Q2724 Metals Group5 Order ID: Test: 284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax: 908 789 8922 ## **Prep Standard - Chemical Standard Summary** | Prepbatch ID: PB169059, | |---| | Sequence ID/Qc Batch ID: LB136666,LB136666, | | Standard ID: MP85156, | | Chemical ID: M6007,M6015,M6151,M6158,W3112, | | | | | **Metals STANDARD PREPARATION LOG** | Recipe
ID
170 | NAME
1:1HCL | NO.
MP85156 | Prep Date
04/07/2025 | Expiration
Date
09/06/2025 | Prepared By Kareem Khairalla | ScaleID
None | PipettelD
None | Supervised By Sarabjit Jaswal 04/07/2025 | |---------------------|-----------------------------------|----------------|-------------------------|----------------------------------|-------------------------------|-----------------|-------------------|--| | FROM | 1250.00000ml of M6151 + 1250.0000 | 00ml of W31 | 12 = Final Q | uantity: 2500.00 | 00 ml | | | | ## **CHEMICAL RECEIPT LOG BOOK** | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | |-----------------------|---|---------------------|--------------------|----------------------------|--------------------------------|-------------------| | Inorganic
Ventures | WW-LFS-1 / Laboratory
Fortified Stock Solution 1,
125 ml | T2-MEB723367 | 05/27/2026 | 05/27/2025 /
Janvi | 05/14/2024 /
Jaswal | M6007 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | Inorganic
Ventures | WW-LFS-2 / Laboratory
Fortified Stock Solution 2,
125 ml | U2-MEB731108 | 03/17/2028 | 06/19/2025 /
MOHAN | 05/14/2024 /
Jaswal | M6015 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | Seidler Chemical | BA-9530-33 / Hydrochloric
Acid, Instra-Analyzed
(cs/6x2.5L) | 22G2862015 | 08/17/2025 | 02/18/2025 /
Sagar | 01/15/2025 /
Sagar | M6151 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | Seidler Chemical | BA-9598-34 / Nitric Acid,
Instra-Analyzed (cs/4x2.5L) | 24D1062002 | 09/09/2025 | 03/10/2025 /
Eman | 02/02/2025 /
Sagar | M6158 | | Supplier | ItemCode / ItemName | Lot # | Expiration
Date | Date Opened /
Opened By | Received Date /
Received By | Chemtech
Lot # | | Seidler Chemical | DIW / DI Water | Daily Lab-Certified | 07/03/2029 | 07/03/2024 /
lwona | 07/03/2024 /
Iwona | W3112 | ## M6000,M6001,M6002,M6003,M6004,M6005,M6006,M6007,M6008 # Certificate of Analysis Refine your results. Redefine your industry. RD:05/14/2024 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com ## 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). ## 2.0 PRODUCT DESCRIPTION **Product Code:** Multi Analyte Custom Grade Solution Catalog Number: WW-LFS-1 Lot Number: T2-MEB723367 Matrix: 5% (v/v) HNO3 Value / Analyte(s): 1 000 μg/mL ea: Potassium, 600 μg/mL ea: Phosphorus, 300 μg/mL ea: Iron, 200 μg/mL ea: Sodium, Magnesium, Aluminum, Cerium, Selenium, Thallium, 100 μg/mL ea: Lead, Calcium, 80 µg/mL ea: Arsenic, 70 µg/mL ea: Mercury, 50 µg/mL ea: Nickel, 40 μg/mL ea: Chromium, 30 μg/mL ea: Copper, Boron, Vanadium, 20 μg/mL ea: Zinc, Strontium, Barium, Beryllium, Cadmium, Cobalt, Manganese, Lithium, 7.5 µg/mL ea: Silver ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES | ANALYTE
Aluminum, Al | CERTIFIED VALUE
200.0 ± 0.7 µg/mL | ANALYTE
Arsenic, As | CERTIFIED VALUE
80.0 ± 0.7 µg/mL | |-------------------------|--------------------------------------|------------------------|-------------------------------------| | Barium, Ba | 20.00 ± 0.09 μg/mL | Beryllium, Be | 20.00 ± 0.13 μg/mL | | Boron, B | 30.00 ± 0.18 μg/mL | Cadmlum, Cd | 20.00 ± 0.09 μg/mL | | Calcium, Ca | 100.0 ± 0.4 μg/mL | Cerium, Ce | 200.0 ± 0.8 µg/mL | | Chromium, Cr | 40.00 ± 0.30 μg/mL | Cobalt, Co | 20.00 ± 0.10 μg/mL | | Copper, Cu | 30.00 ± 0.13 μg/mL | Iron, Fe | 300.0 ± 1.3 μg/mL | | Lead, Pb | 100.0 ± 0.4 μg/mL | Lithium, Li | 20.00 ± 0.08 µg/mL | | Magneslum, Mg | 200.0 ± 0.8 μg/mL | Manganese, Mn | 20.00 ± 0.08 µg/mL | | Mercury, Hg | 70.0 ± 0.3 µg/mL | Nickel, Ni | 50.00 ± 0.22 μg/mL | | Phosphorus, P | 600.0 ± 2.7 μg/mL | Potassium, K | 1 000 ± 4 µg/mL | | Selenium, Se | 200.0 ± 1.3 μg/mL | Silver, Ag | 7.50 ± 0.03 µg/mL | | Sodium, Na | 300.0 ± 1.4 μg/mL | Strontium, Sr | 20.01 ± 0.08 μg/mL | | Thailium, Ti | 200.0 ± 1.4 μg/mL | Vanadium, V | 30.00 ± 0.13 μg/mL | | Zinc, Zn | 20.00 ± 0.09 μg/mL | | | 1.034 g/mL (measured at 20 \pm 4 °C) Density: **Assay Information:** | ANALYTE | METHOD | NIST SRM# | SRM LOT# | |---------|-------------|--------------------|--------------| | Ag | ICP Assay | 3151 | 160729 | | Ag | Volhard | 999c | 999c | | Ag | Calculated | | See Sec. 4.2 | | Al | ICP Assay | 3101a | 140903 | | Al | EDTA | 928 | 928 | | As | ICP Assay | 3103a | 100818 | | В | ICP Assay | 3107 | 190605 | | Ва | ICP Assay | 3104a | 140909 | | Ва | Gravimetric | | See Sec. 4.2 | | Ве | ICP Assay | 3105a | 090514 | | Ca | ICP Assay | 3109a | 130213 | | Ca | EDTA | 928 | 928 | | Cd | ICP Assay | 3108 | 130116 | | Cd | EDTA | 928 | 928 | | Се | ICP Assay | 3110 | 090504 | | Ce | EDTA | 928 | 928 | | Co | ICP Assay | 3113 | 190630 | | Со | EDTA | 928 | 928 | | Cr | ICP Assay | 3112a | 170630 | | Cu | ICP Assay | 3114 | 121207 | | Cu | EDTA | 928 | 928 | | Fe | ICP Assay | 3126a | 140812 | | Fe | EDTA | 928 | 928 | | Hg | ICP Assay | 3133 | 160921 | | Hg | EDTA | 928 | 928 | | K | ICP Assay | 3141a | 140813 | | K | Gravimetric | | See Sec. 4.2 | | Li | ICP Assay | 3129a | 100714 | | Li | Gravimetric | | See Sec. 4.2 | | Mg | ICP Assay | 3131a | 140110 | | Mg | EDTA | 928 | 928 | | Mn | ICP Assay | 3132 | 050429 | | Mn | EDTA | 928 | 928 | | Na | ICP Assay | Traceable to 3152A | S2-NA700842 | | Na | Gravimetric | | See Sec. 4.2 | | Ni | ICP Assay | 3136 | 120619 | | Ni | EDTA | 928 | 928 | | P | ICP Assay | 3139a | 060717 | | P | Acidimetric | 84L | 84L | | Pb | ICP Assay | 3128 | 101026 | | Pb | EDTA | 928 | 928 | | Se | ICP Assay | 3149 | 100901 | | Sr | EDTA | 928 | 928 | | Sr | ICP Assay | Traceable to 3153a | K2-SR650985 | | TI | ICP Assay | 3158 | 151215 | | V | IC Assay | 3165 | 160906 | | V | EDTA | 928 | 928 | | Zn | ICP Assay | 3168a | 120629 | | Zn | EDTA | 928 | 928 | Page 4 of 6 The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ## Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty $u_{char\ i}$ w_i = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{1/2}$ k = coverage factor = 2 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} is are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty ### Characterization of CRM/RM by One Method Certified Value, X_{CRMRM}, where one method of characterization is used is the mean of individual results: $X_{CRM/RM} = (X_a) (u_{char})$ X_g = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{tts} + u^2_{ts})^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (slorage) u_{ts} = transport stability standard uncertainty ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. ## 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. ## 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. ## 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) N/A ## 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. ## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL ## 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Low Silver Note: This solution contains "LOW" levels of Silver. Please store this entire bottle inside a sealed glass jar. ## 8.0 HAZARDOUS INFORMATION Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date August 30, 2022 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - August 30, 2026 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Da | te: | |--------------------------|-----| |--------------------------|-----| - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS ## **Certificate Approved By:** Thomas Kozikowski Manager, Quality Control Certifying Officer: **Paul Gaines** Chairman / Senior Technical Director DD978hi. # Certificate of Analysis Refine your results. Redefine your industry. RD:05/14/2024 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com #### 1.0 **ACCREDITATION / REGISTRATION** INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION **Product Code:** Multi Analyte Custom Grade Solution Catalog Number: WW-LFS-2 Lot Number: U2-MEB731108 Matrix: 5% (v/v) HNO3 tr. HF Value / Analyte(s): 200 µg/mL ea: Silica, 80 µg/mL ea: Antimony, 70 µg/mL ea: Tin, 40 µg/mL ea: Molybdenum, 20 µg/mL ea: #### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES** **ANALYTE** Antimony, Sb **CERTIFIED VALUE** 80.1 ± 0.6 µg/mL Titanium **ANALYTE** Molybdenum, Mo **CERTIFIED VALUE** 40.03 ± 0.18 µg/mL Silica, SIQ2 200.2 ± 1.3 μg/mL Tin, Sn $70.0 \pm 0.4 \, \mu g/mL$ Titanium, Ti 20.01 ± 0.13 µg/mL Density: 1.025 g/mL (measured at 20 ± 4 °C) ## **Assay Information:** | ANALYTE
Mo | METHOD
ICP Assay | NIST SRM#
3134 | SRM LOT#
130418 | |---------------|---------------------|-------------------|--------------------| | Мо | Calculated | | See Sec. 4.2 | | Sb | ICP Assay | 3102a | 140911 | | SiO2 | ICP Assay | 3150 | 130912 | | Sn | ICP Assay | 3161a | 140917 | | П | ICP Assay | 3162a | 130925 | | Ti | Calculated | | See Sec. 4.2 | The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ## Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} $\mathbf{w_j}$ = the weighting factors for each method calculated using the inverse square of the variance: $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2))$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} \simeq k \left\{ u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts} \right\}^{\frac{1}{2}}$ k = coverage factor = 2 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty ## Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of Individual results: $X_{CRM/RM} = (X_a) (u_{char e})$ X_a = mean of Assay Method A with uchar a = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{bs} + u^2_{ts}\right)^{1/2}$ k = coverage factor = 2 u_{char} a = the errors from characterization ubb = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. ### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. ## 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. ### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) N/Δ ## 6.0 INTENDED USE - **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D. - **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034. ## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL ## 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.Inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass. ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date March 17, 2023 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - March 17, 2028 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | Sealed TCT Bag Open Date | | |--|--| |--|--| - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Thomas Kozikowski Manager, Quality Control 3D978hi. **Certifying Officer:** Paul Gaines Chairman / Senior Technical I Chairman / Senior Technical Director Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis M6151 R-> 1/15/25 Material No.: 9530-33 Batch No.: 22G2862015 Manufactured Date: 2022-06-15 Retest Date: 2027-06-14 Revision No.: 0 # Certificate of Analysis | Test | Specification | Result | |---|-----------------------|-------------| | ACS - Assay (as HCI) (by acid-base titrn) | 36.5 - 38.0 % | | | ACS - Color (APHA) | 50.5 - 36.0 %
≤ 10 | 37.9 % | | ACS - Residue after Ignition | ≤ 3 ppm | 5 | | ACS - Specific Gravity at 60°/60°F | | < 1 ppm | | ACS – Bromide (Br) | 1.185 - 1.192 | 1.191 | | ACS - Extractable Organic Substances | ≤ 0.005 % | < 0.005 % | | ACS - Free Chlorine (as Cl2) | ≤ 5 ppm | < 1 ppm | | Phosphate (PO ₄) | ≤ 0.5 ppm | < 0.5 ppm | | Sulfate (SO ₄) | ≤ 0.05 ppm | < 0.03 ppm | | Sulfite (SO₃) | ≤ 0.5 ppm | < 0.3 ppm | | Ammonium (NH ₄) | ≤ 0.8 ppm | 0.3 ppm | | Trace Impurities - Arsenic (As) | ≤ 3 ppm | < 1 ppm | | Trace Impurities - Aluminum (AI) | ≤ 0.010 ppm | < 0.003 ppm | | Arsenic and Antimony (as As) | ≤ 10.0 ppb | 1.3 ppb | | Trace Impurities - Barium (Ba) | ≤ 5.0 ppb | < 3.0 ppb | | Trace Impurities - Beryllium (Be) | ≤ 1.0 ppb | 0.2 ppb | | Trace Impurities - Bismuth (Bi) | ≤ 1.0 ppb | < 0.2 ppb | | Trace Impurities – Boron (B) | ≤ 10.0 ppb | < 1.0 ppb | | Trace Impurities - Cadmium (Cd) | ≤ 20.0 ppb | < 5.0 ppb | | Trace Impurities - Calcium (Ca) | ≤ 1.0 ppb | < 0.3 ppb | | | ≤ 50.0 ppb | 163.0 ppb | | Trace Impurities - Chromium (Cr) | ≤ 1.0 ppb | 0.7 ppb | | Trace Impurities - Cobalt (Co) | ≤ 1.0 ppb | < 0.3 ppb | | Trace Impurities - Copper (Cu) | ≤ 1.0 ppb | < 0.1 ppb | | Trace Impurities – Gallium (Ga) | ≤ 1.0 ppb | < 0.2 ppb | | Trace Impurities – Germanium (Ge) | ≤ 3.0 ppb | < 2.0 ppb | | Frace Impurities – Gold (Au) | ≤ 4.0 ppb | 0.6 ppb | | Heavy Metals (as Pb) | ≤ 100 ppb | < 50 ppb | | Frace Impurities – Iron (Fe) | ≤ 15 ppb | 6 ppb | >>> Continued on page 2 >>> Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis Material No.: 9530-33 Batch No.: 22G2862015 | Test | Specification | Result | |--|---------------|------------| | Trace Impurities – Lead (Pb) | ≤ 1.0 ppb | < 0.5 ppb | | Trace Impurities - Lithium (Li) | ≤ 1.0 ppb | < 0.2 ppb | | Trace Impurities – Magnesium (Mg) | ≤ 10.0 ppb | 2.9 ppb | | Trace Impurities - Manganese (Mn) | ≤ 1.0 ppb | < 0.4 ppb | | Trace Impurities – Mercury (Hg) | ≤ 0.5 ppb | 0.1 ppb | | Trace Impurities – Molybdenum (Mo) | ≤ 10.0 ppb | < 3.0 ppb | | Trace Impurities - Nickel (Ni) | ≤ 4.0 ppb | < 0.3 ppb | | Trace Impurities - Niobium (Nb) | ≤ 1.0 ppb | 0.8 ppb | | Trace Impurities - Potassium (K) | ≤ 9.0 ppb | < 2.0 ppb | | Trace Impurities - Selenium (Se), For Information Only | | < 1.0 ppb | | Trace Impurities - Silicon (Si) | ≤ 100.0 ppb | < 10.0 ppb | | Trace Impurities - Silver (Ag) | ≤ 1.0 ppb | 0.5 ppb | | Trace Impurities – Sodium (Na) | ≤ 100.0 ppb | 2.3 ppb | | Trace Impurities – Strontium (Sr) | ≤ 1.0 ppb | < 0.2 ppb | | Trace Impurities – Tantalum (Ta) | ≤ 1.0 ppb | 1.6 ppb | | Trace Impurities – Thallium (TI) | ≤ 5.0 ppb | < 2.0 ppb | | Trace Impurities – Tin (Sn) | ≤ 5.0 ppb | 4.0 ppb | | Trace Impurities – Titanium (Ti) | ≤ 1.0 ppb | 1.5 ppb | | Trace Impurities – Vanadium (V) | ≤ 1.0 ppb | < 0.2 ppb | | Trace Impurities – Zinc (Zn) | ≤ 5.0 ppb | 0.8 ppb | | Frace Impurities – Zirconium (Zr) | ≤ 1.0 ppb | 0.3 ppb | Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis Material No.: 9530-33 Batch No.: 22G2862015 Test Specification Result For Laboratory, Research, or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C. Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC R-02/02/2025 M-6158 Material No.: 9606-03 Batch No.: 24D1062002 Manufactured Date: 2024-03-26 Retest Date: 2029-03-25 Revision No.: 0 ## Certificate of Analysis | Assay (HNOs) Appearance Appearance Appearance Passes Test Passes Test Passes Test Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (POa) Sulfate (SOa) Sulfate (SOa) Sulfate (SOa) Arsenic and Antimony (as As) Arsenic in and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Interest Bairum (Ba) Arace Impurities - Beryllium (Ba) Arace Impurities - Beryllium (Ba) Arace Impurities - Boron (B) Arace Impurities - Cadmium (Cd) Arace Impurities - Cadmium (Cd) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Co) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Cu) Arace Impurities - Color (Cu) Arace Impurities - Color (Cu) Arace Impurities - Color (Au) Arace Impurities - Color (Au) Arace Impurities - Color (Au) Arace Impurities - Lead (Pb) Arace Impurities - Lithium (Li) Arace Impurities - Manganese (Mn) Arace Impurities - Nickel (Ni) Arace Impurities - Manganese (Mn) Arace Impurities - Nickel (Ni) Arace Impurities - Manganese (Mn) Arace Impurities - Nickel (Ni) Ar | Test | Specification | Result | |---|----------------------------------|---------------|------------| | Appearance Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (POa) Sulfate (SOa) Trace Impurities - Barium (Ba) Trace Impurities - Cobalt (Co) Lead (Pb) Impur | Assay (HNO3) | | | | Second Capera | Appearance | | | | Residue after Ignition | Color (APHA) | | | | Chloride (Cf) Phosphate (PO ₄) Sulfate (SO ₄) Sulfate (SO ₄) Trace Impurities – Aluminum (AI) Arsenic and Antimony (as As) Trace Impurities – Beryllium (Ba) Trace Impurities – Beryllium (Be) Trace Impurities – Beryllium (Be) Trace Impurities – Boron (B) Trace Impurities – Cadrium (Cd) Trace Impurities – Cadrium (Cd) Trace Impurities – Cadrium (Ca) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gold (Au) Express of the August Augu | Residue after Ignition | | 5 | | Phosphate (PO ₄) ≤ 0.10 ppm < 0.03 ppm | Chloride (CI) | | 1 ppm | | Sulfate (SO ₄) ≤ 0.2 ppm < 0.2 ppm Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb Arsenic and Antimony (as As) ≤ 5.0 ppb < 2.0 ppb Trace Impurities - Barium (Ba) < 10.0 ppb < 1.0 ppb Trace Impurities - Beryllium (Be) < 10.0 ppb < 1.0 ppb Trace Impurities - Bismuth (Bi) < 20.0 ppb < 10.0 ppb Trace Impurities - Boron (B) < 10.0 ppb < 5.0 ppb Trace Impurities - Cadmium (Cd) < 50 ppb < 1 ppb Trace Impurities - Calcium (Ca) < 50.0 ppb < 1.0 ppb Trace Impurities - Chromium (Cr) < 30.0 ppb < 1.0 ppb Trace Impurities - Chromium (Cr) < 30.0 ppb < 1.0 ppb Trace Impurities - Cobalt (Co) < 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) < 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) < 10.0 ppb < 1.0 ppb Trace Impurities - Gold (Au) < 20 ppb < 10 ppb Trace Impurities - Gold (Au) < 20 ppb < 100 ppb Trace Impurities - Lithium (E) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Mangaese (Mn) < 10.0 ppb < 1.0 ppb | Phosphate (PO ₄) | | < 0.03 ppm | | Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb | Sulfate (SO ₄) | • • | < 0.03 ppm | | Arsenic and Antimony (as As) | Trace Impurities - Aluminum (AI) | | | | Trace Impurities - Barium (Ba) ≤ 10.0 ppb < 1.0 ppb | | • • | • • | | Trace Impurities – Beryllium (Be) Trace Impurities – Bismuth (Bi) Trace Impurities – Boron (B) Trace Impurities – Cadmium (Cd) Trace Impurities – Cadmium (Cd) Trace Impurities – Calcium (Ca) Trace Impurities – Chromium (Cr) Trace Impurities – Chromium (Cr) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gallium (Ga) Trace Impurities – Gold (Au) Trace Impurities – Gold (Au) Express of the substitute | | | • • | | Trace Impurities – Bismuth (Bi) | | • • | < 1.0 ppb | | Trace Impurities – Boron (B) | | | < 1.0 ppb | | Trace Impurities - Cadmium (Cd) Frace Impurities - Calcium (Ca) Frace Impurities - Chromium (Cr) Frace Impurities - Chromium (Cr) Frace Impurities - Cobalt (Co) Frace Impurities - Copper (Cu) Frace Impurities - Callium (Ga) Frace Impurities - Gallium (Ga) Frace Impurities - Germanium (Ge) Frace Impurities - Gold (Au) Frace Impurities - Gold (Au) Frace Impurities - Fron (Fe) Frace Impurities - Lead (Pb) Frace Impurities - Lithium (Li) Frace Impurities - Magnesium (Mg) Frace Impurities - Manganese (Mn) Frace Impurities - Nickel (Ni) | | | • • | | Trace Impurities – Calcium (Ca) | | • • | < 5.0 ppb | | Trace Impurities - Chromium (Cr) Trace Impurities - Cobalt (Co) Trace Impurities - Copper (Cu) Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Garmanium (Ge) Trace Impurities - Gold (Au) Heavy Metals (as Pb) Trace Impurities - Iron (Fe) Trace Impurities - Lead (Pb) Trace Impurities - Lead (Pb) Trace Impurities - Lithium (Li) Trace Impurities - Magnesium (Mg) Trace Impurities - Magnesium (Mg) Trace Impurities - Manganese (Mn) Trace Impurities - Magnesium (Mg) Trace Impurities - Manganese (Mn) Trace Impurities - Nickel (Ni) | | • , | < 1 ppb | | Trace Impurities – Cobalt (Co) | | | 2.3 ppb | | Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Germanium (Ge) Trace Impurities - Gold (Au) Example 10.0 ppb | | | < 1.0 ppb | | Trace Impurities – Gallium (Ga) Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Lithium (Li) Trace Impurities – Magnesium (Mg) Trace Impurities – Magnese (Mn) Trace Impurities – Nickel (Ni) | | • • | < 1.0 ppb | | Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Lithium (Li) Trace Impurities – Magnesium (Mg) Trace Impurities – Magnesium (Mg) Trace Impurities – Manganese (Mn) Trace Impurities – Nickel (Ni) Trace Impurities – Nickel (Ni) | | • • | < 1.0 ppb | | Trace Impurities – Gold (Au) 4 20 ppb 5 ppb 6 5 ppb 7 Trace Impurities – Iron (Fe) 6 40.0 ppb 6 20.0 ppb 7 Trace Impurities – Lithium (Li) 6 10.0 ppb 7 Trace Impurities – Magnesium (Mg) 7 Trace Impurities – Manganese (Mn) 7 Trace Impurities – Manganese (Mn) 7 Trace Impurities – Mickel (Ni) | · • | | < 1.0 ppb | | Heavy Metals (as Pb) Second Policy Second Policy | | • • • | < 10 ppb | | Trace Impurities – Iron (Fe) \$\leq\$ 40.0 ppb \$\leq\$ 40.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb | | | < 5 ppb | | Trace Impurities – Lead (Pb) ≤ 20.0 ppb ≤ 20.0 ppb < 10.0 ppb < 10.0 ppb < 1.0 | | • • | 100 ppb | | Frace Impurities – Lithium (Li) Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) Frace Impurities – Manganese (Mn) Frace Impurities – Nickel (Ni) Frace Impurities – Nickel (Ni) | | • • | < 1.0 ppb | | Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) ≤ 20 ppb ≤ 1.0 ppb < 1 ppb < 1.0 ppb < 1.0 ppb | | • • | < 10.0 ppb | | Frace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb | | | < 1.0 ppb | | race Impurities – Nickel (Ni) | | | < 1 ppb | | ≤ 20.0 ppb < 5.0 ppb | | • • | < 1.0 ppb | | | THERET (INI) | ≤ 20.0 ppb | < 5.0 ppb | >>> Continued on page 2 >>> Material No.: 9606-03 Batch No.: 24D1062002 | Test | Specification | D 1 | |-------------------------------------|---------------|------------| | Trace Impurities – Niobium (Nb) | | Result | | Trace Impurities – Potassium (K) | ≤ 50.0 ppb | < 1.0 ppb | | Trace Impurities – Silicon (Si) | ≤ 50 ppb | 16 ppb | | | ≤ 50 ppb | < 10 ppb | | Trace Impurities – Silver (Ag) | ≤ 20.0 ppb | < 1.0 ppb | | Trace Impurities - Sodium (Na) | ≤ 150.0 ppb | | | Trace Impurities - Strontium (Sr) | ≤ 30.0 ppb | < 5.0 ppb | | Trace Impurities – Tantalum (Ta) | | < 1.0 ppb | | Trace Impurities – Thallium (TI) | ≤ 10.0 ppb | < 5.0 ppb | | Trace Impurities – Tin (Sn) | ≤ 10.0 ppb | < 5.0 ppb | | | ≤ 20.0 ppb | < 10.0 ppb | | Trace Impurities – Titanium (Ti) | ≤ 10.0 ppb | < 1.0 ppb | | Frace Impurities – Vanadium (V) | ≤ 10.0 ppb | | | Frace Impurities – Zinc (Zn) | ≤ 20.0 ppb | < 1.0 ppb | | race Impurities – Zirconium (Zr) | | < 1.0 ppb | | Particle Count – 0.5 µm and greater | ≤ 10.0 ppb | < 1.0 ppb | | Particle Count – 1.0 µm and greater | ≤ 60 par/mi | 10 par/ml | | The μπ and greater | ≤ 10 par/ml | 3 par/ml | Nitric Acid 69% **CMOS** Material No.: 9606-03 Batch No.: 24D1062002 Test Specification Result For Microelectronic Use Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC Jamie Croak Director Quality Operations, Bioscience Production