

ANALYTICAL RESULTS SUMMARY

GENERAL CHEMISTRY METALS SEMI-VOLATILE ORGANICS VOLATILE ORGANICS

PROJECT NAME : FORMER SCHLUMBERGER STC PTC SITE D3868221

JACOBS ENGINEERING GROUP, INC.

412 Mt. Kemble Ave

Downtown Building

Morristown, NJ - 07960

Phone No: 9732670555

ORDER ID: Q2250

ATTENTION : John Ynfante

Laboratory Certification ID # 20012

1) Signature Page	3
2) Case Narrative	5
2.1) VOCMS Group3- Case Narrative	5
2.2) SVOC-SIMGroup1- Case Narrative	7
2.3) Metals-MS- Case Narrative	9
2.4) Genchem- Case Narrative	11
3) Qualifier Page	12
4) QA Checklist	14
5) VOCMS Group3 Data	15
6) SVOC-SIMGroup1 Data	22
7) Metals-MS Data	28
8) Genchem Data	33
9) Shipping Document	36
9.1) CHAIN OF CUSTODY	37
9.2) Lab Certificate	38
9.3) Internal COC	39

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name : Alliance Technical Group LLC		Client :	JACOBS Engineering Group, Inc.
Project Location :	Princeton Junction	Project Number :	D3868221
Laboratory Sample ID(s): Q2250	Sampling Date(s) :	06/05/2025

List DKQP Methods Used (e.g., 8260,8270, et Cetra)

,6020B,7470A,8260D,8270-Modified,9056A,SM2320 B,SM2540 C,SOP

1

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	V	Yes		No	
1A	Were the method specified handling, preservation, and holding time requirements met?	V	Yes		No	
1B	EPH Method: Was the EPH method conducted without significant modifications (see Section 11.3 of respective DKQ methods)		Yes		No	✓ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Ø	Yes		No	
3	Were samples received at an appropriate temperature (4±2° C)?	V	Yes		No	□ N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?		Yes	\checkmark	No	
5	a)Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	V	Yes		No	
	b)Were these reporting limits met?	Ø	Yes		No	□ N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	\mathbf{N}	Yes		No	
7	Are project-specific matrix spikes and/or laboratory duplicates included in this data set?	V	Yes		No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Client Sample Number

Cover Page

- **Order ID :** Q2250
- **Project ID :** Former Schlumberger STC PTC Site D3868221
 - **Client :** JACOBS Engineering Group, Inc.

Lab Sample Number

Q2250-01MW-11A-13.5-060525Q2250-02MW-11A-13.5-060525MSQ2250-03MW-11A-13.5-060525MSDQ2250-04MW-06-6.5-060525Q2250-05EB02-060525Q2250-06TB-01-060525Q2250-07EB02-060525

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

Date: 6/18/2025

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Order ID # Q2250 Test Name: VOCMS Group3

A. Number of Samples and Date of Receipt:

7 Water samples were received on 06/05/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Mercury, Metals ICP-TAL, METALS-TAL, SVOC-SIMGroup1, TDS and VOCMS Group3. This data package contains results for VOCMS Group3.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_N were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOCMS Group3 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis. The Surrogate recoveries met the acceptable criteria. The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {Q2250-02MS} with File ID: VN086922.D recoveries met the requirements for all compounds except for cis-1,2-Dichloroethene[2100%] and Trichloroethene[3000%] these compounds did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The MSD {Q2250-03MSD} with File ID: VN086923.D recoveries met the acceptable requirements except for cis-1,2-Dichloroethene[2500%] and Trichloroethene[3800%] these compounds did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The RPD for {Q2250-03MSD} with File ID: VN086923.D met criteria except for Trichloroethene[24%] due to difference in results of MS and MSD.

The Blank Spike met requirements for all samples.

The Blank Spike Duplicate met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements. The Continuous Calibration met the requirements. The Tuning criteria met requirements.

Sample MW-11A-13.5-060525 was diluted due to high concentration.

E. Additional Comments:

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		
Signature		

CASE NARRATIVE

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Order ID # Q2250 Test Name: SVOC-SIMGroup1

A. Number of Samples and Date of Receipt:

7 Water samples were received on 06/05/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Mercury, Metals ICP-TAL, METALS-TAL, SVOC-SIMGroup1, TDS and VOCMS Group3. This data package contains results for SVOC-SIMGroup1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_N using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGAThe analysis of SVOC-SIMGroup1 was based on method 8270-Modified and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for MW-06-6.5-060525 [Terphenyl-d14 - 136%] and EB02-060525 [Terphenyl-d14 - 137%]. This compound did not meet the NJDKQP criteria but met the in-house criteria.

The Internal Standards Areas met the acceptable requirements. The Retention Times were acceptable for all samples.

The MS {Q2250-02MS} with File ID: BN037192.D recoveries met the requirements for all compounds except for 1,4-Dioxane[167%]. This compound did not meet the NJDKQP criteria but met the in-house criteria.

The MSD {Q2250-03MSD} with File ID: BN037193.D recoveries met the acceptable requirements except for 1,4-Dioxane[200%]. This compound did not meet the NJDKQP criteria and in-house criteria due to matrix interference.

The RPD met criteria. The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination. The Initial Calibration met the requirements. The Continuous Calibration met the requirements. The Tuning criteria met requirements.

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

22

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

2.3

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Order ID # Q2250 Test Name: Dissolved ICP-Group2,Mercury,Metals ICP-TAL

A. Number of Samples and Date of Receipt:

7 Water samples were received on 06/05/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Mercury, Metals ICP-TAL, METALS-TAL, SVOC-SIMGroup1, TDS and VOCMS Group3. This data package contains results for Dissolved ICP-Group2, Mercury, Metals ICP-TAL.

C. Analytical Techniques:

The analysis of Dissolved ICP-Group2, Metals ICP-TAL was based on method 6020B, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate (MW-17B-55-060425DUP) analysis met criteria for all elements except for Arsenic due to sample matrix interference.

The Matrix Spike (MW-17B-55-060425MS) analysis met criteria for all elements except for Arsenic and Silver due to Chemical Interference during Digestion Process. The Matrix Spike (TW-WTS-10MS) analysis met criteria for all elements except for Mercury due to sample matrix interference.

The Matrix Spike Duplicate (MW-17B-55-060425MSD) analysis met criteria for all elements except for Arsenic and Silver due to Chemical Interference during Digestion Process. The Matrix Spike Duplicate (TW-WTS-10MSD) analysis met criteria for all elements except for Mercury due to sample matrix interference.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

The Post Digest Spike (MW-17B-55-060425A) analysis met criteria for all samples except for Arsenic and Silver due to unknown chemical interference of matrix with the addition of spike amount after digestion and before analysis, matrix has suppression effect during addition of spike.

Sample Q2250-05 analyze as Total Metal and Sample Q2250-07 analyze as Dissolved Metal.

Collision cell is being used to remove potential interference. The analytes Na, Mg, Al, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As are being analyzed with collision cell and analytes Be, B, Ca, Ti, Se, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, U are being analyzed with Non-Collision Cell. Helium gas is used for the Collision Cell analysis.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

24

JACOBS Engineering Group, Inc. Project Name: Former Schlumberger STC PTC Site D3868221 Project # N/A Order ID # Q2250 Test Name: Alkalinity,Anions Group1,TDS

A. Number of Samples and Date of Receipt:

7 Water samples were received on 06/05/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Alkalinity, Anions Group1, Dissolved ICP-Group2, Dissolved Metals Group3, Mercury, Metals ICP-TAL, METALS-TAL, SVOC-SIMGroup1, TDS and VOCMS Group3. This data package contains results for Alkalinity, Anions Group1, TDS.

C. Analytical Techniques:

The analysis of Anions Group1 was based on method 9056A, The analysis of Alkalinity was based on method SM2320 B and The analysis of TDS was based on method SM2540 C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_____

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following " Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).					
U	Indicates the analyte was analyzed for, but not detected.					
ND	Indicates the analyte was analyzed for, but not detected					
Ε	Indicates the reported value is estimated because of the presence of interference					
Μ	Indicates Duplicate injection precision not met.					
Ν	Indicates the spiked sample recovery is not within control limits.					
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).					
*	Indicates that the duplicate analysis is not within control limits.					
+	Indicates the correlation coefficient for the MSA is less than 0.995.					
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.					
M OR	 Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi – Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis. 					
Q	Indicates the LCS did not meet the control limits requirements					
Н	Sample Analysis Out Of Hold Time					

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following " Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value					
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.					
ND	Indicates the analyte was analyzed for, but not detected					
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others. 					
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".					
Ε	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.					
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.					
Р	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".					
Ν	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.					
Α	This flag indicates that a Tentatively Identified Compound is a suspected aldol- condensation product.					
Q	Indicates the LCS did not meet the control limits requirements					

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q2250

Completed

For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication,airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u>✓</u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u>✓</u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u>✓</u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>✓</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	
Were the samples received within hold time	<u>✓</u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u>✓</u>
Was client requirement followed?	<u>✓</u>
Does the case narrative summarize all QC failure?	
All runlogs and manual integration are reviewed for requirements	<u>✓</u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI

Hit Summary Sheet SW-846

 SDG No.:
 Q2250

 Client:
 JACOBS Engineering Group, Inc.

Sample ID	Client ID	Matrix	Parameter	Concentrat	tion	C]	MDL	RDL	Units
Client ID:	MW-11A-13.5-0605	25							
Q2250-01	MW-11A-13.5-0605	Water	Vinyl Chloride	5.00			0.26	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	1,1-Dichloroethene	4.20			0.23	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	1,1-Dichloroethane	2.80			0.23	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	cis-1,2-Dichloroethene	850		Е	0.19	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	Benzene	0.42		J	0.15	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	Trichloroethene	1400		Е	0.090	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	1,1,2-Trichloroethane	0.50		J	0.21	1.00	ug/L
Q2250-01	MW-11A-13.5-0605	Water	Tetrachloroethene	9.40			0.23	1.00	ug/L
			Total Voc :		2270				
			Total Concentration:		2270				
Client ID:	MW-11A-13.5-0605	25DL							
Q2250-01DL	MW-11A-13.5-0605	Water	Vinyl Chloride	6.60		JD	5.20	20.0	ug/L
Q2250-01DL	MW-11A-13.5-0605	Water	cis-1,2-Dichloroethene	1000		D	3.80	20.0	ug/L
Q2250-01DL	MW-11A-13.5-0605	Water	Trichloroethene	1700		D	1.90	20.0	ug/L
Q2250-01DL	MW-11A-13.5-0605	Water	Tetrachloroethene	12.2		JD	4.60	20.0	ug/L
			Total Voc :		2720				
			Total Concentration:		2720				

В

D

A B C D

Client:	JACOBS Engineering Group, Inc.	Date Collected:	06/05/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	06/05/25
Client Sample ID:	MW-11A-13.5-060525	SDG No.:	Q2250
Lab Sample ID:	Q2250-01	Matrix:	Water
Analytical Method:	8260D	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086921.D	1			06/10/25 12:30	VN061025	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	5.00		0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	4.20		0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	2.80		0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	850	Е	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.42	J	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	1400	Е	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	J	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	9.40		0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.8		70 (74) - 130 (125)	96%	SPK: 50
1868-53-7	Dibromofluoromethane	49.4		70 (75) - 130 (124)	99%	SPK: 50
2037-26-5	Toluene-d8	51.3		70 (86) - 130 (113)	103%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.1		70 (77) - 130 (121)	100%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	362000	8.23			
540-36-3	1,4-Difluorobenzene	673000	9.106			
3114-55-4	Chlorobenzene-d5	593000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	281000	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

B

Q = indicates LCS control criteria did not meet requirements

Client:	JACOBS Engineering Group, Inc.	Date Collected:	06/05/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	06/05/25
Client Sample ID:	MW-11A-13.5-060525DL	SDG No.:	Q2250
Lab Sample ID:	Q2250-01DL	Matrix:	Water
Analytical Method:	8260D	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086948.D	20			06/11/25 15:06	VN061125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	6.60	JD	5.20	20.0	ug/L
75-35-4	1,1-Dichloroethene	4.60	UD	4.60	20.0	ug/L
75-34-3	1,1-Dichloroethane	4.60	UD	4.60	20.0	ug/L
156-59-2	cis-1,2-Dichloroethene	1000	D	3.80	20.0	ug/L
71-55-6	1,1,1-Trichloroethane	4.00	UD	4.00	20.0	ug/L
71-43-2	Benzene	3.00	UD	3.00	20.0	ug/L
107-06-2	1,2-Dichloroethane	4.40	UD	4.40	20.0	ug/L
79-01-6	Trichloroethene	1700	D	1.90	20.0	ug/L
79-00-5	1,1,2-Trichloroethane	4.20	UD	4.20	20.0	ug/L
127-18-4	Tetrachloroethene	12.2	JD	4.60	20.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	46.3		70 (74) - 130 (125)	93%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		70 (75) - 130 (124)	97%	SPK: 50
2037-26-5	Toluene-d8	51.1		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.1		70 (77) - 130 (121)	98%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	272000	8.236			
540-36-3	1,4-Difluorobenzene	500000	9.106			
3114-55-4	Chlorobenzene-d5	435000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	208000	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

С

Client:	JACOBS Engineering Group, Inc.	Date Collected:	06/05/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	06/05/25
Client Sample ID:	EB02-060525	SDG No.:	Q2250
Lab Sample ID:	Q2250-05	Matrix:	Water
Analytical Method:	8260D	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086919.D	1			06/10/25 11:47	VN061025	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.9		70 (74) - 130 (125)	96%	SPK: 50
1868-53-7	Dibromofluoromethane	48.8		70 (75) - 130 (124)	98%	SPK: 50
2037-26-5	Toluene-d8	51.5		70 (86) - 130 (113)	103%	SPK: 50
460-00-4	4-Bromofluorobenzene	48.9		70 (77) - 130 (121)	98%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	233000	8.23			
540-36-3	1,4-Difluorobenzene	433000	9.106			
3114-55-4	Chlorobenzene-d5	381000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	180000	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

19 of 40

Q = indicates LCS control criteria did not meet requirements

Client:	JACOBS Engineering Group, Inc.	Date Collected:	06/05/25
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	06/05/25
Client Sample ID:	TB-01-060525	SDG No.:	Q2250
Lab Sample ID:	Q2250-06	Matrix:	Water
Analytical Method:	8260D	% Solid:	0
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group3
GC Column:	RXI-624 ID: 0.25	Level :	LOW
Prep Method :			

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Prep Batch ID	
VN086920.D	1			06/10/25 12:08	VN061025	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-01-4	Vinyl Chloride	0.26	U	0.26	1.00	ug/L
75-35-4	1,1-Dichloroethene	0.23	U	0.23	1.00	ug/L
75-34-3	1,1-Dichloroethane	0.23	U	0.23	1.00	ug/L
156-59-2	cis-1,2-Dichloroethene	0.19	U	0.19	1.00	ug/L
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	1.00	ug/L
71-43-2	Benzene	0.15	U	0.15	1.00	ug/L
107-06-2	1,2-Dichloroethane	0.22	U	0.22	1.00	ug/L
79-01-6	Trichloroethene	0.090	U	0.090	1.00	ug/L
79-00-5	1,1,2-Trichloroethane	0.21	U	0.21	1.00	ug/L
127-18-4	Tetrachloroethene	0.23	U	0.23	1.00	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.2		70 (74) - 130 (125)	94%	SPK: 50
1868-53-7	Dibromofluoromethane	48.8		70 (75) - 130 (124)	98%	SPK: 50
2037-26-5	Toluene-d8	51.1		70 (86) - 130 (113)	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.1		70 (77) - 130 (121)	98%	SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	350000	8.23			
540-36-3	1,4-Difluorobenzene	649000	9.106			
3114-55-4	Chlorobenzene-d5	564000	11.865			
3855-82-1	1,4-Dichlorobenzene-d4	266000	13.788			

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

D

LAB CHRONICLE

OrderID: Client: Contact:	Q2250 JACOBS Engineering Group, In John Ynfante	c.		OrderDate: Project: Location:	6/5/2025 4:22:0 Former Schlum D22,N31,VOA F	berger STC PT	C Site D38682	21
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2250-01	MW-11A-13.5-060525	Water	VOCMS Group3	8260-Low	06/05/25		06/10/25	06/05/25
Q2250-01D	L MW-11A-13.5-060525 DL	Water			06/05/25			06/05/25
			VOCMS Group3	8260-Low			06/11/25	
Q2250-05	EB02-060525	Water		0260 1	06/05/25		06/10/25	06/05/25
Q2250-06	TB-01-060525	Water	VOCMS Group3	8260-Low	06/05/25		06/10/25	06/05/25
Q2250-00	10-01-000525	water	VOCMS Group3	8260-Low	00/05/25		06/10/25	00/05/25

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

A B C D

6

Hit Summary Sheet SW-846

SDG No.:	Q2250						
Client:	JACOBS Engineering C	Group, Inc.					
Sample ID	Client ID		Parameter	Concentration C	MDL	RDL	Units
Client ID :	MW-11A-13.5-060525						
Q2250-01	MW-11A-13.5-060525	WATER	1,4-Dioxane	2.500	0.07	0.22	ug/L
			Total Svoc :	2	2.50		
			Total Concentration:		2.50		
Client ID :	MW-06-6.5-060525						
Q2250-04	MW-06-6.5-060525	WATER	1,4-Dioxane	0.080 J	0.07	0.21	ug/L
			Total Svoc :	(.08		
			Total Concentration:		0.08		

A B C D

Parameter

Client:

Project:

Client Sample ID:

Analytical Method:

Lab Sample ID:

Sample Wt/Vol:

Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch:

BN037191.D

CAS Number

	т	-	-

	Repor	t of Analy	ysis			
JACOBS Engineerir	ng Group, Inc.			Date Collected:	06/05/25	5
Former Schlumberge	er STC PTC Site I	03868221		Date Received:	06/05/25	5
MW-11A-13.5-0605	25			SDG No.:	Q2250	
Q2250-01				Matrix:	Water	
SW8270ESIM				% Solid:	0	
930 Units:	mL			Final Vol:	1000	uL
930 Units.						
	uL			Test:	SVOC-S	SIMGroup1
	Decar	nted : N		Level :	LOW	
	GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
Dilution:	Prep Date		Date	Analyzed	Prep Batch	ID
1	06/06/25 1	1:54	06/09	0/25 12:06	PB168336	
er	Conc.	Qualifier	MDL		LOQ / CRQL	Units
ane	2.50		0.070		0.22	ug/L
naphthalene-d10	0.35		30 (20) -	150 (139)	87%	SPK: 0.4
nene-d10	0.45			150 (157)	113%	SPK: 0.4
zene-d5	0.36		30 (27) -	130 (154)	89%	SPK: 0.4
biphenyl	0.39		30 (30) -	130 (155)	97%	SPK: 0.4
·l-d14	0.52		30 (54) -	130 (175)	129%	SPK: 0.4

TARGETS 123-91-1	1.4-Dioxane	2.50	0.070	0.22	ug/L
SURROGATES	i, i bioxulie	2.50	0.070	0.22	u _B , E
7297-45-2	2-Methylnaphthalene-d10	0.35	30 (20) - 150 (139)	87%	SPK: 0.4
93951-69-0	Fluoranthene-d10	0.45	30 (54) - 150 (157)	113%	SPK: 0.4
4165-60-0	Nitrobenzene-d5	0.36	30 (27) - 130 (154)	89%	SPK: 0.4
321-60-8	2-Fluorobiphenyl	0.39	30 (30) - 130 (155)	97%	SPK: 0.4
1718-51-0	Terphenyl-d14	0.52	30 (54) - 130 (175)	129%	SPK: 0.4
INTERNAL STAN	NDARDS				
3855-82-1	1,4-Dichlorobenzene-d4	2010	7.589		
1146-65-2	Naphthalene-d8	5110	10.372		
15067-26-2	Acenaphthene-d10	2790	14.234		
1517-22-2	Phenanthrene-d10	5350	16.984		
1719-03-5	Chrysene-d12	4080	21.189		
1520-96-3	Perylene-d12	4050	23.377		

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

Q2250

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

Client:

Date Collected:

Report of Analysis

JACOBS Engineering Group, Inc.

- 11	-	d

06/05/25

	e	incering ore	up, me.		Dute contented.		
Project:	Former Schlur	nberger ST(C PTC Site D	3868221	Date Received:	06/05/25	
Client Sample I	D: MW-06-6.5-06	60525			SDG No.:	Q2250	
Lab Sample ID:	Q2250-04				Matrix:	Water	
Analytical Meth	nod: SW8270ESIM	[% Solid:	0	
Sample Wt/Vol:		nits: mL			Final Vol:	1000	uL
Soil Aliquot Vol		uL			Test:		IMGroup1
•		uL	D	. 1			Infotoupt
Extraction Type			Decan		Level :	LOW	
Injection Volum	ne :	(PC Factor :	1.0	GPC Cleanup :	N	PH :
Prep Method :							
File ID/Qc Batch	: Dilution:		Prep Date		Date Analyzed	Prep Batch I	D
BN037210.D	1		06/06/25 11	1:54	06/10/25 02:49	PB168336	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
	Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
CAS Number TARGETS 123-91-1	Parameter 1,4-Dioxane		Conc. 0.080	Qualifier J	MDL 0.070	LOQ / CRQL 0.21	Units ug/L
TARGETS 123-91-1							
TARGETS 123-91-1		10					ug/L
TARGETS 123-91-1 SURROGATES	1,4-Dioxane	10	0.080		0.070	0.21	
TARGETS 123-91-1 SURROGATES 7297-45-2	1,4-Dioxane 2-Methylnaphthalene-d	10	0.080 0.39		0.070 30 (20) - 150 (139)	0.21 96%	ug/L SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10	10	0.080 0.39 0.40		0.070 30 (20) - 150 (139) 30 (54) - 150 (157)	0.21 96% 101%	ug/L SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5	10	0.080 0.39 0.40 0.42		0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154)	0.21 96% 101% 104%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	10	0.080 0.39 0.40 0.42 0.44	J	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14		0.080 0.39 0.40 0.42 0.44	J	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS		0.080 0.39 0.40 0.42 0.44 0.54	J *	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10		0.080 0.39 0.40 0.42 0.44 0.54 1980	J * 7.589 10.361 14.234	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8		0.080 0.39 0.40 0.42 0.44 0.54 1980 5100	J * 7.589 10.361	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2 15067-26-2	1,4-Dioxane 2-Methylnaphthalene-d1 Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10		0.080 0.39 0.40 0.42 0.44 0.54 1980 5100 2660	J * 7.589 10.361 14.234	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4
TARGETS 123-91-1 SURROGATES 7297-45-2 93951-69-0 4165-60-0 321-60-8 1718-51-0 INTERNAL STAN 3855-82-1 1146-65-2 15067-26-2 1517-22-2	1,4-Dioxane 2-Methylnaphthalene-dl Fluoranthene-d10 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 NDARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10		0.080 0.39 0.40 0.42 0.44 0.54 1980 5100 2660 4630	J * 7.589 10.361 14.234 16.984	0.070 30 (20) - 150 (139) 30 (54) - 150 (157) 30 (27) - 130 (154) 30 (30) - 130 (155)	0.21 96% 101% 104% 109%	ug/L SPK: 0.4 SPK: 0.4 SPK: 0.4 SPK: 0.4

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

Client: Project:

Client Sample ID: Lab Sample ID: Analytical Method: Sample Wt/Vol: Soil Aliquot Vol: Extraction Type : Injection Volume : Prep Method :

File ID/Qc Batch:

Acenaphthene-d10

Phenanthrene-d10

Chrysene-d12

Perylene-d12

BN037199.D

CAS Number

TARGETS 123-91-1

SURROGATES 7297-45-2

93951-69-0

4165-60-0 321-60-8

1718-51-0

3855-82-1

1146-65-2

1517-22-2

1719-03-5

1520-96-3

15067-26-2

INTERNAL STANDARDS

U

		Repor	t of Anal	ysis			
	JACOBS Engineer	ing Group, Inc.			Date Collected:	06/05/25	5
	Former Schlumberg	ger STC PTC Site I	03868221		Date Received:	06/05/25	5
D:	EB02-060525				SDG No.:	Q2250	
	Q2250-05				Matrix:	Water	
od:	SW8270ESIM				% Solid:	0	
	990 Units:	mL			Final Vol:	1000	uL
:		uL			Test:	SVOC-S	SIMGroup1
:		Deca	nted : N		Level :	LOW	
e :		GPC Factor :	1.0		GPC Cleanup :	Ν	PH :
	Dilution:	Prep Date		Date A	nalyzed	Prep Batch	ID
	1	06/06/25 1	1:54	06/09/2	25 19:27	PB168336	
Paran	neter	Conc.	Qualifier	MDL		LOQ / CRQL	Units
1,4-D	ioxane	0.070	U	0.070		0.20	ug/L
	thylnaphthalene-d10	0.39		30 (20) - 15	50 (139)	98%	SPK: 0.4
2-Met							
	anthene-d10	0.41		30 (54) - 15	50 (157)	103%	SPK: 0.4
Fluora				30 (54) - 15 30 (27) - 15		103% 103%	SPK: 0.4 SPK: 0.4
Fluora Nitrol	anthene-d10	0.41			30 (154)		
Fluora Nitrol 2-Fluo	anthene-d10 benzene-d5	0.41 0.41	*	30 (27) - 13	30 (154) 30 (155)	103%	SPK: 0.4
Fluora Nitrol 2-Fluo	anthene-d10 benzene-d5 orobiphenyl enyl-d14	0.41 0.41 0.44	*	30 (27) - 13 30 (30) - 13	30 (154) 30 (155)	103% 111%	SPK: 0.4 SPK: 0.4
Fluora Nitrol 2-Fluo Terph DARDS 1,4-D	anthene-d10 benzene-d5 orobiphenyl enyl-d14	0.41 0.41 0.44	* 7.589 10.362	30 (27) - 13 30 (30) - 13	30 (154) 30 (155)	103% 111%	SPK: 0.4 SPK: 0.4

U = Not Detected

- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- () = Laboratory InHouse Limit
- A = Aldol-Condensation Reaction Products

2030

3500

2340

2270

14.235

16.984

21.189

23.377

A B C

D

6

LAB CHRONICLE

OrderID: Client: Contact:	Q2250 JACOBS Engineering Group, In John Ynfante	с.		OrderDate: Project: Location:	6/5/2025 4:22:00 PM Former Schlumberger STC PTC Site D3868221 D22,N31,VOA Ref. #3 Water			
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2250-01	MW-11A-13.5-060525	Water	SVOC-SIMGroup1	8270-Modified	06/05/25	06/06/25	06/09/25	06/05/25
Q2250-04	MW-06-6.5-060525	Water	SVOC-SIMGroup1	8270-Modified	06/05/25	06/06/25	06/10/25	06/05/25
Q2250-05	EB02-060525	Water	SVOC-SIMGroup1	8270-Modified	06/05/25	06/06/25	06/09/25	06/05/25

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Client:	Q2250 JACOBS Engineering	g Group, Inc.		Order ID: Project ID		Q2250 Former Schlu	Q2250 Former Schlumberger STC PTC Site D386		
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	RDL Units		
Client ID :	EB02-060525								
Q2250-05	EB02-060525	Water	Aluminum	2.09	J	1.94	20.0 ug/L		
Q2250-05	EB02-060525	Water	Barium	0.68	J	0.21	10.0 ug/L		
Q2250-05	EB02-060525	Water	Manganese	0.92	J	0.43	1.00 ug/L		

7

D

A B C D

B C D

Report of Analysis

Client:	JACOBS Engineering Group, Inc.	Date Collected:	06/05/25	
Project:	Former Schlumberger STC PTC Site D3868221	Date Received:	06/05/25	
Client Sample ID:	EB02-060525	SDG No.:	Q2250	Ì
Lab Sample ID:	Q2250-05	Matrix:	Water	
Level (low/med):	low	% Solid:	0	

Cas	Parameter	Conc.	Qua. D	F MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	2.09	J 1	1.94	20.0	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-36-0	Antimony	0.11	U 1	0.11	2.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-38-2	Arsenic	0.089	UN*1	0.089	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-39-3	Barium	0.68	J 1	0.21	10.0	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-41-7	Beryllium	0.32	U 1	0.32	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-43-9	Cadmium	0.34	U 1	0.34	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-70-2	Calcium	45.7	U 1	45.7	500	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-47-3	Chromium	0.21	U 1	0.21	2.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-48-4	Cobalt	0.070	U 1	0.070	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-50-8	Copper	0.30	U 1	0.30	2.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7439-89-6	Iron	7.81	U 1	7.81	50.0	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7439-92-1	Lead	0.21	U 1	0.21	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7439-95-4	Magnesium	19.5	U 1	19.5	500	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7439-96-5	Manganese	0.92	J 1	0.43	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7439-97-6	Mercury	0.076	UN 1	0.076	0.20	ug/L	06/09/25 15:15	06/10/25 13:37	7470A	
7440-02-0	Nickel	0.27	U 1	0.27	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-09-7	Potassium	36.4	U 1	36.4	500	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7782-49-2	Selenium	2.90	U 1	2.90	5.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-22-4	Silver	0.060	UN 1	0.060	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-23-5	Sodium	128	U 1	128	500	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-28-0	Thallium	0.060	U 1	0.060	1.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-62-2	Vanadium	0.077	U 1	0.077	5.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A
7440-66-6	Zinc	1.25	U 1	1.25	5.00	ug/L	06/09/25 12:20	06/11/25 21:27	6020B	3010A

Color Before:	Colorless	Clarity Before:	Clear	Texture:					
Color After:	Colorless	Clarity After:	Clear	Artifacts:					
Comments:	METALS-TAL								
U = Not Detec	eted			J = Estimated Value					
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank					
MDL = Method	od Detection Limit			* = indicates the duplicate analysis is not within control limits.					
LOD = Limit	of Detection			E = Indicates the reported value is estimated because of the presence					
D = Dilution				of interference.					
Q = indicates	LCS control criteria did no	ot meet requirements		OR = Over Range					
			N =Spiked sample recovery not within control limits						
Q2250			30 d	of 40					

Report of Analysis

			R	eport of An	1019515					E
Client:	JA	COBS Engin	eering Group, In	Date Collected: 06/05/25						
Project:	Fo	rmer Schlumł	berger STC PTC	Date Received: 06/05/25				C		
Client Samp	ple ID: EB	SDG No.:	Q225	Q2250						
Lab Sample	PID: Q2	2250-07				Matrix:	Wate	r		
Level (low/r	med): lov	N				% Solid:	0			
Cas Pa	arameter Conc.	Qua. DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.	
7439-89-6 Irc	ron 7.81	U 1	7.81	50.0	ug/L	06/09/25 12:20	06/11/25 21:30	6020B	3010A	•

Color Before:	Colorless	Clarity Before:	Clear	Texture:				
Color After:	Colorless	Clarity After:	Clear	Artifacts:				
Comments:	Dissolved Metals Gr	oup3						
U = Not Detec	oted			J = Estimated Value				
LOQ = Limit	of Quantitation			B = Analyte Found in Associated Method Blank				
MDL = Method	od Detection Limit			* = indicates the duplicate analysis is not within control limits.				
LOD = Limit	of Detection			E = Indicates the reported value is estimated because of the presence				
D = Dilution				of interference.				
Q = indicates	LCS control criteria did no	ot meet requirements		OR = Over Range				
			N =Spiked sample recovery not within control limits					
Q2250			31 0	of 40				

LAB CHRONICLE

OrderID: Client: Contact:	Q2250 JACOBS Engineering Group, John Ynfante	Inc.		OrderDate: Project: Location:	6/5/2025 4:22:00 PM Former Schlumberger STC PTC Site D3868221 D22,N31,VOA Ref. #3 Water				
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received	
Q2250-05	EB02-060525	Water			06/05/25			06/05/25	
			Mercury	7470A		06/09/25	06/10/25		
			Metals ICP-TAL	6020B		06/09/25	06/11/25		
Q2250-07	EB02-060525	Water			06/05/25			06/05/25	
			Dissolved ICP-Group2	6020B		06/09/25	06/11/25		

В

Client: JACO	OBS Engineering Group, Inc.	Date Collected:	06/05/25 09:30
Project: Form	ner Schlumberger STC PTC Site D3868221	Date Received:	06/05/25
Client Sample ID: EB02	2-060525	SDG No.:	Q2250
Lab Sample ID: Q225	50-05	Matrix:	Water
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	1.00	U	1	1.00	2.00	mg/L		06/10/25 12:55	SM 2320 B-11
Chloride	0.19	U	1	0.19	0.60	mg/L		06/06/25 11:55	9056A
Nitrate	0.095	U	1	0.095	0.50	mg/L		06/06/25 11:55	9056A
Sulfate	0.48	J	1	0.46	3.00	mg/L		06/06/25 11:55	9056A
TDS	76.0		1	1.00	10.0	mg/L		06/06/25 12:30	SM 2540 C-15

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

8

В

A B C

LAB CHRONICLE

OrderID: Client: Contact:	Q2250 JACOBS Engineering Group, John Ynfante	, Inc.	OrderDate: Project: Location:	6/5/2025 4:22:0 Former Schlum D22,N31,VOA	berger STC PT	TC Site D38682	221	
LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2250-05	EB02-060525	WATER			06/05/25 09:30			06/05/25
			Alkalinity	SM2320 B			06/10/25 12:55	
			Anions Group1	9056A			06/06/25	
			TDS	SM2540 C			11:55 06/06/25 12:30	

<u>SHIPPING</u> DOCUMENTS

9

A				d Stre 89-890 www.	•	x (90)8) 7			092		c	UOTE	NO.		4647	2250 8			
	CLIEN	TINFORMATION				4	CLIENT PI	ROJECT IN	IFORM/	TION			NY-	1	1.24	CLIEN	IT BILLI	ING INF	ORMATION	
COMPANY: Jacob S						IAM	E: 37<	Prince	kn				BILL 1	0:	Mary	, Mu	yphy	,	PO#:	
ADDRESS:	412 Mt. Ke	mble Ave., Suit	e 100	PROJEC		D .: D	38682	21 LOCA	TION:	CIACE	ken Je	nchian	ADDR	ESS:	1		· /			
CITY MOI	nistown	STATE: NJ	ZIP: 07960	PROJEC	CT MA	NAC	BER: M	my Mi	mphy				CITY					STA	TE:	;ZIP:
	John Ynf	the John Ym	book Q Jacobs C			vy	.Murph			Con			ATTE	NTION:		21	AN	PHC ALYSIS	the second se	
PHONE:		FAX:	ON	PHONE	-	NTA	DELIVER	concerned on a	X::									~		
FAX (RUSH) HARDCOPY (D EDD: *TO BE APPRO	Standar DATA PACKAGE OVED BY CHEM	d TAT	DAYS* DAYS* DAYS*	Level	1 (Rei 2 (Rei 3 (Rei 3 (Rei	sults sults sults a)	Only) [] + QC) [] + QC []	evel 4 (QC) + Full F d 🔾 Us	aw Data EPA CL	P		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	200	STAR STAR	and the second	And And	340 QC		
					SAM			IPLE	E			81.		SERVA		_		Land M	Dage of the local dage of the	MMENTS v Preservatives
ALLIANCE SAMPLE ID	s	PROJECT AMPLE IDENTIFICA	TION	SAMPLE MATRIX	COMP	GRAB T	DATE	TIME	# OF BOTTLES	A√ <u>E</u> 1	E 2	8/E	8/E 4	E 5	E 6	E 7	8	9	A-HCI B-HN03 C-H2SO4	D-NeOH E-ICE F-OTHER
1.	MW-11A	- 13.5-060529	j.	Gw		x	6/6/25	1230	15	x	X				0				MSIMSI	>
2.		-6.5-060526		GW		x	6/5/25		62	R	X			4					1 Martin	0
3.	and the second se	060525	3	DI		x	6/5/25		10	X	×	X	x	×	x	X				
4.	TB-101-			DI			6/5/25		2	X										
5.																				
6.																				
7.																				
8.																				· · · · ·
9.														25						
10.												1							1	
RELINQUISHED B 1. 1/20-2 RELINQUISHED B 2. RELINQUISHED B	Y SAMPLER:	DATE/TIME: (5 50 6/5/25 DATE/TIME: DATE/TIME:	Y MUST BE DOCI RECEIVED BY: 1. RECEIVED BY: 2. RECEIVED BY:	JMENTEI	BEL	.ow		NE SAMP ns of bottles s: <u>Sec</u> Pat	or coolers Warks # 148	at receipi Orde OGYS	н Хо г Ал (]	OMPLIANT	a NON af SM	complian he spe	vit in c Gific			3.5		0°
3. 3.	T	6.5.25	3.	E 0004 FO		1911	Page	/of .	2	CLIENT		Hand D	elivered	0 0	ther					NO DI NO

WHITE - ALLIANCE COPY FOR RETURN TO CLIENT

37-01-40-LLIANCE COPY PINK - SAMPLER COPY

9 9.1

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

9

9.3

Clie Client Invoi	Order ID:Q2250JAC005ent Name:JACOBS Engineering Grout Contact:John Ynfanteice Name:JACOBS Engineering Groue Contact:John Ynfante		Pro Receive	ject Name :	6/5/2025 4:22:00 PM Former Schlumberger STC 6/5/202 <u>5 12:00:00</u> AM 17:30		Project Mgr : Report Type : D EDD Type : C rd Copy Date : Date Signoff :			
LAB ID	CLIENT ID	MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD		FAX DATE	DUE DATES
Q2250-01	MW-11A-13.5-060525	Water	06/05/2025	12:30	VOCMS Group3		8260-Low	10 Bus. Days		
Q2250-02	Q2250-01MS	Water	06/05/2025	12:30			0200-LOW	To Bus. Days		
Q2250-03	Q2250-01MSD	Water	06/05/2025	12:30	VOCMS Group3		8260-Low	10 Bus. Days		
Q2250-04	MW-06-6.5-060525	Water	06/05/2025	13:10	VOCMS Group3		8260-Low	10 Bus. Days		
					VOCMS Group3		8260-Low	10 Bus. Days	yg	
Q2250-05	EB02-060525	Water	06/05/2025	09:30	VOCMS Group3		8260-Low	10 Bus. Days	06/11/25	
Q2250-06	TB-01-060525	Water	06/05/2025	16:00	VOCMS Group3		8260-Low	10 Bus. Days		

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

9.3

LAB ID	CLIENT	ID		MATRIX	SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	метнор	FAX DATE	DUE DATES
Invoi	ice Contact : J	ohn Ynfante	9						Date Signoff :		
Inv	voice Name : J	ACOBS En	gineering Grou		Purc	nase Order :	17:30	Hai	rd Copy Date :		
Clie	ent Contact : J	ohn Ynfante	9		Receive	DateTime :	6/5/2025 12:00:00 AM		EDD Type : CH2MH	ILL	
C	lient Name : J	ACOBS En	gineering Grou		Pro	oject Name :	Former Schlumberger STC		Report Type : Level 4		
	Order ID: (Q2250	JACO05		(Order Date :	6/5/2025 4:22:00 PM		Project Mgr :		

Relinguished By : Date / Time : 11625 0810 5 AMPLES RECEIVED ON 6/5/25 placed in SM-REF-2

Received By : m Date/Time: ablob/25 zilo kg H 4

Storage Area: VOA Refridgerator Room