

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

J	Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
U	Indicates the analyte was analyzed for, but not detected.
ND	Indicates the analyte was analyzed for, but not detected
E	Indicates the reported value is estimated because of the presence of interference
M	Indicates Duplicate injection precision not met.
N	Indicates the spiked sample recovery is not within control limits.
S	Indicates the reported value was determined by the Method of Standard Addition (MSA).
*	Indicates that the duplicate analysis is not within control limits.
+	Indicates the correlation coefficient for the MSA is less than 0.995.
D	Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
M OR	Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi – Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
Q	Indicates the LCS did not meet the control limits requirements
Н	Sample Analysis Out Of Hold Time

LAB CHRONICLE

OrderID: Q2724

Client: METEM A GE POWER Business

Contact: Sundas Pervez

OrderDate: 7/29/2025 3:54:00 PM

Project: Parsippany Wastewater Quarterly 2025

Location: O32

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2724-01	WASTEWATER Q3	WATER			07/29/25			07/29/25
					15:05			
			Cyanide	SM4500-CN		07/30/25	07/30/25	
				C,E			11:52	
			Field pH	SM4500-H B			07/29/25	
							15:07	

SAMPLE DATA

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900,

Fax: 908 789 8922

Report of Analysis

Client: METEM A GE POWER Business Date Collected: 07/29/25 15:05

Project: Parsippany Wastewater Quarterly 2025 Date Received: 07/29/25

Client Sample ID: WASTEWATER Q3 SDG No.: Q2724

Lab Sample ID: Q2724-01 Matrix: WATER

% Solid: 0

Parameter	Conc. Qua.	DF ME	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Cyanide	0.0013 J	1 0.00	2 0.0050	mg/L 0	07/30/25 08:40	07/30/25 11:52	SM 4500-CN C-21 plus E-21
Field pH	7.65	1 0	0	рН		07/29/25 15:07	SM4500-H B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

QC RESULT SUMMARY

Fax: 908 789 8922

Initial and Continuing Calibration Verification

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 RunNo.: LB136651

Analyte		Units	Result	True Value	% Recovery	Acceptance Window (%R)	Analysis Date
Sample ID:	ICV1						
Cyanide		mg/L	0.092	0.099	93	85-115	07/30/2025
Sample ID:	CCV1						
Cyanide		mg/L	0.25	0.25	100	90-110	07/30/2025
Sample ID:	CCV2						
Cyanide		mg/L	0.25	0.25	100	90-110	07/30/2025

Fax: 908 789 8922

Initial and Continuing Calibration Verification

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 RunNo.: LB136682

Analyte		Units	Result	True Value	% Recovery	Acceptance Window (%R)	Analysis Date
Sample ID:	ICV						
Field pH		рН	7.0	7	100	90-110	07/29/2025
Sample ID:	CCV1						
Field pH		рН	7.0	7.0	100	90-110	07/29/2025
Sample ID:	CCV2						
Field pH		рН	7.0	7.0	100	90-110	07/29/2025

Initial and Continuing Calibration Verification

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 **RunNo.:** LB136682

Fax: 908 789 8922

Initial and Continuing Calibration Blank Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 RunNo.: LB136651

Analyte		Units	Result	Acceptance Limits	Conc Qual	MDL	RDL	Analysis Date
Sample ID: Cyanide	ICB1	mg/L	0.0015	0.0025	J	0.0012	0.005	07/30/2025
Sample ID: Cyanide	CCB1	mg/L	0.0014	0.0025	J	0.0012	0.005	07/30/2025
Sample ID: Cyanide	CCB2	mg/L	0.0016	0.0025	J	0.0012	0.005	07/30/2025

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Initial and Continuing Calibration Blank Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 RunNo.: LB136651

Preparation Blank Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025

Analyte	Units	Result	Acceptance Limits	Conc Qual	MDL	RDL	Analysis Date
Sample ID: Cyanide	PB169055BL mg/L	0.0014	0.0025	J	0.0012	0.005	07/30/2025

Fax: 908 789 8922

Matrix Spike Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 **Sample ID:** Q2724-01

Client ID: WASTEWATER Q3MS Percent Solids for Spike Sample: 0

		Acceptance	Spiked	Conc.	Sample	Conc.	Spike	Dilution	%		Analysis
Analyte	Units	Limit %R	Result	Qualifier	Result	Qualifier	Added	Factor	Rec	Qual	Date
Cvanide	mg/L	75-125	0.038		0.0013	J	0.04	1	92		07/30/2025

Fax: 908 789 8922

Matrix Spike Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 **Sample ID:** Q2724-01

Client ID: WASTEWATER Q3MSD Percent Solids for Spike Sample: 0

		Acceptance	Spiked	Conc.	Sample	Conc.	Spike	Dilution	%		Analysis
Analyte	Units	Limit %R	Result	Qualifier	Result	Qualifier	Added	Factor	Rec	Qual	Date
Cvanide	mg/L	75-125	0.038		0.0013	J	0.04	1	92		07/30/2025

Fax: 908 789 8922

Duplicate Sample Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 **Sample ID:** Q2724-01

Client ID: WASTEWATER Q3DUP Percent Solids for Spike Sample: 0

Analyte	Units	Acceptance Limit	Sample Result	Conc. Qualifier	Duplicate Result	Conc. Qualifier	Dilution Factor	RPD/ AD	Qual	Analysis Date
Cyanide	mg/L	+/-20	0.0013	J	0.0013	J	1	0		07/30/2025
Field pH	pН	+/-20	7.65		7.64		1	0.13		07/29/2025

Fax: 908 789 8922

Duplicate Sample Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 **Sample ID:** Q2724-01

Client ID: WASTEWATER Q3MSD Percent Solids for Spike Sample: 0

Analyte	Units	Acceptance Limit	Sample Result	Conc. Qualifier	Duplicate Result	Conc. Qualifier	Dilution Factor	RPD/ AD	Qual	Analysis Date	
Cvanide	mg/L	+/-20	0.038		0.038		1	0		07/30/2025	

Laboratory Control Sample Summary

Client: METEM A GE POWER Business SDG No.: Q2724

Project: Parsippany Wastewater Quarterly 2025 Run No.: LB136651

Analyte		Units	True Value	Conc. Result Quali		Dilution Factor	Acceptance Limit %R	Analysis Date
Sample ID	PB169055BS							_
Cyanide		mg/L	0.1	0.093	93	1	85-115	07/30/2025

RAW DATA

Reviewed By:Iwona
On:7/30/2025 2:46:47
PM

Test results

Aquakem 7.2AQ1

Page: Inst Id: Konelab 20

LB:LB136651 Test results

99.2339

137.11

Alliance Technical Group 284 Sheffield Street, Mountainside, NJ 07092

Reviewed by : RM Instrument ID : Konelab

7/30/2025 12:01

Test: Total CN

SD

CV%

Sample Id	Result	Dil. 1 +	Response	Errors
ICV1 ICB1 CCV1 CCB1 RL CHECK PB169055BL PB169055BS MIDPB169055 Q2724-01 Q2724-01DUP Q2724-01MS Q2724-01MSD CCV2 CCB2	92.068 1.503 245.460 1.434 5.802 1.405 93.490 244.274 1.346 1.349 37.690 38.329 247.541 1.557	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.076 0.001 0.204 0.001 0.004 0.001 0.078 0.203 0.001 0.001 0.031 0.032 0.206 0.001	1161, CSO-150) 97/30/2025 97/, (90-110) RM
N Mean	14 72.375			

Aquakem v. 7.2AQ1 Results from time period: Wed Jul 30 10:17:27 2025 Wed Jul 30 11:59:19 2025

Sample Id	Sam/Ctr/	/c/ Test shor	t r Test type	Result	Result unit	Result date and time	Stat
0.0PPBCN	A	Total CN	Ρ	1.1616	µg/l	7/30/2025 10:17:27	
5.0PPBCN	Α	Total CN	Р	5.6952	µg/l	7/30/2025 10:17:28	
10PPBCN	Α	Total CN	Р	10.9715	µg/l	7/30/2025 10:17:29	
50PPBCN	Α	Total CN	Р	49.635	µg/l	7/30/2025 10:17:30	
100PPBCN	Α	Total CN	Р	96.3361	µg/l	7/30/2025 10:17:31	
250PPBCN	Α	Total CN	Р	250.9154	µg/l	7/30/2025 10:17:32	
500PPBCN	Α	Total CN	Р	500.2852	µg/l	7/30/2025 10:17:33	
ICV1	S	Total CN	Р	92.068	µg/l	7/30/2025 11:45:01	
ICB1	S	Total CN	Р	1.5033	µg/l	7/30/2025 11:45:02	
CCV1	S	Total CN	Р	245.4603	µg/l	7/30/2025 11:45:05	
CCB1	S	Total CN	Р	1.4342	µg/l	7/30/2025 11:45:07	
RL CHECK	S	Total CN	Р	5.802	µg/l	7/30/2025 11:52:32	
PB169055BL	S	Total CN	Р	1.405	µg/l	7/30/2025 11:52:33	
PB169055BS	S	Total CN	Р	93.49	µg/l	7/30/2025 11:52:35	
MIDPB169055	S	Total CN	Р	244.2743	µg/l	7/30/2025 11:52:38	
Q2724-01	S	Total CN	Р	1.3456	µg/l	7/30/2025 11:52:40	
Q2724-01DUP	S	Total CN	Р	1.3492	µg/l	7/30/2025 11:52:41	
Q2724-01MS	S	Total CN	Р	37.6895 µ	µg/l	7/30/2025 11:59:13	
Q2724-01MSD	S	Total CN	Р	38.3291 µ	µg/l	7/30/2025 11:59:14	
CCV2	S	Total CN	Р	247.5407 µ	ug/l	7/30/2025 11:59:16	
CCB2	S	Total CN	Р	1.5572 µ	ıg/l	7/30/2025 11:59:19	

Calibration results

Aquakem 7.2AQ1

Page:

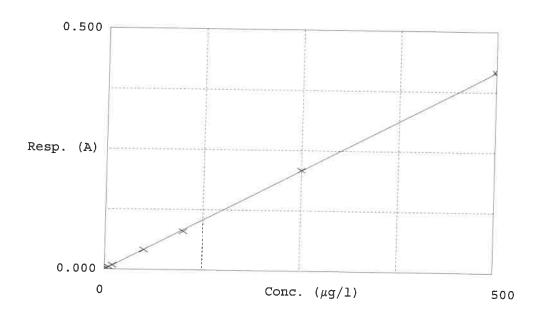
Alliance Technical Group 284 Sheffield Street, Mountainside, NJ 07092

Reviewed by : RM Instrument ID : Konelab

7/30/2025 10:22

Test Total CN

Accepted


7/30/2025 10:22

Factor Bias

1201

Coeff. of det. 0.999916

Errors

	Calibrator	Response	Calc. con.	Conc.	Errors
1 2 3 4 5 6 7	0.0PPBCN 5.0PPBCN 10PPBCN 50PPBCN 100PPBCN 250PPBCN 500PPBCN	0.001 0.004 0.009 0.041 0.080 0.209	1.1616 5.6952 10.9715 49.6350 96.3361 250.9154 500.2852	0.0000 5.0000 10.0000 50.0000 100.0000 250.0000 500.0000	13.9 9.7 -0.7 -3.7 0.4

07/30/2025 RM

SOP ID:	MSM4500-CN C	.E-Cvanide-13						
SDG No :	N/A	, -,	Sta	rt Digest Date:	07/30/2025	Time: 08:40	Temp:	124 °
Matrix :	WATER	_		d Digest Date:		Time: 10:10		124 °
Pippete ID :	WC	_		-				120
Balance ID :	N/A	_						
Hood ID:	HOOD#1	Digestion tube ID :	M5595		Block Ther	mometer ID :	WC CYANID	E
Block ID :	MC-1	Filter paper ID :	N/A		Prep Technicia	an Signature:	ne	
Weigh By :	N/A	pH Meter ID :	N/A		Superviso	or Signature:	12	
Standared	Namo	MICHOED		1				

Standared Name	MLS USED	STD REF. # FROM LOG	
LCSW	1.0ML	WP113838	
MS/MSD SPIKE SOL.	0.40ML	WP113837	
PBW	50.ML	W3112	
RL CHECK	50.ML	WP114122	
N/A	N/A	N/A	

Chemical Used	ML/SAMPLE USED	Lot Number
0.25N NaOH	50.ML	WP113836
50% v/v H2SO4	5.ML	WP112826
51% w/v MgCL2	2.ML	WP112827
pH Paper 0-14	N/A	W3215
Nitrate/Nitrite Strip	N/A	W3101
Lead Acetate strip	N/A	W3134
KI-starch paper	N/A	W3155
0.4N Sulfamic Acid	5.ML	WP112829
N/A	N/A	N/A
N/A	. N/A	N/A

LAB SAMPLE ID	CLIENT SAMPLE ID	Wt(g)/Vol(ml)	Comment
S0	50	N/A	N/A
S5.0	S5.0	N/A	N/A
S10.0	S10.0	N/A	N/A
S100.0	S100.0	N/A	N/A
S250.0	S250.0	N/A	N/A
S500.0	S500.0	N/A	N/A
ICV	ICV	0.5ML	W3012
ICB	ICB	N/A	N/A
CCV	ccv	N/A	N/A
ССВ	ССВ	N/A	N/A
Midrange	Midrange	2.5ML	WP113837
HIGHSTD	HIGHSTD	N/A	N/A
LOWSTD	LOWSTD	N/A	N/A

Extraction Conformance/Non-Conformance Comments:

N/A

Date / Time	Prepped Sample Relinquished By/Location	Received By/Location
0713012025 10.25	of wc	RM (W)
	Preparation Group	Analysis Group

Lab Sample ID	Client Sample ID	Initial Vol (ml)	Final Vol (ml)	рH	Sulfide	Oxidizing	Nitrate/ Nitrite	Comment	Prep Pos
PB169055BL	PBW055	50	50	>12	Negative	Negative	Negative	N/A	N/A
PB169055BS	LCS055	50	50	>12	Negative	Negative	Negative	N/A	N/A
Q2724-01DUP	WASTEWATER Q3DUP	50	50	>12	Negative	Negative	Positive	N/A	N/A
Q2724-01MS	WASTEWATER Q3MS	50	50	>12	Negative	Negative	Positive	N/A	N/A
Q2724-01MSD	WASTEWATER Q3MSD	50	50	>12	Negative	Negative	Positive	N/A	N/A
Q2724-01	WASTEWATER Q3	50	50	>12	Negative	Negative	Positive	N/A	N/A

Instrument ID:

KONELAB

Daily Analysis Runlog For Sequence/QCBatch ID # LB136651

Review By	rub	ina	Review On	7/30/2025 2:45:17 PM			
Supervise By	lwc	ona	Supervise On	7/30/2025 2:46:47 PM			
SubDirectory	LB	136651	Test	Cyanide			
STD. NAME		STD REF.#					
ICAL Standard		WP114117,WP114118,WP114119,WP114120,WP114122,WP114123					
ICV Standard		W3012					
CCV Standard		WP114118					
ICSA Standard		N/A					
CRI Standard		N/A					
LCS Standard		WP113838					
Chk Standard		WP112643,WP112900,\	WP114125				

Sr#	Sampleld	ClientID	QcType	Date	Comment	Operator	Status
1	0.0PPBCN	0.0PPBCN	CAL1	07/30/25 10:17		rubina	ОК
2	5.0PPBCN	5.0PPBCN	CAL2	07/30/25 10:17		rubina	ОК
3	10PPBCN	10PPBCN	CAL3	07/30/25 10:17		rubina	ОК
4	50PPBCN	50PPBCN	CAL4	07/30/25 10:17		rubina	ОК
5	100PPBCN	100PPBCN	CAL5	07/30/25 10:17		rubina	ОК
6	250PPBCN	250PPBCN	CAL6	07/30/25 10:17		rubina	ОК
7	500PPBCN	500PPBCN	CAL7	07/30/25 10:17		rubina	ОК
8	ICV1	ICV1	ICV	07/30/25 11:45		rubina	ОК
9	ICB1	ICB1	ICB	07/30/25 11:45		rubina	ОК
10	CCV1	CCV1	CCV	07/30/25 11:45		rubina	ОК
11	CCB1	CCB1	ССВ	07/30/25 11:45		rubina	ОК
12	RL	RL	SAM	07/30/25 11:52		rubina	ОК
13	PB169055BL	PB169055BL	MB	07/30/25 11:52		rubina	ОК
14	PB169055BS	PB169055BS	LCS	07/30/25 11:52		rubina	ОК
15	MIDPB169055	MIDPB169055	SAM	07/30/25 11:52		rubina	ОК
16	Q2724-01	WASTEWATER Q3	SAM	07/30/25 11:52		rubina	ОК
17	Q2724-01DUP	WASTEWATER Q3DL	DUP	07/30/25 11:52		rubina	ОК
18	Q2724-01MS	WASTEWATER Q3MS	MS	07/30/25 11:59		rubina	OK

Fax: 908 789 8922

Instrument ID: KONELAB

Daily Analysis Runlog For Sequence/QCBatch ID # LB136651

Review By	rubina		Review On	7/30/2025 2:45:17 PM		
Supervise By	Iwona		Supervise On	7/30/2025 2:46:47 PM		
SubDirectory	LB136	651	Test	Cyanide		
STD. NAME	ST	TD REF.#				
ICAL Standard	WF	WP114117,WP114118,WP114119,WP114120,WP114121,WP114122,WP114123				
ICV Standard	W3	W3012				
CCV Standard	WF	P114118				
ICSA Standard	N/A	A				
CRI Standard	N/A	N/A				
LCS Standard	W	WP113838				
Chk Standard	WF	P112643,WP112900,\	WP114125			

19	Q2724-01MSD	WASTEWATER Q3MS	MSD	07/30/25 11:59	rubina	OK
20	CCV2	CCV2	CCV	07/30/25 11:59	rubina	OK
21	CCB2	CCB2	ССВ	07/30/25 11:59	rubina	ОК

Instrument ID: WC PH METER-1

Daily Analysis Runlog For Sequence/QCBatch ID # LB136682

Review By Baldev		Review On	8/1/2025 11:17:05 PM				
Supervise By Upendra		Supervise On	8/2/2025 12:17:43 AM				
SubDirectory	LB13668	2 Test	Field pH				
STD. NAME	STD	REF.#					
ICAL Standard	N/A						
ICV Standard	N/A						
CCV Standard	N/A						
ICSA Standard	N/A						
CRI Standard	l Standard N/A						
LCS Standard	LCS Standard N/A						
Chk Standard W3217,W3178,W3191,W3093,W3093							

Sr#	SampleId	ClientID	QcType	Date	Comment	Operator	Status
1	CAL1	CAL1	CAL	07/29/25 14:42		gorge	ОК
2	CAL2	CAL2	CAL	07/29/25 14:44		gorge	ОК
3	CAL3	CAL3	CAL	07/29/25 14:46		gorge	ОК
4	ICV	ICV	ICV	07/29/25 14:48		gorge	ОК
5	CCV1	CCV1	CCV	07/29/25 14:54		gorge	ОК
6	Q2724-01	WASTEWATER Q3	SAM	07/29/25 15:07		gorge	ОК
7	Q2724-01DUP	WASTEWATER Q3DL	DUP	07/29/25 15:11		gorge	ОК
8	CCV2	CCV2	CCV	07/29/25 15:15		gorge	ОК

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order I	ID :	Q2724

Test: Cyanide, Field pH

Prepbatch ID: PB169055,

Sequence ID/Qc Batch ID: LB136651,LB136682,

Sta	1			
Sta	nn	ar	n 1	 -

WP112643,WP112826,WP112827,WP112900,WP113836,WP113837,WP113838,WP114116,WP114117,WP114118,WP114119,WP114120,WP114121,WP114122,WP114125,

Chemical ID:

M6041,M6151,W2668,W3012,W3019,W3093,W3101,W3112,W3113,W3139,W3152,W3178,W3191,W3203,W3214,W3215,W3217,W3224,

Alliance TECHNICAL GROUP

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych		
539	CN BUFFER	WP112643	04/09/2025	10/09/2025	Niha Farheen	WETCHEM_S	None			
					Shaik	CALE_5 (WC		04/09/2025		
FDOM	50-5)									

FROM 138.00000gram of W2668 + 862.00000ml of W3112 = Final Quantity: 1000.000 m	nΙ
--	----

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
1714	Sulfuric Acid, 50% (v/v)	WP112826	04/25/2025	10/25/2025	Rubina Mughal	None	None	·
								04/25/2025

FROM 1000.00000ml of M6041 + 1000.00000ml of W3112 = Final Quantity: 2000.000 ml

Alliance

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych		
3214	Magnesium Chloride For Cyanide 2.5M(51%W/V)	WP112827	04/25/2025	10/25/2025	Rubina Mughal	CALE_8 (WC	None	04/25/2025		
	SC-7)									

FROM 500.00000ml of W3112 + 510.00000gram of W3152 = Final Quantity: 1000.000 ml

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
607	PYRIDINE-BARBITURIC ACID	WP112900	05/01/2025	08/18/2025	Rubina Mughal	WETCHEM_S	Glass	-
						CALE_8 (WC	Pipette-A	05/01/2025

FROM 145.00000ml of W3112 + 15.00000gram of W3203 + 15.00000ml of M6151 + 75.00000ml of W3019 = Final Quantity: 250.000 ml

Alliance TECHNICAL GROUP

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych
11	Sodium hydroxide absorbing solution 0.25 N	<u>WP113836</u>	07/08/2025	12/31/2025	Rubina Mughal	WETCHEM_S CALE_8 (WC		07/08/2025
						SC-7)		

FROM 21.00000L of W3112 + 210.00000gram of W3113 = Final Quantity: 21.000 L

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Iwona Zarych
3850	Cyanide MS-MSD spiking solution, 5PPM	<u>WP113837</u>	07/08/2025	11/30/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3 (WC)	,

FROM 1.00000ml of W3214 + 199.00000ml of WP113836 = Final Quantity: 200.000 ml

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Iwona Zarych		
3371	Cyanide LCS Spike Solution, 5PPM	<u>WP113838</u>	07/08/2025	12/24/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3	07/08/2025		
FROM 1.00000ml of W3224 + 199.00000ml of WP113836 = Final Quantity: 200.000 ml										

OM	1.00000ml of W3224 +	199.00000ml of WP113836	= Final Quantity: 200.000	mI

Recipe ID	NAME.	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych
3456	Cyanide Intermediate Working Std, 5PPM	<u>WP114116</u>	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3 (WC)	,

0.25000ml of W3214 + 49.75000ml of WP113836 = Final Quantity: 50.000 ml **FROM**

Alliance

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych			
4	Calibation standard 500 ppb	<u>WP114117</u>	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3	07/31/2025			
FROM	(WC)										

FROM	45.00000111101 WP 113636	+ 5.000001111 OF WP 114 116	= Final Quantity, 50,000 mil

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych
3761	Calibration-CCV CN Standard 250 ppb	<u>WP114118</u>	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3	,

FROM 2.50000ml of WP114116 + 47.50000ml of WP113836 = Final Quantity: 50.000 ml

Alliance

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	NO.	Prep Date	Date	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
6	Calibration Standard 100 ppb	<u>WP114119</u>	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE 3	07/31/2025
FROM	1.00000ml of WP114116 + 49.00000	I ml of WP113	3836 = Final	Quantity: 50.00	1 00 ml		(WC)	07/31/2023

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Iwona Zarych
7	Calibration Standard 50 ppb	WP114120	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F	
							IPETTE_3	07/31/2025

FROM 0.50000ml of WP114116 + 49.50000ml of WP113836 = Final Quantity: 50.000 ml

Alliance TECHNICAL GROUP

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych		
8	Calibration Standard 10 ppb	WP114121	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3	,		
FROM 1.00000ml of WP114117 + 49.00000ml of WP113836 = Final Quantity: 50.000 ml										

Recipe	NAME	No	D D. 4.	Expiration	<u>Prepared</u>	0 ! - ! D	Disc. 44 - ID	Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipettelD</u>	Iwona Zarych
9	Calibration Standard 5 ppb	WP114122	07/30/2025	07/31/2025	Rubina Mughal	None	WETCHEM_F IPETTE_3	07/31/2025
							(WC)	

FROM 0.50000ml of WP114117 + 49.50000ml of WP113836 = Final Quantity: 50.000 ml

Aliance

Fax: 908 789 8922

Wet Chemistry STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Iwona Zarych
167	0 ppb CN calibration std	WP114123	07/30/2025	07/31/2025	Rubina Mughal	None	None	
								07/31/2025

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	PipetteID	Supervised By
1582			07/30/2025			WETCHEM_S		Iwona Zarych
						CALE_5 (WC	Pipette-A	07/31/2025

FROM 0.08000gram of W3139 + 20.00000ml of W3112 = Final Quantity: 20.000 ml

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9673-33 / Sulfuric Acid, Instra-Analyzed (cs/6c2.5L)	23D2462010	03/20/2028	08/16/2024 / mohan	08/16/2024 / mohan	M6041
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	22G2862015	08/18/2025	02/18/2025 / Sagar	01/15/2025 / Sagar	M6151
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	J3818-5 / SODIUM PHOSPHATE, MONOBAS/HYD, CRYS, ACS, 2.5 KG	0000225799	12/03/2025	04/05/2021 / Alexander	02/10/2020 / apatel	W2668
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	/ ICV-CN	ICV6-400	12/31/2025	01/08/2025 / lwona	02/20/2020 / Iwona	W3012
		Lot #	Expiration	Date Opened /	Received Date /	Chemtech
Supplier	ItemCode / ItemName	LOT #	Date	Opened By	Received By	Lot #
Supplier SIGMA ALDRICH	270970-1L / Pyridine 1L	SHBQ2113	04/03/2028	Opened By 04/03/2023 / Iwona	04/03/2023 / lwona	W3019
				04/03/2023 /	04/03/2023 /	

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	470112-662 / TEST STRIPES, NITRATE/NITRITE, PK50	402403	04/30/2026	05/02/2024 / Iwona	04/10/2024 / Iwona	W3101
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / Iwona	W3112
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	PC19510-7 / Sodium Hydroxide Pellets 12 Kg	23B1556310	12/31/2025	07/08/2024 / Iwona	07/08/2024 / Iwona	W3113
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	JTE494-6 / CHLORAMINE-T BAKER 250GM	10239484	09/09/2029	09/09/2024 / Iwona	09/09/2024 / Iwona	W3139
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	01237-10KG / Megnasium Chloride Hexahydrate ACS 10KG	002126-2019-201	11/25/2029	11/25/2024 / Iwona	11/25/2024 / Iwona	W3152
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	AL14055-3 / PH 4 BUFFER SOLUTION	2411A93	10/30/2026	04/01/2025 / JIGNESH	01/27/2025 / jignesh	W3178

CHEMICAL RECEIPT LOG BOOK

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	1601-1 / PH 10.01 BUFFER,COLOR CD 475ML	2410F80	03/31/2026	04/01/2025 / JIGNESH	03/13/2025 / jignesh	W3191
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	EM-BX0035-3 / Barbituric Acid, 100 gms	WXBF3271V	05/16/2029	04/21/2025 / Iwona	04/21/2025 / Iwona	W3203
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	RC2543-4 / CYANIDE STD 1000PPM 4OZ	1505H73	11/30/2025	05/21/2025 / Iwona	05/21/2025 / Iwona	W3214
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
PCI Scientific Supply, Inc.	140444 / TEST PAPERS,PH 0-14,.5 SENSI,100PK	10D3242	12/31/2028	06/09/2025 / Iwona	06/09/2025 / Iwona	W3215
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	AL14455-3 / buffer solution pH 7 yellow	2504D34	03/31/2027	07/02/2025 / jignesh	06/26/2025 / Iwona	W3217
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #

W3019 lec 4/3/23

3050 Spruce Street, Saint Louis, MO 63103, USA

Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Name:

Certificate of Analysis

Pyridine - anhydrous, 99.8%

Product Number:

270970

Batch Number:

SHBQ2113

Brand:

SIAL

CAS Number:

110-86-1

MDL Number:

MFCD00011732

Formula:

C5H5N

Formula Weight:

79.10 g/mol

Quality Release Date:

15 DEC 2022

L	
	N

Test	Specification	Result
Appearance (Color)	Colorless	Colorless
Appearance (Form)	Liquid	Liquid
Infrared Spectrum	Conforms to Structure	Conforms
Purity (GC)	> 99.75 %	99.99 %
Water (by Karl Fischer)	_ < 0.003 %	0.002 %
Residue on Evaporation	_ < 0.0005 %	< 0.0001 %

Larry Coers, Director Quality Control

Sheboygan Falls, WI US

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY "An ISO 9001:2015 Certified Program"

R: 02/20

APTIM

Instructions for QATS Reference Material: Inorganic ICV Solutions

For ICP-MS use: dilute the ICV1 concentrate 50-fold with 1% (v/v) nitric acid; pipet 2 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 1% (v/v) nitric acid.

W3DII W3012

ICV5-0415

For the cold vapor analysis of mercury by AA: dilute the ICV5 concentrate 100-fold with 2% (v/v) nitric acid; pipet 1 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with 2% (v/v) nitric acid. The ICV5 concentrate is prepared in 0.05% (w/v) K₂Cr₂O₇ and 5% (v/v) nitric acid. W3015

W3013 W 3014

ICV6-0400

For the analysis of cyanide: dilute the ICV6 concentrate 100-fold with Type II water; pipet 1 mL of the concentrate into a 100 mL volumetric flask and dilute to volume with Type II water. Distill this solution along with the samples before analysis. The cyanide concentrate is prepared from K₃Fe(CN)₆, Type II water, and 0.1 % sodium hydroxide, and will decompose rapidly if exposed to light.

NOTE: USE TYPE II WATER AND HIGH-PURITY ACIDS FOR ALL DILUTIONS.

CERTIFIED CONCENTRATIONS OF QATS ICV1, ICV5, AND ICV6 SOLUTIONS

ICV1-1014			
Element	Concentration (µg/L) (after 10-fold dilution)	Concentration (µg/L) (after 50-fold dilution)	
Ai	2520	504	
Sb	1010	202	
As	997	199	
Ва	518	104	
Be	514	103	
Cd	514	103	
Ca	10000	2000	
Cr	517	103	
Со	521	104	
Cu	505	101	
Fe	10100	2020	
Pb	1030	206	
Mg	5990	1198	
Mn	524	105	
Ni	525	. 105	
K	9940	1988	
Se	1030	206	
Ag	252	50	
Na	10100	2020	
TI	1040	208	
V	504	101	
Zn	1010	202	

ICV5-0415		ICV6-0400	
Element	Concentration (µg/L) (after-100-fold dilution)	Analyte	Concentration (µg/L) (after 100-fold dilution)
Hg	4.0	CN ⁻	99

Sulfuric Acid
BAKER INSTRA-ANALYZED® Reagent
For Trace Metal Analysis
Low Selenium

Material No.: 9673-33

Batch No.: 23D2462010 Manufactured Date: 2023-03-22

Retest Date: 2028-03-20

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS - Assay (H2SO4)	95.0 - 98.0 %	96,1 %
Appearance	Passes Test	Passes Test
ACS - Color (APHA)	≤ 10	5
ACS – Residue after Ignition	≤ 3 ppm	< 1 ppm
ACS - Substances Reducing Permanganate (as SO2)	≤ 2 ppm	< 2 ppm
Ammonium (NH ₄)	≤ 1 ppm	1 ppm
Chloride (CI)	≤ 0.1 ppm	< 0.1 ppm
Nitrate (NO ₃)	≤ 0.2 ppm	< 0.1 ppm
Phosphate (PO ₄)	≤ 0.5 ppm	< 0.1 ppm
Trace Impurities – Aluminum (AI)	≤ 30.0 ppb	< 5.0 ppb
Arsenic and Antimony (as As)	≤ 4.0 ppb	< 2.0 ppb
Trace Impurities - Boron (B)	≤ 10.0 ppb	8.5 ppb
Trace Impurities – Cadmium (Cd)	≤ 2.0 ppb	< 0.3 ppb
Trace Impurities - Chromium (Cr)	≤ 6.0 ppb	< 0.4 ppb
Trace Impurities - Cobalt (Co)	≤ 0.5 ppb	< 0.3 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities - Gold (Au)	≤ 10.0 ppb	0.5 ppb
Heavy Metals (as Pb)	≤ 500.0 ppb	< 100.0 ppb
Trace Impurities - Iron (Fe)	≤ 50.0 ppb	1.3 ppb
Trace Impurities - Lead (Pb)	≤ 0.5 ppb	< 0.5 ppb
Trace Impurities - Magnesium (Mg)	≤ 7.0 ppb	0.8 ppb
Trace Impurities – Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	< 0.1 ppb
Trace Impurities - Nickel (Ni)	≤ 2.0 ppb	0.3 ppb
Trace Impurities – Potassium (K)	≤ 500.0 ppb	< 2.0 ppb
Trace Impurities – Selenium (Se)	≤ 50.0 ppb	< 0.1 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	31.5 ppb
Trace Impurities – Silver (Ag)	≤ 1.0 ppb	< 0.3 ppb

>>> Continued on page 2 >>>

Sulfuric Acid
BAKER INSTRA-ANALYZED® Reagent
For Trace Metal Analysis
Low Selenium

Material No.: 9673-33 Batch No.: 23D2462010

Test	Specification	Result
Trace Impurities - Sodium (Na)	≤ 500.0 ppb	5.4 ppb
Trace Impurities – Strontium (Sr)	≤ 5.0 ppb	< 0.2 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	< 0.8 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.4 ppb

For Laboratory, Research, or Manufacturing Use

Country of Origin: USA

Packaging Site: Phillipsburg Mfg Ctr & DC

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

M6151

R-> 1/15/25

Material No.: 9530-33

Batch No.: 22G2862015 Manufactured Date: 2022-06-15

Retest Date: 2027-06-14

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS - Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	
ACS - Color (APHA)	50.5 - 38.0 % ≤ 10	37.9 %
ACS - Residue after Ignition	≤ 3 ppm	5
ACS - Specific Gravity at 60°/60°F		< 1 ppm
ACS – Bromide (Br)	1.185 - 1.192	1.191
ACS - Extractable Organic Substances	≤ 0.005 %	< 0.005 %
ACS - Free Chlorine (as Cl2)	≤ 5 ppm	< 1 ppm
Phosphate (PO ₄)	≤ 0.5 ppm	< 0.5 ppm
Sulfate (SO ₄)	≤ 0.05 ppm	< 0.03 ppm
Sulfite (SO₃)	≤ 0.5 ppm	< 0.3 ppm
Ammonium (NH ₄)	≤ 0.8 ppm	0.3 ppm
Trace Impurities - Arsenic (As)	≤ 3 ppm	< 1 ppm
Trace Impurities – Aluminum (AI)	≤ 0.010 ppm	< 0.003 ppm
Arsenic and Antimony (as As)	≤ 10.0 ppb	1.3 ppb
Trace Impurities - Barium (Ba)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities - Beryllium (Be)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Bismuth (Bi)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 20.0 ppb	< 5.0 ppb
Trace Impurities – Calcium (Ca)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities - Calcium (Ca) Trace Impurities - Chromium (Cr)	≤ 50.0 ppb	163.0 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	0.7 ppb
	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities - Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Frace Impurities – Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Frace Impurities – Gold (Au)	≤ 4.0 ppb	0.6 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Frace Impurities – Iron (Fe)	≤ 15 ppb	6 ppb

>>> Continued on page 2 >>>

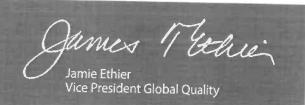
Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015

Test	Specification	Result
Trace Impurities – Lead (Pb)	≤ 1.0 ppb	< 0.5 ppb
Trace Impurities - Lithium (Li)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	2.9 ppb
Trace Impurities - Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 3.0 ppb
Trace Impurities - Nickel (Ni)	≤ 4.0 ppb	< 0.3 ppb
Trace Impurities - Niobium (Nb)	≤ 1.0 ppb	0.8 ppb
Trace Impurities - Potassium (K)	≤ 9.0 ppb	< 2.0 ppb
Trace Impurities - Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities - Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities - Silver (Ag)	≤ 1.0 ppb	0.5 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.3 ppb
Trace Impurities – Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	1.6 ppb
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	4.0 ppb
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	1.5 ppb
Trace Impurities – Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.8 ppb
Frace Impurities – Zirconium (Zr)	≤ 1.0 ppb	0.3 ppb

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015


Test

Specification

Result

For Laboratory, Research, or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Sodium Phosphate, Monobasic, Monohydrate, Crystal BAKER ANALYZED® A.C.S. Reagent **C**Vavantor™ J.T.Baker

(sodium dihydrogen phosphate, monohydrate)

Material No.: 3818-05 Batch No.: 0000225799

Manufactured Date: 2018/12/05 Retest Date: 2025/12/03

Revision No: 1

Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

Test	Specification	Result
Assay (NaH2PO4 · H2O)	98.0 - 102.0 %	99.5
pH of 5% Solution at 25°C	4.1 - 4.5	4.3
Insoluble Matter	<= 0.01 %	< 0.01
Chloride (CI)	<= 5 ppm	< 5
ACS - Sulfate (SO ₄)	<= 0.003 %	< 0.003
Calcium (Ca)	<= 0.005 %	< 0.005
Potassium (K)	<= 0.01 %	< 0.01
Heavy Metals (as Pb)	<= 0.001 %	< 0.001
Trace Impurities – Iron (Fe)	<= 0.001 %	< 0.001

For Laboratory, Research or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs

Country of Origin: IN

Packaging Site: Paris Mfg Ctr & DC

RICCA CHEMICAL COMPANY

1490 Lammers Pike Batesville, IN 47006 http://www.riccachemical.com 1-888-GO-RICCA

customerservice@riccachemical.com

Certificate of Analysis Onlong Concession Co

Buffer, Reference Standard, pH 7.00 ± 0.01 at 25°C (Color Coded Yellow)

Lot Number: 4401F99

Product Number: 1551

Manufacture Date: JAN 08, 2024

Expiration Date: DEC 2025

The certified value for this product is confirmed in independent testing by a second qualified chemist.

The NIST traceable pH value is certified to ± 0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ± 0.05 .

5 10 15 20 25 30 35 40 45 50 pН 7.12 7.09 7.06 7.04 7.02 7.00 6.99 6.98 6.98 6.97 6.97

Name	CAS#	Grade	
Water	7732-18-5	ACS/ASTM/USP/EP	
Sodium Phosphate Dibasic	7558-79-4	ACS	
Potassium Dihydrogen Phosphate	7778-77-0	ACS	
Preservative	Proprietary	11.11.77	
Yellow Dye	Proprietary		
Sodium Hydroxide	1310-73-2		

Test	Specification	Result	
Appearance	Yellow liquid	Passed	*Not a certified value
Test	Certified Value	Uncertainty	NIST SRM#
pH at 25°C (Method: SQCP027, SQCP033)	7.004	0.02	186-I-g, 186-II-g, 191d

Specification	Reference	
Commercial Buffer Solutions	ASTM (D 1293 B)	
Buffer A	ASTM (D 5464)	
Buffer A	ASTM (D 5128)	

pH measurements were performed in our Batesville, IN laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.02) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)
1551-1	4 L natural poly	24 months
1551-1CT	4 L Cubitainer®	24 months
1551-2.5	10 L Cubitainer®	24 months
1551-5	20 L Cubitainer®	24 months
		V /V 1.11 1.

Recommended Storage: 15°C - 30°C (59°F - 86°F)

faul Drandon

Paul Brandon (01/08/2024)

Production Manager

This document is designed to comply with ISO Guide 31 "Reference Materials -- Contents of Certificates and Labels."

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

Version: 1.3 Lot Number: 4401F99 Product Number: 1551 Page 2 of 2

12/14/2022

12/31/2025

Sodium Hydroxide (Pellets)

Material: 0583

Grade: ACS GRADE Batch Number: 23B1556310

Chemical Formula: NaOH
Molecular Weight: 40

CAS #: 1310-73-2

Appearance: Storage: Room Temperature

Pellets

TEST	SPECIFICATION	ANALYSIS	DISPOSITION
Calcium	<= 0.005 %	<0.005 %	PASS
Chloride	<= 0.005 %	0.002 %	PASS
Heavy Metals	<= 0.002 %	<0.002 %	PASS
Iron	<= 0.001 %	<0.001 %	PASS
Magnesium	<= 0.002 %	<0.002 %	PASS
Mercury	<= 0.1 ppm	<0.1 ppm	PASS
Nickel	<= 0.001 %	<0.001 %	PASS
Nitrogen Compounds	<= 0.001 %	<0.001 %	PASS
Phosphate	<= 0.001 %	<0.001 %	PASS
Potassium	<= 0.02 %	<0.02 %	PASS
Purity	>= 97.0 %	99.2 %	PASS
Sodium Carbonate	<= 1.0 %	0.5 %	PASS
Sulfate	<= 0.003 %	<0.003 %	PASS

Manufacture Date:

Expiration Date:

Internal ID #: 710

Signature Additional Information

We certify that this batch conforms to the specifications listed.

This document has been electronically produced and is valid without a signature.

Leona Edwardson, Quality Control Sr. Manager - Solon VWR Chemicals, LLC.

28600 Fountain Parkway, Solon OH 44139 USA

Analysis may have been rounded to significant digits in specification limits.

Product meets analytical specifications of the grades listed.

12/14/2022

12/31/2025

Room Temperature

Manufacture Date:

Expiration Date:

Storage:

Sodium Hydroxide (Pellets)

Material: 0583

Grade: ACS GRADE Batch Number: 23B1556310

Chemical Formula: NaOH Molecular Weight: 40

CAS #: 1310-73-2

Appearance:

Pellets

Spec Set: 0583ACS

Internal ID #: 710

Signature Additional Information

We certify that this batch conforms to the specifications listed.

This document has been electronically produced and is valid without a signature.

Leona Edwardson, Quality Control Sr. Manager - Solon VWR Chemicals, LLC. 28600 Fountain Parkway, Solon OH 44139 USA Analysis may have been rounded to significant digits in specification limits.

Product meets analytical specifications of the grades listed.

W3139 Received on 9/9/24 by IZ

Product No.: A12044

Product: Chloramine-T trihydrate, 98%

Lot No.: 10239484

Appearance: White powder Melting Point: 166°C(dec)
Assay (Iodometric titration): 100.5% Identification (FTIR): Conforms

Order our products online thermofisher.com/chemicals

This document has been electronically generated and does not require a signature.

Products are processed under ISO 9001:2015 quality management systems and samples are tested for conformance to the noted specifications. Certain data may have been supplied by third parties. We disclaim the implied warranties of merchantability and fitness for a particular purpose, and the accuracy of third party data or information associated with the product. Products are for research and development use only. Products are not for direct administration to humans or animals. It is the responsibility of the final formulator or end user to determine suitability, and to qualify and/or validate each product for its intended use.

Chem-Impex International, Inc.

Tel: (630) 766-2112 Fax: (630) 766-2218

E-mail: sales@chemimpex.com

Web site: www.chemimpex.com

Shipping and Correspondence:935 Dillon Drive
825 Dillon Drive

Wood Dale, IL 60191 Wood Dale, IL 60191

Certificate of Analysis

Catalogue Number 01237

Lot Number 002126-2019-201

Product Magnesium chloride hexahydrate

Magnesium chloride•6H₂O

CAS Number 7791-18-6 Molecular Formula MgCl₂•6H₂O

Molecular Weight 203.3

Appearance White crystals

Solubility 167 g in 100 mL water

Melting Point ~ 115 °CHeavy Metals4.393 ppm

Anion Nitrate (NO_3) : < 0.001%

 $\begin{aligned} &Phosphate \ (PO_4): < 5 \ ppm \\ &Sulfate \ (SO_4): < 0.002\% \end{aligned}$

Cation Ammonium $(NH_4) : < 0.002\%$

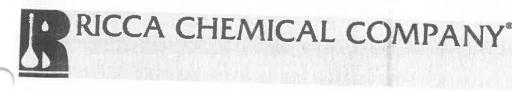
Barium (Ba) : 0.005% Calcium (Ca) : 0.01% Iron (Fe) : 4.5 ppm

Manganese (Mn): 0.624 ppm Potassium (K): 0.004% Sodium (Na): 0.000003% Strontium (Sr): 0.005%

Insoluble material0.0021%Assay by titration100.83%GradeACS reagentStorageStore at RT

Catalog Number: 01237 Lot Number: 002126-2019-201

Remarks


See material safety data sheet for additional information

For laboratory use only

The foregoing is a copy of the Certificate of Analysis as provided by our supplier

Bala Kumar

Quality Control Manager

1841 Broad Street Pocomoke City, MD 21851 http://www.riccachemical.com 1-888-GO-RICCA

customerservice@riccachemical.com

Certificate of Analysis

93178

Buffer, Reference Standard, pH 4.00 ± 0.01 at 25°C (Color Coded Red)

Lot Number: 2411A93

Product Number: 1501

Manufacture Date: NOV 04, 2024

Expiration Date: OCT 2026

The certified value for this product is confirmed in independent testing by a second qualified chemist.

The NIST Traceable pH value is certified to ± 0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ± 0.05 .

5 10 15 20 25 30 35 45 pH 50 4.00 4.00 4.00 4.00 4.004.00 4.01 4.024.03 4.04 4.06

Name	CAS#	Grade	A DESCRIPTION OF THE PERSON
Water	7732-18-5	ACS/ASTM/USP/	EP
Potassium Acid Phthalate	877-24-7	Buffer	
Preservative Red Dye	Proprietary	Commercial	
Ned Dye	Proprietary	Purified	THE STATE OF THE S
Test	Specification	Result	
Appearance	Red liquid	Passed	*Not a
rest	Certified Value		*Not a certified val
pH at 25°C (Method: SQCP027, SQCP033)	4.008	Uncertainty	NIST SRM#
Specification	4.008	0.02	185i, 186-I-g, 186-II-g
Shermenton	Pot	THE PARTY ASSESSMENT	

Specification	() 1 × 10 × 10 × 10 × 10 × 10 × 10 × 10
Commonaid D. C. G. J.	Reference
Buffer R	ASTM (D 1293 B) ASTM (D 5464)
Buffer B	ASTM (D 5464) ASTM (D 5128)
DH measurements were and	ASTM (D 5128)

pH measurements were performed in our Pocomoke City, MD laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.01) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are before first use and recalibrated regularly with a thermometer traceable to NIST standards. Thermometers and temperature probes are calibrated documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	COL LATE ANY
1501-16		Shelf Life (Unopened Container)
1501-2.5	500 mL natural poly	24 months
1501-5	10 L Cubitainer®	24 months
Recommended Storage: 15°C -	20 L Cubitainer®	24 months

RICCA CHEMICAL COMPANY 33191

1841 Broad Street Pocomoke City, MD 21851 http://www.riccachemical.com

1-888-GO-RICCA customerservice@riccachemical.com

Certificate of Analysis

Buffer, Reference Standard, pH 10.00 ± 0.01 at 25°C (Color Coded Blue)

Lot Number: 2410F80

Product Number: 1601

Manufacture Date: OCT 09, 2024

Expiration Date: MAR 2026

The certified value for this product is confirmed in independent testing by a second qualified chemist.

The NIST traceable pH value is certified to ± 0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ± 0.05 .

20 25 30 pН 35 10.31 10.23 40 50 10.1710.11 10.05 10.00 9.95 9.91 9.87 9.81

Grade ACS/ASTM/USP/EP ACS	
ACS	
ACS	
ACS	
Reagent	
the second secon	
	ACS Reagent

Appearance	Specification	Result	
Test	Blue liquid	Passed	*Not a certified value
	Certified Value	Uncertainty	
pH at 25°C (Method: SQCP027, SQCP033) Specification	10.009	0.00	186-I-g, 186-II-g, 191d

Specification	0.02	186-I-g, 186-II-g, 191d
Commoveial D. Cc. C	Reference	
Buffer C	ASTM (D 1293 B)	
Buffer C	ASTM (D 54CA)	0 × 2/ 1 0 3/1/11 1/101
pH measurements were performed in our Pocomoke City, MD laboratory w		
cortified the later performed in our Pocomoke City, MD laboratory	ndon ICO (TEC)	THE PERSON OF THE PART OF

pH measurements were performed in our Pocomoke City, MD laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.01) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing

Part Number		and production and testing
1601-1	Size / Package Type	Shalf Life (II.
1601-16	4 L natural poly 500 mL natural poly	Shelf Life (Unopened Container) 18 months
1601-16 1601-1CT	500 mL natural poly 4 L Cubitainer®	18 months
2.0	4 L Cubitainer® 10 L Cubitainer®	18 months
	1 L natural poly	18 months
1601-5	1 L natural poly 20 L Cubitainer®	18 months
ersion: 1.3	Lot Number: 2410F80	18 months

Lot Number: 2410F80

Product Number: 1601

Page 1 of 2

3050 Spruce Street, Saint Louis, MO 63103, USA

Website: www.sigmaaldrich.com
Email USA: techserv@sial.com
Outside USA: eurtechserv@sial.com

Certificate of Analysis

Barbituric acid - ReagentPlus®, 99%

Product Name:

Product Number: 185698
Batch Number: WXBF3271V

Brand: SIAL
CAS Number: 67-52-7
Formula: C4H4N2O3
Formula Weight: 128,09 g/mol
Quality Release Date: 16 MAY 2024

		LΗ
0/	`N^	>>`0
	Ĥ	

Test	Specification	Result	
Appearance (Colour)	White to Off-White	White	
Appearance (Form)	Pow der	Pow der	
Infrared spectrum	Conforms to Structure	Conforms	
Purity (Titration by NaOH)	98.5 - 101.5 %	100.4 %	
GC (area %)	> 98 %	100 %	
VPCT	_		

S. 455

Kang Chen Quality Manager Wuxi , China CN

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Version Number: 1 Page 1 of 1

448 West Fork Dr Arlington, TX 76012 http://www.riccachemical.com 1-888-GO-RICCA

customerservice@riccachemical.com

Certificate of Analysis

Cyanide Standard, 1000 ppm CN

Lot Number: 1505H73 Product Number: 2543

Manufacture Date: MAY 08, 2025

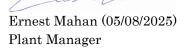
Expiration Date: NOV 2025

This standard is prepared using accurate volumetric techniques from material that has been assayed against Silver Nitrate solution certified traceable to NIST Standard Reference Material 999. The certified value reported is the prepared value based upon the method of preparation of the material. The uncertainty in the prepared value is the combined uncertainty based on the stability of the assayed Potassium Cyanide, and the uncertainty in the mass and volume measurements.

Use 0.16% (w/v) (0.04 N) Sodium Hydroxide or 0.225% (w/v) (0.04 N) Potassium Hydroxide to make dilutions of this standard. Restandardize weekly if extreme accuracy is required.

Name	CAS#	Grade
Water	7732-18-5	ACS/ASTM/USP/EP
Potassium Cyanide	151-50-8	ACS
Sodium Hydroxide	1310-73-2	Reagent (from ACS)

Test	Specification	Result
Appearance	Colorless liquid	Passed
Cyanide (CN)	995-1005 ppm	1000 ppm


Specification	Reference
Stock Standard Cyanide Solution	APHA (4500-CN- F)
Stock Cyanide Solution	APHA (4500-CN- E)
Stock Cyanide Solution	APHA (4500-CN- K)
Stock Cyanide Solution	APHA (4500-CN- H)
Cyanide Reference Solution (1000 mg/L)	EPA (SW-846) (7.3.3.2)
Cyanide Calibration Stock Solution (1,000 mg/L CN-)	EPA (SW-846) (9213)
Stock Cyanide Solution	EPA (335.3)
Stock Cyanide Solution	EPA (335.2)
Cyanide Solution Stock	ASTM (D 4282)
Simple Cyanide Solution, Stock (1.0 g/L CN)	ASTM (D 4374)

Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)
2543-16	500 mL amber poly	6 months
2543-32	1 L amber poly	6 months
2543-4	120 mL amber poly	6 months

Recommended Storage: 2°C - 8°C (36°F - 46°F)

Version: 1.3 Lot Number: 1505H73 Product Number: 2543 Page 1 of 2

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

Version: 1.3 Lot Number: 1505H73 Product Number: 2543 Page 2 of 2

1841 Broad Street Pocomoke City, MD 21851 http://www.riccachemical.com 1-888-GO-RICCA

customerservice@riccachemical.com

Certificate of Analysis

Buffer, Reference Standard, pH 7.00 ± 0.01 at 25°C (Color Coded Yellow)

Lot Number: 2504D34 Product Number: 1551

Manufacture Date: APR 03, 2025

Expiration Date: MAR 2027

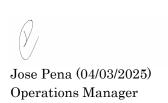
The certified value for this product is confirmed in independent testing by a second qualified chemist.

The NIST traceable pH value is certified to ±0.01 at 25 °C only. All other pH values at their corresponding temperatures are accurate to ±0.05.

15 20 30 35 45 50 рH 7.12 7.09 7.06 7.04 7.02 7.00 6.99 6.98 6.98 6.97 6.97

Name	CAS#	Grade
Water	7732-18-5	ACS/ASTM/USP/EP
Sodium Phosphate Dibasic	7558-79-4	ACS
Potassium Dihydrogen Phosphate	7778-77-0	ACS
Preservative	Proprietary	
Yellow Dye	Proprietary	
Sodium Hydroxide	1310-73-2	Reagent (from ACS)

	Test	Specification	\mathbf{Result}	
•	Appearance	Yellow liquid	Passed	*Not a certified value.
	Test	Certified Value	Uncertainty	NIST SRM#


Specification	Reference
Commercial Buffer Solutions	ASTM (D 1293 B)
Buffer A	ASTM (D 5464)
Buffer A	ASTM (D 5128)

pH measurements were performed in our Pocomoke City, MD laboratory under ISO/IEC 17025 accreditation (ANAB Certificate L2387.01) and are certified traceable to National Institute of Standards and Technology (NIST) Standard Reference Material as indicated above via an unbroken chain of comparisons. The uncertainty is calculated from the uncertainty of the measurement variation from sample to sample, the uncertainty in the NIST Standard Reference Material, and the uncertainty of the measurement process. The uncertainty is multiplied by k=2, corresponding to 95% coverage in a normal distribution. Volumetric glassware complies with Class A tolerance requirements of ASTM E 288 and NIST Circular 434; it is calibrated before first use and recalibrated regularly in accordance with ASTM E 542 and NIST Procedure NBSIR 74-461. Balances are calibrated regularly with weights certified traceable to the NIST national mass standard. Thermometers and temperature probes are calibrated before first use and recalibrated regularly with a thermometer traceable to NIST standards. All products are prepared according to master documents that assure manufacture according to validated methods. Batch records document raw material traceability and production and testing history for each lot manufactured.

Part Number	Size / Package Type	Shelf Life (Unopened Container)
1551-2.5	10 L Cubitainer®	24 months
1551-20	20 x 20 mL pack	24 months
1551-32	1 L natural poly	24 months
1551-5	20 L Cubitainer®	24 months

Recommended Storage: 15°C - 30°C (59°F - 86°F)

Version: 1.3 Lot Number: 2504D34 Product Number: 1551 Page 1 of 2

This product was tested in an ISO 17025 Accredited Laboratory

This test report shall not be reproduced, except in full, without the written approval of Ricca Chemical Company.

Version: 1.3 Lot Number: 2504D34 Product Number: 1551 Page 2 of 2

Jackson's Pointe Commerce Park- Building 1000 1010 Jackson's Pointe Court, Zelienople, PA 16063

Certificate of Analysis

Cyanide Standard 1000 ppm (1ml = 1mg CN)

Product Code: LC13545 Manufacture Date: June 25, 2025

Lot Number: 45060288 Expiration Date: December 24, 2025

Test	Specification	Result	
Appearance (clarity)	clear solution	clear solution	
Appearance (color)	colorless	colorless	
Concentration (CN)	0.990 - 1.010mg/mL	1.000mg/mL	
Concentration (CN)	990 - 1,010ppm	1,000ppm	
Traceable to NIST SRM	Report	999b	

Intended Use - Product is intended for use in manufacturing procedures and laboratory procedures and protocols.

Storage Information - Unless noted on the product label, store the product under normal lab conditions in its tightly closed, original container. Do not pipet directly from the container or return unused portions to the container.

Instructions for Handling and Use - Please refer to the associated product label and Safety Data Sheet (SDS) for information regarding safety and handling of this product.

Preparation - All products are manufactured and tested according to established, documented procedures and methodology. Production documentation records manufacturing data, raw material traceability and testing history on a per lot basis. Balances, thermometers, and glassware are calibrated before first use and on a regular schedule with references traceable to NIST

The suffix of the product code may differ from what is on your product label. The suffix will designate the size and be associated with a numeric digit(s). Visit LabChem.com for more information

Suffix	1	2	3/35/36/36S	4/4C	5	6	7	8	9	20	44	200	246	486
Size	500mL or g	1L or 1kg	2.5L/2.5L Coated/6x2.5L/6x2.5L Coated	4L	20L	10L	125mL	25g	100g	20x20mL	4x4L	200L	24x6mL	48x6mL

SHIPPING DOCUMENTS

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 · Fax (908) 789-8922 www.chemtech.net

ALLIANCE PR	ROJECT NO	D. ,		
QUOTE NO.		Q	27	24
COC Number	2046	27	0	

	CLIENT INFORMATION				ROJECT IN						200 10		CLIEN	IT BILLI	NG INF	ORMATION	
COMPANY:	netem A GE power Business	PROJECT NAME: Parsippany masternate						BILL TO: PO#:									
ADDRESS:	700 parsippany Acad	PROJEC	T NO.:		LOCA	TION:				ADDF	ESS:						
	DONNY STATE:NT ZIP:07054	PROJEC	TMAN	AGER:						CITY					STAT	TE:	ZIP:
	Sundas Pervez	e-mail:								ATTE	NTION:				PHO	NE:	
	3-887-663\$FAX:	PHONE:			FA	X::								AN	ALYSIS		17 1 11
	DATA TURNAROUND INFORMATION	THORVE.		TA DELIVE			ATION		5 8	-	2				Ļ		
EDD: *TO BE APPRO	DAYS* DAYS* DAYS* DAYS* DAYS* DAYS* DAYS* DAYS* DAYS*	□ Level	2 (Resu 3 (Resu w Data)		NJ Reduced	d 🗆 U	Raw Data S EPA CL S ASP B	a) P	0 5 6 12 3	Did Did	5 2 1		1/1	//8	/9		//
ALLIANCE		- 1	SAMP		MPLE	ES				PRE	SERVA	TIVES				_	OMMENTS
SAMPLE	PROJECT SAMPLE IDENTIFICATION	SAMPLE MATRIX	TYPE		TIME	# OF BOTTLES	B 1	2	E	14	5	6	7	8	9	A-HCI B-HN03 C-H2SO4	bify Preservatives D-NaOH E-ICE F-OTHER
1.	Wastewater 03	(4)		7.29.2	1505	3	1/	1	V							PH	7.65
2.																	1.0
3.																	
4.																	
5.																	
6.																	
7.																	
8.																	
9.																	
10.																	
RELINQUISHED B 1. RELINQUISHED B 2. RELINGUISHED B	7/29/25 508 1 Y SAMPLER: DATE/TIME: 2.	7-	150 29-2	S Condit Comme	ME SAMP ons of bottles nts:	CLES C	HANGE s at receip	t: D CC	DMPLIANT	N INCL	UDING	NT G	COOLER TE	ELIVER		1.5	°C
3 Copyright © 2024	Y SAMPLER: DATE/TIME: SSS RECEIVED BY: 7-21-25 3. WHITE-ALLIANCE	CE COPY FOR	DET! ION	Page	of		CLIENT		Hand Do	elivered SAMPLER	CODY	ther				-	nt Complete

Alliance Technical Group, LLC-Newark

284 Sheffield Street, Mountainside, NJ 07092 Tel. 908-789-8900 Fax 908-789-8922

FIELD SAMPLING LOG

Client Name: Metern A GE POWET BUS. MESS
Client Address: 700 Parsippany Roal
Client Rep on Site: Sundas Pervez
a 1: Date: 7-20-05

Project Name: Pussipping westernes	guarterly
Project Location: Pars. Porry	
Cooler Custody Seal:	
Temperature Correction Factor (°C):	

Sampling Date: 7-29-25

Arrival Time: 14/4/8

Departure Time: 1522

FIELD EQUIPMENT CALIBRATION

		pH Calibration (SM4500	-Н В/9040С)	ICV
	C	alibration		(± 0.1 pH unit)
	7.00 Buffer W 32)7	4.00 Buffer W3+81593178	10.00 Buffer W 3/9/	7.00 Buffer W 3 0 9 3
Time	1442	144	1446	1448
emp °C	24.36	24.40	24,20	24.54
рН	7.00	4.00	10.01	7.00

FIELD EQUIPMENT CALIBRATION

	Specific Conductance (mS/cm) (99% -101%)/(m	mho/cm) (SM2510 B/120.1/9050A)
	dibration (± 1%) (99% -101%)	ICV (± 1%) (99% -101%)
	WP	WP
Time		
Temp °C		
Reading (mS/cm)	and the second s	

Sampler Signature/Date:	7-29-25
OA Control# A3041249	

Supervisor Review/Date: _____

Alliance Technical Group, LLC-Newark

Arrival Time:

284 Sheffield Street, Mountainside, NJ 07092 Tel. 908-789-8900 Fax 908-789-8922

FIEL		TATO	TOC
			1.5 24 -

Client Name: Melem A GE power Business
Client Address: 700 Parsippany Row
Client Rep on Site: Sunday Sundas Pervez
Sampling Date: 7-00.05

Project Name: Pars, pany wastenedes	glaster
Project Location: Dars poany	<u></u> 20
Cooler Custody Seal:	
Temperature Correction Factor (°C):	

Departure Time: 1522

FIELD SAMPLING INFORMATION

	Date/Time of Field Measurements					
Sampling Location	sampling	Date/Time of A	Analysis	рН	Temperature °C	Specific Conductance (mS/cm) (99% -101%)
CCV Cw3093)	7-29-25 1452	7-24-25	1434	7,00	24.76	NIA
Wastewater Q3	1565		1507	7.65	23-25	1
DUP	1509		1511	7.64	23.10	
CCV CW3093)	15/3	1	1515	7.60	24.86	
The state of the s						
						The state of the s
			1			

Meter: YSI MPS, Model # 556, Serial # 085A0063

Sampler	Signature/Date:
	/

L X	7-29-25
4	

Supervisor Review/Date:	
p	

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	T104704488

QA Control Code: A2070148