

8900, Fax: 908 789 8922

Prep Standard - Chemical Standard Summary

Order ID: Q2795

Test: Mercury, Metals ICP-Group1

Prepbatch ID: PB169179,PB169181,

Sequence ID/Qc Batch ID: LB136768,LB136778,LB136778,LB136851,

Standard ID:

MP85895, MP86404, MP86640, MP86641, MP86642, MP86643, MP86645, MP86646, MP86647, MP86648, MP86651, MP86652, MP86653, MP86655, MP86656, MP86686, MP86690, MP86691, MP86692, MP86693, MP86694, MP86695, MP86696, MP86697, MP86698, MP86699, MP86700, MP86701, MP86702, MP86705, MP86752, MP86753, MP86698, MP86699, MP86700, MP86701, MP86702, MP86705, MP86752, MP86753, MP86753, MP86752, MP86753, MP86752, MP86753, M

Chemical ID:

M4371, M5062, M5467, M5581, M5582, M5698, M5697, M5748, M5798, M5799, M5800, M5801, M5805, M5814, M5816, M5820, M5884, M5962, M5969, M5970, M5979, M5985, M5998, M6021, M6023, M6027, M6028, M6030, M6032, M6058, M6076, M6077, M6086, M6128, M6137, M6140, M6142, M6144, M6145, M6146, M6151, M6158, M6159, M6162, M6163, M6164, M6165, M6170, M6171, M6174, M6176, M6177, M6178, M6179, M6180, M6181, M6182, M6184, M85893, W3112, M6184, M6184

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME.	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
67	HYDROXYL- CHLORIDE	MP85895	06/05/2025	08/15/2025		METALS_SCA LE_3 (M SC-3)		06/14/2025
	SOLUTION							

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
169	1:1HNO3	MP86404	07/17/2025	11/16/2025		METALS_SCA LE_2 (M SC-2)		•

FROM 1250.00000ml of M6162 + 1250.00000ml of W3112 = Final Quantity: 2500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

902 ICP AES CAL BLK (SO/ICB/CCB) MP86640 08/06/2025 08/18/2025 Janvi Patel None METALS_PIP ETTE_1 (ICP 08/07/2025	<u>R</u>	ecipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
		902	ICP AES CAL BLK (SO/ICB/CCB)	MP86640	08/06/2025	08/18/2025	Janvi Patel		_	

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
907	ICP AES STD S (S5)	MP86641	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	•

FROM

5.00000ml of M5467 + 5.0000ml of M5820 + 5.0000ml of M5969 + 5.0000ml of M5970 + 5.0000ml of M6077 + 5.0000ml of M6146 + 5.0000ml of M6174 + 5.0000ml of M6176 + 455.0000ml of MP86640 = Final Quantity: 500.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal		
910	ICP AES STD S4	MP86642	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP			
	A)									

FROM 50.00000ml of MP86640 + 50.00000ml of MP86641 = Final Quantity: 100.000 ml

Recipe				Expiration	Prepared			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
909	ICP AES STD S3	MP86643	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP	
							ETTE_1 (ICP	08/07/2025

FROM 25.00000ml of MP86641 + 75.00000ml of MP86640 = Final Quantity: 100.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal	
4163	NEW ICV-060925	MP86645	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP		
A)									

FROM 0.40000ml of M6163 + 0.40000ml of M6164 + 0.40000ml of M6165 + 48.80000ml of MP86640 = Final Quantity: 50.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
911	ICP AES CCV SOLN	MP86646	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	•

FROM 50.00000ml of MP86640 + 50.00000ml of MP86641 = Final Quantity: 100.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal		
919	ICP AES INTERNAL STD	MP86647	08/06/2025	08/27/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP			
A)										

FROM 1.00000ml of M6179 + 10.00000ml of M5985 + 1969.00000ml of W3112 + 20.00000ml of M6162 = Final Quantity: 2000.000 ml

903 ICP AES RINSE SOLN MP86648 08/06/2025 08/27/2025 Janvi Patel None METALS_PIP	Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	PipetteID	Supervised By
					<u> </u>		None	METALS_PIP	

FROM 200.0000ml of M6162 + 9800.0000ml of W3112 = Final Quantity: 10000.000 ml

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal		
904	ICP AES ICSA SOLN	MP86651	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP			
	A)									

FROM 5.00000ml of M6182 + 45.00000ml of MP86640 = Final Quantity: 50.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
3494	ICP AES ICSAB SOLN-1	MP86652	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	•

5.00000ml of M6182 + 5.00000ml of M6184 + 40.00000ml of MP86640 = Final Quantity: 50.000 ml **FROM**

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

3913 ICP AES STD S2 MP86653 08/06/2025 08/18/2025 Janvi Patel None METALS_PIP ETTE_1 (ICP 08/07/2025	Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
	3913	ICP AES STD S2	MP86653	08/06/2025	08/18/2025	Janvi Patel		_	

FROM 4.00000ml of MP86641 + 46.00000ml of MP86640 = Final Quantity: 50.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
2950	ICP AES S1/CRI STOCK STD	MP86655	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	,

FROM

 $0.00000ml\ of\ M5748+0.0000ml\ of\ M5805+0.03000ml\ of\ M5798+0.03000ml\ of\ M6028+0.05000ml\ of\ M5658+0.05000ml\ of\ M6030+0.05000ml\ of\ M6140+0.05000ml\ of\ M6159+0.06000ml\ of\ M6177+0.10000ml\ of\ M5697+0.10000ml\ of\ M5697+0.10000ml\ of\ M5801+0.10000ml\ of\ M5816+0.10000ml\ of\ M5816+0.10000ml\ of\ M5820+0.10000ml\ of\ M5979+0.20000ml\ of\ M5970+0.10000ml\ of\ M6021+0.20000ml\ of\ M6021+0.20000m$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
2951	ICP AES S1/CRI WORK STD	MP86656	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP		
	A)								

FROM 1.00000ml of MP86655 + 49.00000ml of MP86640 = Final Quantity: 50.000 ml

Recipe				<u>Expiration</u>	<u>Prepared</u>			Supervised By
<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
887	AQUA REGIA FOR HG ON 7471A	MP86686	08/07/2025	08/08/2025	Mohan Bera	None	None	
								08/11/2025

FROM 150.00000ml of M6151 + 50.00000ml of M6162 = Final Quantity: 200.000 ml

 $284 \; Sheffield \; Street, \; Mountainside, \; New \; Jersey \; 07092, \; Phone \; : \; 908 \; 789 \; 8900, \\$

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal	
871	MERCURY INTERMEDIATE B 250PPB WORKING STD.	MP86690	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG		
	A)								

FROM 1.00000ml of M6162 + 2.50000ml of M5062 + 96.50000ml of W3112 = Final Quantity: 100.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1340	Hg 0.00 PPB STD	MP86691	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M6162 + 247.50000ml of W3112 = Final Quantity: 250.000 ml

Metals STANDARD PREPARATION LOG

F	Recipe				Expiration	Prepared			Supervised By	
	<u>ID</u>	NAME	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal	
	1341	Hg 0.2 PPB STD	MP86692	08/08/2025	08/09/2025	Mohan Bera	None	METALS_PIP ETTE_5 (HG		
	A) 2.50000ml of M6162 + 247.30000ml of W3112 + 0.20000ml of MP86690 = Final Quantity: 250.000 ml									

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1342	Hg 2.5 PPB STD	MP86693	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	

FROM 2.50000ml of M6162 + 245.0000ml of W3112 + 2.50000ml of MP86690 = Final Quantity: 250.000 ml

Metals STANDARD PREPARATION LOG

Recipe				Expiration	<u>Prepared</u>			Supervised By
<u>ID</u>	<u>NAME</u>	<u>NO.</u>	Prep Date	<u>Date</u>	<u>By</u>	<u>ScaleID</u>	<u>PipetteID</u>	Sarabjit Jaswal
1343	Hg 5.0 PPB STD	MP86694	08/08/2025	08/09/2025	Mohan Bera	None	METALS_PIP	
							ETTE_5 (HG	08/11/2025
FROM 2 50000ml of M6162 + 242 50000ml of W3112 + 5 00000ml of MP86690 = Final Quantity: 250 000 ml								

FROM	2.50000ml of M6162 + 242.50000ml of W31	12 + 5.00000ml of MP86690 = Final Quantity: 250.000 ml

Recipe ID	<u>NAME</u>	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1344	Hg 7.5 PPB STD	MP86695	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

2.50000ml of M6162 + 240.00000ml of W3112 + 7.50000ml of MP86690 = Final Quantity: 250.000 ml **FROM**

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabiit Jaswal
1345	Hg 10.0 PPB STD	MP86696	08/08/2025	08/09/2025	Mohan Bera	None	METALS_PIP ETTE_5 (HG	,
FDOM	2 50000ml of M6162 ± 227 50000ml	of \M2112 ±	10.00000ml c	of MD96600 =	Final Quantity:	250 000 ml	A)	

FROM	2.50000ml of M6162 + 237.50000ml of W3112	+ 10.00000ml of MP86690 = Final Quantity: 250.000 ml
-------------	---	--

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1346	Hg ICV SOLUTION	MP86697	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 2.50000ml of M6162 + 245.00000ml of W3112 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME_	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
1351	ICB (Hg 0.00 PPB SOLUTION)	MP86698	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M6162 + 247.50000ml of W3112 = Final Quantity: 250.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1358	CCV (Hg 5.0 PPB SOLUTION)	MP86699	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	•

FROM 485.00000ml of W3112 + 5.00000ml of M6162 + 10.00000ml of MP86690 = Final Quantity: 500.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

1352 CCB (Hg 0.00 PPB SOLUTION) MP86700 08/08/2025 08/09/2025 Mohan Bera None METALS_PIP ETTE_5 (HG 08/11/2025	Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
	1352	CCB (Hg 0.00 PPB SOLUTION)	MP86700	08/08/2025	08/09/2025	Mohan Bera		_	

FROM 495.00000ml of W3112 + 5.00000ml of M6162 = Final Quantity: 500.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1349	CRA/CRI (Hg 0.2 PPB SOLUTION)	MP86701	08/08/2025	08/09/2025	Mohan Bera	None	METALS_PIP ETTE_5 (HG	

FROM 2.50000ml of M6162 + 247.30000ml of W3112 + 0.20000ml of MP86690 = Final Quantity: 250.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
1350	CHK STD (Hg 7.0 PPB SOLUTION)	MP86702	08/08/2025	08/09/2025	Mohan Bera		METALS_PIP ETTE_5 (HG	
							A)	

FROM 2.50000ml of M6162 + 240.50000ml of W3112 + 7.00000ml of MP86690 = Final Quantity: 250.000 ml

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipetteID</u>	Supervised By Sarabiit Jaswal
104	5% RINSING HCL	MP86705	08/08/2025	08/17/2025	Mohan Bera	None	None	08/11/2025

FROM 100.00000ml of M6151 + 1900.00000ml of W3112 = Final Quantity: 2000.000 ml

Fax: 908 789 8922

Metals STANDARD PREPARATION LOG

Recipe ID	NAME	NO.	Prep Date	Expiration Date	Prepared By	ScaleID	<u>PipetteID</u>	Supervised By Sarabjit Jaswal
4163	NEW ICV-060925		08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	•
							A)	

FROM 0.20000ml of M6058 + 0.40000ml of M6163 + 0.40000ml of M6164 + 0.40000ml of M6165 + 48.60000ml of MP86640 = Final Quantity: 50.000 ml

Recipe ID	NAME	<u>NO.</u>	Prep Date	Expiration Date	Prepared By	<u>ScaleID</u>	<u>PipettelD</u>	Supervised By Sarabjit Jaswal
3494	ICP AES ICSAB SOLN-1	MP86753	08/06/2025	08/18/2025	Janvi Patel		METALS_PIP ETTE_1 (ICP	•

FROM 0.05000ml of M6076 + 5.00000ml of M6182 + 5.00000ml of M6184 + 39.95000ml of MP86640 = Final Quantity: 100.000 ml

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-2196-01 / Hydroxylamine Hydrochloride, Crystal (cs/4x500g)	0000215387	06/25/2025	07/01/2019 / RICHARD	06/07/2019 / RICHARD	M4371
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	MSHG-10PPM / MERCURY HCI 125mL 10ug/mL	S2-HG709270	09/22/2026	05/28/2022 / mohan	01/27/2022 / mohan	M5062
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57058 / Cerium, 1000PPM, 100ML	020623	02/06/2026	03/06/2023 / bin	03/01/2023 / bin	M5467
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
PCI Scientific Supply, Inc.	26397-103 / PTFE BOILING STONES	W126678	03/20/2026	03/20/2025 /	06/12/2023 / jaswal	M5581
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
PCI Scientific Supply, Inc.	26397-103 / PTFE BOILING STONES	W126678	12/31/2025	06/17/2023 / Al-Terek	06/12/2023 / jaswal	M5582
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58024 / Chromium, Cr, 500 ml, 1000 PPM	060523	06/05/2026	08/28/2023 / jaswal	08/25/2023 / jaswal	M5658

Fax: 908 789 8922

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	58029 / Cu, 1000 PPM, 500 ml	102523	10/25/2026	04/03/2024 / jaswal	10/27/2023 / jaswal	M5697	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	/ Nickel (Ni) 1000PPM	091223	09/12/2026	01/02/2024 / bin	12/20/2023 / jaswal	M5748	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57004 / Be, 1000 PPM, 125 ml	102523	10/25/2026	02/09/2024 / bin	02/09/2024 / bin	M5798	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute Standards, Inc.	57050 / Sn, 1000 PPM, 125 ml	071123	07/11/2026	02/09/2024 / bin	02/09/2024 / bin	M5799	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #	
Absolute Standards, Inc.	57027 / CO, 1000 PPM, 125 ml	091923	09/19/2026	05/31/2024 / bin	02/09/2024 / bin	M5800	
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #	
Absolute	57033 / As, 1000 PPM,	111323	11/13/2026	02/09/2024 /	02/09/2024 / bin	M5801	

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58120 / Ca, 10000 PPM, 500 ml	122223	12/22/2026	04/17/2025 / Janvi	01/03/2024 / jaswal	M5805
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57005 / B, 1000 PPM, 125 ml	071123	07/11/2026	03/26/2024 / Sohil	01/03/2024 / jaswal	M5814
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57016 / S, 1000 PPM, 125 ml	122923	12/29/2026	05/20/2024 / Jaswal	02/09/2024 / jaswal	M5816
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57015 / P, 1000 PPM, 125 ml	091123	09/11/2026	05/01/2024 / jaswal	02/09/2024 / jaswal	M5820
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-3624-05 / Sodium Chloride, Crystal (cs/4x2.5kg)	0000281938	07/06/2026	04/30/2024 / mohan	04/25/2024 / mohan	M5884
	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Supplier	itemcode / itemname					

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57016 / S, 1000 PPM, 125 ml	122923	03/31/2026	03/31/2025 / kareem	06/11/2024 / Jaswal	M5969
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57003 / Li, 1000 PPM, 125 ml	061224	06/21/2027	07/01/2024 / Jaswal	07/01/2024 / Jaswal	M5970
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGTI1-1 / TITANIUM 125mL 1000ug/mL	T2-TI719972	08/05/2026	08/06/2025 / Janvi	02/22/2024 / Jaswal	M5979
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CGIN10-5 / INDIUM 1 x 500 ml	U2-IN729349	02/21/2028	10/08/2024 / Jaswal	06/14/2024 / Jaswal	M5985
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-3 / CLP CAL SOLUTION #3, 125mL	T2-MEB727800	07/30/2026	07/30/2025 / Janvi	02/22/2024 / kareem	M5998
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57023 / V, 1000 PPM, 125 ml	062424	06/24/2027	09/28/2024 / jaswal	08/05/2024 / Jaswal	M6021

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57081 / TI, 1000 PPM, 125 ml	0624724	06/27/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6023
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57028 / Ni, 1000 PPM, 125 ml	062024	06/20/2027	06/04/2025 / Janvi	08/05/2024 / Jaswal	M6027
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57048 / Cd, 1000 PPM, 125 ml	070124	07/01/2027	08/05/2024 / kareem	08/05/2024 / Jaswal	M6028
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57047 / Ag, 1000 PPM, 125 ml	122823	12/28/2026	08/05/2024 / kareem	08/05/2024 / Jaswal	M6030
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57056 / Ba, 1000 PPM, 125 ml	010924	01/09/2027	01/14/2025 / Jaswal	08/05/2024 / Jaswal	M6032
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CHEM-QC-4 / CHEM-QC-4, Second Source, 1000 ug/ml, B, Mo, Si, Sn, Ti	V2-MEB746173	01/29/2026	01/29/2025 / JANVI	08/22/2024 / Jaswal	M6058

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	Z9651Q / CHEM-CLP-4/.25L	V2-MEB746762	01/01/2026	01/01/2025 / kareem	09/19/2024 / kareem	M6076
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	Z9651Q / CHEM-CLP-4/.25L	V2-MEB746762	09/06/2029	01/23/2025 / kareem	09/19/2024 / kareem	M6077
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58120 / Calcium, 500 ml, 10000 PPM	082324	08/23/2027	03/06/2025 / JANVI	10/14/2024 / jaswal	M6086
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58025 / Mn, 1000 PPM, 500 ml	101124	10/11/2027	01/13/2025 / kareem	01/13/2025 / kareem	M6128
	1			2.0.11	Received Date /	Chemtech
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received By	Lot #
Supplier Inorganic Ventures	ItemCode / ItemName CGSI1-1 / SILICON 125mL 1000ug/mL	Lot # V2-SI744713		· ·		
Inorganic	CGSI1-1 / SILICON 125mL		Date	Opened By 01/14/2025 / Jaswal	10/03/2024 /	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58119 / K, 10000 PPM, 500 ml	103024	10/30/2027	05/06/2025 / JANVI	01/13/2025 / Jaswal	M6142
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58111 / Na, 10000 PPM, 500 ml	072424	07/24/2027	01/23/2025 / kareem	01/13/2025 / Jaswal	M6144
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58030 / Zinc, Zn, 500 ml, 1000 PPM	121724	12/17/2027	02/04/2025 /	01/13/2025 / Jaswal	M6145
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57051 / Sb, 1000 PPM, 125 ml	071724	07/17/2027	01/31/2025 / kareem	10/18/2024 / kareem	M6146
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9530-33 / Hydrochloric Acid, Instra-Analyzed (cs/6x2.5L)	22G2862015	02/17/2026	02/18/2025 / Sagar	01/15/2025 / Sagar	M6151
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24D1062002	09/09/2025	03/10/2025 / Eman	02/02/2025 / Sagar	M6158

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58113 / Al, 10000 PPM, 500 ml	011325	03/18/2026	03/18/2025 / kareem	02/09/2025 / kareem	M6159
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Seidler Chemical	BA-9598-34 / Nitric Acid, Instra-Analyzed (cs/4x2.5L)	24H0162012	11/27/2025	05/27/2025 / Sagar	04/27/2025 / Sagar	M6162
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	QCP-CICV-1-125ML / EPA CLP ICP Verification Standard1	V2-MEB744107	06/08/2026	06/09/2025 / jaswal	06/06/2025 / jaswal	M6163
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	QCP-CICV-2-125ML / EPA CLP ICP Verification Standard2	U2-MEB733713	06/08/2026	06/09/2025 / jaswal	06/09/2025 / jaswal	M6164
				_	1	1
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Supplier Inorganic Ventures	ItemCode / ItemName QCP-CICV-3-125ML / EPA CLP ICP Verification Standard3	Lot # V2-MEB749572	-	-		
Inorganic	QCP-CICV-3-125ML / EPA CLP ICP Verification		Date	Opened By 06/09/2025 /	Received By 06/09/2025 /	Lot #

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	58112 / Mg, 10000 PPM, 500 ml	011525	01/15/2028	07/15/2025 /	02/13/2025 / Janvi	M6171
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	CLPP-CAL-1 / CLP CAL SOLUTION #1, 125mL	V2-MEB742428	07/31/2026	07/31/2025 / Janvi	05/05/2025 / Janvi	M6174
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Absolute Standards, Inc.	57038 / Sr, 1000 PPM, 125 ml	092724	09/27/2027	08/06/2025 / Janvi	08/06/2025 / Janvi	M6176
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	/ Lead (Pb) 1000PPM	031525	03/15/2028	08/06/2025 / Janvi	08/06/2025 / Janvi	M6177
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Absolute Standards, Inc.	57042 / Mo, 1000 PPM, 125 ml	080528	08/05/2028	08/06/2025 / Janvi	08/06/2025 / Janvi	M6178
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Inorganic Ventures	CGY10-1 / YTTRIUM 125mL 10,000ug/mL	V2-Y740548	08/05/2026	08/06/2025 / Janvi	06/02/2024 / Janvi	M6179

Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	WW-LFS-1 / Laboratory Fortified Stock Solution 1, 125 ml	W2-MEB752149	02/05/2026	08/06/2025 / Janvi	07/22/2025 / Janvi	M6180
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
Inorganic Ventures	WW-LFS-2 / Laboratory Fortified Stock Solution 2, 125 ml	V2-MEB7433480	02/05/2026	08/06/2025 / Janvi	07/22/2025 / Janvi	M6181
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART A / ICSA (ICP) STOCK SOLN	ICSA-1211	02/05/2026	08/06/2025 / Janvi	03/06/2024 / Janvi	M6182
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date / Received By	Chemtech Lot #
EPA	PART B / ICSAB (ICP) STOCK SOLN	ICSB-0710	02/05/2026	08/06/2025 / Janvi	03/06/2024 / Janvi	M6184
Supplier	ItemCode / ItemName	Lot #	Expiration Date	Date Opened / Opened By	Received Date /	Chemtech Lot #
Seidler Chemical	DIW / DI Water	Daily Lab-Certified	07/03/2029	07/03/2024 / Iwona	07/03/2024 / lwona	W3112

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R1815/24

CERTIFIED WEIGHT REPORT: 1. Barium nitrate (Ba) Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): Recommended Storage: **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: IN023 BAD022019A1 RV# 57056 010924 Barium (Ba) **6UTB** 1000 Ambient (20 °C) 010927 Number Pot Conc. (µg/mL) 2000.02 Nominal 1000 0.058 Flask Uncertainty 99.999 5E-05 Balance Uncertainty Purity Uncertainty Assay 3 Purity (%) 0,10 Solvent: 24002546 52.3 8 2% Weight (g) 3.82417 Target Lot # 40.0 Nitric Acid Weight (g) Conc. (µg/mL) 3.82441 Nitric Acid Actual 1000.1 Actual +/- (µg/mL) Reviewed By: Formulated By: Uncertainty Expanded Giovannie 2.0 10022-31-B CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Giovanni Esposito Pedro L. Rentas であるとん SDS Information 0.5 mg/m3 orl-rat 355 mg/kg 3104a 010924 010924 NIST SRM

m/z->	N En En	m/z-> 5.0E6	1.055	m/z-> 2.0E5	1.0EG	2.0E6
Model disease (Model ment), Service (Service), Serv	ina atta i camana anna a dia 1, 2002 fa diamenta assaul	encontribution of grant of the second of the				and the section of the section of
N 0		110		ō		
N 22		120		Ŋ		
ö		Ö		N.		
230		130		3		
N40		140		4		
				*		
N G		1 00		0		
280		1		00		
		170		70		
		Ö		5		
		8		80		
		1 90 1 90		90		
		No.		40		
		200		100		

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ſ	B	В		전	Ва	2	D _C	0	2	≥		ĺ		
e.		۵ 69	0.02	10.01	3	-	10.1	3	40.02		A).02	STREET, STREET			
		ဥ	င	2	5	င္ပ	ξ	3	Ç)	8	Column A Lance			
		A 02	6 .02	20.02	3	& 0.02	20.02	3	40,2		200				
		AII	ටු	Va.	?	2	E	7	댗	7	T V		ı		
	20.00	3	40.02	20.02	3	<u>0.02</u>	<0.02	3	∆ .02	10.04	2003	THE STREET	The Real Property lies, the Persons in column 2 is not the Per		
		Ş	2	FG.	1 ;	=	Þ	1	픙	111	311	STATE OF	I.		
	70.02	3	∆ 0.02	8	, ;	A .02	<0.02		<u>&</u>	20.02	2000			race M	
	I de	2	Mo	냺		<u> </u>	Mg		Ē,	1				S R T T	
(T) = Tarc	20.02	3 6	A)(2)	802	2000	3	40.01		A0.02	20.03	200	THE PROPERTY AND PERSONS ASSESSMENT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN CO	40111100	Serifica	
Target analyte	2	4 ;	¥	Þ	ć	2	ဝွ		ş	2	1	OF SHAPPS		5.	
STO	.ĕ.	20.02	3	40.02	10.04	3	∆ .02	10.04	3	40.02			by ICI	797	
	S	1 2 1	3	잗	20	9	잗	18	ರ ೯	7	1		NO C	ころ	
	40.02	20.02	3	∆ 0.02	20.02	3	80.02	10.02	3	40.02			/9/ IIIL/		
	Ta	C	a ;	Y.	EN	1	À	2	2	Se					
	A0.02	20.02	3	A0.02	707	•	A 02	20.02	3	<u>6</u> 2	A THE PERSON NAMED IN				
	ij	OII	2	3	15	1	⊒	ī	3	7					
	40.02	20.02	3 8	3	A0.02	6 6 6	400	20.02	3	40.02					
	27	2	1,	<	ð		<	c	1 :	8					
	<0.02	<0.02	0.00	3	∆ 0.02	10.02	3	20.02		2000	Section of the second				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM M5804 M5805

12/24

Solvent: 24002546

Nitric Acid

Lot #

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number:

Description:

58120 122223

Calcium (Ca)

Expiration Date: 122226

2%

Nitric Acid

Formulated By:

Giovanni Esposito

122223

giovanne

Desert of

(III) 80.0

Nominal Concentration (µg/mL): **NIST Test Number: 6UTB** 10000

Recommended Storage:

Ambient (20 °C)

Weight shown below was diluted to (mL): 4000.0

Compound

쭚

Number Ĕ

Conc. (µg/mL)

3

Purity (%)

3

Nominal

5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Purity Uncertainty Assay

Weight (g) Target Actual

Actual

Uncertainty Expanded

Reviewed By:

Pedro L. Rentas

122223

ente

Weight (g) Canc. (µg/mL) +/- (µg/mL) CAS# (Solvent Safety Info. On Attached pg.)

OSHA PEL (TWA) LD50 OSHA PEL (TWA) **SDS Information** NIST SRM

m/z->	5.OE4	1.005	-z/m	ю 5 П 4	5.0E4	m/z->	1.004	2.0⊑4	
									[1] Sp
N 10			10			10			[1] Spectrum No.1
220			120			N 0			_
									12.51
230			130			90			4 sec]:
N									58120.
0 4			140			å .			.D# [C
250			150			OI.			12.514 sec]:58120.D# [Count] [Linear]
			0						Linear
N 0 0			100			60			er
						4			
			170			70			
			al.			m			
			180			00. O			
		: 0	100			9 .			
		(0						
			N 000			100			

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Al Sb As Ba Be Bi
	40.02 40.02 40.02 40.02 40.02
	58555
	40.02 40.02 40.02
	원 명 명 명 명 및
	8888888
	######################################
	4000 4000 4000 4000 30 4000 4000
	Mo Hg Mg LL L
() 	40,02 40,02 40,02 40,02 40,02
Target analyte	R P P R S S N
alvte	by ICP
	MS R R R R R R R R R R R R R R R R R R R
	9/mL)
	Se S
	40.03 40.03 40.03 40.03 40.03
	7 Th 7 To
	40.02 40.02 40.02
	5 5 × 5 × C €
	4000 4000 4000 4000 4000

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Revel = 10/14/2024 M 6085/M6086/M6087

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Weight shown below was diluted to (mL): **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: 10000 082324 **BTU9** 082327 58120 Ambient (20 °C) Calcium (Ca) ĕ 4000.1 Nominal 0.15 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Solvent: 24002546 Nitric Acid Assay 2% Lot # <u>a</u> 80.0 Target Nitric Acid Actual Actual Formulated By: Reviewed By: Uncertainty Expanded Thorana (Solvent Safety Info. On Attached pg.) Giovanni Esposito Pedro L. Rentas Broade **SDS Information** 082324 082324 NIST

RM#

Number

Conc. (µg/mL)

38

Purity (%)

8

Weight (g)

Weight (g)

Conc. (µg/ml.)

+/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

~ Z/m	5.0E4	1.065	20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	5.OE4	77/2-2	1.0E4	2.0⊞4	
								(1) Sp
Ŋ		1			10			[1] Spectrum No. 1
								n No. 1
220		120			0			
27								2.514
NSO		130			30			sec]:5
240		14.			4.			[12.514 sec]:58120.D# [Count] [Linear]
Ö		٥			Appropriates Sprinkersinessederi	******************************	inisiale antebriology	O# [Co
250		150			50			unt) [L
								inear
280		160			00			
		170			70			
		ul.			80			
		180			C			
		190			90			
		200			100			

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

B	Bi	He	Ba	As	S	≥	i	Г	
-									
& .02	∆ .02	0.01	∆ .02	8	40,02	40.02	STORE THE		
Ω	Ŝ	ਨ	ß	ზ	Ç	Ω			
40.02	40.02	40.02	<0.02	<0.02	H	△0.02	STATE VICTORIAN		
Au	ନ	Ga	වූ	띮	卑	Dy	STORY OF THE PERSON		
<0.02	<0.02	40.02	40.02	<0.02	<0.02	<0.02			
3	La	뀱	片	'n	Но	Ж			
40,02	<0.02	30	<0.02	<0.02	<0.02	<0.02		race Me	
M	Мо	Hg	Mn	Мg	Ξ	E.		etals	
<0.02	<0.02	40.2	<0.02	40.01	<0.02	<0.02		Verifica:	
×	P	P	Pd	0°	Ä	Z	ALC: UNKNOWN	tion t	
402	40.02	<0.02	40.02	<0.02	♦ 0.02	<0.02		by ICP-IV	
Sc	Sm	Ru	Rb	R.	Re	7		in) S	1
<0.02	<0.02	<0.02	<0.02	40.02	<0.02	<0.02		g/mL)	
Ta	S	Sr	Z	Ag	Si	Se			
40.02	40.02	40.02	40.2	<0.02	<0.02	<0.2			
ㅂ	Sn	Tm	ħ	Ħ	Te	Тъ			
40,02	40.02	<0.02	40.02	40.02	40.02	<0.02	THE WORLDWISE		
Zr	Zn	ĸ	ኝ	۷	U	W	Name of the last		
<0.02	40.02	<0.02	<0.02	<0.02	<0.02	<0.02			

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above)

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

R 815/24

Solvent:

24002546

Nitric Acid

Lot #

M6028

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

57048 070124

Lot Number: Description:

Cadmium (Cd)

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB

1000

Recommended Storage:

Expiration Date:

070127 Ambient (20 °C)

Weight shown below was dliuted to (mL):

2000.07

0.100 Flask Uncertainty 5E-05 Balance Uncertainty

2%

40.0 (mL) Nitric Acid

Formulated By:

Alban PROBAN

Aleah O'Brady

070124

Reviewed By:

Pedro L. Rentas

070124

Expanded

Weight (g) Conc. (µg/mL) Uncertainty

Cadmium nitrate tetrahydrate (Cd)

IN024 CDM092021A1

1000

99.999

0.10

36.5

5.4797

5.4804

1000.1

2.0

10022-68-1

0.01 mg/m3

orl-rat 60.2mg/kg

3108

RM#

Number Lot

Conc. (µg/mL)

8

8

Weight (g)

Target

Actual

Actual

Nominal

Purity

Uncertainty Assay Purity (%)

+/- (µg/mL)

CAS#

SDS Information

(Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50

NIST SRM

m/z-> -z/m m/z-> 1.0E7 2.0E7 5.OE4 1.0E5 2.5E4 5.0M4 [1] Spectrum No.1 010 110 0 220 120 20 [12.514 sec]:58148.D# [Count] [Linear] 230 130 30 240 140 40 N00 150 50 2000 160 60 170 70 180 80 061 Ö 200 100

1 of 2

www.absolutestandards.com

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		₩ !	묤	Ве	ן ל	炗	As	. 0	g F	2		I		
	10.04	200	A (2)	10.02	0.02	3	4	20.02	3	∆ 0.02	CHARLES SHOWING			
	2	2 8	3	Ţ.) {	,	င္ပ	2	?	5		ı		
	70.02	2 6 6	8	40.02	20.02	3	<u>8</u> .92	2.0	5	H				
	- Au	} {	3	G	2	2	달	Ę	j ,	Ų				
	20.02	3 6	3	40.02	20.02	3	8	40.02	3	40.02	TO SOUTH THE			
	20	2 5	,	4	ing.	4	5	Ho		H	STREET	L	_	
	20.02	20.02	3	∆ 0,2	<0.02	3	A Si	40.02		40.02	THE PERSON NAMED IN	ומכם ואוכ	_1	
	20	MIO	5,	He	Mn	, ,	₹	5	,		0.000	אפנמוט	+100	
(T) = Target analyte	40.02	20.02	5	∆ 0.2	<0.02		≙ 01	40,02	40104	40.00		Vellica	Conifica	
jet anal	×	7	1	9	Pd		<u>ک</u>	Ş	144	Z.				
yte	A0.22	\$0.02		A) (2)	<0.02	10.00	3	<0.02	20.02	20.00		יטא וכד-		
	Sc	Sm	•	2	RЪ	1	<u> </u>	Re	11	Ę.		MU (
	40.02	40.02		∆	∆ 0,02	20.02	3	40.02	70.02	000		Jg/mL)		
	Ta	S		ę	Z	200	>	S.	Ö	200	2016/1000		١	
	Ð.02	40.02	40.04	3	40.2	20.02	3	<u>0.02</u>	7.07	à				
	Ti	Sn	1111	7	7	1	3	i.	10					
	<0.02	40.02	20.07	3	₩	20.02	3	40.02	20.02	5000	Medical States			
	Zt	Zn		<	¥	~	7	_ _	*	1	(Acceptance)			
	<0.02	<0.02	20.02	3	40.02	20.02		40.02	∆ 0.02		ment and the second con-			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57048

2 of 2

M4371

Hydroxylamine Hydrochloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Suitable for Mercury Determination (hydroxylammonium chloride)

Rec - 06.07.12

Material No.: 2196-01

Batch No.: 0000215387

Manufactured Date: 2018/06/27 Retest Date: 2025/06/25

Revision No: 1

Certificate of Analysis

Meets ACS Reagent Chemical Requirements,

Test	Specification	Result
Assay (NH2OH·HCl) (by KMnO4 titrn)	>= 96.0 %	99.1
Clarity of Alcohol Solution	Passes Test	PT
Residue after Ignition	<= 0.050 %	0.017
Titrable Free Acid (meq/g)	<= 0.25	0.19
Ammonium (NH4)	Passes Test	PT
Sulfur Compounds (as SO ₄)	<= 0.005 %	< 0.003
Trace Impurities - ACS - Heavy Metals (as Pb)	<= 5 ppm	4
Trace Impurities - Iron (Fe)	<= 5 ppm	< 3
Trace Impurities - Mercury (Hg)	<= 0.050 ppm	< 0.005

For Laboratory, Research or Manufacturing Use

Country of Origin:

CN

Packaging Site:

Paris Mfg Ctr & DC

Phillipsburg, NJ 9001:2015, FSSC22000
Paris, KY 9001:2008
Mexico City, Mexico 9001:2008
Gliwice, Poland 9001:2015, 13485:2012
Selangor, Malaysia 9001:2008
Dehradun, India, 9001:2008, 14001:2004, 13485:2003
Mumbai, India, 9001:2015, 17025:2005
Panoli, India 9001:2015

Jamie Ethier
Vice President Global Quality

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com M5062 M5063

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Mass Spec Solution

Catalog Number:

MSHG-10PPM

Lot Number:

S2-HG709270

Matrix:

10% (v/v) HCI

Value / Analyte(s):

10 μg/mL ea:

Mercury

Starting Material:

Hg metal

Starting Material Lot#:

1959

Starting Material Purity:

99.9994%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10.001 \pm 0.053 \,\mu g/mL$

Density:

1.020 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
Ha	Calculated		See Sec. 4.2

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

 $\mathbf{X_i}$ = mean of Assay Method i with standard uncertainty $\mathbf{u_{char}}$ i

w_i = the weighting factors for each method calculated using the inverse square of

the variance.

 $\mathbf{w_i} = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²char a + u²bb + u²lts + u²ts)^{1/2}

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

```
O Ag
          0.000011 M Eu <
                            0.000201 O Na
                                              0.000004 M Se <
                                                               0.015915 O Zn <
                                                                                 0.001510
0
   Al
          0.000001 O Fe
                            0.000001 M Nb <
                                              0.000201 O Si
                                                                0.000005 M Zr <
                                                                                 0.000201
M
   As <
          0.000402 M Ga <
                            0.000201 M Nd <
                                              0.000201 M Sm <
                                                               0.000201
M
   Au <
          0.003631 M Gd <
                            0.000201 M Ni <
                                              0.000402 M
                                                        Sn <
                                                               0.001007
M
   B <
          0.001208 M
                    Ge <
                            0.000201 M Os <
                                              0.000605 M
                                                        Sr <
                                                               0.000201
M Ba <
          0.000201 M Hf <
                            0.000201 O P <
                                              0.032370 M
                                                        Ta <
                                                               0.000201
M
  Be <
          0.000201 s
                                   M Pb <
                    Hq <
                                              0.000201 M Tb <
                                                               0.000201
M Bi <
          0.000201 M
                    Ho <
                            0.000201 M Pd <
                                              0.000403 M
                                                        Te <
                                                               0.002216
0
  Ca
          0.000007 M In <
                            0.000201 M Pr <
                                              0.000201 M Th <
                                                               0.000201
M
  Cd <
          0.000201 M Ir
                            0.000201 M
                                      Pt <
                                              0.000402 M Ti <
                                                               0.000402
                                              0.000201 O TI <
M
  Ce <
          0.000201 O K
                            0.000020 M
                                      Rb <
                                                               0.016508
  Co <
M
          0.000201 M La <
                            0.000201 M
                                      Re <
                                              0.000201 M Tm <
                                                               0.000201
  Cr <
0
          0.003021 O Li <
                            0.000107 M
                                      Rh <
                                              0.000201 M U <
                                                               0.008058
M
  Cs <
          0.001208 M Lu <
                            0.000201 M Ru <
                                              0.000201 M V <
                                                               0.000201
M
  Cu <
          0.000402 O
                    Mg
                            0.000001 O
                                      S <
                                             0.053950 M W <
                                                               0.000604
M Dy <
          0.000201 M Mn <
                            0.000604 M Sb <
                                             0.001208 M Y <
                                                               0.000201
M Er <
          0.000201 M Mo
                           0.000009 M Sc <
                                             0.000201 M Yb <
                                                               0.000201
```

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 200.59 +2 4 Hg(OH)(aq) 1+ **Chemical Compatibility -** Stable in HNO3. Avoid basic media forming insoluble carbonate. The sulfide, basic carbonate, oxalate, phosphate, arsenite, arsenate and iodide are insoluble in water.

Stability - 2-100 ppb levels not stable in 1% HNO3 / LDPE container, stable in 10% HNO3 packaged in borosilicate glass. 1-100 ppm levels stable in 7% HNO3 packaged in borosilicate glass. 1000-10,000 ppm solutions are chemically stable for years in 5-10% HNO3 / LDPE container.

Hg Containing Samples (Preparation and Solution) - Metal (soluble in HNO3); Oxide (Soluble in HNO3); Ores and Organic based (The literature has more references to the preparation of Hg containing samples than any other element. Please consult the literature for your specific sample type, since such preparations are prone to error. Or e-mail our technical staff and we will contact you to discuss your particular sample preparation questions in further detail.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 202 amu	9 ppt	n/a	186W16O
ICP-OES 184.950 nm	0.03 / 0.005 μg/mL	1	
ICP-OES 194.227 nm	0.03 / 0.005 µg/mL	1	V
ICP-OES 253.652 nm	0.1 / 0.03 µg/mL	1	Ta, Co, Th, Rh, Fe,
			U

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 22, 2021

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 22, 2026
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT	Bag	Open Date:		

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Uyen Truong
Supervisor, Product Documentation

Mya Truong

Certificate Approved By:

Michael Booth Director, Quality Control Michael 2 Booth

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director Paul R Laines

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

R: 03/01/23(124)

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

									-			
CENTIFIED WEIGHT REPORT:						Lot #)			
Part Number: Lot Number:		57058			Solven	t: 2111022	Solvent: 21110221 Nitric Acid		T	Errore Br		
Description:		Cerlum (Ce)	3							0	K	
Section 2		00000			2%		Nitric Acid	-	Formulated By:	: Lawrence Barry	020623	Lon
Recommended Storage: Nominal Concentration (ug/mL):		020626 Ambient (20 °C) 1000	(Ç)			(JE)			1/2	to Herris	1	
NIST Test Number: 6UTB Weight shown below was diluted to (mL):	dilute	6UTB of to (mL):	1000.12	3E-05 E	5E-05 Balance Uncertainty 0.058 Flask Uncertainty		:		Reviewed By:	Pedro L. Rentas	29020	
		Ę		Purity 1	Nominal Purity Uncertainty Assay.	y Target	Actual	Actual	Expanded Uncertainty	SDS Information (Solvent Safety Info. On Attached pg.)	ation Attached pg.)	NIST
Compound	25. 25.		Number Conc. (ug/mL) (%) Purity (%) (%)	3	Purity (%) (%)		Weight (g)	Conc. (ug/mL)	Weight (g) Weight (g) Conc. (ug/ml.) +/- (ug/ml.) CAS#	CAS# OSHA PEL (TWA)	1D50	SRM

Compound	RM#	Lot	Nominal Conc. (vg/mL)	Purity (%)	Purity Uncertainty Assay (%) Purity (%) (%)	Assay (%)	Target Weight (g)	Actual Weight (g)	Actual Actual Uncertainty Weight (g) Conc. (ug/mt.) +/- (ug/mt.)	Uncertainty +/- (ug/mL)	SS	(Solvent Safety Info. On Attached pg.) CAS# OSHA PEL (TWA) LD50	ched pg.) LD50	NIST
Cerium nitrate hexahydrate (Ce)	1N146	IN146 Z512CEB1	1000	99.989	0.10	32.8	3.04919	3.04921 1000.0	1000.0	20	II ==	₹Z	ď Z	AN
[1] Spectrum N	lo.1 [43.472	sec]:58158.D#	[1] Spectrum No.1 [43.472 sec]:58158.D# [Count] [Linear]							Ш				$\ \cdot \ $
1.0€9_														
- 1.4 m) 1														
5.0E8														
	*	at.												
m/2->	10	20	30		40		50	0.9	70		80	001 06		
2.0€6□				•										
-1-1				•										
1,056												ν_{μ}		
1-1														
					 -									
w/2->	110	120	130	0	140		150	160	170		180	190 200		
5.0£7				5										
2.5E7														

250

240

220

210

Printed: 2/6/2023, 2:46:41 PM

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	2	22	2	22	22	22	72
	<0.0>	9.0	<0.02	_	_	_	_
	*	ר	>	Yb	> -	Zn	Z
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	£	Te	E	E	Tm	Sn	Π
	40.2	<0.02	<0.02	40.2	<0.02	<0.02	<0.02
	S	S.	Ag	Na	Š	S	Ta
/mL)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
/в <i>п</i>) (à:	Re	뙲	Rb	Ru	Sm	S
by ICP-MS	<0.02	<0.05	<0.02	<0.02	<0.02	<0.05	40.2
	ï	S	ő	Pd	а,	굺	×
Verification	<0.02	<0.02	€0.01	<0.02	402	<0.02	<0.02
letals	17	7	Mg	Mn	Hg	Mo	PN
Trace M	<0.02	<0.02	<0.02	<0.02	87	₹0.02	<0.02
	出	Но	ıl	'n	Fe	Ľ	P4
	<0.02	40.02	₹0.02	<0.02	<0.00 √	<0.02	<0.02
	Š	岿	西	3	Š	පී	Αū
	<0.02	Q .2	H	40.02	<0.02	<0.02	<0.02
	23	చ	ප	ర	ඊ	රි	ਹੈ
	<0.02	₹0.02	40.2	<0.02	40.01	<0.02	<0.02
	IA.	Se	As	Ba	Be	2	æ

Physical Characterization:

(T)= Target analyte

Certified by:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

MATERIAL CERTIFICATE OF COMPLIANCE

DATE: JUNE 12, 2023

CUSTOMER:

PCI SCIENTIFIC SUPPLY, INC

PURCHASE ORDER NO.

6054931

CATALOG NO.

BOI5021-450L

PRODUCT DESCRIPTION:

BOILING STONES, TFE, 454GMS

QUANTITY:

10 EACH

LOT NO.

W126678

SPECIFICATION (S):

Made from Virgin PTFE Resin

We certify that we have complied with the terms and conditions of the above Purchase Order and the Part Specifications in the manufacturing of the above product.

Laura Valencia

Quality Assurance Inspector

F:U:J:CF:PCISCI:GOC-55118-BQI5021-061223

MATERIAL CERTIFICATE OF COMPLIANCE

DATE: JUNE 12, 2023

CUSTOMER:

PCI SCIENTIFIC SUPPLY, INC

PURCHASE ORDER NO.

6054931

CATALOG NO.

BOI5021-450L

PRODUCT DESCRIPTION:

BOILING STONES, TFE, 454GMS

QUANTITY:

10 EACH

LOT NO.

W126678

SPECIFICATION (S):

Made from Virgin PTFE Resin

We certify that we have complied with the terms and conditions of the above Purchase Order and the Part Specifications in the manufacturing of the above product.

Laura Valencia

Quality Assurance Inspector

F:U:J:CF:PCISCI:GOC-55118-BQI5021-061223

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: Part **BTU9** 1000 58024 060523 Ambient (20 °C) 060526 Chromium (Cr) Lot 2000.02 Dilution 0.058 5E-05 Initial Flask Uncertainty Balance Uncertainty Uncertainty 21110221 Nominal Lot # 2.0% Nitric Acid Solvent: (III) Initial 40.0 Nitric Acid Final Formulated By: Reviewed By: Uncertainty Expanded Lavense (Solvent Safety Info. On Attached pg.) Pedro L. Rentas Lawrence Barry **SDS Information** 060523 060523

Chromium(III) nitrate nonahydrate (Cr) 58124

071122

0.1000

200.0

0.084

1000

10000.1

1000.0

12

7789-02-8

0.5 mg(Cr)/m3

ori-rat 3250 mg/kg 3112a

Compound

Number

Number

Factor

Vol. (mL) Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL) Conc. (µg/mL)

+/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

TSIN SRM

m/z->	ю П	m/z-> 5.0E5	5.0E5	m/z->	5000	1.0日4
N 0		110		0		
o,		J				
220		120		N.		
				: 2		(
230		130		<u>ه</u> 0		(((
240		40		6		
h						(
250		1 0		S		
N		<u>.</u>				
280		160		0		
		170		70		
		0				
		180		(b) O		
		190		90		
		N 0		100		

Part # 58024

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

			_				_			=
	B	ᄧ	Ве	В	As	Sb	Δ	Monthly		
	A).02	4 0.02	40,01	A .02	40.2	△0.02	△0.02			
	δ	පි	Ω	င္တ	දි	ర్జ	Ω			
	40.02	40.02)	40.02	40.02	40,2	△0.02			
	Æ	ဂ္ဂ	වූ	ନ୍ଥ	멸	녆	Dy	80		
	40.02	40.02	40.02	<0.02	40.02	40.02	40.02	mineral differences		
	3	Ľ	स्र	Ħ	ď	ᅜ	Ж	Sheriff tool		
	40.02	40.02	40.2	A).02	<0.02	40.02	40.02		I race M	1
	폺	Мо	В.	Ķ	ВМ	Ē	П	MISSON ISSUE	Metals	1
3	A0.02	40.02	40.2	40.02	40,01	∆ .02	40.02	SI RECEIPTOR	Verification	
Towns and the	~	ን	70	굕	ô	₹	3	SHEWNING.	Clon	-
	∆ 0.2	40.02	40.02	40,02	40.02	40.02	40.02	THE PARTY OF THE P	by ICP-M	
	Sc	Sm	잗	공	Rh	æ	Pr		S (Hi	5
	<0.02	<0.02	<0.02	40.02	40,02	40.02	<0.02		g/mL)	
	Ta	S	ñ	Z.	Ą	Si.	Se			
	40.02	<0.02	40.02	402	40.02	40.02	402			
	==	Sn	Tm	Ħ	ᄇ	급	176			
	40,02	40.02	40,02	40,02	<0.02	40,02	<0.02	Contract Contraction		
	Z	Zn	~	뀱	۷	Ϥ	W	可能を経過		
	<0.02	< 0.02	<0.02	<0.02	40.02	△0.02	<0.02	SALES OF STREET		

(I)= larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc.

800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5697

Solvent:

Nitric Acid

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Part Number:

58029

Lot Number:

102523

Description:

Expiration Date:

NIST Test Number:

Copper (Cu)

2.0%

Lot #

24002546

40.0 Nitric Acid

(mL)

Formulated By:

Benson Chan

Pedro L. Rentas

102523

102523

Recommended Storage:

102526 Ambient (20 °C)

Nominal Concentration (µg/mL):

1000

6UTB

5E-05 Balance Uncertainty

Volume shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

> Expanded Uncertainty

Reviewed By:

SDS Information (Solvent Safety Info. On Attached pg.)

Compound

Part Number Number Dilution Factor

Initial

Uncertainty

Nominal Pipette (mL) Conc. (µg/mL)

Initial Conc. (µg/mL) Conc. (µg/mL)

Final

+/- (µg/mL)

CAS# OSHA PEL (TWA)

LD50

NIST SRM

Lot

0.1000

0.084

1. Copper(II) nitrate trihydrate (Cu) 58129 100223 200.0 1000 10000.1 1000.0 2.2 10031-43-3 1 mg/m3 ori-rat 794 mg/kg 3114 [1] Spectrum No.1 [33.422 sec]:58029.D# [Count] [Linear] 1.0E6 5.0E5 10 $m/z \rightarrow$ 20 30 50 60 70 80 90 100 5.0E7 2.5E7 m/z->110 120 130 140 150 160 170 180 190 200 2.0E7 1.0E7 m/z-> 210 220 230 240 250 260

Printed: 10/26/2023, 1:20:31 PM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

0.5			DOM: NO.				Trace M	etals	Verifica	tion	by ICP-M	S (µ	g/mL)						
Al	<0.02	Cd	<0.02	Dy	<0.02	Hf	<0.02	Li	<0.02	Ni	<0.02	Pr	<0.02	Se	<0.2	Тъ	<0.02	W	<0.02
Sb	<0.02	Ca	<0.2	Er	<0.02	Ho	<0.02	Lu	<0.02	Nb	<0.02	Re	<0.02	Si	<0.02	Te	<0.02	ΰ	<0.02
As	<0.2	Ce	<0.02	Eu	<0.02	In	<0.02	Mg	<0.01	Os	<0.02	Rh	<0.02	Ag	<0.02	п	<0.02	v	<0.02
Ba	<0.02	Cs	<0.02	Gd	<0.02	Ir	<0.02	Mn	<0.02	Pd	<0.02	Rb	<0.02	Na	<0.2	Th	<0.02	Yb	<0.02
Ве	<0.01	Cr	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	Y	<0.02
Bi	<0.02	Co	<0.02	Ge	<0.02	La	<0.02	Mo	<0.02	Pt	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
В	<0.02	Cu	T	Au	<0.02	Pb	<0.02	Nd	<0.02	K	<0.2	Sc	<0.02	Ta	<0.02	Ti	<0.02	Zr	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Box 1. 8/1

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

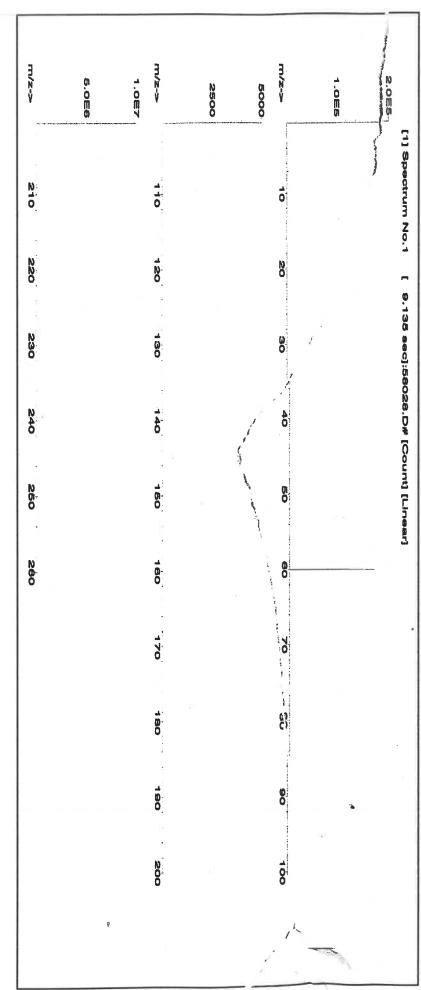
ırt # 58029

Lot # 102523

2 of 2

Printed: 10/26/2023, 1:20:31 PM

www.absolutestandards.com



Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Nickel(II) nitrate hexahydrate (Ni) Nominal Concentration (µg/mL): m/z-> 1.005 2.OES Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 ō 58128 Number Part **BTUB** 1000 57028 091223 Ambient (20 °C) 091226 Nickel (NI) 062023 ĕ 0 [9.135 sec]:58028.D# [Count] [Linear] 2000.02 0.1000 Dilution Factor 12/20/23 000 Vol. (mL) Pipette (mL) Conc. (ug/mL) 200.0 0.058 5E-05 Balance Uncertainty Flask Uncertainty Uncertainty 0.084 24002546 M5748 Lot # Nominal 2.0% 8 Ci O Conc. (ug/ml.) Conc. (ug/ml.) Nitric Acid Solvent: 10000.4 E 40.0 0 Nitric Acid 1000.0 Formulated By: Reviewed By: +/- (µg/ml_ Uncertainty Expanded 12 (C) 13478-00-7 CAS# (Solvent Safety Info. On Attached pg.)

OSHA PEL (TWA) LD50 OSHA PEL (TWA) Pedro L. Rentas Lawrence Barry 00 SDS Information mg/m3 100 orl-rat 1620 mg/kg 091223 091223 3136 NEST NEST SR

Part # 57028

www.absolutestandards.com

800-368-1131

Absolute Standards, Inc.

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	1	-		-	-		-	-		-	-		7		-
		В	10	<u> </u>	Be	Ва	1	As	30	3	2				
		40.02	2000	5	<u>8</u>	40,02		40.2	70.02		40.02				
		ව	S	· ·	2	సి	. 8	ئ ج	2	,	2				
		D.02	40.02		48	0.02	20.00	3	4 0.2	000	A				
		Αu	ڇ	Ş	₽ -	ይ	2	ľ	Ę	5	7				
		∆ 002	<0,02	20.02	3	A)02	20,02	3	A),02	70.02	2000				
		3	7	17	<u>F</u> 1	F	ħ	7	뚱	12	W.	Service Service			
		∆ 0.02	0.02	, C	3	<u> </u>	20.02	3	<u>&</u>	20.02	2000		Hace in		
		Z.	₹	200	7	š	3		Ε.	ţ.			Jergis	1	
3		A	& 20.02	4	6.02	\$	<u>A</u>		A (2)	20.02			ARIIIC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Target	r	7	7	re	, ;	Z	S	, ;	<u> </u>	2	۱		HODE		
arialvie	107	3	A	40.02	20.02	3	40.02	2000	3	Н			DY ICE-P		
	۶	9 -	î	R	2	ğ	Z	7	9	7			₹ E	,	
•	20.02	3 6	A 3	∆ 0.02	20.02	3	A	70.02	3	۵.02		ľ			
	I E	3 6	^	ş	N	1 6	Αg	2	?	જ	The same				
	20,02	68	3	<u>&</u>	8		≙	20.02	3	40.2	A STATE OF THE STA				
		1 1	?	ď	П	:	-1	ie.	3	7					
	40,02	20.02	3	40.02	40.02	6.06	3	20.02	100	4000					
	72	4	₹,	<u> </u>	5	-	<	_	: :	W	Mannager, or				
	<0.02	20.02	600	3	6002	20.02	3	∆ .02	200	200					

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this Kandard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
* Printed acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

02/09/24 Lot #

24002546

Nitric Acid Solvent:

Part Number: Lot Number: Description: 57004 102523

Beryllium (Be)

Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: 1000 Ambient (20 °C)

Expiration Date:

102526

BTU₉

Volume shown below was diluted to (mL): 2000.02

0.058

Flask Uncertainty Balance Uncertainty

5E-05

Number

Number Lot

Vol. (mL.)

Part

Dilution Factor

hitia

Uncertainty

Nominal

(IE) 40.0

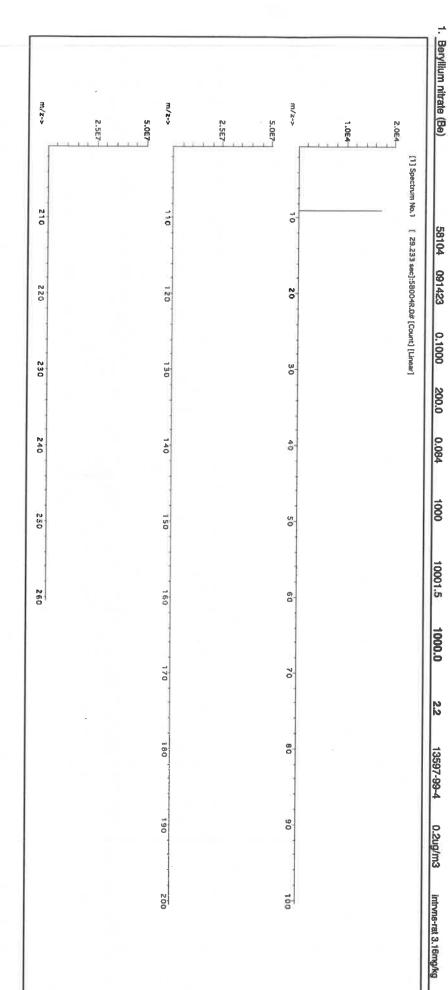
2.0%

Nitric Acid

Benson Chan

102523

Formulated By:


Pedro L. Rentas

102523

Reviewed By:

Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) Final +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) SDS Information LD50 NIST SRM

₹

Part # 57004

Absolute Standards, Inc.

www.absolutestandards.com

800-368-1131

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

40.02 Cd 40.02 Dy 40.02 Cg 40.02 Br 40.02 Cg 40.02 Br 40.02 Cg 40.02 Gd T Cr 40.02 Gd 40.02 Co 40.02 Gg
40.02 Cd 40.02 40.02 Cc 40.02 40.02 Cc 40.02 7 Cr 40.02 40.02 Cc 40.02 40.02 Cc 40.02 40.02 Cc 40.02 40.02 Cc 40.02
40.02 Cd 40.02 40.02 Cc 40.02 40.02 Cc 40.02 7 Cr 40.02 40.02 Cc 40.02 40.02 Cc 40.02 40.02 Cc 40.02 40.02 Cc 40.02
40.02 40.02 40.02 40.02 40.02 40.02
a B B B B S B

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

All standard containers are meticulously cleaned prior to use.

2 of 2

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

^{*} Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number:

57050 071123 Tin (Sn) 202109 Salvents: 21110221 Lot # 1224 Nitric Acid

22D0562008

Hydrochloric acid

3 6% 10.0 30.0 Hydrochloric acid Nitric Acid Formulated By:

Benson Chan

071123

Nominal Concentration (µg/mL):

1000

Ambient (20 °C) 071126

Recommended Storage:

Expiration Date:

Description: Lot Number:

Reviewed By: Pedro L. Rentas

Weight shown below was diluted to (mL): **NIST Test Number: BTU9** 499.93 0.058 Flask Uncertainty 5E-05 Balance Uncertainty 071123

1. Ammonium hexafluorostannate(IV) (Sn) [1] Spectrum No.1 IN010 SND042023A1 RM# Number ρţ Conc. (µg/mL) Nominal 1000 (%) Uncertainty Assay
Purity (%) (%) 0.10 44.2 1.13107 Weight (g) Target 1.13286 Weight (g) Conc. (ug/ml.) Actual 1001.6 Actual +/- (µg/mL) Uncertainty Expanded 2.0 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 7 mg/m3 ₹ 3161a SRM

m/z-> ---x/m --Z/III 2.5E4 5.0E4 1.0ES 2.0E6 2.5E5 S.OEG 210 110 0 120 220 N [15.034 sec]:58150.D# [Count] [Linear] 230 130 8 240 140 40 250 150 Ö 160 260 60 170 70 180 80 190 90 200 100

1 of 2

Part # 57050

Lot # 071123

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		Г
	B B B B B B B B B B B B B B B B B B B	ı
	4000 4000 4000 4000 4000 4000 4000 400	
	585555	
	40.02 40.02 40.02 40.02 40.02	
	OS EE EE DY	
	40.02 40.02 40.02 40.02 40.02 40.02	
	## ## ## ## ##	
	4000 4000 4000 4000 4000 4000	Trace N
	Mo Mn Li	etal
(T) = Tamet analyte	4002 4002 4002 4002	s Verific
met en	K P P P S N N	ation
shoto	40.02 40.02 40.02 40.02 40.02	by CP-
	S R R R R R	SN
	4000 4000 4000 4000 4000	
	S IS & S S E	
	40.02 40.02 40.02 40.02 40.02	
	はなばははは	
	4002 4002 4002 4002	
	* > > \$ × 2 ×	
	600 600 600 600 600	

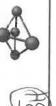
(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.


* All standard containers are meticulously cleaned prior to use.
* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

800-368-1131 www.absolutestandards.com	Do.			8	Certified Re	d Reference A	Certified Reference Material CRM $[02]$ of $[25]$	MASON			AR-150 https://ak	ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com	creditec Numbe rds.con
CERTIFIED WEIGHT REPORT:						Fot#	Solvent:						
Part Number:		57027				24002546	Nitric Acid			2			
Lot Number: Description:		091923 Cobalt (Co)	ī						C fam) may	D.		
1						2.0%	40.0	Nitric Acid	Formulated By:	Lawr	Lawrence Barry	091923	
Expiration Date:		091926					(Jw.)		1	\	0		
Recommended Storage:		Ambient (20 °C)	်						N.	X			
Nominal Concentration (ug/ml.):		1000							Leens	1	4		
NIST Test Number:		eUTB		5E-05	Balance Uncertainty	\$			Reviewed By:	Pedn	Pedro L. Rentas	091923	
Volume shown below was diluted to (mL):	r was dilute	d to (mL):	2000.02	0.058	0.058 Flask Uncertainty								
									Expanded	S	SDS Information		
	Part	ĕ	Dilution	Initial	Uncertainty	Nominal	Initial	Final	Uncertainty	(Solvent Sal	(Solvent Safety Info. On Attached pg.)	hed pg.)	NIST
Compound	Number	Number	Factor	Vol. (mL)	Vol. (ml.) Pipette (ml.) Conc. (µg/ml.)	nc. (ug/mL)	Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL)	Conc. (µg/ml.)		CAS# OSHA	OSHA PEL (TWA)	LDSO	SRM

[1] Speatrum No.1									Sulfill too willing	0110
	[34.243 8ec	34.243 sec]:58027.D# [Count] [Linear]	[Count] [Lit	Lagr						
5.0 Е5				70						
m/z-> 10 20		. 4	9	<u>.</u>	20	80	0		00	
5.0E7										
TVZ-> 110 120	130	140	150	100	170	180		0	500	
5.0E7										

1 of 2

260

250

240

230

220

010

W/z->

Printed: 2/8/2024, 5:01:14 PM

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

							Trace M	etals	Verifical	tion	by ICP-M	4S (F	g/mL)						
1							STREET, STREET	No section lives	ALL DESCRIPTION OF THE PERSON	10.000	Market Mark	MINNSH.	Sanday Marine	NAME OF TAXABLE PARTY.	Service of the last	SECOND STATES		No.	A STATE OF STREET
IV	<0.02	ಶ	1	Š	40.02 Dy 40.02	Ħ	<0.02	П	<0.02	Z	<0.02	Æ	<0.02	B	<0.2	£	<0.02	M	<0.02
ౙ	40.02	రే	40 7	占	<0.02	H9	<0.02	.3	₹005	Ź	₹0.02	2	<0.02	Š	40.02	T _e	40.05	5	40.02
As	40.2	ප	40.02	呂	40.02	ų	<0.02	Mg	10.05	ő	₹0.02	뙲	<0.02	Ag	40.02	F	<0.02	>	₩ 40.02
쯃	40.02	చ	40.02	3	4002	ㅂ	<0.02	Ma	<0.02	콘	₹000	2	40.02	N _a	40.2	Ę	20:0>	g,	Ø.02
2	10.05	ඊ	20.02	త్ర	40.02	હ	40.2	쁀	\$ 20	تم	₹0.02	콥	<0.02	Şt	40.02	Tm	Ø.02	٨	Ø.02
遥	40 .02	රි	۳	Ğ,	4002	ដ	<0.02	Mo	40.02	Æ	20'0 >	S	<0.02	S	40.02	Sn	40.02	Zn	Ø.02
æ	<0.02	ට්	<0.02	Αn	<0.02	윤	Z0.0>	P	<0.02	м	40.2	S	₩	Fee Fee	40,02	Ħ	Ø.02	Z	Ø.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

^{*} The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

Lot # 091923

All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

^{*} All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

02/00/24 Certified Reference Material CRM

W 580

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: NIST Test Number: Expiration Date: Part Number: Description: Lot Number: 57033 111323 Arsenic (As) **BTUB** 1000 111326 Ambient (20 °C) 5E-05 Balance Uncertainty 24002546 Lot# 2.0% Nitric Acid Solvent: 80.0 Nitric Acid Formulated By: Reviewed By: Therence Pedro L. Rentas Lawrence Barry

1. Arsenic (As)

58133

020522

0.1000

400.0

0.084

1000

10001.0

1000.0

2.0

7440-38-2

0.5 mg/m3

orl-rat 500 mg/kg 3103a

Number Part

Number Lot

Vol. (mL)

Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL) Conc. (µg/mL)

+/- (µg/ml.) Uncertainty Expanded

(Solvent Safety Info. On Attached pg.) OSHA PEL (TWA)

LD50

NIST SRM

SDS Information

111323

111323

Dilution Factor

initial

Uncertainty

Nominal

Initial

Final

Compound

Volume shown below was diluted to (mL):

4000.0

0.06

Flask Uncertainty

-z/x->	500	m/z->	N IN IN	m/z-> 5.0≣4	1.0厘5	≥.005
						3
Ŋ		110		ō		[] Speatrum No.1
						Z 0.1
N N N O		120		N.		á
230		130		3 0		[34.433 sec]:57033.D# [Count] [Linear]
		A second		es Alba de la casa de		90]:570
240		140		ò		33.D#
N 0				50		[Count]
Ö		0		0		[Lines
N O		160		0.0		ā
		170		70		
		180		80		
				The state of the s		
		190		90		
		N				
		200		100		

Part # 57033

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	- H H H > /0 >	8	-
	As Sb Ba Bi Bi		
	4002 4002 4002 4002 4002		
	5 8 ជ ង 8 ជ ប		
	402 402 402 402 402 402 402 402 402 402		
	₹ ७८८ = = ⊅		
	6000 6000 6000 6000		
	322428		
	40.02 40.02 40.02 40.02 40.02	Trace N	
	N H M L L	letals	
9	40.2 40.2 40.2 40.2 40.2	Verifica	
= Target	M R P B O R R	E S S	
Target analyte	40.02 40.02 40.02 40.02	by ICP-N	
	S R R R R R	id) St	
R	4444 444 444 444 444 444 444 444 444 4	g/mL)	
	Ta Sr Na Sc		
	40.2 40.2 40.2 40.2 40.2 40.2		
	######################################		
(e)	40.02 40.02 40.02 40.02 40.02 40.02		
	Z Z Y Z < C &		
	40.02 40.02 40.02 40.02 40.02		

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 57033

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M.5814

R - 02 00 124

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: 1. Boric acid (B) Nominal Concentration (µg/mL): Recommended Storage: 17/Z-V <-Z/111 m/z-> Weight shown below was diluted to (mL): 2.5EG 5.0E6 2.5E6 S.OE6 1.0E4 2.0≡4 **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 110 1210 0 IN018 BV092016A1 RM# 57005 071123 1000 Ambient (20 °C) 071126 Boron (B) Number ğ 120 220 Ŋ [12.275 sec]:58105.D# [Count] [Linear] Conc. (µg/mL) 1999.48 Nominal 9 130 230 30 0.058 Flask Uncertainty Purity 5E-05 Balance Uncertainty 8 Uncertainty Assay Purity (%) 0.10 140 240 40 Solvent: MKBQ8597V Ammonium hydroxide 17.3 2.0% 3 11.55772 Weight (g) 150 Target 250 (I) O 40.0 Weight (g) Ammonium hydroxide 11.56201 Actual 200 160 60 Conc. (µg/mL) 1000.4 Actual 170 70 Formulated By: +/- (µg/mL) Reviewed By: Uncertainty Expanded 120 180 10043-35-3 80 CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 Benson Chan Pedro L. Rentas OSHA PEL (TWA) tento **SDS Information** 190 90 2 mg/m3 200 100 orl-rat 2660 mg/kg 3107 071123 071123 NIST SRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS):

	Bi Be Bi		
	40.02 40.02 40.02 T		
	5858858		
	40.02 40.02 40.02 40.02 40.02		
	A C C C E E D		
	00000000000000000000000000000000000000		
	## ## ## ## ## ## ## ## ## ## ## ## ##	-	
	\$\$ \$\$ \$\$ \$\$ \$\$\$	ace M	
	NG Hg Mg Li Li	letals	
] = (E)	40.02 40.02 40.02 40.02 40.02	Verific	
Target analyte	X Y P Z Q Z Z	ation	
alyte	40.02 40.02 40.02 40.02 40.02	by ICP	
	Sen R.	-MS	
	40.02 40.02 40.02 40.02 40.02 40.02	(µg/mL)	
	Ja S. N. S. S.		
	40.02 40.02 40.02 40.02 40.02		
	E E E E E E		
	4444 4422 4422 4422 4422 4422 4422 442		
	Z		
	4400 4400 4400 4400 4400 4400 4400 440		
		_	

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. the preparation of all standards.

- All standard containers are meticulously cleaned prior to use. Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

R1 02/09/124 Certified Reference Material CRM

M5816

CERTIFIED WEIGHT REPORT

Part Number:

Lot Number: Description:

57016 122923

Solvent:

122923

ASTM Type 1 Water

Lot #

Expiration Date: 122926 Sulfur (S)

Nominal Concentration (µg/mL): NIST Test Number: 1000

Recommended Storage:

Ambient (20 °C)

Weight shown below was diluted to (mL): 4000.0 5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Nominal

Purity

Uncertainty Assay

Target

Actual

Uncertainty

Expanded

Reviewed By:

Pedro L. Rentas

122923

tento

Formulated By:

Benson Chan

122923

 Ammonium sulfate (S) IN117 SLBR7225V Number Conc. (µg/mL) 1000 99.9 38 Purity (%) 0.10 24.3 38 Weight (g) 16.4979 Weight (g) Conc. (µg/mL) 16.4980 1000.0 +/- (µg/mL) 20 7783-20-2 CAS# SDS Information
(Solvent Safety Info. On Attached pg.)
LD50 ¥ orl-rat 4250mg/kg 3181 SRM

1/Z-V m/z-> m/z-> N.SES S.OEB 5.OE7 1.0**E**8 N. SES 5.0E5 [1] Spectrum No. 1 210 110 0 120 ななり 0 [33.603 sec]:57016.D# [Count] [Linear] 130 230 30 140 240 40 250 150 000 160 200 00 170 0 180 80 190 00 200 100

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Part # 57016

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT:

Part Number: Lot Number: Description:

> 57015 091123

Solvent: 24002546 Lot # Nitric Acid

Nitric Acid

Formulated By:

Lawrence Barry

091123

(JE) 40.0

2%

Nominal Concentration (µg/mL):

NIST Test Number:

BITUB 1000 Recommended Storage:

Expiration Date:

091126

Phosphorous (P)

Ambient (20 °C)

Weight shown below was diluted to (mL):

2000.02

0.058 Flask Uncertainty

5E-05 Balance Uncertainty

Lot

Nominal

Purity

Uncertainty Assay

Target

Reviewed By:

Pedro L. Rentas rento

091123

Actual Uncertainty Expanded (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 **SDS** information SRM

 Ammonium dihydrogen phosphate (P) IN008 Pvos2018A1 [1] Spectrum No.1 RM# Number Conc. (µg/mL) 1000 99.999 3 Purity (%) 0.10 27.5 3 Weight (g) 7.2729 Weight (g) Conc. (µg/mL) 7.2730 1000.0 +/- (µg/mL) 2.0 7722-76-1 CAS# 5 mg/m3 rl-rat >2000mg/ki 3186

17Z-Y 2.5E4 5.0E4 1000 0 NO [12.074 sec]:58115.D# [Count] [Linear] 30 6 0 0 0 80 000 100

200

500

Part # 57015

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ľ	В	<u> </u>	Ħ.	ᆬ	200	Ę,	3		ş	2	4		
		A 022	20.02	3	- 60 10	70.02	3	70		A	2002	200		
ř.		<u>ნ</u>	8	,	Ω	Ç	?	g		ვ. 	2	2		
		A 68	20705	3	A 20.02	20.02	3	40.02		2	20,02	3		
		A II	Ę	1	ට ව	2	2	달	2	Į,	Ų			
		3	40.02		3	♦0.02)	8	20.02	3	∆ .02			
		ÿ	<u>_</u>		₹1	4		<u> </u>	0.0	F .	H	1		
	2000	3	<u> </u>	4.4	3	∆ 02		6 002	20.02	3	40.02	-		Trace M
	i de	ž	š	200	Ç	¥	9	X	Į,	•	5			<u>P</u>
3	20,02	3	<u>8</u>	202	3	∆ 0,02	1000	<u>^</u>	40,02	2	A 0,02			Verifica
Target	ŀ	4	7	7	,	Z	Ş	Ş	8		Z			†:
Target analyte	ê	9	A)	_		8	10:04	3	A0.02		A) (2)		3	אי וכפרו
	Se.	•	S	¥.	,	₽	2	P	₽	:	Ŗ	Manager Street	F	100
	40.02		A S	40.02		A	70.05	3	<u>\$</u> 0.02	***************************************	A		g/ IIIL)	7
	Ta	,	^	ş		Z.	A	•	S	ş	ß	SANSON COM		
	40.02	70.02	3	∆ 0,02	i d	3	20,02	3	∆	ć	3			
	111	ě	?	Ĭ'n	Ē	;	Η	!	7	č				
	40.02	70.02	3	∆0,02	2000	3	∆ 0.02	2	200	20.02	300			
	Zr	2	7	<u>~</u>	16	\$	\ -		9	*				
	40.02	20.02	3	\$00 200 -	70.0>	3	<u>6</u> 0.02		A) (2)	20.02				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Sodium Chloride, Crystal BAKER ANALYZED® A.C.S. Reagent

Material No.: 3624-01

Batch No.: 0000281938

Manufactured Date: 2021-06-07

Retest Date: 2026-06-07

Revision No.: 1

Certificate of Analysis

Test	Specification	Result
Assay (NaCl) (by Ag titrn)	≥ 99.0 %	100.0 %
pH of 5% Solution at 25°C	5.0 - 9.0	6.3
Insoluble Matter	≤ 0.005 %	0.003 %
lodide (I)	≤ 0.002 %	< 0.002 %
Bromide (Br)	≤ 0.01 %	< 0.01 %
Chlorate and Nitrate (as NO ₃)	≤ 0.003 %	< 0.001 %
ACS - Phosphate (PO ₄)	≤ 5 ppm	< 5 ppm
Sulfate (SO ₄)	≤ 0.004 %	< 0.004 %
Barium (Ba)	Passes Test	Passes Test
ACS - Heavy Metals (as Pb)	≤ 5 ppm	< 5 ppm
ron (Fe)	≤ 2 ppm	< 1 ppm
Calcium (Ca)	≤ 0.002 %	< 0.001 %
Magnesium (Mg)	≤ 0.001 %	< 0.001 %
Potassium (K)	≤ 0.005 %	0.001 %

For Laboratory, Research, or Manufacturing Use Meets Reagent Specifications for testing USP/NF monographs Country of Origin: USA

Packaging Site: Paris Mfg Ctr & DC

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

M5962 R! 06/14/24

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/z->		i,	m/z->		10 c	÷ is	1. Selenium (Se)	Compound		<		Nominal Co	Re			CERTIFIED WEIGHT REPORT	מדודודה שובום
210	1.008	2.008	110	1.008	/z-> 10	[1] Spectrum No.1				Volume shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	1	Lot Number: Description:	Part Number:	1 11000H
0			0		Ū	Z	58134	Number	Part	as dilute					in in in	_	
220			120		N 0	r.	071223	Number	Lot	d to (mL):	6UTB	1000	Ambient (20 °C)		060624 Selenium (Se)	57034	
Ŋ			4		ω	3.702	0.1000	Factor	Dilution	2000.07			<u>೦</u>		Se)		
230			130		90	sec]:58	200.0	Val. (mL	Initial	0.100	5E-05						
240			140		40	33.702 sec]:58034.D# [Count] [Linear]	0.084	Vol. (mL) Pipette (mL) Conc. (µg/mL)	Uncertainty	Flask Uncertainty	Balance Uncertainty						
250			150		50	Count) [L	1000	Conc. (µg/mL)	Nominal	ťγ	ainty			2.0%	24007540	24002546	
260			160		. 60	inear 2	10002.5	Conc. (µg/mL	Initial				(mL)	40.0	No.	Solvent:	
0							1000.0	Conc. (µg/mL) Conc. (µg/mL)	Final					Nitric Acid			(1)
			170		70		2.2	.) +/- (µg/mL)	Uncertainty	Expanded	Reviewed By:	K	N	Formulated By:	M		10
			180		80		7782-49-2	C	(So		y:	200	11	Ву:			
			190		90		2 0.2 mg/m3	OSHA PEL (TWA)	(Solvent Safety Info. On Attached pg.)	SDS Information	Pedro L. Rentas	leenes		Benson Chan	M		
			200		100			NA)). On Atta	rmation	ntas	,	/	5			
			-		J		orl-rat 6700 mg/kg	LDS0	ched pg.)		060624			060624			
							3149	SRM	NIST		4			4-1		_	

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							I race M	1etals	Verifica	lion	oy ICP-M	S (1)	g/mL)						
A	40.02	CQ.	<0.02	Dy	<0.02	HH	<0.02	11	<0.02	Z.	<0.02	Pr	<0.02	Se	H	-T	40.02	W	40,02
ЗЪ	<0.02	င္ဖ	<0.2	퍜	<0.02	н	<0.02	Į	<0.02	₽	<0.02	Re	<0.02	S:	<0.02	Te	<0.02	U	<0.02
As	<0.2	ზ	<0.02	臣	<0.02	Ħ	<0.02	Mg	<0.01	°	<0.02	Rh	40.02	Ag	<0.02	∄	40.02	۷	<0.02
Ва	<0.02	Ç	<0.02	æ	<0.02	ŀ	<0.02	Mn	<0.02	Pd	40.02	₽.	<0.02	Na	<0.2	Ħ	<0.02	4	<0.02
Ве	<0.01	Ç	40.02	Ga	<0.02	F	<0.2	Ж	402	P	<0.02	R _L	<0.02	St	<0.02	Tm	<0.02	¥	<0.02
В:	40.02	င္ပ	<0.02	දූ	<0.02	Ľ	<0.02	Mo	<0.02	7	<0.02	Sm	40.02	S	<0.02	Sn	40.02	Zn	<0.02
В	<0.02	Ω	<0.02	Au	<0.02	Рь	<0.02	M	<0.02	×	40.2	Sc	<0.02	Ta	<0.02	Ħ	<0.02	Zr	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

2 of 2

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M5969 11/24

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

CERTIFIED WEIGHT REPORT: Part Number:

57016 122923

Lot Number: Description:

Nominal Concentration (µg/mL):

NIST Test Number:

6UTB 1000

5E-05 Balance Uncertainty 0.06 Flask Uncertainty

Recommended Storage:

Expiration Date:

122926 Ambient (20 °C)

Sulfur (S)

Weight shown below was diluted to (mL):

4000.0

ğ

Nominal

Purity

Uncertainty Assay

Target

Actual

Solvent:

122923

Lot #

ASTM Type 1 Water

Formulated By:

Benson Chan

122923

rento

Reviewed By:

Pedro L. Rentas

122923

Actual +/- (µg/mL) Uncertainty Expanded CAS# (Solvent Safety Info. On Attached pg.)
OSHA PEL (TWA) LD50 OSHA PEL (TWA) SDS Information SRM

1. Ammonium sulfate (S) IN117 SLBR7225V Number Conc. (µg/ml.) 1000 99.9 8 Purity (%) 0.10 24.3 8 Weight (g) 16.4979 Weight (g) Conc. (µg/mL) 16.4980 1000.0 20 7783-20-2 N orl-rat 4250mg/kg 3181

-Z/F 17/Z-> 1.0E8 2.5E5 2.5E8 5.0EB 5.0E7 5.0E5 [1] Spectrum No.1 110 0 120 N O [33.603 sec]:57016.D# [Count] [Linear] 130 00 140 40 150 00 160 60 170 0 180 0 190 90 100 000

H/X-Y

210

220

230

240

1000

260

CERTIFIED WEIGHT REPORT:
Part Number:
Lot Number: Lithium nitrate (Li) Nominal Concentration (µg/mL): m/z-> Recommended Storage: Volume shown below was diluted to (mL): NIST Test Number: **Expiration Date** [1] Spectrum No.1 [32.093 sec]:58003.D# [Count] [Linear] Description: 210 10 Part Lot Number Number 58103 070622 0.1000 57003 062124 Lithium (Li) 6UTB 062127 Ambient (20 °C) 1000 220 120 20 250.11 230 25.0 0.004 Initial Uncertainty Nominal Initial Final

Vol. (mL) Pipette (ml.) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) 0.016 Flask Uncertainty 5E-05 Balance Uncertainty HEBSON OF PSON 240 40 1000 24002546 Lot# 2.0% 250 150 50 Nitric Acid Solvent: 10000.4 (mL) 260 1000.0 Nitric Acid 7/01/24 Formulated By: Reviewed By: +/- (µg/mL) Uncertainty Giovannie Capacito 2.0 7790-69-4 5 mg/m3 orl-rat 1426 mg/kg NA SDS Information
(Solvent Safety Info. On Attached pg.)
CAS# OSHA PEL (TWA) LD50 Pedro L. Rentas Giovanni Esposito 9 0 062124 062124 SRM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

\$

Certified Reference Material CRM

20

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Part # 57003 Lot # 062124

1 of 2

Printed: 6/24/2024, 11:20:08 PM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

						Trace M	letals	Verifica	tion	by ICP-N	id) Sl)/mL)					ı	
												5	2	3	7	2000	¥	4000
40.02	ß	<0.02	Dy	<0.02	Ж	<0.02	П	Т	Z	<0.02	Pr	<0.02	Se	2.02	10	20.02	1 1	60.02
3	3	3	작.	AD 02	H	40.02	L	<0.02	8	<0.02	Re	<0.02	S	<0.02	Te.	<0.02		20,02
40.00	0				,	3	·	20.01	Ş	3	R.	40.00	Λg	A0.02	1	<0.02	<	<0.02
7.0	ç	20.02	Eu	20.02		70.02	g.v.v	40104	-					5	1	3	ş	3
300	Š	<0.02	2	<0.02	H.	<0.02	Mh	<0.02	Pd	<0.02	Rb	<0.02	Na	20.2	10	20.02		20.02
50	?	3	3	3	Į.	40.2	He	<0.2	Þ	<0.02	Ru	<0.02	Sr	<0.02	Im	<0.02	×	20.02
10.03	2	10.01	9	0 0	4 1	3	No.	200	¥	2	Sm	<0.02	s	<0.02	Si	<0.02	Zn	<0.02
<0.02	S	20.02	GC	20.02	ž	20.02	OTAT	20,02	:			5	3	3	1	3	7,	40.02
<0.02	C ₁	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	ķ	20.2	36	20.02	La	20.02		20.02		
	40.02 40.02 40.02 40.02 40.01 40.02			C4 402	C4 402	C4	Cc	Cd 40/2 Dy 40/2 H 40/2 Ca 40/2 Er 40/2 In 40/2 Ca 40/2 Gd 40/2 Ir 40/2 Cd 40/2 Gd 40/2 Ir 40/2	Ca 40.22 Bu 40.02 Hu 40.02 Ca 40.02 Bu 40.02 In 40.02 Ca 40.02 Gd 40.02 Ir 40.02	Cd 40/02 Dy 40/02 Hr 40/02 Li T	Ca 40/02 Dy 40/02 Hr 40/02 Li T	Ca 40/02 Dy 40/02 Hr 40/02 Li T Ni	Ca 40,02 Dy 40,02 Hr 40,02 L1 T Nt 40,02	Ca 40,02 Dy 40,02 Hr 40,02 L1 T Nt 40,02 Pt	Cd d0,02 Dy d0,02 Hf d0,02 L1 T NI d0,02 Re d0,02 L2 d0,02 Ng d0,02 Rb d0,02 L3 d0,02 Rb d0,02 L4 d0,02 Rb d0,02 L5 d0	Ca A002 Dy A002 Hi A002 Mg A002 Mg	Ca 40,02 Pr 40,02 Hr 40,02 Hr 40,02 Fr 40,02 Mr 40,02 Mr	Cc 40,022 Pr 40,022 Hr 40,022

(T) = Target analyte

Physical Characterization:

Al Sh As Ba Ba Bi

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Part # 57003 Lot # 062124

Printed: 6/24/2024, 11:20:08 PM

2 of 2

Certificate of Analysis 6652M , 8782M

MORGANIC NE NE SE SEGENE YOU TREST

info@inorganicventures.com P: 800-669-6799/540-585-3030 P: 540-585-3030 R:2/22/24

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

ACCREDITATION / REGISTRATION

Number QSR-1034). the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (GSR Certificate INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for

PRODUCT DESCRIPTION

CGTN Catalog Number: Single Analyte Custom Grade Solution Product Code:

2% (v/v) HNO3 :xintsM T2-TI719972 Lot Number:

muineill 1 000 hg/mL ea: Value / Analyte(s): tr. HF

Starting Material Lot#: 2094 Starting Material: Ti Metal

Starting Material Purity: 99.9975%

CERTIFIED VALUES AND UNCERTAINTIES

1.012 g/mL (measured at 20 \pm 4 °C) Density: 1002 ± 5 µg/mL Certified Value:

Assay Information:

ICP Assay NIST SRM 3162a Lot Number: 130925 1002 ± 4 µg/mL Assay Method #1

The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance $\frac{1}{1000}$

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expressed at approximately the 95% confidence level using a coverage factor of $K=\Sigma$.

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mosn of individual results:

XCRANGAM = (x_a) (ucher a) X = x_a mass of Keesy Method A with x_a = x_a the standard uncertainty of

Characterization of CRM/RM by Two or More Methods

4.0 TRACEABILITY TO NIST

volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is - This product is traceable to MIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRMINM uncertainty error and the measurement, weighing and

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration

4.2 Balance Calibration

used for testing are annually compared to master weights and are traceable to NIST. - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights

7.7 Storage and Handling Recommendations

oM M 882000.0

0.000268 M K 0.000268 M K 0.000268 M K

0.000872 O Fe > 0.008586 M Ga <

O 892000.0

O S37000.0 M 882000.0

M 882000.0

M 603100.0

M 885800.0

M £83200.0 > 00 M GG8020 O.004577 M Gd <

> u3 M 8g < 0.000536 M Eu <

INTENDED USE

W Et < O Cn <

O B <

IA O

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWIRMs.

ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of ore each element, is reported below, solutions tested by ICP-MS were analyzed in an III bA-Bitter of the property of the property

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/ml)

Page 2 of 4

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

> uA M 882000.0

> 9A M 886 0.000.0

> bq M 882000.0 > rq M 888200.0 > rq M 682000.0 > dg M 271100.0

> q O f81200.0 > dq M f82800.0

> iN O 882000.0 > aO M 841200.0

> dN O 322500.0 > N M 862000.0

> gN O 882000.0

M - Checked by ICP-MS

Mn < Mg < Li <

> 0H

> 6H

ΉŁ

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

M 976800.0 > 8 | 34500.0 M 576800.0 > 8 M 782600.0

by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

> mT M 882000.0 > U M 882000.0 > V M 682000.0 W M

> 6T M 882000.0 > AT M 882000.0

sT M 034450.0 > dT M E70100.0

s 852000.0 M 882000.0

O.000269 O

O.043560 O

n2 M 068010.0 89Z000.0 > mS M 89Z000.0

e2 M 078220.0

> II

JS

674000.0 228610.0

892000.0 892000.0

0.000268

699630.0

0.001341

892000.0

0.010560

960000'0

960000.0

73260.0 > nZ O 402100.0 038540.0 > nZ O 267400.0

Page 3 of 4

- Chemical Testing - Accredited / AZLA Certificate Number 863.01

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- QSR Certificate Number QSR-1034

1.01 ISO 9001 Qualify Management System Registration

MOITATY STANDARD DOCUMENTATION 0.01

Homogeneity data indicate that the end user should take a minimum ample size of 0.0.2 m L to assume

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. The Coth series alongs mirror and the constant and the country of the Coth series alongs mirror and the country of the Coth series alongs mirror and the country of the coth series alongs and the country of the coth series along the c

HOMOGENEITY

Please refer to the Safety Data Sheet for information regarding this CRWRM.

NOITAMROANI SUOGRASAH HF Note: This standard should not be prepared or stored in glass.

Ollinger		C INTOTINATION (ICP_OEC n.	Idoseomeni	
ss radial/axial view):	are given	Estimation (ICP-OES D.L.s	Technique/Line	
Interferences (Underline 11)	Order	idq 41	ICP-MS 48 amu	
Interferences (underlined indicates severe) 32S16O, 32S14N,	A/N	add		
14N160180,				
14N17N2, 36Ar12C,				
48Ca, [96X=2				
7-V001 (no a				
(where X = Zr, Mo, Ru)]		10000 () 1900 ()	ICP-OES 323.452 nm	
Ce, Ar, Ni		Jm/gu Se000.0 \ +200.0	ICP-0ES 334.941 nm	
		m/pu 820000.0 \ 8500.0	ICP-OES 336.121 nm	
ла, Та, Сг, U М М9 Ω-	1 1		F Note: This standar	ŀ
W, Mo, Co		In/gy 4500000 \ cocos-	nous prepries sur secon	٠

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/a

1:1:1 H2O / HF./ H2SO4 or fuse ash with pyrosulfate if oxide is as plastic pigment and likely in brookite Volentily), Oxide - Northere are repetation; and sociation; restore (Dissolved by heating in 1737 HZO / HF / HZSO4); Oxide - Northere history (~800EC) brooklie (fuse in Pt0 with KZSZO7); Ores (fuse in Pt0 with KZZZO7); Ores (fuse in Pt0 with provide it as plastic pigment and likely in brooktie (fuse in Pt0 with provide it as plastic pigment and likely in brooktie TI Containing Samples (Preparation and Solution) - Metal (Soluble in H2O / HF caution -powder reacts

HNO3 / LDPE container. 1-10,000 ppm single element solutions as the Ti(F)6-2 chemically stable for years in 2-5% HNO3 / trace HF in an LDPE container. with a fendency to hydrolyze forming the hydrated oxide in all dilute acids except HE.

Stability - 2-100 ppb levels stable (Alone or mixed with all other metals) as the Ti(F)6-2 for months in 1%

HNO3 / LDPE container. 1-10.000 ppm sincle element solutions as the Ti(F)8-2 chemically stable for year media. Unstable at ppm levels with metals that would pull F-away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming the hydrafed oxide in all dilute adds except HF. Chemical Compatibility - Soluble in concentrated HCI, HF, H3PO4 H2SO4 and HNO3. Avoid neutral to basic Atomic Weight, Valence; Coordination Number; Chemical Form in Solution - 47.87 +4 6 Ti(F)6-2

- For more information, visit www.inorganicventures.com/TCT

reported density. Do not pipette from the container. Do not refurn removed aliquots to container. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° - 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the renorded density. Do not biselfe from the container. Do not return removed alticular to container.

Twitte sociate in the secied 101 beg, trainspleaded for the orderiver in the shalfy concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - While stored in the sealed TCT bag, transpiration of this CRWRM is negligible. After opening the sealed TCT bag, transpiration in a negligible in the capture managed in the capture

- Store between approximately 4° - 30° C while in sealed TCT bag.

Page 4 of 4

Chairman / Senior Technical Director

- Sealed TCT Bag Open Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS

- The date after which this CRM/RM should not be used.

CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

norganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.859.5790; 540.855.3030, Fax: 540.555.3012; Inorga - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1.

stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term

- The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in $Sec\ 7.1$. This certification is nullified if instructions in $Sec\ 7.1$ are not followed or if the CRWRM is damaged, confaminated, or otherwise modified.

Thomas Kozikowski Manager, Quality Control Certificate Approved By:

thibils Validity

- June 17, 2027 11.2 Lot Expiration Date

June 17, 2022 11.1 Certification Issue Date

Paul Gaines Certifying Officer:

0.Sr

0.11

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M5985 R:6/14/24

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGIN10

Lot Number:

U2-IN729349

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

10 000 μg/mL ea:

Indium

Starting Material:

Indium Metal

Starting Material Lot#:

2511

Starting Material Purity:

99.9995%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10022 \pm 30 \mu g/mL$

Density:

1.044 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

10021 ± 56 µg/mL

ICP Assay NIST SRM 3124a Lot Number: 110516

Assay Method #2

10035 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #3

10001 ± 33 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty uchar i

w_i = the weighting factors for each method calculated using the inverse square of

 $w_i = (1/u_{char\ i})^2 / (\Sigma (1/(u_{char\ i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Certified Value, $X_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

Characterization of CRM/RM by One Method

 $X_{CRM/RM} = (X_n) (u_{char})$

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ls}\right)^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

М	Ag	<	0.000760	М	Eu	<	0.000760	0	Na		0.012771	M	Se	<	0.023000	М	Zn	<	0.006100
М	Al		0.003385	0	Fe		0.004462	М	Nb	<	0.000760	0	Si		0.024619	М	Zr	<	0.000760
М	As	<	0.004600	М	Ga	<	0.000760	М	Nd	<	0.000760	М	Sm	<	0.000760				
М	Au	<	0.002300	М	Gd	<	0.000760	0	Ni	<	0.005100	М	Sn	<	0.000760				
0	В		0.003692	М	Ge	<	0.001600	M	Os	<	0.000760	0	Sr	<	0.000610				
М	Ba	<	0.001600	M	Hf	<	0.000760	n	Р	<		М	Ta	<	0.000760				
0	Be	<	0.000130	M	Hg	<	0.003100	M	Pb		0.001400	М	Tb	<	0.000760				
M	Bi	<	0.000760	М	Но	<	0.000760	М	Pd	<	0.001600	М	Te	<	0.000760				
0	Ca		0.004616	8	In	<		М	Pr	<	0.000760	М	Th	<	0.000760				
M	Cd	<	0.000760	М	lr	<	0.000760	M	Pt	<	0.000760	0	π	<	0.001100				
М	Ce	<	0.000760	0	K		0.007078	М	Rb	<	0.000760	М	TI	<	0.000760				
М	Co	<	0.000760	М	La	<	0.000760	М	Re	<	0.000760	М	Tm	<	0.000760				
0	Сг	<	0.001300	0	Li	<	0.000130	М	Rh	<	0.000760	М	U	<	0.000760				
М	Cs	<	0.000760	M	Lu	<	0.000760	М	Ru	<	0.000760	М	٧	<	0.001600				
М	Cu	<	0.003800	0	Mg		0.000707	n	S	<		М	W	<	0.001600				
М	Dy	<	0.000760	0	Mn		0.000149	M	Sb	<	0.000760	М	Υ	<	0.000760				
М	Er	<	0.000760	М	Мо	<	0.002300	М	Sc	<	0.000760	M	Yb	<	0.000760				

n - Not Checked For s - Solution Standard Element

M - Checked by ICP-MS O - Checked by ICP-OES

i - Spectral Interference

INTENDED USE 6.0

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u> https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 114.82 +3 6 In(H2O)6+3 Chemical Compatibility -Soluble in HCl, HNO3, and H2SO4. Avoid neutral and basic media. Stable with most metals and inorganic anions. The oxalate, sulfide, carbonate, hydroxide and phosphate are insoluble in water.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

In Containing Samples (Preparation and Solution) -Metal (Best dissolved in HCl / HNO3); Oxide (Soluble in mineral acids); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Sulfuric/peroxide digestion or dry ash and dissolution in dilute HCl).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 115 amu	1 ppt	n/a	115Sn, 99Ru16O
ICP-OES 158.583 nm	0.05 / 0.002 μg/mL	1	
ICP-OES 230.606 nm	0.1 / 0.03 μg/mL	1	Ni, Os
ICP-OES 325.609 nm	0.2 / 0.05 μg/mL	1	Mn, Mo, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

February 21, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 21, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

0 TOT D 0	na Datas	
- Sealed TCT Bag Ope	en Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

20178hi

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com R:2/22/24 M5-997

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: CLPP-CAL-3

Lot Number: T2-MEB727800

Matrix: 7% (v/v) HNO3

Value / Analyte(s):

1 000 μg/mL ea: Arsenic,

Arsenic, Lead, Selenium, Thallium,

500 μg/mL ea: Cadmium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE	CERTIFIED VALUE	ANALYTE	CERTIFIED VALUE
Arsenic, As		Cadmium. Cd	500.0 ± 2.2 µg/mL
Lead, Pb	1 000 ± 4 μg/mL	Selenium, Se	1 000 ± 6 µg/mL

Thallium, Ti 1 000 \pm 7 μ g/mL

Density: 1.042 g/mL (measured at 20 ± 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
As	Calculated		See Sec. 4.2
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
TI	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance;

 $w_i = (1/u_{char})^2 / (\Sigma(1/(u_{char})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRIMRM}, where one method of characterization is used is the mean of individual results:

XCRM/RM = (Xa) (uchar a)

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (1) = $U_{CRM/RM} \approx k \left(u^2_{chara} + u^2_{bb} + u^2_{ts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

N/A

6.0 INTENDED USE

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

 https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

December 21, 2022

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- December 21, 2027
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date: 	
---	--

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control DD9784.

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

ACCREDITATION / REGISTRATION 1.0

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CHEM-CLP-4

Lot Number:

V2-MEB746172

Matrix:

3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s):

1 000 µg/mL ea:

Boron,

Molybdenum,

Silicon,

Tin,

Titanium

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE Boron, B

CERTIFIED VALUE

ANALYTE Molybdenum, Mo **CERTIFIED VALUE**

1 000 ± 5 µg/mL

Silicon, Si

1 000 ± 5 µg/mL 1 000 ± 7 µg/mL

Tin. Sn

1 000 ± 5 µg/ml.

Titanium, Ti

1 000 ± 6 μg/mL

Density:

1.032 g/mL (measured at 20 ± 4 °C)

Assav Information:

,			
ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Мо	ICP Assay	traceable to 3134	U2-MO739068
Si	ICP Assay	Traceable to 3150	S2-S1702546
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRWRM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) \{X_i\}$

X_i = mean of Assay Method i with standard uncertainty uchar i

 \mathbf{w}_{i} = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char\,i})^2/(\Sigma(1/(u_{char\,i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{bs}\right)^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

utts = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

 $X_a = mean$ of Assay Method A with $u_{char} = the$ standard uncertainty of characterization Method A $CRM/RM = the standard uncertainty ($^{\pm}$) = U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{tts} + u^2_{ts}\right)^{\frac{1}{2}} \\ k = coverage factor = 2 \\ u_{char} = the errors from characterization \\ u_{bb} = bottle to bottle homogeneity standard uncertainty \\ u_{lts} = long term stability standard uncertainty (storage) \\ u_{tg} = transport stability standard uncertainty$

Characterization of CRM/RM by One Method

is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

Certified Value, X_{CRM/RM}, where one method of characterization

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

 https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.lnorganicventures.com/TCT
 HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; Inorganic Ventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

August 12, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- August 12, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Sains

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

300 Technology Drive Christiansburg, VA 24073 USA

inorganicventures.com

Certificate of Analysis

M6074

M6075 M6076 M6077

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

EXP. 9/6/2029

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CHEM-CLP-4

Lot Number:

V2-MEB746762

Matrix:

3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s):

1 000 µg/mL ea:

Boron,

Molybdenum,

Silicon,

Tin,

Titanium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Boron, B **CERTIFIED VALUE**

ANALYTE Molybdenum, Mo **CERTIFIED VALUE**

1 000 ± 5 μg/mL

Silicon, Si

1 000 ± 5 µg/mL

Tin, Sn

1 000 ± 5 µg/mL

Titanium, Ti

1 000 ± 7 μg/mL

1 000 I 5 pg/mL

1 000 ± 6 µg/mL

Density:

1.033 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Мо	ICP Assay	traceable to 3134	U2-MO739068
Si	ICP Assay	Traceable to 3150	S2-SI702546
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma(1/(u_{char i})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRW/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (2) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

INTENDED USE 6.0

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale. https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669,6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 06, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 06, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT 	Bag Open Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Sains

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

300 Technology Drive Christiansburg, VA 24073 USA

inorganicventures.com

Certificate of Analysis

M6074

M6075 M6076 M6077

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

EXP. 9/6/2029

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CHEM-CLP-4

Lot Number:

V2-MEB746762

Matrix:

3% (v/v) HNO3

3% (v/v) HF

Value / Analyte(s):

1 000 µg/mL ea:

Boron,

Molybdenum,

Silicon,

Tin,

Titanium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Boron, B **CERTIFIED VALUE**

ANALYTE Molybdenum, Mo **CERTIFIED VALUE**

1 000 ± 5 μg/mL

Silicon, Si

1 000 ± 5 µg/mL

Tin, Sn

1 000 ± 5 µg/mL

Titanium, Ti

1 000 ± 7 μg/mL

1 000 I 5 pg/mL

1 000 ± 6 µg/mL

Density:

1.033 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Мо	ICP Assay	traceable to 3134	U2-MO739068
Si	ICP Assay	Traceable to 3150	S2-SI702546
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma(1/(u_{char i})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRW/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (2) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

uits = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

INTENDED USE 6.0

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale. https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669,6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

September 06, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- September 06, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT	Bag Open Date:	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Paul R Sains

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Joseph Burns Custom VS Manager

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

www.absolutestandards.com

Part Number:

Lot Number:

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT:

Formulated By: Diovannie Giovanni Esposito 2 Septe 101124

Pedro L. Rentas

101124

Recommended Storage: **Expiration Date:** Description: 101124

Manganese (Mn)

Ambient (20 °°)

Manganese (20 °°) 1000

Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): **NIST Test Number:** ETUB ត្ត 4000.2 Nominal 0.10 Flask Uncertainty 5E-05 Balance Uncertainty Purity Uncertainty Assay Target Actual Actual Reviewed By: Uncertainty Expanded (Solvent Safety Info. On Attached pg.)

RM#

Number

Conc. (µg/mL)

8

Purity (%)

8

Weight (g)

Weight (g) Conc. (µg/ml.)

+/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM NIST T SDS Information

 Manganese(II) nitrate hydrate (Mn) IN031 MNM082020A1 1000 99.999 0.10 20.8 19.2322 19.2344 1000.1 2. 0 15710-66-4 5 mg/m3 orl-rat >300mg/kg 3132

m/z->	5.0E7	1.0E8	5.067	m/z->	in M	5. O E 6
						[1] 8
0		110		0		[1] Spectrum No.1
		,				NO.1
N N O		120		N O		Ę Q
230		130		Q		243
ō		Ō				ec]:57(
N 40		140		4		[34.243 sec]:57025.D# [Count] [Linear]
,						Coun
N D		150		G.		t] [Line
N O		100		8.		2
U						
		170		70		
				m		
		80		89.		
		190		0		
		N 00		100		

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

Г							Trace Me	etals	Verifica	tion	by ICP-	SM	(µg/mL)						
A	40.02	2	40.02	Dγ	40.02	H	<0.02	<u>E</u>	<0.02	Z	<0.02	꾸	<0.02	Se	40.2	<u>4</u>	<0.02	*	<0.02
dS	<0.02	ರಿ	<0.2	뎍	<0.02	Н	<0.02	Ę	40.02	ş	<0.02	Re	<0.02	ž.	40.02	Te	<0.02	c	<0.02
As	40.2	င္ပ	<0.02	띹	<0.02	In	<0.02	Mg	40.01	0°	<0.02	쫑	<0.02	A	8,02	1	<0.02	<	40.02
Ba	40.02	ς,	40.02	ନୁ	40.02	F.	40.02	Mn	H	Pd	<0.02	&	40.02	Z	40,2	1	<0.02	충	< 0.02
Ве	40.01	ប៉	<0.02	ଦ୍ମ	40.02	7,	40.2	Hg	40.2	Þ	<0.02	Ru	40.02	Sr	0.02	Tm	<0.02	×	<0.02
Bi	40.02	ဝ	<0.02	ନ୍ମ	40.02	La	<0.02	Mo	40.02	7	40.02	Sm	<0.02	S	A.02	Sn	<0.02	Zn	60.02
B	<0.02	Cu	<0.02	Au	<0.02	Pb	<0.02	Nd	<0.02	×	40.2	S	<0.02	Ta	40.02	크	<0.02	Zr	<0.02
									}										

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

Jon T. Mills

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M6137

P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGSI1

Lot Number:

V2-SI744713

Matrix:

tr. HNO3

tr. HF

Value / Analyte(s):

1 000 µg/mL ea:

Silicon

Starting Material:

Silica

Starting Material Lot#:

1771

Starting Material Purity:

99.9981%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

999 ± 6 µg/mL

Density:

1.003 g/mL (measured at 20 ± 4 °C)

Assay Information:

Assay Method #1

999 ± 5 µg/mL

ICP Assay NIST SRM Traceable to 3150 Lot Number: S2-Si702546

Assay Method #2

1000 ± 7 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

 $\mathbf{X_i}$ = mean of Assay Method \mathbf{i} with standard uncertainty \mathbf{u}_{char} \mathbf{i} \mathbf{w}_{i} = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{bs})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} are the errors from each characterization method ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$

X, = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{chara}^2 + u_{bb}^2 + u_{its}^2 + u_{ts}^2)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Ag	<	0.000310	M	Eu	<	0.000310	0	Na		0.001656	M	Se	<	0.022000	М	Zn	<	0.002500
M	Al		0.010787	М	Fe	<	0.027000	M	Nb	<	0.001300	s	Si	<		0	Zr	<	0.001900
М	As	<	0.001900	М	Ga	<	0.001300	M	Nd	<	0.000310	М	Sm	<	0.000310				
М	Au	<	0.000910	M	Gd	<	0.000310	M	Ni	<	0.005500	М	Sn		0.000096				
M	В		0.016180	M	Ge	<	0.001900	M	Os	<	0.000610	0	Sr		0.000092				
M	Ba		0.000096	M	Hf		0.000423	i	Р	<		M	Ta		0.002542				
0	Be	<	0.000570	M	Hg	<	0.000610	M	Pb	<	0.000310	М	Tb	<	0.000310				
M	Bi	<	0.000310	M	Но	<	0.000610	M	Pd	<	0.000610	M	Te	<	0.000910				
0	Ca		0.011557	M	ln	<	0.000310	M	Pr	<	0.000310	М	Th	<	0.001900				
M	Cd	<	0.000310	M	lr	<	0.000310	M	Pt	<	0.000310	М	Ti		0.001078				
M	Ce	<	0.000610	0	K		0.000577	M	Rb	<	0.009100	М	TI	<	0.000310				
M	Co	<	0.001600	M	La	<	0.000310	M	Re	<	0.000310	М	Tm	<	0.000310				
М	Cr	<	0.010000	0	Li	<	0.000460	М	Rh	<	0.000310	М	U	<	0.000310				
М	Cs	<	0.000310	M	Lu	<	0.000310	M	Ru	<	0.000310	0	V	<	0.001300				
М	Cu	<	0.002500	0	Mg		0.001348	0	S	<	0.570000	М	W	<	0.001900				
M	Dy	<	0.000310	М	Mn	<	0.002500	M	Sb	<	0.000310	М	Υ	<	0.000310				
M	Er	<	0.000310	M	Мо	<	0.000310	0	Sc	<	0.000590	М	Yb	<	0.000310				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 **INTENDED USE**

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.

- For more information, visit www.inorganicventures.com/TCT

Atomic Welght; Valence; Coordination Number; Chemical Form in Solution - 28.09 +4 6 Si(OH)x(F)y2-Chemical Compatibility -Soluble in HCl, HF, H3PO4 H2SO4 and HNO3 as the Si(OH)x(F)y2-. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F- away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated. Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic acid is soluble up to ∼100 ppm in water) in all dilute acids

Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH)x(F)y2-. 1-10,000 ppm single element solutions as the Si(OH)x(F)y2- chemically stable for years in 2-5 % HNO3 / trace HF in a LDPE container.

Si Containing Samples (Preparation and Solution) -Metal (Soluble in 1:1:1 H2O / HF / HNO3); Oxide - SiO2, amorphic (dissolve by heating in 1:1:1 H2O / HF / HNO3); Oxide - quartz (fuse in Pt0 with Na2CO3); Geological Samples(fuse in Pt0with Na2CO3 followed by HCI solution of the fuseate); Organic Matrices containing silicates and non volatile silicon compounds (dry ash at 4500C in Pt0 and dissolve by gently warming with 1:1:1 H2O / HF / H2SO4 or fuse / ash with Na2CO3 and dissolve fuseate with HCI / H2O); Silicone Oils - dimethyl silicones depolymerize to form volatile monomer units when heated (Measure directly in alcoholic KOH / xylene mixture where sample is treated first with the KOH at 60-1000C to "unzip" the Si- O-Si polymeric structure or digest with conc. H2SO4 / H2O2 followed by cooling and dissolution of the dehydrated silica with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethylcyclotrisiloxane. The KOH forms the K2+Si(CH3)2O= salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	•		
Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 28 amu	4000 - 8000 ppt	N/A	N2, 12C16O
ICP-OES 212.412 nm	0.02/0.01 µg/mL	1	Hf, Os, Mo, Ta
ICP-OES 251.611 nm	0.012/0.003 µg/mL	1	Ta, U, Zn, Th
ICP-OES 288.158 nm	0.03/0.004 µg/mL	1	Ta, Ce, Cr, Cd. Th

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

July 10, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- July 10, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0 Certificate Prepared By:

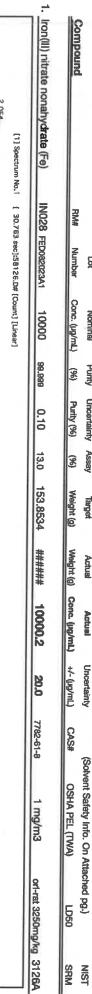
Uyen Truong Custom Processing Supervisor

Mayyand Man
Paul R. Laine

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Certifying Officer:


Paul Gaines Chairman / Senior Technical Director

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

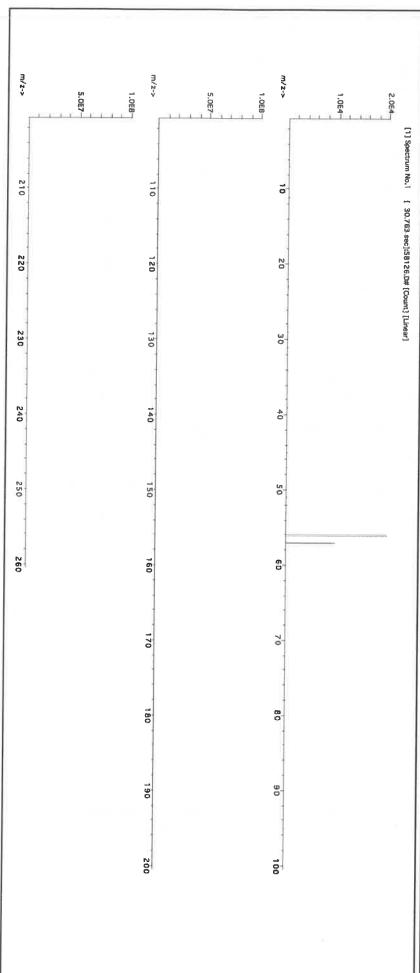
CERTIFIED WEIGHT REPORT: Lot#

Nominal Concentration (µg/mL): Recommended Storage: Weight shown below was diluted to (mL): NIST Test Number: **Expiration Date:** Part Number: Description: Lot Number: 58126 011025 Iron (Fe) **8TB** 10000 011028 Ambient (20 °C) 2000.07 R->1/18/25 M6140 0.100 Flask Uncertainty 5E-05 Balance Uncertainty Solvent: 22% 24012496 40.0 Nitric Acid Nitric Acid Reviewed By: Formulated By: Expanded Pedro L. Rentas Benson Chan SDS Information 011025 011025

Q

Nominal

Purity


Uncertainty

Target

Actual

Actual

Uncertainty

Certified Reference Material CRM

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							11 000	Cana	4011100			Ę.						I	
1	200	2	3		2003	3H	A A		A0 02	z	<0.02	Pr	<0.02	Se	<0.2	4	∆ 0.02	W	<0.02
	70.02	0	70.02	٧	20.02	2.2.2	W. W.	1	40.00		10.00			:		1	3	11	3
	2	3	40.0	Ęį.	AD 02	H _o	A0.02	Ŀ	40.02	Z	40.02	R	40.02	S	<0.02	Ţe.	20:05	C	20.02
_	40.00	í		1		•		-	5	?	3	5	3	A 0	3	1	40.02	<	₽ 20.05
	8	ဂ္ဂ	40.02	Eu	20.02	In In	70.02	SIM	10.03	Ş	20.02	2	40.04	200	10.00				
B	3	5	200	3	A) (2)	7	8,02	Mn	A0.02	골	60.02 20.02	Rb	40.02	Z	40.2	Th	40.07	YD	20.02
_	10.04	. (1	1	:	3	9	3	D:	3	ę	2000	1	A) 02	4	A0.02
_	40.01	Ü	40.02	Ga	Z0.02	148	-	128	7.05	۲	20.02	IVU.	40.02	Ş	-			1	
	3	3	3	<u></u>	A) (1)	2	40.02	Mo	40.02	7	0,02	Sm	40.02	S	<0.02	Sn	20,02	29	20,02
_	10.01	ı ç	000		3	7	3	Z	3	*	3	S	A 63	, ,	A0.02	1	802	Zr	40.02

(T)= Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Potassium nitrate (K) Compound Nominal Concentration (µg/mL): Weight shown below was diluted to (mL): Recommended Storage: **NIST Test Number: Expiration Date:** Part Number: Lot Number: Description: IN034 KD062022A1 BTU9 57119 103024 Potassium (K) M6141 10000 103027 Ambient (20 °C) Number 5 Conc. (µg/mL) 4000.1 10000 716142 Nominal R->1/13/25 0.15 Flask Uncertainty 99.999 5E-05 Balance Uncertainty Purity 8 Uncertainty Purity (%) 0.10 Solvent: 24002546 Assay 37.7 E 2% Weight (g) 106.1040 Target 80.0 Lot # Nitric Acid Nitric Acid ###### Weight (g) Conc. (µg/mL) Actual 10001.1 Actual Reviewed By: Formulated By: +/- (µg/mL) Uncertainty Expanded 20,0 Tieranie. 7757-79-1 CAS# (Solvent Safety Info. On Attached pg.) Pedro L. Rentas Giovanni Esposito からからかん OSHA PEL (TWA) **SDS Information** 5 mg/m3 orl-rat 3750 mg/kg 3141a LD50 103024 103024 SRM NIST

m/z->	Ø000	m/z->	1.0E5	m/z->	1.0E6	2.0E6
			ang aang an armer ing aan keun na aniimagan ing aan ang a		and the second s	
N 0		10		1		
J				*		
220		120		N O		
				•		
230		0		0		
240		0		0	00000000000000000000000000000000000000	м.
N		_				
N (J)-		150		Ø.		
N 0		100				
0		0				
		170		7.		
		4				
		180		8		
		190		0		
		93				
		N 0		00		

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	ш	В	ᄪ	В	As	S	A			1
	F	<u> </u>	•	20	to	-	_			ı
	40.02	0.02	40.01	40.02	40.2	△0.02	<0.02			
	CL	ဝ	Ω	င္တ	င္ပ	က္အ	Ω			I
	40.02	<0.02	<0.02	<0.02	<0.02	402	<0.02			
	Αш	ද	ନ୍ଥ	ନୁ	달	띰	Ņ			I
	<0.02	40.02	40.02	<0.02	<0.02	<0.02	<0.02			
	PB	7	듄	ᅡ	'n	Но	Hf	j		ı
	<0.02	<0.02	40.2	<0.02	<0.02	<0.02	<0.02		Trace M	
	Nd	Mo	Hg	Mn	Mg	Lu	Ľ		Metals	
The Target analyte	<0.02	<0.02	40 2	<0.02	10.0>	<0.02	<0.02		Verifica	
	×	7	Ъ	Pd	တ္တ	3	Z.	ı	tion	ı
2	T	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	the second second	by ICP-	
	Sc	Sm	Ru	Rb	쫑	Re	7		SM	I
	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		(<i>µ</i> g/mL)	
	Ta	S	Sr	N _B	Ag	Si	Se			ı
	<0.02	<0.02	<0.02	40.2	<0.02	√0.02	<0.2			
	11:	Sn	Im	H	1	Te	Тb			I
	<0.02	<0.02	40.02	<0.02	40.02	<0.02	<0.02			
	Zr	Zn	×	4	<	C	W			
	<0.02	∆0,02	40.02	<0.02	<0.02	40.02	<0.02			

(i) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994)

www.absolutestandards.com

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https:///Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Sodium nitrate (Na) Neminal Concentration (µg/mL): Recommended Storage: Weight shown below was diluted to (mL): m/z-> m/z-> M/X-Y NIST Test Number: 2.5E6 5.0E6 2.500 5.0E6 2.5E5 5.0E5 **Expiration Date:** Part Number: Lot Number: Description: [1] Spectrum No.1 210 110 IN036 NAV01201511 0 RM# **6UTB** 072427 58111 072424 10000 Ambient (20 °C) Sodium (Na) Number Lot 120 220 NO [8.935 sec]:58111.D# [Count] [Linear] Conc. (µg/mL) 10000 4000.2 Nominal M6144 R->1/13/2 Solvent: 130 30 99.999 5E-05 Balance Uncertainty Purity 0.10 Flask Uncertainty (96) Uncertainty Assay Purity (%) 0.10 240 140 4 26.9 8 2% 24002546 Nitric Acid 148.7096 Weight (g) Target (mL) 250 150 50 ###### Weight (g) Conc. (µg/mL) Nitric Acid Actual 160 260 0 10000.0 Actual 170 70 +/- (µg/mL) Uncertainty Reviewed By: Formulated By: Expanded 20.0 7631-99-4 180 80 CAS# (Solvent Safety Info. On Attached pg.) Pedro L. Rentas Benson Chan OSHA PEL (TWA) **SDS** Information 180 90 5 mg/m3 200 100 orl-rat 3430 mg/kg 3152a 072424 072424 TSIN MES.

Printed: 1/10/2025, 4:48:22 PM

1 of 2

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

ĺ	B	<u>B</u>	Be	Ba	As	Sb	≥	9		
	<0.02	<0.02	40.01	<0.02	40.2	<0.02	<0.02			
İ	5	င္ပ	Ω	C _C	දි	C C	S			
	<0.02	<0.02	<0.02	<0.02	<0.02	40.2	<0.02			
l	Au	ဂ္ဂ	ନ୍ଥ	<u>ਨ</u>	Eu	即	Дy			
	△0.02	<0.02	<0.02	△0.02	<0.02	△0.02	<0.02	STATE OF STREET		
	Pb	L	Fe	F	In	Но	Hf			
	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02		Trace M	
	N.	Mo	Hg	Mn	Mg	L	Ш		etals	
	<0.02	40.02	40.2	<0.02	<0.01	<0.02	<0.02		Verifica	
	×	72	۵	Pd	°S O	ğ	Z.		tion	
	<0.2	40.02	0.02	A.02	40,02	40.02	<0.02		by ICP-N	
	Sc	Sm	Ru	Rb	Rh	Re	Pr		ES CE	
	<0.02	<0.02	<0.02	<0.02	<0.02	40.02	<0.02		a/mL)	
	Ta	S	Sr	Z	Ag	S:	8			
	<0.02	<0.02	△0.02	Т	<0.02	<0.02	40.2			
	11	Sn	Tm	Ħ	1	Te	41	i		
	<0.02	△0.02	<0.02	<0.02	40.02	<0.02	<0.02			
	Zr	Zn	۲	\$	<	C	W			
	40.02	40.02	<0.02	<0.02	<0.02	<0.02	<0.02	IIIO SCOTI		

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

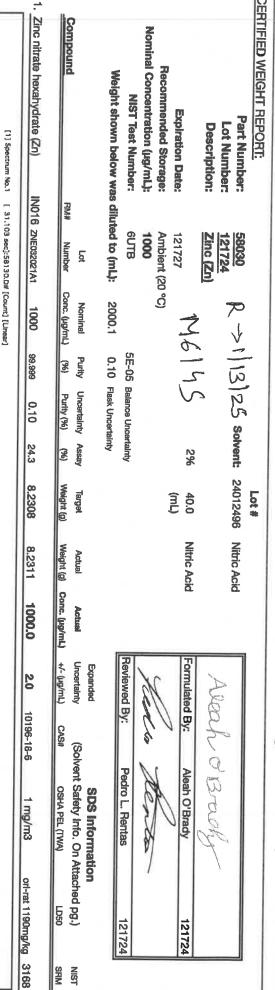
* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

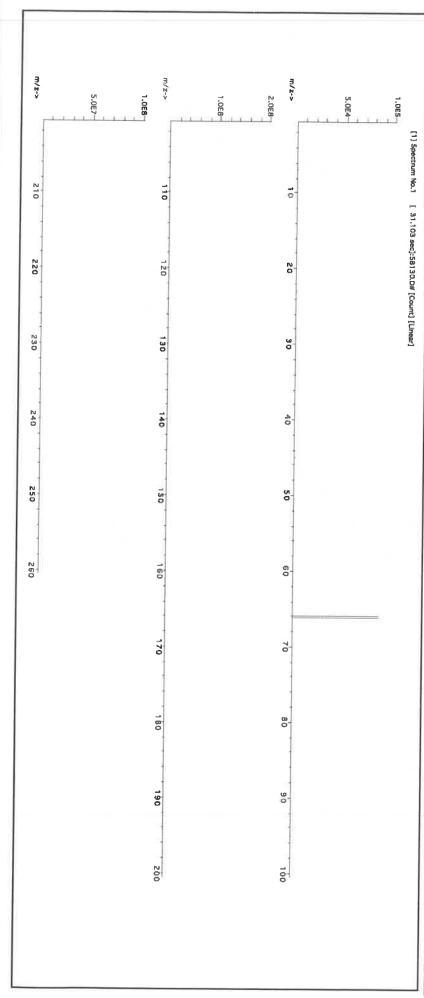
* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

All standard containers are meticulously cleaned prior to use.

Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.


All Standards should be stored with caps tight and under appropriate laboratory conditions.


Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58111

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Www.absolutestandards.com CERTIFIED WEIGHT REPORT:

Part # 58030

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

																		-	
ľ		l	-	20.02	T d	20.02	30	702	7	40.02	Z	40.02	P	₹0.02	Au	∆ 0.02	5	40.02	00
7				3	3	3	2	3	: :	6 6	200	20.02	La	70.02	Ca	20.02	S	20.02	191
1			N.	20.02	v	<u>A</u> .02	Sm	<u>A</u> .83	P	A 23	5	3	3	3	9	3	3	3	2
ĭ			-	000	,		1	40.00	1	10.6	27.7	10%	70	20.02	Ca	20.02	ŭ	10.0	Be
jed		_	n.	20.02	S	A).(72	Z::	3	0	3	<u> </u>	3		3			2		
9 8		20.00	1 :	6	ING	20.03	Z	20.02	Pd	20.02	Mn	<0.02	H	40.02	8	40.02	င္တ	_ 0,02	B
-			1	4	2 (3	7	8	1 (0 0	0	40.04	17.1	10.02	t	20.02	6	4.6	As
_			11	20.02	Ag	40.02	25	<u>A</u> ,23	ွှ	0.01	× o	3	3	3	ri Fi	3	3	3	
ς			1			10:04	7	10.02	240	\$0.04	14	20.02	OH	20.02	Ħ	200	Ca	<0.02	S
C			Te	A).02	2	3	2	2000	ļ.	3	÷	3			1 3	-	5	40.04	2
-	_		1.5	7.0>	oe.	20.02	H	4 .02	Z	0.02	1	A0.02	H	<0.02	Dγ	A) (2)	3	2000	Δ1
V		1	7	3	2	0.00			۱										-
			-			100			ı				۱	١	۱				Ī
١						,/		wy 101 1	יניטוו	ACHILLA	Crais	HI GOD IN							
								2 TO	1	Corifico	0+0								

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Part # 58030

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

M6151

R-> 1/15/25

Material No.: 9530-33

Batch No.: 22G2862015 Manufactured Date: 2022-06-15

Retest Date: 2027-06-14

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
ACS - Assay (as HCI) (by acid-base titrn)	36.5 - 38.0 %	
ACS - Color (APHA)	50.5 - 36.0 % ≤ 10	37.9 %
ACS - Residue after Ignition	≤ 3 ppm	5
ACS - Specific Gravity at 60°/60°F		< 1 ppm
ACS – Bromide (Br)	1.185 - 1.192	1.191
ACS - Extractable Organic Substances	≤ 0.005 %	< 0.005 %
ACS - Free Chlorine (as Cl2)	≤ 5 ppm	< 1 ppm
Phosphate (PO ₄)	≤ 0.5 ppm	< 0.5 ppm
Sulfate (SO ₄)	≤ 0.05 ppm	< 0.03 ppm
Sulfite (SO₃)	≤ 0.5 ppm	< 0.3 ppm
Ammonium (NH ₄)	≤ 0.8 ppm	0.3 ppm
Trace Impurities - Arsenic (As)	≤ 3 ppm	< 1 ppm
Trace Impurities - Aluminum (AI)	≤ 0.010 ppm	< 0.003 ppm
Arsenic and Antimony (as As)	≤ 10.0 ppb	1.3 ppb
Trace Impurities - Barium (Ba)	≤ 5.0 ppb	< 3.0 ppb
Trace Impurities - Beryllium (Be)	≤ 1.0 ppb	0.2 ppb
Trace Impurities - Bismuth (Bi)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Boron (B)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Cadmium (Cd)	≤ 20.0 ppb	< 5.0 ppb
Trace Impurities - Calcium (Ca)	≤ 1.0 ppb	< 0.3 ppb
	≤ 50.0 ppb	163.0 ppb
Trace Impurities - Chromium (Cr)	≤ 1.0 ppb	0.7 ppb
Trace Impurities - Cobalt (Co)	≤ 1.0 ppb	< 0.3 ppb
Trace Impurities - Copper (Cu)	≤ 1.0 ppb	< 0.1 ppb
Trace Impurities – Gallium (Ga)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Germanium (Ge)	≤ 3.0 ppb	< 2.0 ppb
Frace Impurities – Gold (Au)	≤ 4.0 ppb	0.6 ppb
Heavy Metals (as Pb)	≤ 100 ppb	< 50 ppb
Frace Impurities – Iron (Fe)	≤ 15 ppb	6 ppb

>>> Continued on page 2 >>>

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015

Test	Specification	Result
Trace Impurities – Lead (Pb)	≤ 1.0 ppb	< 0.5 ppb
Trace Impurities - Lithium (Li)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Magnesium (Mg)	≤ 10.0 ppb	2.9 ppb
Trace Impurities - Manganese (Mn)	≤ 1.0 ppb	< 0.4 ppb
Trace Impurities – Mercury (Hg)	≤ 0.5 ppb	0.1 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 3.0 ppb
Trace Impurities - Nickel (Ni)	≤ 4.0 ppb	< 0.3 ppb
Trace Impurities - Niobium (Nb)	≤ 1.0 ppb	0.8 ppb
Trace Impurities - Potassium (K)	≤ 9.0 ppb	< 2.0 ppb
Trace Impurities - Selenium (Se), For Information Only		< 1.0 ppb
Trace Impurities - Silicon (Si)	≤ 100.0 ppb	< 10.0 ppb
Trace Impurities - Silver (Ag)	≤ 1.0 ppb	0.5 ppb
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	2.3 ppb
Trace Impurities – Strontium (Sr)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Tantalum (Ta)	≤ 1.0 ppb	1.6 ppb
Trace Impurities – Thallium (TI)	≤ 5.0 ppb	< 2.0 ppb
Trace Impurities – Tin (Sn)	≤ 5.0 ppb	4.0 ppb
Trace Impurities – Titanium (Ti)	≤ 1.0 ppb	1.5 ppb
Trace Impurities – Vanadium (V)	≤ 1.0 ppb	< 0.2 ppb
Trace Impurities – Zinc (Zn)	≤ 5.0 ppb	0.8 ppb
Frace Impurities – Zirconium (Zr)	≤ 1.0 ppb	0.3 ppb

Hydrochloric Acid, 36.5-38.0% BAKER INSTRA-ANALYZED® Reagent For Trace Metal Analysis

Material No.: 9530-33 Batch No.: 22G2862015


Test

Specification

Result

For Laboratory, Research, or Manufacturing Use Product Information (not specifications): Appearance (clear, fuming liquid) Meets ACS Specifications Storage Condition: Store below 25 °C.

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

R-02/02/2025

M-6158

Material No.: 9606-03 Batch No.: 24D1062002

Manufactured Date: 2024-03-26

Retest Date: 2029-03-25 Revision No.: 0

Certificate of Analysis

Assay (HNOs) Appearance Appearance Appearance Passes Test Passes Test Passes Test Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (POa) Sulfate (SOa) Sulfate (SOa) Sulfate (SOa) Arsenic and Antimony (as As) Arsenic in and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Antimony (as As) Arsenic and Interest Bairum (Ba) Arace Impurities - Beryllium (Ba) Arace Impurities - Beryllium (Ba) Arace Impurities - Boron (B) Arace Impurities - Cadmium (Cd) Arace Impurities - Cadmium (Cd) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Co) Arace Impurities - Calcium (Ca) Arace Impurities - Calcium (Ca) Arace Impurities - Color (Co) Arace Impurities - Lead (Pb) Arace Impurities - Lithium (Li) Arace Impurities - Manganese (Mn) Arace Impurities - Manganese (Mn) Arace Impurities - Manganese (Mn) Arace Impurities - Nicke (Ni) Arace Impurities - Manganese (Mn) Arace Impurities - Nicke (Ni) Arace Impurities	Test	Specification	Result
Appearance Color (APHA) Residue after Ignition Chloride (Cl) Phosphate (POa) Sulfate (SOa) Trace Impurities - Barium (Ba) Trace Impurities - Cobalt (Co) Trace Impurities - Lead (Pb) Trace Impur	Assay (HNO3)		
Second Capera	Appearance		
Residue after Ignition	Color (APHA)		
Chloride (Cf) Phosphate (PO ₄) Sulfate (SO ₄) Sulfate (SO ₄) Trace Impurities – Aluminum (AI) Arsenic and Antimony (as As) Trace Impurities – Beryllium (Ba) Trace Impurities – Beryllium (Be) Trace Impurities – Beryllium (Be) Trace Impurities – Boron (B) Trace Impurities – Cadrium (Cd) Trace Impurities – Cadrium (Cd) Trace Impurities – Cadrium (Ca) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gold (Au) Expressible 10.0 ppb Trace Impurities – Gold (Au) Expressible 10.0 ppb Trace Impurities – Code (Au) Expressible 10.0 ppb Trace Impurities – Color (Fe) Trace Impurities – Color (Fe) Trace Impurities – Color (Fe) Trace Impurities – Color (Au) Expressible 10.0 ppb Trace Impurities – Color (Au) Expressible 10.0 ppb Trace Impurities – Color (Fe) Trace Impurities – Lithium (Li) Expressible 10.0 ppb Trace Impurities – Lithium (Li) Expressible 10.0 ppb Trace Impurities – Lithium (Li) Expressible 10.0 ppb Trace Impurities – Manganese (Mn) Expressible 10.0 ppb Trace Impurities – Manganese (Mn) Expressible 10.0 ppb Trace Impurities – Manganese (Mn) Expressible 10.0 ppb Trace Impurities – Nickel (Ni)	Residue after Ignition		5
Phosphate (PO ₄) ≤ 0.10 ppm < 0.03 ppm	Chloride (CI)		1 ppm
Sulfate (SO ₄) ≤ 0.2 ppm < 0.2 ppm Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb Arsenic and Antimony (as As) ≤ 5.0 ppb < 2.0 ppb Trace Impurities - Barium (Ba) < 10.0 ppb < 1.0 ppb Trace Impurities - Beryllium (Be) < 10.0 ppb < 1.0 ppb Trace Impurities - Bismuth (Bi) < 20.0 ppb < 10.0 ppb Trace Impurities - Boron (B) < 10.0 ppb < 5.0 ppb Trace Impurities - Cadmium (Cd) < 50 ppb < 1 ppb Trace Impurities - Calcium (Ca) < 50.0 ppb < 1.0 ppb Trace Impurities - Chromium (Cr) < 30.0 ppb < 1.0 ppb Trace Impurities - Chromium (Cr) < 30.0 ppb < 1.0 ppb Trace Impurities - Cobalt (Co) < 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) < 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) < 10.0 ppb < 1.0 ppb Trace Impurities - Gold (Au) < 20 ppb < 10 ppb Trace Impurities - Gold (Au) < 20 ppb < 100 ppb Trace Impurities - Lithium (E) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) < 10.0 ppb < 1.0 ppb Trace Impurities - Mangaese (Mn) < 10.0 ppb < 1.0 ppb	Phosphate (PO ₄)		< 0.03 ppm
Trace Impurities - Aluminum (AI) ≤ 40.0 ppb < 1.0 ppb	Sulfate (SO ₄)	• •	< 0.03 ppm
Arsenic and Antimony (as As)	Trace Impurities - Aluminum (AI)		
Trace Impurities - Barium (Ba) ≤ 10.0 ppb < 1.0 ppb		• •	• •
Trace Impurities – Beryllium (Be) Trace Impurities – Bismuth (Bi) Trace Impurities – Boron (B) Trace Impurities – Cadmium (Cd) Trace Impurities – Cadmium (Cd) Trace Impurities – Calcium (Ca) Trace Impurities – Chromium (Cr) Trace Impurities – Chromium (Cr) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gallium (Ga) Trace Impurities – Gold (Au) Trace Impurities – Gold (Au) Express of the substitute of the			
Trace Impurities – Bismuth (Bi)		• •	< 1.0 ppb
Trace Impurities – Boron (B)			< 1.0 ppb
Trace Impurities - Cadmium (Cd) Frace Impurities - Calcium (Ca) Frace Impurities - Chromium (Cr) Frace Impurities - Chromium (Cr) Frace Impurities - Cobalt (Co) Frace Impurities - Copper (Cu) Frace Impurities - Callium (Ga) Frace Impurities - Gallium (Ga) Frace Impurities - Germanium (Ge) Frace Impurities - Gold (Au) Frace Impurities - Gold (Au) Frace Impurities - Fron (Fe) Frace Impurities - Lead (Pb) Frace Impurities - Lithium (Li) Frace Impurities - Magnesium (Mg) Frace Impurities - Manganese (Mn) Frace Impurities - Nickel (Ni)			• •
Trace Impurities – Calcium (Ca)		• •	< 5.0 ppb
Trace Impurities - Chromium (Cr) Trace Impurities - Cobalt (Co) Trace Impurities - Copper (Cu) Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Garmanium (Ge) Trace Impurities - Gold (Au) Heavy Metals (as Pb) Trace Impurities - Iron (Fe) Trace Impurities - Lead (Pb) Trace Impurities - Lead (Pb) Trace Impurities - Lithium (Li) Trace Impurities - Magnesium (Mg) Trace Impurities - Magnesium (Mg) Trace Impurities - Manganese (Mn) Trace Impurities - Magnesium (Mg) Trace Impurities - Manganese (Mn) Trace Impurities - Nickel (Ni)		• ,	< 1 ppb
Trace Impurities – Cobalt (Co)			2.3 ppb
Trace Impurities - Copper (Cu) Trace Impurities - Gallium (Ga) Trace Impurities - Germanium (Ge) Trace Impurities - Gold (Au) Example 10.0 ppb			< 1.0 ppb
Trace Impurities – Gallium (Ga) Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Lithium (Li) Trace Impurities – Magnesium (Mg) Trace Impurities – Magnese (Mn) Trace Impurities – Nickel (Ni)		• •	< 1.0 ppb
Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Lithium (Li) Trace Impurities – Magnesium (Mg) Trace Impurities – Magnesium (Mg) Trace Impurities – Manganese (Mn) Trace Impurities – Nickel (Ni)		• • • • • • • • • • • • • • • • • • • •	< 1.0 ppb
Trace Impurities – Gold (Au) 4 20 ppb 5 ppb 6 5 ppb 7 Trace Impurities – Iron (Fe) 6 40.0 ppb 6 20.0 ppb 7 Trace Impurities – Lithium (Li) 6 10.0 ppb 7 Trace Impurities – Magnesium (Mg) 7 Trace Impurities – Manganese (Mn) 7 Trace Impurities – Manganese (Mn) 7 Trace Impurities – Mickel (Ni)	· •		< 1.0 ppb
Heavy Metals (as Pb) Second Policy Second Policy		• • •	< 10 ppb
Trace Impurities – Iron (Fe) \$\leq\$ 40.0 ppb \$\leq\$ 40.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 20.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb \$\leq\$ 10.0 ppb \$\leq\$ 20 ppb \$\leq\$ 21.0 ppb			< 5 ppb
Trace Impurities – Lead (Pb) ≤ 20.0 ppb ≤ 20.0 ppb < 10.0 ppb < 10.0 ppb < 1.0 ppb		• •	100 ppb
Frace Impurities – Lithium (Li) Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) Frace Impurities – Manganese (Mn) Frace Impurities – Nickel (Ni) Frace Impurities – Nickel (Ni)		• •	< 1.0 ppb
Frace Impurities – Magnesium (Mg) Frace Impurities – Manganese (Mn) ≤ 20 ppb ≤ 1.0 ppb < 1 ppb < 1.0 ppb < 1.0 ppb		• •	< 10.0 ppb
Frace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb			< 1.0 ppb
race Impurities – Nickel (Ni)			< 1 ppb
≤ 20.0 ppb < 5.0 ppb		• •	< 1.0 ppb
	THERET (INI)	≤ 20.0 ppb	< 5.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24D1062002

Test	Specification	D 1
Trace Impurities – Niobium (Nb)		Result
Trace Impurities – Potassium (K)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 50 ppb	16 ppb
	≤ 50 ppb	< 10 ppb
Trace Impurities – Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Sodium (Na)	≤ 150.0 ppb	
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 5.0 ppb
Trace Impurities – Tantalum (Ta)		< 1.0 ppb
Trace Impurities – Thallium (TI)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities – Tin (Sn)	≤ 10.0 ppb	< 5.0 ppb
	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Frace Impurities – Vanadium (V)	≤ 10.0 ppb	
Frace Impurities – Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
race Impurities – Zirconium (Zr)		< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 1.0 µm and greater	≤ 60 par/mi	10 par/ml
	≤ 10 par/ml	3 par/ml

Nitric Acid 69% **CMOS**

Material No.: 9606-03 Batch No.: 24D1062002

Test Specification Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Jamie Croak Director Quality Operations, Bioscience Production

M-6162

R. Date & 0412712025

Material No.: 9606-03 Batch No.: 24H0162012 Manufactured Date: 2024-06-28

Retest Date: 2029-06-27 Revision No.: 0

Certificate of Analysis

Assay (HNOs) Appearance Passes Test Passes Test Passes Test Color (APHA) Residue after Ignition S 2 ppm Chloride (Cl) Choride (Cl) Choride (SOa) Sulfate (SOa) Sulfate (SOa) Arsenic and Antimony (as As) Trace Impurities - Barlum (Ba) Trace Impurities - Barlum (Ba) Trace Impurities - Barlum (Cd) Trace Impurities - Barlum (Cd) Trace Impurities - Coper (Cu) Trace Impurities - Coper (Cu) Trace Impurities - Coper (Cu) Trace Impurities - Cold (Au) Frace Impurities - Gold (Au) Frace Impurities - Iron (Fe) Trace Impurities - Iron (Fe) Trace Impurities - Inon (Fe) Trace Impurities - Lind magnesium (Mg) Trace Impurities - Lind (Fe) Trace Impurities - Lind (Fe) Trace Impurities - Lind (Fe) Trace Impurities - Coppe (Cu) Tra	Test	Specification	Result
Appearance Color (APHA)	Assay (HNO3)	69.0 - 70.0 %	69.7 %
Color (APHA) ≤ 10 5 Residue after Ignition ≤ 2 ppm < 1 ppm	Appearance		
Residue after Ignition ≤ 2 ppm < 1 ppm	Color (APHA)	≤ 10	
Chloride (CI) ≤ 0.08 ppm 0.03 ppm Phosphate (PO4) ≤ 0.10 ppm < 0.03 ppm	Residue after Ignition	≤ 2 ppm	
Phosphate (PO₄) ≤ 0.10 ppm < 0.03 ppm	Chloride (CI)	≤ 0.08 ppm	
Sulfate (SO ₄) ≤ 0.2 ppm < 0.2 ppm	Phosphate (PO ₄)	≤ 0.10 ppm	• •
Trace Impurities - Aluminum (Al) ≤ 40.0 ppb < 1.0 ppb	Sulfate (SO ₄)	≤ 0.2 ppm	
Arsenic and Antimony (as As) \$\leq\$ 5.0 ppb	Trace Impurities - Aluminum (Al)	≤ 40.0 ppb	• •
Trace Impurities – Barium (Ba)	Arsenic and Antimony (as As)	≤ 5.0 ppb	
Trace Impurities – Beryllium (Be) Trace Impurities – Bismuth (Bi) Trace Impurities – Boron (B) Trace Impurities – Cadmium (Cd) Trace Impurities – Calcium (Ca) Trace Impurities – Calcium (Ca) Trace Impurities – Chromium (Cr) Trace Impurities – Cobalt (Co) Trace Impurities – Cobalt (Co) Trace Impurities – Copper (Cu) Trace Impurities – Copper (Cu) Trace Impurities – Gallium (Ga) Trace Impurities – Gallium (Ga) Trace Impurities – Germanium (Ge) Trace Impurities – Gold (Au) Heavy Metals (as Pb) Trace Impurities – Iron (Fe) Trace Impurities – Lead (Pb) Trace Impurities – Lead (Pb) Trace Impurities – Magnesium (Mg) Trace Impurities – Manganese (Mn) Trace Impurities – Mickel (Ni) ■ 200 ppb ■ 21.0 ppb ▼ 10.0 ppb ▼ 10.0 ppb ▼ 21.0 ppb ▼ 10.0 ppb	Trace Impurities - Barium (Ba)	≤ 10.0 ppb	
Trace Impurities – Bismuth (Bi) \$\leq 20.0 ppb	Trace Impurities - Beryllium (Be)	≤ 10.0 ppb	• •
Trace Impurities – Boron (B) ≤ 10.0 ppb 0.1 ppb Trace Impurities – Cadmium (Cd) ≤ 50 ppb < 1 ppb Trace Impurities – Calcium (Ca) ≤ 50.0 ppb 0.3 ppb Trace Impurities – Chromium (Cr) ≤ 30.0 ppb 0.1 ppb Trace Impurities – Cobalt (Co) ≤ 10.0 ppb	Trace Impurities - Bismuth (Bi)	≤ 20.0 ppb	• •
Trace Impurities - Cadmium (Cd) ≤ 50 ppb 0.3 ppb Trace Impurities - Calcium (Ca) ≤ 50.0 ppb 0.3 ppb Trace Impurities - Chromium (Cr) ≤ 30.0 ppb 0.1 ppb Trace Impurities - Cobalt (Co) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1.0 ppb Trace Impurities - Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities - Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1.0 ppb Trace Impurities - Magnesee (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Boron (B)	≤ 10.0 ppb	• •
Trace Impurities - Calcium (Ca) ≤ 50.0 ppb 0.3 ppb Trace Impurities - Chromium (Cr) ≤ 30.0 ppb 0.1 ppb Trace Impurities - Cobalt (Co) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb Trace Impurities - Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities - Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1.0 ppb	Trace Impurities - Cadmium (Cd)	≤ 50 ppb	
Trace Impurities - Chromium (Cr) ≤ 30.0 ppb 0.1 ppb Trace Impurities - Cobalt (Co) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities - Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities - Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1.0 ppb	Trace Impurities - Calcium (Ca)		• •
Trace Impurities - Cobalt (Co) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Copper (Cu) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Germanium (Ge) < 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities - Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities - Lead (Pb) < 20.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities - Magnesee (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Chromium (Cr)	≤ 30.0 ppb	
Trace Impurities - Copper (Cu) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities - Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities - Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities - Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities - Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities - Magnesium (Mg) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Cobalt (Co)	≤ 10.0 ppb	
Trace Impurities – Gallium (Ga) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities – Gold (Au) ≤ 20 ppb < 1 ppb Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities – Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities – Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities – Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Manganese (Mn) ≤ 10.0 ppb	Trace Impurities - Copper (Cu)	≤ 10.0 ppb	• •
Trace Impurities – Germanium (Ge) ≤ 20 ppb < 1 ppb Trace Impurities – Gold (Au) ≤ 20 ppb < 1 ppb Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities – Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities – Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities – Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Gallium (Ga)	≤ 10.0 ppb	
Trace Impurities - Gold (Au) ≤ 20 ppb < 1 ppb	Trace Impurities - Germanium (Ge)	≤ 20 ppb	
Heavy Metals (as Pb) ≤ 100 ppb < 50 ppb Trace Impurities – Iron (Fe) ≤ 40.0 ppb < 1.0 ppb Trace Impurities – Lead (Pb) ≤ 20.0 ppb < 1.0 ppb Trace Impurities – Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Gold (Au)	≤ 20 ppb	• •
Trace Impurities – Iron (Fe) ≤ 40.0 ppb < 1.0 ppb	Heavy Metals (as Pb)	≤ 100 ppb	
Trace Impurities – Lead (Pb) ≤ 20.0 ppb < 1.0 ppb	Trace Impurities - Iron (Fe)	≤ 40.0 ppb	
Trace Impurities – Lithium (Li) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities - Lead (Pb)	≤ 20.0 ppb	• • • • • • • • • • • • • • • • • • • •
Trace Impurities – Magnesium (Mg) ≤ 20 ppb < 1 ppb Trace Impurities – Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb Trace Impurities – Mickel (Ni)	Trace Impurities - Lithium (Li)	≤ 10.0 ppb	. ,
Trace Impurities - Manganese (Mn) ≤ 10.0 ppb < 1.0 ppb	Trace Impurities – Magnesium (Mg)	≤ 20 ppb	• •
Trace Impurities Mickel (Ni)	Trace Impurities - Manganese (Mn)	≤ 10.0 ppb	
	Trace Impurities – Nickel (Ni)	≤ 20.0 ppb	< 1.0 ppb

>>> Continued on page 2 >>>

Material No.: 9606-03 Batch No.: 24H0162012

Test	Specification	Result
Trace Impurities - Niobium (Nb)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities - Potassium (K)	≤ 50 ppb	< i ppb
Trace Impurities - Silicon (Si)	≤ 50 ppb	1 ppb
Trace Impurities - Silver (Ag)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Sodium (Na)	≤ 150.0 ppb	< 1.0 ppb
Trace Impurities - Strontium (Sr)	≤ 30.0 ppb	< 1.0 ppb
Trace Impurities - Tantalum (Ta)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Thallium (TI)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Tin (Sn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Titanium (Ti)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Zinc (Zn)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities - Zirconium (Zr)	≤ 10.0 ppb	< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 60 par/ml	13 par/ml
Particle Count - 1.0 µm and greater	≤ 10 par/ml	5 par/ml

Nitric Acid 69% **CMOS**

Material No.: 9606-03 Batch No.: 24H0162012

Test Specification Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Phillipsburg Mfg Ctr & DC

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

 Catalog Number:
 QCP-CICV-1

 Lot Number:
 V2-MEB744107

 Matrix:
 7% (v/v) HNO3

Value / Analyte(s): 2 500 μg/mL ea:

Calcium, Potassium,
Magnesium, Sodium,

1 000 µg/mL ea:

Aluminum, Barium,

500 μg/mL ea:

Iron,

250 μg/mL ea:

Nickel, Vanadium, Zinc, Cobalt,

Manganese,

125 μg/mL ea:

Silver, Copper,

100 μg/mL ea: Chromium, 25 μg/mL ea: Beryllium

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 1 000 ± 4 µg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 1 000 ± 6 μg/mL
Beryllium, Be	24.98 ± 0.12 μg/mL	Calcium, Ca	2 500 ± 8 μg/mL
Chromium, Cr	99.9 ± 0.6 μg/mL	Cobalt, Co	250.2 ± 1.2 μg/mL
Copper, Cu	125.0 ± 0.5 μg/mL	Iron, Fe	500.0 ± 2.2 μg/mL
Magnesium, Mg	2 500 ± 11 μg/mL	Manganese, Mn	249.9 ± 1.1 μg/mL
Nickel, Ni	250.0 ± 1.2 μg/mL	Potassium, K	2 500 ± 11 μg/mL
Silver, Ag	125.0 ± 0.6 μg/mL	Sodium, Na	2 500 ± 11 μg/mL
Vanadium, V	250.0 ± 1.1 μg/mL	Zinc, Zn	249.9 ± 1.1 μg/mL

Density: 1.081 g/mL (measured at 20 \pm 4 °C)

Assay Information:

133	ay iiiioiiiiatioii.			
	ANALYTE	METHOD	NIST SRM#	SRM LOT#
	Ag	ICP Assay	3151	160729
	Ag	Volhard	999c	999c
	Al	ICP Assay	3101a	140903
	Al	EDTA	928	928
	Ва	ICP Assay	3104a	140909
	Ва	Gravimetric		See Sec. 4.2
	Be	ICP Assay	3105a	090514
	Be	Calculated		See Sec. 4.2
	Ca	ICP Assay	3109a	130213
	Ca	EDTA	928	928
	Co	ICP Assay	3113	190630
	Co	EDTA	928	928
	Cr	ICP Assay	3112a	170630
	Cu	ICP Assay	3114	120618
	Cu	EDTA	928	928
	Fe	ICP Assay	3126a	140812
	Fe	EDTA	928	928
	K	ICP Assay	3141a	140813
	K	Gravimetric		See Sec. 4.2
	Mg	ICP Assay	3131a	140110
	Mg	EDTA	928	928
	Mn	ICP Assay	3132	050429
	Mn	EDTA	928	928
	Na	ICP Assay	3152a	200413
	Na	Gravimetric		See Sec. 4.2
	Ni	ICP Assay	3136	120619
	Ni	EDTA	928	928
	V	ICP Assay	3165	160906
	V	EDTA	928	928
	Zn	ICP Assay	3168a	120629
	Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $\mathbf{w_i} = (1/\mathsf{u_{char\;i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\;i}})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ($u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$)^{1/2}

k = coverage factor = 2

 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method

 $egin{align*} \mathbf{u_{bb}} = \mathbf{bottle} \ \mathbf{to} \ \mathbf{bottle} \ \mathbf{homogeneity} \ \mathbf{standard} \ \mathbf{uncertainty} \ \mathbf{u_{lts}} = \mathbf{long} \ \mathbf{term} \ \mathbf{stability} \ \mathbf{standard} \ \mathbf{uncertainty} \ (\mathbf{storage}) \ \end{array}$

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$

Xa = mean of Assay Method A with

u_{char a} = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2) $v_{ts}^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

 $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{lts}}$ = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information (https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver)

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

May 22, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- May 22, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:	

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0 **Certificate Prepared By:**

Justin Dirico Stock Processing Supervisor

Juster Dilies Juster Wall Parel R. Laines

Certificate Approved By:

Jodie Wall Stock VSM Coordinator

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

⁻ This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: QCP-CICV-2 Lot Number: U2-MEB733713

Matrix: 3% (w/v) Tartaric acid

1% (v/v) HNO3

Value / Analyte(s): 500 µg/mL ea:

Antimony

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE

Antimony, Sb 500.0 \pm 2.8 μ g/mL

Density: 1.017 g/mL (measured at 20 \pm 4 °C)

Assay Information:

 ANALYTE
 METHOD
 NIST SRM#
 SRM LOT#

 Sb
 ICP Assay
 3102a
 140911

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

 \mathbf{w}_i = the weighting factors for each method calculated using the inverse square of

 $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

 $\mathbf{u}_{\mathbf{char}} = [\Sigma((\mathbf{w}_i)^2 (\mathbf{u}_{\mathbf{char}})^2)]^{1/2}$ where $\mathbf{u}_{\mathbf{char}}$ are the errors from each characterization method

 $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{lts}}$ = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$

X_a = mean of Assay Method A with

u_{char a} = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2) $v_{ts}^{1/2}$

k = coverage factor = 2

 $\mathbf{u}_{\mathbf{char}\;\mathbf{a}}$ = the errors from characterization

 $egin{align*} \mathbf{u_{bb}} &= \mathrm{bottle} \ \mathrm{to} \ \mathrm{bottle} \ \mathrm{homogeneity} \ \mathrm{standard} \ \mathrm{uncertainty} \ \mathbf{u_{lts}} &= \mathrm{long} \ \mathrm{term} \ \mathrm{stability} \ \mathrm{standard} \ \mathrm{uncertainty} \ (\mathrm{storage}) \ \end{aligned}$

u_{ts} = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

June 01, 2023

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- June 01, 2028
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

· Sealed TCT Bag Open Date:	
· Scalcu I C I Dau Obell Dale.	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Approved By:

Thomas Kozikowski Manager, Quality Control

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

20178Ci.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code: Multi Analyte Custom Grade Solution

Catalog Number: QCP-CICV-3

Lot Number: V2-MEB749572

Matrix: 7% (v/v) HNO3

Value / Analyte(s):

500 μg/mL ea:

Arsenic, Lead, Selenium, Thallium,

250 μg/mL ea: Cadmium

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Arsenic, As 500.0 \pm 3.1 μ g/mL Cadmium, Cd 250.1 \pm 1.1 μ g/mL Lead, Pb 500.0 \pm 2.3 μ g/mL Selenium, Se 500.0 \pm 3.2 μ g/mL

Thallium, TI 500.0 \pm 3.0 μ g/mL

Density: 1.040 g/mL (measured at 20 \pm 4 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
As	ICP Assay	3103a	100818
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
TI	ICP Assay	3158	151215

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char i}

w_i = the weighting factors for each method calculated using the inverse square of the variance:

 $\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2))$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ($u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$)^{1/2}

k = coverage factor = 2

 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method

 $egin{align*} \mathbf{u_{bb}} = \mathbf{bottle} \ \mathbf{to} \ \mathbf{bottle} \ \mathbf{homogeneity} \ \mathbf{standard} \ \mathbf{uncertainty} \ \mathbf{u_{lts}} = \mathbf{long} \ \mathbf{term} \ \mathbf{stability} \ \mathbf{standard} \ \mathbf{uncertainty} \ (\mathbf{storage}) \ \end{array}$

u_{ts} = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) (u_{char a})$

Xa = mean of Assay Method A with

 $\mathbf{u}_{\mathbf{char}\ \mathbf{a}}$ = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k (u_{char}^2 a + u_{bb}^2 + u_{lts}^2 + u_{ts}^2) $v_{ts}^{1/2}$

k = coverage factor = 2

u_{char a} = the errors from characterization

 $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty $\mathbf{u_{lts}}$ = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- **6.1** This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- **6.2** For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale</u>, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit

www.inorganicventures.com/TCT

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 02, 2025

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- January 02, 2030
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

Sealed TCT	Bag Open Date:	
Ocalca IOI	Day Open Date.	

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0 **Certificate Prepared By:**

Justin Dirico Stock Processing Supervisor

Juster Dilies Juster Wall Parel R. Laines

Certificate Approved By:

Jodie Wall Stock VSM Coordinator

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

⁻ This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Hydrogen Peroxide, 30% **CMOS**

(Stabilized)

M-6170 R. Date. 8-05/2012025

Material No.: 2190-03 Batch No.: 24D1961001

Test	Specification	Result
Trace Impurities - Manganese (Mn)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Molybdenum (Mo)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Nickel (Ni)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Niobium (Nb)	≤ 10.0 ppb	
Trace Impurities - Potassium (K)	≤ 600.0 ppb	< 1.0 ppb
Trace Impurities – Silicon (Si)	≤ 100.0 ppb	176.7 ppb < 10.0 ppb
Trace Impurities – Silver (Ag)	≤ 10.0 ppb	
Trace Impurities – Sodium (Na)	≤ 100.0 ppb	< 1.0 ppb
Trace Impurities - Strontium (Sr)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Tantalum (Ta)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Thallium (TI)	≤ 50.0 ppb	< 5.0 ppb
Trace Impurities - Tin (Sn)	190.0 – 500.0 ppb	< 5.0 ppb
Trace Impurities – Titanium (Ti)	≤ 10.0 ppb	272.3 ppb
Trace Impurities – Vanadium (V)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Zinc (Zn)	≤ 50 ppb	< 1.0 ppb
Trace Impurities – Zirconium (Zr)	≤ 10.0 ppb	< 1 ppb
Particle Count – 0.2 µm and greater		< 1.0 ppb
Particle Count – 0.5 µm and greater	≤ 1175 par/ml	202 par/ml
bur and Steeren	≤ 100 par/ml	33 par/ml

Hydrogen Peroxide, 30% **CMOS** (Stabilized)

Material No.: 2190-03 Batch No.: 24D1961001

Test

Specification

Result

For Microelectronic Use

Country of Origin: USA Packaging Site: Paris Mfg Ctr & DC

Material No.: 2190-03

Batch No.: 24D1961001

Manufactured Date: 2024-04-17 Expiration Date: 2025-10-16

Revision No.: 0

Certificate of Analysis

Test	Specification	Result
Assay (H2O2)	30.0 - 32.0 %	
Color (APHA)	50.0 - 52.0 % ≤ 10	31.6 %
Free Acid (µeq/g)	≤ 10 ≤ 0.2	< 5
Residue after Evaporation	≤ 0.2 ≤ 10 ppm	0.1
Ammonium (NH ₄)	≤ 3 ppm	2 ppm
Chloride (CI)	≤ 0.2 ppm	< 3 ppm
Nitrate (NO₃)	_ · ·	< 0.2 ppm
Phosphate (PO ₄)	≤ 2 ppm	< 2 ppm
Sulfate (SO ₄)	≤ 1 ppm	1 ppm
Trace Impurities - Aluminum (AI)	≤ 3 ppm	< 3 ppm
Arsenic and Antimony (as As)	≤ 70.0 ppb	< 5.0 ppb
Trace Impurities - Barium (Ba)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities - Beryllium (Be)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Bismuth (Bi)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities – Boron (B)	≤ 20.0 ppb	< 10.0 ppb
Trace Impurities – Cadmium (Cd)	≤ 10.0 ppb	< 5.0 ppb
Trace Impurities - Calcium (Ca)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Chromium (Cr)	≤ 50.0 ppb	< 1.0 ppb
Trace Impurities - Cobalt (Co)	≤ 20.0 ppb	1.5 ppb
	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Copper (Cu)	≤ 10.0 ppb	< 1.0 ppb
Trace Impurities - Gallium (Ga)	≤ 20.0 ppb	< 1.0 ppb
Trace Impurities – Germanium (Ge)	≤ 10.0 ppb	< 10.0 ppb
Trace Impurities – Gold (Au)	≤ 10.0 ppb	< 5.0 ppb
Heavy Metals (as Pb)	≤ 500.0 ppb	< 250.0 ppb
Frace Impurities – Iron (Fe)	≤ 50.0 ppb	4.6 ppb
Frace Impurities – Lead (Pb)	≤ 10.0 ppb	< 10.0 ppb
Frace Impurities – Lithium (Li)	≤ 10.0 ppb	< 1.0 ppb
race Impurities – Magnesium (Mg)	≤ 10.0 ppb	< 1.0 ppb

>>> Continued on page 2 >>>

Lot # 011525

R->2115124

Certified Reference Material CRM

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: 1. Magnesium nitrate hexahydrate (Mg) IN030 мgp05202341 Nominal Concentration (µg/mL): W/Z-> m/z-> m/z-> Recommended Storage: Weight shown below was diluted to (mL): 2.0€4 1.0E4 5.0E5 1.0E6 1000 2000 NIST Test Number: Expiration Date: Part Number: Description: Lot Number: [1] Spectrum No.1 210 110 10 RM# **BTU9** 58112 011525 10000 Ambient (20 °C) 011528 Magnesium (Mg) Number 120 ᅙ 220 20 [19.923 sec]:58112.D# [Count] [Linear] Conc. (µg/mL) 2000.07 10000 Nominal M 6171 130 230 30 0.100 Flask Uncertainty 99.999 Purity 5E-05 Balance Uncertainty 8 Uncertainty Assay Purity (%) 240 0.10 140 40 Solvent: 8.51 8 2% 250 24012496 150 234.9183 Weight (g) 50 Target Lot # (<u>m</u>L 40.0 234.9195 Nitric Acid Weight (g) Conc. (µg/mL) Nitric Acid Actual 260 160 60 10000.1 Actual 170 ò Reviewed By: Formulated By: +/- (µg/mL) Uncertainty Expanded 20.0 180 80 13446-18-9 CAS# (Solvent Safety Info. On Attached pg.)
S# OSHA PEL (TWA) LD50 Pedro L. Rentas Benson Chan 190 **SDS Information** ¥ 200 100 orl-rat 5440 mg/kg 3131a 011525 011525 SRM NIST

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	Al Sb Ba Be Bi
	<0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.02
	58585
	40.02 40.02 40.02 40.02 40.02 40.02
	Dy Er Gd Ga
	40.00 40.00 40.00 40.00 40.00 40.00
	Hf Ho In He La Pb
	4000 4000 4000 4000 4000 4000 4000 400
	etals Li Li Mg Mg Mo Nd
(T) = Target analyte	Verific:
get anal	Ation Ni Nb Pd Pt R
yte	\$\frac{\phi}{\phi}\$ CP-\$ \$\frac{\phi}{\phi}\$ 2
	Rh Rh Sm Sc
	9/mL) -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
	Se Se Na Si S
	40.2 40.02 40.02 40.02 40.02 40.02
	Th Th Sn
	4000
	Z;

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All standards should be stored with caps tight and under appropriate laboratory conditions.
* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

CLPP-CAL-1

Lot Number:

V2-MEB742428

Matrix:

5% (v/v) HNO3

Value / Analyte(s):

5 000 µg/mL ea:

Calcium,

Potassium,

Magnesium,

Sodium,

2 000 µg/mL ea:

Aluminum,

Barium,

1 000 µg/mL ea:

Iron,

500 μg/mL ea:

Nickel,

Vanadium,

Zinc,

Cobalt,

Manganese,

250 µg/mL ea:

Silver,

Copper,

200 µg/mL ea: Chromium,

50 µg/mL ea:

Beryllium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Aluminum, Al	CERTIFIED VALUE 2 000 ± 7 µg/mL	ANALYTE Barium, Ba	CERTIFIED VALUE 2 000 ± 9 µg/mL
Beryllium, Be	50.03 ± 0.30 μg/mL	Calcium, Ca	5 000 ± 16 μg/mL
Chromium, Cr	200.0 ± 1.1 μg/mL	Cobalt, Co	500.0 ± 2.3 μg/mL
Copper, Cu	250.0 ± 1.1 μg/mL	Iron, Fe	1 000 ± 4 μg/mL
Magnesium, Mg	5 000 ± 22 μg/mL	Manganese, Mn	499.9 ± 2.2 μg/mL
Nickel, NI	500.1 ± 2.3 μg/mL	Potassium, K	5 000 ± 22 μg/mL
Silver, Ag	250.0 ± 1.1 μg/mL	Sodium, Na	5 000 ± 22 µg/mL
Vanadium, V	500.0 ± 2.2 μg/ml.	Zinc, Zn	500.0 ± 2.2 μg/mL

Density:

1.117 g/mL (measured at 20 ± 4 °C)

Assay Information:

ssay imormatio	n.		
ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Al	ICP Assay	3101a	140903
Al	EDTA	928	928
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Ве	ICP Assay	3105a	090514
Ca	ICP Assay	3109a	130213
Ca	EDTA	928	928
Co	ICP Assay	3113	190630
Co	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	120618
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
K	ICP Assay	3141a	140813
K	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	3152a	200413
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni	EDTA	928	928
V	ICP Assay	3165	160906
V	EDTA	928	928
Zn	ICP Assay	3168a	120629
Zn	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

 X_i = mean of Assay Method i with standard uncertainty u_{char} i

w; = the weighting factors for each method calculated using the inverse square of

 $\mathbf{w_i} = (1/\mathbf{u_{char\ i}})^2 / (\Sigma (1/(\mathbf{u_{char\ i}})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{ts})^{\frac{1}{2}}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{\frac{1}{2}}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, $\mathbf{X}_{\text{CRM/RM}}$, where one method of characterization is used is the mean of individual results:

 $X_{CRM/RM} = (X_a) \{u_{char a}\}$

Xa = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k \left(u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts}\right)^{1/2}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) 5.0

INTENDED USE 6.0

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more information (https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver)

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous.
 Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratorles"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; Info@inorganic ventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

March 22, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- March 22, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:		
This CDM/DM should not be used	 0 1 0	

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Uyen Truong Custom Processing Supervisor

Mega Truong

Certificate Approved By:

Jodie Wall Stock VSM Coordinator

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director July Will
Paul R Laine

Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

m/x-y	22.55EB	S.OEG	-2/177	8.OE5	m/≥-¥ 1.0≣@	N. G	8.0E6	1. Strontium nitrate (Sr)	Compound	Weight show	Nominal Concentration (µg/mL):	Expiration Date: Recommended Storage:	Part Lot Des
N.			110		10		[1] Spectrum No.1	INO17	RM#	Weight shown below was diluted to (mt.):	centration (µg/mL):	Expiration Date: nended Storage:	Part Number: Lot Number: Description:
0			120		n O			N017 SRZ022018A1	Lot Number C		1000	092727 Ambient (20 °C)	57038 092724 Strontlum (Sr)
0			100		90		4.4000	1000	Nominat Conc. (µg/ml.)	2000.07			
			O				*o]:681	99.997	Purity (0.100 FI		3	9/8
			140		6		14,495 aeo]:58138.D# [Count] [Linear]	0.10 41.2	Uncertainty Assay Purity (%) (%)	0.100 Flask Uncertainty		76/3/2%	2.38/6/ Solvent:
			180		5 0		unt] [Linea	4.85470	Target Weight (g)			(mL)	Ŋ
			00		00		٥	4.85481	Actual Weight (g)			Nitric Acid	Nitric Acid
		;	170		70			1000.0	Actual Cono. (µg/ml.)				
								2.0	Expanded Uncertainty +/- (µg/mL)	neviewed by:	N	Formulated By:	
			180		80			10042-76-9	CAS#	by	4	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		4 (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0		0	Manhabatatana.			SDS Information (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) LC	redro L. Menuas	Kento	Benson Chan	Common and the second
			000		100			orl-rat >2000mg/kg 3153a	nation In Attached pg.) A) LD50	092/24	1	092724	

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

厐	В	Be	Ва	À	dS.	Al		
40,02	<0.02	10.0	40,02	80.2	40.02	<0.02		
C	C _C	ð,	گ	රී	δ	Cd		
<0.02	<0.02	<0.02	40.02	40.02	40.2	<0.02		
Au	Ge	G	වූ	臣	면	Dy		
<0.02	<0.02	<0.02	<0.02	<0.02	40.02	<0.02		
Pb	La	Fe	Ħ	Ĭn	Но	ЭH		J
<0.02	<0.02	40.2	<0.02	40.02	\$0.02	<0.02	Lace M	
Nd	Mo	Нg	Mn	S _N	Ľ	Ľ	Grais	**
<0.02	40.02	40.2	<0.02	10.04	<0.02	<0.02	Verillo	Comition.
*	ጆ	סי	Pd	õ	ş	Z	101	***
40.2	40.02	40.02	△0.02	40.02	40.02	40.02	by ICF	5
Sc	Sm	Ru	Rb	Rh	Re	Pr	Civi	2
<0.02	<0.02	<0.02	△0.02	40.02	40.02	<0.02	hg/IIIL/	2
Ta	S	Sr	Z	₩ Э	S	Se		
<0.02	<0.02	3	40.2	<0.02	<0.02	<0.2		
	Sn	in	Þ	크	-	73		
<0.02	40.02	<0.02	\$0.02	40.02	40.02	40.02		
17.	Zn	~	4	<	c	W		
40.02	40,02	40.02	<0.02	40.02	40.02	₩0.02		

(I) = larger analyre

Physical Characterization:

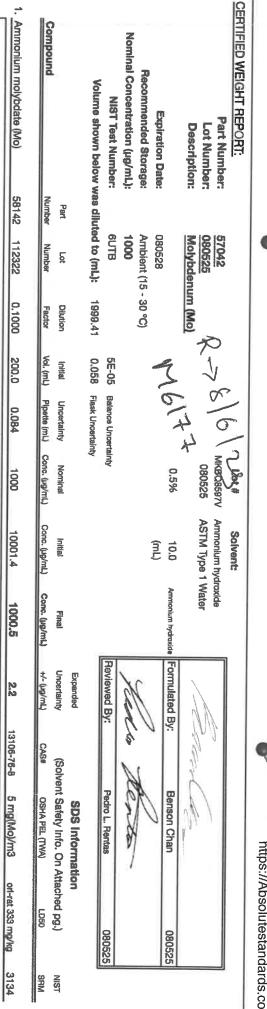
Homogeneity: No heterogeneity was observed in the preparation of this standard

Certifled by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in
- the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All Standards should be stored with caps tight and under appropriate laboratory conditions.


 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certified Reference Material CRM

www.absolutestandards.com Absolute Standards, Inc. 800-368-1131

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

772-2	1.000	N.OMG	1000	2000	1,0 0.5	N.OMO
010		110		0		
N N		พ. O		N O		
N 0 0		9		30		1 0.084 880J:0/04K:D# [Count] [Linear]
N A		140		8		200
N O		100		91 O		oung [Line
N O		160		9		2
		170		70		
		190		0		
		100		90		
		N O		100		

Lot # 080525

Part # 57042

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

							Trace M	Metals	Verificat	ion by	ICP-MS	(hg/	(ImL)						
						l											3	100	0.03
≥	<0.02	ဂ္ဂ	<0.02	Q	<0.02	Ŧ	<0.02	c	<0.02	Z	<0.02	Pr	<0.02	Se	<0.2	귱	<0.02	8	<0.02
22	A0.02	Ω m	40.2	φ,	^0.02	귱	<0.02	Ε	<0.02	Z G	<0.02	æ	A0.02	ω	<0.02	œ ^t	<0.02	_	<0.02
À	^ o iv	ဂ္ဂ	A0.02	en C	<0.02	5	<0,02	<u>Z</u>	<0.01	ô	<0,02	곡	^0.02	ð	<0.02	=	<0.02	<	<0.02
D	<0.02	င္ဆ	<0.02	ဓ	^0.02	=	<0.02	š	<0.02	bd	<0.02	공	^ 0.02	2	\$.0 2.0	∄	<0.02	중	<0.02
EI P	40.01	<u>ဂ</u>	^O.O2	စ္အ	^O.02	Ti di	40.2	F	^0.2	ס	△0.02	2	<0.02	Š	<0.02	₹	<0.02	~	<0.02
U	<0.02	ဂ္ဂ	<0.02	9	^0.02	5	^0.02	<u>S</u>	-1	Ŗ	<0.02	Sm	♦ 0.02	ഗ	∆0.02	Sn	<0.02	5	<0.02
0)	△0.02	5	\$0.02 20.02	2	A0.02	3	A,02	Nd	<0.02	~	<0.2	Sc	<0.02	Tie C	<0.02	7	<0.02	21	<0.02

(T) = Target analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware, and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- Standards are prepared gravimetrically using balances that are calibrated by an ISO17025 certified organization with weights traceable through NIST to the SI kilogram (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- * All standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

1.0 000	7.0EG	O. O. M. 4	1.065	5.OM 4	1.025	1. Lead(II) nitrate (Pb)	Compound	Expiration Date: 031528 Recommended Storage: Ambient (20 Nominal Concentration (µg/mL): 1000 NIST Test Number: 6UTB Weight shown below was diluted to (mL):	CERTIFIED WEIGHT REPORT: Part N Lot N Desc
	110		Ö		[1] Spectrum No.1	INO	RM#	Expiration Date: nended Storage: ntration (µg/mL): ST Test Number: shown below was di	PORT: Part Number: Lot Number: Description:
í j	n O		N)		Z 0.1	IN029 PBD122016A1	Lot Number	031528 Ambient (2 1000 6UTB	57082 031525 Lead (Pb)
	4 0		ය 0			1000	Nominal Conc. (µg/mL)	2000.07	868
	ō		0		90]:080	99.999	Purity (%)	5E-05 Ba	6/2
	140		0		92. D*	0.10 6	Uncertainty Assay Purity (%) (%)	5E-05 Balance Uncertainty 0.10 Flask Uncertainty	Solvent:
	160		Ø.		14.144 sec]:58082.D# [Count] [Linear]	62.5 3.20015	vasay Target (%) Weight (g)	rty (mL)	Lot # ent: 24014457 2% 40.0
i d	160		90		7002	5 3.20067	Actual Weight (g)		Nitric Acid
	170		70			1000.2	Actual Conc. (µg/mL)		ā ā
	o					2.0	Expanded Uncertainty +/- (ug/mL)	Reviewed By:	Hievar Formulated By:
	6		a . O			10099-74-8	CAS#	By A	iovanne
	190		9			0.05 mg/m3	SDS Information (Solvent Safety Info. On Attached pg.) OSHA PEL (TWA) LE	Pedro L. Rentas	Siovanni Esposito
	200		100			intrvns-rat 93 mg/kg	nation In Attached pg.) A) LD50	031525	to 031525

www.absolutestandards.com

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

								yte	et analyte	(T) = Target									
40.02	Zr	40,02	Ħ	<0.02	Ta	<0.02	Sc	<0.2	*	<0.02	Z		8	<0.02	Au	<0.02	රී	<0.02	œ
40.02	Zn	<0,02	Sn	<0.02	S	<0.02	Sm	<0.02	72	△0.02	Mo	<0.02	5	40.02	ဂ္ဂ	<0.02	င္ပ	<0.02	B
40.02	~	40.02	Tm	\$0.02	Ş	<0.02	Ru	<0.02	Þ	40.2	T 60	40.2	귾	<0.02	G _R	40.02	Ω	<0.01	Ве
<0.02	4	40.02	Ħ	40.2	Z	<0.02	Rb	<0.02	Ьď	<0.02	M	<0.02	I	△0.02	ନୁ	40.02	ర్ల	60.02	Ва
<0.02	<	<0.02	Η	<0.02	æ.	<0.02	Rh	40.02	õ	<0.01	Mg	<0.02	5	<0.02	핃	<0.02	ဂ္ဂ	40.2	As
40,02	C	<0.02	å	<0.02	Si	<0.02	Re	<0.02	R	40.02	ξ	<0.02	Ho	<0,02	택	0.2	Ω	<0.02	Зb
<0.02	¥	<0.02	41	<0.2	Sc	<0.02	ħ	<0.02	Z	<0.02	Ξ	<0.02	Ж	<0.02	Dy	<0.02	Ω	<0.02	Α
									I		1								
						ug/mL)	VS (by ICP-I	tion	Verifica	etals	Trace Me							
																	I		Ì

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm delonized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
 * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All standards should be stored with caps tight and under appropriate laboratory conditions.
- * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

P: 800-669-6799/540-585-3030 F: 540-585-3012

info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Single Analyte Custom Grade Solution

Catalog Number:

CGY10

Lot Number:

V2-Y740548

Matrix:

2% (v/v) HNO3

Value / Analyte(s):

10 000 μg/mL ea:

Yttrium

Starting Material:

Yttrium Oxide

Starting Material Lot#:

2661 and 06230520YL

Starting Material Purity:

99.9984%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:

 $10000 \pm 30 \mu g/mL$

Density:

1.032 g/mL (measured at 20 \pm 4 °C)

Assay Information:

Assay Method #1

10011 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 928

Assay Method #2

9997 ± 50 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 190730

Assay Method #3

9984 ± 31 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

 The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method i with standard uncertainty u_{char} i

w; = the weighting factors for each method calculated using the inverse square of the variance.

 $w_i = (1/u_{char_i})^2 / (\Sigma (1/(u_{char_i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} \simeq k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/4}$ where u_{char} i are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

Characterization of CRM/RM by One Method
Certified Value, X_{CRM/RM}, where one method of characterization
is used is the mean of individual results:

ucher a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chara} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

X_a = mean of Assay Method A with

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

X_{CRM/RM} = (X_a) (u_{char a})

uchar a = the errors from characterization

uts = transport stability standard uncertainty

4.1 Thermometer Calibration

 All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control
of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (μg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M	Ag	<	0.004600	М	Eu		0.009037	M	Na		0.086360	M	Se	<	0.005200	М	Zn		0.030125
М	Αl		0.014862	0	Fe		0.002410	М	Nb	<	0.000570	0	Si		0.024100	0	Zr	<	0.002600
М	As	<	0.003500	М	Ga	<	0.000570	M	Nd		0.000923	М	Sm		0.000461				
М	Au	<	0.001700	M	Gd	<	0.003500	M	Ni	<	0.005700	М	Sn	<	0.002300				
0	В		0.002209	M	Ge	<	0.005200	M	Os	<	0.001200	M	Sr	<	0.004600				
0	Ba	<	0.002500	M	Hf	<	0.000570	n	Р	<		М	Ta	<	0.000570				
0	Ве	<	0.001400	M	Hg	<	0.000570	M	Pb		0.005020	М	Tb		0.001044				
M	Bi	<	0.003500	М	Но		0.009037	М	Pd	<	0.005100	М	Te	<	0.002300				
0	Ca		0.009841	М	in	<	0.002300	M	Pr	<	0.002300	М	Th	<	0.000570				
M	Cd	<	0.000570	М	lr	<	0.000570	М	Pt	<	0.000570	М	Ti	<	0.003500				
M	Ce	<	0.002300	0	K		0.018677	М	Rb	<	0.000570	М	TI	<	0.000570				
М	Co	<	0.000570	М	La		0.000461	M	Re	<	0.000570	M	Tm	<	0.003500				
M	Cr	<	0.004000	0	Li	<	0.009300	M	Rh	<	0.008000	М	U	<	0.000570				
М	Cs	<	0.000570	M	Lu		0.000582	М	Ru	<	0.000570	М	V		0.001265				
М	Cu		0.002610	0	Mg		0.001486	n	S	<		М	W	<	0.002300				
M	Dy		0.003815	М	Mn		0.000582	M	Sb		0.005422	s	Υ	<					
M	Er		0.003615	М	Мо	<	0.005700	M	Sc	<	0.001200	М	Yb		0.001827				

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.

6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures <u>Terms and Conditions of Sale.</u>

https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Atomic Weight; Valence; Coordination Number; Chemical Form In Solution - 88.91 +3 6 Y(OH)(H2O)x+2 Chemical Compatibility -Soluble in HCl, H2SO4 and HNO3. Avoid HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids); Oxide (Dissolve by heating in H2O/ HNO3); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H2O / HCl or HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)
ICP-MS 89 amu	0.8 ppt	N/A	73Ge16O, 178Hf+2
ICP-OES 360.073 nm	0.005 / 0.000036 μg/mL	1	Ce, Th
ICP-OES 371.030 nm	0.004 / 0.00007 μg/mL	1	Ce
ICP-OES 377.433 nm	0.005 / 0.0009 μg/mL	1	Ta, Th

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.685.3030, Fax: 540.585.3012; Inorganicventures.com; info@inorganicventures.com

11.0 **CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY**

11.1 Certification Issue Date

February 20, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- February 20, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Prepared By:**

Uyen Truong Custom Processing Supervisor Mayyand Man
Paul R Laine

Certificate Approved By:

Muzzammil Khan Stock Laboratory Supervisor

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

WW-LFS-1

Lot Number:

W2-MEB752149

Matrix:

5% (v/v) HNO3

M6180 R37/22/23 Value / Analyte(s):

1 000 µg/mL ea: Potassium, 600 µg/mL ea: Phosphorus,

300 µg/mL ea:

Sodium, Iron,

200 μg/mL ea:

Magnesium, Aluminum, Cerium, Selenium,

Thallium,

100 µg/mL ea:

Lead, Calcium,

80 μg/mL ea: Arsenic,

70 μg/mL ea: Mercury, 50 µg/mL ea:

Nickel,

40 µg/mL ea: Chromium,

30 µg/mL ea:

Copper, Boron,

Vanadium,

20 µg/mL ea:

Zinc, Strontium, Barium, Beryllium, Cadmium, Cobalt, Manganese, Lithium,

7.5 µg/mL ea:

Silver

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ANALYTE Aluminum, Al	CERTIFIED VALUE 200.2 ± 0.7 µg/mL	ANALYTE Arsenic, As	CERTIFIED VALUE 80.1 ± 0.5 µg/mL
Barium, Ba	20.02 ± 0.12 μg/mL	Beryllium, Be	20.02 ± 0.11 μg/mL
Boron, B	30.02 ± 0.15 μg/mL	Cadmium, Cd	20.04 ± 0.09 μg/mL
Calclum, Ca	100.1 ± 0.3 µg/mL	Cerlum, Ce	200.2 ± 1.0 μg/mL
Chromium, Cr	40.02 ± 0.26 μg/mL	Cobalt, Co	20.03 ± 0.09 μg/mL
Copper, Cu	30.03 ± 0.13 µg/mL	Iron, Fe	300.3 ± 1.3 μg/mL
Lead, Pb	100.1 ± 0.5 µg/mL	Lithium, Li	20.03 ± 0.09 μg/mL
Magnesium, Mg	200.2 ± 0.9 µg/mL	Manganese, Mn	19.99 ± 0.09 µg/mL
Mercury, Hg	70.0 ± 0.3 μg/mL	Nickel, Ni	50.05 ± 0.22 μg/mL
Phosphorus, P	600.5 ± 2.9 µg/mL	Potassium, K	1 001 ± 4 μg/mL
Selenium, Se	200.2 ± 1.1 μg/mL	Silver, Ag	7.52 ± 0.03 μg/mL
Sodium, Na	300.3 ± 1.3 μg/mL	Strontium, Sr	20.02 ± 0.10 μg/mL
Thallium, Ti	200.2 ± 1.0 μg/mL	Vanadium, V	30.02 ± 0.13 µg/mL
Zinc, Zn	20.05 ± 0.09 μg/mL		

Density:

1.037 g/mL (measured at 20 ± 5 °C)

Assay Information:

ANALYTE	METHOD	NIST SRM#	SRM LOT#
Ag	ICP Assay	3151	160729
Ag	Volhard	999c	999c
Al	ICP Assay	3101a	140903
Al	EDTA	928	928
As	ICP Assay	3103a	100818
В	ICP Assay	3107	190605
В	Calculated		See Sec. 4.2
Ва	ICP Assay	3104a	140909
Ва	Gravimetric		See Sec. 4.2
Ве	ICP Assay	3105a	090514
Ca	ICP Assay	3109a	130213
Ca	EDTA	928	928
Cd	ICP Assay	3108	130116
Cd	EDTA	928	928
Ce	ICP Assay	3110	160830
Ce	EDTA	928	928
Co	ICP Assay	3113	190630
Со	EDTA	928	928
Cr	ICP Assay	3112a	170630
Cu	ICP Assay	3114	120618
Cu	EDTA	928	928
Fe	ICP Assay	3126a	140812
Fe	EDTA	928	928
Hg	ICP Assay	3133	160921
Hg	EDTA	928	928
κ	ICP Assay	3141a	140813
К	Gravimetric		See Sec. 4.2
Li	ICP Assay	3129a	100714
Li	Gravimetric		See Sec. 4.2
Mg	ICP Assay	3131a	140110
Mg	EDTA	928	928
Mn	ICP Assay	3132	050429
Mn	EDTA	928	928
Na	ICP Assay	3152a	200413
Na	Gravimetric		See Sec. 4.2
Ni	ICP Assay	3136	120619
Ni -	EDTA	928	928
P	ICP Assay	3139a	060717
P	Acidimetric	84L	84L
Pb	ICP Assay	3128	101026
Pb	EDTA	928	928
Se	ICP Assay	3149	100901
Sr s-	EDTA	928	928
Sr Ti	ICP Assay	Traceable to 3153a	K2-SR650985
V	ICP Assay	3158	151215
V	ICP Assay EDTA	3165	160906
v Zn		928	928
Zn Zn	ICP Assay	3168a	120629
۷.11	EDTA	928	928

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

$X_{CRM/RM} = \Sigma(w_i)(X_i)$

X_i = mean of Assay Method i with standard uncertainty Uchar i

w_i = the weighting factors for each method calculated using the inverse square of

$$w_i = (1/u_{chari})^2 / (\Sigma (1/(u_{chari})^2))$$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} i are the errors from each characterization method

ubb = bottle to bottle homogeneity standard uncertainty

u_{its} = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{its} + u^2_{ts})^{1/2}$

k = coverage factor = 2

X_{CRM/RM} = (X_a) (u_{char a})

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

6.0 **INTENDED USE**

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL 7.0

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 25° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 5^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

Note: This solution contains Silver (Ag), please refer to our Sample Preparation Guide for more Information (https://www.inorganicventures.com/sample-preparation-guide/samples-containing-silver)

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous.
 Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; Info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

April 08, 2025

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- April 08, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

 Sealed TCT Bag Open Date: 	
---	--

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Prepared By:

Justin Dirico

Justin Dirico Stock Processing Supervisor

Certificate Approved By:

Jodie Wall Stock VSM Coordinator

Certifying Officer:

Paul Gaines
Chairman / Senior Technical Director

Justin Diling Justin Diling Justin Diling Paul R Lainea

⁻ This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Certificate of Analysis

300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com

M6181 R->7/22/28 P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034).

2.0 PRODUCT DESCRIPTION

Product Code:

Multi Analyte Custom Grade Solution

Catalog Number:

WW-LFS-2

Lot Number:

V2-MEB743480

Matrix:

5% (v/v) HNO3

tr. HF

Value / Analyte(s):

200 µg/mL ea:

Silica,

80 μg/mL ea: Antimony,

70 μg/mL ea:

Tin,

40 μg/mL ea: Molybdenum, 20 μg/mL ea:

Titanium

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ANALYTE Antimony, Sb **CERTIFIED VALUE**

ANALYTE

CERTIFIED VALUE 40.05 ± 0.22 µg/mL

Silica, SIO2

80.1 ± 0.5 µg/mL 200.3 ± 1.4 µg/mL

Molybdenum, Mo

Tin, Sn

70.1 ± 0.4 µg/mL

Titanium. Ti

20.03 ± 0.12 µg/mL

Density:

1.025 g/mL (measured at 20 ± 4 °C)

Assay Information:

-uj			
ANALYTE	METHOD	NIST SRM#	SRM LOT#
Мо	ICP Assay	3134	130418
Sb	ICP Assay	3102a	140911
SiO2	Calculated		See Sec. 4.2
Sn	ICP Assay	3161a	140917
Ti	ICP Assay	traceable to 3162a	T2-TI725816

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two or More Methods

Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results:

 $X_{CRM/RM} = \Sigma(w_i) (X_i)$

X_i = mean of Assay Method I with standard uncertainty u_{char I}

 $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of the variance:

 $w_i = (1/u_{char i})^2 / (\Sigma (1/(u_{char i})^2)$

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$

k = coverage factor = 2

 $u_{char} = [\Sigma((w_i)^2 (u_{char})^2)]^{1/2}$ where u_{char} are the errors from each characterization method

u_{bb} = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

Characterization of CRM/RM by One Method

Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results:

X_{CRM/RM} = (X_a) (u_{char a})

X_a = mean of Assay Method A with

uchar a = the standard uncertainty of characterization Method A

CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{chare} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{\frac{1}{2}}$

k = coverage factor = 2

uchar a = the errors from characterization

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

uts = transport stability standard uncertainty

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control
of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

N/A

6.0 INTENDED USE

- 6.1 This standard is intended for the calibration of analytical instruments and validation of analytical methods as appropriate. This CRM may be used in connection with EPA Methods 6010, 6020 (all versions), Standard Methods 3120 B and USP <232> / ICH Q3D.
- 6.2 For products attaining traceability through Inorganic Ventures' Primary Certified Reference Materials (PCRM™) see the Limited License to Use PCRM™ in the Inorganic Ventures Terms and Conditions of Sale, https://www.inorganicventures.com/terms-and-conditions-sale. The Terms and Conditions contain information on the use of materials traceable to PCRM™ certified reference materials. This Limited License agreement is especially pertinent for laboratories accredited under ISO:17034.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Store between approximately 4° 30° C while in sealed TCT bag.
- While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss.
- After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container.
- For more information, visit www.inorganicventures.com/TCT

HF Note: This standard should not be prepared or stored in glass.

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001 Quality Management System Registration

- QSR Certificate Number QSR-1034

10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com

11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

May 07, 2024

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified.

11.2 Lot Expiration Date

- May 07, 2029
- The date after which this CRM/RM should not be used.
- The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability.

11.3 Period of Validity

- Sealed TCT Bag Open Date:	
-----------------------------	--

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Prepared By:**

Justin Dirico Stock Processing Supervisor

Certificate Approved By:

Thomas Kozikowski Stock VS Manager

209781 Paul R Laine

Certifying Officer:

Paul Gaines Chairman / Senior Technical Director

⁻ This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1.

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION: Read instructions carefully before opening bottle(s) and proceeding with the

analyses,

Contains Heavy Metals
HAZARDOUS MATERIAL

Safety Data Sheets
Available Upon Request

M6182

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

<u>CAUTION:</u> The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. **Do not allow the solution(s) to freeze.**

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722. If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY
APTIM Federal Services, LLC
2700 Chandler Avenue - Building C
Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

Page 1 of 2

APTIM

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1.	'CERTIFIE			FERENCE CI IXED WITH I	HECK SAMPL CSB-0710	E ICP-AES I	CSA-1211
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
Al	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Ве	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Ca	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Co	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
TI	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

Instructions for QATS Reference Material: ICP-AES ICS

QATS LABORATORY INORGANIC REFERENCE MATERIAL INTERFERENCE CHECK SAMPLE SET FOR ICP-AES (ICSA WITH ICSB)

NOTE: These instructions are for advisory purposes only. If any apparent conflict exists between these instructions and the analytical protocol or your contract, disregard these instructions.

APPLICATION: For use with the CLP SFAM01.0 SOW and revisions.

CAUTION:

Read instructions carefully before opening bottle(s) and proceeding with the

analyses.

Contains Heavy Metals HAZARDOUS MATERIAL

Safety Data Sheets Available Upon Request M6184

(A) SAMPLE DESCRIPTION

Enclosed is a set of one (1) or more bottles of Aqueous Reference Material, each composed of metals at various concentrations and prepared with nitrate salts and oxy-acids of the respective elements in a 5% nitric acid matrix. For the reference material source in reporting ICSA and ICSAB mixture use "USEPA". For the reference material lot number for the ICSA use "ICSA-1211" and for the ICSAB mixture use "ICSA-1211+ICSB-0710".

CAUTION: The bottle(s) should be protected from light during storage to ensure the stability of silver which is contained in the ICSB solution. The bottle(s) should be stored at room temperature. Do not allow the solution(s) to freeze.

(B) BREAKAGE OR MISSING ITEMS

Check the contents of the shipment carefully for any broken, leaking, or missing items. Check that the seal is intact on each bottle. Refer to the enclosed chain of custody record. Report any problems to Mr. Keith Strout, APTIM Federal Services, LLC, at (702) 895-8722, If requested, return the chain-of-custody record with appropriate annotations and signatures to the address provided below.

> QUALITY ASSURANCE TECHNICAL SUPPORT LABORATORY **APTIM Federal Services, LLC** 2700 Chandler Avenue - Building C Las Vegas, NV 89120

(C) ANALYSIS OF SAMPLES

The interference check sample set is to be used to verify inter-element and background correction factors of inductively-coupled plasma (ICP) spectrometers. This reference material set consists of two (2) concentrated solutions. The ICSA solution contains the four (4) interferent elements: Al, Ca, Fe, and Mg. The ICSB solution contains the analytes: Ag, As, Sb, Ba, Be,

Page 1 of 2

APTIM

Instructions for QATS Reference Material: ICP-AES ICS

Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, Se, V, and Zn. This instruction sheet provides the nominal values for ICP-AES Part A and Part B target analytes when diluted as directed.

Using Class "A" glassware, preparation and analysis must be performed according to the following instructions:

ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSA solution by ICP-AES.

ICSB-0710, Analytes, mixed with ICSA-1211, Interferents: Pipet 10 mL of the ICSA solution and 10 mL of the ICSB solution into a 100 mL volumetric flask and dilute to volume with 2% v/v HNO₃. Analyze this ICSAB solution by ICP-AES.

(D) "CERTIFIED VALUE" CONCENTRATIONS OF QATS ICP-AES ICS SOLUTION(S)

The "Certified Value" concentrations of the elements, listed in Table 1 below, were derived from statistically pooled analysis results from the following sources, if available: QATS Laboratory, CLP laboratories, Quarterly Blind (QB)/Proficiency Testing (PT) events, CLP pre-award events, and external referee laboratories.

Table 1.	"CERTIFIE			FERENCE CI	HECK SAMPL CSB-0710	E ICP-AES I	CSA-1211,
Element	CRQL	Part A (µg/L)	Low Limit (µg/L)	High Limit (µg/L)	Part A +Part B (µg/L)	Low Limit (µg/L)	High Limit (µg/L)
Al	200	255000	216000	294000	247000	209000	285000
Sb	60	(0.0)	-60.0	60.0	618	525	711
As	10	(0.0)	-10.0	10.0	104	88.4	120
Ва	200	(6.0)	-194	206	(537)	337	737
Be	5.0	(0.0)	-5.0	5.0	495	420	570
Cd	5.0	(1.0)	-4.0	6.0	972	826	1120
Ca	5000	245000	208000	282000	235000	199000	271000
Cr	10	(52.0)	42.0	62.0	542	460	624
Co	50	(0.0)	-50.0	50.0	476	404	548
Cu	25	(2.0)	-23.0	27.0	511	434	588
Fe	100	101000	85600	116500	99300	84400	114500
Pb	10	(0.0)	-10.0	10.0	(49.0)	39.0	59.0
Mg	5000	255000	216000	294000	248000	210000	286000
Mn	15	(7.0)	-8.0	22.0	507	430	584
Ni	40	(2.0)	-38.0	42.0	954	810	1100
Se	35	(0.0)	-35.0	35.0	(46.0)	11.0	81.0
Ag	10	(0.0)	-10.0	10.0	201	170	232
Ti	25	(0.0)	-25.0	25.0	(108)	83.0	133
V	50	(0.0)	-50.0	50.0	491	417	565
Zn	60	(0.0)	-60.0	60.0	952	809	1095

The acceptance ranges for all analytes in parentheses in the above table were determined using the listed certified value \pm 1 times the associated CLP SOW CRQL. The acceptance ranges for all other analytes were determined using the certified value \pm 15 percent of the listed certified value.

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M6027

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

R1.8/5/24

CERTIFIED WEIGHT REPORT: Nominal Concentration (µg/mL): Recommended Storage: **Expiration Date:** Part Number: Lot Number: Description: 062027 57028 062024 Nickel (Ni) 1000 Ambient (20 °C) 24002546 2.0% Lot # Nitric Acid Solvent: 40.0 Nitric Acid Formulated By: Benson Chan

	Nickel(II) nitrate hexahydrate (Ni)	Compound	
	58128	Number	Part
	062023	Number	Lot
	0.1000	Factor	Dilution
	200.0	Vol. (mL)	Initial
	0.084	Pipette (mL)	Uncertainty
	1000	Conc. (µg/mL)	Nominal
	10000.4	Conc. (µg/mL)	Initial
	1000.0	Vol. (mL) Pipette (mL) Conc. (µg/mL) Conc. (µg/mL) Conc. (µg/mL) +/- (µg/mL)	Final
	2.2	+/- (µg/mL)	Uncertainty
	13478-00-7		(Solve
Ш	1000.0 2.2 13478-00-7 1 mg/m3	CAS# OSHA PEL (TWA)	(Solvent Safety Info. On Attached pg.)
	orl-rat 1620 mg/kg 3136	LD50	(ttached pg.)
	3136	SRM	TSIN

Volume shown below was diluted to (mL):

2000.07

0.100

Flask Uncertainty

5E-05 Balance Uncertainty

Reviewed By:

Pedro L. Rentas

062024

062024

Expanded

SDS Information

NIST Test Number:

BTUB

~-z/m	5.0E6	m/z->-	2500	m/z->	1.0E5	2.005
						3
N O		0		1		[1] Spectrum No.1
						3 Z 0
N N		200		N		pad pad
						9.136
230		30		30		9.135 sec]:58028.D# [Count] [Linear]
N		: 				58028
240		6		ð		.b# [0
N G		1) 0		Ø,		Burno
Ò		Ŏ _į		0:		Linea
N 0		5		0		
		170		8		
		80		80		
				<i>(</i> 0 :		
		190		90		
		200		100		
		ŏ		ŏ		

Part # 57028

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	6	<u> </u>	Be	Ба	As	8	2			
	70.02	A).02	A 0.01	40.02	40.2	△ 0.02	40.02	Action Services (ATES)		
	5	. ზ	ţ	రి	Ç	Ç	8			
	<0.02	0.02	40.02	40.02	40.02	40.2	<0.02			
	All	. පී	වූ	£	딸	덕	Дy			
	40.02	∆ 0,02	40.02	40.02	40.02	40.02	40.02			
	3	<u> </u>	क्र	F	Б	Ж	Hf			
	40.02	0.02	<u> 0</u> 2	♦0.02	40.02	40.02	<0.02		Trace M	
	Z	Мо	Hg	Mn	Mg	Ę	Ľ		etals	
3=	40.02	40.02	40.2	∆0.02	10.0	0.02	40.02		Verifica	
	5	7	~	Pd	õ	R	Z		tion	
Target analyte	⊕ 2	40.02	40,02	0.02	40.02	40,02	н		by ICP-N	
	જ	Sm	20	Rb	Rh	Re	꾸	DESCRIPTION OF THE PERSON OF T	S (h	
	40.02	₫002	40.02	40.02	40.02	40.02	<0.02		I/mL)	
	Ta	S	Ş	Na	Ag	83	Se			
	<0.02	40,02	40,02	402	40.02	40.02	40.2			
	=	Sn	Ħ	Ħ	∄	Te	4T			
	40.02	40.02	40.02	∆ 0,02	40.02	40.02	<0.02			
	27	Zn	×	¥	۷	a a	₩			
	40.02	∆ 0.02	A).02	40.02	<u>A</u>	∆ 0.02	△ 0.02			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

www.absolutestandards.com 800-368-1131 Absolute Standards, Inc.

Certified Reference Material CRM

M6030

AR-1539 Certificate Number https://Absolutestandards.com ANAB ISO 17034 Accredited

CERTIFIED WEIGHT REPORT: Part Number: 57047 122823 R = 8 | 5 | 24 Lot #

Solvent: 24002546

Nitric Acid

Ambient (20 °C) Silver (Ag) 122826 2% <u>E</u> 80.0 Nitric Acid

Formulated By:

Benson Chan

122823

122823

Recommended Storage:

Expiration Date:

Lot Number:

Description:

Nominal Concentration (µg/mL): NIST Test Number: Weight shown below was diluted to (mL): 1000 **6UTB** 헏 4000.30 Nominal 0.058 Flask Uncertainty Purity Uncertainty Assay 5E-05 Balance Uncertainty Target Actual Actual Uncertainty Reviewed By: Expanded (Solvent Safety Info. On Attached pg.) Pedro L. Rentas SDS Information

1. Silver nitrate (Ag) Compound IN035 J0612AGA1 RM# Number Conc. (µg/mL) 1000.0 8 Purity (%) 0.10 63.7 38 Weight (g) 6.27992 Weight (g) Conc. (µg/mL) 6.27998 1000.0 +/- (µg/mL) 2.0 7761-88-B CAS# 10 ug/m3 Z 3151 NIST SRM

[1] Spectrum No.1 [14.044 sec]:58147.D# [Count] [Linear]

www.absolutestandards.com

							race Me	letals	Verificat	tion	by ICP-I	S	ug/mL)						
	The state of the s						The Park of	, j											
A	<0.02	Ω	<0.02	Dy	<0.02	出	<0.02	Ľ	<0.02	Z	<0.02	7	<0.02	Se	<0.2	4	40.02	W	<0.02
4S	40.02	ဂ္ဂ	40.2	덬	40.02	Ж	40.02	Li	<0.02	3	40.02	₽ Re	4 0.02	S:	40.02	ď	A 0.02	a	\$0.02
As	40.2	Ç	<0.02	땹	<0.02	In	<0.02	Mg	<0.01	တ္တ	40.02	짜	<0.02	Agr	7	∄	<0.02	<	40.02
Ва	<0.02	రి	40,02	82	<0.02	듁	40.02	Mn	<0.02	Pd	<0.02	R.	40.02	N	40.2	∄	<u>\$</u>	상	<0.02
Ве	40.01	Ω	<0.02	හු	<0.02	ਲੋਂ	40.2	Hg	40.2	Þ	40.02	R	A0.02	Ž,	40,02	ď	♦ 0.02	<	40.02
쯨	<0.02	င္ပ	40.02	ନ	<0.02	5	<0.02	Mo	<0.02	77	40.02	Sin	△ 0.02	c/a	40.02	S	A) (2)	7,	40.07
В	<0.02	δ	<0.02	Au	<0.02	광	<0.02	Z	<0.02	*	40.2	Sc	<0.02	ī	<0.02	Ħ	<0.02	2	<0.02

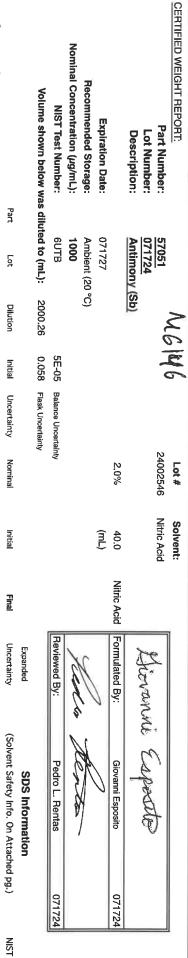
Physical Characterization:

(T)= Target analyte

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.
- * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.
 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).


Lot # 071724

Absolute Standards, Inc. 800-368-1131 www.absolutestandards.com

R:10/18/24 Certified Reference Material CRM

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

Compound

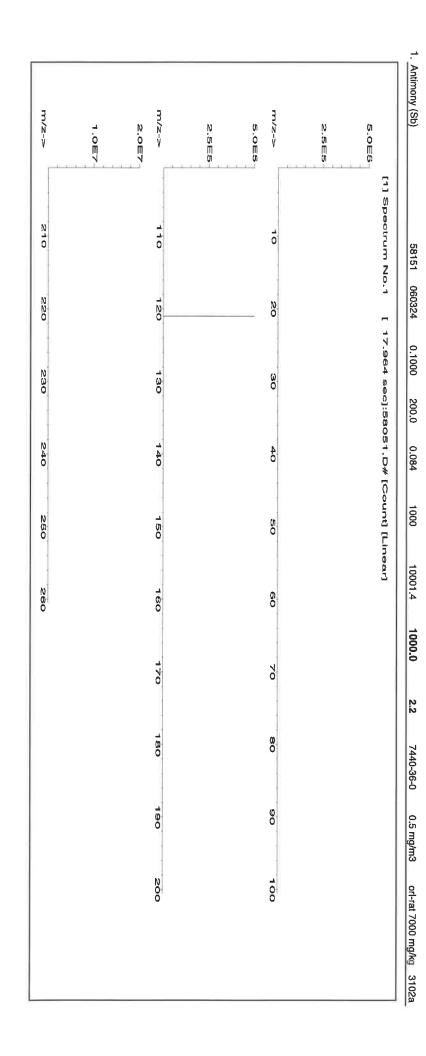
Number

Number

Factor

Vol. (mL) Pipette (mL) Conc. (µg/mL)

Conc. (µg/mL) Conc. (µg/mL)


+/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	l				Н			Trace M	etals	Verifica		by ICP-M	3 <i>t</i> t) S	J/mL)						
1																				
	<u>A</u>	<0.02	δ	<0.02	Dy	<0.02	Hf	<0.02	Ľ	<0.02	Z	<0.02	7	<0.02	Se	<0.2	Тb	<0.02	W	<0.02
	Sb	Т	೧	<0.2	ቪ	<0.02	Но	<0.02	Ľ	< 0.02	7	<0.02	Re	<0.02	Si	40.02	Te	<0.02	u	<0.02
	As	<0.2	င္ပ	<0.02	Eu	<0.02	ln	<0.02	Mg	<0.01	õ	<0.02	22	<0.02	A ₆₉	<0.02	⊒	<0.02	<	<0.02
	Ba	<0.02	ß	<0.02	8	<0.02	lr	<0.02	Mn	<0.02	Pd	<0.02	RЬ	<0.02	Na	40.2	∄	<0.02	ΥЪ	<0.02
	Be	<0.01	단	<0.02	Ga	<0.02	Fe	<0.2	Hg	<0.2	P	<0.02	Ru	<0.02	Sr	<0.02	Tm	<0.02	×	<0.02
	Ві	<0.02	င	<0.02	ဝွ	<0.02	La	<0.02	Мо	<0.02	ጉ	<0.02	Sm	<0.02	s	<0.02	Sn	<0.02	Zn	<0.02
	В	<0.02	υ	<0.02	Au	<0.02	Pb	<0.02	M	<0.02	×	<0.2	Sc	<0.02	Ta	<0.02	11	<0.02	Zr	<0.02
										(T) – Target analyte	et analy	ďρ								

(I) = larget analyte

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

 * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

- * All standard containers are meticulously cleaned prior to use.

 * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above). Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

- All Standards should be stored with caps tight and under appropriate laboratory conditions. Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

a			
- 8			

Absolute Standards, Inc. 800-368-1131

www.absolutestandards.com

Certified Reference Material CRM

M6023

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

		Weight shown below was diluted to (mL):	NIST Test Number:	Nominal Concentration (µg/mL):	Recommended Storage:	Expiration Date:		Description:	Lot Number:	Part Number:	CERTIFIED WEIGHT REPORT:
Lot		ted to (mL):	8TUB	1000	Ambient (20 °C)	062727		Thalllum (TI)	062724	57081	
Nominal		2000.1			င္ပိ						
Purity Uncertainty Assay		0.10 Flask Uncertainty	5E-05 Balance Uncertainty				2%			Solvent:	
Target						(mL)	40.0			Solvent: 24002546	Lot #
Actual							Nitric Acid			Nitric Acid	
Actual											
Uncertainty	Expanded		Reviewed By:	Juna	1		Formulated By:	4	TO SE	>	
(Solvent Safety Info. On Attached pg.)	SDS Information		Pedro L. Rentas	" freshies	A A		Aleah O'Brady	0	San O Basin	7	
ched pg.) NIST			062724				062724			,	
7											

RW#

Number

Conc. (µg/mL) (%)

Purity (%) (%)

Weight (g) Weight (g) Conc. (µg/mL) +/- (µg/mL)

CAS#

OSHA PEL (TWA)

LD50

SRM

~-Z/III	5.0E5	1.0E6	m/z->	5000	1.0€4	1.0E6	2.0E6	
N			-1				El opegrum No.	
210			10		ö		3	
220			120		N O			
							4 0	
230			130		9		[]4.044 sec]:57081.D# [Count] [Linear]	
240			<u> </u>		4		57081.	
ō			140		40		<u> </u>	
250			1		OI.			
N			160		60			
			4		70			
			170		0			
			180		80			1000
			190		90			or any
			200		100			
			ŏ		ŏ			See all see al
								0

Part # 57081

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

		œ	Id	: !	H.	52	į	As	30	2	2				
		40.02	20.02	5 8	2	20.02	e i	<u>۵</u>	20.02	3	40.02				
	ŀ	5	S	, (,	C	, {	3	Ç	>	5				
		4000	40.02	20.02	3	<0.02	0.02	3	2.0	>	<0.02				
		A	ද	Ç,	?	Gd	į	ŗ	돡	,	Þ		l		
	20,02	3	♦ 0.02	20.02	3	0.02	20.02	3	40.02		A0.02				
		ğ	L _a	7	1	=	Е	- - -	Но	!	H.		l.		
	70.02	3	∆ .02	7.05	5	∆ 0.02	20.02	3	A).02		40.02			race M	
		ź.	Mo	9H		š	1V192		Į,	ı	1.4	Service III		S	
(T) = Target analyte	20.02	3	A 0.02	40.2	,	∆ 0.02	10.02	2	&.02 20.02	40.04	2003	450 E 3 00 W	200	Serifics	
et anal	F	4 ;	P	70	· ¦	2	ç	,	Z	142	Z			₹. 2	
yte	2.05	0.01	3	<0.02	1000	<0.02	<0.02	,	∆ 0.02	20.00	3		200	200	
	Sc	E	3	R	i	ア	공		Re	2	P			ころと	
	A0.02	20.02	3	<0.02	40.04	<n 02<="" td=""><td>40.02</td><td>10101</td><td>2000</td><td>20.02</td><td>3000</td><td></td><td>/HI /Br</td><td></td><td></td></n>	40.02	10101	2000	20.02	3000		/HI /Br		
	Ta	ç	n	Ş	TAG	Z	Ag	Ş	2	č					
	40,02	20.02	3	∆.02	7.07	3	A).02	40.04	3	46					
	11	DC	?	ď	2.0	7	Ħ	č	ş-1	10					ı
	40.02	20.02	3	40.02	70.02	4	H	70.02	3	∆ .02					
	Zr	120	1	×	ID	ş	<	0	1	\$					
	40.02	40.02		A).02	20,02	8	A) (2)	70.02	3	<u>&</u>	THE RESIDENCE AND THE PERSON				

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

* The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated.

* Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.

* All standard containers are meticulously cleaned prior to use.

* Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).

* Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.

* All Standards should be stored with caps tight and under appropriate laboratory conditions.

* Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).

800-368-1131 Absolute Standards, Inc.

www.absolutestandards.com

Certified Reference Material CRM

M6021

ANAB ISO 17034 Accredited AR-1539 Certificate Number https://Absolutestandards.com

CERTIFIED WEIGHT REPORT: Part Number: Lot Number: 57023 062424 Solvent:

24002546 Nitric Acid

Expiration Date: Description: 062427 Vanadium (V) 2.0% (III) 40.0

Nitric Acid

Formulated By:

Aleah O'Brady

062424

062424

AND CORDA

Recommended Storage: **6UTB** 1000 Ambient (20 °C) 5E-05 **Balance Uncertainty**

Nominal Concentration (µg/mL): Volume shown below was diluted to (mL): **NIST Test Number:** 2000.3 0.06 Flask Uncertainty Reviewed By: Expanded Pedro L. Rentas **SDS Information**

orl-rat 58.1mg/kg 3165	2.2 7803-55-6 0.05 mg/m3	7803-55-6	2.2	1000.0	1 11	1000	0.084	0.1000 200.0	1 1	58123 021224	58123	Ammonium metavanadate (V)
	# OSHA PEL (TWA)	CAS#	+/- (ug/mL)	Conc. (ua/mL) +/- (ua/mL)	Conc. (ua/mL)	Vol. (mL) Pipette (mL) Conc. (ua/mL)	Pipette (mL)	Vol. (mL)	Factor	Number	Number	Compound
Attac	(Solvent Safety Info. On Attached pg.)	(Solver	Uncertainty	Final	Initial	Nominal	Uncertainty	Initial	Dilution	Lot	Part	

m/z->	2,588	5.0E8	1.007	m/z-> 2.0E7	1.006	2.006
0 10		110		ō		
220		200		20		
230		130		30		
240		140		a		
250		50		5		2
260		160		60		
		170		70		
		TEC		80		
		190		90		
		200		100		

Part # 57023

https://Absolutestandards.com ANAB ISO 17034 Accredited AR-1539 Certificate Number

Instrumental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS):

	r		_	-	_	-	-	-	-		T	۰
		3	B!	Ве	152	2	5	<i>?</i>	≥		ı	
		A 8	40.00	<u>6</u> ,01	20.02	2 6	4 6 5	3	<0.02			
		3 8	3	유	S.	<u>ج</u>	2 5	?	8			
	20.00	3 8	3	40.02	40.02	20.02	3 6	3	A)(2)	THE REAL PROPERTY.		
		<u> </u>		<u>ئ</u>	2	Ę	1 12	7	ΔÅ			
	20.02	3 6	9 9	S	∆0.02	20.02	20.02	3	40.02	AND DESIGNATION		
	70	3 2	7 6	ş)	==	d	, но	1	HF			
	20.02	868	3 6	7	∆ .02	40.02	40.02	0.00	co oz		Irace M	1
	Z	MIO	1 0	5	M _D	Mg	Ē	. [etals	
(T) = Targ	8,02	20.02	200	3	∆ 002	10.0	40.02	10.02	2000		Verifica	
Target analyte	Ě	1 3	, ,	,	2	õ	Z	2			tion	
yte	40,2	40.02	20.02	3	& 83 83	40.02	40,02	20.02	3		by ICP-N	
	Sc	Sm	20	,		2	Re	7		ŀ	E S	
	40.02	40.02	40.02		4	∆.02	<0.02	20.02		ľ	g/mL)	
	Ta	s	Sr		Z,	Ag	δi	8				ı
	<0.02	40.02	40.02		3	∆ 0.02	6.02	<0.2				
	П	Sh	Tm	Ě	,	=	Te	16				
	<0.02	40.02	<0.02	10.02	3	40.02	40.02	40.02	The second second second			
	Zr	Zn	×	10	\$	V	Ϥ	₹	NAME AND ADDRESS OF			
	<0.02	∆ 0.02	40,02	20.02	3	-)	A).02	0.02	The Part of the Pa			

Physical Characterization:

Homogeneity: No heterogeneity was observed in the preparation of this standard.

Certified by:

- * The certified value is the concentration calculated from gravimetric and volumetric measurements unless otherwise stated. * Purified acids, 18.2 megohm deionized water, calibrated Class A glassware and the highest purity raw materials are used in the preparation of all standards.
- * All standard containers are meticulously cleaned prior to use.
- * Standards are prepared gravimetrically using balances that are calibrated with weights traceable to NIST (see above).
- * Standards are certifed (+/-) 0.5% of the stated value, unless otherwise stated.
- * All Standards should be stored with caps tight and under appropriate laboratory conditions.

 * Uncertainty Reference: Taylor, B.N. and Kuyat, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST

 * Measurement Result," NIST Technical Note 1297, U.S. Government Printing Office, Washington, D.C. (1994).