 5 .888 0.127% 0.127% 66 6 .006 6 .002 W 292873 5 .0000 6 .002 W 292873 9 .0000 6 .002 W 292873 9 .0000 6 .002 W 292873 9 .0000 6	42	4. 973	4. 955	4. 985 VV		1947386	Supervised By :monammad anmed 05/30/2025	
46 5 129 5 103 5 142 VV 152000 1834191 2 36% 0 0.60% 47 5 161 5 142 5 189 V 256781 4480101 5 .77% 0 147% 48 5 217 5 189 5 227 VV 148156 2578725 3 32% 0 0.08% 50 5 263 5 .263 5 .253 6 5 .307 VV 159233 3484645 4 .49% 0 114% 51 5 .275 5 .253 VV 159233 3484645 4 .49% 0 114% 51 5 .275 5 .341 VV 64693 1124697 1 .45% 0 .097% 53 5 .430 5 .391 5 .441 VV 210126 4071638 5 .24% 0 .105% 55 5 .488 5 .471 5 .501 VV 147007 2213442 2 .85% 0 .097% 55 .548 5 .445 5 .441 VV 210126 4071638 5 .24% 0 .133% 55 5 .548 5 .441 5 .5471 VV 265555 3 .199995 4 .12% 0 .105% 55 5 .588 5 .577 VV 49038 6352126 8 .18% 0 .097% 55 .562 5 .536 5 .577 VV 49038 6352126 8 .18% 0 .208% 55 5 .595 6 .579 VV 49038 6352126 8 .18% 0 .208% 55 5 .595 5 .579 VV 421169 5276235 6 .79% 0 .173% 59 5 .632 5 .616 5 .668 VV 136710 2970839 3 .83% 0 .097% 60 5 .699 5 .688 5 .727 VV 108864 3284662 4 .23% 0 .138% 0 .108% 64 5 .904 5 .886 5 .922 VV 284613 4215991 5 .43% 0 .315% 65 5 .591 5 .5791 VV 284559 5 .5799 3 .88675 5 .5791 5 .823 VV 158646 3 .284662 4 .23% 0 .138% 64 5 .904 5 .886 5 .922 VV 284613 4215991 5 .43% 0 .138% 65 5 .593 6 .599 5 .595 4 .284 0 .13333 5 .53% 0 .108% 64 5 .904 5 .886 5 .922 VV 284613 4215991 5 .43% 0 .138% 65 5 .593 6 .616 VV 292873 4293133 5 .53% 0 .108% 66 6 .006 7 .002 6 .003 6 .135 VV 21073 6833517 8 .80% 0 .223% 69 6 .117 6 .003 6 .135 VV 21073 6833517 8 .80% 0 .223% 69 6 .117 6 .003 6 .135 VV 21073 6833517 8 .80% 0 .224% 70 6 .161 6 .135 6 .407 V .4074581 9774016 12 .59% 0 .320% 72 6 .648 6 .607 6 .004 6 .520 VV .28316 6 .799407 1 .1878 8 .000 0 .224% 70 6 .161 6 .6135 6 .407 V .4074581 9774016 12 .59% 0 .233% 8 .600 0 .224% 70 6 .161 6 .635 6 .407 V .4074581 9774016 12 .59% 0 .223% 9 .648 6 .606 6 .607 6 .002 6 .604 V .22373 9774016 12 .59% 0 .233% 9 .000 0 .224% 9 .606 6 .606 6 .607 6 .002 6 .604 V .2074581 9774016 12 .59% 0 .223% 9 .606 6 .606 6 .607 6 .002 6 .604 V .2074581 9774016 12 .59% 0 .233% 9 .000 0 .208% 9 .606 6 .606 6 .607 6 .002 6 .000 6 .604 V .2074581 9774016 12 .59% 0 .233% 9 .000 0 .208% 9 .606 6 .606 6 .607 6 .607 6								
47 5. 161 5. 142 5. 189 W 256781 4480101 5. 77% 0. 147% 48 5. 217 5. 189 S. 227 W 148156 2578725 3. 32% 0.085% 50 5. 263 5. 253 5. 227 5. 253 W 250528 2698110 3. 47% 0.088% 50 5. 263 5. 253 5. 207 5. 341 W 264693 1124697 1. 45% 0.037% 52 5. 362 5. 341 5. 391 W 153625 2944703 3. 79% 0.097% 53 5. 430 5. 391 W 153625 2944703 3. 79% 0.097% 53 5. 430 5. 391 W 153625 2944703 3. 79% 0.097% 53 5. 430 5. 391 W 153625 2944703 3. 79% 0.097% 54 5. 454 5. 441 5. 471 W 260555 3199995 4. 12% 0. 105% 55 5. 488 5. 471 5. 501 W 147007 2213442 2. 85% 0. 073% 55 5. 548 5. 471 5. 501 W 147007 2213442 2. 85% 0. 073% 55 5. 512 5. 536 5. 579 W 490038 6352126 8. 18% 0. 208% 58 5. 5579 5. 5636 5. 579 W 490038 6352126 8. 18% 0. 208% 58 5. 5579 5. 616 W 1241169 5272635 6. 79% 0. 173% 59 5. 632 5. 616 5. 668 W 136710 2970839 3. 83% 0. 097% 50 5. 699 5. 648 5. 727 W 108846 3284662 4. 23% 0. 108% 61 5. 699 5. 688 5. 727 W 108846 3284662 4. 23% 0. 108% 64 5. 904 5. 886 5. 922 W 284613 4215991 5. 43% 0. 0.85% 63 5. 886 5. 922 W 284613 4215991 5. 43% 0. 138% 65 5. 937 5. 922 5. 954 W 228873 429313 5. 55% 0. 141% 68 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 093 W 320980 6798405 8. 76% 0. 223% 66 6. 067 6. 042 6. 068 6. 067 6. 042 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9. 040 9.								
48 5. 217 5. 189 5. 227 W 148156 2578725 3. 32% 0.085% 49 5. 241 5. 227 5. 253 W 250528 2698110 3. 47% 0.088% 50 5. 263 5. 263 5. 263 5. 307 W 193233 3484645 4. 49% 0. 114% 51 5. 322 5. 307 5. 341 W 64693 1124697 1. 45% 0.037% 52 5. 362 5. 341 5. 391 W 153625 2944703 3. 79% 0.097% 53 5. 430 5. 391 5. 441 W 210126 4071638 5. 24% 0. 133% 54 5. 454 5. 441 5. 471 W 265555 3199995 4. 12% 0. 105% 55 5. 488 5. 471 5. 501 W 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 W 147007 2213442 2. 85% 0.073% 55 5. 548 5. 579 5. 616 W 421169 5272635 6. 79% 0. 173% 59 5. 562 5. 536 5. 579 5. 616 W 421169 5272635 6. 79% 0. 173% 59 5. 632 5. 616 5. 668 W 136710 2970839 3. 83% 0.097% 60 5. 699 5. 668 5. 727 W 108864 3284662 4. 23% 0. 108% 61 5. 571 5. 823 S. 886 W 541734 12136949 15. 63% 0. 315% 62 5. 937 5. 922 5. 954 W 284559 3886875 5. 01% 0. 138% 66 5. 922 W 284613 4215991 5. 43% 0. 138% 66 5. 972 F. 954 6. 000 W 225723 425654 5. 504 6. 042 6. 093 W 320990 6798405 8. 794 6. 000 W 225723 426554 5. 604 6. 042 6. 093 W 320990 6798405 8. 76% 0. 223% 66 6. 617 6. 093 6. 135 W 421073 683517 8. 80% 0. 224% 70 6. 161 6. 135 6. 181 W 291728 6141749 7. 91% 0. 201% 73 6. 646 6. 647 6. 042 6. 093 W 320990 6798405 8. 76% 0. 223% 66 6. 617 6. 093 6. 135 W 421073 6833517 8. 80% 0. 223% 66 6. 617 6. 093 6. 135 W 421073 6833517 8. 80% 0. 223% 66 6. 617 6. 093 6. 135 W 421073 6833517 9. 79% 0. 203% 73 6. 299 6. 281 6. 319 W 283316 5511972 7. 10% 0. 181% 73 6. 648 6. 649 6. 520 W 373309 11971613 15. 42% 0. 193% 73 6. 299 6. 281 6. 319 W 283316 5511972 7. 10% 0. 181% 73 6. 648 6. 650 6. 648 6. 679 W 440587 6. 6447 6. 679 6. 625 6. 648 6. 650 6. 648 6. 679 W 440587 6. 6447 6. 679 0. 628 0. 656 0. 65								
50 5. 263 5. 253 5. 307 VV 193233 3484645 4. 49% 0. 114% 51 5. 322 5. 307 5. 341 V. 193233 3484645 4. 49% 0. 114% 52 5. 362 5. 341 5. 391 VV 153625 2944703 3. 79% 0. 097% 53 5. 430 5. 391 5. 441 VV 210126 4071638 5. 24% 0. 133% 54 5. 454 5. 441 5. 471 VV 265555 3199995 4. 12% 0. 105% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0. 073% 56 5. 512 5. 501 5. 536 VV 139121 0283053 2. 68% 0. 068% 58 5. 595 5. 579 5. 616 VV 421169 5272635 6. 79% 0. 173% 59 5. 632 6. 5616 5. 668 VV 136710 9270839 3. 83% 0. 077% 60 5. 699 5. 668 5. 727 V 108864 3284662 4. 23% 0. 108% 61 5. 751 5. 727 5. 791 VV 562421 9597721 12. 36% 0. 315% 62 5. 809 5. 791 5. 823 VV 159719 92593005 3. 34% 0. 085% 63 5. 847 5. 823 5. 886 VS 41734 12136949 15. 63% 0. 398% 64 5. 904 5. 886 5. 922 VV 284613 4215991 5. 43% 0. 138% 66 5. 972 5. 954 6. 000 VV 225723 4565544 5. 88% 0. 150% 66 6. 077 6. 003 6. 135 VV 421073 6833517 8. 80% 0. 224% 67 6. 019 6. 003 6. 135 VV 421073 6833517 5. 91% 0. 0111% 71 6. 205 6. 181 6. 231 VV 300839 6188100 7. 97% 0. 203% 72 6. 253 6. 231 6. 281 VV 447881 9774016 12. 59% 0. 224% 73 6. 269 6. 281 6. 319 VV 281351 55112 7. 10% 74 6. 335 6. 319 6. 352 VV 41744 822251 1. 259% 0. 320% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 329% 76 6. 6. 429 6. 407 6. 449 VV 300939 6188100 7. 97% 0. 203% 77 6. 485 6. 449 6. 520 VV 313309 1897141 7. 91% 0. 201% 78 6. 548 6. 550 6. 649 VV 300953 5897947 7. 60% 0. 193% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 79 VV 40587 6475267 8. 34% 0. 223% 81 6. 665 6. 648 6. 679 VV 40587 6475267 8. 34% 0. 213% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 790 F. 6. 6. 790 VV 613649 1506980 20. 69% 0. 499% 84 6. 836 6. 790 6. 685 0. 744854 1478502 19. 95% 0. 499% 85 6. 878 6. 883 6. 6922 VV 515245 15565321 20. 05% 0. 159% 86 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 87 7. 077 7. 042 VV 3004649 16069080 20. 69% 0. 2	48	5. 217	5. 189	5. 227 VV	148156	2578725	3. 32% 0. 085%	
51 5. 322 5. 307 5. 341 VV 64693 1124697 1. 45% 0. 037% 52 5. 362 5. 341 5. 391 VV 153625 2944703 3.79% 0. 097% 53. 5. 430 5. 391 5. 441 VV 210126 4071638 5. 24% 0. 133% 54 5. 454 5. 454 5. 471 VV 210126 4071638 5. 24% 0. 133% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0. 073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0. 073% 55 5. 488 5. 471 5. 501 VV 490038 6352126 8. 18% 0. 068% 5. 552 5. 536 5. 579 VV 490038 6352126 8. 18% 0. 068% 5. 595 5. 579 5. 616 VV 421169 5272635 6. 79% 0. 173% 59 5. 632 5. 616 5. 668 VV 136710 2970839 3. 83% 0. 097% 60 5. 699 5. 668 5. 727 VV 108864 3284662 4. 23% 0. 108% 61 5. 751 5. 823 VV 159719 2593005 3. 34% 0. 085% 63 5. 847 5. 823 5. 886 VV 541734 12136949 15. 63% 0. 138% 65 5. 935 5. 904 5. 886 5. 922 VV 284613 4215991 5. 63% 0. 138% 65 5. 937 5. 922 5. 954 VV 284559 3886875 5. 01% 0. 127% 66 5. 937 5. 922 5. 954 VV 284559 3886875 5. 01% 0. 127% 66 6. 6117 6. 093 6. 135 VV 221073 683517 8. 80% 0. 223% 69 6. 117 6. 093 6. 135 VV 421073 683517 8. 80% 0. 223% 69 6. 117 6. 093 6. 135 VV 421073 683517 7. 90% 0. 223% 69 6. 181 6. 231 VV 300839 6188100 7. 97% 0. 203% 776 6. 485 6. 449 6. 520 VV 385604 984595 7. 60% 0. 193% 776 6. 485 6. 449 6. 520 VV 373309 7197161 7. 1979 7. 90% 0. 223% 776 6. 485 6. 449 6. 520 VV 373309 7197161 7. 199% 0. 2201% 776 6. 485 6. 449 6. 520 VV 373309 7197161 7. 199% 0. 2201% 776 6. 485 6. 449 6. 520 VV 373309 7197161 7. 199% 0. 322% 776 6. 642 6. 649 6. 520 VV 373309 7197161 7. 199% 0. 2201% 776 6. 648 6. 659 6. 661 6. 679 VV 440587 6. 974458 7. 1997 7. 60% 0. 199% 88 6. 636 6. 679 6. 922 6. 980 VV 905312 1. 55245 1. 5565321 20. 05% 0. 199% 88 6. 683 6. 692 VV 515245 1. 5565321 20. 05% 0. 199% 88 6. 683 6. 692 VV 515245 1. 5566321 20. 05% 0. 159% 88 7. 026 7. 70. 042 VV 308049 7. 4737026 6. 10% 0. 155% 7. 70. 042 VV 308049 7. 4737026 6. 10% 0. 155% 7. 70. 042 VV 308049 7. 4737026 6. 10% 0. 155% 7. 70. 042 VV 308049 7. 4737026 6. 10% 0. 155% 7. 70. 042 VV 308049 7. 474854 1. 1599 7. 70. 042 VV 308049 7. 1009% 0. 155% 7. 1009% 0. 155% 7. 100								
52 5. 362 5. 341 5. 391 VV 153625 2944703 3. 79% 0.097% 53 5. 430 5. 391 5. 441 VV 210126 4071638 5. 240 0.133% 54 5. 454 5. 441 5. 471 VV 265555 3199995 4. 12% 0.105% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 471 5. 501 VV 147007 2213442 2. 85% 0.073% 55 5. 488 5. 595 5. 579 5. 616 VV 136710 2970839 3. 83% 0.097% 50 5. 668 5. 727 VV 108864 3284662 4. 23% 0. 108% 56 5. 668 5. 727 VV 108864 3284662 4. 23% 0. 108% 56 5. 669 5. 668 5. 727 VV 108864 3284662 4. 23% 0. 108% 56 5. 847 5. 823 5. 886 VV 541734 12136949 15. 63% 0. 398% 56 5. 937 5. 823 5. 886 VV 541734 12136949 15. 63% 0. 398% 56 5. 937 5. 922 5. 954 VV 284559 3886875 5. 01% 0. 127% 56 5. 937 5. 922 5. 954 VV 284559 3886875 5. 01% 0. 127% 56 6. 6. 600 VV 22573 4293133 5. 53% 0. 141% 56 6. 600 6. 6042 VV 29273 4293133 5. 53% 0. 141% 56 6. 6067 6. 6042 6. 6093 VV 320980 6798405 8. 76% 0. 223% 56 6. 611 6. 6135 6. 181 VV 291728 6141749 7. 91% 0. 201% 57 6. 286 6. 321 6. 281 VV 447581 9774016 12. 59% 0. 320% 57 6. 868 6. 352 6. 407 VV 385604 9845975 12. 66% 0. 322% 57 6. 648 6. 639 6. 525 0. 5251 VV 3405804 9845975 12. 66% 0. 322% 57 6. 648 6. 639 6. 636 6. 635 6. 649 6. 520 VV 37309 11971613 15. 42% 0. 392% 57 6. 648 6. 638 6. 6350 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 0. 193% 57 6. 648 6. 638 6. 6350 6. 648 0. 000 VV 325905 7305833 7. 60% 0. 195% 6. 668 6. 659 6. 6648 0. 000 VV 385604 9845975 12. 66% 0. 159% 6. 668 6. 659 6. 668 8. 000 VV 351097 4737026 6. 10% 0. 155% 6. 668 6. 679 0. 000 VV 385044 14785028 19. 04% 0. 485% 6. 6878 6. 6878 6. 6878 6. 6878 6. 6870 VV 440587 6475267 8. 34% 0. 0. 155% 6. 668 6. 668 6. 6690 VV 5515245 1556521 10.	51							
54 5. 454 5. 441 5. 5471 W 265555 3199995 4. 12% 0.105% 55 5. 488 5. 471 5. 501 W 147007 2213442 2. 85% 0. 073% 56 5. 512 5. 501 5. 536 W 139121 2083053 2. 68% 0. 068% 0. 208% 0.	52	5. 362	5. 341	5. 391 VV	153625	2944703	3. 79% 0. 097%	
56 5.512 5.501 5.536 VW 139121 2083053 2.68% 0.068% 57 5.562 5.536 5.579 W 490038 6352126 8.18% 0.208% 58 5.595 5.579 5.616 W 421169 5272635 6.79% 0.173% 59 5.632 5.616 5.668 W 136710 2970839 3.83% 0.097% 60 5.699 5.668 5.727 W 108864 3284662 4.23% 0.108% 61 5.751 5.823 W 159719 2593005 3.34% 0.085% 63 5.847 5.823 5.886 W 541734 12136949 15.63% 0.398% 64 5.904 5.886 5.922 5.954 W 284559 3886875 5.01% 0.127% 65 5.937 5.922 5.954 W 225723 4565544 5.88% 0.150% 67	54	5. 454	5. 441	5. 471 VV	265555	3199995	4. 12% 0. 105%	
57 5.562 5.536 5.579 W 490038 6352126 8.18% 0.208% 58 5.595 5.579 5.616 VV 421169 5272635 6.79% 0.173% 59 5.632 5.616 5.668 VV 136710 2970839 3.83% 0.097% 60 5.699 5.668 5.727 VV 108864 3284662 4.23% 0.108% 61 5.757 5.791 VV 562421 9597721 12.36% 0.315% 62 5.809 5.791 5.823 VV 541734 12136949 15.63% 0.398% 64 5.904 5.886 5.922 VV 284613 4215991 5.43% 0.138% 65 5.937 5.922 5.954 VV 284559 3886875 5.01% 0.127% 66 5.972 5.954 6.000 VV 225723 456544 5.88% 0.150% 67 6.176 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
58 5.595 5.579 5.616 VV 421169 5272635 6.79% 0.173% 59 5.632 5.616 5.668 VV 136710 2970839 3.83% 0.097% 60 5.699 5.668 5.727 VV 108864 3284662 4.23% 0.108% 61 5.751 5.727 5.791 VV 562421 9597721 12.36% 0.315% 62 5.897 5.791 VV 562421 9597721 12.36% 0.315% 63 5.847 5.883 5.886 VV 541734 12136949 15.63% 0.398% 64 5.904 5.886 5.922 VV 284159 3886875 5.01% 0.138% 65 5.937 5.924 6.000 VV 225723 4565544 5.88% 0.150% 67 6.019 6.000 6.042 7.92933 5.53% 0.141% 68 6.176 6.021 7.03								
60 5. 699 5. 668 5. 727 VV 108864 3284662 4. 23% 0. 108% 61 5. 751 5. 727 5. 791 VV 562421 9597721 12. 36% 0. 315% 62 5. 809 5. 791 5. 823 VV 159719 2593005 3. 34% 0. 0.85% 63 5. 847 5. 823 5. 886 VV 541734 12136949 15. 63% 0. 398% 64 5. 904 5. 886 5. 922 VV 284613 4215991 5. 43% 0. 138% 65 5. 937 5. 922 5. 954 VV 284559 3886875 5. 01% 0. 127% 66 5. 972 5. 954 6. 0000 VV 225723 4565544 5. 88% 0. 150% 67 6. 019 6. 000 6. 042 VV 292873 4293133 5. 53% 0. 141% 68 6. 067 6. 042 6. 093 VV 320980 6798405 8. 76% 0. 223% 69 6. 117 6. 093 6. 135 VV 421073 6833517 8. 80% 0. 224% 70 6. 161 6. 135 6. 181 VV 291728 6141749 7. 91% 0. 201% 71 6. 205 6. 181 6. 231 VV 300839 6188100 7. 97% 0. 203% 72 6. 253 6. 231 6. 281 VV 447581 9774016 12. 59% 0. 320% 73 6. 299 6. 281 6. 319 VV 283316 5511972 7. 10% 0. 181% 74 6. 335 6. 319 6. 352 VV 401796 5974858 7. 69% 0. 196% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 822254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 40587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 720 6. 853 VV 744854 1785028 19. 04% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 1785028 19. 04% 0. 499% 85 6. 878 6. 883 6. 922 VV 515245 15565321 20. 05% 0. 499% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 315097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389709 7610316 9. 80% 0. 249% 89 7. 026 7. 005 7. 042 VV 389709 7610316 9. 80% 0. 249% 89 7. 026 7. 005 7. 042 VV 389709 7610316 9. 80% 0. 252%	58	5. 595	5. 579	5. 616 VV	421169	5272635	6. 79% 0. 173%	
62 5.809 5.791 5.823 VV 541734 12136949 15.63% 0.398% 64 5.904 5.886 5.922 VV 284613 4215991 5.63% 0.398% 65 5.937 5.922 5.954 VV 284559 3886875 5.01% 0.127% 66 5.937 5.922 5.954 VV 284559 3886875 5.01% 0.127% 66 5.972 5.954 6.000 VV 225723 4565544 5.88% 0.150% 67 6.019 6.000 6.042 VV 292873 4293133 5.53% 0.141% 68 6.067 6.042 6.093 VV 320980 6798405 8.76% 0.223% 69 6.117 6.093 6.135 VV 421073 6833517 8.80% 0.224% 70 6.161 6.135 6.181 VV 291728 6141749 7.91% 0.201% 71 6.205 6.181 6.231 VV 300839 6188100 7.97% 0.203% 72 6.253 6.231 6.281 VV 447581 9774016 12.59% 0.320% 73 6.299 6.281 6.319 VV 283316 5511972 7.10% 0.181% 74 6.335 6.319 6.352 VV 401796 5974858 7.69% 0.196% 75 6.386 6.352 6.407 VV 385604 9845975 12.68% 0.323% 76 6.429 6.407 6.501 VV 373309 11971613 15.42% 0.323% 77 6.485 6.449 6.520 VV 373309 11971613 15.42% 0.392% 78 6.548 6.520 6.561 VV 517444 8222254 10.59% 0.269% 79 6.569 6.561 6.595 VV 322514 4862084 6.26% 0.159% 80 6.638 6.595 6.648 VV 289095 7305833 9.41% 0.212% 81 6.679 6.722 VV 1038707 15232360 19.62% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 515245 15565321 20.05% 0.510% 86 6.994 6.980 7.005 VV 387309 7610316 9.80% 0.249% 87 6.994 6.980 7.005 VV 389707 7610316 9.80% 0.249% 87 6.994 6.980 7.005 VV 389730 7610316 9.80% 0.249% 87 6.994 6.980 7.005 VV 389730 7610316 9.80% 0.249% 89 7.007 7.042 VV 389730 7610316 9.80% 0.527%			5. 668				4. 23% 0. 108%	
63 5.847 5.823 5.886 VV 541734 12136949 15.63% 0.398% 64 5.904 5.886 5.922 VV 284613 4215991 5.43% 0.138% 65.937 5.922 5.954 VV 284559 3886875 5.01% 0.127% 66 5.972 5.954 6.000 VV 225723 4565544 5.88% 0.150% 67 6.019 6.000 6.042 VV 292873 4293133 5.53% 0.141% 68 6.067 6.042 6.093 VV 320980 6798405 8.76% 0.223% 69 6.117 6.093 6.135 VV 421073 6833517 8.80% 0.224% 70 6.161 6.135 6.181 VV 291728 6141749 7.91% 0.201% 71 6.205 6.181 6.231 VV 300839 6188100 7.97% 0.203% 72 6.253 6.231 6.281 VV 447581 9774016 12.59% 0.320% 73 6.299 6.281 6.319 VV 283316 5511972 7.109 0.181% 74 6.335 6.319 6.352 VV 401796 5974858 7.69% 0.196% 75 6.386 6.352 6.407 VV 385604 9845975 12.66% 0.323% 77 6.485 6.449 6.520 VV 373309 11971613 15.42% 0.323% 78 6.548 6.520 6.561 VV 517444 822254 10.59% 0.269% 79 6.569 6.561 6.595 VV 322514 4862084 6.26% 0.159% 0.269% 79 6.569 6.561 6.595 VV 322514 4862084 6.26% 0.159% 0.299% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 83 6.748 6.722 6.980 VV 905312 17202366 22.15% 0.564% 87 6.994 6.980 7.005 VV 3151097 4737026 6.10% 0.155% 88 7.026 7.005 VV 389730 7610316 9.80% 0.249% 89 7.007 7.042 VV 389730 7610316 9.80% 0.249% 89 7.007 7.042 VV 389730 7610316 9.80% 0.524% 89 7.007 7.042 VV 389730 7610316 9.80% 0.249% 89 7.007 7.042 VV 389730 7610316 9.80% 0.524% 89 7.007 7.042 VV 389730 7610316 9.80% 0.524% 89 7.007 7.042 VV 389730 7610316 9.80% 0.527%								
64 5.904 5.886 5.922 VV 284559 3886875 5.01% 0.138% 65 5.937 5.922 5.954 VV 284559 3886875 5.01% 0.127% 66 5.972 5.954 6.000 VV 225723 4565544 5.88% 0.150% 67 6.019 6.000 6.042 VV 292873 4293133 5.53% 0.141% 68 6.067 6.042 6.093 VV 320980 6798405 8.76% 0.223% 69 6.117 6.093 6.135 VV 421073 6833517 8.80% 0.224% 70 6.161 6.135 6.181 VV 291728 6141749 7.91% 0.201% 71 6.205 6.181 6.231 VV 300839 6188100 7.97% 0.203% 72 6.253 6.231 6.281 VV 447581 9774016 12.59% 0.320% 73 6.299 6.281 6.319 VV 283316 5511972 7.10% 0.181% 74 6.335 6.319 6.352 VV 401796 5974858 7.69% 0.196% 75 6.386 6.352 6.407 VV 385604 9845975 12.68% 0.323% 76 6.429 6.407 6.449 VV 330953 5897947 7.60% 0.193% 77 6.485 6.449 6.520 VV 373309 11971613 15.42% 0.392% 78 6.548 6.520 6.561 VV 517444 8222254 10.59% 0.269% 79 6.569 6.561 6.595 VV 322514 4862084 6.26% 0.159% 80 6.638 6.595 6.648 VV 289095 7305833 9.41% 0.239% 81 6.665 6.648 6.679 VV 440587 6475267 8.34% 0.212% 82 6.701 6.679 6.722 VV 1038707 15232360 19.62% 0.499% 83 6.748 6.790 6.853 VV 744854 14785028 19.04% 0.4895 85 6.878 6.853 6.922 VV 515245 15565321 20.05% 0.510% 86 6.959 6.922 6.980 VV 905312 17202366 22.15% 0.564% 87 6.994 6.980 7.005 VV 389707 7610316 9.80% 0.249% 88 7.026 7.005 7.042 VV 389707 7610316 9.80% 0.249% 89 7.077 7.042 7.099 VV 6163649 16069080 20.69% 0.527%								
66 5.972 5.954 6.000 VV 225723 4565544 5.88% 0.150% 67 6.019 6.000 6.042 VV 292873 4293133 5.53% 0.141% 68 6.067 6.042 6.093 VV 320980 6798405 8.76% 0.223% 69 6.117 6.093 6.135 VV 421073 6833517 8.80% 0.224% 70 6.161 6.135 6.181 VV 291728 6141749 7.91% 0.201% 71 6.205 6.181 6.231 VV 300839 6188100 7.97% 0.201% 71 6.205 6.231 6.281 VV 447581 9774016 12.59% 0.320% 73 6.299 6.281 6.319 VV 283316 5511972 7.10% 0.181% 74 6.335 6.319 6.352 VV 401796 5974858 7.69% 0.196% 75 6.386 6.352 6.407 VV 385604 9845975 12.68% 0.323% 76 6.429 6.407 6.449 VV 309053 5897947 7.60% 0.193% 77 6.485 6.449 6.520 VV 373309 11971613 15.42% 0.392% 78 6.548 6.550 6.561 6.595 VV 322514 4862084 6.26% 0.159% 80 6.638 6.595 6.648 VV 289095 7305833 9.41% 0.239% 81 6.665 6.648 6.679 VV 440587 6475267 8.34% 0.212% 82 6.701 6.679 6.722 VV 1038707 15232360 19.62% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 84 6.834 6.790 6.853 VV 744854 14785028 19.04% 0.485% 85 6.878 6.853 6.922 VV 515245 15565321 20.05% 0.510% 86 6.959 6.922 6.980 VV 905312 17202366 22.15% 0.564% 87 6.994 6.980 7.005 VV 389730 7610316 9.80% 0.249% 87 7.077 7.042 7.099 VV 603649 16069080 20.69% 0.249% 87 7.077 7.042 7.099 VV 603649 16069080 20.69% 0.249% 87 7.077 7.042 7.099 VV 603649 16069080 20.69% 0.249% 87 7.077 7.042 7.099 VV 603649 16069080 20.69% 0.527%	64	5. 904	5. 886	5. 922 VV	284613	4215991	5. 43% 0. 138%	
67 6. 019 6. 000 6. 042 VV 292873 4293133 5. 53% 0. 141% 68 6. 067 6. 042 6. 093 VV 320980 6798405 8. 76% 0. 223% 69 6. 117 6. 093 6. 135 VV 421073 6833517 8. 80% 0. 224% 70 6. 161 6. 135 6. 181 VV 291728 6141749 7. 91% 0. 201% 71 6. 205 6. 181 6. 231 VV 300839 6188100 7. 97% 0. 203% 72 6. 253 6. 231 6. 281 VV 447581 9774016 12. 59% 0. 320% 73 6. 299 6. 281 6. 319 VV 283316 5511972 7. 10% 0. 181% 74 6. 335 6. 319 6. 352 VV 401796 5974858 7. 69% 0. 196% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 VV 309053 5897947 7. 60% 0. 193% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 648 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 VV 1038707 15232360 19. 62% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 564% 87 6. 994 6. 980 7. 005 VV 389730 74737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 74737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
69 6. 117 6. 093 6. 135 VV 421073 6833517 8. 80% 0. 224% 70 6. 161 6. 135 6. 181 VV 291728 6141749 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 201% 7. 91% 0. 203% 9. 20% 9. 20% 9. 224% 9. 200 9. 20% 9. 200	67	6. 019	6.000	6. 042 VV	292873	4293133	5. 53% 0. 141%	
70 6. 161 6. 135 6. 181 VV 291728 6141749 7. 91% 0. 201% 71 6. 205 6. 181 6. 231 VV 300839 6188100 7. 97% 0. 203% 72 6. 253 6. 231 6. 281 VV 447581 9774016 12. 59% 0. 320% 73 6. 299 6. 281 6. 319 VV 283316 5511972 7. 10% 0. 181% 74 6. 335 6. 319 6. 352 VV 401796 5974858 7. 69% 0. 196% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
72 6. 253 6. 231 6. 281 VV 447581 9774016 12. 59% 0. 320% 73 6. 299 6. 281 6. 319 VV 283316 5511972 7. 10% 0. 181% 74 6. 335 6. 319 6. 352 VV 401796 5974858 7. 69% 0. 196% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 212% 82 6. 701 6. 679 VV 440587 6475267 </td <td></td> <td>6. 161</td> <td>6. 135</td> <td>6. 181 VV</td> <td>291728</td> <td>6141749</td> <td>7. 91% 0. 201%</td> <td></td>		6. 161	6. 135	6. 181 VV	291728	6141749	7. 91% 0. 201%	
73 6. 299 6. 281 6. 319 VV 283316 5511972 7. 10% 0. 181% 74 6. 335 6. 319 6. 352 VV 401796 5974858 7. 69% 0. 196% 75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 700 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 381097 4737026 6. 10% 0. 155% 87 6. 994 6. 980 7. 005 VV 381097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
75 6. 386 6. 352 6. 407 VV 385604 9845975 12. 68% 0. 323% 76 6. 429 6. 407 6. 449 VV 309053 5897947 7. 60% 0. 193% 77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%	73	6. 299	6. 281	6. 319 VV	283316	5511972	7. 10% 0. 181%	
77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
77 6. 485 6. 449 6. 520 VV 373309 11971613 15. 42% 0. 392% 78 6. 548 6. 520 6. 561 VV 517444 8222254 10. 59% 0. 269% 79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%	76	6. 429	6. 407	6. 449 VV	309053	5897947	7. 60% 0. 193%	
79 6. 569 6. 561 6. 595 VV 322514 4862084 6. 26% 0. 159% 80 6. 638 6. 595 6. 648 VV 289095 7305833 9. 41% 0. 239% 81 6. 665 6. 648 6. 679 VV 440587 6475267 8. 34% 0. 212% 82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603		6. 485	6. 449	6. 520 VV		11971613		
81 6.665 6.648 6.679 VV 440587 6475267 8.34% 0.212% 82 6.701 6.679 6.722 VV 1038707 15232360 19.62% 0.499% 83 6.748 6.722 6.790 VV 614861 15213756 19.59% 0.499% 84 6.834 6.790 6.853 VV 744854 14785028 19.04% 0.485% 85 6.878 6.853 6.922 VV 515245 15565321 20.05% 0.510% 86 6.959 6.922 6.980 VV 905312 17202366 22.15% 0.564% 87 6.994 6.980 7.005 VV 351097 4737026 6.10% 0.155% 88 7.026 7.005 7.042 VV 389730 7610316 9.80% 0.249% 89 7.077 7.042 7.099 VV 603649 16069080 20.69% 0.527%	79	6. 569	6. 561	6. 595 VV	322514	4862084	6. 26% 0. 159%	
82 6. 701 6. 679 6. 722 VV 1038707 15232360 19. 62% 0. 499% 83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
83 6. 748 6. 722 6. 790 VV 614861 15213756 19. 59% 0. 499% 84 6. 834 6. 790 6. 853 VV 744854 14785028 19. 04% 0. 485% 85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%	82	6. 701	6. 679	6. 722 VV	1038707	15232360	19. 62% 0. 499%	
85 6. 878 6. 853 6. 922 VV 515245 15565321 20. 05% 0. 510% 86 6. 959 6. 922 6. 980 VV 905312 17202366 22. 15% 0. 564% 87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
87 6. 994 6. 980 7. 005 VV 351097 4737026 6. 10% 0. 155% 88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%	85							
88 7. 026 7. 005 7. 042 VV 389730 7610316 9. 80% 0. 249% 89 7. 077 7. 042 7. 099 VV 603649 16069080 20. 69% 0. 527%								
	88	7. 026	7.005	7. 042 VV	389730	7610316	9. 80% 0. 249%	
· ~ ~ ~	89	7. 077	7. 042	7. 099 VV			20. 69% 0. 527%	

						Instrumen FID_C ClientSam		
90	7. 120	7. 099	7. 142 V\		teres 14879753	GSB3 19. 16% (D. 488%	,
91 92 93 94 95	7. 195 7. 262 7. 328 7. 363 7. 411	7. 142 7. 239 7. 301 7. 347 7. 382	7. 239 VV 7. 301 VV 7. 347 VV 7. 382 VV 7. 427 VV	1420547 1741810 1542191	47849508 29590040 25569564 9093432 10788841	38 32 Reviewe	IntegrationsAPPROVED ad By :Yogesh Patel 05/29/2025 ad By :mohammad ahmed 05/30/2025	
96 97 98 99 100	7. 480 7. 531 7. 571 7. 604 7. 657	7. 427 7. 511 7. 540 7. 592 7. 627	7. 511 VV 7. 540 VV 7. 592 VV 7. 627 VV 7. 694 VV	596406 670911 476502	31163219 9380979 18198604 9692734 26019601	12. 08% (23. 44% (12. 48% (1. 021% D. 307% D. 596% D. 318% D. 853%	F
101 102 103 104 105	7. 711 7. 753 7. 821 7. 877 7. 921	7. 694 7. 732 7. 763 7. 864 7. 891	7. 732 VV 7. 763 VV 7. 864 VV 7. 891 VV 7. 936 VV	419878 776910 508799	12277550 7554197 34740581 8061865 15577237	9. 73% (44. 74% 1 10. 38% (D. 402% D. 248% 1. 139% D. 264% D. 511%	
106 107 108 109 110	7. 947 7. 965 8. 011 8. 075 8. 112	7. 936 7. 958 7. 986 8. 033 8. 100	7. 958 VV 7. 986 VV 8. 033 VV 8. 100 VV 8. 146 VV	602419 735605 1232595	7902300 9540530 16336084 34518762 20074854	12. 29% (21. 04% (44. 46%	D. 259% D. 313% D. 535% 1. 131% D. 658%	
111 112 113 114 115	8. 191 8. 242 8. 311 8. 338 8. 360	8. 146 8. 234 8. 264 8. 325 8. 351	8. 234 VV 8. 264 VV 8. 325 VV 8. 351 VV 8. 381 VV	610386 2492515 2242339	71083255 10378129 55487578 26998764 17819710	13. 37% (71. 46% 134. 77% (2. 330% D. 340% 1. 819% D. 885% D. 584%	
116 117 118 119 120	8. 408 8. 467 8. 505 8. 539 8. 575	8. 381 8. 428 8. 494 8. 513 8. 559	8. 428 VV 8. 494 VV 8. 513 VV 8. 559 VV 8. 623 VV	1486459 662749 1472629	21979414 41159282 7160885 28427570 32752466	53. 01% 7 9. 22% 0 36. 61% 0	D. 720% 1. 349% D. 235% D. 932% 1. 074%	
121 122 123 124 125	8. 647 8. 689 8. 724 8. 768 8. 829	8. 623 8. 674 8. 701 8. 742 8. 800	8. 674 VV 8. 701 VV 8. 742 VV 8. 800 VV 8. 853 VV	617227 858327 841087	20712250 9588772 18029154 26566456 29778371	12. 35% (23. 22% (34. 21% (D. 679% D. 314% D. 591% D. 871% D. 976%	
126 127 128 129 130	8. 909 9. 021 9. 051 9. 088 9. 140	8. 853 8. 972 9. 039 9. 073 9. 107	8. 972 VV 9. 039 VV 9. 073 VV 9. 107 VV 9. 161 VV	1727294 1167514 852008	77648545 43731245 19342475 15751866 29730560	56. 32% 24. 91% 020. 29% 0	2. 545% 1. 433% D. 634% D. 516% D. 974%	
131 132 133 134 135	9. 192 9. 239 9. 270 9. 352 9. 384	9. 161 9. 215 9. 258 9. 304 9. 368	9. 215 VV 9. 258 VV 9. 304 VV 9. 368 VV 9. 409 VV	7 1779281 7 856834 7 1353195	44183555 32568111 21555159 36176955 24802531	41. 94% 27. 76% 046. 59%	1. 448% 1. 067% D. 706% 1. 186% D. 813%	
136 137 138 139 140	9. 422 9. 488 9. 565 9. 593 9. 649	9. 409 9. 439 9. 538 9. 579 9. 616	9. 439 VV 9. 538 VV 9. 579 VV 9. 616 VV 9. 700 VV	1513246 1118976 1081795	11924876 56333856 21765281 20443933 54238890	72. 55% 28. 03% 026. 33% 0	D. 391% 1. 846% D. 713% D. 670% 1. 778%	
141	9. 722	9. 700	9. 754 V\		31223270 age 3	40. 21%	1. 023%	

					Instrument : FID_C ClientSampleId :
142 9.770 143 9.839 144 9.891 145 9.923	9. 754 9. 827 9. 861 9. 904	9. 827 VV 9. 861 VV 9. 904 VV 9. 948 VV	1132464 687428 950620	38134793 13323531 21346559 26004885	GSB3 49. 11% 1. 250% 1. Manual IntegrationsAPPROVED 33
146 9.970 147 10.049 148 10.080 149 10.153 150 10.245	9. 948 10. 020 10. 060 10. 117 10. 222	10. 020 VV 10. 060 VV 10. 117 VV 10. 222 VV 10. 276 VV	828962 863810 927141	45233792 19094691 26274544 44573809 19691545	Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025 24 33. 84% 0. 861% 57. 40% 1. 461% 25. 36% 0. 645%
151 10.308 152 10.365 153 10.446 154 10.496 155 10.581	10. 276 10. 330 10. 393 10. 472 10. 538	10. 330 VV 10. 393 VV 10. 472 VV 10. 538 VV 10. 610 VV	1931114 1107191 1400151	23933661 45057380 43253978 36590725 34739853	30. 82% 0. 784% 58. 03% 1. 477% 55. 70% 1. 418% 47. 12% 1. 199% 44. 74% 1. 139%
156 10.635 157 10.705 158 10.791 159 10.828 160 10.871	10. 610 10. 660 10. 750 10. 821 10. 861	10. 660 VV 10. 750 VV 10. 821 VV 10. 861 VV 10. 887 VV	1260024 2964261 792108	25799182 49554580 67347122 17562371 9952379	33. 23%
161 10.918 162 10.975 163 11.043 164 11.100 165 11.180	10. 887 10. 937 11. 017 11. 073 11. 132	10. 937 VV 11. 017 VV 11. 073 VV 11. 132 VV 11. 203 VV	1079869 751808 814174	19553845 37170269 22282118 24142329 26023431	25. 18%
166 11. 211 167 11. 279 168 11. 322 169 11. 363 170 11. 408	11. 203 11. 222 11. 300 11. 347 11. 388	11. 222 VV 11. 300 VV 11. 347 VV 11. 388 VV 11. 429 VV	776290 738303 697668	6875222 30430587 19048581 16631378 19921897	8. 85% 0. 225% 39. 19% 0. 997% 24. 53% 0. 624% 21. 42% 0. 545% 25. 66% 0. 653%
171 11.447 172 11.504 173 11.562 174 11.623 175 11.665	11. 429 11. 470 11. 537 11. 586 11. 644	11. 470 VV 11. 537 VV 11. 586 VV 11. 644 VV 11. 685 VV	1753058 629406 700931	16023139 41766659 15961345 20487681 13347426	20. 64% 0. 525% 53. 79% 1. 369% 20. 56% 0. 523% 26. 39% 0. 672% 17. 19% 0. 437%
176 11. 734 177 11. 775 178 11. 807 179 11. 878 180 11. 922	11. 685 11. 753 11. 790 11. 834 11. 898	11. 753 VV 11. 790 VV 11. 834 VV 11. 898 VV 11. 938 VV	776353 929530 495496	27286966 15404112 18324946 17877440 13656615	35. 14%
181 11. 955 182 12. 068 183 12. 138 184 12. 172 185 12. 202	11. 938 12. 001 12. 125 12. 151 12. 193	12. 001 VV 12. 125 VV 12. 151 VV 12. 193 VV 12. 246 VV	792629 427812 472727	19002108 40018695 6577145 10715756 11909297	24. 47%
186 12. 269 187 12. 303 188 12. 377 189 12. 414 190 12. 446	12. 246 12. 284 12. 354 12. 398 12. 428	12. 284 VV 12. 354 VV 12. 398 VV 12. 428 VV 12. 471 VV	497962 368753 359898	8951173 16823367 8875403 6144957 8524459	11. 53%
191 12. 481 192 12. 507 193 12. 555 194 12. 627	12. 471 12. 492 12. 528 12. 602	12. 492 VV 12. 528 VV 12. 602 VV 12. 644 VV	353846 419121 329675	4150856 7020299 14828559 7351573 age 4	5. 35%


			Instrument : FID_C ClientSampleId :
195 12.666 12.	644 12.684 V	rteres V 452143 8812659	GSB3
197 12. 772 12. 198 12. 851 12. 199 12. 901 12.	684 12. 752 V 752 12. 825 V 825 12. 886 V 886 12. 939 V 939 13. 006 V	V 286710 10681402 V 224018 7719316 V 217662 6218923	Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025
202 13. 065 13. 203 13. 149 13. 204 13. 200 13.	006 13.048 V 048 13.108 V 108 13.176 V 176 13.229 V 229 13.267 V	V 186967 5867367 V 551279 11079623 V 196222 5402284	7.56% 0.192% 3 14.27% 0.363% 4 6.96% 0.177%
207 13. 311 13. 208 13. 356 13. 209 13. 400 13.	267 13. 290 V 290 13. 331 V 331 13. 381 V 381 13. 451 V 451 13. 479 V	V 188499 3653192 V 151675 3994615 V 151885 4868423	2 4.70% 0.120% 5 5.14% 0.131% 6 6.27% 0.160%
212 13. 536 13. 213 13. 578 13. 214 13. 616 13.	479 13.515 V 515 13.560 V 560 13.605 V 605 13.634 V 634 13.674 V	V 116829 2689845 V 92603 2376589 V 81395 1376407	5 3.46% 0.088% 9 3.06% 0.078% 7 1.77% 0.045%
217 13. 726 13. 218 13. 804 13. 219 13. 847 13.	674 13.711 V 711 13.774 V 774 13.833 V 833 13.867 V 867 13.938 V	V 69855 2519630 V 70061 2210860 V 58273 1106092	0 3. 24% 0. 083% 0 2. 85% 0. 072% 2 1. 42% 0. 036%
222 13. 974 13. 223 14. 013 14. 224 14. 125 14.	938 13.966 V 966 14.000 V 000 14.067 V 067 14.173 V 173 14.240 V	V 47306 917844 V 42796 1577590 V 42459 2273041	1 1.18% 0.030% 0 2.03% 0.052% 2.93% 0.075%
227 14. 304 14. 228 14. 364 14. 229 14. 417 14.	240 14. 295 V 295 14. 343 V 343 14. 408 V 408 14. 433 V 433 14. 501 V	V 27218 721888 V 24104 875213 V 20853 301648	3
232 14. 581 14. 233 14. 622 14. 234 14. 665 14.	501 14.545 V 545 14.613 V 613 14.641 V 641 14.691 V 691 14.797 V	V 18089 688754 V 14590 246786 V 14474 408232	4
237 14. 890 14. 238 14. 935 14. 239 14. 993 14.	797 14.874 V 874 14.923 V 923 14.968 V 968 15.026 V 026 15.059 V	V 8922 247326 V 8374 219568 V 13774 326998	0 0.32% 0.008% 0 0.28% 0.007% 0 0.42% 0.011%
242 15. 138 15. 243 15. 178 15. 244 15. 243 15.	059 15. 123 V 123 15. 167 V 167 15. 215 V 215 15. 311 V 311 15. 483 V	V 6006 141396 V 5011 136148 V 5465 250840	0 0.18% 0.005% 0 0.18% 0.004% 0 0.32% 0.008%
246 15. 514 15.	483 15.578 V	V 7670 230538 Page 5	3 0.30% 0.008%

						Instrument : FID_C ClientSampleId :			
247 15. 596 248 15. 644 249 15. 702 250 15. 724	15. 578 15. 631 15. 684 15. 711	15. 631 15. 684 15. 711 15. 798	VV VV VV	rter 4194 1962 1665 1714	es 96941 54420 25271 80513	GSB3 O. 12% (Manu	0. 003% al IntegrationsAPPROVED		
251 15. 835 252 15. 890 253 15. 938 254 16. 015 255 16. 199	15. 798 15. 858 15. 925 15. 951 16. 172	15. 858 15. 925 15. 951 16. 172 16. 229	VV VV VV VV	1700 1901 906 5220 672	50082 54598 13417 139252 16987		wed By :Yogesh Patel 05/29/2025 vised By :mohammad ahmed 05/30/2025 0. 000% 0. 005% 0. 001%		
256 16. 240 257 16. 320 258 16. 386 259 16. 456 260 16. 498	16. 229 16. 274 16. 341 16. 431 16. 474	16. 274 16. 341 16. 431 16. 474 16. 544	VV VV VV VV	468 840 3443 820 4572	10723 22789 80312 17327 72837	0. 01% 0. 03% 0. 10% 0. 02% 0. 09%	0. 000% 0. 001% 0. 003% 0. 001% 0. 002%	F G	
261 16. 581 262 16. 628 263 16. 671 264 16. 701 265 16. 750	16. 544 16. 611 16. 662 16. 691 16. 709	16. 611 16. 662 16. 691 16. 709 16. 785	VV VV VV VV	3107 991 320 244 1164	48077 15847 4636 2428 27838	0. 06% 0. 02% 0. 01% 0. 00% 0. 04%	0. 002% 0. 001% 0. 000% 0. 000% 0. 001%	J	
266 16. 797 267 16. 869 268 16. 966 269 17. 018 270 17. 099	16. 785 16. 834 16. 921 16. 995 17. 074	16. 834 16. 921 16. 995 17. 074 17. 146	VV VV VV VV	563 769 3576 1714 324	11700 21257 56405 40879 8259	0. 02% 0. 03% 0. 07% 0. 05% 0. 01%	0. 000% 0. 001% 0. 002% 0. 001% 0. 000%		
271 17. 184 272 17. 252 273 17. 331 274 17. 416 275 17. 473	17. 146 17. 244 17. 271 17. 383 17. 449	17. 244 17. 271 17. 383 17. 449 17. 488	PV VV VV VV	1498 235 3300 4965 253	30404 2286 64077 72606 4708	0. 04% 0. 00% 0. 08% 0. 09% 0. 01%	0. 001% 0. 000% 0. 002% 0. 002% 0. 000%		
276 17.504 277 17.592 278 17.625 279 17.697 280 17.744	17. 488 17. 523 17. 609 17. 634 17. 734	17. 523 17. 609 17. 634 17. 734 17. 761	VV VV PV VV	461 390 134 452 206	5796 7092 1324 11077 2600	0. 01% 0. 01% 0. 00% 0. 01% 0. 00%	0. 000% 0. 000% 0. 000% 0. 000% 0. 000%		
281 17. 781 282 17. 808 283 17. 854 284 17. 941 285 18. 046	17. 761 17. 793 17. 829 17. 891 17. 995	17. 793 17. 829 17. 891 17. 995 18. 063	VV VV VV VV	971 1369 2655 1686 562	13439 20889 41159 45409 17576	0. 02% 0. 03% 0. 05% 0. 06% 0. 02%	0. 000% 0. 001% 0. 001% 0. 001% 0. 001%		
286 18. 092 287 18. 127 288 18. 211 289 18. 279 290 18. 332	18. 063 18. 114 18. 150 18. 255 18. 316	18. 114 18. 150 18. 255 18. 316 18. 340	VV VV VV VV	1746 600 17469 5480 617	32542 11193 323490 93074 7714	0. 04% 0. 01% 0. 42% 0. 12% 0. 01%	0. 001% 0. 000% 0. 011% 0. 003% 0. 000%		
291 18. 375 292 18. 494 293 18. 545 294 18. 574 295 18. 634	18. 340 18. 461 18. 524 18. 568 18. 589	18. 461 18. 524 18. 568 18. 589 18. 651	VV VV VV VV	3292 1136 777 641 1360	89775 30946 18274 7995 33740	0. 12% 0. 04% 0. 02% 0. 01% 0. 04%	0. 003% 0. 001% 0. 001% 0. 000% 0. 001%		
296 18. 684 297 18. 716 298 18. 807 299 18. 852	18. 651 18. 705 18. 744 18. 834	18. 705 18. 744 18. 834 18. 884	VV VV VV	2791 1626 2501 1760 Page	60557 29067 93630 40804	0. 08% 0. 04% 0. 12% 0. 05%	0. 002% 0. 001% 0. 003% 0. 001%		

				Instrument : FID_C
		rt	eres	ClientSampleId : GSB3
300 18.898 18.	. 884 18. 920	VV 1124	21237	0. 03% 0. 001%
302 19. 045 18. 303 19. 098 19. 304 19. 169 19.	. 920 18. 987 . 987 19. 076 . 076 19. 138 . 138 19. 207 . 207 19. 253	VV 1159 VV 16939 VV 5299 VV 2351 VV 2583	41915 351048 130118 83015 57358	Manual IntegrationsAPPROVED Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025
307 19. 329 19. 308 19. 389 19. 309 19. 473 19.	. 253 19. 314 . 314 19. 367 . 367 19. 417 . 417 19. 488 . 488 19. 523	VV 4798 VV 2197 VV 1971 VV 2206 VV 2420	107993 62520 54039 81432 45906	O. 14% O. 004% O. 08% O. 002% O. 07% O. 002% O. 10% O. 003% O. 06% O. 002%
312 19. 651 19. 313 19. 749 19. 314 19. 820 19.	. 523 19. 614 . 614 19. 687 . 687 19. 791 . 791 19. 834 . 834 19. 871	VV 4704 VV 3407 VV 3411 VV 4923 VV 4498	176053 115796 169749 100364 86485	0. 23%
317 19. 951 19. 318 20. 014 19. 319 20. 072 20.	. 871	VV 3267 VV 3021 VV 3596 VV 4690 VV 6631	71763 109485 134445 94097 158036	0. 09% 0. 002% 0. 14% 0. 004% 0. 17% 0. 004% 0. 12% 0. 003% 0. 20% 0. 005%
322 20. 210 20. 323 20. 268 20. 324 20. 339 20.	. 132 20. 167 . 167 20. 244 . 244 20. 280 . 280 20. 354 . 354 20. 420	VV 3878 VV 4167 VV 4133 VV 4599 VV 16940	79171 184234 86539 193094 338212	0. 10% 0. 003% 0. 24% 0. 006% 0. 11% 0. 003% 0. 25% 0. 006% 0. 44% 0. 011%
327 20. 535 20. 328 20. 563 20. 329 20. 645 20.	. 420 20. 496 . 496 20. 555 . 555 20. 600 . 600 20. 668 . 668 20. 718	VV 4265 VV 4697 VV 4342 VV 4046 VV 3843	184926 151511 113928 158166 109558	0. 24% 0. 006% 0. 20% 0. 005% 0. 15% 0. 004% 0. 20% 0. 005% 0. 14% 0. 004%
332 20. 899 20. 333 20. 986 20. 334 21. 062 21.	. 718 20. 833 . 833 20. 965 . 965 21. 022 . 022 21. 194 . 194 21. 221	VV 3794 VV 3901 VV 3179 VV 3107 VV 2553	237730 268988 107759 298040 39460	0. 31% 0. 008% 0. 35% 0. 009% 0. 14% 0. 004% 0. 38% 0. 010% 0. 05% 0. 001%
337 21. 306 21. 338 21. 375 21. 339 21. 433 21.	. 221 21. 276 . 276 21. 364 . 364 21. 394 . 394 21. 538 . 538 21. 618	VV 2537 VV 2365 VV 2042 VV 2325 VV 1872	78424 113536 35276 178654 80888	0. 10% 0. 003% 0. 15% 0. 004% 0. 05% 0. 001% 0. 23% 0. 006% 0. 10% 0. 003%
342 21.810 21. 343 21.847 21. 344 21.967 21.	. 618 21. 784 . 784 21. 838 . 838 21. 891 . 891 22. 052 . 052 22. 101	VV 1728 VV 1153 VV 1106 VV 1129 VV 920	144412 35026 30732 87919 22439	0. 19% 0. 005% 0. 05% 0. 001% 0. 04% 0. 001% 0. 11% 0. 003% 0. 03% 0. 001%
347 22. 222 22. 348 22. 271 22. 349 22. 354 22.	. 101 22. 207 . 207 22. 229 . 229 22. 341 . 341 22. 377 . 377 22. 501	VV 1053 VV 747 VV 747 VV 711 PBA 192	57452 9521 40690 4598 9688	0. 07% 0. 002% 0. 01% 0. 000% 0. 05% 0. 001% 0. 01% 0. 000% 0. 01% 0. 000%

Sum of corrected areas: 3050978622 Page 7 rteres

Aliphatic EPH 052425.M Thu May 29 06:46:36 2025

Page 8

GSB3DL

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069046.D

Signal(s) : FID1A.ch

Acq On : 29 May 2025 10:55 Operator : YP/AJ

Sample : Q2125-03DL 50X

Misc

ALS Vial : 12 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 30 03:27:08 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Response Conc Units Compound R.T.

System Monitoring Compounds

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

GSB3DL

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069046.D
Signal(s) : FID1A.ch

Acq On : 29 May 2025 10:55

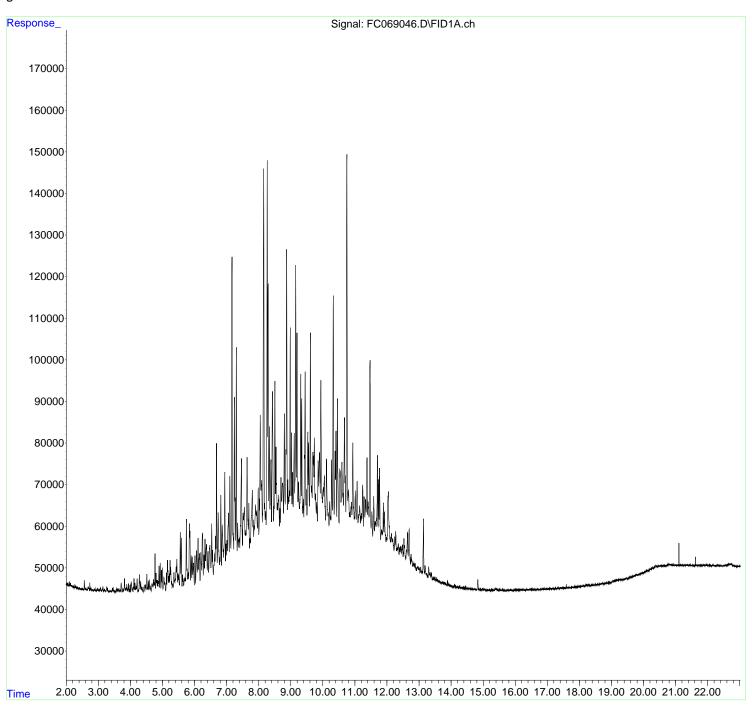
Operator : YP/AJ

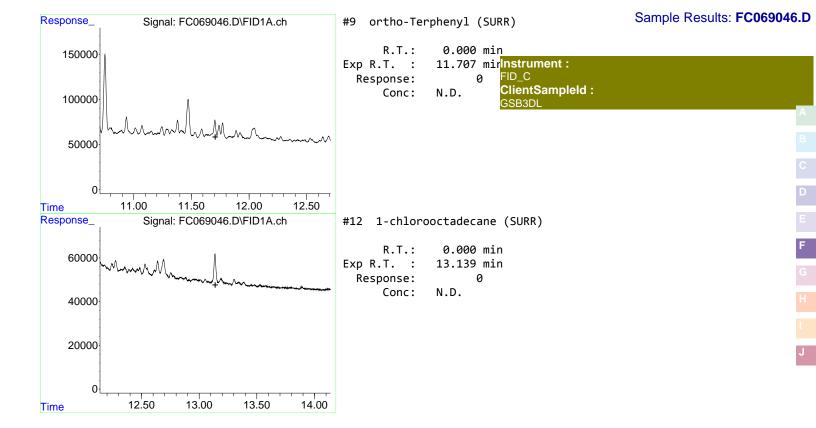
Sample : Q2125-03DL 50X

Misc

ALS Vial : 12 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 30 03:27:08 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$


Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\
Data File : FC069046.D
Signal(s) : FID1A.ch
Acq On : 29 May 2025 10:55
Sample : Q2125-03DL 50X

Misc ALS Vial Sample Multiplier: 1 : 12

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

peak #	R. T. mi n	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 263 3. 287 3. 317 3. 388 3. 439	3. 204 3. 277 3. 308 3. 373 3. 403	3. 277 3. 308 3. 373 3. 403 3. 450	BV VV PV VV	1109 738 161 191 875	12460 6117 2972 1778 9915	0. 62% 0. 30% 0. 15% 0. 09% 0. 49%	0. 018% 0. 009% 0. 004% 0. 003% 0. 014%
6 7 8 9 10	3. 462 3. 490 3. 570 3. 594 3. 641	3. 450 3. 479 3. 519 3. 582 3. 608	3. 479 3. 519 3. 582 3. 608 3. 674	VV VV PV VV	1117 362 782 709 850	10586 4379 10244 7340 16627	0. 52% 0. 22% 0. 51% 0. 36% 0. 82%	0. 015% 0. 006% 0. 015% 0. 011% 0. 024%
11 12 13 14 15	3. 712 3. 769 3. 815 3. 889 3. 939	3. 674 3. 744 3. 791 3. 861 3. 923	3. 744 3. 791 3. 861 3. 923 3. 972	VV PV VV VV	2162 741 3244 1811 1962	31929 13262 47605 30247 23448	1. 58% 0. 66% 2. 35% 1. 50% 1. 16%	0. 046% 0. 019% 0. 069% 0. 044% 0. 034%
16 17 18 19 20	3. 989 4. 025 4. 113 4. 141 4. 178	3. 972 4. 005 4. 078 4. 129 4. 160	4. 005 4. 078 4. 129 4. 160 4. 192	VV VV VV VV	1613 2414 3162 2128 1351	14487 46656 43471 23149 18125	0. 72% 2. 31% 2. 15% 1. 14% 0. 90%	0. 021% 0. 067% 0. 063% 0. 033% 0. 026%
21 22 23 24 25	4. 209 4. 280 4. 322 4. 359 4. 433	4. 192 4. 233 4. 308 4. 347 4. 401	4. 233 4. 308 4. 347 4. 401 4. 451	VV VV VV VV PV	3136 4098 2498 1105 1428	34116 61644 32235 16322 22047	1. 69% 3. 05% 1. 59% 0. 81% 1. 09%	0. 049% 0. 089% 0. 047% 0. 024% 0. 032%
26 27 28 29 30	4. 472 4. 514 4. 560 4. 589 4. 621	4. 451 4. 494 4. 541 4. 573 4. 607	4. 494 4. 541 4. 573 4. 607 4. 647	VV VV VV VV	1589 4126 2514 2769 1332	24530 50042 25086 29879 16795	1. 21% 2. 47% 1. 24% 1. 48% 0. 83%	0. 035% 0. 072% 0. 036% 0. 043% 0. 024%
31 32 33 34 35	4. 674 4. 718 4. 740 4. 769 4. 801	4. 647 4. 704 4. 730 4. 751 4. 786	4. 704 4. 730 4. 751 4. 786 4. 836	VV VV VV VV	1764 2833 2124 9039 4248	38693 30883 23031 89506 71736	1. 91% 1. 53% 1. 14% 4. 42% 3. 55%	0. 056% 0. 045% 0. 033% 0. 129% 0. 104%
36	4. 848	4. 836	4. 859	VV	2535 Page	25387 e 1	1. 25%	0. 037%

Page 1

37 38 39 40	4. 894 4. 931 4. 970 4. 994	4. 859 4. 911 4. 952 4. 981	4. 911 4. 952 4. 981 5. 015	VV VV VV	rter 6004 6641 4860 5544	es 88845 82656 51315 61093	4. 39% 4. 09% 2. 54% 3. 02%	0. 128% 0. 119% 0. 074% 0. 088%
41 42 43 44 45	5. 046 5. 125 5. 157 5. 195 5. 214	5. 015 5. 099 5. 138 5. 185 5. 203	5. 099 5. 138 5. 185 5. 203 5. 223	VV PV VV VV	3135 4157 7213 3196 3918	78121 42838 122440 28690 36716	3. 86% 2. 12% 6. 05% 1. 42% 1. 81%	0. 113% 0. 062% 0. 177% 0. 041% 0. 053%
46 47 48 49 50	5. 237 5. 258 5. 288 5. 320 5. 358	5. 223 5. 249 5. 279 5. 303 5. 337	5. 249 5. 279 5. 303 5. 337 5. 387	VV VV VV VV	7060 5418 2042 1209 4051	71573 65359 20225 19390 66926	3. 54% 3. 23% 1. 00% 0. 96% 3. 31%	0. 103% 0. 094% 0. 029% 0. 028% 0. 097%
51 52 53 54 55	5. 426 5. 449 5. 482 5. 507 5. 556	5. 387 5. 436 5. 466 5. 496 5. 531	5. 436 5. 466 5. 496 5. 531 5. 573	VV VV VV VV	5331 7173 3622 3332 13469	97895 82199 51553 42820 169267	4. 84% 4. 06% 2. 55% 2. 12% 8. 37%	0. 142% 0. 119% 0. 075% 0. 062% 0. 245%
56 57 58 59 60	5. 589 5. 626 5. 647 5. 693 5. 745	5. 573 5. 611 5. 639 5. 663 5. 704	5. 611 5. 639 5. 663 5. 704 5. 784	VV VV VV VV	12102 3224 2165 2315 16277	140002 34093 21912 40144 269320	6. 92% 1. 69% 1. 08% 1. 98% 13. 31%	0. 202% 0. 049% 0. 032% 0. 058% 0. 389%
61 62 63 64 65	5. 803 5. 841 5. 898 5. 930 5. 966	5. 784 5. 816 5. 879 5. 915 5. 948	5. 816 5. 879 5. 915 5. 948 5. 993	VV VV VV VV	3517 15134 7414 7116 5578	53486 325962 99875 93162 97595	2. 64% 16. 11% 4. 94% 4. 60% 4. 82%	0. 077% 0. 471% 0. 144% 0. 135% 0. 141%
66 67 68 69 70	6. 013 6. 059 6. 110 6. 153 6. 197	5. 993 6. 035 6. 087 6. 127 6. 173	6. 035 6. 087 6. 127 6. 173 6. 223	VV VV VV VV	7396 8357 11419 7815 7876	93483 162807 169525 143250 141753	4. 62% 8. 05% 8. 38% 7. 08% 7. 01%	0. 135% 0. 235% 0. 245% 0. 207% 0. 205%
71 72 73 74 75	6. 252 6. 292 6. 328 6. 377 6. 421	6. 223 6. 273 6. 311 6. 344 6. 398	6. 273 6. 311 6. 344 6. 398 6. 439	VV VV VV VV	12394 7093 11044 9698 7942	252588 129311 149675 236383 133183	12. 49% 6. 39% 7. 40% 11. 68% 6. 58%	0. 365% 0. 187% 0. 216% 0. 342% 0. 193%
76 77 78 79 80	6. 477 6. 537 6. 561 6. 628 6. 656	6. 439 6. 512 6. 552 6. 586 6. 639	6. 512 6. 552 6. 586 6. 639 6. 667	VV VV VV VV	9285 14446 8078 7032 11370	281821 198913 108206 157446 149426	13. 93% 9. 83% 5. 35% 7. 78% 7. 39%	0. 407% 0. 288% 0. 156% 0. 228% 0. 216%
81 82 83 84 85	6. 687 6. 738 6. 821 6. 864 6. 944	6. 667 6. 709 6. 778 6. 840 6. 908	6. 709 6. 778 6. 840 6. 908 6. 967	VV VV VV VV	33490 16749 20974 13709 26336	412626 379229 366726 378498 441716	20. 40% 18. 74% 18. 13% 18. 71% 21. 83%	0. 597% 0. 548% 0. 530% 0. 547% 0. 639%
86 87 88 89	6. 980 7. 011 7. 062 7. 102	6. 967 6. 993 7. 025 7. 082	6. 993 7. 025 7. 082 7. 132	VV VV VV	9142 9904 16492 25332 Page	115941 160446 419293 440944 2	5. 73% 7. 93% 20. 72% 21. 80%	0. 168% 0. 232% 0. 606% 0. 637%

A

С

_

F

Н

1

90	7. 168	7. 132	7. 223	VV	rteres 77816 1267744 62.66% 1.833%
91 92 93 94 95	7. 243 7. 303 7. 346 7. 379 7. 397	7. 223 7. 284 7. 329 7. 365 7. 387	7. 284 7. 329 7. 365 7. 387 7. 412	VV VV VV VV	43469 796265 39.36% 1.151% 55556 702751 34.74% 1.016% 13675 221750 10.96% 0.321% 9688 122248 6.04% 0.177% 9903 136017 6.72% 0.197%
96 97 98 99 100	7. 463 7. 515 7. 554 7. 585 7. 640	7. 412 7. 496 7. 529 7. 576 7. 598	7. 496 7. 529 7. 576 7. 598 7. 677	VV VV VV VV	29220 812122 40. 14% 1. 174% 15779 265232 13. 11% 0. 383% 17187 418489 20. 69% 0. 605% 11778 152272 7. 53% 0. 220% 28968 755527 37. 34% 1. 092%
101 102 103 104 105	7. 695 7. 733 7. 803 7. 830 7. 907	7. 677 7. 713 7. 747 7. 821 7. 846	7. 713 7. 747 7. 821 7. 846 7. 925	VV VV VV VV	18084 287975 14. 23% 0. 416% 9428 179222 8. 86% 0. 259% 21115 679962 33. 61% 0. 983% 13808 185377 9. 16% 0. 268% 17485 662821 32. 76% 0. 958%
106 107 108 109 110	7. 940 7. 986 8. 050 8. 094 8. 158	7. 925 7. 959 8. 006 8. 072 8. 114	7. 959 8. 006 8. 072 8. 114 8. 204	VV VV VV VV	15909 294140 14.54% 0.425% 21278 421404 20.83% 0.609% 38566 896965 44.34% 1.297% 23086 513088 25.36% 0.742% 97134 2023130 100.00% 2.925%
111 112 113 114 115	8. 219 8. 267 8. 295 8. 334 8. 381	8. 204 8. 233 8. 282 8. 315 8. 352	8. 233 8. 282 8. 315 8. 352 8. 400	VV VV VV VV	15483 251514 12.43% 0.364% 99889 1385442 68.48% 2.003% 69997 846513 41.84% 1.224% 35808 563782 27.87% 0.815% 27728 573345 28.34% 0.829%
116 117 118 119 120	8. 429 8. 507 8. 541 8. 587 8. 627	8. 400 8. 466 8. 525 8. 577 8. 598	8. 466 8. 525 8. 577 8. 598 8. 649	VV VV VV VV	44134 1077259 53. 25% 1. 557% 46178 866313 42. 82% 1. 252% 30723 709235 35. 06% 1. 025% 17012 206632 10. 21% 0. 299% 19066 497623 24. 60% 0. 719%
121 122 123 124 125	8. 664 8. 697 8. 741 8. 802 8. 874	8. 649 8. 677 8. 717 8. 774 8. 827	8. 677 8. 717 8. 774 8. 827 8. 897	VV VV VV VV	15698 235606 11.65% 0.341% 23074 441115 21.80% 0.638% 21735 660674 32.66% 0.955% 38319 769769 38.05% 1.113% 77935 1543978 76.32% 2.232%
126 127 128 129 130	8. 911 8. 935 8. 986 9. 021 9. 058	8. 897 8. 926 8. 948 9. 006 9. 040	8. 926 8. 948 9. 006 9. 040 9. 076	VV VV VV VV	22272 325658 16. 10% 0. 471% 18165 229637 11. 35% 0. 332% 58398 1065316 52. 66% 1. 540% 33480 504331 24. 93% 0. 729% 23943 417987 20. 66% 0. 604%
131 132 133 134 135	9. 109 9. 157 9. 196 9. 243 9. 313	9. 076 9. 125 9. 176 9. 228 9. 271	9. 125 9. 176 9. 228 9. 271 9. 329	VV VV VV VV	33349 708111 35.00% 1.024% 73347 1155615 57.12% 1.671% 57511 986202 48.75% 1.426% 21355 474759 23.47% 0.686% 46613 875971 43.30% 1.266%
136 137 138 139 140	9. 344 9. 393 9. 450 9. 487 9. 533	9. 329 9. 376 9. 408 9. 474 9. 507	9. 376 9. 408 9. 474 9. 507 9. 546	VV VV VV VV	41540 670870 33. 16% 0. 970% 16996 292013 14. 43% 0. 422% 47802 1069094 52. 84% 1. 546% 19237 338721 16. 74% 0. 490% 32824 520386 25. 72% 0. 752%
141	9. 559	9. 546	9. 584	VV	30497 504835 24.95% 0.730% Page 3

142 143 144 145	9. 614 9. 691 9. 710 9. 737	9. 584 9. 667 9. 702 9. 723	9. 667 9. 702 9. 723 9. 763	VV VV VV	rte 56641 27937 27259 31443	res 1370345 495522 328653 571501	67. 73% 24. 49% 16. 24% 28. 25%	1. 981% 0. 716% 0. 475% 0. 826%
146 147 148 149 150	9. 774 9. 811 9. 857 9. 899 9. 939	9. 763 9. 797 9. 832 9. 876 9. 921	9. 797 9. 832 9. 876 9. 921 9. 990	VV VV VV VV	17941 15895 25667 27690 44923	323364 303653 521807 652594 1088422	15. 98% 15. 01% 25. 79% 32. 26% 53. 80%	0. 467% 0. 439% 0. 754% 0. 943% 1. 574%
151 152 153 154 155	10. 015 10. 049 10. 116 10. 217 10. 276	9. 990 10. 030 10. 088 10. 194 10. 254	10. 030 10. 088 10. 194 10. 254 10. 299	VV VV VV VV	19347 21784 26180 15612 25486	436565 602895 982707 454071 478450	21. 58% 29. 80% 48. 57% 22. 44% 23. 65%	0. 631% 0. 872% 1. 421% 0. 656% 0. 692%
156 157 158 159 160	10. 327 10. 385 10. 412 10. 456 10. 531	10. 299 10. 355 10. 397 10. 436 10. 504	10. 355 10. 397 10. 436 10. 504 10. 571	VV VV VV VV	65003 27559 32079 40174 22781	1119628 514284 532893 866040 733395	55. 34% 25. 42% 26. 34% 42. 81% 36. 25%	1. 619% 0. 744% 0. 770% 1. 252% 1. 060%
161 162 163 164 165	10. 597 10. 676 10. 750 10. 795 10. 839	10. 571 10. 643 10. 718 10. 780 10. 828	10. 643 10. 718 10. 780 10. 828 10. 853	VV VV VV VV	24524 35314 98347 17472 12342	806101 1005423 1693836 451177 173179	39. 84% 49. 70% 83. 72% 22. 30% 8. 56%	1. 165% 1. 454% 2. 449% 0. 652% 0. 250%
166 167 168 169 170	10. 893 10. 937 11. 014 11. 072 11. 152	10. 853 10. 909 10. 984 11. 042 11. 101	10. 909 10. 984 11. 042 11. 101 11. 173	VV VV VV VV	14744 28924 17102 19553 13572	442992 735440 460782 494776 495857	21. 90% 36. 35% 22. 78% 24. 46% 24. 51%	0. 640% 1. 063% 0. 666% 0. 715% 0. 717%
171 172 173 174 175	11. 185 11. 210 11. 243 11. 287 11. 330	11. 173 11. 197 11. 220 11. 265 11. 312	11. 197 11. 220 11. 265 11. 312 11. 354	VV VV VV VV	11013 11668 18380 15531 14912	149428 152433 375350 379028 326339	7. 39% 7. 53% 18. 55% 18. 73% 16. 13%	0. 216% 0. 220% 0. 543% 0. 548% 0. 472%
178	11. 380 11. 411 11. 471 11. 531 11. 589	11. 354 11. 398 11. 440 11. 511 11. 556	11. 398 11. 440 11. 511 11. 556 11. 612	VV VV VV VV	24770 14047 48183 11683 15388	454590 322314 987977 246257 339161	22. 47% 15. 93% 48. 83% 12. 17% 16. 76%	0. 657% 0. 466% 1. 428% 0. 356% 0. 490%
181 182 183 184 185	11. 629 11. 646 11. 704 11. 740 11. 770	11. 612 11. 638 11. 660 11. 722 11. 755	11. 638 11. 660 11. 722 11. 755 11. 804	VV VV VV VV	9270 8879 25046 19408 21960	133756 117478 497470 275001 354606	6. 61% 5. 81% 24. 59% 13. 59% 17. 53%	0. 193% 0. 170% 0. 719% 0. 398% 0. 513%
186 187 188 189 190	11. 834 11. 888 11. 922 11. 987 12. 045	11. 804 11. 851 11. 905 11. 971 12. 002	11. 851 11. 905 11. 971 12. 002 12. 108	VV VV VV VV	6984 13403 11015 5021 15886	176406 278412 283250 87991 573639	8. 72% 13. 76% 14. 00% 4. 35% 28. 35%	0. 255% 0. 403% 0. 409% 0. 127% 0. 829%
191 192 193 194	12. 140 12. 243 12. 275 12. 326	12. 108 12. 224 12. 257 12. 299	12. 224 12. 257 12. 299 12. 335	VV VV VV	5809 4821 6216 2162 Page	278846 71812 101960 40203 e 4	13. 78% 3. 55% 5. 04% 1. 99%	O. 403% O. 104% O. 147% O. 058%

А

С

F

G

H

I

195	12.	355	12.	335	12.	376	VV	r 3116	teres !	52689	2.	60%	0.	076%
196 197 198 199 200	12. 12. 12. 12. 12.	421 484 530	12. 12. 12.	376 405 447 501 588	12. 12. 12.	405 447 501 588 620	VV VV VBA BV VV	2115 2415 2706 4499 2320	!	26570 43054 59743 83870 26312	2. 2. 4.	31% 13% 95% 15% 30%	0. 0. 0.	038% 062% 086% 121% 038%
201 202 203 204 205	12. 12. 12. 12. 12.	691 754 810	12. 12. 12.	620 660 736 801 820	12. 12. 12.	660 736 801 820 871	VV VV VV VV	6639 7831 2460 313 981	1!	93627 55765 42130 2809 20172	7. 2. 0.	63% 70% 08% 14% 00%	0. 0. 0.	135% 225% 061% 004% 029%
206 207 208 209 210	12. 12. 12. 13.	912 952 011	12. 12. 12.	871 904 926 991 032	12. 12. 13.	904 926 991 032 072	VV VV PV VV PV	1224 352 918 1004 1347	:	13156 2410 26108 14333 15806	0. 1. 0.	65% 12% 29% 71% 78%	0. 0. 0.	019% 003% 038% 021% 023%
211 212 213 214 215	13. 13. 13. 13.	137 189 228	13. 13. 13.	072 096 166 219 255	13. 13. 13.	096 166 219 255 281	VV VV VV VV	476 13341 2289 685 546	10	4885 69546 42389 11614 5291	8. 2. 0.	24% 38% 10% 57% 26%	0. 0. 0.	007% 245% 061% 017% 008%
216 217 218 219 220	13. 13. 13. 13.	344 385 450	13. 13. 13.	281 322 365 433 465	13. 13. 13.	322 365 433 465 503	PV VV VV VV	2581 1303 1537 555 639		32953 24871 26094 5884 8305	1. 1. 0.	63% 23% 29% 29% 41%	0. 0. 0.	048% 036% 038% 009% 012%
221 222 223 224 225	13. 13. 13. 13.	576 606 641	13. 13. 13.	503 553 601 624 668	13. 13. 13.	553 601 624 668 711	PV VV VV PV VV	778 542 326 286 154		12515 9880 2372 5016 2141	0. 0. 0.	62% 49% 12% 25% 11%	0. 0. 0.	018% 014% 003% 007% 003%
226 227 228 229 230	13. 13. 13. 13.	796 838 890	13. 13. 13.	711 771 831 864 934	13. 13. 13.	771 831 864 934 971	VV VV VV PV VV	224 463 282 983 336		7052 10555 3390 16577 5182	0. 0. 0.	35% 52% 17% 82% 26%	0. 0. 0.	010% 015% 005% 024% 007%
231 232 233 234 235	13. 14. 14. 14. 14.	112 160 192	14. 14. 14.	971 075 152 188 199	14. 14. 14.	075 152 188 199 240	VV PV VV VV	223 465 134 216 194	•	8800 12786 2265 1128 2862	0. 0. 0.	43% 63% 11% 06% 14%	0. 0. 0.	013% 018% 003% 002% 004%
236 237 238 239 240	14. 14. 14. 14. 14.	359 454 520	14. 14. 14.	240 344 428 503 541	14. 14. 14.	344 428 503 541 602	VV VV PV VV	313 144 506 113 185		10679 4447 7642 1639 3910	0. 0. 0.	53% 22% 38% 08% 19%	0. 0. 0.	015% 006% 011% 002% 006%
241 242 243 244 245	14. 14. 14. 14. 14.	649 731 760	14. 14. 14.	602 638 721 743 798	14. 14. 14.	638 721 743 798 921	VV VV PV VV PV	144 120 99 127 2333		2333 3308 690 1765 33503	0. 0. 0.	12% 16% 03% 09% 66%	0. 0. 0.	003% 005% 001% 003% 048%
246	14.	992	14.	921	15.	021	PV	383 P	age 5	8742	0.	43%	0.	013%

В

С

D

F

Н

ī

J

248 249	15. 041 15. 084 15. 120 15. 191	15. 021 15. 068 15. 114 15. 186	15. 068 15. 114 15. 186 15. 217	VV VV VV	rteres 134 112 111 75	1918 1815 2365 891	0. 09% 0. 09% 0. 12% 0. 04%	0. 003% 0. 003% 0. 003% 0. 001%
252 253 254	15. 239 15. 299 15. 376 15. 516 15. 593	15. 217 15. 284 15. 340 15. 491 15. 552	15. 284 15. 340 15. 491 15. 552 15. 652	PV VV VV VV	114 120 565 259 203	2428 2198 17063 4702 5202	0. 12% 0. 11% 0. 84% 0. 23% 0. 26%	0. 004% 0. 003% 0. 025% 0. 007% 0. 008%
257 258 259	15. 663 15. 756 15. 917 16. 015 16. 077	15. 652 15. 729 15. 857 15. 968 16. 058	15. 729 15. 857 15. 968 16. 058 16. 133	PV PV VV VV	113 116 99 249 135	985 4149 2650 4472 2340	0. 05% 0. 21% 0. 13% 0. 22% 0. 12%	0. 001% 0. 006% 0. 004% 0. 006% 0. 003%
262 263 264	16. 154 16. 219 16. 238 16. 266 16. 285	16. 133 16. 212 16. 229 16. 261 16. 277	16. 212 16. 229 16. 261 16. 277 16. 341	VV VV VV VV PV	187 95 67 104 91	4138 697 948 568 1769	0. 20% 0. 03% 0. 05% 0. 03% 0. 09%	0. 006% 0. 001% 0. 001% 0. 001% 0. 003%
267 268 269	16. 349 16. 397 16. 503 16. 534 16. 587	16. 341 16. 384 16. 410 16. 525 16. 561	16. 384 16. 410 16. 525 16. 561 16. 721	VV VV PV VV VV	105 127 304 169 184	1452 1254 7483 2145 6388	0. 07% 0. 06% 0. 37% 0. 11% 0. 32%	0. 002% 0. 002% 0. 011% 0. 003% 0. 009%
272 273 274	16. 728 16. 871 16. 968 17. 024 17. 043	16. 721 16. 738 16. 906 17. 004 17. 035	16. 738 16. 906 17. 004 17. 035 17. 075	PV VV VV VV	86 195 238 129 137	347 6285 4587 1413 1831	0. 02% 0. 31% 0. 23% 0. 07% 0. 09%	0. 001% 0. 009% 0. 007% 0. 002% 0. 003%
277 278 279	17. 144 17. 180 17. 258 17. 308 17. 333	17. 075 17. 171 17. 193 17. 290 17. 319	17. 171 17. 193 17. 290 17. 319 17. 386	VV PV VV VV	66 97 114 88 174	2376 689 4084 1276 4908	0. 12% 0. 03% 0. 20% 0. 06% 0. 24%	0. 003% 0. 001% 0. 006% 0. 002% 0. 007%
282 283 284	17. 419 17. 518 17. 568 17. 591 17. 631	17. 386 17. 442 17. 558 17. 574 17. 617	17. 442 17. 558 17. 574 17. 617 17. 675	VV VV VV PV VV	230 176 58 385 158	4670 6164 447 2448 2640	0. 23% 0. 30% 0. 02% 0. 12% 0. 13%	0. 007% 0. 009% 0. 001% 0. 004% 0. 004%
287 288 289	17. 707 17. 746 17. 812 17. 853 17. 903	17. 675 17. 720 17. 758 17. 830 17. 879	17. 720 17. 758 17. 830 17. 879 17. 914	PV VV VV VV	93 75 125 227 116	1549 1179 3236 3216 1678	0. 08% 0. 06% 0. 16% 0. 16% 0. 08%	0. 002% 0. 002% 0. 005% 0. 005% 0. 002%
292 293 294	17. 941 18. 008 18. 059 18. 139 18. 185	17. 914 17. 974 18. 033 18. 075 18. 164	17. 974 18. 033 18. 075 18. 164 18. 197	VV VV VV VV	163 140 109 207 98	3594 3148 1946 5568 1666	0. 18% 0. 16% 0. 10% 0. 28% 0. 08%	0. 005% 0. 005% 0. 003% 0. 008% 0. 002%
297 298	18. 225 18. 284 18. 345 18. 379	18. 197 18. 265 18. 321 18. 354	18. 265 18. 321 18. 354 18. 434	VV VV VV	353 271 97 164 Page 6	9251 5519 1174 4106	0. 46% 0. 27% 0. 06% 0. 20%	0. 013% 0. 008% 0. 002% 0. 006%

					rt	eres		
300	18. 448	18. 434	18. 464	PV	81	910	0. 04%	0. 001%
301 302 303 304 305	18. 470 18. 521 18. 554 18. 658 18. 712	18. 464 18. 481 18. 539 18. 577 18. 667	18. 481 18. 539 18. 577 18. 667 18. 740	VV VV VV VV	31 116 100 105 190	404 2054 1061 2356 5175	0. 02% 0. 10% 0. 05% 0. 12% 0. 26%	0. 001% 0. 003% 0. 002% 0. 003% 0. 007%
306 307 308 309 310	18. 841 18. 931 18. 975 19. 050 19. 069	18. 740 18. 871 18. 944 18. 988 19. 064	18. 871 18. 944 18. 988 19. 064 19. 086	VV VV PV PV VV	119 107 103 398 253	5260 1918 1238 6962 2750	0. 26% 0. 09% 0. 06% 0. 34% 0. 14%	0. 008% 0. 003% 0. 002% 0. 010% 0. 004%
312	19. 112 19. 208 19. 232 19. 422	19. 086 19. 120 19. 220 19. 244	19. 120 19. 220 19. 244 19. 431 Sum	VV VV VV of co	210 270 263 76 orrected	3520 11896 3125 11138 areas:	0. 17% 0. 59% 0. 15% 0. 55% 69170602	0. 005% 0. 017% 0. 005% 0. 016%

Aliphatic EPH 052425.M Fri May 30 10:53:03 2025

GSB4

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069036.D

Signal(s) : FID1A.ch

Acq On : 28 May 2025 17:54 Operator : YP/AJ

Sample : Q2125-04

Misc

ALS Vial : 21 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:45:59 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

R.T. Compound Response Conc Units

System Monitoring Compounds
9) S ortho-Terphenyl (SURR) 11.708 5347810 43.357 ug
Spiked Amount 50.000 Recovery = 86.71%
12) S 1-chlorooctadecane (S... 13.140 4165506 46.431 ug
Recovery = 92.86% 5347810 43.357 ug/ml 4165506 46.431 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

GSB4

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069036.D Signal(s) : FID1A.ch

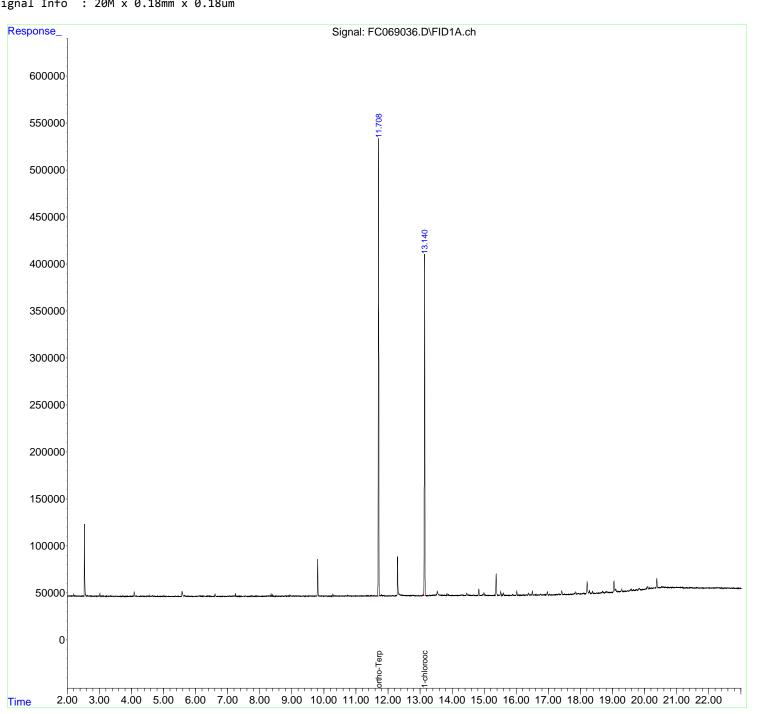
: 28 May 2025 17:54 Acq On

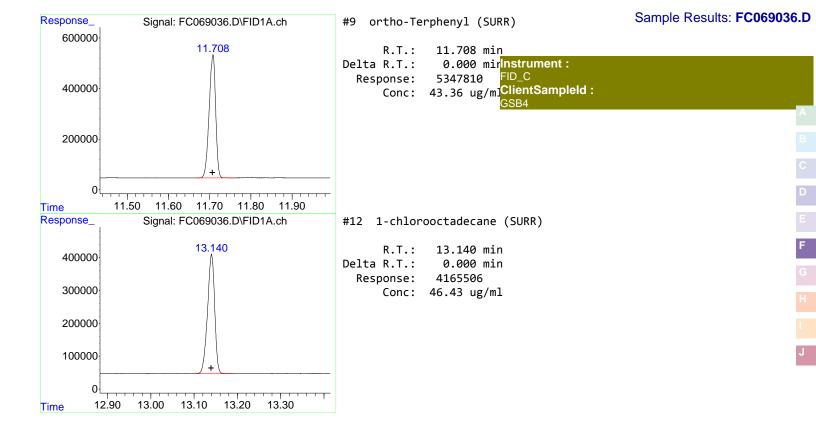
Operator : YP/AJ Sample : Q2125-04

Misc

ALS Vial : 21 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:45:59 2025


Quant Method: Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path: Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File: FC069036.D
Signal(s): FID1A.ch
Acq On: 28 May 2025 17:54
Sample: Q2125-04

Misc ALS Vial : 21 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

peak #	R.T. min	Start min	End mi n		peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 233 3. 320 3. 370 3. 439 3. 477	3. 204 3. 281 3. 364 3. 432 3. 469	3. 281 3. 364 3. 432 3. 469 3. 513	BV PV VV VV	137 307 61 104 135	2211 7091 2679 1413 1292	0. 04% 0. 13% 0. 05% 0. 03% 0. 02%	0. 012% 0. 039% 0. 015% 0. 008% 0. 007%
6 7 8 9 10	3. 534 3. 555 3. 597 3. 625 3. 695	3. 513 3. 551 3. 588 3. 606 3. 657	3. 551 3. 588 3. 606 3. 657 3. 708	VV VV VV VV	136 114 85 126 94	1919 1531 638 2016 1360	0. 04% 0. 03% 0. 01% 0. 04% 0. 03%	0. 010% 0. 008% 0. 003% 0. 011% 0. 007%
11 12 13 14 15	3. 745 3. 817 3. 909 4. 029 4. 045	3. 708 3. 771 3. 889 3. 974 4. 038	3. 771 3. 889 3. 974 4. 038 4. 057	VV VV PV VV VV	186 144 107 170 150	3822 5450 4241 4118 1433	0. 07% 0. 10% 0. 08% 0. 08% 0. 03%	0. 021% 0. 030% 0. 023% 0. 022% 0. 008%
16 17 18 19 20	4. 087 4. 134 4. 221 4. 309 4. 405	4. 057 4. 118 4. 214 4. 259 4. 371	4. 118 4. 214 4. 259 4. 371 4. 415	VV VV VV VV	5170 435 211 236 206	54090 15166 3913 10483 3480	1. 01% 0. 28% 0. 07% 0. 20% 0. 06%	0. 295% 0. 083% 0. 021% 0. 057% 0. 019%
21 22 23 24 25	4. 424 4. 482 4. 515 4. 557 4. 586	4. 415 4. 467 4. 490 4. 541 4. 574	4. 467 4. 490 4. 541 4. 574 4. 604	VV VV VV VV	144 242 827 575 210	3984 2959 11992 4705 3135	0. 07% 0. 06% 0. 22% 0. 09% 0. 06%	0. 022% 0. 016% 0. 065% 0. 026% 0. 017%
26 27 28 29 30	4. 611 4. 659 4. 740 4. 777 4. 853	4. 604 4. 637 4. 731 4. 759 4. 828	4. 637 4. 731 4. 759 4. 828 4. 902	VV VV VV VV	232 1024 191 152 178	3863 17997 2441 4745 4542	0. 07% 0. 34% 0. 05% 0. 09% 0. 08%	0. 021% 0. 098% 0. 013% 0. 026% 0. 025%
31 32 33 34 35	4. 910 4. 934 4. 957 5. 001 5. 052	4. 902 4. 925 4. 942 4. 971 5. 037	4. 925 4. 942 4. 971 5. 037 5. 068	VV VV PV VV	106 87 63 443 147	866 588 1031 6857 1885	0. 02% 0. 01% 0. 02% 0. 13% 0. 04%	0. 005% 0. 003% 0. 006% 0. 037% 0. 010%
36	5. 087	5. 068	5. 140	VV	270 Page	6275	0. 12%	0. 034%

Page 1

					rtoroc
37 38 39 40	5. 150 5. 216 5. 262 5. 278	5. 140 5. 177 5. 234 5. 273	5. 177 5. 234 5. 273 5. 288	VV VV VV	143 1758 0.03% 0.010% 120 2622 0.05% 0.014% 197 2827 0.05% 0.015% 109 861 0.02% 0.005%
41 42 43 44 45	5. 298 5. 374 5. 403 5. 441 5. 471	5. 288 5. 324 5. 398 5. 424 5. 457	5. 324 5. 398 5. 424 5. 457 5. 499	VV VV VV VV	117 1819 0.03% 0.010% 822 10912 0.20% 0.060% 110 1292 0.02% 0.007% 162 2127 0.04% 0.012% 109 1861 0.03% 0.010%
46 47 48 49 50	5. 580 5. 658 5. 772 5. 839 5. 856	5. 499 5. 640 5. 731 5. 826 5. 847	5. 640 5. 731 5. 826 5. 847 5. 891	PV VV VV VV	5319 90185 1.68% 0.492% 1523 24224 0.45% 0.132% 241 9454 0.18% 0.052% 169 1893 0.04% 0.010% 189 3488 0.07% 0.019%
51 52 53 54 55	5. 901 5. 969 6. 067 6. 105 6. 177	5. 891 5. 948 6. 035 6. 084 6. 164	5. 948 6. 035 6. 084 6. 164 6. 230	VV VV VV VV	232 4904 0.09% 0.027% 193 5718 0.11% 0.031% 450 7418 0.14% 0.040% 509 16798 0.31% 0.092% 280 7579 0.14% 0.041%
56 57 58 59 60	6. 255 6. 297 6. 385 6. 424 6. 456	6. 230 6. 291 6. 363 6. 408 6. 447	6. 291 6. 363 6. 408 6. 447 6. 492	VV VV VV VV	482 9492 0. 18% 0. 052% 214 7359 0. 14% 0. 040% 501 8098 0. 15% 0. 044% 219 3787 0. 07% 0. 021% 155 2781 0. 05% 0. 015%
61 62 63 64 65	6. 533 6. 574 6. 608 6. 656 6. 687	6. 492 6. 564 6. 591 6. 648 6. 671	6. 564 6. 591 6. 648 6. 671 6. 749	VV VV VV VV	187 4652 0.09% 0.025% 95 1318 0.02% 0.007% 2665 30546 0.57% 0.167% 189 2232 0.04% 0.012% 204 5580 0.10% 0.030%
66 67 68 69 70	6. 765 6. 862 6. 879 6. 930 6. 989	6. 749 6. 851 6. 872 6. 906 6. 969	6. 851 6. 872 6. 906 6. 969 7. 008	VV VV VV VV	179 5734 0. 11% 0. 031% 147 1550 0. 03% 0. 008% 155 1493 0. 03% 0. 008% 167 3273 0. 06% 0. 018% 125 2153 0. 04% 0. 012%
71 72 73 74 75	7. 054 7. 073 7. 138 7. 197 7. 244	7. 008 7. 071 7. 102 7. 149 7. 234	7. 071 7. 102 7. 149 7. 234 7. 293	VV VV VV VV	316 9086 0. 17% 0. 050% 315 3634 0. 07% 0. 020% 208 4752 0. 09% 0. 026% 498 12743 0. 24% 0. 070% 1386 7722 0. 14% 0. 042%
76 77 78 79 80	7. 308 7. 463 7. 530 7. 563 7. 637	7. 293 7. 326 7. 511 7. 554 7. 628	7. 326 7. 511 7. 554 7. 628 7. 658	VV VV VV VV	185 2338 0.04% 0.013% 250 12470 0.23% 0.068% 130 3321 0.06% 0.018% 211 5122 0.10% 0.028% 84 977 0.02% 0.005%
81 82 83 84 85	7. 676 7. 720 7. 754 7. 781 7. 819	7. 658 7. 709 7. 738 7. 767 7. 808	7. 709 7. 738 7. 767 7. 808 7. 857	PV VV VV VV	149 3057 0.06% 0.017% 153 1583 0.03% 0.009% 395 4427 0.08% 0.024% 464 6176 0.12% 0.034% 158 2689 0.05% 0.015%
86 87 88 89	7. 880 7. 920 7. 952 8. 065	7. 857 7. 898 7. 944 8. 038	7. 898 7. 944 8. 038 8. 074	VV VV VV	356 5347 0. 10% 0. 029% 527 7838 0. 15% 0. 043% 180 6022 0. 11% 0. 033% 144 2373 0. 04% 0. 013% Page 2

А

D

Е

G

H

90	8. 087	8. 074	8. 101	VV	rtere 153	es 2001	0. 04%	0. 011%
91 92 93 94 95	8. 112 8. 157 8. 234 8. 298 8. 336	8. 101 8. 129 8. 181 8. 260 8. 316	8. 129 8. 181 8. 260 8. 316 8. 347	VV VV VV VV	155 266 307 518 422	1874 5648 10918 11681 6170	0. 04% 0. 11% 0. 20% 0. 22% 0. 12%	0. 010% 0. 031% 0. 060% 0. 064% 0. 034%
96 97 98 99 100	8. 354 8. 404 8. 464 8. 511 8. 565	8. 347 8. 366 8. 450 8. 495 8. 544	8. 366 8. 450 8. 495 8. 544 8. 597	VV VV VV VV	1281 850 197 262 154	3945 8243 3792 3469 3013	0. 07% 0. 15% 0. 07% 0. 06% 0. 06%	0. 022% 0. 045% 0. 021% 0. 019% 0. 016%
101 102 103 104 105	8. 659 8. 701 8. 728 8. 806 8. 837	8. 597 8. 681 8. 717 8. 749 8. 828	8. 681 8. 717 8. 749 8. 828 8. 853	VV VV VV VV	142 233 140 585 185	3614 3054 1927 10134 2348	0. 07% 0. 06% 0. 04% 0. 19% 0. 04%	0. 020% 0. 017% 0. 011% 0. 055% 0. 013%
106 107 108 109 110	8. 873 8. 942 9. 053 9. 158 9. 191	8. 853 8. 914 9. 007 9. 133 9. 178	8. 914 9. 007 9. 133 9. 178 9. 221	VV VV VV VV	361 1612 531 510 203	7225 23183 17148 6492 3928	0. 13% 0. 43% 0. 32% 0. 12% 0. 07%	0. 039% 0. 126% 0. 094% 0. 035% 0. 021%
111 112 113 114 115	9. 235 9. 253 9. 345 9. 379 9. 456	9. 221 9. 244 9. 274 9. 368 9. 418	9. 244 9. 274 9. 368 9. 418 9. 478	VV VV VV VV	134 119 303 142 222	1304 1551 7770 2968 3943	0. 02% 0. 03% 0. 15% 0. 06% 0. 07%	0. 007% 0. 008% 0. 042% 0. 016% 0. 022%
116 117 118 119 120	9. 538 9. 617 9. 708 9. 809 9. 876	9. 478 9. 558 9. 667 9. 751 9. 859	9. 558 9. 667 9. 751 9. 859 9. 915	VV VV VV VV	446 338 240 39433 384	9723 13262 8446 412267 8312	0. 18% 0. 25% 0. 16% 7. 70% 0. 16%	0. 053% 0. 072% 0. 046% 2. 249% 0. 045%
121 122 123 124 125	9. 937 10. 012 10. 043 10. 168 10. 205	9. 915 9. 994 10. 022 10. 131 10. 193	9. 994 10. 022 10. 131 10. 193 10. 231	VV VV VV VV PV	439 149 269 142 119	9707 1789 6365 2228 1071	0. 18% 0. 03% 0. 12% 0. 04% 0. 02%	0. 053% 0. 010% 0. 035% 0. 012% 0. 006%
126 127 128 129 130	10. 283 10. 326 10. 380 10. 458 10. 582	10. 231 10. 308 10. 358 10. 437 10. 494	10. 308 10. 358 10. 437 10. 494 10. 613	VV VV VV VV	1785 377 385 155 232	20795 6651 9180 3658 10524	0. 39% 0. 12% 0. 17% 0. 07% 0. 20%	0. 113% 0. 036% 0. 050% 0. 020% 0. 057%
131 132 133 134 135	10. 631 10. 676 10. 748 10. 778 10. 809	10. 613 10. 645 10. 721 10. 768 10. 801	10. 645 10. 721 10. 768 10. 801 10. 853	VV VV VV VV	292 383 608 416 257	4321 11702 11449 5616 4519	0. 08% 0. 22% 0. 21% 0. 10% 0. 08%	0. 024% 0. 064% 0. 062% 0. 031% 0. 025%
136 137 138 139 140	10. 863 10. 894 10. 936 11. 002 11. 015	10. 853 10. 882 10. 903 10. 990 11. 007	10. 882 10. 903 10. 990 11. 007 11. 034	VV VV VV VV	166 120 361 208 224	1640 1274 8934 1429 2826	0. 03% 0. 02% 0. 17% 0. 03% 0. 05%	0. 009% 0. 007% 0. 049% 0. 008% 0. 015%
141	11. 058	11. 034	11. 088	VV	249 Page	5648 3	0. 11%	0. 031%

А

С

F

Н

-

R

С

-

F

Н

-

i

195	14. 510	14. 498	14. 543	VV	rte 778	eres 14465	0. 27%	0. 079%
196 197 198 199 200	14. 555 14. 672 14. 729 14. 830 14. 953	14. 543 14. 644 14. 714 14. 781 14. 902	14. 608 14. 714 14. 781 14. 902 14. 968	VV VV VV VV	388 877 238 6984 991	10393 15163 6471 98868 18902	0. 19% 0. 28% 0. 12% 1. 85% 0. 35%	0. 057% 0. 083% 0. 035% 0. 539% 0. 103%
201 202 203 204 205	14. 993 15. 038 15. 094 15. 162 15. 186	14. 968 15. 020 15. 078 15. 138 15. 171	15. 020 15. 078 15. 138 15. 171 15. 265	VV VV VV VV	2927 554 146 129 235	44141 9157 3322 1918 5589	0. 82% 0. 17% 0. 06% 0. 04% 0. 10%	0. 241% 0. 050% 0. 018% 0. 010% 0. 030%
206 207 208 209 210	15. 288 15. 322 15. 371 15. 472 15. 514	15. 265 15. 297 15. 331 15. 451 15. 482	15. 297 15. 331 15. 451 15. 482 15. 558	PV VV VV VV	90 213 22977 215 4296	1584 2804 326100 3214 60517	0. 03% 0. 05% 6. 09% 0. 06% 1. 13%	0. 009% 0. 015% 1. 779% 0. 018% 0. 330%
211 212 213 214 215	15. 594 15. 770 15. 837 15. 889 16. 015	15. 558 15. 728 15. 823 15. 854 15. 954	15. 728 15. 823 15. 854 15. 954 16. 067	VV VV VV VV PV	2524 132 222 832 4461	42010 4746 2884 16767 57684	0. 78% 0. 09% 0. 05% 0. 31% 1. 08%	0. 229% 0. 026% 0. 016% 0. 091% 0. 315%
218	16. 097 16. 156 16. 324 16. 385 16. 499	16. 067 16. 124 16. 178 16. 344 16. 428	16. 124 16. 178 16. 344 16. 428 16. 558	VV VV PV VV	169 85 473 2314 4587	3004 1901 13360 38098 70832	0. 06% 0. 04% 0. 25% 0. 71% 1. 32%	0. 016% 0. 010% 0. 073% 0. 208% 0. 386%
221 222 223 224 225	16. 581 16. 634 16. 752 16. 804 16. 869	16. 558 16. 614 16. 721 16. 785 16. 828	16. 614 16. 721 16. 785 16. 828 16. 893	VV VV VV VV	880 230 859 275 350	13445 6552 17184 4761 8463	0. 25% 0. 12% 0. 32% 0. 09% 0. 16%	0. 073% 0. 036% 0. 094% 0. 026% 0. 046%
228 229	16. 904 16. 967 17. 017 17. 043 17. 111	16. 893 16. 911 16. 995 17. 026 17. 081	16. 911 16. 995 17. 026 17. 081 17. 135	VV VV VV VV	164 3696 201 362 100	1376 53942 3125 5412 2045	0. 03% 1. 01% 0. 06% 0. 10% 0. 04%	0. 008% 0. 294% 0. 017% 0. 030% 0. 011%
231 232 233 234 235	17. 159 17. 184 17. 205 17. 254 17. 329	17. 135 17. 168 17. 198 17. 224 17. 272	17. 168 17. 198 17. 224 17. 272 17. 380	PV VV VV VV	108 146 134 292 1150	1536 1629 1179 4696 25628	0. 03% 0. 03% 0. 02% 0. 09% 0. 48%	0. 008% 0. 009% 0. 006% 0. 026% 0. 140%
236 237 238 239 240	17. 417 17. 470 17. 505 17. 574 17. 646	17. 380 17. 453 17. 484 17. 560 17. 619	17. 453 17. 484 17. 560 17. 619 17. 658	VV VV VV PV VV	4094 226 381 169 69	60652 2674 6480 1862 1004	1. 13% 0. 05% 0. 12% 0. 03% 0. 02%	0. 331% 0. 015% 0. 035% 0. 010% 0. 005%
241 242 243 244 245	17. 695 17. 744 17. 810 17. 854 17. 942	17. 658 17. 733 17. 761 17. 829 17. 884	17. 733 17. 761 17. 829 17. 884 17. 967	VV VV VV VV PV	275 141 1146 2541 841	5418 1347 21243 35067 20215	0. 10% 0. 03% 0. 40% 0. 65% 0. 38%	0. 030% 0. 007% 0. 116% 0. 191% 0. 110%
246	17. 978	17. 967	18. 001	VV	272 Pa	3269 ge 5	0. 06%	0. 018%

А

С

D

F

Н

I

J

					rto	roc		
248 249	18. 048 18. 093 18. 130 18. 209	18. 001 18. 064 18. 128 18. 149	18. 064 18. 128 18. 149 18. 256	VV VV VV	356 1066 333 12360	8415 19564 2408 224204	0. 16% 0. 37% 0. 04% 4. 19%	0. 046% 0. 107% 0. 013% 1. 223%
253 254	18. 280 18. 372 18. 448 18. 495 18. 521	18. 256 18. 324 18. 438 18. 454 18. 512	18. 324 18. 438 18. 454 18. 512 18. 529	VV VV VV VV	3418 1964 138 392 211	54888 37628 1151 7541 1987	1. 03% 0. 70% 0. 02% 0. 14% 0. 04%	0. 299% 0. 205% 0. 006% 0. 041% 0. 011%
257 258 259	18. 535 18. 552 18. 588 18. 635 18. 686	18. 529 18. 542 18. 568 18. 598 18. 653	18. 542 18. 568 18. 598 18. 653 18. 752	VV VV VV VV	224 189 91 622 1653	1389 2274 1763 11390 47281	0. 03% 0. 04% 0. 03% 0. 21% 0. 88%	0. 008% 0. 012% 0. 010% 0. 062% 0. 258%
262 263 264	18. 807 18. 852 18. 894 18. 967 19. 043	18. 752 18. 834 18. 881 18. 910 19. 000	18. 834 18. 881 18. 910 19. 000 19. 076	VV VV VV VV	1322 1210 428 558 12137	41309 22810 6313 23606 229790	0. 77% 0. 43% 0. 12% 0. 44% 4. 29%	0. 225% 0. 124% 0. 034% 0. 129% 1. 254%
267 268 269	19. 097 19. 166 19. 289 19. 330 19. 385	19. 076 19. 140 19. 214 19. 314 19. 364	19. 140 19. 214 19. 314 19. 364 19. 428	VV VV VV VV	3740 1533 3139 1251 1303	88219 52381 87198 32562 40285	1. 65% 0. 98% 1. 63% 0. 61% 0. 75%	0. 481% 0. 286% 0. 476% 0. 178% 0. 220%
272 273 274	19. 473 19. 579 19. 650 19. 755 19. 819	19. 428 19. 498 19. 613 19. 676 19. 790	19. 498 19. 613 19. 676 19. 790 19. 834	VV VV VV VV	1429 2737 2203 2237 3141	50595 125380 68951 126789 67234	0. 94% 2. 34% 1. 29% 2. 37% 1. 26%	0. 276% 0. 684% 0. 376% 0. 692% 0. 367%
277 278 279	19. 848 19. 885 19. 938 20. 100 20. 154	19. 834 19. 874 19. 908 19. 964 20. 130	19. 874 19. 908 19. 964 20. 130 20. 174	VV VV VV VV	3260 2173 2127 5288 3275	63975 41426 68876 299404 80080	1. 19% 0. 77% 1. 29% 5. 59% 1. 50%	0. 349% 0. 226% 0. 376% 1. 633% 0. 437%
282 283 284	20. 219 20. 380 20. 455 20. 534 20. 565	20. 174 20. 243 20. 417 20. 484 20. 551	20. 243 20. 417 20. 484 20. 551 20. 608	VV VV VV VV	3175 13266 3746 4124 3893	127744 480974 141805 149577 126369	2. 39% 8. 98% 2. 65% 2. 79% 2. 36%	0. 697% 2. 624% 0. 774% 0. 816% 0. 689%
287 288 289	20. 637 20. 677 20. 738 20. 759 20. 826	20. 608 20. 668 20. 727 20. 746 20. 814	20. 668 20. 727 20. 746 20. 814 20. 844	VV VV VV VV	3627 3327 3207 3210 2905	125829 115113 36399 123954 52521	2. 35% 2. 15% 0. 68% 2. 32% 0. 98%	0. 686% 0. 628% 0. 199% 0. 676% 0. 287%
292 293 294	20. 897 20. 987 21. 048 21. 084 21. 110	20. 844 20. 943 21. 035 21. 070 21. 098	20. 943 21. 035 21. 070 21. 098 21. 141	VV VV VV VV	3342 2971 2885 2768 2734	179307 157851 59216 45811 67319	3. 35% 2. 95% 1. 11% 0. 86% 1. 26%	0. 978% 0. 861% 0. 323% 0. 250% 0. 367%
297 298	21. 148 21. 169 21. 307 21. 450	21. 141 21. 164 21. 276 21. 362	21. 164 21. 276 21. 362 21. 537	VV VV VV	2642 2685 2320 2078 Pag	36665 149408 105912 194265 ie 6	0. 68% 2. 79% 1. 98% 3. 63%	0. 200% 0. 815% 0. 578% 1. 060%

A

С

G

Н

1

300	21. 638	21. 537	21. 739	VV	rter 1647	es 179545	3. 35%	0. 980%
302 303 304	21. 750 21. 807 21. 944 22. 017 22. 063	21. 739 21. 768 21. 851 22. 006 22. 051	21. 768 21. 851 22. 006 22. 051 22. 071	VV VV VV VV	1218 1500 1071 864 754	19446 52156 91033 21396 8768	0. 36% 0. 97% 1. 70% 0. 40% 0. 16%	0. 106% 0. 285% 0. 497% 0. 117% 0. 048%
307 308 309	22. 108 22. 301 22. 412 22. 445 22. 479	22. 071 22. 200 22. 391 22. 438 22. 469	22. 200 22. 391 22. 438 22. 469 22. 488	VV VV VV VV	817 766 310 148 95	52874 65178 4364 1460 581	0. 99% 1. 22% 0. 08% 0. 03% 0. 01%	0. 288% 0. 356% 0. 024% 0. 008% 0. 003%

Sum of corrected areas: 18330069

Aliphatic EPH 052425.M Thu May 29 06:46:59 2025

GSB5

ClientSampleId:

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069037.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 18:31 Operator : YP/AJ

Sample : Q2125-05

Misc

ALS Vial : 22 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:46:15 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

R.T. Compound Response Conc Units

System Monitoring Compounds
9) S ortho-Terphenyl (SURR) 11.709 4750316 38.513 ug
Spiked Amount 50.000 Recovery = 77.03%
12) S 1-chlorooctadecane (S... 13.140 3522060 39.259 ug
Recovery = 78.52% 4750316 38.513 ug/ml 3522060 39.259 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

GSB5

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069037.D
Signal(s) : FID1A.ch

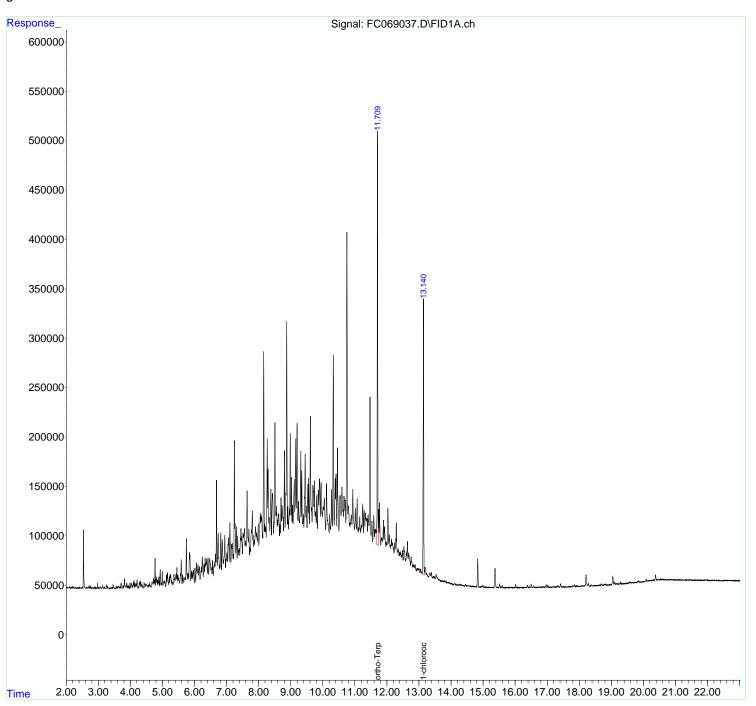
Acq On : 28 May 2025 18:31

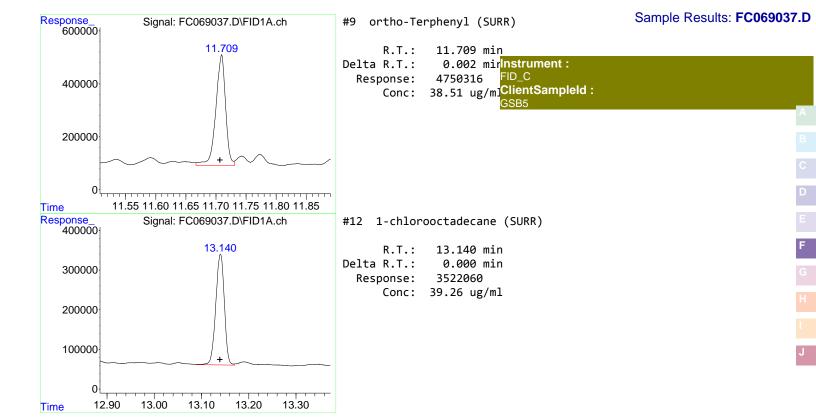
Operator : YP/AJ Sample : Q2125-05

Misc :

ALS Vial : 22 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:46:15 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$


Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path: Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File: FC069037.D
Signal(s): FID1A.ch
Acq On: 28 May 2025 18:31
Sample: Q2125-05

Misc ALS Vial : 22 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

peak #	R. T. mi n	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 261 3. 286 3. 333 3. 387 3. 434	3. 233 3. 275 3. 305 3. 361 3. 400	3. 275 3. 305 3. 361 3. 400 3. 444	PV VV VV PV VV	3259 2073 455 668 1060	37504 18686 8668 6820 15975	0. 56% 0. 28% 0. 13% 0. 10% 0. 24%	0. 013% 0. 006% 0. 003% 0. 002% 0. 005%
6 7 8 9 10	3. 460 3. 486 3. 538 3. 569 3. 592	3. 444 3. 476 3. 520 3. 549 3. 581	3. 476 3. 520 3. 549 3. 581 3. 607	VV VV PV VV	3589 1152 394 2332 1951	35564 13570 4345 24897 19801	0. 53% 0. 20% 0. 07% 0. 37% 0. 30%	0. 012% 0. 005% 0. 001% 0. 009% 0. 007%
11 12 13 14 15	3. 640 3. 713 3. 770 3. 815 3. 888	3. 607 3. 674 3. 742 3. 793 3. 860	3. 674 3. 742 3. 793 3. 860 3. 925	VV VV VV VV	2400 5549 2572 10212 6092	50598 92685 46051 151051 101256	0. 76% 1. 39% 0. 69% 2. 26% 1. 52%	0. 017% 0. 032% 0. 016% 0. 052% 0. 035%
16 17 18 19 20	3. 940 3. 988 4. 032 4. 112 4. 142	3. 925 3. 970 4. 006 4. 075 4. 129	3. 970 4. 006 4. 075 4. 129 4. 160	VV VV VV VV	3001 6012 5215 7813 4920	41395 55610 116553 143764 61717	0. 62% 0. 83% 1. 75% 2. 15% 0. 92%	0. 014% 0. 019% 0. 040% 0. 049% 0. 021%
21 22 23 24 25	4. 178 4. 209 4. 293 4. 322 4. 360	4. 160 4. 191 4. 231 4. 307 4. 347	4. 191 4. 231 4. 307 4. 347 4. 398	VV VV VV VV	4852 8790 6492 7684 4184	64938 102450 139356 103626 66783	0. 97% 1. 54% 2. 09% 1. 55% 1. 00%	0. 022% 0. 035% 0. 048% 0. 036% 0. 023%
26 27 28 29 30	4. 432 4. 473 4. 511 4. 559 4. 588	4. 398 4. 451 4. 494 4. 546 4. 572	4. 451 4. 494 4. 546 4. 572 4. 611	VV VV VV VV	4991 4587 3685 3633 5775	83666 82883 92710 41368 81999	1. 25% 1. 24% 1. 39% 0. 62% 1. 23%	0. 029% 0. 028% 0. 032% 0. 014% 0. 028%
31 32 33 34 35	4. 622 4. 675 4. 719 4. 742 4. 770	4. 611 4. 647 4. 702 4. 731 4. 753	4. 647 4. 702 4. 731 4. 753 4. 788	VV VV VV VV	2900 6413 10220 8291 30705	46644 146882 121748 90437 313689	0. 70% 2. 20% 1. 82% 1. 36% 4. 70%	0. 016% 0. 050% 0. 042% 0. 031% 0. 108%
36	4. 802	4. 788	4. 814	VV	11825 Page	129627 e 1	1. 94%	0. 044%

Page 1

37 38 39 40	4. 823 4. 849 4. 891 4. 931	4. 814 4. 838 4. 861 4. 909	4. 838 4. 861 4. 909 4. 953	VV VV VV	9538 8708 12020 19598	112070 91731 211416 262084	1. 68% 1. 37% 3. 17% 3. 93%	0. 038% 0. 031% 0. 073% 0. 090%
41 42 43 44 45	4. 968 4. 996 5. 042 5. 068 5. 126	4. 953 4. 977 5. 018 5. 055 5. 100	4. 977 5. 018 5. 055 5. 100 5. 139	VV VV VV VV	5418 17838 7172 7622 13746	64920 224348 122919 150808 168212	0. 97% 3. 36% 1. 84% 2. 26% 2. 52%	0. 022% 0. 077% 0. 042% 0. 052% 0. 058%
46 47 48 49 50	5. 157 5. 215 5. 240 5. 260 5. 319	5. 139 5. 190 5. 227 5. 250 5. 304	5. 190 5. 227 5. 250 5. 304 5. 338	VV VV VV VV	15867 12072 13867 14366 6115	297769 163364 151927 289321 110976	4. 46% 2. 45% 2. 28% 4. 34% 1. 66%	0. 102% 0. 056% 0. 052% 0. 099% 0. 038%
51 52 53 54 55	5. 360 5. 422 5. 451 5. 483 5. 508	5. 338 5. 388 5. 436 5. 467 5. 498	5. 388 5. 436 5. 467 5. 498 5. 534	VV VV VV VV	14442 13713 21183 13423 11014	281247 304451 268786 208863 177014	4. 21% 4. 56% 4. 03% 3. 13% 2. 65%	0. 097% 0. 104% 0. 092% 0. 072% 0. 061%
56 57 58 59 60	5. 587 5. 627 5. 695 5. 714 5. 746	5. 534 5. 611 5. 665 5. 706 5. 723	5. 611 5. 665 5. 706 5. 723 5. 784	VV VV VV VV	29003 13358 10830 10082 50092	640054 299611 215250 99005 827473	9. 59% 4. 49% 3. 23% 1. 48% 12. 40%	0. 220% 0. 103% 0. 074% 0. 034% 0. 284%
61 62 63 64 65	5. 803 5. 842 5. 904 5. 930 5. 967	5. 784 5. 819 5. 883 5. 918 5. 944	5. 819 5. 883 5. 918 5. 944 5. 994	VV VV VV VV	15248 36470 17891 16938 18626	263304 881701 269499 212975 406263	3. 95% 13. 21% 4. 04% 3. 19% 6. 09%	0. 090% 0. 303% 0. 092% 0. 073% 0. 139%
66 67 68 69 70	6. 014 6. 060 6. 107 6. 154 6. 215	5. 994 6. 037 6. 085 6. 128 6. 175	6. 037 6. 085 6. 128 6. 175 6. 226	VV VV VV VV	20622 25483 23532 22153 20979	325532 519777 483733 474159 491935	4.88% 7.79% 7.25% 7.10% 7.37%	0. 112% 0. 178% 0. 166% 0. 163% 0. 169%
71 72 73 74 75	6. 243 6. 298 6. 330 6. 379 6. 422	6. 226 6. 273 6. 313 6. 345 6. 401	6. 273 6. 313 6. 345 6. 401 6. 441	VV VV VV VV	32051 23573 31149 29693 30913	657214 479876 476312 803232 539008	9. 85% 7. 19% 7. 14% 12. 04% 8. 08%	0. 226% 0. 165% 0. 163% 0. 276% 0. 185%
76 77 78 79 80	6. 477 6. 524 6. 563 6. 630 6. 657	6. 441 6. 514 6. 546 6. 587 6. 641	6. 514 6. 546 6. 587 6. 641 6. 668	VV VV VV VV	30780 21018 27985 26244 35053	1027844 360881 498661 691028 480024	15. 40% 5. 41% 7. 47% 10. 35% 7. 19%	0. 353% 0. 124% 0. 171% 0. 237% 0. 165%
81 82 83 84 85	6. 688 6. 739 6. 793 6. 821 6. 866	6. 668 6. 710 6. 780 6. 797 6. 841	6. 710 6. 780 6. 797 6. 841 6. 908	VV VV VV VV	109455 55666 22944 56543 49485	1439636 1432501 220068 957556 1361584	21. 57% 21. 46% 3. 30% 14. 35% 20. 40%	0. 494% 0. 492% 0. 076% 0. 329% 0. 467%
86 87 88 89	6. 945 7. 011 7. 065 7. 104	6. 908 6. 967 7. 027 7. 084	6. 967 7. 027 7. 084 7. 136	VV VV VV	53920 35567 51321 66693 Pag	1250899 1067073 1382013 1329715 ge 2	18. 74% 15. 99% 20. 71% 19. 92%	0. 429% 0. 366% 0. 474% 0. 456%

90	7. 157	7. 136	7. 167	VV	rt∈ 44803	eres 682956	10. 23%	0. 234%
91 92 93 94 95	7. 180 7. 215 7. 245 7. 305 7. 348	7. 167 7. 203 7. 223 7. 288 7. 329	7. 203 7. 223 7. 288 7. 329 7. 367	VV VV VV VV	45392 34566 148953 62530 52895	861609 401194 2773480 1149520 933578	12. 91% 6. 01% 41. 56% 17. 22% 13. 99%	0. 296% 0. 138% 0. 952% 0. 394% 0. 320%
96 97 98 99 100	7. 395 7. 450 7. 469 7. 517 7. 557	7. 367 7. 412 7. 463 7. 497 7. 531	7. 412 7. 463 7. 497 7. 531 7. 577	VV VV VV VV	40351 60844 52481 55549 60114	1021880 1474271 925715 996895 1482662	15. 31% 22. 09% 13. 87% 14. 94% 22. 22%	0. 351% 0. 506% 0. 318% 0. 342% 0. 509%
101 102 103 104 105	7. 588 7. 641 7. 696 7. 728 7. 805	7. 577 7. 613 7. 678 7. 714 7. 748	7. 613 7. 678 7. 714 7. 748 7. 847	VV VV VV VV	47687 98639 60557 40199 78232	980315 2428276 1056188 788028 3310595	14. 69% 36. 38% 15. 83% 11. 81% 49. 60%	0. 336% 0. 833% 0. 362% 0. 270% 1. 136%
106 107 108 109 110	7. 861 7. 906 7. 938 7. 988 8. 052	7. 847 7. 872 7. 924 7. 959 8. 008	7. 872 7. 924 7. 959 8. 008 8. 067	VV VV VV VV	48594 62134 55673 65499 75549	692375 1694050 1099402 1566016 2198186	10. 37% 25. 38% 16. 47% 23. 46% 32. 94%	0. 238% 0. 581% 0. 377% 0. 537% 0. 754%
111 112 113 114 115	8. 081 8. 099 8. 160 8. 192 8. 219	8. 067 8. 092 8. 130 8. 183 8. 205	8. 092 8. 130 8. 183 8. 205 8. 236	VV VV VV VV	74210 72135 239155 64484 62356	1052367 1393949 3984937 801761 1113095	15. 77% 20. 89% 59. 71% 12. 01% 16. 68%	0. 361% 0. 478% 1. 367% 0. 275% 0. 382%
116 117 118 119 120	8. 269 8. 297 8. 331 8. 383 8. 434	8. 236 8. 284 8. 318 8. 349 8. 403	8. 284 8. 318 8. 349 8. 403 8. 468	VV VV VV VV	151509 121162 71717 100490 95860	2803336 1847878 1261507 2401293 3080217	42. 00% 27. 69% 18. 90% 35. 98% 46. 15%	0. 962% 0. 634% 0. 433% 0. 824% 1. 057%
121 122 123 124 125	8. 509 8. 562 8. 591 8. 627 8. 666	8. 468 8. 541 8. 579 8. 601 8. 651	8. 541 8. 579 8. 601 8. 651 8. 680	VV VV VV VV	166103 83053 69148 75128 63960	3943649 1694912 885389 2054456 1007978	59. 09% 25. 40% 13. 27% 30. 78% 15. 10%	1. 353% 0. 582% 0. 304% 0. 705% 0. 346%
126 127 128 129 130	8. 700 8. 735 8. 805 8. 877 8. 912	8. 680 8. 717 8. 778 8. 828 8. 900	8. 717 8. 778 8. 828 8. 900 8. 929	VV VV VV VV	91104 83577 138548 270260 82386	1665050 2616710 2660535 5581867 1261122	24. 95% 39. 21% 39. 86% 83. 64% 18. 90%	0. 571% 0. 898% 0. 913% 1. 915% 0. 433%
131 132 133 134 135	8. 989 9. 023 9. 059 9. 111 9. 159	8. 929 9. 009 9. 043 9. 076 9. 128	9. 009 9. 043 9. 076 9. 128 9. 177	VV VV VV VV	157298 112051 83789 110402 150892	4370206 1812186 1471911 2778067 3036290	65. 48% 27. 15% 22. 05% 41. 62% 45. 49%	1.500% 0.622% 0.505% 0.953% 1.042%
136 137 138 139 140	9. 200 9. 247 9. 316 9. 347 9. 395	9. 177 9. 227 9. 272 9. 333 9. 376	9. 227 9. 272 9. 333 9. 376 9. 411	VV VV VV VV	166673 87959 137645 118635 74688	3178924 2079697 3268452 2192555 1461790	47. 63% 31. 16% 48. 97% 32. 85% 21. 90%	1. 091% 0. 714% 1. 121% 0. 752% 0. 502%
141	9. 452	9. 411	9. 476	VV	136450 Pag	3610847 je 3	54. 10%	1. 239%

					_			
142 143 144 145	9. 489 9. 535 9. 562 9. 616	9. 476 9. 510 9. 548 9. 585	9. 510 9. 548 9. 585 9. 668	VV VV VV	rte 82864 104547 111343 173442	res 1531061 1860649 1943069 4944091	22. 94% 27. 88% 29. 11% 74. 08%	0. 525% 0. 638% 0. 667% 1. 696%
146 147 148 149 150	9. 697 9. 739 9. 778 9. 812 9. 861	9. 668 9. 725 9. 764 9. 795 9. 835	9. 725 9. 764 9. 795 9. 835 9. 878	VV VV VV VV	103678 108262 77558 93982 99205	3068723 2121435 1367808 1810388 2168799	45. 98% 31. 79% 20. 49% 27. 13% 32. 50%	1. 053% 0. 728% 0. 469% 0. 621% 0. 744%
151 152 153 154 155	9. 898 9. 952 10. 050 10. 118 10. 219	9. 878 9. 927 9. 991 10. 090 10. 197	9. 927 9. 991 10. 090 10. 197 10. 238	VV VV VV VV	110073 107031 91261 105622 74820	2824433 3445224 4670180 4649321 1594114	42. 32% 51. 62% 69. 98% 69. 66% 23. 89%	0. 969% 1. 182% 1. 602% 1. 595% 0. 547%
156 157 158 159 160	10. 278 10. 330 10. 388 10. 414 10. 459	10. 238 10. 301 10. 358 10. 400 10. 439	10. 301 10. 358 10. 400 10. 439 10. 505	VV VV VV VV	99909 236295 110978 115958 141069	2763860 4487407 2234280 2080622 3551093	41. 41% 67. 24% 33. 48% 31. 17% 53. 21%	0. 948% 1. 540% 0. 767% 0. 714% 1. 218%
161 162 163 164 165	10. 535 10. 599 10. 665 10. 704 10. 755	10. 505 10. 571 10. 645 10. 690 10. 721	10. 571 10. 645 10. 690 10. 721 10. 782	VV VV VV VV	93303 102373 92895 89603 360871	3217990 3743439 2282307 1518531 6674046	48. 22% 56. 09% 34. 20% 22. 75% 100. 00%	1. 104% 1. 284% 0. 783% 0. 521% 2. 290%
167 168 169	10. 798 10. 841 10. 892 10. 939 11. 017	10. 782 10. 831 10. 853 10. 911 10. 988	10. 831 10. 853 10. 911 10. 988 11. 049	VV VV VV VV	83290 65827 73623 99779 80224	2220213 859040 2389956 3406743 2502122	33. 27% 12. 87% 35. 81% 51. 04% 37. 49%	0. 762% 0. 295% 0. 820% 1. 169% 0. 859%
171 172 173 174 175	11. 075 11. 115 11. 155 11. 247 11. 292	11. 049 11. 101 11. 134 11. 178 11. 268	11. 101 11. 134 11. 178 11. 268 11. 315	VV VV VV VV	90360 61041 71687 85024 78063	2226923 1189063 1691645 3603625 1971217	33. 37% 17. 82% 25. 35% 53. 99% 29. 54%	0. 764% 0. 408% 0. 580% 1. 236% 0. 676%
178	11. 332 11. 415 11. 475 11. 535 11. 591	11. 315 11. 396 11. 444 11. 507 11. 558	11. 396 11. 444 11. 507 11. 558 11. 613	VV VV VV VV	76154 74026 193158 67360 73708	3337459 1950413 4235555 1772975 1996605	50. 01% 29. 22% 63. 46% 26. 57% 29. 92%	1. 145% 0. 669% 1. 453% 0. 608% 0. 685%
181 182 183 184 185	11. 629 11. 649 11. 709 11. 743 11. 773	11. 613 11. 639 11. 664 11. 731 11. 757	11. 639 11. 664 11. 731 11. 757 11. 810	VV VV VV VV	59145 58705 451208 79742 86212	884476 859259 6531113 1106839 1944283	13. 25% 12. 87% 97. 86% 16. 58% 29. 13%	0. 303% 0. 295% 2. 241% 0. 380% 0. 667%
186 187 188 189 190	11. 836 11. 863 11. 892 11. 928 11. 990	11. 810 11. 851 11. 871 11. 910 11. 978	11. 851 11. 871 11. 910 11. 978 12. 003	VV VV VV VV	51137 49509 68596 62285 46022	1186298 590075 1325520 2084467 684467	17. 77% 8. 84% 19. 86% 31. 23% 10. 26%	0. 407% 0. 202% 0. 455% 0. 715% 0. 235%
191 192 193 194	12. 033 12. 076 12. 144 12. 180	12. 003 12. 058 12. 104 12. 172	12. 058 12. 104 12. 172 12. 226	VV VV VV	80092 53580 48877 44602 Pag	1977648 1283995 1814774 1316727 e 4	29. 63% 19. 24% 27. 19% 19. 73%	0. 679% 0. 441% 0. 623% 0. 452%

195	12.	245	12.	226	12.	259	VV	rte 45856	eres 796146	11. 93%	0. 273%
197 198 199	12.	352 393 419	12. 12. 12.	259 335 381 405 451	12. 12. 12.	335 381 405 451 510	VV VV VV VV	66344 39166 35754 36626 37964	2151209 1000152 502557 945883 1163621	32. 23% 14. 99% 7. 53% 14. 17% 17. 44%	0. 738% 0. 343% 0. 172% 0. 325% 0. 399%
202 203 204	12. 12. 12. 12. 12.	614 642 679	12. 12. 12.	510 590 624 663 737	12. 12. 12.	590 624 663 737 820	VV VV VV VV	41593 35430 46942 35297 31637	1590863 649897 879050 1357451 1251212	23. 84% 9. 74% 13. 17% 20. 34% 18. 75%	0. 546% 0. 223% 0. 302% 0. 466% 0. 429%
207 208 209	12. 12. 12. 12. 13.	883 913 973	12. 12. 12.	820 868 903 934 991	12. 12. 12.	868 903 934 991 034	VV VV VV VV	23652 23705 19507 19653 19251	631219 451350 344434 640510 457969	9. 46% 6. 76% 5. 16% 9. 60% 6. 86%	0. 217% 0. 155% 0. 118% 0. 220% 0. 157%
212 213 214	13. 13. 13. 13.	140 190 228	13. 13. 13.	034 095 171 218 291	13. 13. 13.	095 171 218 291 367	VV VV VV VV	19154 293732 21308 14837 15200	608628 4143482 502379 590030 605637	9. 12% 62. 08% 7. 53% 8. 84% 9. 07%	0. 209% 1. 422% 0. 172% 0. 202% 0. 208%
217 218 219	13. 13. 13. 13. 13.	451 483 534	13. 13. 13.	367 434 466 504 621	13. 13. 13.	434 466 504 621 704	VV VV VV VV	15753 11771 11760 13863 8298	500200 206905 241716 720923 374307	7. 49% 3. 10% 3. 62% 10. 80% 5. 61%	0. 172% 0. 071% 0. 083% 0. 247% 0. 128%
222 223 224	13. 13. 13. 13. 13.	747 799 840	13. 13. 13.	704 734 771 828 867	13. 13. 13.	734 771 828 867 898	VV VV VV VV	7167 7139 7101 6791 5449	123348 147439 223445 141231 98144	1. 85% 2. 21% 3. 35% 2. 12% 1. 47%	0. 042% 0. 051% 0. 077% 0. 048% 0. 034%
227 228 229	13. 13. 14. 14. 14.	948 007 117	13. 13. 14.	898 934 998 065 168	13. 14. 14.	934 998 065 168 195	VV VV VV VV	5523 5307 4454 4294 3114	112782 183372 162295 225991 49601	1. 69% 2. 75% 2. 43% 3. 39% 0. 74%	0. 039% 0. 063% 0. 056% 0. 078% 0. 017%
232 233 234	14. 14. 14. 14. 14.	276 325 369	14. 14. 14.	195 228 304 358 398	14. 14. 14.	228 304 358 398 428	VV VV VV VV	3169 3679 3127 2498 2178	58975 143364 88500 55531 37144	0. 88% 2. 15% 1. 33% 0. 83% 0. 56%	0. 020% 0. 049% 0. 030% 0. 019% 0. 013%
237 238 239	14. 14. 14. 14. 14.	518 556 575	14. 14. 14.	428 494 541 565 611	14. 14. 14.	494 541 565 611 638	VV VV VV VV	3702 2180 1923 1977 1654	100852 55783 26710 48625 24005	1. 51% 0. 84% 0. 40% 0. 73% 0. 36%	0. 035% 0. 019% 0. 009% 0. 017% 0. 008%
242 243 244	14. 14. 14. 14. 14.	737 831 894	14. 14. 14.	638 729 778 871 911	14. 14. 14.	729 778 871 911 018	VV VV VV VV	1739 1301 29084 918 2808	74524 33827 411837 20395 82018	1. 12% 0. 51% 6. 17% 0. 31% 1. 23%	0. 026% 0. 012% 0. 141% 0. 007% 0. 028%
246	15.	036	15.	018	15.	078	VV	979 Pag	27451 ge 5	0. 41%	0. 009%

А

С

F

Н

ı

...

248 249	15. 088 15. 129 15. 190 15. 243	15. 078 15. 121 15. 170 15. 220	15. 121 15. 170 15. 220 15. 274	VV VV VV	rte 683 542 442 459	res 15199 13541 12222 12792	0. 23% 0. 20% 0. 18% 0. 19%	0. 005% 0. 005% 0. 004% 0. 004%
	15. 284 15. 372 15. 514 15. 594 15. 641	15. 274 15. 300 15. 485 15. 558 15. 631	15. 300 15. 485 15. 558 15. 631 15. 701	VV VV VV VV	340 19691 3280 2182 247	4298 305547 63603 36357 6389	0. 06% 4. 58% 0. 95% 0. 54% 0. 10%	0. 001% 0. 105% 0. 022% 0. 012% 0. 002%
	15. 748 15. 806 15. 839 15. 888 15. 946	15. 701 15. 794 15. 813 15. 868 15. 928	15. 794 15. 813 15. 868 15. 928 15. 985	VV VV VV VV	206 122 277 753 202	6580 1058 5244 12615 4129	0. 10% 0. 02% 0. 08% 0. 19% 0. 06%	0. 002% 0. 000% 0. 002% 0. 004% 0. 001%
263 264	16. 014 16. 077 16. 149 16. 207 16. 321	15. 985 16. 061 16. 128 16. 180 16. 283	16. 061 16. 128 16. 180 16. 283 16. 356	VV VV PV VV	3181 364 122 214 368	43994 4765 2089 5217 9494	0. 66% 0. 07% 0. 03% 0. 08% 0. 14%	0. 015% 0. 002% 0. 001% 0. 002% 0. 003%
267 268 269	16. 386 16. 459 16. 499 16. 583 16. 631	16. 356 16. 430 16. 473 16. 554 16. 608	16. 430 16. 473 16. 554 16. 608 16. 648	VV VV VV VV	2052 408 3431 1301 297	34053 7936 50425 17945 3525	0. 51% 0. 12% 0. 76% 0. 27% 0. 05%	0. 012% 0. 003% 0. 017% 0. 006% 0. 001%
273	16. 666 16. 697 16. 751 16. 798 16. 866	16. 648 16. 681 16. 715 16. 783 16. 831	16. 681 16. 715 16. 783 16. 831 16. 911	VV VV VV VV	135 144 556 276 371	2062 1722 11677 4997 10422	0. 03% 0. 03% 0. 17% 0. 07% 0. 16%	0. 001% 0. 001% 0. 004% 0. 002% 0. 004%
277 278	16. 966 17. 018 17. 183 17. 256 17. 329	16. 911 16. 992 17. 064 17. 228 17. 274	16. 992 17. 064 17. 228 17. 274 17. 378	VV VV PV VV PV	2836 1970 523 178 1037	42289 31202 11771 3427 23405	0. 63% 0. 47% 0. 18% 0. 05% 0. 35%	0. 015% 0. 011% 0. 004% 0. 001% 0. 008%
281 282 283 284 285	17. 415 17. 472 17. 504 17. 539 17. 701	17. 378 17. 445 17. 487 17. 524 17. 560	17. 445 17. 487 17. 524 17. 560 17. 731	VV VV VV VV PV	3311 289 345 88 284	47054 4795 4634 1368 8507	0. 71% 0. 07% 0. 07% 0. 02% 0. 13%	0. 016% 0. 002% 0. 002% 0. 000% 0. 003%
286 287 288 289 290	17. 809 17. 855 17. 943 18. 013 18. 092	17. 731 17. 830 17. 884 17. 997 18. 024	17. 830 17. 884 17. 997 18. 024 18. 114	PV VV VV VV	993 1893 922 190 779	22958 27580 20820 2052 17850	0. 34% 0. 41% 0. 31% 0. 03% 0. 27%	0. 008% 0. 009% 0. 007% 0. 001% 0. 006%
291 292 293 294 295	18. 127 18. 211 18. 281 18. 373 18. 500	18. 114 18. 158 18. 256 18. 326 18. 460	18. 158 18. 256 18. 326 18. 460 18. 517	VV VV VV VV PV	273 11061 3039 1143 312	4726 200914 49360 25411 5679	0. 07% 3. 01% 0. 74% 0. 38% 0. 09%	0. 002% 0. 069% 0. 017% 0. 009% 0. 002%
296 297 298 299	18. 560 18. 578 18. 634 18. 686	18. 517 18. 571 18. 594 18. 651	18. 571 18. 594 18. 651 18. 753	VV VV VV	189 197 557 1474 Pag	5749 1962 10762 41224 e 6	0. 09% 0. 03% 0. 16% 0. 62%	0. 002% 0. 001% 0. 004% 0. 014%

300	18.	807	18.	753	18.	834	VV		r1 1031	tere	s 3453	30	0.	52%	0.	012%
301 302 303 304 305	18. 18. 19.		18. 18. 18.	834 881 918 982 076	18. 18. 19.	881 918 982 076 143	VV VV VV VV		806 399 470 8968 2463		1603 735 1393 18086 6565	57 73 56	0. 0. 2.	24% 11% 21% 71% 98%	0. 0. 0.	006% 003% 005% 062% 023%
306 307 308 309 310	19. 19.	288 331	19. 19. 19.	143 204 318 361 404	19. 19. 19.	204 318 361 404 493	VV VV VV VV		1263 2098 1145 1178 1448		3947 7888 2687 2548 5939	33 72 53	1. 0. 0.	59% 18% 40% 38% 89%	0. 0. 0.	014% 027% 009% 009% 020%
311 312 313 314 315	19. 19.	752 819	19. 19. 19.	493 617 684 790 834	19. 19. 19.	617 684 790 834 917	VV VV VV VV		2291 1996 2021 2902 2830		11744 6720 11154 6118 11220	00 46 31	1. 1. 0.	76% 01% 67% 92% 68%	0. 0. 0.	040% 023% 038% 021% 038%
316 317 318 319 320	20. 20.	005 102 159	19. 20. 20.	917 971 018 128 174	20. 20. 20.	971 018 128 174 243	VV VV VV VV		2215 2253 3867 3035 3083		6637 6074 19069 7869 12288	18 94 54	0. 2. 1.	99% 91% 86% 18% 84%	0. 0. 0.	023% 021% 065% 027% 042%
321 322 323 324 325	20.	455 532 565	20. 20. 20.	243 420 497 548 588	20. 20. 20.	420 497 548 588 661	VV VV VV VV		8815 3838 3802 3849 3926		42613 16653 11242 8869 1584	34 26 90	2. 1. 1.	39% 50% 68% 33% 37%	0. 0. 0.	146% 057% 039% 030% 054%
326 327 328 329 330	20. 20.	771 868 895	20. 20. 20.	661 728 811 876 938	20. 20. 20.	728 811 876 938 016	VV VV VV VV		3369 3277 3228 3133 2915		13115 15798 12120 11093 13152	38 04 36	2. 1. 1.	97% 37% 82% 66% 97%	0. 0. 0.	045% 054% 042% 038% 045%
331 332 333 334 335	21. 21. 21.	107 222	21. 21. 21.	016 045 066 212 274	21. 21. 21.	045 066 212 274 396	VV VV VV VV		2720 2716 2700 2327 2367		4698 3396 22227 8187 15942	59 76 18	0. 3. 1.	70% 51% 33% 23% 39%	0. 0. 0.	016% 012% 076% 028% 055%
336 337 338 339 340	21. 21. 21.	636 747 847	21. 21. 21.	396 545 734 801 878	21. 21. 21.	545 734 801 878 084	VV VV VV VV		2264 1668 1342 1224 1253		17663 17837 5082 5396 12799	77 26 51	2. 0. 0.	65% 67% 76% 81% 92%	0. 0. 0.	061% 061% 017% 019% 044%
341 342				084 271		271 454 Sum	VV VV of	corre	793 597 ected	are	7570 3110 as:)4	0.	13% 47% 1236	0.	026% 011%

Aliphatic EPH 052425.M Thu May 29 06:48:04 2025

GSB5DL

ClientSampleId:

APPROVED

Manual Integrations

Reviewed By: Yogesh Patel 05/30/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069047.D Signal(s) : FID1A.ch

Acq On : 29 May 2025 11:33

Operator : YP/AJ

Sample : Q2125-05DL 5X

Misc

ALS Vial : 13 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 30 03:27:24 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds

9) S ortho-Terphenyl (SURR) 11.703 924753 7.497 ug/mlm Spiked Amount 50.000 Recovery = 14.99% 12) S 1-chlorooctadecane (S... 13.137 725007 8.081 ug/ml Spiked Amount 50.000 Recovery = 16.16%

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052925AL\

Data File : FC069047.D Signal(s) : FID1A.ch

Acq On : 29 May 2025 11:33

Operator : YP/AJ

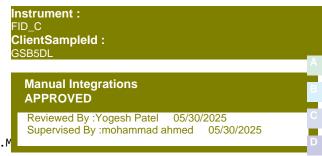
Sample : Q2125-05DL 5X

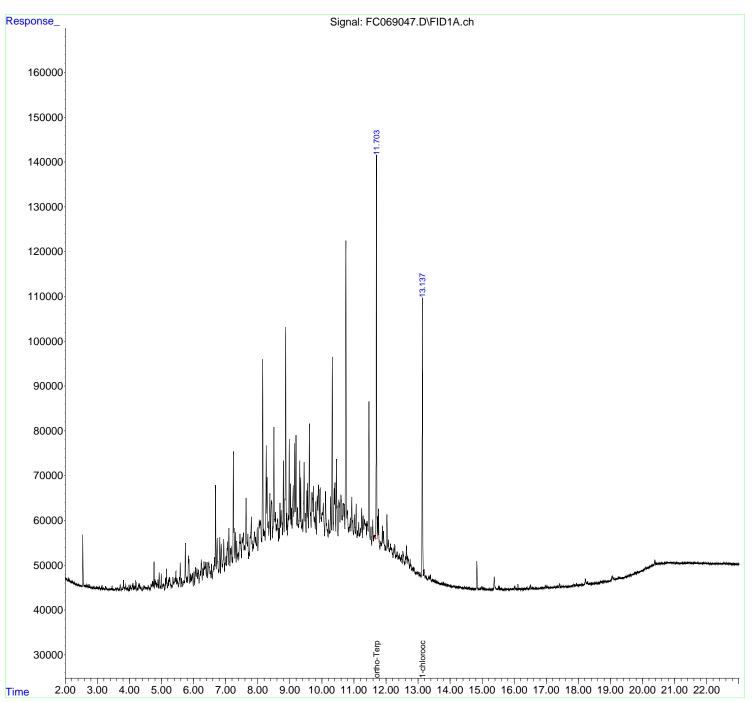
Misc

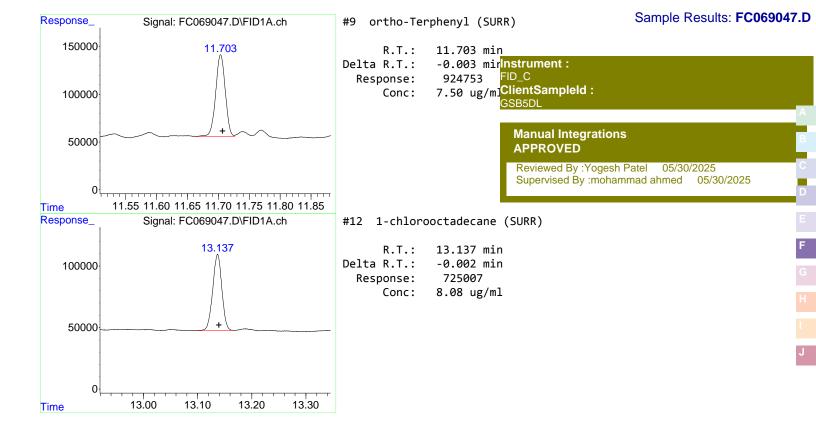
ALS Vial : 13 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 30 03:27:24 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables


QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration


Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

D

rteres

Instrument : FID_C ClientSampleId : GSB5DI Area Percent Report

Manual IntegrationsAPPROVED

Reviewed By: Yogesh Patel 05/30/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC05292 Data File : FC069047.D

FI D1A. ch

Signal(s): Acq On: 29 May 2025 11: 33 Q2125-05DL 5X Sample

Misc ALS Vial : 13 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables

Title

: FID1A.ch Si gnal

peak #	R.T. min	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 259 3. 284 3. 341 3. 390 3. 411	3. 204 3. 274 3. 318 3. 359 3. 404	3. 274 3. 318 3. 359 3. 404 3. 421	BV VV PV VV	688 439 121 178 223	7671 3426 1851 2885 1914	0. 54% 0. 24% 0. 13% 0. 20% 0. 13%	0. 013% 0. 006% 0. 003% 0. 005% 0. 003%
6 7 8 9 10	3. 431 3. 459 3. 485 3. 532 3. 568	3. 421 3. 443 3. 475 3. 516 3. 550	3. 443 3. 475 3. 516 3. 550 3. 584	VV VV VV PV VV	284 846 347 202 509	2810 8440 4087 2553 6766	0. 20% 0. 59% 0. 29% 0. 18% 0. 47%	0. 005% 0. 014% 0. 007% 0. 004% 0. 011%
11 12 13 14 15	3. 591 3. 639 3. 712 3. 768 3. 814	3. 584 3. 607 3. 671 3. 740 3. 787	3. 607 3. 671 3. 740 3. 787 3. 860	VV VV VV VV	488 567 1245 534 2197	4261 11622 21124 9227 34110	0. 30% 0. 81% 1. 48% 0. 65% 2. 39%	0. 007% 0. 019% 0. 035% 0. 015% 0. 056%
16 17 18 19 20	3. 887 3. 939 3. 988 4. 030 4. 111	3. 860 3. 924 3. 970 4. 004 4. 078	3. 924 3. 970 4. 004 4. 078 4. 128	VV VV VV VV	1374 680 1270 1055 1663	21647 9403 11360 25264 28656	1. 52% 0. 66% 0. 80% 1. 77% 2. 01%	0. 035% 0. 015% 0. 019% 0. 041% 0. 047%
21 22 23 24 25	4. 141 4. 176 4. 208 4. 293 4. 321	4. 128 4. 161 4. 190 4. 229 4. 306	4. 161 4. 190 4. 229 4. 306 4. 347	VV VV VV VV	1067 989 1879 1339 1656	13163 12430 22463 29212 22473	0. 92% 0. 87% 1. 57% 2. 05% 1. 58%	0. 022% 0. 020% 0. 037% 0. 048% 0. 037%
26 27 28 29 30	4. 359 4. 431 4. 473 4. 510 4. 558	4. 347 4. 395 4. 450 4. 493 4. 546	4. 395 4. 450 4. 493 4. 546 4. 571	VV PV VV VV	871 1101 978 700 734	12736 16861 17484 18767 8070	0. 89% 1. 18% 1. 23% 1. 32% 0. 57%	0. 021% 0. 028% 0. 029% 0. 031% 0. 013%
31 32 33 34 35	4. 587 4. 675 4. 717 4. 740 4. 768	4. 571 4. 647 4. 701 4. 729 4. 751	4. 647 4. 701 4. 729 4. 751 4. 786	VV VV VV VV	1198 1357 2126 1641 6429	26986 29680 24597 18424 66309	1. 89% 2. 08% 1. 72% 1. 29% 4. 65%	0. 044% 0. 049% 0. 040% 0. 030% 0. 109%
36	4. 801	4. 786	4. 812	VV	2511 Page	25900	1. 82%	0. 042%

Page 1

						Instrum FID_C		
37 38 39 40	4. 821 4. 848 4. 890 4. 929	4. 812 4. 836 4. 860 4. 908	4. 836 V\ 4. 860 V\ 4. 908 V\ 4. 952 V\	2013 7 1715 7 2446	eres 23589 18336 41902 53775	GSB5DL 1. 65% Manu	0. 039% ual IntegrationsAPPROVED	- P
41 42 43 44 45	4. 995 5. 040 5. 067 5. 125 5. 154	4. 952 5. 016 5. 054 5. 099 5. 137	5. 016 VV 5. 054 VV 5. 099 VV 5. 137 VV 5. 188 VV	1372 1515 2850	56803 22957 28081 31818 60776		ewed By :Yogesh Patel 05/30/2025 rvised By :mohammad ahmed 05/30/2025 0. 046% 0. 052% 0. 100%	
46 47 48 49 50	5. 214 5. 239 5. 259 5. 287 5. 318	5. 188 5. 225 5. 248 5. 279 5. 302	5. 225 VV 5. 248 VV 5. 279 VV 5. 302 VV 5. 337 VV	2852 2926 1565	31493 30135 40949 16636 20376	2. 21% 2. 11% 2. 87% 1. 17% 1. 43%	0. 052% 0. 049% 0. 067% 0. 027% 0. 033%	G H
51 52 53 54 55	5. 358 5. 399 5. 421 5. 449 5. 481	5. 337 5. 387 5. 403 5. 434 5. 466	5. 387 VV 5. 403 VV 5. 434 VV 5. 466 VV 5. 533 VV	1953 2739 4316	55132 16900 42859 55096 75754	3. 87% 1. 18% 3. 01% 3. 86% 5. 31%	0. 090% 0. 028% 0. 070% 0. 090% 0. 124%	J
56 57 58 59 60	5. 562 5. 586 5. 626 5. 647 5. 694	5. 533 5. 570 5. 609 5. 639 5. 663	5. 570 VV 5. 609 VV 5. 639 VV 5. 663 VV 5. 721 VV	6250 2747 2024	43255 83928 34688 23214 60847	3. 03% 5. 88% 2. 43% 1. 63% 4. 27%	0. 071% 0. 138% 0. 057% 0. 038% 0. 100%	
61 62 63 64 65	5. 745 5. 802 5. 840 5. 903 5. 929	5. 721 5. 783 5. 818 5. 882 5. 916	5. 783 VV 5. 818 VV 5. 882 VV 5. 916 VV 5. 942 VV	3080 7632 3638	172182 53544 181532 54451 40784	12. 07% 3. 75% 12. 73% 3. 82% 2. 86%	0. 282% 0. 088% 0. 298% 0. 089% 0. 067%	
66 67 68 69 70	5. 966 6. 013 6. 059 6. 107 6. 153	5. 942 5. 993 6. 035 6. 084 6. 127	5. 993 VV 6. 035 VV 6. 084 VV 6. 127 VV 6. 173 VV	4183 5201 4901	81720 65961 105223 99934 95456	5. 73% 4. 62% 7. 38% 7. 01% 6. 69%	0. 134% 0. 108% 0. 173% 0. 164% 0. 157%	
71 72 73 74 75	6. 213 6. 242 6. 297 6. 329 6. 378	6. 173 6. 225 6. 272 6. 312 6. 344	6. 225 VV 6. 272 VV 6. 312 VV 6. 344 VV 6. 399 VV	6763 4853 6439	99490 139401 97747 97943 166936	6. 98% 9. 77% 6. 85% 6. 87% 11. 70%	0. 163% 0. 229% 0. 160% 0. 161% 0. 274%	
76 77 78 79 80	6. 421 6. 476 6. 522 6. 562 6. 629	6. 399 6. 440 6. 512 6. 545 6. 586	6. 440 VV 6. 512 VV 6. 545 VV 6. 586 VV 6. 640 VV	6392 4355 5871	111585 212157 75050 102304 141145	7. 82% 14. 88% 5. 26% 7. 17% 9. 90%	0. 183% 0. 348% 0. 123% 0. 168% 0. 231%	
81 82 83 84 85	6. 656 6. 687 6. 738 6. 819 6. 864	6. 640 6. 667 6. 709 6. 779 6. 840	6. 667 VV 6. 709 VV 6. 779 VV 6. 840 VV 6. 907 VV	23490 11641 11858	98914 306989 298712 245839 285474	6. 94% 21. 52% 20. 94% 17. 24% 20. 02%	0. 162% 0. 503% 0. 490% 0. 403% 0. 468%	
86 87 88 89	6. 943 6. 982 7. 010 7. 064	6. 907 6. 966 6. 990 7. 026	6. 966 V\ 6. 990 V\ 7. 026 V\ 7. 083 V\	6126 7558 10825	259686 80695 143284 288111 ge 2	18. 21% 5. 66% 10. 05% 20. 20%	0. 426% 0. 132% 0. 235% 0. 472%	

						ampleld :	
90	7. 102	7. 083	7. 134 VV	rteres 13855 28	0267 19.65%	0. 460%	1
91 92 93 94 95	7. 155 7. 178 7. 242 7. 304 7. 346	7. 134 7. 165 7. 201 7. 286 7. 328	7. 165 VV 7. 201 VV 7. 286 VV 7. 328 VV 7. 365 VV	9696 18 31125 67 12919 23	2752 12 5193 47 Revie	wed By :Yogesh Patel 05/30/2025 rvised By :mohammad ahmed 05/30/2025	1
96 97 98 99 100	7. 395 7. 448 7. 516 7. 555 7. 586	7. 365 7. 411 7. 496 7. 528 7. 575	7. 411 VV 7. 496 VV 7. 528 VV 7. 575 VV 7. 612 VV	12597 50 11748 19 12846 32	4969 15. 07% 6287 35. 50% 8124 13. 89% 2229 22. 59% 8360 14. 61%	0. 352% 0. 830% 0. 325% 0. 528% 0. 342%	F
101 102 103 104 105	7. 639 7. 694 7. 726 7. 803 7. 859	7. 612 7. 677 7. 712 7. 745 7. 846	7. 677 VV 7. 712 VV 7. 745 VV 7. 846 VV 7. 869 VV	12533 22 8394 15 16451 70	1314 35. 85% 0148 15. 44% 7614 11. 05% 7464 49. 60% 4886 9. 46%	0. 838% 0. 361% 0. 258% 1. 160% 0. 221%	ŀ
106 107 108 109 110	7. 904 7. 935 7. 985 8. 050 8. 080	7. 869 7. 921 7. 961 8. 005 8. 065	7. 921 VV 7. 961 VV 8. 005 VV 8. 065 VV 8. 131 VV	11753 26 13975 30 15679 46	7745 25.08% 5597 18.62% 0532 21.07% 4407 32.56% 6513 37.62%	0. 587% 0. 435% 0. 493% 0. 761% 0. 880%	
111 112 113 114 115	8. 157 8. 217 8. 267 8. 295 8. 331	8. 131 8. 204 8. 233 8. 282 8. 316	8. 204 VV 8. 233 VV 8. 282 VV 8. 316 VV 8. 348 VV	13128 21 32234 60 25070 39	8864 70. 74% 9050 15. 36% 3505 42. 31% 2006 27. 49% 9549 18. 90%	1. 654% O. 359% O. 990% O. 643% O. 442%	
116 117 118 119 120	8. 381 8. 429 8. 506 8. 558 8. 587	8. 348 8. 401 8. 466 8. 536 8. 575	8. 401 VV 8. 466 VV 8. 536 VV 8. 575 VV 8. 599 VV	20033 64 36228 81 17430 37	7467 35. 58% 8580 45. 47% 7161 57. 29% 0330 25. 97% 8604 13. 92%	0. 832% 1. 063% 1. 340% 0. 607% 0. 326%	
121 122 123 124 125	8. 624 8. 665 8. 697 8. 733 8. 803	8. 599 8. 649 8. 678 8. 713 8. 776	8. 649 VV 8. 678 VV 8. 713 VV 8. 776 VV 8. 826 VV	13812 21 19376 33 17768 57	3567 30.40% 2311 14.89% 5880 23.55% 0074 39.97% 4252 39.56%	0. 711% 0. 348% 0. 551% 0. 935% 0. 925%	
126 127 128 129 130	8. 873 8. 910 8. 986 9. 021 9. 056	8. 826 8. 897 8. 927 9. 006 9. 040	8. 897 VV 8. 927 VV 9. 006 VV 9. 040 VV 9. 075 VV	17134 26 33563 92 23696 38	4540 83.05% 9649 18.91% 2498 64.68% 1340 26.74% 7779 23.68%	1. 942% O. 442% 1. 513% O. 625% O. 554%	
131 132 133 134 135	9. 108 9. 156 9. 196 9. 244 9. 313	9. 075 9. 125 9. 173 9. 224 9. 270	9. 125 VV 9. 173 VV 9. 224 VV 9. 270 VV 9. 329 VV	32590 64 34777 67 18455 44	1034 40. 04% 0649 44. 92% 9599 47. 65% 0730 30. 90% 5822 47. 38%	0. 936% 1. 050% 1. 114% 0. 723% 1. 108%	
136 137 138 139 140	9. 344 9. 392 9. 449 9. 488 9. 532	9. 329 9. 376 9. 410 9. 474 9. 509	9. 376 VV 9. 410 VV 9. 474 VV 9. 509 VV 9. 545 VV	15737 29 28509 75 17082 32	6957 34.84% 3697 20.59% 7899 53.14% 4073 22.72% 3479 26.89%	0. 815% 0. 482% 1. 243% 0. 531% 0. 629%	
141	9. 559	9. 545	9. 583 VV	23885 41 Page 3	5459 29. 13%	0. 681%	

							nent :	
142 9. 613 143 9. 694 144 9. 736 145 9. 776	9. 583 9. 666 9. 722 9. 761	9. 666 9. 722 9. 761 9. 793	VV VV VV	rter 37134 21790 23153 16354	1045663 634213 451036 294933	3 20	1. 715% ual IntegrationsAPPROVED	A E
146 9.810 147 9.857 148 9.896 149 9.949 150 10.022	9. 793 9. 832 9. 875 9. 924 9. 986	9. 832 9. 875 9. 924 9. 986 10. 030	VV VV VV VV	19791 21005 23211 22608 17237	369717 461626 599726 705839 438250		oved By :Yogesh Patel 05/30/2025 rvised By :mohammad ahmed 05/30/2025 0. 983% 1. 157% 0. 719%	
151 10.047 152 10.116 153 10.216 154 10.275 155 10.328	10. 030 10. 088 10. 194 10. 250 10. 298	10. 088 10. 194 10. 250 10. 298 10. 355	VV VV VV VV	19438 21966 15735 20848 51975	572795 970199 459644 461827 959710	40. 16% 68. 02% 32. 23% 32. 38% 67. 29%	0. 939% 1. 591% 0. 754% 0. 757% 1. 574%	F G
156 10. 385 157 10. 410 158 10. 455 159 10. 530 160 10. 596	10. 355 10. 397 10. 436 10. 503 10. 567	10. 397 10. 436 10. 503 10. 567 10. 625	VV VV VV VV	22593 23915 29206 19758 21093	463369 447716 749763 659255 638183	32. 49% 31. 39% 52. 57% 46. 22% 44. 75%	0. 760% 0. 734% 1. 229% 1. 081% 1. 046%	J
161 10.663 162 10.701 163 10.750 164 10.794 165 10.840	10. 625 10. 688 10. 718 10. 780 10. 828	10. 688 10. 718 10. 780 10. 828 10. 851	VV VV VV VV	19297 19139 77699 17759 13923	655021 310598 1426252 463537 186174	45. 93% 21. 78% 100. 00% 32. 50% 13. 05%	1.074% 0.509% 2.339% 0.760% 0.305%	
166 10.890 167 10.935 168 11.014 169 11.072 170 11.117	10. 851 10. 908 10. 984 11. 048 11. 098	10. 908 10. 984 11. 048 11. 098 11. 130	VV VV VV VV	16179 20702 16848 19062 13156	496411 711876 542296 455695 237617	34. 81% 49. 91% 38. 02% 31. 95% 16. 66%	0.814% 1.167% 0.889% 0.747% 0.390%	
171 11. 152 172 11. 211 173 11. 244 174 11. 288 175 11. 329	11. 130 11. 173 11. 221 11. 265 11. 311	11. 173 11. 221 11. 265 11. 311 11. 364	VV VV VV VV	15051 13594 18166 16431 15735	346848 370188 399549 405898 478545	24. 32% 25. 96% 28. 01% 28. 46% 33. 55%	0.569% 0.607% 0.655% 0.666% 0.785%	
176 11. 377 177 11. 410 178 11. 471 179 11. 531 180 11. 588	11. 364 11. 393 11. 441 11. 507 11. 556	11. 393 11. 441 11. 507 11. 556 11. 611	VV VV VV VV	14815 15249 41974 14106 15587	240933 409022 916643 359832 417314	16. 89% 28. 68% 64. 27% 25. 23% 29. 26%	0. 395% 0. 671% 1. 503% 0. 590% 0. 684%	
181 11.629 182 11.649 183 11.704 184 11.740 185 11.769	11. 611 11. 644 11. 663 11. 728 11. 754	11. 644 11. 663 11. 728 11. 754 11. 808	VV VV VV VV	12204 12100 96786 16395 18034	236967 135462 1367296 232876 407027	16. 61% 9. 50% 95. 87% 16. 33% 28. 54%	0. 389% 0. 222% 2. 242% 0. 382% 0. 667%	
186 11.835 187 11.889 188 11.923 189 11.988 190 12.031	11. 808 11. 853 11. 907 11. 974 12. 003	11. 853 11. 907 11. 974 12. 003 12. 056	VV VV VV VV	10822 14113 13025 9664 16828	279408 367828 437159 159239 403228	19. 59% 25. 79% 30. 65% 11. 16% 28. 27%	0. 458% 0. 603% 0. 717% 0. 261% 0. 661%	
191 12.074 192 12.141 193 12.178 194 12.243	12. 056 12. 104 12. 171 12. 223	12. 104 12. 171 12. 223 12. 256	VV VV VV	11093 10218 9251 9344 Page	281911 375157 261802 166438 e 4	19. 77% 26. 30% 18. 36% 11. 67%	0. 462% 0. 615% 0. 429% 0. 273%	

						Instrum FID_C	ent : ampleld :	
195 12. 275	12. 256	12. 298	VV	rter 10194	res 223215	GSB5DL 15. 65%	0. 366%	A
196 12. 315 197 12. 353 198 12. 390 199 12. 416 200 12. 485	12. 298 12. 334 12. 374 12. 402 12. 449	12. 334 12. 374 12. 402 12. 449 12. 511	VV VV VV VV	7706 8361 7581 7859 7817	160793 191290 119444 206816 255861	13 Revie	wed By :Yogesh Patel 05/30/2025 rvised By :mohammad ahmed 05/30/2025	
201 12.530 202 12.612 203 12.640 204 12.677 205 12.754	12. 511 12. 586 12. 622 12. 660 12. 736	12. 586 12. 622 12. 660 12. 736 12. 821	VV VV VV VV	8543 7480 9853 7417 6713	315208 142885 183449 287456 268063	22. 10% 10. 02% 12. 86% 20. 15% 18. 79%	0. 517% 0. 234% 0. 301% 0. 471% 0. 440%	F
206 12. 836 207 12. 882 208 12. 913 209 12. 951 210 12. 973	12. 821 12. 868 12. 901 12. 931 12. 962	12. 868 12. 901 12. 931 12. 962 12. 991	VV VV VV VV	4876 4851 4001 3923 4059	130478 86462 67894 69268 68585	9. 15% 6. 06% 4. 76% 4. 86% 4. 81%	0. 214% 0. 142% 0. 111% 0. 114% 0. 112%	J
211 13. 010 212 13. 052 213 13. 137 214 13. 188 215 13. 263	12. 991 13. 032 13. 098 13. 168 13. 255	13. 032 13. 098 13. 168 13. 255 13. 286	VV VV VV VV	3860 3871 65176 4441 2795	89140 132493 857200 175251 48240	6. 25% 9. 29% 60. 10% 12. 29% 3. 38%	0. 146% 0. 217% 1. 406% 0. 287% 0. 079%	
216 13. 343 217 13. 386 218 13. 449 219 13. 479 220 13. 529	13. 286 13. 366 13. 431 13. 464 13. 504	13. 366 13. 431 13. 464 13. 504 13. 554	VV VV VV VV	3062 3093 2295 2305 2175	127379 94993 41321 48921 58330	8. 93% 6. 66% 2. 90% 3. 43% 4. 09%	0. 209% 0. 156% 0. 068% 0. 080% 0. 096%	
221 13.577 222 13.639 223 13.754 224 13.796 225 13.838	13. 554 13. 630 13. 715 13. 776 13. 821	13. 630 13. 715 13. 776 13. 821 13. 871	VV VV VV VV	1843 1602 1451 1454 1380	76201 72065 49756 35260 35504	5. 34% 5. 05% 3. 49% 2. 47% 2. 49%	0. 125% 0. 118% 0. 082% 0. 058% 0. 058%	
226 13. 911 227 14. 119 228 14. 197 229 14. 274 230 14. 309	13. 871 14. 068 14. 174 14. 238 14. 301	14. 068 14. 174 14. 238 14. 301 14. 314	VV VV VV VV	1132 876 627 691 576	107227 44603 21870 22686 4586	7. 52% 3. 13% 1. 53% 1. 59% 0. 32%	0. 176% 0. 073% 0. 036% 0. 037% 0. 008%	
231 14. 321 232 14. 454 233 14. 518 234 14. 587 235 14. 671	14. 314 14. 394 14. 501 14. 561 14. 662	14. 394 14. 501 14. 561 14. 662 14. 696	VV VV VV VV	626 684 536 445 226	23267 27102 12873 18290 4114	1. 63% 1. 90% 0. 90% 1. 28% 0. 29%	0. 038% 0. 044% 0. 021% 0. 030% 0. 007%	
236 14.717 237 14.755 238 14.831 239 14.889 240 14.955	14. 696 14. 742 14. 795 14. 881 14. 918	14. 742 14. 795 14. 881 14. 918 14. 970	VV VV VV VV	231 186 6259 192 351	4462 4823 84363 3120 6652	0. 31% 0. 34% 5. 92% 0. 22% 0. 47%	0. 007% 0. 008% 0. 138% 0. 005% 0. 011%	
241 14. 993 242 15. 038 243 15. 075 244 15. 115 245 15. 187	14. 970 15. 018 15. 065 15. 102 15. 178	15. 018 15. 065 15. 102 15. 178 15. 220	VV VV VV VV	659 304 129 104 105	10542 5086 1985 3189 1490	0. 74% 0. 36% 0. 14% 0. 22% 0. 10%	0. 017% 0. 008% 0. 003% 0. 005% 0. 002%	
246 15. 229	15. 220	15. 311	VV	95 Pag∈	2833 e 5	0. 20%	0. 005%	

						Instrument : FID_C ClientSampleId :	
247 15. 319 248 15. 375 249 15. 466 250 15. 514	15. 311 15. 331 15. 455 15. 490	15. 331 15. 455 15. 490 15. 568	VV VV VV	rter 67 2795 173 777	es 623 53620 2465 14797	GSB5DL 0. 04% 0. 001% Manual IntegrationsAPPROVED	F
251 15.596 252 15.679 253 15.787 254 15.873 255 15.889	15. 568 15. 664 15. 728 15. 861 15. 877	15. 664 15. 728 15. 861 15. 877 15. 919	VV VV PV VV VV	441 41 134 103 192	7203 1404 5328 722 3211	Reviewed By :Yogesh Patel 05/30/2025 Supervised By :mohammad ahmed 05/30/2025 0. 37% 0. 009% 0. 05% 0. 001% 0. 23% 0. 005%	
256 15. 935 257 16. 016 258 16. 087 259 16. 102 260 16. 117	15. 919 15. 991 16. 084 16. 095 16. 111	15. 991 16. 084 16. 095 16. 111 16. 177	VV VV VV VV	86 768 130 116 301	4051 14123 531 802 4745	0. 28% 0. 007% 0. 99% 0. 023% 0. 04% 0. 001% 0. 06% 0. 001% 0. 33% 0. 008%	F
261 16. 188 262 16. 326 263 16. 390 264 16. 462 265 16. 499	16. 177 16. 259 16. 348 16. 441 16. 473	16. 259 16. 348 16. 441 16. 473 16. 555	VV PV VV VV	136 159 331 210 925	4236 3878 8741 2835 15913	0. 30% 0. 007% 0. 27% 0. 006% 0. 61% 0. 014% 0. 20% 0. 005% 1. 12% 0. 026%	J
266 16. 583 267 16. 706 268 16. 731 269 16. 809 270 16. 865	16. 555 16. 620 16. 719 16. 751 16. 844	16. 620 16. 719 16. 751 16. 844 16. 887	VV VV VV VV	376 170 151 158 219	7260 6170 1687 5149 4343	0. 51% 0. 012% 0. 43% 0. 010% 0. 12% 0. 003% 0. 36% 0. 008% 0. 30% 0. 007%	
271 16. 904 272 16. 967 273 17. 019 274 17. 078 275 17. 189	16. 887 16. 914 16. 991 17. 069 17. 100	16. 914 16. 991 17. 069 17. 100 17. 221	VV VV VV VV	210 794 523 131 222	1820 13663 12417 1983 10123	0. 13% 0. 003% 0. 96% 0. 022% 0. 87% 0. 020% 0. 14% 0. 003% 0. 71% 0. 017%	
276 17. 241 277 17. 351 278 17. 417 279 17. 476 280 17. 511	17. 221 17. 278 17. 380 17. 454 17. 491	17. 278 17. 380 17. 454 17. 491 17. 551	VV VV VV VV	236 334 842 300 355	5983 13543 17919 5176 9680	0. 42% 0. 010% 0. 95% 0. 022% 1. 26% 0. 029% 0. 36% 0. 008% 0. 68% 0. 016%	
281 17.582 282 17.658 283 17.703 284 17.746 285 17.807	17. 551 17. 648 17. 671 17. 728 17. 767	17. 648 17. 671 17. 728 17. 767 17. 838	VV VV VV VV	312 252 313 295 427	13647 3068 7896 5819 14270	0. 96% 0. 022% 0. 22% 0. 005% 0. 55% 0. 013% 0. 41% 0. 010% 1. 00% 0. 023%	
286 17. 855 287 17. 944 288 18. 030 289 18. 094 290 18. 129	17. 838 17. 885 17. 988 18. 041 18. 114	17. 885 17. 988 18. 041 18. 114 18. 168	VV VV VV VV	718 737 479 568 592	13933 26949 13154 20584 15430	0. 98% 0. 023% 1. 89% 0. 044% 0. 92% 0. 022% 1. 44% 0. 034% 1. 08% 0. 025%	
291 18. 218 292 18. 282 293 18. 378 294 18. 448 295 18. 542	18. 168 18. 258 18. 340 18. 422 18. 463	18. 258 18. 340 18. 422 18. 463 18. 559	VV VV VV VV	1758 1128 763 679 760	53381 37642 31987 15356 40258	3. 74%	
296 18. 595 297 18. 701 298 18. 793 299 18. 873	18. 559 18. 611 18. 758 18. 865	18. 611 18. 758 18. 865 18. 901	VV VV VV	786 1028 1087 1021 Page	22724 76605 64644 21522	1.59%	

	rt	Instrument : FID_C ClientSampleId : teres GSB5DL	
300 18. 909 18. 901	18. 920 VV 1034		Α
301 19. 051 18. 920 302 19. 102 19. 078 303 19. 190 19. 134	19. 078 VV 2201 19. 134 VV 1722 19. 215 VV 1583	52453 71937 Reviewed By :Yogesh Patel 05/30/2025	B C
	Sum of corrected	l areas: 609 Supervised By :mohammad ahmed 05/30/2025	D

Aliphatic EPH 052425.M Fri May 30 10:43:36 2025

ClientSampleId : PB168182BL

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069030.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 14:08 Operator : YP/AJ

Sample : PB168182BL

Misc :

ALS Vial : 15 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:44:08 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

R.T. Compound Response Conc Units

System Monitoring Compounds
9) S ortho-Terphenyl (SURR) 11.706 4180455 33.893 ug
Spiked Amount 50.000 Recovery = 67.79%
12) S 1-chlorooctadecane (S... 13.139 3217371 35.863 ug
Recovery = 71.73% 4180455 33.893 ug/ml 3217371 35.863 ug/ml

Target Compounds

(f)=RT Delta > 1/2 Window (m)=manual int.

PB168182BL

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069030.D Signal(s) : FID1A.ch

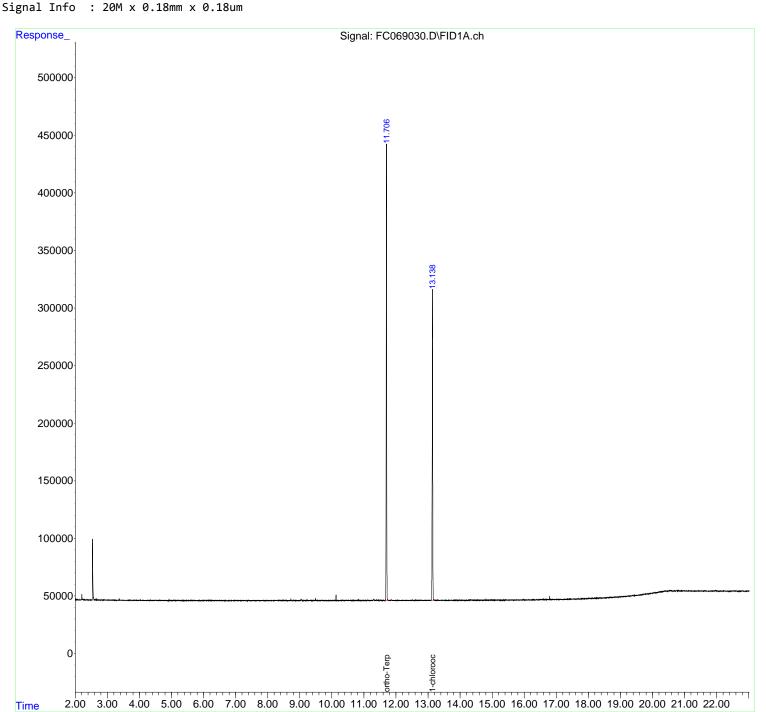
: 28 May 2025 14:08 Acq On

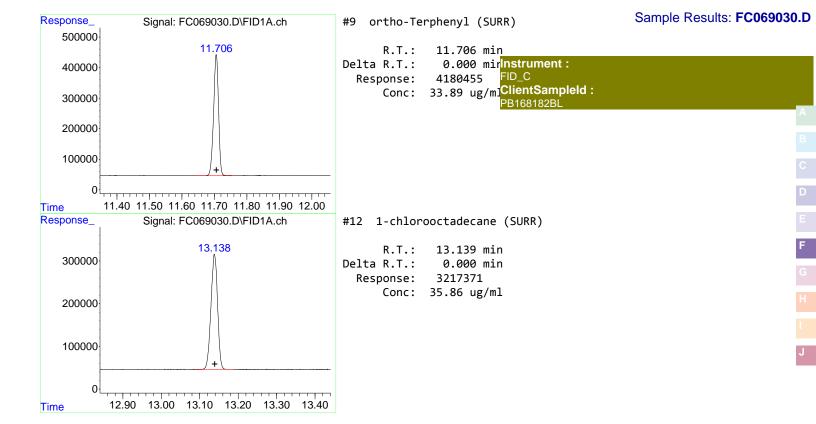
Operator : YP/AJ : PB168182BL Sample

Misc

ALS Vial : 15 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:44:08 2025


Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

rteres

Area Percent Report

Data Path : Z: \pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\ Data File : FC069030. D

FID1A. ch Signal(s):

28 May 2025 PB168182BL Acq On 14: 08

Sample

Misc ALS Vial Sample Multiplier: 1 : 15

Integration File: autoint1.e

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M : GC Extractables

Title

Si gnal : FID1A.ch

peak R.T. Start End peak peak peak % of mi n % max. mi n mi n TY height area total 1 11.706 11.644 11.762 BB 397372 4180455 100.00% 56.509% 2 13.139 13.090 13. 190 BB 268929 3217371 76. 96% 43. 491%

Sum of corrected areas: 7397826

Aliphatic EPH 052425. M Thu May 29 06:41:32 2025

ClientSampleld:
PB168182BS

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069031.D
Signal(s) : FID1A.ch

Acq On : 28 May 2025 14:46 Operator : YP/AJ

Operator : YP/AJ Sample : PB168182BS

Misc :

ALS Vial : 16 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:44:22 2025

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

-	Monitoring Compounds										
-	ortho-Terphenyl (SURR)	11.707		39.407 ug/ml							
•	Amount 50.000		Recovery =	78.81%							
12) S	•	13.140	3820055 4	12.580 ug/ml							
Spiked	Amount 50.000		Recovery =	85.16%							
Target Compounds											
1) T	n-Nonane (C9)	3.452	3895073	36.703 ug/ml							
2) T	n-Decane (C10)	4.522	4160719 3	39.286 ug/ml							
3) T	A~Naphthalene (C11.7)	6.114		12.897 ug/ml							
4) T	n-Dodecane (C12)	6.541	4282820 4	10.741 ug/ml							
5) T	A~2-methylnaphthalene	7.171	4560278 4	10.225 ug/ml							
6) T	n-Tetradecane (C14)	8.339	4238387 4	1.349 ug/ml							
7) T	n-Hexadecane (C16)	9.940	4248410 4	1.870 ug/ml							
8) T	n-Octadecane (C18)	11.383	4148539 4	1.509 ug/ml							
10) T	n-Eicosane (C20)	12.694	4189435 4	13.014 ug/ml							
11) T	n-Heneicosane (C21)	13.306	3988714 4	1.440 ug/ml							
13) T	n-Docosane (C22)	13.893	3925911 4	1.209 ug/ml							
14) T	n-Tetracosane (C24)	14.990	8168229 8	36.755 ug/ml							
15) T	n-Hexacosane (C26)	16.020	3769744 4	10.604 ug/ml							
16) T	n-Octacosane (C28)	16.970	3745020 4	10.290 ug/ml							
17) T	n-Tricontane (C30)	17.860	3739893 3	88.652 ug/ml							
18) T	n-Dotriacontane (C32)	18.692	3704258	37.380 ug/ml							
19) T	n-Tetratriacontane (C34)	19.477	3696921	88.358 ug/ml							
20) T	n-Hexatriacontane (C36)	20.218	3289087	34.648 ug/ml							
21) T	n-Octatriacontane (C38)	20.990	2946698 3	32.298 ug/ml							
22) T	n-Tetracontane (C40)	21.963	2541822 2	28.807 ug/ml							

(f)=RT Delta > 1/2 Window (m)=manual int.

PB168182BS

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069031.D Signal(s) : FID1A.ch

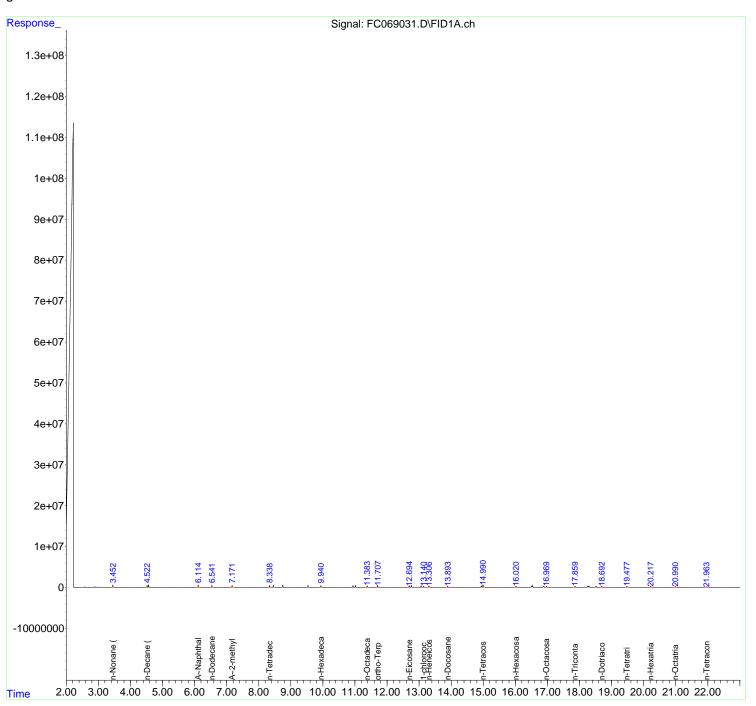
Acq On : 28 May 2025 14:46

Operator : YP/AJ Sample : PB168182BS

Misc

ALS Vial : 16 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 05:44:22 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$

Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File : FC069031. D
Signal(s) : FID1A. ch
Acq On : 28 May 2025 14:46
Sample : PB168182BS

Misc ALS Vial Sample Multiplier: 1 : 16

Integration File: autoint1.e

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables

Method Title

Si gnal : FID1A.ch

peak	R.T.	Start	End	PK	peak	peak	peak	% of
#	min	min	min	TY	hei ght	area	% max.	total
1	3. 452	3. 395	3. 500	BB	475404	3895073	47. 69%	2. 444%
2	4. 522	4. 460	4. 544	BV	468879	4160719	50. 94%	2. 611%
3	4. 566	4. 544	4. 610	VV	532980	4715707	57. 73%	2. 959%
4	6. 114	6. 062	6. 185	BB	545556	4960418	60. 73%	3. 113%
5	6. 541	6. 480	6. 587	BB	439049	4282820	52. 43%	2. 688%
6 7 8 9 10	7. 171 8. 339 8. 456 8. 752 9. 537	7. 122 8. 274 8. 402 8. 695 9. 475	7. 244 8. 382 8. 505 8. 799 9. 602	BB BB BB BB	472953 413471 480929 500939 468507	4560278 4238387 4879701 4861886 4825887	55. 83% 51. 89% 59. 74% 59. 52% 59. 08%	2. 862% 2. 660% 3. 062% 3. 051% 3. 029%
11	9. 940	9. 875	10. 002	BB	396594	4248410	52. 01%	2. 666%
12	10. 942	10. 857	10. 980	BV	419993	4569057	55. 94%	2. 867%
13	11. 017	10. 980	11. 074	PV	418876	4478938	54. 83%	2. 811%
14	11. 383	11. 330	11. 427	BB	377833	4148539	50. 79%	2. 603%
15	11. 707	11. 649	11. 747	BB	452469	4860614	59. 51%	3. 050%
17 18 19	12. 694 12. 763 13. 063 13. 140 13. 306	12. 627 12. 726 13. 004 13. 092 13. 237	12. 726 12. 822 13. 092 13. 197 13. 357	BV VB BV VB BB	352858 399692 391291 311160 332216	4189435 4440333 4407411 3820055 3988714	51. 29% 54. 36% 53. 96% 46. 77% 48. 83%	2. 629% 2. 787% 2. 766% 2. 397% 2. 503%
21	13. 893	13. 822	13. 934	BB	319188	3925911	48. 06%	2. 464%
22	14. 942	14. 874	14. 962	BV	334636	4325670	52. 96%	2. 715%
23	14. 990	14. 962	15. 052	VB	589165	8168229	100. 00%	5. 126%
24	16. 020	15. 954	16. 067	BB	289741	3769744	46. 15%	2. 366%
25	16. 503	16. 427	16. 518	BV	312026	4520515	55. 34%	2. 837%
26	16. 538	16. 518	16. 599	VB	396151	4478598	54. 83%	2. 811%
27	16. 885	16. 810	16. 927	BV	331090	4425900	54. 18%	2. 778%
28	16. 970	16. 927	17. 020	VB	274782	3745020	45. 85%	2. 350%
29	17. 860	17. 800	17. 915	BB	264835	3739893	45. 79%	2. 347%
30	18. 259	18. 175	18. 274	BV	317206	4738261	58. 01%	2. 974%
33	18. 297 18. 518 18. 692 19. 477 20. 218	18. 274 18. 435 18. 625 19. 420 20. 160	18. 369 18. 584 18. 747 19. 524 20. 274	VB BB BB BB	335404 300338 267242 252698 224511	4360230 4435756 3704258 3696921 3289087	53. 38% 54. 30% 45. 35% 45. 26% 40. 27%	2. 736% 2. 784% 2. 325% 2. 320% 2. 064%
36	20. 990	20. 905	21. 049	BB	159131 Pac	2946698 ne 1	36. 08%	1. 849%

rteres 37 21.963 21.890 22.032 BB 100129 2541822 31.12% 1.595% Sum of corrected areas: 159344897

Aliphatic EPH 052425.M Thu May 29 06:42:27 2025

D

-

F

н

ClientSampleId : PB168182BSD

Α

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069032.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 15:24 Operator : YP/AJ

Sample : PB168182BSD

Misc :

ALS Vial : 17 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:44:42 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

R.T. Compound Response Conc Units

9) S	Monitoring Compounds ortho-Terphenyl (SURR) Amount 50.000	11.708	4694412 Recovery =	38.059 ug/ml 76.12%								
•		13.140	3699949	41.242 ug/ml								
Spiked A	•		Recovery =									
Target Compounds												
1) T	n-Nonane (C9)	3.452	3910503	36.849 ug/ml								
2) T	n-Decane (C10)	4.522	4123883	38.939 ug/ml								
3) T	A~Naphthalene (C11.7)	6.114	4815616	41.645 ug/ml								
4) T	n-Dodecane (C12)	6.541	4199680	39.951 ug/ml								
5) T	A~2-methylnaphthalene	7.171	4405917	38.863 ug/ml								
6) T	n-Tetradecane (C14)	8.339	4114621	40.141 ug/ml								
7) T	n-Hexadecane (C16)	9.940	4093125	40.339 ug/ml								
8) T	n-Octadecane (C18)	11.383	3977029	39.792 ug/ml								
10) T	n-Eicosane (C20)	12.694	4003183	41.101 ug/ml								
11) T	n-Heneicosane (C21)	13.306	3808397	39.567 ug/ml								
13) T	n-Docosane (C22)	13.892	3743596	39.295 ug/ml								
14) T	n-Tetracosane (C24)	14.989	7767482	82.499 ug/ml								
15) T	n-Hexacosane (C26)	16.019	3586959	38.635 ug/ml								
16) T	n-Octacosane (C28)	16.969	3561834	38.319 ug/ml								
17) T	n-Tricontane (C30)	17.860	3549113	36.681 ug/ml								
	n-Dotriacontane (C32)	18.691	3491308	35.231 ug/ml								
19) T	n-Tetratriacontane (C34)	19.477	3408456	35.365 ug/ml								
20) T	n-Hexatriacontane (C36)	20.217	2908984	30.644 ug/ml								
21) T	n-Octatriacontane (C38)	20.989	2487372	27.263 ug/ml								
22) T	n-Tetracontane (C40)	21.962	2058744	23.333 ug/ml								

(f)=RT Delta > 1/2 Window (m)=manual int.

PB168182BSD

ClientSampleId :

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069032.D Signal(s) : FID1A.ch

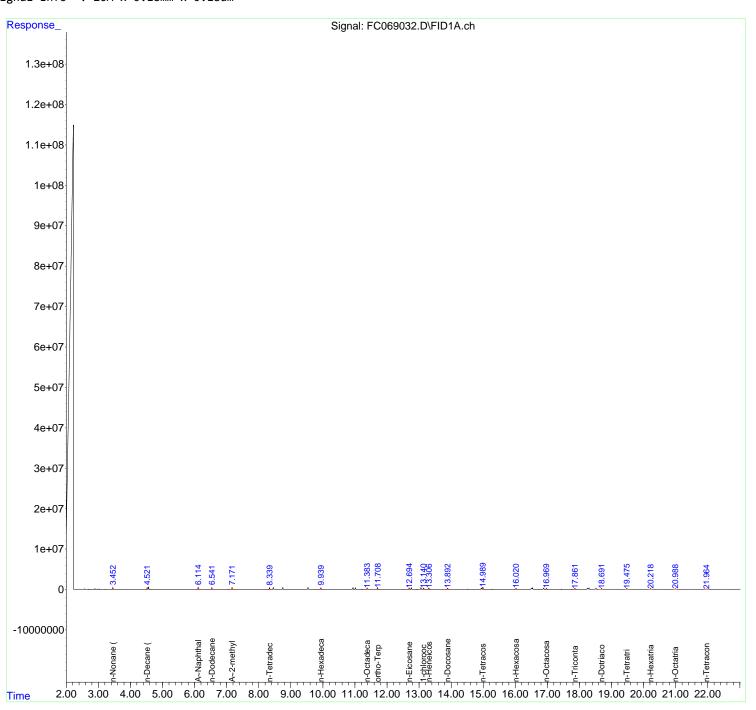
Acq On : 28 May 2025 15:24

Operator : YP/AJ Sample : PB168182BSD

Misc

ALS Vial : 17 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 05:44:42 2025


 $\label{lem:quant_method} Quant \ \mbox{Method} : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$

Quant Title : GC Extractables QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

rteres

Area Percent Report

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\
Data File : FC069032.D
Signal(s) : FID1A.ch
Acq On : 28 May 2025 15:24
Sample : PB168182BSD

Misc ALS Vial Sample Multiplier: 1 : 17

Integration File: autoint1.e

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables Method Title

Si gnal : FID1A.ch

	,							
peak #	mi n	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 452 4. 522 4. 566 6. 114 6. 541	3. 395 4. 465 4. 544 6. 052 6. 475	3. 492 4. 544 4. 612 6. 182 6. 585	BB BV VV BB BB	469162 465133 528603 525731 429680	3910503 4123883 4638570 4815616 4199680	50. 34% 53. 09% 59. 72% 62. 00% 54. 07%	2. 578% 2. 719% 3. 059% 3. 175% 2. 769%
6 7 8 9 10	7. 171 8. 339 8. 455 8. 752 9. 537	7. 122 8. 260 8. 390 8. 695 9. 475	7. 253 8. 387 8. 503 8. 798 9. 595	BB BB BB BB	465118 407863 472764 470312 441510	4405917 4114621 4674993 4657535 4604388	56. 72% 52. 97% 60. 19% 59. 96% 59. 28%	2. 905% 2. 713% 3. 083% 3. 071% 3. 036%
	9. 940 10. 941 11. 017 11. 383 11. 708	9. 873 10. 858 10. 978 11. 330 11. 650	10. 002 10. 978 11. 070 11. 422 11. 758	BB BV VV BB BB	380282 397848 393940 348000 432161	4093125 4346642 4266219 3977029 4694412	52. 70% 55. 96% 54. 92% 51. 20% 60. 44%	2. 699% 2. 866% 2. 813% 2. 622% 3. 095%
17 18 19	12. 694 12. 762 13. 062 13. 140 13. 306	12. 628 12. 725 12. 990 13. 092 13. 238	12. 725 12. 790 13. 092 13. 197 13. 353	BV PB BV VB BB	345511 367249 380227 318866 323116	4003183 4205178 4178500 3699949 3808397	51. 54% 54. 14% 53. 79% 47. 63% 49. 03%	2. 640% 2. 773% 2. 755% 2. 440% 2. 511%
23 24	13. 892 14. 942 14. 989 16. 019 16. 501	13. 830 14. 873 14. 962 15. 952 16. 423	13. 948 14. 962 15. 052 16. 068 16. 517	BB BV VB BB BV	313199 315266 559763 272209 307059	3743596 4108640 7767482 3586959 4266603	48. 20% 52. 90% 100. 00% 46. 18% 54. 93%	2. 468% 2. 709% 5. 122% 2. 365% 2. 813%
27 28	16. 536 16. 884 16. 969 17. 860 18. 258	16. 517 16. 808 16. 925 17. 800 18. 172	16. 570 16. 925 17. 025 17. 918 18. 273	VB BV VB BB BV	368016 333466 281585 253582 287123	4240402 4195956 3561834 3549113 4499166	54. 59% 54. 02% 45. 86% 45. 69% 57. 92%	2. 796% 2. 767% 2. 349% 2. 340% 2. 967%
33 34	18. 296 18. 516 18. 691 19. 477 20. 217	18. 273 18. 435 18. 617 19. 420 20. 160	18. 368 18. 573 18. 738 19. 527 20. 272	VB BB BB BB	325031 289161 246514 235968 197666	4167871 4198160 3491308 3408456 2908984	53. 66% 54. 05% 44. 95% 43. 88% 37. 45%	2. 748% 2. 768% 2. 302% 2. 247% 1. 918%
36	20. 989	20. 910	21. 047	BB	132793 Pag	2487372 ge 1	32. 02%	1. 640%

rteres 78441 2058744 26.50% 1.357% rrected areas: 151658983 37 21.962 21.890 22.047 BB Sum of corrected areas:

Aliphatic EPH 052425.M Thu May 29 06:43:12 2025

GSB5MS

ClientSampleId:

APPROVED

Manual Integrations

Reviewed By: Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069038.D Signal(s) : FID1A.ch

: 28 May 2025 19:09 Acq On

Operator : YP/AJ : Q2125-05MS Sample

Misc

ALS Vial : 23 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: May 29 07:41:05 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID C\Method\Aliphatic EPH 052425.M

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds 9) S ortho-Terphenyl (SURR) 11.709 3773295 30.592 ug/ml Spiked Amount 50.000 Recovery = 61.18% 12) S 1-chlorooctadecane (S... 13.140 2799762 31.208 ug/ml 50.000 Recovery = 62.42% Spiked Amount Target Compounds 3.451 3569739 33.638 ug/ml

1) T n-Nonane (C9) 2) T n-Decane (C10)

4.521 34.845 ug/ml 3690309 A~Naphthalene (C11.7) 3) T 6.114 4426621 38.281 ug/ml 4) T n-Dodecane (C12) 6.542 3909824 37.193 ug/ml n-Dodecane (CLL)
A~2-methylnaphthalene...
Totandecane (C14) 39.507 ug/ml 5) T 7.172 4478930 6) T 8.340 4404735 42.972 ug/ml 7) T n-Hexadecane (C16) 9.942 4726012 46.577 ug/mlm 8) T n-Octadecane (C18) 11.384 3412771 34.147 ug/mlm 10) T n-Eicosane (C20) 12.694 3604500 37.008 ug/ml n-Heneicosane (C21) 13.307 11) T 3188150 33.123 ug/ml n-Docosane (C22) 13.892 13) T 3140077 32.960 ug/ml 14.988 14) T n-Tetracosane (C24) 6657266 70.707 ug/ml 16.020 15) T n-Hexacosane (C26) 3069089 33.057 ug/ml 16.969 16) T n-Octacosane (C28) 3047628 32.787 ug/ml n-Tricontane (C30) 17.859 3062302 31.649 ug/ml n-Dotriacontane (C32) 18.692 3108737 31.370 ug/ml n-Tetratriacontane (C34) 19.478 3276209 33.993 ug/ml n-Hexatriacontane (C36) 20.218 3271482 34.462 ug/ml n-Octatriacontane (C38) 20.990 3383494 37.086 ug/ml n-Tetracontane (C40) 21.967 3336253 37.811 ug/ml 17.859 17) T 18) T 19) T 20) T

21) T 22) T

(f)=RT Delta > 1/2 Window

(m)=manual int.

Quantitation Report (QT Reviewed)

Sample Results: FC069038.D

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069038.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 19:09

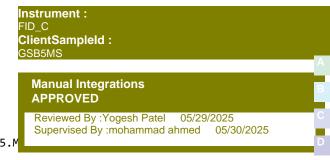
Operator : YP/AJ Sample : Q2125-05MS

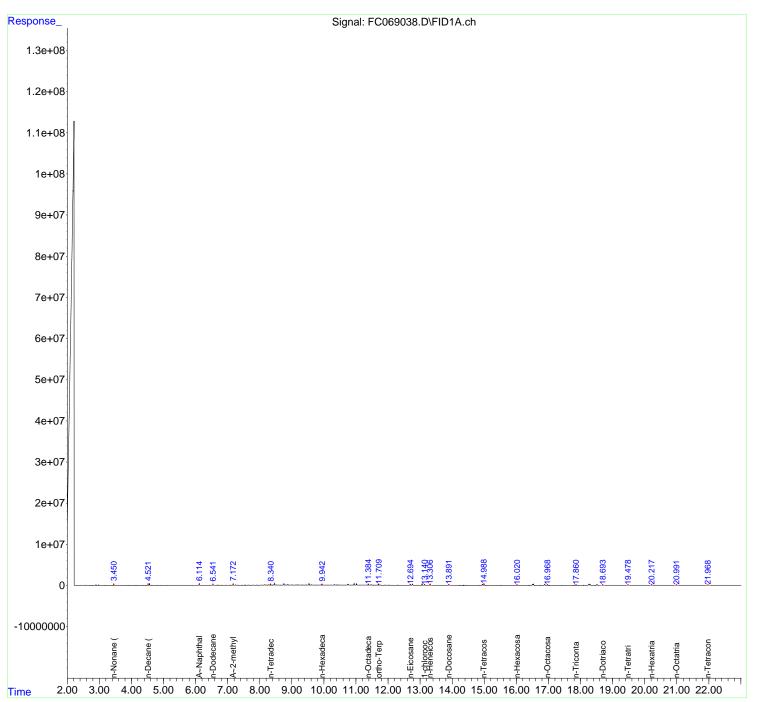
Misc

ALS Vial : 23 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 07:41:05 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables


QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

D

rteres

Instrument : FID_C ClientSampleId : GSB5MS

Area Percent Report Manual IntegrationsAPPROVED

Reviewed By :Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC05282
Data File : FC069038.D

Si gnal (s) : Acq On : Sample : FID1A. ch 28 May 2025 02125-05MS 19: 09

Misc ALS Vial

: 23 Sample Multiplier: 1

Integration File: sample. E

: Z: $\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M$: GC Extractables

Title

Si gnal : FID1A.ch

peak #	mi n	Start min	End mi n		peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 277 3. 301 3. 335 3. 402 3. 451	3. 221 3. 291 3. 321 3. 373 3. 418	3. 291 3. 321 3. 373 3. 418 3. 490	BV VV PV PV VV	2363 1452 420 559 427579	16612 10597 6816 5716 3585324	0. 23% 0. 15% 0. 10% 0. 08% 50. 58%	0. 005% 0. 003% 0. 002% 0. 002% 0. 999%
6 7 8 9 10	3. 500 3. 553 3. 581 3. 604 3. 652	3. 490 3. 538 3. 565 3. 595 3. 618	3. 538 3. 565 3. 595 3. 618 3. 683	VV PV VV VV	976 241 1948 1555 2196	10550 2562 21337 14340 39440	0. 15% 0. 04% 0. 30% 0. 20% 0. 56%	0. 003% 0. 001% 0. 006% 0. 004% 0. 011%
11 12 13 14 15	3. 725 3. 778 3. 825 3. 897 3. 949	3. 683 3. 757 3. 797 3. 870 3. 934	3. 757 3. 797 3. 870 3. 934 3. 980	VV VV VV VV	4867 2007 8142 4892 2477	96519 33255 121405 76350 31118	1. 36% 0. 47% 1. 71% 1. 08% 0. 44%	0. 027% 0. 009% 0. 034% 0. 021% 0. 009%
16 17 18 19 20	3. 998 4. 040 4. 097 4. 120 4. 150	3. 980 4. 015 4. 082 4. 106 4. 137	4. 015 4. 082 4. 106 4. 137 4. 168	VV VV VV VV	4824 4061 4134 6110 3792	41340 86813 41696 70205 46319	0. 58% 1. 22% 0. 59% 0. 99% 0. 65%	0. 012% 0. 024% 0. 012% 0. 020% 0. 013%
21 22 23 24 25	4. 185 4. 216 4. 300 4. 329 4. 367	4. 168 4. 199 4. 239 4. 315 4. 354	4. 199 4. 239 4. 315 4. 354 4. 406	VV VV VV VV	3583 6851 5056 5978 3048	48520 79322 105825 78829 45759	0. 68% 1. 12% 1. 49% 1. 11% 0. 65%	0. 014% 0. 022% 0. 029% 0. 022% 0. 013%
26 27 28 29 30	4. 439 4. 480 4. 521 4. 566 4. 627	4. 406 4. 458 4. 494 4. 543 4. 612	4. 458 4. 494 4. 543 4. 612 4. 652	VV VV VV VV	3834 3456 412103 457704 5746	58617 51000 3695905 4133112 70157	0. 83% 0. 72% 52. 14% 58. 31% 0. 99%	0. 016% 0. 014% 1. 030% 1. 151% 0. 020%
31 32 33 34 35	4. 675 4. 724 4. 774 4. 807 4. 827	4. 652 4. 708 4. 757 4. 792 4. 818	4. 708 4. 757 4. 792 4. 818 4. 842	VV VV VV VV	10982 8160 24768 9465 7565	165659 161821 251982 101193 87030	2. 34% 2. 28% 3. 56% 1. 43% 1. 23%	0. 046% 0. 045% 0. 070% 0. 028% 0. 024%
36	4. 853	4. 842	4. 866	VV	6863 Pag	72478 e 1	1. 02%	0. 020%

							Instrum FID_C	ent :	
					rte	eres		ampleld :	
37 38	4. 895 4. 935	4. 866 4. 914	4. 914 4. 958	VV VV	9342 15718	163974 205617	2. 31%	0. 046%	1
39	4. 972	4. 958	4. 981	VV	4110	49194	Manu	al IntegrationsAPPROVED	
40	5. 001	4. 981	5. 021	VV	14528	174450		wed By :Yogesh Patel 05/29/2025	(
41 42	5. 045 5. 072	5. 021 5. 059	5. 059 5. 104	VV VV	5546 5965	95633 114481	Super	vised By :mohammad ahmed 05/30/2025	
43 44	5. 129 5. 160	5. 104 5. 142	5. 142 5. 193	VV VV	10895 12462	126946 233102	1. 79% 3. 29%	0. 035% 0. 065%	ī
45	5. 218	5. 193	5. 230	VV	9500	126724	1. 79%	0. 035%	i
46	5. 263	5. 230	5. 307	VV	11201	344710	4. 86%	0. 096%	ľ
47 48	5. 323 5. 362	5. 307 5. 341	5. 341 5. 391	VV VV	4648 11374	82447 218581	1. 16% 3. 08%	0. 023% 0. 061%	
49 50	5. 425 5. 454	5. 391 5. 438	5. 438 5. 470	VV VV	10683 16570	234739 213205	3. 31% 3. 01%	0. 065% 0. 059%	ŀ
51 52	5. 486 5. 511	5. 470 5. 501	5. 501 5. 537	VV VV	10723 8576	164917 134501	2. 33% 1. 90%	0. 046% 0. 037%	,
53 54	5. 565 5. 590	5. 537 5. 573	5. 573 5. 613	VV VV	12027 23259	179040 332060	2. 53% 4. 68%	0. 050% 0. 092%	Ī
55	5. 629	5. 613	5. 642	VV	10644	129893	1. 83%	0. 036%	
56	5. 651	5. 642	5. 667	VV	8240	101013	1. 43%	0. 028%	
57 58	5. 697 5. 715	5. 667 5. 708	5. 708 5. 724	VV VV	8585 7970	167249 75427	2. 36% 1. 06%	0. 047% 0. 021%	
59 60	5. 749 5. 805	5. 724 5. 786	5. 786 5. 821	VV VV	40258 12251	658222 208763	9. 29% 2. 95%	0. 183% 0. 058%	
61	5. 843	5. 821	5. 885	VV	29539	698078	9. 85%	0. 194%	
62	5. 906	5. 885	5. 919	VV	14065	211484	2. 98%	0. 059%	
63 64	5. 932 5. 969	5. 919 5. 946	5. 946 5. 996	VV VV	13405 14761	165080 319591	2. 33% 4. 51%	0. 046% 0. 089%	
65	6. 016	5. 996	6. 039	VV	15775	253844	3. 58%	0. 071%	
66 67	6. 062 6. 114	6. 039 6. 086	6. 086 6. 138	VV VV	20477 475012	397200 4595521	5. 60% 64. 84%	0. 111% 1. 280%	
67 68	6. 156	6. 138	6. 176	VV	18127	323025	4.56%	0. 090%	
69 70	6. 217 6. 244	6. 176 6. 227	6. 227 6. 274	VV VV	16629 25590	390185 526558	5. 50% 7. 43%	0. 109% 0. 147%	
71	6. 300	6. 274	6. 315	VV	18977	382852	5. 40%	0. 107%	
72 73	6. 331 6. 380	6. 315	6. 346 6. 402	VV VV	24241 24041	372944 640071	5. 26% 9. 03%	0. 104%	
74	6. 423	6. 346 6. 402	6. 442	VV	24503	430215	6. 07%	0. 178% 0. 120%	
75	6. 478	6. 442	6. 513	VV	24317	802318	11. 32%	0. 223%	
76 77	6. 541 6. 631	6. 513 6. 589	6. 589 6. 642	VV VV	388309 21133	4288741 541474	60. 51% 7. 64%	1. 195% 0. 151%	
78	6. 658	6.642	6. 670	VV	28532 88318	388418	5. 48%	0. 108%	
79 80	6. 689 6. 740	6. 670 6. 711	6. 711 6. 781	VV VV	45444	1152982 1138465	16. 27% 16. 06%	0. 321% 0. 317%	
81	6. 822	6. 781	6. 842	VV	45115	946446	13. 35%	0. 264%	
82 83	6. 867 6. 946	6. 842 6. 910	6. 910 6. 969	VV VV	39841 43507	1094249 995889	15. 44% 14. 05%	0. 305% 0. 277%	
84	7. 013	6. 969	7. 029	VV	31887	887290	12. 52%	0. 247%	
85	7. 070	7. 029	7. 087	VV	44545	1199224	16. 92%	0. 334%	
86 87	7. 105 7. 172	7. 087 7. 136	7. 136 7. 204	VV VV	52746 414658	1031028 4997850	14. 55% 70. 51%	0. 287% 1. 392%	
88 89	7. 215 7. 245	7. 204 7. 224	7. 224 7. 289	VV VV	28292 117972	312885 2233702	4. 41% 31. 51%	0. 087% 0. 622%	
5,	7.270	, , 	7.207	vV		je 2	31. 31/0	S. 52270	

					mt o	, roc		ampleld :	
90	7. 306	7. 289	7. 330	VV	50779	eres 930341	GSB5MS 13. 13%	0. 259%	Å
91 92 93 94 95	7. 349 7. 396 7. 452 7. 518 7. 557	7. 330 7. 368 7. 413 7. 497 7. 529	7. 368 7. 413 7. 497 7. 529 7. 577	VV VV VV VV	42820 32538 49133 44235 48618	767570 816598 1927996 741337 1236673	11 27 Revie	wed By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025	
96 97 98 99 100	7. 588 7. 641 7. 697 7. 728 7. 806	7. 577 7. 614 7. 679 7. 715 7. 747	7. 614 7. 679 7. 715 7. 747 7. 847	VV VV VV VV	37843 77771 49147 32329 59831	794538 1935015 845895 596605 2659344	11. 21% 27. 30% 11. 93% 8. 42% 37. 52%	0. 221% 0. 539% 0. 236% 0. 166% 0. 741%	F
101 102 103 104 105	7. 861 7. 905 7. 937 7. 988 8. 052	7. 847 7. 871 7. 924 7. 959 8. 007	7. 871 7. 924 7. 959 8. 007 8. 068	VV VV VV VV	38480 49663 44500 52501 61176	517965 1366361 892725 1215492 1795829	7. 31% 19. 28% 12. 59% 17. 15% 25. 34%	0. 144% 0. 381% 0. 249% 0. 339% 0. 500%	
106 107 108 109 110	8. 082 8. 160 8. 192 8. 221 8. 270	8. 068 8. 130 8. 183 8. 205 8. 237	8. 130 8. 183 8. 205 8. 237 8. 285	VV VV VV VV	59692 192182 50718 49628 120669	1922489 3198424 654458 879626 2235097	27. 12% 45. 12% 9. 23% 12. 41% 31. 53%	0. 536% 0. 891% 0. 182% 0. 245% 0. 623%	
111 112 113 114 115	8. 297 8. 340 8. 385 8. 456 8. 510	8. 285 8. 314 8. 365 8. 404 8. 491	8. 314 8. 365 8. 404 8. 491 8. 551	VV VV VV VV	96580 384265 83087 471332 133500	1328159 5048194 1466370 7087956 2802865	18. 74% 71. 22% 20. 69% 100. 00% 39. 54%	0. 370% 1. 406% 0. 408% 1. 974% 0. 781%	
116 117 118 119 120	8. 563 8. 591 8. 623 8. 667 8. 700	8. 551 8. 581 8. 601 8. 652 8. 680	8. 581 8. 601 8. 652 8. 680 8. 717	VV VV VV VV	66209 54937 59511 52521 72602	1042525 642492 1672280 781729 1293522	14. 71% 9. 06% 23. 59% 11. 03% 18. 25%	0. 290% 0. 179% 0. 466% 0. 218% 0. 360%	
121 122 123 124 125	8. 754 8. 806 8. 876 8. 913 8. 959	8. 717 8. 779 8. 829 8. 900 8. 929	8. 779 8. 829 8. 900 8. 929 8. 967	VV VV VV VV	467220 108698 216550 64077 63255	6108356 2110361 4408323 999450 1262646	86. 18% 29. 77% 62. 19% 14. 10% 17. 81%	1. 701% 0. 588% 1. 228% 0. 278% 0. 352%	
126 127 128 129 130	8. 989 9. 024 9. 059 9. 111 9. 159	8. 967 9. 009 9. 043 9. 075 9. 128	9. 009 9. 043 9. 075 9. 128 9. 176	VV VV VV VV	126636 88441 65584 88399 123852	2230480 1442579 1152388 2199528 2418547	31. 47% 20. 35% 16. 26% 31. 03% 34. 12%	0. 621% 0. 402% 0. 321% 0. 613% 0. 674%	
131 132 133 134 135	9. 199 9. 247 9. 316 9. 347 9. 395	9. 176 9. 231 9. 273 9. 333 9. 378	9. 231 9. 273 9. 333 9. 378 9. 412	VV VV VV VV	130012 70130 108075 94351 59169	2687289 1538434 2539350 1799328 1118293	37. 91% 21. 70% 35. 83% 25. 39% 15. 78%	0. 749% 0. 429% 0. 707% 0. 501% 0. 312%	
136 137 138 139 140	9. 453 9. 491 9. 538 9. 617 9. 696	9. 412 9. 476 9. 510 9. 585 9. 669	9. 476 9. 510 9. 585 9. 669 9. 724	VV VV VV VV	107602 65290 465315 137247 82159	2871746 1167758 6963113 3957902 2409156	40. 52% 16. 48% 98. 24% 55. 84% 33. 99%	0. 800% 0. 325% 1. 940% 1. 102% 0. 671%	
141	9. 738	9. 724	9. 766	VV	89559 Pag	1814054 je 3	25. 59%	0. 505%	

				rto	eres	Instrument : FID_C ClientSampleId : GSB5MS	
142 9.775 143 9.812 144 9.860 145 9.898	9. 766 9. 794 9. 834 9. 878	9. 794 9. 834 9. 878 9. 918	VV VV VV	60700 75475 78063 87190	991077 1449223 1763895 1888073	13. 98% 0. 276% Comparison of the second of	
146 9. 942 147 10. 018 148 10. 050 149 10. 118 150 10. 219	9. 918 9. 995 10. 031 10. 092 10. 197	9. 995 10. 031 10. 092 10. 197 10. 238	VV VV VV VV	395143 65528 71601 81746 59067	6604274 1384927 2230816 3628121 1282387	Reviewed By :Yogesh Patel 05/29/2025 91 Supervised By :mohammad ahmed 05/30/2025 19 31. 47% 0. 621% 51. 19% 1. 011% 18. 09% 0. 357%	
151 10. 278 152 10. 331 153 10. 388 154 10. 414 155 10. 459	10. 238 10. 301 10. 358 10. 400 10. 439	10. 301 10. 358 10. 400 10. 439 10. 506	VV VV VV VV	80103 189710 86567 90919 111562	2179280 3553963 1750762 1656341 2859295	30. 75%	
156 10. 533 157 10. 599 158 10. 665 159 10. 704 160 10. 754	10. 506 10. 571 10. 648 10. 690 10. 721	10. 571 10. 648 10. 690 10. 721 10. 781	VV VV VV VV	74794 81992 73735 71402 298822	2512070 3047017 1703855 1202885 5297201	35. 44%	
161 10. 797 162 10. 894 163 10. 944 164 11. 018 165 11. 074	10. 781 10. 833 10. 915 10. 987 11. 048	10. 833 10. 915 10. 987 11. 048 11. 102	VV VV VV VV	65932 57571 434577 414682 68823	1868221 2615651 6293955 5595929 1823310	26. 36%	
166 11. 118 167 11. 154 168 11. 186 169 11. 215 170 11. 247	11. 102 11. 132 11. 175 11. 194 11. 223	11. 132 11. 175 11. 194 11. 223 11. 268	VV VV VV VV	48875 56747 47497 52035 66920	872227 1315228 520766 891798 1547896	12. 31%	
171 11. 291 172 11. 332 173 11. 384 174 11. 475 175 11. 535	11. 268 11. 314 11. 358 11. 442 11. 509	11. 314 11. 358 11. 442 11. 509 11. 559	VV VV VV VV	62689 59910 352915 154777 52804	1538911 1452490 6002208 3439713 1379842	21. 71%	
176 11.591 177 11.630 178 11.709 179 11.742 180 11.773	11. 559 11. 613 11. 665 11. 731 11. 758	11. 613 11. 665 11. 731 11. 758 11. 811	VV VV VV VV	58998 46492 357446 62931 68539	1566189 1396296 5176989 872742 1549313	22. 10%	
181 11.836 182 11.893 183 11.926 184 11.989 185 12.032	11. 811 11. 870 11. 910 11. 972 12. 004	11. 870 11. 910 11. 972 12. 004 12. 059	VV VV VV VV	40708 54453 49852 36385 63404	1365407 1079444 1542035 686628 1548022	19. 26%	
186 12.078 187 12.145 188 12.246 189 12.297 190 12.357	12. 059 12. 105 12. 228 12. 260 12. 340	12. 105 12. 228 12. 260 12. 340 12. 379	VV VV VV VV	42775 38596 36065 50404 31663	1037813 2464875 641886 1747260 667045	14.64%	
191 12. 392 192 12. 420 193 12. 486 194 12. 533	12. 379 12. 403 12. 455 12. 510	12. 403 12. 455 12. 510 12. 590	VV VV VV	28234 28774 29798 33406 Pag	407084 827065 871889 1269807 ge 4	5. 74% O. 113% 11. 67% O. 230% 12. 30% O. 243% 17. 92% O. 354%	

			Instrument : FID_C
195 12. 615 12. 590	12. 625 VV	rteres 27470 524925	ClientSampleld: GSB5MS 7.41% 0.146%
196 12.644 12.625 197 12.694 12.663 198 12.764 12.733 199 12.840 12.826 200 12.887 12.870	12. 663 VV 12. 733 VV 12. 826 VV	36463 693263 304893 4361680 347560 4701676 18960 462614 18561 345492	Manual IntegrationsAPPROVED 6 6 Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025
201 12. 914 12. 905 202 12. 949 12. 931 203 13. 012 12. 995 204 13. 064 13. 030 205 13. 140 13. 098	12. 931 VV 12. 995 VV 13. 030 VV 13. 098 VV 13. 170 VV	15234 235902 18190 598239 15297 300387 331484 4105999 250444 3296982	8.44% 0.167% 4.24% 0.084% 57.93% 1.144%
206 13. 190 13. 170 207 13. 231 13. 221 208 13. 307 13. 273 209 13. 388 13. 369 210 13. 452 13. 438		16528 42822 11689 346923 279886 3761523 12734 403829 9281 144918	4.89% 0.097% 53.07% 1.048% 5.70% 0.112%
211 13. 483 13. 466 212 13. 537 13. 504 213 13. 576 13. 571 214 13. 635 13. 621 215 13. 728 13. 711	13.504 VV 13.571 VV 13.621 VV 13.711 VV 13.775 VV	9266 191563 9988 345782 8281 216878 6708 323493 5981 207268	4.88% 0.096% 3.06% 0.060% 4.56% 0.090%
216 13. 794 13. 775 217 13. 838 13. 825 218 13. 892 13. 857 219 13. 950 13. 935 220 14. 013 14. 003	13. 825 VV 13. 857 VV 13. 935 VV 14. 003 VV 14. 055 VV	5682 15598° 5434 97214 267755 3322882 4186 154114 3459 100609	1.37% 0.027% 46.88% 0.926% 2.17% 0.043%
221 14. 068 14. 055 222 14. 119 14. 088 223 14. 280 14. 236 224 14. 328 14. 315 225 14. 362 14. 355	14. 315 VV 14. 355 VV	3170 5784° 3309 23040° 2892 11316° 2454 51796 2049 52539	3. 25%
226 14. 414 14. 404 227 14. 456 14. 428 228 14. 512 14. 494 229 14. 572 14. 545 230 14. 674 14. 643	14. 545 VV 14. 643 VV	1546 2238 ² 2895 76422 1668 4503 ² 1389 71730 1246 3895 ²	2 1.08% 0.021% 4 0.64% 0.013% 0 1.01% 0.020%
231 14. 717 14. 707 232 14. 741 14. 733 233 14. 832 14. 784 234 14. 942 14. 900 235 14. 988 14. 962		916 1348 ² 929 2320 ² 24377 33159 ² 278688 357302 ² 434606 6714499	0.33% 0.006% 2 4.68% 0.092% 3 50.41% 0.995%
236 15. 174 15. 154 237 15. 241 15. 214 238 15. 278 15. 268 239 15. 372 15. 322 240 15. 515 15. 482		754 17557 421 9577 264 6946 16048 244809 2912 54807	0.14% 0.003% 0.10% 0.002% 0.3.45% 0.068%
241 15. 595 15. 561 242 15. 644 15. 638 243 15. 769 15. 727 244 15. 849 15. 808 245 15. 892 15. 870	15. 808 VV 15. 870 PV	1831 30397 202 4647 138 3817 504 8714 602 11700	0. 07% 0. 001% 0. 05% 0. 001% - 0. 12% 0. 002%
246 16. 020 15. 965	16. 070 VV	233598 3072812 Page 5	2 43. 35% 0. 856%

					Instrum FID_C	
247 16. 080 248 16. 113 249 16. 160	16. 070 16. 098 16. 134	16. 098 VV 16. 134 VV 16. 178 PV	rt 189 133 127	eres 1765 1679 1504	GSB5MS 0. 02%	ampleId: 0.000% al IntegrationsAPPROVED
250 16. 223 251 16. 334	16. 178 16. 286 16. 344	16. 286 VV 16. 344 VV	630 692	11399 5957 28266		wed By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025
252 16. 388 253 16. 501 254 16. 535 255 16. 583	16. 431 16. 517 16. 565	16. 431 VV 16. 517 VV 16. 565 VV 16. 610 VV	1529 267775 323820 1448	3743239 3699067 22277	52. 81% 52. 19% 0. 31%	1. 043% 1. 030% 0. 006%
256 16.630	16. 610	16. 655 VV	349	6888	0. 10%	0. 002%
257 16.687	16. 655	16. 717 VV	200	5525	0. 08%	0. 002%
258 16.747	16. 717	16. 787 VV	2072	29638	0. 42%	0. 008%
259 16.805	16. 787	16. 828 VV	273	4775	0. 07%	0. 001%
260 16.882	16. 828	16. 915 VV	278615	3637253	51. 32%	1. 013%
261 16. 969	16. 915	17. 003 VV	224774	3075097	43. 38%	0. 857%
262 17. 018	17. 003	17. 106 VV	1589	28513	0. 40%	0. 008%
263 17. 120	17. 106	17. 147 PV	117	1374	0. 02%	0. 000%
264 17. 185	17. 147	17. 241 VV	377	9109	0. 13%	0. 003%
265 17. 253	17. 241	17. 281 VV	134	1608	0. 02%	0. 000%
266 17. 329	17. 281	17. 379 VV	847	20482	0. 29%	0. 006%
267 17. 418	17. 379	17. 449 VV	2692	40664	0. 57%	0. 011%
268 17. 474	17. 449	17. 485 VV	238	3276	0. 05%	0. 001%
269 17. 510	17. 485	17. 535 VV	314	5906	0. 08%	0. 002%
270 17. 590	17. 535	17. 628 VV	171	5661	0. 08%	0. 002%
271 17. 651	17. 628	17. 668 PV	178	2998	0. 04%	0. 001%
272 17. 704	17. 668	17. 714 VV	234	4105	0. 06%	0. 001%
273 17. 748	17. 714	17. 773 VV	2551	37516	0. 53%	0. 010%
274 17. 859	17. 773	17. 896 VV	217288	3085079	43. 53%	0. 859%
275 17. 946	17. 896	17. 998 VV	759	14380	0. 20%	0. 004%
276 18.036	17. 998	18. 064 VV	217	5350	0. 08%	0. 001%
277 18.097	18. 064	18. 117 VV	493	8389	0. 12%	0. 002%
278 18.132	18. 117	18. 155 VV	245	2831	0. 04%	0. 001%
279 18.257	18. 155	18. 272 PV	289005	4031854	56. 88%	1. 123%
280 18.295	18. 272	18. 350 VV	283057	3617074	51. 03%	1. 008%
281 18. 374	18. 350	18. 435 VV	1201	34055	0. 48%	0. 009%
282 18. 444	18. 435	18. 455 VV	282	3109	0. 04%	0. 001%
283 18. 514	18. 455	18. 607 VV	259837	3667869	51. 75%	1. 022%
284 18. 634	18. 607	18. 647 VV	587	10477	0. 15%	0. 003%
285 18. 692	18. 647	18. 752 VV	215285	3116742	43. 97%	0. 868%
286 18. 811	18. 752	18. 832 VV	841	28072	0. 40%	0. 008%
287 18. 852	18. 832	18. 902 VV	776	18208	0. 26%	0. 005%
288 18. 975	18. 902	19. 001 VV	450	19102	0. 27%	0. 005%
289 19. 044	19. 001	19. 076 VV	7246	147075	2. 08%	0. 041%
290 19. 092	19. 076	19. 131 VV	2375	56014	0. 79%	0. 016%
291 19. 175	19. 131	19. 219 VV	974	42478	0. 60%	0. 012%
292 19. 288	19. 219	19. 315 VV	1827	58065	0. 82%	0. 016%
293 19. 333	19. 315	19. 378 VV	906	30766	0. 43%	0. 009%
294 19. 388	19. 378	19. 406 VV	917	14223	0. 20%	0. 004%
295 19. 477	19. 406	19. 525 VV	235404	3339715	47. 12%	0. 930%
296 19. 548 297 19. 582 298 19. 652 299 19. 758	19. 525 19. 559 19. 615 19. 684	19. 559 VV 19. 615 VV 19. 684 VV 19. 791 VV	1453 1962 1641 1768 Pa	27189 50963 57347 97815 ge 6	0. 38% 0. 72% 0. 81% 1. 38%	0. 008% 0. 014% 0. 016% 0. 027%

					Instrument : FID_C ClientSampleId :	
300 19.820	19. 791	19. 831 V	r† /V 2548	teres 49112	GSB5MS	
301 19.848 302 19.890 303 19.954 304 20.016 305 20.104	19. 831 19. 877 19. 921 19. 971 20. 041	19. 921 V 19. 971 V 20. 041 V	VV 2861 VV 1937 VV 2001 VV 2879 VV 3746	66096 48634 57860 96859 186081	Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025	;
306 20. 218 307 20. 381 308 20. 459 309 20. 535 310 20. 577	20. 144 20. 268 20. 428 20. 503 20. 550	20. 428 V 20. 503 V 20. 550 V	/V 218878 /V 7443 /V 3508 /V 3624 /V 3937	3487510 392207 151859 96678 106936	5.53%	
311 20.607 312 20.687 313 20.771 314 20.808 315 20.853	20. 598 20. 661 20. 731 20. 805 20. 832	20. 731 V 20. 805 V 20. 832 V	/V 3535 /V 3128 /V 2967 /V 2861 /V 2888	123415 126541 126498 46172 53961	1. 79%	
316 20.897 317 20.990 318 21.150 319 21.242 320 21.315	20. 864 20. 928 21. 135 21. 232 21. 285	21. 135 V 21. 232 V 21. 285 V	/V 2860 /V 187023 /V 2308 /V 2005 /V 2055	105364 3695448 125871 61306 89109	52.14% 1.029% 1.78% 0.035% 0.86% 0.017%	
321 21. 368 322 21. 440 323 21. 510 324 21. 561 325 21. 601	21. 361 21. 385 21. 501 21. 535 21. 591	21. 501 V 21. 535 V 21. 591 V	/V 1859 /V 2309 /V 1710 /V 1597 /V 1511	26098 133306 32696 52947 55443	1.88% 0.037% 0.46% 0.009% 0.75% 0.015%	
326 21. 664 327 21. 679 328 21. 709 329 21. 794 330 21. 826	21. 658 21. 672 21. 701 21. 758 21. 821	21. 701 V 21. 758 V 21. 821 V	/V 1341 /V 1315 /V 1259 /V 1269 /V 1106	10892 21987 40481 45042 29729	0.31% 0.006% 0.57% 0.011% 0.64% 0.013%	
331 21. 967 332 22. 178 333 22. 234 334 22. 284 335 22. 315	21. 869 22. 113 22. 226 22. 258 22. 294	22. 226 V 22. 258 V 22. 294 V	/V 135780 /V 1121 /V 572 /V 512 /V 520	3450853 56076 9986 10653 22256	0. 79% 0. 016% 0. 14% 0. 003% 0. 15% 0. 003%	
336 22.424	22. 411		V 124 corrected	2487 areas: 3	0. 04% 0. 001% 358999382	

Aliphatic EPH 052425.M Thu May 29 07:58:21 2025

GSB5MSD

ClientSampleId:

APPROVED

Manual Integrations

Reviewed By: Yogesh Patel 05/29/2025

Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069039.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 19:46

Operator : YP/AJ Sample : Q2125-05MSD

Misc :

ALS Vial : 24 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 07:41:25 2025

Quant Title : GC Extractables

QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

Compound R.T. Response Conc Units

System Monitoring Compounds
9) S ortho-Terphenyl (SURR) 11.708 3569626 28.940 ug/ml
Spiked Amount 50.000 Recovery = 57.88%
12) S 1-chlorooctadecane (S... 13.139 2676937 29.839 ug/ml
Spiked Amount 50.000 Recovery = 59.68%

Target	Compounds			
1) T	n-Nonane (C9)	3.451	3822607	36.020 ug/ml
2) T	n-Decane (C10)	4.521	3944064	37.241 ug/ml
3) T	A~Naphthalene (C11.7)	6.114	4726143	40.871 ug/ml
4) T	n-Dodecane (C12)	6.541	4155031	39.526 ug/ml
5) T	A~2-methylnaphthalene	7.171	4720351	41.637 ug/ml
6) T	n-Tetradecane (C14)	8.340	4595913	44.837 ug/ml
7) T	n-Hexadecane (C16)	9.941	4659108	45.917 ug/mlm
8) T	n-Octadecane (C18)	11.384	3634750	36.368 ug/mlm
10) T	n-Eicosane (C20)	12.695	3845415	39.481 ug/ml
11) T	n-Heneicosane (C21)	13.306	3431957	35.656 ug/ml
13) T	n-Docosane (C22)	13.892	3369132	35.364 ug/ml
14) T	n-Tetracosane (C24)	14.989	7122521	75.648 ug/ml
15) T	n-Hexacosane (C26)	16.020	3283888	35.371 ug/ml
16) T	n-Octacosane (C28)	16.970	3260522	35.077 ug/ml
17) T	n-Tricontane (C30)	17.860	3268971	33.785 ug/ml
18) T	n-Dotriacontane (C32)	18.692	3311569	33.417 ug/ml
19) T	n-Tetratriacontane (C34)	19.477	3495620	36.269 ug/ml
20) T	n-Hexatriacontane (C36)	20.219	3499952	36.869 ug/ml
21) T	n-Octatriacontane (C38)	20.990	3618681	39.663 ug/ml
22) T	n-Tetracontane (C40)	21.964	3582628	40.603 ug/ml

(f)=RT Delta > 1/2 Window (m)=manual int.

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC052825AL\

Data File : FC069039.D Signal(s) : FID1A.ch

Acq On : 28 May 2025 19:46

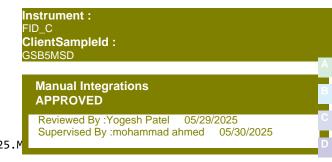
Operator : YP/AJ Sample : Q2125-05MSD

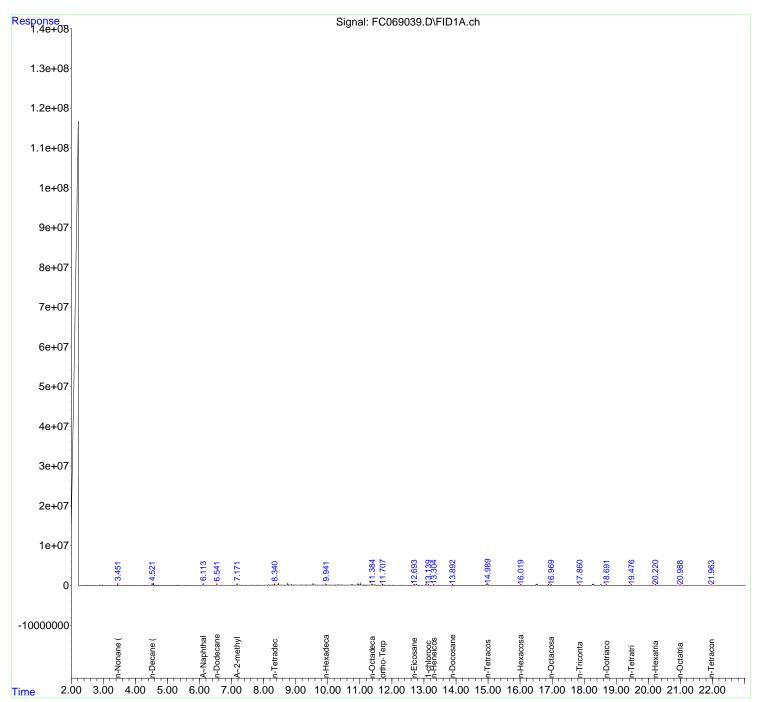
Misc

ALS Vial : 24 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: May 29 07:41:25 2025

Quant Method : Z:\pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425.M


Quant Title : GC Extractables


QLast Update : Tue May 27 01:48:55 2025 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : 1 ul Signal Phase : Rxi-1ms

Signal Info : 20M x 0.18mm x 0.18um

D

Area Percent Report

Manual IntegrationsAPPROVED

Reviewed By :Yogesh Patel 05/29/2025 Supervised By:mohammad ahmed 05/30/2025

Data Path : Z:\pestpcbsrv\HPCHEM1\FID_C\Data\FC05282
Data File : FC069039.D

FI D1A. ch 28 May 2025 Q2125-05MSD Signal(s): Acq On: 19: 46

Sample

Misc ALS Vial 24 Sample Multiplier: 1

Integration File: sample. E

: Z: \pestpcbsrv\HPCHEM1\FID_C\Method\Aliphatic EPH 052425. M : GC Extractables

Title

Si gnal : FID1A. ch

peak #	R.T. min	Start min	End mi n	PK TY	peak hei ght	peak area	peak % max.	% of total
1 2 3 4 5	3. 278 3. 302 3. 346 3. 403 3. 451	3. 221 3. 291 3. 334 3. 381 3. 416	3. 291 3. 334 3. 381 3. 416 3. 491	BV PV VV PV VV	2150 1343 410 558 467282	12186 8730 3920 4725 3835523	0. 17% 0. 12% 0. 05% 0. 07% 53. 04%	0. 003% 0. 002% 0. 001% 0. 001% 1. 073%
6 7 8 9 10	3. 501 3. 553 3. 582 3. 605 3. 652	3. 491 3. 534 3. 563 3. 596 3. 619	3. 534 3. 563 3. 596 3. 619 3. 684	VV PV VV VV	886 253 1940 1458 2119	9403 2225 20703 13368 37383	0. 13% 0. 03% 0. 29% 0. 18% 0. 52%	0. 003% 0. 001% 0. 006% 0. 004% 0. 010%
11 12 13 14 15	3. 725 3. 778 3. 825 3. 897 3. 950	3. 684 3. 758 3. 797 3. 871 3. 934	3. 758 3. 797 3. 871 3. 934 3. 980	VV VV VV VV	4581 1959 7821 4604 2315	92952 31039 114597 72226 30042	1. 29% 0. 43% 1. 58% 1. 00% 0. 42%	0. 026% 0. 009% 0. 032% 0. 020% 0. 008%
16 17 18 19 20	3. 998 4. 041 4. 097 4. 120 4. 150	3. 980 4. 016 4. 084 4. 107 4. 137	4. 016 4. 084 4. 107 4. 137 4. 168	VV VV VV VV	4562 3838 3815 5794 3480	40006 84252 38197 66203 42444	0. 55% 1. 17% 0. 53% 0. 92% 0. 59%	0. 011% 0. 024% 0. 011% 0. 019% 0. 012%
21 22 23 24 25	4. 186 4. 217 4. 300 4. 330 4. 367	4. 168 4. 199 4. 239 4. 315 4. 354	4. 199 4. 239 4. 315 4. 354 4. 405	VV VV VV VV	3407 6558 4795 5717 2951	45288 73925 100879 75029 43285	0. 63% 1. 02% 1. 40% 1. 04% 0. 60%	0. 013% 0. 021% 0. 028% 0. 021% 0. 012%
26 27 28 29 30	4. 440 4. 480 4. 521 4. 566 4. 627	4. 405 4. 458 4. 493 4. 543 4. 612	4. 458 4. 493 4. 543 4. 612 4. 654	VV VV VV VV	3870 3348 450358 493981 5929	56946 48430 3951070 4413435 72380	0. 79% 0. 67% 54. 64% 61. 04% 1. 00%	0. 016% 0. 014% 1. 105% 1. 234% 0. 020%
31 32 33 34 35	4. 675 4. 724 4. 774 4. 807 4. 828	4. 654 4. 708 4. 757 4. 792 4. 819	4. 708 4. 757 4. 792 4. 819 4. 842	VV VV VV VV	11152 7719 23644 9190 7159	163617 153959 239953 97440 82048	2. 26% 2. 13% 3. 32% 1. 35% 1. 13%	0. 046% 0. 043% 0. 067% 0. 027% 0. 023%
36	4. 854	4. 842	4. 866	VV	6593 Pag	68849	0. 95%	0. 019%

						Instrum FID_C ClientS	ent : ampleld :	
37 38 39 40	4. 895 4. 935 4. 972 5. 001	4. 866 4. 914 4. 958 4. 981	4. 914 VV 4. 958 VV 4. 981 VV 5. 022 VV	rt: 8908 15007 3922 13606	eres 156827 195384 47290 166985	GSB5MS 2. 17% Manu	O. 044% ual IntegrationsAPPROVED	-
41 42 43 44 45	5. 046 5. 072 5. 129 5. 160 5. 218	5. 022 5. 059 5. 105 5. 142 5. 194	5. 059 VV 5. 105 VV 5. 142 VV 5. 194 VV 5. 230 VV	5200 5659 10315 12045 9037	89531 109344 121559 225762 117180		oved By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025 0. 034% 0. 063% 0. 033%	
46	5. 244	5. 230	5. 253 VV	10500	113012	1. 56%	0. 032%	F
47	5. 263	5. 253	5. 307 VV	10653	214562	2. 97%	0. 060%	
48	5. 323	5. 307	5. 341 VV	4523	78936	1. 09%	0. 022%	
49	5. 362	5. 341	5. 391 VV	10930	209534	2. 90%	0. 059%	
50	5. 425	5. 391	5. 438 VV	10350	223448	3. 09%	0. 062%	
51	5. 453	5. 438	5. 470 VV	15380	203908	2. 82%	0. 057%	
52	5. 485	5. 470	5. 501 VV	10142	155339	2. 15%	0. 043%	
53	5. 511	5. 501	5. 537 VV	8283	130859	1. 81%	0. 037%	
54	5. 565	5. 537	5. 573 VV	11583	170209	2. 35%	0. 048%	
55	5. 590	5. 573	5. 613 VV	22143	318728	4. 41%	0. 089%	
56	5. 629	5. 613	5. 642 VV	10001	124018	1. 72%	0. 035%	
57	5. 651	5. 642	5. 667 VV	7909	96036	1. 33%	0. 027%	
58	5. 697	5. 667	5. 708 VV	8174	159441	2. 21%	0. 045%	
59	5. 715	5. 708	5. 724 VV	7550	72627	1. 00%	0. 020%	
60	5. 748	5. 724	5. 786 VV	38358	624824	8. 64%	0. 175%	
61	5. 805	5. 786	5. 821 VV	11710	199979	2. 77%	0. 056%	
62	5. 844	5. 821	5. 885 VV	27955	665691	9. 21%	0. 186%	
63	5. 906	5. 885	5. 919 VV	13203	201785	2. 79%	0. 056%	
64	5. 932	5. 919	5. 945 VV	12820	156874	2. 17%	0. 044%	
65	5. 970	5. 945	5. 996 VV	14134	306490	4. 24%	0. 086%	
66	6. 016	5. 996	6. 039 VV	14791	242321	3. 35%	0. 068%	
67	6. 061	6. 039	6. 085 VV	19435	378689	5. 24%	0. 106%	
68	6. 114	6. 085	6. 138 VV	499443	4873532	67. 40%	1. 363%	
69	6. 156	6. 138	6. 176 VV	17381	310734	4. 30%	0. 087%	
70	6. 216	6. 176	6. 227 VV	15983	371081	5. 13%	0. 104%	
71	6. 244	6. 227	6. 274 VV	24334	503518	6. 96%	0. 141%	
72	6. 298	6. 274	6. 314 VV	18083	361029	4. 99%	0. 101%	
73	6. 331	6. 314	6. 346 VV	23716	358805	4. 96%	0. 100%	
74	6. 380	6. 346	6. 401 VV	22974	612030	8. 46%	0. 171%	
75	6. 423	6. 401	6. 443 VV	22835	413071	5. 71%	0. 116%	
76	6. 478	6. 443	6. 513 VV	23292	765214	10. 58%	0. 214%	
77	6. 541	6. 513	6. 589 VV	405485	4520712	62. 52%	1. 264%	
78	6. 632	6. 589	6. 644 VV	19967	543219	7. 51%	0. 152%	
79	6. 658	6. 644	6. 669 VV	26865	341018	4. 72%	0. 095%	
80	6. 689	6. 669	6. 711 VV	82326	1101957	15. 24%	0. 308%	
81	6. 740	6. 711	6. 782 VV	42629	1095531	15. 15%	0. 306%	
82	6. 822	6. 782	6. 842 VV	43255	894533	12. 37%	0. 250%	
83	6. 867	6. 842	6. 910 VV	37622	1042921	14. 42%	0. 292%	
84	6. 946	6. 910	6. 969 VV	40960	945197	13. 07%	0. 264%	
85	7. 012	6. 969	7. 030 VV	30640	859513	11. 89%	0. 240%	
86 87 88 89	7. 071 7. 105 7. 171 7. 215	7. 030 7. 087 7. 137 7. 204	7. 087 VV 7. 137 VV 7. 204 VV 7. 223 VV	43157 50828 440938 26953 Pag	1145880 986872 5210419 296069 ge 2	15. 85% 13. 65% 72. 06% 4. 09%	0. 320% 0. 276% 1. 457% 0. 083%	

							ampleld :	
90	7. 245	7. 223	7. 288	VV 1125	rteres 16 2125606	GSB5MS 29. 40%	0. 594%	- 4
91 92 93 94 95	7. 306 7. 349 7. 394 7. 451 7. 468	7. 288 7. 330 7. 369 7. 413 7. 463	7. 369 7. 413 7. 463	VV 479 VV 408 VV 308 VV 468 VV 409	741575 09 774781 11 1119316	12 1(1(Revie	wed By :Yogesh Patel 05/29/2025 rvised By :mohammad ahmed 05/30/2025	
96 97 98 99 100	7. 518 7. 557 7. 587 7. 641 7. 696	7. 497 7. 530 7. 576 7. 614 7. 679	7. 576 7. 614 7. 679	VV 426 VV 466 VV 362 VV 745 VV 463	82 1139498 99 781608 84 1834341	10. 20% 15. 76% 10. 81% 25. 37% 11. 08%	0. 206% 0. 319% 0. 219% 0. 513% 0. 224%	F
101 102 103 104 105	7. 728 7. 805 7. 860 7. 906 7. 936	7. 714 7. 747 7. 847 7. 871 7. 924	7. 847 7. 871 7. 924	VV 309 VV 584 VV 364 VV 481 VV 425	43 2545386 87 488703 76 1318741	7. 87% 35. 20% 6. 76% 18. 24% 11. 63%	0. 159% 0. 712% 0. 137% 0. 369% 0. 235%	
106 107 108 109 110	7. 988 8. 051 8. 080 8. 098 8. 160	7. 959 8. 007 8. 066 8. 091 8. 130	8. 066 8. 091 8. 130	VV 502 VV 574 VV 569 VV 547 VV 1850	18 1663468 56 828703 73 1055018	16. 24% 23. 01% 11. 46% 14. 59% 42. 01%	0. 328% 0. 465% 0. 232% 0. 295% 0. 849%	
111 112 113 114 115	8. 191 8. 220 8. 269 8. 296 8. 340	8. 182 8. 204 8. 236 8. 284 8. 313	8. 236 8. 284 8. 313	VV 488 VV 481 VV 1131 VV 918 VV 4019	20 846203 33 2131996 24 1260347	8. 39% 11. 70% 29. 49% 17. 43% 72. 65%	0. 170% 0. 237% 0. 596% 0. 352% 1. 469%	
116 117 118 119 120	8. 384 8. 456 8. 510 8. 562 8. 591	8. 365 8. 404 8. 491 8. 536 8. 580	8. 491 8. 536 8. 580	VV 785 VV 4978 VV 1255 VV 608 VV 522	91 7230711 12 2167706 22 1485902	19. 25% 100. 00% 29. 98% 20. 55% 8. 71%	0. 389% 2. 022% 0. 606% 0. 416% 0. 176%	
121 122 123 124 125	8. 628 8. 667 8. 700 8. 754 8. 806	8. 601 8. 652 8. 680 8. 717 8. 778	8. 680 8. 717 8. 778	VV 576 VV 497 VV 693 VV 4951 VV 1039	17 758775 98 1233405 96 6247061	21. 79% 10. 49% 17. 06% 86. 40% 28. 15%	0. 441%0. 212%0. 345%1. 747%0. 569%	
126 127 128 129 130	8. 876 8. 912 8. 988 9. 023 9. 059	8. 828 8. 900 8. 929 9. 008 9. 043	8. 929 9. 008 9. 043	VV 2084 VV 628 VV 1225 VV 847 VV 629	77 954859 03 3321264 93 1385460	58. 24% 13. 21% 45. 93% 19. 16% 15. 48%	1. 178% 0. 267% 0. 929% 0. 387% 0. 313%	
131 132 133 134 135	9. 110 9. 158 9. 199 9. 246 9. 316	9. 076 9. 127 9. 176 9. 228 9. 276	9. 176 9. 228 9. 276	VV 836 VV 1155 VV 1243 VV 656 VV 1048	20 2299004 23 2469474 46 1668298	28. 58% 31. 79% 34. 15% 23. 07% 32. 02%	0. 578% 0. 643% 0. 691% 0. 467% 0. 647%	
136 137 138 139 140	9. 346 9. 396 9. 453 9. 491 9. 539	9. 332 9. 378 9. 412 9. 477 9. 509	9. 412 9. 477 9. 509	VV 904 VV 564 VV 1011 VV 617 VV 4769	73 1074371 71 2750306 47 1087161	23. 78% 14. 86% 38. 04% 15. 04% 98. 12%	0. 481%0. 300%0. 769%0. 304%1. 984%	
141	9. 616	9. 585	9. 668	VV 1316	17 3755389 Page 3	51. 94%	1. 050%	

				rto	eres	Instrument : FID_C ClientSampleId :	
142 9. 696 143 9. 738 144 9. 777 145 9. 811	9. 668 9. 724 9. 765 9. 794	9. 724 9. 765 9. 794 9. 834	VV VV VV	79121 84614 58720 73100	2313181 1729957 952615 1358908	GSB5MSD 31. 99% 0. 647% 2. Manual IntegrationsAPPROVED 18	
146 9.859 147 9.898 148 9.942 149 10.017 150 10.049	9. 834 9. 877 9. 917 9. 991 10. 030	9. 877 9. 917 9. 991 10. 030 10. 091	VV VV VV VV	74599 82870 407833 62022 68929	1664190 1808518 6614811 1426079 2123028	Reviewed By :Yogesh Patel 05/29/2025 Supervised By :mohammad ahmed 05/30/2025 25 91 48% 1 850% 19 72% 0 399% 29 36% 0 594%	-
151 10.118 152 10.218 153 10.278 154 10.330 155 10.388	10. 091 10. 197 10. 250 10. 302 10. 358	10. 197 10. 250 10. 302 10. 358 10. 400	VV VV VV VV	79030 56743 74771 180916 82972	3476394 1546895 1770912 3361147 1665213	48. 08%	
156 10. 413 157 10. 458 158 10. 532 159 10. 550 160 10. 599	10. 400 10. 439 10. 506 10. 541 10. 571	10. 439 10. 506 10. 541 10. 571 10. 648	VV VV VV VV	86392 108187 71220 70238 76435	1591353 2700204 1254936 1145376 2900754	22. 01%	
161 10.665 162 10.703 163 10.754 164 10.798 165 10.843	10. 648 10. 690 10. 720 10. 783 10. 831	10. 690 10. 720 10. 783 10. 831 10. 856	VV VV VV VV	70275 67193 274811 62202 51085	1652647 1087150 5140960 1666030 711349	22. 86%	
166 10.897 167 10.944 168 11.019 169 11.074 170 11.117	10. 856 10. 910 10. 987 11. 048 11. 102	10. 910 10. 987 11. 048 11. 102 11. 134	VV VV VV VV	55035 449143 423123 66920 46196	1712482 6548532 5790434 1740224 871361	23. 68%	
171 11. 153 172 11. 186 173 11. 246 174 11. 292 175 11. 332	11. 134 11. 174 11. 194 11. 268 11. 315	11. 174 11. 194 11. 268 11. 315 11. 348	VV VV VV VV	53010 45715 63283 58735 56906	1171398 535736 2298224 1485557 1056560	16. 20%	
176 11. 385 177 11. 474 178 11. 534 179 11. 590 180 11. 629	11. 348 11. 443 11. 514 11. 559 11. 613	11. 443 11. 514 11. 559 11. 613 11. 640	VV VV VV VV	357969 148919 50636 55406 44602	6457805 3408657 1160159 1488967 700431	89. 31% 1. 806% 47. 14% 0. 953% 16. 04% 0. 324% 20. 59% 0. 416% 9. 69% 0. 196%	
181 11.649 182 11.708 183 11.742 184 11.773 185 11.836	11. 640 11. 667 11. 730 11. 757 11. 810	11. 667 11. 730 11. 757 11. 810 11. 868	VV VV VV VV	44639 342750 59693 65401 38728	684999 4841426 856269 1463574 1268950	9. 47% 0. 192% 66. 96% 1. 354% 11. 84% 0. 239% 20. 24% 0. 409% 17. 55% 0. 355%	
186 11.892 187 11.927 188 11.994 189 12.033 190 12.077	11. 868 11. 910 11. 973 12. 004 12. 058	11. 910 11. 973 12. 004 12. 058 12. 105	VV VV VV VV	51622 46685 34941 58573 41000	1074579 1485724 621990 1473332 993825	14. 86%	
191 12.143 192 12.178 193 12.244 194 12.296	12. 105 12. 171 12. 224 12. 257	12. 171 12. 224 12. 257 12. 337	VV VV VV	36375 33900 33861 48950 Pag	1326241 965102 606416 1667141 ge 4	18. 34%	

			Instrument : FID_C ClientSampleId :
195 12.356 12.	337 12.377 VV	rteres 29932 675969	GSB5MSD . 9. 35% 0. 189%
196 12. 391 12. 197 12. 419 12. 198 12. 485 12. 199 12. 532 12. 200 12. 614 12.	404 12. 451 VV 451 12. 514 VV 514 12. 594 VV	27125 414805 28070 729056 28274 946146 31756 1211668 26198 486424	Manual IntegrationsAPPROVED 10 11 Reviewed By :Yogesh Patel 05/29/2025 11 Supervised By :mohammad ahmed 05/30/2025
201 12. 643 12. 202 12. 694 12. 203 12. 763 12. 204 12. 838 12. 205 12. 886 12.	663 12. 734 VV 734 12. 803 VV 803 12. 871 VV	34392 608358 318875 4588435 363504 4644785 17710 681526 17813 523535	8. 41%
206 12. 948 12. 207 13. 012 12. 208 13. 063 13. 209 13. 139 13. 210 13. 190 13.	995 13. 030 VV 030 13. 094 VV 094 13. 169 VV	17829 611554 14428 282539 354530 4296228 237330 3173587 15877 400528	8. 46%
211 13. 233 13. 212 13. 305 13. 213 13. 388 13. 214 13. 451 13. 215 13. 484 13.	274 13. 368 VV 368 13. 438 VV 438 13. 466 VV	11156 351596 288373 3967666 12059 389847 8787 139875 8851 188506	4. 86%
216 13. 536 13. 217 13. 638 13. 218 13. 681 13. 219 13. 733 13. 220 13. 798 13.	624 13. 668 VV 668 13. 699 VV 699 13. 777 VV	9498 546321 6504 156842 5720 102859 5651 242899 5513 144364	7. 56%
221 13. 841 13. 222 13. 892 13. 223 13. 949 13. 224 14. 070 14. 225 14. 120 14.	857 13. 934 VV 934 14. 058 VV 058 14. 088 VV	5182 94018 276271 3550354 4016 251673 3077 52163 3179 142953	1. 30%
226 14. 184 14. 227 14. 208 14. 228 14. 280 14. 229 14. 326 14. 230 14. 361 14.	192 14. 228 VV 228 14. 308 VV 308 14. 348 VV	2348 23646 2362 48680 2665 109824 2399 51157 1894 79410	0. 33% 0. 007% 0. 67% 0. 014% 1. 52% 0. 031% 0. 71% 0. 014% 1. 10% 0. 022%
231 14. 456 14. 232 14. 520 14. 233 14. 555 14. 234 14. 578 14. 235 14. 673 14.	496 14. 538 VV 538 14. 564 VV 564 14. 638 VV	2747 76043 1659 36914 1378 21526 1386 54103 1226 52719	1. 05%
236 14. 741 14. 237 14. 831 14. 238 14. 942 14. 239 14. 989 14. 240 15. 133 15.	795 14. 884 VV 884 14. 962 VV 962 15. 125 VV	920 32732 22707 310849 294922 3828717 486205 7179276 489 7432	0. 45% 0. 009% 4. 30% 0. 087% 52. 95% 1. 071% 99. 29% 2. 008% 0. 10% 0. 002%
241 15. 173 15. 242 15. 243 15. 243 15. 278 15. 244 15. 297 15. 245 15. 373 15.	228 15. 268 VV 268 15. 288 VV 288 15. 327 VV	884 23193 467 8475 320 3298 323 6256 15116 239575	0. 32% 0. 006% 0. 12% 0. 002% 0. 05% 0. 001% 0. 09% 0. 002% 3. 31% 0. 067%
246 15. 515 15.	486 15. 560 VV	2811 53087 Page 5	0. 73% 0. 015%

					ampleld :	
247 15. 595 15. 560 248 15. 650 15. 628 249 15. 780 15. 690 250 15. 851 15. 801	15. 628 VV 15. 690 VV 15. 801 PV 15. 873 VV	rter 1894 225 202 546	es 29248 4302 5927 9426		0. 008% al IntegrationsAPPROVED	
251 15. 892 15. 873 252 16. 020 15. 961 253 16. 165 16. 124 254 16. 223 16. 173 255 16. 275 16. 263	15. 961 VV 16. 124 VV 16. 173 VV 16. 263 VV 16. 282 PV	518 249910 91 695 123	11768 3294509 1715 13786 990		wed By :Yogesh Patel 05/29/2025 vised By :mohammad ahmed 05/30/2025 0. 000% 0. 004% 0. 000%	-
256 16. 319 16. 282 257 16. 388 16. 344 258 16. 502 16. 428 259 16. 536 16. 517 260 16. 583 16. 566	16. 344 VV 16. 428 VV 16. 517 VV 16. 566 VV 16. 611 VV		7324 29307 4002483 3942961 23665	0. 10% 0. 41% 55. 35% 54. 53% 0. 33%	0. 002% 0. 008% 1. 119% 1. 103% 0. 007%	
261 16. 631 16. 611 262 16. 747 16. 721 263 16. 808 16. 789 264 16. 883 16. 830 265 16. 970 16. 917	16. 721 VV 16. 789 VV 16. 830 VV 16. 917 VV 17. 004 VV		20047 35211 5650 3897967 3285299	0. 28% 0. 49% 0. 08% 53. 91% 45. 44%	0. 006% 0. 010% 0. 002% 1. 090% 0. 919%	
266 17. 019 17. 004 267 17. 116 17. 087 268 17. 185 17. 150 269 17. 210 17. 203 270 17. 255 17. 241	17. 087 VV 17. 150 VV 17. 203 PV 17. 241 VV 17. 294 VV	1622 130 348 240 190	27293 3079 5872 3156 4124	0. 38% 0. 04% 0. 08% 0. 04% 0. 06%	0. 008% 0. 001% 0. 002% 0. 001% 0. 001%	
271 17. 332 17. 294 272 17. 418 17. 374 273 17. 480 17. 457 274 17. 505 17. 491 275 17. 544 17. 524	17.374 VV 17.457 VV 17.491 VV 17.524 VV 17.568 VV	841 2493 206 292 138	18640 39643 3318 4202 2781	0. 26% 0. 55% 0. 05% 0. 06% 0. 04%	0. 005% 0. 011% 0. 001% 0. 001% 0. 001%	
276 17. 577 17. 568 277 17. 592 17. 584 278 17. 648 17. 622 279 17. 750 17. 674 280 17. 860 17. 774	17.584 VV 17.622 VV 17.674 VV 17.774 PV 17.898 VV	132 120 212 2925 242548	886 1745 3806 46480 3293201	0. 01% 0. 02% 0. 05% 0. 64% 45. 54%	0. 000% 0. 000% 0. 001% 0. 013% 0. 921%	
281 17. 946 17. 898 282 18. 035 17. 975 283 18. 096 18. 073 284 18. 131 18. 121 285 18. 257 18. 155	17. 975 VV 18. 073 VV 18. 121 VV 18. 155 VV 18. 274 PV	792 312 531 209 291104	14620 8964 8543 2642 4344660	0. 20% 0. 12% 0. 12% 0. 04% 60. 09%	0. 004% 0. 003% 0. 002% 0. 001% 1. 215%	
286 18. 297 18. 274 287 18. 375 18. 351 288 18. 516 18. 454 289 18. 633 18. 605 290 18. 692 18. 648	18. 351 VV 18. 454 VV 18. 605 VV 18. 648 VV 18. 758 VV	1306 284152 703	3927087 41170 3948609 14496 3325723	54. 31% 0. 57% 54. 61% 0. 20% 45. 99%	1. 098% 0. 012% 1. 104% 0. 004% 0. 930%	
291 18. 810 18. 758 292 18. 853 18. 831 293 18. 969 18. 877 294 19. 046 18. 997 295 19. 094 19. 078	18. 831 VV 18. 877 VV 18. 997 VV 19. 078 VV 19. 140 VV	921 792 493 6760 2300	28085 14758 24018 142974 56007	0. 39% 0. 20% 0. 33% 1. 98% 0. 77%	0. 008% 0. 004% 0. 007% 0. 040% 0. 016%	
296 19. 180 19. 140 297 19. 236 19. 218 298 19. 290 19. 244 299 19. 332 19. 314	19. 218 VV 19. 244 VV 19. 314 VV 19. 372 VV	907 761 1682 947 Page	36375 11396 42379 27062	0. 50% 0. 16% 0. 59% 0. 37%	0. 010% 0. 003% 0. 012% 0. 008%	

					Instrument : FID_C ClientSampleId :		
300 19.394	19. 372	19. 407	VV 851	teres 16799	GSB5MSI 0. 23%	0. 005%	P
301 19.477 302 19.548 303 19.580 304 19.655	19. 407 19. 521 19. 556 19. 611	19. 556 19. 611	VV 241707 VV 1502 VV 1889 VV 1601	3554907 26932 49501 66955	(Review	ved By :Yogesh Patel 05/29/2025 vised By :mohammad ahmed 05/30/2025	E C
305 19. 766	19. 693		VV 1674	88860			
306 19.821 307 19.851	19. 794 19. 834		VV 2475 VV 2700	49588 55134	0. 69% 0. 76%	0. 014% 0. 015%	E
308 19.885	19. 874	19. 928	VV 1860	56493	0. 78%	0. 016%	F
309 19.955 310 20.017	19. 928 19. 972		VV 1931 VV 2824	48049 95664	0. 66% 1. 32%	0. 013% 0. 027%	0
311 20. 104 312 20. 219	20. 043 20. 148		VV 3528 VV 238234	181260 3679493	2. 51% 50. 89%	0. 051% 1. 029%	F
313 20. 266	20. 258	20. 291	VV 2897	56760	0. 78%	0. 016%	
314 20. 381 315 20. 553	20. 291 20. 422		VV 7134 VV 6483	327745 637140	4. 53% 8. 81%	0. 092% 0. 178%	J
316 20. 684 317 20. 771 318 20. 870 319 20. 899 320 20. 990	20. 670 20. 731 20. 814 20. 891 20. 931	20. 814 20. 891 20. 931	VV 3044 VV 2923 VV 2842 VV 2784 VV 193305	107521 141710 126041 65007 3848911	1. 49% 1. 96% 1. 74% 0. 90% 53. 23%	0.030% 0.040% 0.035% 0.018% 1.076%	
321 21.107 322 21.193 323 21.235 324 21.309 325 21.442	21. 088 21. 180 21. 214 21. 268 21. 344	21. 214 21. 268 21. 344	VV 2403 VV 2093 VV 1955 VV 1977 VV 2255	122916 41026 61189 86942 226282	1. 70% 0. 57% 0. 85% 1. 20% 3. 13%	0.034% 0.011% 0.017% 0.024% 0.063%	
326 21.563 327 21.694 328 21.781 329 21.825 330 21.964	21. 558 21. 638 21. 778 21. 812 21. 891	21. 778 21. 812 21. 891	VV 1537 VV 1290 VV 1214 VV 1138 VV 152031	67720 103066 23053 47911 3663151	0. 94% 1. 43% 0. 32% 0. 66% 50. 66%	0. 019% 0. 029% 0. 006% 0. 013% 1. 024%	
331 22. 183 332 22. 315 333 22. 401 334 22. 420	22. 081 22. 236 22. 390 22. 414	22. 390 22. 414 22. 469	VV 1059 VV 438 VV 183 VV 121 f corrected	64073 32084 1884 2732 areas: 3	0. 89% 0. 44% 0. 03% 0. 04% 357604270	0. 018% 0. 009% 0. 001% 0. 001%	

Aliphatic EPH 052425.M Thu May 29 07:56:50 2025

Aliance TECHNICAL GROUP	284 Sheffield Street, Mountain	nside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922			
		Manual Integration Report			
Sequence:	FC052425AL	Instrument	FID_c		

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
20 PPM ALIPHATIC HC	FC069003.D	n-Octacosane (C28)	yogesh	5/27/2025 7:30:02 AM	mohammad	5/28/2025 1:48:12	Peak Integrated by Software
20 PPM ALIPHATIC HC	FC069003.D	n-Tetracosane (C24)	yogesh	5/27/2025 7:30:02 AM	mohammad	5/28/2025 1:48:12	Peak Integrated by Software

G H I

284 Sheffield Street, Mo	ountainside, New Jersey	07092, Phone: 908 789 8900,	Fax: 908 789 8922
--------------------------	-------------------------	-----------------------------	-------------------

Manual Integration Report	
---------------------------	--

Sequence: FC052825AL Instrument FID_c

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
Q2127-11DL	FC069027.D	ortho-Terphenyl (SURR)	yogesh	5/29/2025 7:42:42 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
20 PPM ALIPHATIC HC	FC069029.D	n-Tetracosane (C24)	yogesh	5/29/2025 7:42:43 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-01	FC069033.D	ortho-Terphenyl (SURR)	yogesh	5/29/2025 8:34:39 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-03	FC069035.D	ortho-Terphenyl (SURR)	yogesh	5/29/2025 8:34:40 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-05MS	FC069038.D	n-Hexadecane (C16)	yogesh	5/29/2025 8:34:44 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-05MS	FC069038.D	n-Octadecane (C18)	yogesh	5/29/2025 8:34:44 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-05MSD	FC069039.D	n-Hexadecane (C16)	yogesh	5/29/2025 8:34:46 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software
Q2125-05MSD	FC069039.D	n-Octadecane (C18)	yogesh	5/29/2025 8:34:46 AM	mohammad	5/30/2025 1:44:30	Peak Integrated by Software

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922 TECHNICAL GROUP					
		Manual Integration Report			
Sequence:	FC052925AL	Instrument	FID_c		

Sample ID	File ID	Parameter	Review By	Review On	Supervised By	Supervised On	Reason
20 PPM ALIPHATIC HC	FC069044.D	n-Tetracosane (C24)	yogesh	5/30/2025 7:27:04 AM	mohammad	5/30/2025 8:30:59	Peak Integrated by Software
Q2125-05DL	FC069047.D	ortho-Terphenyl (SURR)	yogesh	5/30/2025 7:27:05 AM	mohammad	5/30/2025 8:30:59	Peak Integrated by Software
20 PPM ALIPHATIC HC	FC069049.D	n-Octacosane (C28)	yogesh	5/30/2025 7:27:06 AM	mohammad	5/30/2025 8:30:59	Peak Integrated by Software
20 PPM ALIPHATIC HC	FC069049.D	n-Tetracosane (C24)	yogesh	5/30/2025 7:27:06 AM	mohammad	5/30/2025 8:30:59	Peak Integrated by Software

B C D E F G J J

Fax: 908 789 8922

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052425AL

Review By	yogesh	Review On	5/23/2025 12:24:51 PM		
Supervise By	mohammad	Supervise On	5/28/2025 1:48:12 AM		
SubDirectory	FC052425AL	HP Acquire Me	thod	HP Processing Method	FC052425AL
STD. NAME	STD REF.#				
Tune/Reschk					
Initial Calibration Stds	PP24170,PP24175,PP2	24176,PP24177,PP2417	78		
CCC	PP24176				
Internal Standard/PEM					
ICV/I.BLK	PP24174,PP24179				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

Sr#	Sampleld	Data File Name	Date-Time	Operator	Status
1	MECL2	FC068996.D	23 May 2025 12:58	YP/AJ	Ok
2	I.BLK	FC068997.D	23 May 2025 13:35	YP/AJ	Ok
3	100 PPM ALIPHATIC HC STD1	FC068998.D	23 May 2025 14:12	YP/AJ	Ok
4	50 PPM ALIPHATIC HC STD2	FC068999.D	23 May 2025 14:50	YP/AJ	Ok
5	20 PPM ALIPHATIC HC STD3	FC069000.D	23 May 2025 15:28	YP/AJ	Ok
6	10 PPM ALIPHATIC HC STD4	FC069001.D	23 May 2025 16:05	YP/AJ	Ok
7	5 PPM ALIPHATIC HC STD5	FC069002.D	23 May 2025 16:43	YP/AJ	Ok
8	20 PPM ALIPHATIC HC STD ICV	FC069003.D	23 May 2025 17:20	YP/AJ	Ok,M
9	I.BLK	FC069004.D	23 May 2025 18:36	YP/AJ	Ok
10	20 PPM ALIPHATIC HC STD	FC069005.D	23 May 2025 19:13	YP/AJ	Ok

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052825AL

Review By yogesh Review On 5/28/2025 11:05:20 AM Supervise By mohammad Supervise On 5/30/2025 1:44:30 AM SubDirectory FC052825AL **HP Acquire Method HP Processing Method** FC052425AL STD. NAME STD REF.# Tune/Reschk Initial Calibration Stds PP24170,PP24175,PP24176,PP24177,PP24178 PP24176 CCC Internal Standard/PEM PP24174,PP24179 ICV/I.BLK Surrogate Standard MS/MSD Standard LCS Standard

Sr#	SampleId	Data File Name	Date-Time	Operator	Status
1	MECL2	FC069021.D	28 May 2025 07:55	YP/AJ	Ok
2	I.BLK	FC069022.D	28 May 2025 08:31	YP/AJ	Ok
3	20 PPM ALIPHATIC HC STD	FC069023.D	28 May 2025 09:08	YP/AJ	Ok
4	Q2127-07DL	FC069024.D	28 May 2025 10:26	YP/AJ	Not Ok
5	Q2127-08DL	FC069025.D	28 May 2025 11:03	YP/AJ	Ok
6	Q2127-09DL	FC069026.D	28 May 2025 11:40	YP/AJ	Ok
7	Q2127-11DL	FC069027.D	28 May 2025 12:17	YP/AJ	Not Ok
8	I.BLK	FC069028.D	28 May 2025 12:54	YP/AJ	Ok
9	20 PPM ALIPHATIC HC STD	FC069029.D	28 May 2025 13:31	YP/AJ	Ok,M
10	PB168182BL	FC069030.D	28 May 2025 14:08	YP/AJ	Ok
11	PB168182BS	FC069031.D	28 May 2025 14:46	YP/AJ	Ok
12	PB168182BSD	FC069032.D	28 May 2025 15:24	YP/AJ	Ok
13	Q2125-01	FC069033.D	28 May 2025 16:01	YP/AJ	Dilution
14	Q2125-02	FC069034.D	28 May 2025 16:39	YP/AJ	Ok
15	Q2125-03	FC069035.D	28 May 2025 17:17	YP/AJ	Dilution
16	Q2125-04	FC069036.D	28 May 2025 17:54	YP/AJ	Ok
17	Q2125-05	FC069037.D	28 May 2025 18:31	YP/AJ	Dilution
18	Q2125-05MS	FC069038.D	28 May 2025 19:09	YP/AJ	Ok,M
19	Q2125-05MSD	FC069039.D	28 May 2025 19:46	YP/AJ	Ok,M
20	I.BLK	FC069040.D	28 May 2025 21:00	YP/AJ	Ok
21	20 PPM ALIPHATIC HC STD	FC069041.D	28 May 2025 21:37	YP/AJ	Ok

Fax: 908 789 8922

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052925AL

Davison Do	b	Di O	F/00/000F 40-40-F4 AM		
Review By yogesh		Review On	5/29/2025 10:10:54 AM		
Supervise By	mohammad	Supervise On	5/30/2025 8:30:59 AM		
SubDirectory	FC052925AL	HP Acquire Me	thod	HP Processing Method	FC052425AL
STD. NAME	STD REF.#				
Tune/Reschk					
Initial Calibration Stds	PP24170,PP24175,PP2	24176,PP24177,PP2417	78		
CCC	PP24176				
Internal Standard/PEM					
ICV/I.BLK	PP24174,PP24179				
Surrogate Standard					
MS/MSD Standard					
LCS Standard					

Sr#	Sampleld	Data File Name	Date-Time	Operator	Status
1	MECL2	FC069042.D	29 May 2025 08:26	YP/AJ	Ok
2	I.BLK	FC069043.D	29 May 2025 09:03	YP/AJ	Ok
3	20 PPM ALIPHATIC HC STD	FC069044.D	29 May 2025 09:40	YP/AJ	Ok,M
4	Q2125-01DL	FC069045.D	29 May 2025 10:18	YP/AJ	Ok
5	Q2125-03DL	FC069046.D	29 May 2025 10:55	YP/AJ	Ok
6	Q2125-05DL	FC069047.D	29 May 2025 11:33	YP/AJ	Ok,M
7	I.BLK	FC069048.D	29 May 2025 12:10	YP/AJ	Ok
8	20 PPM ALIPHATIC HC STD	FC069049.D	29 May 2025 12:48	YP/AJ	Ok,M

Instrument ID:

FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052425AL

Review By	Review By yogesh		5/23/2025 12:24:51 PM				
Supervise By	mohammad	Supervise On	5/28/2025 1:48:12 AM				
SubDirectory	FC052425AL	HP Acquire Method	HP Processing Method	FC052425AL			
STD. NAME	STD REF.#						
Tune/Reschk Initial Calibration Stds	PP24170,PP24175,PP	PP24170,PP24175,PP24176,PP24177,PP24178					
CCC Internal Standard/PEM	PP24176						
ICV/I.BLK Surrogate Standard	PP24174,PP24179						
MS/MSD Standard LCS Standard							

Sr#	Sampleld	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	MECL2	MECL2	FC068996.D	23 May 2025 12:58		YP/AJ	Ok
2	I.BLK	I.BLK	FC068997.D	23 May 2025 13:35		YP/AJ	Ok
3	100 PPM ALIPHATIC H	100 PPM ALIPHATIC H	FC068998.D	23 May 2025 14:12		YP/AJ	Ok
4	50 PPM ALIPHATIC HC	50 PPM ALIPHATIC HC	FC068999.D	23 May 2025 14:50		YP/AJ	Ok
5	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069000.D	23 May 2025 15:28		YP/AJ	Ok
6	10 PPM ALIPHATIC HC	10 PPM ALIPHATIC HC	FC069001.D	23 May 2025 16:05		YP/AJ	Ok
7	5 PPM ALIPHATIC HC	5 PPM ALIPHATIC HC	FC069002.D	23 May 2025 16:43		YP/AJ	Ok
8	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069003.D	23 May 2025 17:20		YP/AJ	Ok,M
9	I.BLK	I.BLK	FC069004.D	23 May 2025 18:36		YP/AJ	Ok
10	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069005.D	23 May 2025 19:13		YP/AJ	Ok

M : Manual Integration

В

D

Ε

.

J

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052825AL

Review By yogesh		Review On	5/28/2025 11:05:20 AM				
Supervise By	mohammad	Supervise On	5/30/2025 1:44:30 AM				
SubDirectory	FC052825AL	HP Acquire Method	HP Processing Method	FC052425AL			
STD. NAME	STD REF.#						
Tune/Reschk Initial Calibration Stds	PP24170,PP24175,PP2	24176,PP24177,PP24178					
CCC Internal Standard/PEM	PP24176						
ICV/I.BLK Surrogate Standard	PP24174,PP24179						
MS/MSD Standard LCS Standard							

Sr#	SampleId	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	MECL2	MECL2	FC069021.D	28 May 2025 07:55		YP/AJ	Ok
2	I.BLK	I.BLK	FC069022.D	28 May 2025 08:31		YP/AJ	Ok
3	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069023.D	28 May 2025 09:08		YP/AJ	Ok
4	Q2127-07DL	EPH-1-FDL	FC069024.D	28 May 2025 10:26	not required	YP/AJ	Not Ok
5	Q2127-08DL	EPH-1-GDL	FC069025.D	28 May 2025 11:03		YP/AJ	Ok
6	Q2127-09DL	EPH-1-HDL	FC069026.D	28 May 2025 11:40		YP/AJ	Ok
7	Q2127-11DL	COMP-2DL	FC069027.D	28 May 2025 12:17	not required	YP/AJ	Not Ok
8	I.BLK	I.BLK	FC069028.D	28 May 2025 12:54		YP/AJ	Ok
9	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069029.D	28 May 2025 13:31		YP/AJ	Ok,M
10	PB168182BL	PB168182BL	FC069030.D	28 May 2025 14:08		YP/AJ	Ok
11	PB168182BS	PB168182BS	FC069031.D	28 May 2025 14:46		YP/AJ	Ok
12	PB168182BSD	PB168182BSD	FC069032.D	28 May 2025 15:24		YP/AJ	Ok
13	Q2125-01	GSB1	FC069033.D	28 May 2025 16:01	need 50x dilution	YP/AJ	Dilution
14	Q2125-02	GSB2	FC069034.D	28 May 2025 16:39		YP/AJ	Ok
15	Q2125-03	GSB3	FC069035.D	28 May 2025 17:17	need 50x dilution	YP/AJ	Dilution
16	Q2125-04	GSB4	FC069036.D	28 May 2025 17:54		YP/AJ	Ok
17	Q2125-05	GSB5	FC069037.D	28 May 2025 18:31	need 5x dilution	YP/AJ	Dilution
18	Q2125-05MS	GSB5MS	FC069038.D	28 May 2025 19:09	FC069037.D	YP/AJ	Ok,M

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052825AL

Review By yogesh		Review On	5/28/2025 11:05:20 AM				
Supervise By	mohammad	Supervise On	5/30/2025 1:44:30 AM				
SubDirectory	FC052825AL	HP Acquire Method	HP Processing Method	FC052425AL			
STD. NAME	STD REF.#						
Tune/Reschk							
Initial Calibration Stds	PP24170,PP24175,PI	PP24170,PP24175,PP24176,PP24177,PP24178					
000	PP24176						
CCC Internal Standard/PEM	PP24176						
ICV/I.BLK	PP24174,PP24179						
Surrogate Standard							
MS/MSD Standard							
LCS Standard							

19	Q2125-05MSD	GSB5MSD	FC069039.D	28 May 2025 19:46	FC069037.D!FC069038.D	YP/AJ	Ok,M
20	I.BLK	I.BLK	FC069040.D	28 May 2025 21:00		YP/AJ	Ok
21	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069041.D	28 May 2025 21:37		YP/AJ	Ok

Instrument ID: FID_C

Daily Analysis Runlog For Sequence/QCBatch ID # FC052925AL

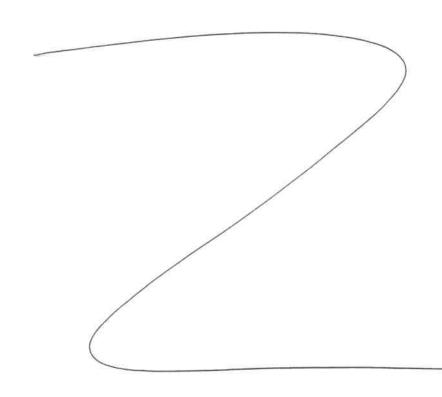
Review By	Review By yogesh		5/29/2025 10:10:54 AM	
Supervise By	mohammad	Supervise On	5/30/2025 8:30:59 AM	
SubDirectory	FC052925AL	HP Acquire Method	HP Processing Method	FC052425AL
STD. NAME	STD REF.#			
Tune/Reschk Initial Calibration Stds	PP24170,PP24175,PP2	4176,PP24177,PP24178		
CCC Internal Standard/PEM	PP24176			
ICV/I.BLK Surrogate Standard MS/MSD Standard LCS Standard	PP24174,PP24179			

Sr#	SampleId	ClientID	Data File Name	Date-Time	Comment	Operator	Status
1	MECL2	MECL2	FC069042.D	29 May 2025 08:26		YP/AJ	Ok
2	I.BLK	I.BLK	FC069043.D	29 May 2025 09:03		YP/AJ	Ok
3	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069044.D	29 May 2025 09:40		YP/AJ	Ok,M
4	Q2125-01DL	GSB1DL	FC069045.D	29 May 2025 10:18		YP/AJ	Ok
5	Q2125-03DL	GSB3DL	FC069046.D	29 May 2025 10:55		YP/AJ	Ok
6	Q2125-05DL	GSB5DL	FC069047.D	29 May 2025 11:33		YP/AJ	Ok,M
7	I.BLK	I.BLK	FC069048.D	29 May 2025 12:10		YP/AJ	Ok
8	20 PPM ALIPHATIC HC	20 PPM ALIPHATIC HC	FC069049.D	29 May 2025 12:48		YP/AJ	Ok,M

EXTRACTION LOGPAGE

Clean Up SOP #: N/A Extraction Start Date : 05/28/2025 Matrix : Solid Extraction Start Time : 09:35 Weigh By: EH Extraction By: RJ Extraction End Date : 05/28/2025	
Weigh By: EH Extraction By: RJ Extraction End Date: 05/28/2025	
Balance check: RJ Filter By: RJ Extraction End Time: 12:40	
Balance ID: EX-SC-2 pH Meter ID: N/A Concentration By: EH	
pH Strip Lot#: N/A Hood ID: 3,7 Supervisor By : RUPESH	_
Extraction Method: Seperatory Funnel Continious Liquid/Liquid Sonication Waste Dilution	khle
Standared Name MLS USED Concentration ug/mL STD REF. # FROM LOG	\neg
Spike Sol 1 1.0ML 100 PPM PP24573	\exists
Surrogate 1.0ML 100 PPM PP24591	
N/A N/A N/A	
N/A N/A N/A	
N/A N/A N/A	
Chemical Used ML/SAMPLE USED Lot Number	٦
MeCl2/Acetone/1:1 N/A EP2612	\dashv
Baked Na2SO4 N/A EP2614	\exists
Sand N/A E2865	\neg
Methylene Chloride N/A E3939	
N/A N/A N/A	
N/A N/A	
N/A N/A	
N/A N/A N/A	_
N/A N/A N/A N/A	_
	-
N/A N/A N/A N/A	\dashv
N/A N/A N/A	\dashv
N/A N/A N/A	\dashv
Extraction Conformance/Non-Conformance Comments: N/A	
KD Bath ID: N/A Envap ID: NEVAP-02	_
KD Bath Temperature:N/A Envap Temperature:40 °C	
Date / Time Prepped Sample Relinquished By/Location Received By/Location	
5/28/25 RS(EX+106) Y+PRSTIFOS.	
(2:45 Preparation Group Analysis Group	-

EXTRACTION LOGPAGE


PrepBatch ID: PB168182

Analytical Method:

MNJDEP-EPH-7

Concentration Date: 05/28/2025

Sample ID	Client Sample ID	Test	g) mL	PH	Surr	Spike By:	Final Vol.	JarID	Comments	Prep
beinpie 15	onent Sample 19	Test	9	"	AddedBy	VerifiedBy	(mL)	Jario	comments	Pos
PB168182BL	PB168182BL	EPH_F2	30.01	N/A	ritesh	Evelyn	2			U2-1
PB168182BS	PB168182BS	EPH_F2	30.02	N/A	ritesh	Evelyn	2			2
PB168182BS D	PB168182BSD	EPH_F2	30.01	N/A	ritesh	Evelyn	2			3
Q2125-01	GSB1	EPH_F2	30.06	N/A	ritesh	Evelyn	2			4
Q2125-02	GSB2	EPH_F2	30.04	N/A	ritesh	Evelyn	2			5
Q2125-03	GSB3	EPH_F2	30.10	N/A	ritesh	Evelyn	2			6
Q2125-04	GSB4	EPH_F2	30.08	N/A	ritesh	Evelyn	2			U3-1
Q2125-05	GSB5	EPH_F2	30.02	N/A	ritesh	Evelyn	2			2
Q2125-05MS	GSB5MS	EPH_F2	30.06	N/A	ritesh	Evelyn	2			3
Q2125-05MS	GSB5MSD	EPH_F2	30.07	N/A	ritesh	Evelyn	2			4

5/28

WORKLIST(Hardcopy Internal Chain)

WorkList Name:

Q2125

WorkList ID: 189794

Department: Extraction

Date: 05-28-2025 09:31:40

Sample	Customer Sample	Matrix	Test	Preservative	Customer	Raw Sample Storage Location	Collect Date	Method
Q2125-01	GSB1	Solid	EPH_F2	Cool 4 deg C	GENV01	L31	05/23/2025	NIEDH
Q2125-02	GSB2	Solid	EPH_F2	Cool 4 deg C	GENV01	L31		
Q2125-03	GSB3	Solid	EPH_F2	Cool 4 deg C	GENV01	L31	05/23/2025	NJEPH
Q2125-04	GSB4	Solid	EPH_F2	Cool 4 deg C	GENV01	L31	05/23/2025	NJEPH
Q2125-05	GSB5	Solid	EPH_F2	Cool 4 deg C	GENV01	L31	05/23/2025	NJEPH

Date/Time

Raw Sample Received by:

Raw Sample Relinquished by:

Date/Time

Raw Sample Received by:

Raw Sample Relinquished by:

LAB CHRONICLE

OrderID: Q2125

Client: G Environmental
Contact: Gary Landis

OrderDate: 5/23/2025 11:50:35 AM

Project: Seely Location: L31

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2125-01	GSB1	Solid			05/23/25			05/23/25
			EPH_F2	NJEPH		05/28/25	05/28/25	
Q2125-01DL	GSB1DL	Solid			05/23/25			05/23/25
			EPH_F2	NJEPH		05/28/25	05/29/25	
Q2125-02	GSB2	Solid	EDIT E3	NJEDIJ	05/23/25	05/20/25	05/20/25	05/23/25
02125 02	GSB3	Solid	EPH_F2	NJEPH	05/22/25	05/28/25	05/28/25	05/22/25
Q2125-03	GSB3	Solid	EPH_F2	NJEPH	05/23/25	05/28/25	05/28/25	05/23/25
Q2125-03DL	GSB3DL	Solid	EPH_F2	NJEPH	05/23/25	05/28/25	05/29/25	05/23/25
Q2125-04	GSB4	Solid	_		05/23/25			05/23/25
			EPH_F2	NJEPH		05/28/25	05/28/25	
Q2125-05	GSB5	Solid			05/23/25			05/23/25
			EPH_F2	NJEPH		05/28/25	05/28/25	
Q2125-05DL	GSB5DL	Solid			05/23/25			05/23/25
			EPH_F2	NJEPH		05/28/25	05/29/25	

SHIPPING DOCUMENTS

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 • Fax (908) 789-8922 www.chemtech.net

ALLIANCE PI	ROJECT NO.	
QUOTE NO.	Q2125	
COC Number	2047144	

PECHNICAL GAOUP					OLIENT POOLEGY INTODUSTION																
CLIENT INFORMATION REPORT TO BE SENT TO:					CLIENT PROJECT INFORMATION										CLIENT BILLING INFORMATION						
COMPANY: COM				PROJE	PROJECT NAME: See BILL TO: G									34	PAVIRON MENTERPO#:						
ADDRESS: 8 CARRIAGE				PROJECT NO.: LOCATION:								ADDRESS:									
CITY SUCASUM STATEVI ZIP: 01876				PROJECT MANAGER:								CITY Shelestome STATE: W : ZIOTO 6									
ATTENTION:				e-mail:								ATTENTION: PHONE:									
PHONE:					PHONE: FAX:										ANALYSIS						
	DATA TURNAI	ROUND INFORMA	TION		D	ATA	DELIVE	RABLE IN	IFORM	ATION											
FAX (RUSH) DAYS* HARDCOPY (DATA PACKAGE): DAYS* EDD: DAYS* *TO BE APPROVED BY CHEMTECH STANDARD HARDCOPY TURNAROUND TIME IS 10 BUSINESS				Level 1 (Results Only) Level 2 (Results + QC) Level 2 (Results + QC) Level 3 (Results + QC) NJ Reduced US EPA CLP NYSMSP A NYS ASP B + Raw Data) EDD FORMAT																	
				1	SAM			MPLE	ES			1	PRES	SERVA	TIVES					DMMENTS	
ALLIANCE SAMPLE		PROJECT AMPLE IDENTIFIC	ATION	SAMPLE	TYI	_	COLL	ECTION	OF BOTTLES	M			~						← Speci	fy Preservatives D-NaOH	
ΙD	5	AMPLE IDENTIFIC	ATION	MATRIX	COMP	GRAB	DATE	TIME	# P	1	2	3	4	5	6	7 -	8	9	B-HN03 C-H2SO4	E-ICE F-OTHER	
1.	(55	B1		Soil		Υ	5/23/2	5090	DI	X		1									
2.	R	RZ		1		1	11/	0915		X		ã						-			
3.	65	63				\perp		0920	_	V		8									
4.	8	BU		\Box		14	1237	109	0	13		K									
5.		80		507			3/23/2		- 1	\		3									
6.	0-	03		201		A	2 000	DVIT	1	1		0								87	
7.												-									
8.										-											
9.					\vdash	\dashv								-						_	
10.	w.																				
	K-I	SAMPLE CUSTO	DY MUST BE DOC	MENTE	D BEL	OW	EACH T	ME SAME	LES C	HANGE	POSS	FSSIO	VINCE	LIDING	COLIB	IFR DE	LIVER	V .			
RELINQUISHE	SAMPLER:	DATE/TIME: 104	RECEIVED BY)			TIT	ons of bottles							_		MP	2	2	°C	
1. M	el	5/28/25	1. (1)				Comme				A	-1						2	O.		
RELINQUISHED	Y SAMPLER:	DATE/TIME:	RECEIVED BY:				:	EPH	4 (21	L -	1-1	day	707	0.			TRE	gur	4	
2.			2.			_	1						-								
RELINQUISHED BY	Y SAMPLER:	DATE/TIME:	RECEIVED BY:							CLIENT	: 0	Hand De	livered	<u> </u>	ther			$\overline{}$	Shipmen	t Complete	
3.			3.				Page	of											O YES	□ NO	

From: Gary Landis <gary@g-environmental.com> Sent: Friday, May 30, 2025 10:43 PM To: Yazmeen Gomez Subject: sample activation SPLP and standard 2-methylnaph and naphthalene EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity. **Secured by Check Point** GSB3DL Q2125-03DL Please activate sample GSB3 for standard 2-methylnaphthalene and naphthalene and the SPLP for both of those. Standard TAT Gary

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

QA Control Code: A2070148