

DATA PACKAGE

VOLATILE ORGANICS

PROJECT NAME: 64 2ND ST., BROOKLYN, NY

GFE LLC

58 Nokomis Ave

Lake Hiawatha, NJ - 07034

Phone No: 646-542-3465

ORDER ID: Q2834

ATTENTION: Frank Galdun

Table Of Contents for Q2834

1) Signature Page	3
2) Case Narrative	4
2.1) VOCMS Group2- Case Narrative	4
3) Qualifier Page	6
4) QA Checklist	7
5) VOCMS Group2 Data	8
6) Shipping Document	14
6.1) CHAIN OF CUSTODY	15
6.2) Lab Certificate	18
6.3) Internal COC	19

Q2834 **2 of 19**

Cover Page

Order ID: Q2834

Project ID: 64 2nd St., Brooklyn, NY

Client: GFE LLC

Lab Sample Number Client Sample Number

Q2834-01 IA1 Q2834-02 SV1

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :

By Nimisha Pandya, QA/QC Supervisor at 10:24 am, Aug 21, 2025

NYDOH CERTIFICATION NO - 11376 NJDEP CERTIFICATION NO - 20012

8/19/2025

Date:

Q2834 3 of 19

CASE NARRATIVE

GFE LLC

Project Name: 64 2nd St., Brooklyn, NY

Project # N/A Order ID # Q2834

Test Name: VOCMS Group2

A. Number of Samples and Date of Receipt:

2 Air sample was received on 08/12/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: VOCMS Group2. This data package contains results for VOCMS Group2.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_L were done using GC column RTX-1, which is 60 meters, 0.32 mm id, 1.0 um df, Restek Cat. #10157. The Trap was supplied by Entech, glass bead and Tenax , Entech 7100A Preconcentrator. The analysis of VOCMS Group2 was based on method TO-15.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Internal Standards Areas were met for all analysis.

The Retention Times were met for all analysis.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Tuning criteria met requirements.

Due to potential high concentration of target analytes, Sample SV1 was initially diluted.

E. Additional Comments:

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

Q2834 4 of 19

21

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

APPROVED

Signature_____ By Nimisha Pandya, QA/QC Supervisor at 10:24 am, Aug 21, 2025

Q2834 **5 of 19**

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. " $10\mathrm{U}$ ". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is $>25\%$ difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

Aliance

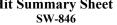
APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q2834

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	✓ ✓ ✓
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	' ' ' ' '
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI Date: 08/19/2025


Q2834 **7 of 19**

Hit Summary Sheet

SDG No.: Q2834

Client: GFE LLC

Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units
Client ID:	IA1							
Q2834-01	IA1	Air	Heptane	1.48	J	0.70	2.05	ug/m3
Q2834-01	IA1	Air	2,2,4-Trimethylpentane	1.92	J	0.65	2.34	ug/m3
Q2834-01	IA1	Air	Benzene	0.89	J	0.26	1.60	ug/m3
Q2834-01	IA1	Air	Toluene	17.7		0.60	1.88	ug/m3
Q2834-01	IA1	Air	Tetrachloroethene	2.44		0.14	0.20	ug/m3
Q2834-01	IA1	Air	Ethyl Benzene	1.61	J	0.83	2.17	ug/m3
Q2834-01	IA1	Air	m/p-Xylene	6.95		1.78	4.34	ug/m3
Q2834-01	IA1	Air	o-Xylene	3.52		0.91	2.17	ug/m3
Q2834-01	IA1	Air	1,3,5-Trimethylbenzene	3.39		0.88	2.46	ug/m3
Q2834-01	IA1	Air	1,2,4-Trimethylbenzene	8.85		0.88	2.46	ug/m3
Q2834-01	IA1	Air	Naphthalene	1.73		0.050	0.52	ug/m3
Q2834-01	IA1	Air	Hexane	12.3		0.56	1.76	ug/m3
			Total Voc:	62.8	3			
			Total Concentration:	62.8	3			
Client ID:	SV1							
Q2834-02	SV1	Air	Heptane	7.38	J	6.97	20.5	ug/m3
Q2834-02	SV1	Air	Toluene	20.7		6.03	18.8	ug/m3
Q2834-02	SV1	Air	Tetrachloroethene	3.25		1.02	2.03	ug/m3
Q2834-02	SV1	Air	Hexane	45.1		5.64	17.6	ug/m3
			Total Voc:	76.5	5			
			Total Concentration:	76.5	5			

Q2834 8 of 19

SAMPLE DATA

5

Α

С

1

Report of Analysis

Client: GFE LLC Date Collected: 08/12/25

Project: 64 2nd St., Brooklyn, NY Date Received: 08/12/25

Client Sample ID: IA1 SDG No.: Q2834

Lab Sample ID: Q2834-01 Matrix: Air

Analytical Method: TO-15 Test: VOCMS Group2

Sample Wt/Vol: 400 Units: mL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VL042861.D 1 08/13/25 20:49 VL081325

Vinyl Chloride	0.030	0.080	U	0.080	0.080	ug/m3
Heptane	0.36	1.48	J	0.70	2.05	ug/m3
1,1-Dichloroethene	0.15	0.59	U	0.59	1.98	ug/m3
Cyclohexane	0.22	0.76	U	0.76	1.72	ug/m3
cis-1,2-Dichloroethene	0.10	0.40	U	0.40	1.98	ug/m3
1,1,1-Trichloroethane	0.020	0.11	U	0.11	0.16	ug/m3
2,2,4-Trimethylpentane	0.41	1.92	J	0.65	2.34	ug/m3
Benzene	0.28	0.89	J	0.26	1.60	ug/m3
Trichloroethene	0.020	0.11	U	0.11	0.16	ug/m3
Toluene	4.70	17.7		0.60	1.88	ug/m3
Tetrachloroethene	0.36	2.44		0.14	0.20	ug/m3
Ethyl Benzene	0.37	1.61	J	0.83	2.17	ug/m3
m/p-Xylene	1.60	6.95		1.78	4.34	ug/m3
o-Xylene	0.81	3.52		0.91	2.17	ug/m3
1,3,5-Trimethylbenzene	0.69	3.39		0.88	2.46	ug/m3
1,2,4-Trimethylbenzene	1.80	8.85		0.88	2.46	ug/m3
Naphthalene	0.33	1.73		0.050	0.52	ug/m3
Hexane	3.50	12.3		0.56	1.76	ug/m3
1-Bromo-4-Fluorobenzene	10.4			65 - 135	104%	SPK: 10
OARDS						
Bromochloromethane	127000		2.8			
Chlorobenzene-d5	316000					
	Heptane 1,1-Dichloroethene Cyclohexane cis-1,2-Dichloroethene 1,1,1-Trichloroethane 2,2,4-Trimethylpentane Benzene Trichloroethene Toluene Tetrachloroethene Ethyl Benzene m/p-Xylene o-Xylene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Naphthalene Hexane 1-Bromo-4-Fluorobenzene ARDS Bromochloromethane 1,4-Difluorobenzene	Heptane 0.36 1,1-Dichloroethene 0.15 Cyclohexane 0.22 cis-1,2-Dichloroethene 0.10 1,1,1-Trichloroethane 0.020 2,2,4-Trimethylpentane 0.41 Benzene 0.28 Trichloroethene 0.020 Toluene 4.70 Tetrachloroethene 0.36 Ethyl Benzene 0.37 m/p-Xylene 1.60 o-Xylene 0.81 1,3,5-Trimethylbenzene 0.69 1,2,4-Trimethylbenzene 1.80 Naphthalene 0.33 Hexane 3.50 1-Bromo-4-Fluorobenzene 10.4 OARDS 1.27000 Bromochloromethane 127000 1,4-Difluorobenzene 372000	Heptane	Heptane	Heptane	Heptane

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

Q2834 **10 of 19**

Report of Analysis

Client: GFE LLC Date Collected: 08/12/25

Project: 64 2nd St., Brooklyn, NY Date Received: 08/12/25

Client Sample ID: SV1 SDG No.: Q2834

Lab Sample ID: Q2834-02 Matrix: Air

Analytical Method: TO-15 Test: VOCMS Group2

Sample Wt/Vol: 400 Units: mL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VL042862.D 10 08/13/25 21:26 VL081325

CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	0.25	0.64	U	0.64	0.77	ug/m3
142-82-5	Heptane	1.80	7.38	J	6.97	20.5	ug/m3
75-35-4	1,1-Dichloroethene	1.50	5.95	U	5.95	19.8	ug/m3
110-82-7	Cyclohexane	2.20	7.57	U	7.57	17.2	ug/m3
156-59-2	cis-1,2-Dichloroethene	0.99	3.93	U	3.93	19.8	ug/m3
71-55-6	1,1,1-Trichloroethane	0.16	0.87	U	0.87	1.64	ug/m3
540-84-1	2,2,4-Trimethylpentane	1.40	6.54	U	6.54	23.4	ug/m3
71-43-2	Benzene	0.79	2.52	U	2.52	16.0	ug/m3
79-01-6	Trichloroethene	0.24	1.29	U	1.29	1.61	ug/m3
108-88-3	Toluene	5.50	20.7		6.03	18.8	ug/m3
127-18-4	Tetrachloroethene	0.48	3.25		1.02	2.03	ug/m3
100-41-4	Ethyl Benzene	1.90	8.25	U	8.25	21.7	ug/m3
179601-23-1	m/p-Xylene	4.10	17.8	U	17.8	43.4	ug/m3
95-47-6	o-Xylene	2.10	9.12	U	9.12	21.7	ug/m3
108-67-8	1,3,5-Trimethylbenzene	1.80	8.85	U	8.85	24.6	ug/m3
95-63-6	1,2,4-Trimethylbenzene	1.80	8.85	U	8.85	24.6	ug/m3
91-20-3	Naphthalene	0.13	0.68	U	0.68	5.24	ug/m3
110-54-3	Hexane	12.8	45.1		5.64	17.6	ug/m3
SURROGATES	3						
460-00-4	1-Bromo-4-Fluorobenzene	10.2			65 - 135	102%	SPK: 10
INTERNAL ST	ANDARDS						
74-97-5	Bromochloromethane	127000		2.793			
540-36-3	1,4-Difluorobenzene	384000		3.968			
3114-55-4	Chlorobenzene-d5	329000		8.891			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

Q2834 **11 of 19**

Test:

Report of Analysis

Client: GFE LLC Date Collected:

Project: 64 2nd St., Brooklyn, NY Date Received:

Client Sample ID: IA1DUP SDG No.: Q2834

Lab Sample ID: Q2794-01DUP Matrix: Air

Analytical Method: TO-15

Sample Wt/Vol: 400 Units: mL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VL042856.D 1 08/13/25 17:43 VL081325

CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOQ / CRQL	Units
TARGETS							
75-01-4	Vinyl Chloride	0.030	0.080	U	0.080	0.080	ug/m3
142-82-5	Heptane	1.60	6.56		0.70	2.05	ug/m3
75-35-4	1,1-Dichloroethene	0.15	0.59	U	0.59	1.98	ug/m3
110-82-7	Cyclohexane	1.00	3.44		0.76	1.72	ug/m3
156-59-2	cis-1,2-Dichloroethene	0.10	0.40	U	0.40	1.98	ug/m3
71-55-6	1,1,1-Trichloroethane	0.020	0.11	U	0.11	0.16	ug/m3
540-84-1	2,2,4-Trimethylpentane	2.30	10.7		0.65	2.34	ug/m3
71-43-2	Benzene	1.30	4.15		0.26	1.60	ug/m3
79-01-6	Trichloroethene	0.020	0.11	U	0.11	0.16	ug/m3
108-88-3	Toluene	11.0	41.5		0.60	1.88	ug/m3
127-18-4	Tetrachloroethene	0.050	0.34		0.14	0.20	ug/m3
100-41-4	Ethyl Benzene	1.70	7.38		0.83	2.17	ug/m3
179601-23-1	m/p-Xylene	5.40	23.5		1.78	4.34	ug/m3
95-47-6	o-Xylene	2.10	9.12		0.91	2.17	ug/m3
108-67-8	1,3,5-Trimethylbenzene	0.49	2.41	J	0.88	2.46	ug/m3
95-63-6	1,2,4-Trimethylbenzene	1.80	8.85		0.88	2.46	ug/m3
91-20-3	Naphthalene	1.10	5.77		0.050	0.52	ug/m3
110-54-3	Hexane	2.40	8.46		0.56	1.76	ug/m3
SURROGATES	8						
460-00-4	1-Bromo-4-Fluorobenzene	10.3			65 - 135	103%	SPK: 10
INTERNAL ST	CANDARDS						
74-97-5	Bromochloromethane	128000		2.793			
540-36-3	1,4-Difluorobenzene	393000		3.972			
3114-55-4	Chlorobenzene-d5	335000		8.895			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

VOCMS Group2

Q2834 **12 of 19**

LAB CHRONICLE

 OrderID:
 Q2834
 OrderDate:
 8/12/2025 11:20:00 AM

 Client:
 GFE LLC
 Project:
 64 2nd St., Brooklyn, NY

Contact: Frank Galdun Location: --Select--,Air Lab

ClientID Sample Date **Prep Date** Received LabID Matrix Test Method **Anal Date** Q2834-01 08/12/25 Air IA1 08/12/25 VOCMS Group2 TO-15 08/13/25 Q2834-02 08/12/25 08/12/25 SV1 Air VOCMS Group2 TO-15 08/13/25

Q2834 13 of 19

SHIPPING DOCUMENTS

Q2834 **14 of 19**

B2508016 - 5

2834 Alliance Project No. : 284 Sheffield Street, Mountainside, New Jersey 07092 Phone : 908 789 8900 Fax : 908 789 8922 Client Contact Information Courier: F. GALDEN Bottle Order ID: B2508016 COCs Client ID: **GFEL01** Project ID: 739-Minstand Ave, Brooklyn, 197-Sampler Name(s): TRANK GALLW Analysis Matrix Customer **GFE LLC** Project Manager: FRANK GALDUN Name: AIR ANALYSIS Phone Number: 646-542-3465 CHAIN-OF-CUSTODY Address: 58 Nokomis Ave Fax Number: 973-334-1692 Site Details: Individual Certified City: Lake Hiawatha State: NJ Analysis Turnaround Time Zip Code: 07034 Data Package Type : ESULTS ONLY Standard: 10 The says Country: Rush (Specify): Indoor/ambinet Air Days EDD Type: Can Can Vacuum Vacuum Out Interior In Interior Time Time in in going coming Flow Sample Temp. Temp. Start Stop Sample Field Field Soil Gas Can Can Controller Identification (F) (24 hr (24 hr Date(s) ("Hg) ("Hg) Pressure Flow Pressure Readout (Start) (Stop) Clock) Clock) (Start) (Stop)** Can ID Reg. ID Can Cert ID ("Hg)(Lab) ("Hg)(Lab) (ml/min) (Orto -30 10579 10609 6 L 50 VL042598.D Temperature (Fahrenhelt) **Ambient** Maximum Minimum Start GC/MS Analyst Signature (TO-15) Stop Pressure (Inches of Hg) Şuhmittal of this COC indicates approval of the analysis based on existing conditions. REPORTONLY THOSE ANADOTES ON THE **Ambient** Maximum Minimum Start Stop Please follow the instructions on the back of this COC. Special Instructions/QC Requirements & Comments: Suspected Contamination: High Medium PID Readings:

Q2834

Relinquished by:

Sampling site (State): Quick Connector required: Canisters Shiped by:

Samples Relinquished by:

Date/Time

Date/Time:

Date/Time:

Date/Time: 2/12/2~

Date/Time:

Date/Time:

Canisters Received by:

Received by:

Received by:

Alliance Project No. :

2834 6.1

								y recu sersey	V/UJZ FIIOIIE ;	700 /09	8900 Fax : 908 789	9 8922									
Client Cont	tact Inforn	nation				Bottle	Order ID		8016			_	LNUS		$\overline{}$		_	_			
Client ID:	GFELO)1		Pr	oject ID :	739 N	ostrand .	Ave, Brook			Sampler Name	-1.	CDUN	2111	1	_		_	of _		COCs
Customer Name :	GFE L	LC					: Manager		IK GALDUN						n	T	Analy	sis	+	Mati	rix
						Phone	Number :	646-	542-3465				NALYSI								
Address :	58 Nok	omis Av	e			Fax Nu	mber :	973-3	334-1692		CHA	AIN-C	F-CUST	ODY							
						Site De	tails: 🛈	12ND	51.			D-4-1									
City:	Lake F	liawath	a				E	SOOKT	NOW.	7		Battr	Certific	ed		1					
State :	נא					Analysi	s Turnaro	and Time	7 DAY			1	$\overline{}$								
Zip Code :	07034					Standar	rd:	10 Judine	sscalarys	OR	Data Package 1	Type :	Zec		- 1				1		
Country:		_				Rush (S			Days		EDD Type :	7	>/=	15 ONL	7				Air		
Sample Identification	Sample Date(s)	Time Start (24 hr Clock)	Time Stop (24 hr Clock)	Can Vacuum In Field ("Hg) (Start)	Can Vacuum In Field ("Hg). (Stop)**	Interior Temp. (F) (Start)	Interior Temp. (F) (Stop)	Out going Can Pressure ("Hg)(Lab)	In coming Can Pressure ("Hg)(Lab)	Flow Reg. II	Con Min		Flow Controlfer Readout (ml/min)	Can Cert ID	0-15	1			Indoor/Ambinet Air	Soil Gas	
SUI	8/12/29	કુ.૦૧	Pog	250	5	74	75	-30	-5-9	10226	10604	6 L	50	VL042598.	1	Í	+			1	\mathbb{H}
				Temp	erature (Fa	hrenheit))									-					4
		Ar	nbient		Maximum	Mi	nimum														
	Start									GC/MS	Analyst Signatur	e (TO-1	.5)		1	>		,			\neg
	Stop															>>	12		_		-
				Pres	sure (Inche	s of Ha)				w mal						_					
			mbient		Maximum		-1			Domit	tal of this COC Indi	cates ap	proval of the	inalysis based o	n existin	g co	nditio	ns.			
	Start		THO ICITE		PIOXITIUM	IVIII	nimum	-		Á	PORT ON	•		HOUTC	1 (ES	اخ	N	71	CHIL		
İ		_		_				+		TH	ACHED										
Special Instru	Stop ctions/OC	Require	ments 8	& Comme	nts '						riease roil	low the II	nstructions on	the back of thi	s COC.						
Suspected Co	ntaminatio			High		muit	Lov	3		PID Re	adings: 🔊 🎺	O									
Quick Connect	tor require	d:N	ō				v.									_					
Canisters Ship	ed by: <	11	201	1 1	Pate/Time:	08/10	4	Canisters I	Received by:	71	0	Dot-	Tl	/ I							
amples Relin		/: - T	5		ate/Time:		25	Received b			\		Time: 8/12	25 105							
telinquished b	y:			0	ate/Time:			Received b	y:			Date/						E	B2508	016 -	3

Date

Q2834

33

PCE TCE TCE TCE TCE TIPLE TIPLE TIPLE TIPLE TOAN TOAN TOAN TOAN TOAN TOAN TOAN TOAN		
TCE CIS 1,2 DCE 1,1-DCE 1,1-TCA UNDYL CHLORIDE BENZONE BENZONE CHARMITALENE CYCLOHEXANE 7,2,4-TRIMETHYLPENTANE 1,2,5-TRIMETHYLPENZENE 0-XYLENE M.P-XYLENE HETTANE TOLURANE TOLURANE	Pce	
1,1-TCA UNDYL CHLORIDE BENZONE ENTYLDENSENE OMENHAME CYCLOHEXANE Z,2,4-TRIMETHYLDENTANE 1,2,4-TRIMETHYLDENZENE OXYLENE M,P-XYLENE HEPTONE HEPTONE HEPTONE TOLURAL		
BENZENE ETITYLBENZENE OKPHTIT RIENE CYCLOHEXANE Z,2,4-TRIMETHYLZENTANE 1,2,4-TRIMETHYLZENZENE 1,35-TRIMETHYLZENZENE OXYVENE M.P-XYVENE HEPTANE HEVANE TOLULATE	C15 1,2 DCF	
BENZENE ETITYLBENZENE OKPHTIT RIENE CYCLOHEXANE Z,2,4-TRIMETHYLZENTANE 1,2,4-TRIMETHYLZENZENE 1,35-TRIMETHYLZENZENE OXYVENE M.P-XYVENE HEPTANE HEVANE TOLULATE	11-DE	
BENZENE ETITYLBENZENE OKPHTIT RIENE CYCLOHEXANE Z,2,4-TRIMETHYLZENTANE 1,2,4-TRIMETHYLZENZENE 1,35-TRIMETHYLZENZENE OXYVENE M.P-XYVENE HEPTANE HEVANE TOLULATE	1,1,1-TCA	
ETITYIBENZENE OKPHTITALENE CYCLOHEXANE Z,2,4-TRIMETHYLPENZENE 1,2,4-TRIMETHYLPENZENE 1,3,5-TRIMETHYLBENZENE O-XYLENE M.P-XYLENE HEPTANE HEXANE TOLUNA	YNYL CHLORIDE	
ORPHTIALENE CYCLOHEXANE Z, 2, 4 TRIMETHYLDENTANE 1, 2, 4 TRIMETHYLDENTENE 1, 3,5 TRIMETHYLDENTENE OXYLENE M. P- LYLENE HEPTONE HORANE JOLUGNE		
CYCLOHEXANE Z 2 4 TRIMETHYLDENZENE 1,2 H. TRIMETHYLDENZENE 1,35 - TRIMETHYLBENZENE O. XYLENE M. P. XYLENE HEPTENE TOLURNE TOLURNE	• \	
ZZH-TRIMETHYLPENTANE 1,2,H-TRIMETHYLPENTANE 1,35-TRIMETHYLBENZENE O-XYLENE M.P-XYLENE HEPTONE HEXANE JOLUGNE		
1,2,4. TRIMETHYLBENZENE 1,35 TRIMETHYLBENZENE O-XYLENE M. P-XYLENE HEPTENE HEXANE TOLUGAL		
1,35-TRIMETHYLBENZENE O-X-LENE M/P-X/LENE HEPTONE HEXANE TOLUGANE	CICI - I RIMETHY LPENTANTE	
O.X. TENE M.P.XVLENE HEPTENE HEXANE JOLYCOL	1,2,4. I CIMETHY CBENSENE	
MP-ZYLENE HEPTENE HOLLINE JOLUENE		
HEPTANE HEXANE JOLUENE		
Toluent	and the state of t	
To bush		
	ender i enimologija se kadi este š	
		- o
일 레이트 인근 1은 40kg - 10kg - 1g (10 HEP) - 1c 이익(10 TOTO) - 17 K (1000 E B MORE NO. 15 HEP) - 1c - 1		

17 of 19

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
5.10 2.77 52. 53.11113	001.2.1.1.200011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
	323 2 . 23 . 30
Texas	T104704488

Page 3 of 3

DEP-077 Rev. 3/04

New Jersey Department of Environmental Protection

Internal Chain of Custody

Instructions: Use 1 form for each 20 samples of aliquot

Laboratory Person Breaking Field Seal on Sample Shuttle & Accepting Responsibility for Sample Latoratory: Chemtech Location: 284 Sheffield Street, Mountainside, NJ 7092

DAGE:

Title: Sample Custodian

Field Sample Seal No.: Q2834 Case No.: 64 2nd St., Brooklyn, NY

Date Broken 8/13/2025 Analytical Parameter/Fraction 10-15

Military Time Seal Broken:

10:52:00

Sample No.	Allerrat (m. s.		
Q2834-01	Aliquot/Extract No.	Sample No.	Allmost (Parkers)
	IA1		Aliquot/Extract No.
Q2834-02	SV1		

ate	Time	Relinquished By	Received By	Purpose of Change of Custody
100	12.00	Signature	Signature	a pose of Change of Custody
De la	15.	Printed Name Cascanosoc Vin	- Barry	11-11
		Signature	Signature	sulv/
		Printed Name	Printed Name	
		Signature	Signature	
		Printed Name	Printed Name	
		Signature	Signature	
		Printed Name	Printed Name	
		Signature	Signature	
		Printed Name	Printed Name	
		Signature	Signature	
		Printed Name	Printed Name	
	-	Signature	Signature	
-		Printed Name	Printed Name	
	-	Signature	Signature	
		Printed Name Istribution: White - Original (Sent With Re	Printed Name	

Pink - Sample Custodian - Interim Copy