

DATA PACKAGE

GENERAL CHEMISTRY
METALS
GC SEMI-VOLATILES
SEMI-VOLATILE ORGANICS
VOLATILE ORGANICS

PROJECT NAME: RESIDENTIAL SOIL TESTING

HERO CONSTRUCTION 122 Main Street

West Orange, NJ - 07052

Phone No: 201-449-9433

ORDER ID: Q2928

ATTENTION: Khadija Smith

Table Of Contents for Q2928

1) S	ignature Page	3
2) C	ase Narrative	4
	2.1) VOC-TCLVOA-10- Case Narrative	4
	2.2) SVOC-TCL BNA -20- Case Narrative	6
	2.3) Pesticide-TCL- Case Narrative	8
	2.4) PCB- Case Narrative	10
	2.5) EPH_F2- Case Narrative	12
	2.6) Metals-AES- Case Narrative	14
	2.7) Genchem- Case Narrative	15
3) Q	ualifier Page	16
4) Q	A Checklist	18
5) V	OC-TCLVOA-10 Data	19
6) S	VOC-TCL BNA -20 Data	25
7) P	esticide-TCL Data	32
8) P	CB Data	37
9) E	PH_F2 Data	41
10) I	Metals-AES Data	46
11) (Genchem Data	50
12) \$	Shipping Document	53
	12.1) CHAIN OF CUSTODY	54
	12.2) Lab Certificate	56
	12.3) Internal COC	57

Q2928 **2 of 57**

Cover Page

Order ID:	Q2928
-----------	-------

Project ID: Residential Soil Testing

Client: Hero Construction

Lab Sample Number Client Sample Number

Q2928-01 27-BELL Q2928-02 27-BELL

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :	 Date:	09/01/2025

NYDOH CERTIFICATION NO - 11376 NJDEP CERTIFICATION NO - 20012

Q2928 3 of 57

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # Q2928

Test Name: VOC-TCLVOA-10

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: VOC-TCLVOA-10. This data package contains results for VOC-TCLVOA-10.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_W were done using GC column Rxi-624SIL MS 30m, 0.25mm, 1.4 um, Cat. #13868.The analysis of VOC-TCLVOA-10 was based on method 8260D.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Internal Standards Areas were met for all analysis.

The Retention Times were met for all analysis.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank Spike Duplicate met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID VW032107.D met the requirements except for Bromoform and Carbon Tetrachloride are failing high but no positive hit in associate sample therefore no corrective action taken.

The Tuning criteria met requirements.

E. Additional Comments:

Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

The soil samples results are based on a dry weight basis.

Q2928 4 of 57

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		

Q2928 5 of 57

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # O2928

Test Name: SVOC-TCL BNA -20

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: SVOC-TCL BNA -20. This data package contains results for SVOC-TCL BNA -20.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_P using GC Column ZB-SemiVolatiles Guardian which is 30 meters, 0.25 mm ID, 0.5 um df, Catalog # 7HG-G027-17-GGA. The analysis of SVOC-TCL BNA -20 was based on method 8270E and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Internal Standards Areas were met for all analysis.

The Retention Times were met for all analysis.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the requirements for all compounds.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID BP025561.D met the requirements except for 2,4-Dinitrophenol and Benzaldehyde. Failed high but associated samples does not have hit for these compounds, therefor no further corrective action was taken.

The Tuning criteria met requirements.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

Q2928 6 of 57

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <20% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 20% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

~ ·		
Signature		

Q2928 **7 of 57**

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # O2928

Test Name: Pesticide-TCL

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Pesticide-TCL. This data package contains results for Pesticide-TCL.

C. Analytical Techniques:

The analysis was performed on instrument ECD_D. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11. The analysis of Pesticide-TCLs was based on method 8081B and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Retention Times were met for all analysis.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the requirements for all compounds.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PD090025.D met the requirements except for delta-BHC is failing in 1st column, however it is passed in 2nd column therefore no corrective action was taken.

The Continuous Calibration File ID PD090021.D met the requirements except for delta-BHC is failing in 1st column, however it is passed in 2nd column therefore no corrective action was taken.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

Q2928 **8 of 57**

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature			
Signature			

Q2928 9 of 57

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # Q2928 Test Name: PCB

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: PCB. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_P. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11. The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Retention Times were met for all analysis.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the requirements for all compounds.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed

Q2928 **10 of 57**

above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_	

Q2928 11 of 57

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # Q2928 Test Name: EPH_F2

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: EPH_F2. This data package contains results for EPH_F2.

C. Analytical Techniques:

The analysis were performed on instrument FID_E. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis of EPH_F2s was based on method NJEPH and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries were met for all analysis.

The Retention Times were met for all analysis.

The MS {Q2928-01MS} with File ID: FE055539.D recoveries met the requirements for all compounds except for Aliphatic [n-Decane (C10)- 216%], [n-Tetracosane (C24)-180%], [n-Hexatriacontane(C36)- 146%], [n-Octatriacontane (C38)- 149%]due to matrix interference.

The MSD {Q2928-01MSD} with File ID: FE055540.D recoveries met the requirements for all compounds except for Aliphatic[n-Decane (C10)- 221%], [n-Tetracosane (C24)-180%], [n-Hexatriacontane (C36)- 146%], [n-OctatriacontaneC38)- 153%], [n-Tetracontane (C40))- 142%] due to matrix interference.

The RPD were met for all analysis.

The Blank Spike met requirements for all compounds.

The Blank Spike Duplicate met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements.

Q2928 12 of 57

2.5

E. Additional Comments:

The soil samples results are based on a dry weight basis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		
SIPHALIIC		

Q2928 13 of 57

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # O2928

Test Name: Mercury, Metals ICP-TAL

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 08/21/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Cyanide, EPH_F2, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-TCL BNA -20 and VOC-TCLVOA-10. This data package contains results for Mercury, Metals ICP-TAL.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010D, digestion based on method 3050 (soils). The analysis and digestion of Mercury was based on method 7471B.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Sample 27-BELL was diluted due to high concentrations for Mercury.

The Blank Spike met requirements for all compounds.

The Duplicate analysis met criteria for all compounds.

The Matrix Spike (29-SEPTICMS) analysis met criteria for all compounds except for Antimony and Chromium due to Chemical Interference during Digestion process.

The Matrix Spike Duplicate (29-SEPTICMSD) analysis met criteria for all compounds except for Antimony and Thallium due to Chemical Interference during Digestion process.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Cianatura		
Signature		

Q2928 14 of 57

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

CASE NARRATIVE

Hero Construction

Project Name: Residential Soil Testing

Project # N/A Order ID # Q2928 Test Name: Cyanide

A. Number of Samples and Date of Receipt:

1 Solid sample was received on 08/21/2025.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Cyanide. This data package contains results for Cyanide.

C. Analytical Techniques:

The analysis of Cyanide was based on method 9012B.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Blank Spike met requirements for all compounds.

The Duplicate analysis met criteria for all compounds.

The Matrix Spike analysis met criteria for all compounds.

The Matrix Spike Duplicate analysis met criteria for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature			
DISILULUIC			

Q2928 15 of 57

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

- J Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates the analyte was analyzed for, but not detected.
- ND Indicates the analyte was analyzed for, but not detected
- E Indicates the reported value is estimated because of the presence of interference
- M Indicates Duplicate injection precision not met.
- N Indicates the spiked sample recovery is not within control limits.
- S Indicates the reported value was determined by the Method of Standard Addition (MSA).
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for the MSA is less than 0.995.
- D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- M Method qualifiers
 - **"P"** for ICP instrument
 - "PM" for ICP when Microwave Digestion is used
 - "CV" for Manual Cold Vapor AA
 - "AV" for automated Cold Vapor AA
 - "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi –Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - **"T"** for Titrimetric
 - "NR" for analyte not required to be analyzed
- OR Indicates the analyte's concentration exceeds the calibrated range of the
 - instrument for that specific analysis.
- Q Indicates the LCS did not meet the control limits requirements
- H Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. " $10\mathrm{U}$ ". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is $>25\%$ difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

Aliance

APPENDIX A

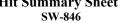
QA REVIEW GENERAL DOCUMENTATION

Project #: Q2928

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u>✓</u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	√ √ √
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	' ' ' ' '
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u> </u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI Date: 09/01/2025

Q2928 **18 of 57**



284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet

SDG No.: Q2928

Client: Hero Construction

Sample ID	Client ID	Matrix	Parameter	Concentration	C MDL	RDL	Units
Client ID:	27-BELL						
Q2928-02	27-BELL	SOIL	Methylene Chloride	5.40	J 3.00	8.40	ug/Kg
			Total Voc:	5.40)		
			Total Concentration:	5.40			

Q2928 19 of 57

5

D

SAMPLE DATA

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Date Received: Residential Soil Testing 08/21/25 Client Sample ID: SDG No.: Q2928 27-BELL Q2928-02 Matrix: SOIL Lab Sample ID: Analytical Method: 8260D % Solid: 83.2 Sample Wt/Vol: 7.16 Final Vol: Units: g 5000 Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Method:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID

VW032123.D 1 08/22/25 19:46 VW082225

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
75-71-8	Dichlorodifluoromethane	0.96	U	0.96	4.20	ug/Kg
74-87-3	Chloromethane	0.96	U	0.96	4.20	ug/Kg
75-01-4	Vinyl Chloride	0.66	U	0.66	4.20	ug/Kg
74-83-9	Bromomethane	0.90	U	0.90	4.20	ug/Kg
75-00-3	Chloroethane	1.10	U	1.10	4.20	ug/Kg
75-69-4	Trichlorofluoromethane	1.00	U	1.00	4.20	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	0.89	U	0.89	4.20	ug/Kg
75-35-4	1,1-Dichloroethene	0.84	U	0.84	4.20	ug/Kg
67-64-1	Acetone	4.00	U	4.00	21.0	ug/Kg
75-15-0	Carbon Disulfide	0.89	U	0.89	4.20	ug/Kg
1634-04-4	Methyl tert-butyl Ether	0.61	U	0.61	4.20	ug/Kg
79-20-9	Methyl Acetate	1.30	U	1.30	4.20	ug/Kg
75-09-2	Methylene Chloride	5.40	J	3.00	8.40	ug/Kg
156-60-5	trans-1,2-Dichloroethene	0.72	U	0.72	4.20	ug/Kg
75-34-3	1,1-Dichloroethane	0.67	U	0.67	4.20	ug/Kg
110-82-7	Cyclohexane	0.66	U	0.66	4.20	ug/Kg
78-93-3	2-Butanone	5.50	U	5.50	21.0	ug/Kg
56-23-5	Carbon Tetrachloride	0.81	U	0.81	4.20	ug/Kg
156-59-2	cis-1,2-Dichloroethene	0.63	U	0.63	4.20	ug/Kg
74-97-5	Bromochloromethane	0.97	U	0.97	4.20	ug/Kg
67-66-3	Chloroform	0.71	U	0.71	4.20	ug/Kg
71-55-6	1,1,1-Trichloroethane	0.78	U	0.78	4.20	ug/Kg
108-87-2	Methylcyclohexane	0.76	U	0.76	4.20	ug/Kg
71-43-2	Benzene	0.66	U	0.66	4.20	ug/Kg
107-06-2	1,2-Dichloroethane	0.66	U	0.66	4.20	ug/Kg
79-01-6	Trichloroethene	0.68	U	0.68	4.20	ug/Kg
78-87-5	1,2-Dichloropropane	0.76	U	0.76	4.20	ug/Kg
75-27-4	Bromodichloromethane	0.65	U	0.65	4.20	ug/Kg
108-10-1	4-Methyl-2-Pentanone	3.00	U	3.00	21.0	ug/Kg
108-88-3	Toluene	0.65	U	0.65	4.20	ug/Kg

Q2928 **21 of 57**

uL

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Date Received: Residential Soil Testing 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-02 Matrix: SOIL Analytical Method: 8260D % Solid: 83.2 Sample Wt/Vol: 7.16 Final Vol: 5000 Units: g Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RXI-624 ID: 0.25 Level: LOW

Prep Method:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID

VW032123.D 1 08/22/25 19:46 VW082225

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
10061-02-6	t-1,3-Dichloropropene	0.55	U	0.55	4.20	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	0.52	U	0.52	4.20	ug/Kg
79-00-5	1,1,2-Trichloroethane	0.77	U	0.77	4.20	ug/Kg
591-78-6	2-Hexanone	3.10	U	3.10	21.0	ug/Kg
124-48-1	Dibromochloromethane	0.73	U	0.73	4.20	ug/Kg
106-93-4	1,2-Dibromoethane	0.74	U	0.74	4.20	ug/Kg
127-18-4	Tetrachloroethene	0.88	U	0.88	4.20	ug/Kg
108-90-7	Chlorobenzene	0.76	U	0.76	4.20	ug/Kg
100-41-4	Ethyl Benzene	0.56	U	0.56	4.20	ug/Kg
179601-23-1	m/p-Xylenes	1.00	U	1.00	8.40	ug/Kg
95-47-6	o-Xylene	0.69	U	0.69	4.20	ug/Kg
100-42-5	Styrene	0.60	U	0.60	4.20	ug/Kg
75-25-2	Bromoform	0.72	U	0.72	4.20	ug/Kg
98-82-8	Isopropylbenzene	0.65	U	0.65	4.20	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.00	U	1.00	4.20	ug/Kg
541-73-1	1,3-Dichlorobenzene	1.40	U	1.40	4.20	ug/Kg
106-46-7	1,4-Dichlorobenzene	1.30	U	1.30	4.20	ug/Kg
95-50-1	1,2-Dichlorobenzene	1.20	U	1.20	4.20	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	1.50	U	1.50	4.20	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.50	U	2.50	4.20	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.70	U	2.70	4.20	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.5		63 - 155	99%	SPK: 50
1868-53-7	Dibromofluoromethane	49.6		70 - 134	99%	SPK: 50
2037-26-5	Toluene-d8	47.9		74 - 123	96%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.0		17 - 146	98%	SPK: 50
INTERNAL STA						
363-72-4	Pentafluorobenzene	183000	7.965			
540-36-3	1,4-Difluorobenzene	365000	8.849			
3114-55-4	Chlorobenzene-d5	345000	11.635			
3855-82-1	1,4-Dichlorobenzene-d4	168000	13.556			

Q2928 **22 of 57**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Test:

VOC-TCLVOA-10

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25

Project: Residential Soil Testing Date Received: 08/21/25

Client Sample ID: 27-BELL SDG No.: Q2928
Lab Sample ID: Q2928-02 Matrix: SOIL

Analytical Method: 8260D % Solid: 83.2

Sample Wt/Vol: 7.16 Units: g Final Vol: 5000 uL

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

Prep Method:

Soil Aliquot Vol:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID

VW032123.D 1 08/22/25 19:46 VW082225

CAS Number Parameter Conc. Qualifier MDL LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q2928 **23 of 57**

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

ClientID Sample Date **Prep Date** Received LabID Matrix Test Method **Anal Date** Q2928-02 08/21/25 08/21/25 SOIL 27-BELL VOC-TCLVOA-10 8260D 08/22/25

Q2928 **24 of 57**

A

Ь

۲

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet SW-846

Q2928 SDG No.:

Hero Construction Client:

Sample ID Client ID :	Client ID 27-BELL	Matrix	Parameter	Conc	entration	C	MDL	RDL	Units
Q2928-01	27-BELL 27-BELL	SOIL	Acenaphthylene		78.000) I	33.8	200	ug/Kg
Q2928-01	27-BELL	SOIL	Phenanthrene		290.000		24.5	200	ug/Kg
Q2928-01	27-BELL	SOIL	Anthracene		110.000		39	200	ug/Kg
Q2928-01	27-BELL	SOIL	Fluoranthene		840.000		35.1	200	ug/Kg
Q2928-01	27-BELL	SOIL	Pyrene		750.000		42.1	200	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo(a)anthracene		480.000		26.9	200	ug/Kg
Q2928-01	27-BELL	SOIL	Chrysene		520.000		23.3	200	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo(b)fluoranthene		670.000		22.2	200	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo(k)fluoranthene		210.000)	26.2	200	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo(a)pyrene		480.000)	34.5	200	ug/Kg
Q2928-01	27-BELL	SOIL	Indeno(1,2,3-cd)pyrene		280.000)	34	200	ug/Kg
Q2928-01	27-BELL	SOIL	Dibenzo(a,h)anthracene		89.400) J	32.1	200	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo(g,h,i)perylene		330.000)	30.1	200	ug/Kg
			Total Svoc:		5,	127.	40		
Q2928-01	27-BELL	SOIL	2-Pentanone, 4-hydroxy-4-meth	yl *	270.000	AB	3 0	0	ug/Kg
Q2928-01	27-BELL	SOIL	4H-Cyclopenta[def]phenanthren	ie *	110.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	Benzo[e]pyrene	*	510.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	Benzophenone	*	300.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	Butane, 2-methoxy-2-methyl-	*	970.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	Cyclohexadecane	*	160.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	n-Hexadecanoic acid	*	600.000	J	0	0	ug/Kg
Q2928-01	27-BELL	SOIL	Octadecanoic acid	*	78.000) J	0	0	ug/Kg
			Total Tics:		2.	998.	00		

8,125.40 **Total Concentration:**

Q2928 25 of 57

6

Е

SAMPLE DATA

Q2928 **26 of 57**

GPC Cleanup:

Ν

PH:

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Date Received: Residential Soil Testing 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Q2928-01 Lab Sample ID: Matrix: SOIL % Solid: Analytical Method: 8270E 85.3 Sample Wt/Vol: 30.06 Units: Final Vol: 1000 uL g SVOC-TCL BNA -20 Soil Aliquot Vol: uL Test: Decanted: Level: LOW Extraction Type: Ν

Prep Method: SW3541

Injection Volume:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BP025594.D
 1
 08/25/25 08:55
 08/26/25 20:44
 PB169370

GPC Factor:

BP025594.D 1		08/25/25 08:55		08/26/25 20:44	PB169370	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
100-52-7	Benzaldehyde	180	U	180	390	ug/Kg
108-95-2	Phenol	25.9	U	25.9	200	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	28.4	U	28.4	200	ug/Kg
95-57-8	2-Chlorophenol	28.5	U	28.5	200	ug/Kg
95-48-7	2-Methylphenol	35.0	U	35.0	200	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	43.9	U	43.9	200	ug/Kg
98-86-2	Acetophenone	34.5	U	34.5	200	ug/Kg
65794-96-9	3+4-Methylphenols	48.1	U	48.1	390	ug/Kg
621-64-7	n-Nitroso-di-n-propylamine	55.5	U	55.5	93.6	ug/Kg
67-72-1	Hexachloroethane	20.6	U	20.6	200	ug/Kg
98-95-3	Nitrobenzene	21.4	U	21.4	200	ug/Kg
78-59-1	Isophorone	38.4	U	38.4	200	ug/Kg
88-75-5	2-Nitrophenol	68.1	U	68.1	200	ug/Kg
105-67-9	2,4-Dimethylphenol	75.8	U	75.8	200	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	36.0	U	36.0	200	ug/Kg
120-83-2	2,4-Dichlorophenol	33.1	U	33.1	200	ug/Kg
91-20-3	Naphthalene	26.6	U	26.6	200	ug/Kg
106-47-8	4-Chloroaniline	41.4	U	41.4	200	ug/Kg
87-68-3	Hexachlorobutadiene	29.6	U	29.6	200	ug/Kg
105-60-2	Caprolactam	61.0	U	61.0	390	ug/Kg
59-50-7	4-Chloro-3-methylphenol	33.6	U	33.6	200	ug/Kg
91-57-6	2-Methylnaphthalene	30.0	U	30.0	200	ug/Kg
77-47-4	Hexachlorocyclopentadiene	140	U	140	390	ug/Kg
88-06-2	2,4,6-Trichlorophenol	23.2	U	23.2	200	ug/Kg
95-95-4	2,4,5-Trichlorophenol	34.0	U	34.0	200	ug/Kg
92-52-4	1,1-Biphenyl	25.5	U	25.5	200	ug/Kg
91-58-7	2-Chloronaphthalene	26.3	U	26.3	200	ug/Kg
88-74-4	2-Nitroaniline	56.3	U	56.3	200	ug/Kg
131-11-3	Dimethylphthalate	31.7	U	31.7	200	ug/Kg

Q2928 **27 of 57**

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 SOIL Matrix: Analytical Method: 8270E % Solid: 85.3 Sample Wt/Vol: 30.06 Units: Final Vol: 1000 uL g Test: SVOC-TCL BNA -20 Soil Aliquot Vol: uL Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0

SPC Factor: 1.0 GPC Cleanup: N PH:

Prep Method: SW3541

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BP025594.D
 1
 08/25/25 08:55
 08/26/25 20:44
 PB169370

CAS Number Parameter Conc. Qualifier MDL LOQ / CRQL Units(Dry Weight)	Ы 023374.D		08/23/23 08.33		06/20/23 20.44	1 1 1 0 / 3 / 0		
606-20-2 2,6-Dinitrotoluene 39.3 U 39.3 200 ug/Kg 99-09-2 3-Nitroaniline 53.8 U 53.8 200 ug/Kg 83-32-9 Acenaphthene 24.9 U 24.9 200 ug/Kg 51-28-5 2,4-Dinitrophenol 130 U 270 390 ug/Kg 100-02-7 4-Nitrophenol 130 U 130 390 ug/Kg 132-64-9 Dibenzofuran 26.6 U 26.6 200 ug/Kg 121-14-2 2,4-Dinitrotoluene 58.6 U 58.6 200 ug/Kg 84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/Kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg <td< th=""><th>CAS Number</th><th>Parameter</th><th>Conc.</th><th>Qualifier</th><th>MDL</th><th>LOQ / CRQL</th><th>Units(Dry Weight)</th></td<>	CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)	
99-09-2 3-Nitroaniline 53.8 U 53.8 200 ug/Kg 83-32-9 Acenaphthene 24.9 U 24.9 200 ug/Kg 51-28-5 2,4-Dinitrophenol 270 U 270 390 ug/Kg 100-02-7 4-Nitrophenol 130 U 130 390 ug/Kg 132-64-9 Dibenzofuran 26.6 U 26.6 200 ug/Kg 121-14-2 2,4-Dinitrotoluene 58.6 U 58.6 200 ug/Kg 84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/Kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosadiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 18-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 18-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 18-74-1 Hexachlorobenzene 29.6 U 38.5 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 96-74-8 Carbazole 36.0 U 36.5 200	208-96-8	Acenaphthylene	78.0	J	33.8	200	ug/Kg	
83-32-9 Acenaphthene 24.9 U 24.9 200 ug/kg 51-28-5 2,4-Dinitrophenol 270 U 270 390 ug/kg 100-02-7 4-Nitrophenol 130 U 130 390 ug/kg 132-64-9 Dibenzofuran 26.6 U 26.6 200 ug/kg 121-14-2 2,4-Dinitrotoluene 58.6 U 58.6 200 ug/kg 84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/kg 100-01-6 4-Nitrosniline 75.1 U 75.1 200 ug/kg 86-30-6 n-Nitrosodiphenyl-phenylether 32.5 U 32.5 200 ug/kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/kg <	606-20-2	2,6-Dinitrotoluene	39.3	U	39.3	200	ug/Kg	
S1-28-5 2,4-Dinitrophenol 270 U 270 390 ug/Kg 100-02-7 4-Nitrophenol 130 U 130 390 ug/Kg 132-64-9 Dibenzofuran 26.6 U 26.6 200 ug/Kg 132-64-9 Dibenzofuran 28.6 U 58.6 200 ug/Kg 84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/Kg 84-66-2 Diethylphthalate 31.2 U 31.2 200 ug/Kg 86-73-7 Fluoren 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 88-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 120-12-7 Anthracene 110 J 36.5 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 206-44-0 Fluoranthene 840 26.9 200 ug/Kg 206-44-0 Fluoranthene 840 26.9 200 ug/Kg 208-65-53 200 u	99-09-2	3-Nitroaniline	53.8	U	53.8	200	ug/Kg	
100-02-7	83-32-9	Acenaphthene	24.9	U	24.9	200	ug/Kg	
132-64-9 Dibenzofuran 26.6 U 26.6 200 ug/Kg 121-14-2 2,4-Dinitrotoluene 58.6 U 58.6 200 ug/Kg 84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/Kg 86-63-73 4-Chlorophenyl-phenylether 31.2 U 31.2 200 ug/Kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 82-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg 205-99-2 205-99-2 200 ug/Kg 205-99-2 205-99-2 200 ug/Kg 206-9-2 200 ug/Kg 207-9-2 200-9-2 200 ug/Kg 207-9-2 200-9-2 200 ug/Kg 208-9-2 200 ug/Kg 209-9-2 200 ug/Kg 209-9-2 200 ug/Kg 209-9-2 200 ug/Kg 209-	51-28-5	2,4-Dinitrophenol	270	U	270	390	ug/Kg	
121-14-2	100-02-7	4-Nitrophenol	130	U	130	390	ug/Kg	
84-66-2 Diethylphthalate 33.1 U 33.1 200 ug/kg 7005-72-3 4-Chlorophenyl-phenylether 31.2 U 31.2 200 ug/kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/kg 85-01-8 Phenanthrene 290 24.5 200 ug/kg	132-64-9	Dibenzofuran	26.6	U	26.6	200	ug/Kg	
7005-72-3 4-Chlorophenyl-phenylether 31.2 U 31.2 200 ug/Kg 86-73-7 Fluorene 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg	121-14-2	2,4-Dinitrotoluene	58.6	U	58.6	200	ug/Kg	
86-73-7 Fluorene 29.6 U 29.6 200 ug/Kg 100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 85-	84-66-2	Diethylphthalate	33.1	U	33.1	200	ug/Kg	
100-01-6 4-Nitroaniline 75.1 U 75.1 200 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 1	7005-72-3	4-Chlorophenyl-phenylether	31.2	U	31.2	200	ug/Kg	
534-52-1 4,6-Dinitro-2-methylphenol 120 U 120 390 ug/Kg 86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/Kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg	86-73-7	Fluorene	29.6	U	29.6	200	ug/Kg	
86-30-6 n-Nitrosodiphenylamine 38.5 U 38.5 200 ug/kg 101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/kg 85-01-8 Phenanthrene 290 24.5 200 ug/kg 120-12-7 Anthracene 110 J 39.0 200 ug/kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/kg 206-44-0 Fluoranthene 840 35.1 200 ug/kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/kg 91-94-1 3,3	100-01-6	4-Nitroaniline	75.1	U	75.1	200	ug/Kg	
101-55-3 4-Bromophenyl-phenylether 32.5 U 32.5 200 ug/Kg 118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benz	534-52-1	4,6-Dinitro-2-methylphenol	120	U	120	390	ug/Kg	
118-74-1 Hexachlorobenzene 29.6 U 29.6 200 ug/Kg 1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 26-55-3 Benzo(a)anthracene 480 <td>86-30-6</td> <td>n-Nitrosodiphenylamine</td> <td>38.5</td> <td>U</td> <td>38.5</td> <td>200</td> <td>ug/Kg</td>	86-30-6	n-Nitrosodiphenylamine	38.5	U	38.5	200	ug/Kg	
1912-24-9 Atrazine 39.8 U 39.8 200 ug/Kg 87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 217-81-7 Bis(2-ethylhexyl)phthalate 69.3	101-55-3	4-Bromophenyl-phenylether	32.5	U	32.5	200	ug/Kg	
87-86-5 Pentachlorophenol 60.0 U 60.0 390 ug/Kg 85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butvlphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100	118-74-1	Hexachlorobenzene	29.6	U	29.6	200	ug/Kg	
85-01-8 Phenanthrene 290 24.5 200 ug/Kg 120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 6	1912-24-9	Atrazine	39.8	U	39.8	200	ug/Kg	
120-12-7 Anthracene 110 J 39.0 200 ug/Kg 86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	87-86-5	Pentachlorophenol	60.0	U	60.0	390	ug/Kg	
86-74-8 Carbazole 36.5 U 36.5 200 ug/Kg 84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	85-01-8	Phenanthrene	290		24.5	200	ug/Kg	
84-74-2 Di-n-butylphthalate 56.0 U 56.0 200 ug/Kg 206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	120-12-7	Anthracene	110	J	39.0	200	ug/Kg	
206-44-0 Fluoranthene 840 35.1 200 ug/Kg 129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	86-74-8	Carbazole	36.5	U	36.5	200	ug/Kg	
129-00-0 Pyrene 750 42.1 200 ug/Kg 85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	84-74-2	Di-n-butylphthalate	56.0	U	56.0	200	ug/Kg	
85-68-7 Butylbenzylphthalate 83.5 U 83.5 200 ug/Kg 91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	206-44-0	Fluoranthene	840		35.1	200	ug/Kg	
91-94-1 3,3-Dichlorobenzidine 42.9 U 42.9 390 ug/Kg 56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	129-00-0	Pyrene	750		42.1	200	ug/Kg	
56-55-3 Benzo(a)anthracene 480 26.9 200 ug/Kg 218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	85-68-7	Butylbenzylphthalate	83.5	U	83.5	200	ug/Kg	
218-01-9 Chrysene 520 23.3 200 ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	91-94-1	3,3-Dichlorobenzidine	42.9	U	42.9	390	ug/Kg	
117-81-7 Bis(2-ethylhexyl)phthalate 69.3 U 69.3 200 ug/Kg 117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	56-55-3	Benzo(a)anthracene	480		26.9	200	ug/Kg	
117-84-0 Di-n-octyl phthalate 100 U 100 390 ug/Kg 205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	218-01-9	Chrysene	520		23.3	200	ug/Kg	
205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	117-81-7	Bis(2-ethylhexyl)phthalate	69.3	U	69.3	200	ug/Kg	
205-99-2 Benzo(b)fluoranthene 670 22.2 200 ug/Kg	117-84-0		100	U	100			
	205-99-2	Benzo(b)fluoranthene	670		22.2	200		
	Q2928			28 of 57				

GPC Cleanup:

Ν

PH:

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 SOIL Matrix: Analytical Method: 8270E % Solid: 85.3 Sample Wt/Vol: 30.06 Units: Final Vol: 1000 uL g Test: SVOC-TCL BNA -20 Soil Aliquot Vol: uL Extraction Type: Decanted: N Level: LOW

Prep Method: SW3541

Injection Volume:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BP025594.D
 1
 08/25/25 08:55
 08/26/25 20:44
 PB169370

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
207-08-9	Benzo(k)fluoranthene	210		26.2	200	ug/Kg
50-32-8	Benzo(a)pyrene	480		34.5	200	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	280		34.0	200	ug/Kg
53-70-3	Dibenzo(a,h)anthracene	89.4	J	32.1	200	ug/Kg
191-24-2	Benzo(g,h,i)perylene	330		30.1	200	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	30.0	U	30.0	200	ug/Kg
123-91-1	1,4-Dioxane	52.9	U	52.9	200	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	32.1	U	32.1	200	ug/Kg
SURROGATES						
367-12-4	2-Fluorophenol	77.8		18 - 112	52%	SPK: 150
13127-88-3	Phenol-d6	77.8		15 - 107	52%	SPK: 150
4165-60-0	Nitrobenzene-d5	48.6		18 - 107	49%	SPK: 100
321-60-8	2-Fluorobiphenyl	46.5		20 - 109	47%	SPK: 100
118-79-6	2,4,6-Tribromophenol	85.5		10 - 116	57%	SPK: 150
1718-51-0	Terphenyl-d14	44.8		10 - 105	45%	SPK: 100
INTERNAL STAN	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	209000	7.778			
1146-65-2	Naphthalene-d8	844000	10.549			
15067-26-2	Acenaphthene-d10	544000	14.389			
1517-22-2	Phenanthrene-d10	1110000	17.195			
1719-03-5	Chrysene-d12	1180000	21.636			
1520-96-3	Perylene-d12	1390000	25.018			
TENTATIVE IDE	ENTIFIED COMPOUNDS					
000994-05-8	Butane, 2-methoxy-2-methyl-	970	J		3.03	ug/Kg
000123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	270	AB		4.94	ug/Kg
000119-61-9	Benzophenone	300	J		15.8	ug/Kg
000057-10-3	n-Hexadecanoic acid	600	J		18.1	ug/Kg
000203-64-5	4H-Cyclopenta[def]phenanthrene	110	J		18.3	ug/Kg
000057-11-4	Octadecanoic acid	78.0	J		19.5	ug/Kg
000295-65-8	Cyclohexadecane	160	J		21.3	ug/Kg
Q2928		2	29 of 57			

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 Matrix: **SOIL** Analytical Method: 8270E % Solid: 85.3 Sample Wt/Vol: 30.06 Final Vol: uL Units: 1000 g Soil Aliquot Vol: иL Test: SVOC-TCL BNA -20 Extraction Type: Decanted: Ν Level: LOW

Prep Method: SW3541

Injection Volume:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BP025594.D
 1
 08/25/25 08:55
 08/26/25 20:44
 PB169370

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units(Dry Weight)
000192-97-2	Benzo[e]pyrene	510	J	24.7	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q2928

LAB CHRONICLE

OrderID: Q2928

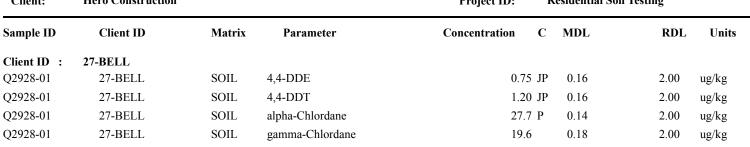
Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
			SVOC-TCL BNA -20	8270E		08/25/25	08/26/25	

Q2928 **31 of 57**



284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q2928 Order ID: Q2928

Client: Hero Construction Project ID: Residential Soil Testing

Total Concentration: 49.250

Q2928 32 of 57

SAMPLE DATA

7

Α

В

D

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: SDG No.: 27-BELL Q2928 SOIL Lab Sample ID: Q2928-01 Matrix:

Analytical Method: 8081B % Solid: 85.3 Decanted: Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume :

GPC Factor: 1.0 PH:

Prep Method:

SW3541B

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 PD090023.D
 1
 08/22/25 10:21
 08/22/25 19:58
 PB169360

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight
TARGETS						
319-84-6	alpha-BHC	0.15	U	0.15	2.00	ug/kg
319-85-7	beta-BHC	0.21	U	0.21	2.00	ug/kg
319-86-8	delta-BHC	0.46	U	0.46	2.00	ug/kg
58-89-9	gamma-BHC (Lindane)	0.16	U	0.16	2.00	ug/kg
76-44-8	Heptachlor	0.14	U	0.14	2.00	ug/kg
309-00-2	Aldrin	0.14	U	0.14	2.00	ug/kg
1024-57-3	Heptachlor epoxide	0.22	U	0.22	2.00	ug/kg
959-98-8	Endosulfan I	0.16	U	0.16	2.00	ug/kg
60-57-1	Dieldrin	0.16	U	0.16	2.00	ug/kg
72-55-9	4,4-DDE	0.75	JP	0.16	2.00	ug/kg
72-20-8	Endrin	0.16	U	0.16	2.00	ug/kg
33213-65-9	Endosulfan II	0.34	U	0.34	2.00	ug/kg
72-54-8	4,4-DDD	0.18	U	0.18	2.00	ug/kg
1031-07-8	Endosulfan Sulfate	0.15	U	0.15	2.00	ug/kg
50-29-3	4,4-DDT	1.20	JP	0.16	2.00	ug/kg
72-43-5	Methoxychlor	0.43	U	0.43	2.00	ug/kg
53494-70-5	Endrin ketone	0.22	U	0.22	2.00	ug/kg
7421-93-4	Endrin aldehyde	0.43	U	0.43	2.00	ug/kg
5103-71-9	alpha-Chlordane	27.7	P	0.14	2.00	ug/kg
5103-74-2	gamma-Chlordane	19.6		0.18	2.00	ug/kg
8001-35-2	Toxaphene	6.30	U	6.30	38.6	ug/kg
SURROGATES						
2051-24-3	Decachlorobiphenyl	19.3		20 - 144	96%	SPK: 20
877-09-8	Tetrachloro-m-xylene	17.7		19 - 148	88%	SPK: 20

Q2928 **34 of 57**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Date Collected:

Date Received:

SDG No.:

Matrix:

% Solid:

Final Vol:

Injection Volume:

Test:

08/21/25

08/21/25

Q2928

SOIL

85.3

10000

Pesticide-TCL

Decanted:

иL

Report of Analysis

Client: Hero Construction

Project: Residential Soil Testing

Client Sample ID: 27-BELL

Lab Sample ID: Q2928-01

Analytical Method: 8081B

Sample Wt/Vol: 30.05 Units: g

Soil Aliquot Vol: uL

Extraction Type:

GPC Factor: 1.0 PH:

Prep Method: SW3541B

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD090023.D 1 08/22/25 10:21 08/22/25 19:58 PB169360

CAS Number Parameter Conc. Qualifier MDL LOQ/CRQL Units

Comments:

U = Not Detected

LOO = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Q2928 **35 of 57**

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
			PCB Pesticide-TCL	8082A 8081B		08/22/25 08/22/25	08/22/25 08/22/25	

Q2928 **36 of 57**

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q2928 Order ID: Q2928

Client: Hero Construction Project ID: Residential Soil Testing

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

Total Concentration: 0.000

Q2928 **37 of 57**

8

A

C

SAMPLE DATA

Report of Analysis

Date Collected: Client: Hero Construction 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25

Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 Matrix: **SOIL**

% Solid: 85.3 Decanted: Analytical Method: 8082A Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL

PCB Soil Aliquot Vol: uL Test:

Extraction Type: Injection Volume:

g

PH: GPC Factor: 1.0

Prep Method: SW3541B

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PP074605.D 08/22/25 10:20 08/22/25 23:11 PB169359

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS						
12674-11-2	Aroclor-1016	4.60	U	4.60	19.9	ug/kg
11104-28-2	Aroclor-1221	4.70	U	4.70	19.9	ug/kg
11141-16-5	Aroclor-1232	4.40	U	4.40	19.9	ug/kg
53469-21-9	Aroclor-1242	4.70	U	4.70	19.9	ug/kg
12672-29-6	Aroclor-1248	6.90	U	6.90	19.9	ug/kg
11097-69-1	Aroclor-1254	3.80	U	3.80	19.9	ug/kg
37324-23-5	Aroclor-1262	5.90	U	5.90	19.9	ug/kg
11100-14-4	Aroclor-1268	4.20	U	4.20	19.9	ug/kg
11096-82-5	Aroclor-1260	3.80	U	3.80	19.9	ug/kg
SURROGATES						
877-09-8	Tetrachloro-m-xylene	19.1		32 - 144	96%	SPK: 20
2051-24-3	Decachlorobiphenyl	16.4		32 - 175	82%	SPK: 20

Comments:

- U = Not Detected
- LOO = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- E = Value Exceeds Calibration Range
- P = Indicates >25% difference for detected concentrations between the two GC columns
- Q = indicates LCS control criteria did not meet requirements
- M = MS/MSD acceptance criteria did not meet requirements

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- N = Presumptive Evidence of a Compound
- * = Values outside of QC limits
- D = Dilution
- S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.
- () = Laboratory InHouse Limit

Q2928

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
			PCB	8082A		08/22/25	08/22/25	

Q2928 **40 of 57**

Α

В

C

A

Q2928 41 of 57

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 Matrix: Solid Analytical Method: % Solid: **NJEPH** 85.3 Sample Wt/Vol: 30.09 Final Vol: 2000 Units: uL g Soil Aliquot Vol: иL Test: EPH F2

Prep Method:

Prep Date: Date Analyzed: Prep Batch ID 08/27/25 09:20 08/27/25 16:26 PB169422

Datafile

CAS Number	Parameter	Conc.	Qualifier	Dilution	MDL	LOQ / CRQL	Units(Dry Weight)
TARGETS Aliphatic C9-C28	8 Aliphatic C9-C28	14.5		1	1.06	4.68	mg/kg FE055538.D
Total EPH	Total EPH	14.5			1.06	4.68	mg/kg

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C28 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C28 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Q2928 42 of 57

Final Vol:

2000

uL

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 Matrix: Solid Analytical Method: % Solid: 85.3 **NJEPH**

uL Test: EPH_F2 Soil Aliquot Vol:

Prep Method:

Sample Wt/Vol:

30.09

Units:

File ID: Dilution: Prep Batch ID Prep Date: Date Analyzed: FE055538.D 1 08/27/25 08/27/25 PB169422

CAS Number	Parameter		Conc. Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
Aliphatic C9-C2	28	Aliphatic C9-C28	14.5	1.06	4.68	mg/kg
Aliphatic C28-C	C40	Aliphatic C28-C40	17.5	1.38	2.34	mg/kg
SURROGATES						
3383-33-2		1-chlorooctadecane (SURR)	28.5	40 - 140	57%	SPK: 50
84-15-1		ortho-Terphenyl (SURR)	23.6	40 - 140	47%	SPK: 50

43 of 57

Q2928

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q2928-01 Acq On: 27 Aug 2025 16:26

Client Sample ID: 27-BELL Operator: YP\AJ

Data file: FE055538.D Misc:

Instrument: FID_E ALS Vial: 14

Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.315	6.949	707090	6.055	300	ug/ml
Aliphatic C12-C16	6.950	10.402	1675553	13.38	200	ug/ml
Aliphatic C16-C21	10.403	13.780	6364307	50.349	300	ug/ml
Aliphatic C21-C28	13.781	17.453	13990261	116.096	400	ug/ml
Aliphatic C28-C40	17.454	22.472	25633025	224.876	600	ug/ml
Aliphatic EPH	3.315	22.472	48370236	410.756		ug/ml
ortho-Terphenyl (SURR)	12.078	12.078	3373623	23.62		ug/ml
1-chlorooctadecane (SURR)	13.515	13.515	3061220	28.47		ug/ml
Aliphatic C9-C28	3.315	17.453	22737211	185.88	1200	ug/ml

Q2928 44 of 57

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
			PCB	8082A		08/22/25	08/22/25	
			Pesticide-TCL	8081B		08/22/25	08/22/25	
			EPH_F2	NJEPH		08/27/25	08/27/25	

Q2928 **45 of 57**

Q2928

SDG No.:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900, Fax: 908 789 8922

Hit Summary Sheet SW-846

Q2928 Order ID:

Client:	Hero Construction			Project ID):	Residential Soil Testing		
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units
Client ID:	27-BELL							
Q2928-01	27-BELL	SOIL	Aluminum	7830		0.85	5.05	mg/Kg
Q2928-01	27-BELL	SOIL	Arsenic	5.59		0.19	1.01	mg/Kg
Q2928-01	27-BELL	SOIL	Barium	135		0.74	5.05	mg/Kg
Q2928-01	27-BELL	SOIL	Beryllium	0.55		0.025	0.30	mg/Kg
Q2928-01	27-BELL	SOIL	Cadmium	2.31		0.024	0.30	mg/Kg
Q2928-01	27-BELL	SOIL	Calcium	2110		11.2	101	mg/Kg
Q2928-01	27-BELL	SOIL	Chromium	13.6		0.047	0.51	mg/Kg
Q2928-01	27-BELL	SOIL	Cobalt	5.36		0.10	1.52	mg/Kg
Q2928-01	27-BELL	SOIL	Copper	46.9		0.22	1.01	mg/Kg
Q2928-01	27-BELL	SOIL	Iron	13700		4.03	5.05	mg/Kg
Q2928-01	27-BELL	SOIL	Lead	470		0.13	0.61	mg/Kg
Q2928-01	27-BELL	SOIL	Magnesium	1290		12.1	101	mg/Kg
Q2928-01	27-BELL	SOIL	Manganese	375		0.14	1.01	mg/Kg
Q2928-01	27-BELL	SOIL	Mercury	1.47	D	0.039	0.071	mg/Kg
Q2928-01	27-BELL	SOIL	Nickel	14.0		0.13	2.02	mg/Kg
Q2928-01	27-BELL	SOIL	Potassium	385		28.0	101	mg/Kg
Q2928-01	27-BELL	SOIL	Selenium	0.55	J	0.26	1.01	mg/Kg
Q2928-01	27-BELL	SOIL	Silver	0.71		0.12	0.51	mg/Kg
Q2928-01	27-BELL	SOIL	Sodium	91.2	J	18.0	101	mg/Kg
Q2928-01	27-BELL	SOIL	Vanadium	18.1		0.25	2.02	mg/Kg
Q2928-01	27-BELL	SOIL	Zinc	203		0.23	2.02	mg/Kg

Q2928 46 of 57

1

SAMPLE DATA

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Hero Construction Date Collected: 08/21/25 Project: Residential Soil Testing Date Received: 08/21/25 Client Sample ID: 27-BELL SDG No.: Q2928 Lab Sample ID: Q2928-01 Matrix: SOIL 85.3 Level (low/med): % Solid: low

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units(Dry	WeighP)rep Date	Date Ana.	Ana Met.	Prep Met.
7429-90-5	Aluminum	7830		1	0.85	5.05	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-36-0	Antimony	0.22	UN	1	0.22	2.53	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-38-2	Arsenic	5.59		1	0.19	1.01	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-39-3	Barium	135		1	0.74	5.05	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-41-7	Beryllium	0.55		1	0.025	0.30	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-43-9	Cadmium	2.31		1	0.024	0.30	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-70-2	Calcium	2110		1	11.2	101	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-47-3	Chromium	13.6	N	1	0.047	0.51	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-48-4	Cobalt	5.36		1	0.10	1.52	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-50-8	Copper	46.9		1	0.22	1.01	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7439-89-6	Iron	13700		1	4.03	5.05	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7439-92-1	Lead	470		1	0.13	0.61	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7439-95-4	Magnesium	1290		1	12.1	101	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7439-96-5	Manganese	375		1	0.14	1.01	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7439-97-6	Mercury	1.47	D	5	0.039	0.071	mg/Kg	08/25/25 15:50	08/26/25 11:12	7471B	
7440-02-0	Nickel	14.0		1	0.13	2.02	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-09-7	Potassium	385		1	28.0	101	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7782-49-2	Selenium	0.55	J	1	0.26	1.01	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-22-4	Silver	0.71		1	0.12	0.51	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-23-5	Sodium	91.2	J	1	18.0	101	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-28-0	Thallium	0.23	UN	1	0.23	2.02	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-62-2	Vanadium	18.1		1	0.25	2.02	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050
7440-66-6	Zinc	203		1	0.23	2.02	mg/Kg	08/22/25 10:35	08/25/25 14:12	6010D	SW3050

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts:

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q2928

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
			Mercury Metals ICP-TAL	7471B 6010D		08/25/25 08/22/25	08/26/25 08/25/25	

Q2928 **49 of 57**

1

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Report of Analysis

Client: Date Collected: 08/21/25 13:06

Project: Residential Soil Testing Date Received: 08/21/25

Client Sample ID: 27-BELL SDG No.: Q2928

Lab Sample ID: Q2928-01 Matrix: SOIL

% Solid: 85.3

Parameter	Conc. Qua.	DF MDL	LOQ / CRQL	Units(Dry Weight) Prep Date	Date Ana.	Ana Met.
Cyanide	0.048 U	1 0.048	0.28	mg/Kg 08/25/25 08:05	08/25/25 15:34	9012B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

51 of 57

LAB CHRONICLE

OrderID: Q2928

Client: Hero Construction
Contact: Khadija Smith

OrderDate: 8/21/2025 12:10:14 PM

Project: Residential Soil Testing Location: D31,VOA Ref. #2 Soil

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q2928-01	27-BELL	SOIL			08/21/25			08/21/25
					13:06			
			Cyanide	9012B		08/25/25	08/25/25	
							15:34	

Q2928 **52 of 57**

SHIPPING DOCUMENTS

Q2928 **53 of 57**

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 · Fax (908) 789-8922 www.chemtech.net

ALLIANCE	PROJECT	NO.
QUOTE NO		

COC Number

2047907

CLIENT INFORMATION REPORT TO BE SENT TO:			CLIENT PROJECT INFORMATION									CLIEN	T BILLI	NG INFO	ORMATION			
COMPANY:	PROJECT NAME: Residential soil Tes					Test	BILL TO:				PO#:							
ADDRESS:	27 Bell Street	PROJECT NO.: LOCATION:						ADDRESS:										
CITY O(Zuge STATE:N ZIP:	PROJEC	CT M	ANAG	BER:					_	CITY	1A	4	_		STAT	E:	:ZIP:
ATTENTION:	Khadija Smith	e-mail:							ATTENTION:			PHONE:						
PHONE:	FAX:	PHONE: FAX:									ANA	ALYSIS		- 3,				
	DATA TURNAROUND INFORMATION			ATAC	DELIVE	RABLE IN	FORM.	ATION			سر		V	JA		9		
FAX (RUSH) HARDCOPY (D) EDD: *TO BE APPRO STANDARD HA	□ Level	12 (Re 3 (Re w Dat	esults esults ta)	+ QC) 🗆 + QC 🗅	Level 4 (QC NJ Reduced NYS ASP A Other	i 🗆 US	EPA CL		Dige Dige	-	530 530 5	JOL	BNP Tel	OIA 8	/9			
			SAN	IPLE	T SAI	MPLE	S				PRES	SERVA	TIVES				CC	MMENTS
ALLIANCE SAMPLE ID	PROJECT SAMPLE IDENTIFICATION	SAMPLE MATRIX	COMP			TIME	# OF BOTTLES	1	2	3	4	5	6	7	8	9	← Speci A-HCI B-HN03 C-H2SO4	fy Preservatives D-NaOH E-ICE F-OTHER
1.	27 BEIL	SOL	Х		8:21:25	1306	4	X	X	X	X							
2.	<u></u>	1		Χ	L	1310	4					X						
3.																		
4.																		
5.																		
6.																		
7.																		
8.																		
9.																		
10.																		. 1
7	SAMPLE CUSTODY MUST BE DOC							_										
RELINQUISHED	Y SAMPLER: DATE/TIME: 1324 RECEIVED BY:	1 × X	1	#	Condition	ons of bottles	or coolers	at receipt	0 00	MPLIANT	NON	COMPLIA	NT Ag	OOLER TE	MP	3.	7,000,1	_ ℃
1. RELINQUISHED B	Y SAMPLER: DATE/TIME: 1324 RECEIVED BY: B. 21. 2025 1. DATE Y SAMPLER: DATE/TIME: RECEIVED BY:	yapı	(V([]	m	Commer	115.00	001	VUI	VINT	1	501	10	ta	1 5"	- 2	000	1-01	٩
2.	2.				-													ì.
RELINQUISHED B) (Page	1_ of	T	CLIENT	: 0	Hand De	livered	B 0	ther					t Complete
Copyright © 2024	WHITE - ALLIANC	E COPY FOI	R RETI	JRN TO	_			NCE COP	Y	PINK - S	AMPLER	COPY					U 159	□ NO.

S.	4
evectories laborated labor	The state of the s
	and the same
- E225	A
B)	
d Linear	
Aloteloge	
a)	
0	
Charles Gareli	
and the same	Department of the Bendandand

Work Order #:	Service Order #:	1100	Project Name:
*	er#:	7257	Residen
	,	2	dential

l	j	1	
Client Project Coordinator & Phone:	Sampler Name: Xzwvzn	Chemtech Order ID:	

	111		
Depart Time:	Arrive.	Date:	1000 H
Time:	Time:	Ġ	
1324	12:4	21.20	of
	0	W	

e Matrices (circle all that applications)	tream (circle one): drum / roll-off /soil			set i Liver: Ply ochemiech.net
, missi construction / frac-tank	Stream (circle one): drum / roll-off /soil pile / in-situ / linear construction / r		CANCE TO STREET Arrive Time:	ite Address: 20 2 11 11
		Depart Time:	Arrive Time:	Page.

Facility/Site: Labor WBS #:

PID Readings (range):

PPM

Odor: Y / N

Temp (range):

Grid/Area Composite Map: Field Observations: Sample Description:

QA Control # A3041134

Sampler Signature: 8-21-2025 7- 48" 18 x 25 x 55 x 84 x 34 x 34 222 = 22

Supervisor Review/Date:

Date/Time Arrived at I.L.

Client Signature:

Donigh

Q2928

Laboratory Certification

Certified By	License No.
CAS EPA CLP Contract	68HERH20D0011
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255424 Rev 1
	222.42
New Jersey	20012
New York	11376
New Tork	11070
Pennsylvania	68-00548
,	
Soil Permit	525-24-234-08441
Texas	TX-C25-00189
Virginia	460312

QA Control Code: A2070148

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

LOGIN REPORT/SAMPLE TRANSFER

Order ID: Q2928

Invoice Contact: Khadija Smith

HERO01

Order Date: 8/21/2025 12:10:14 PM

Client Name: Hero Construction

Project Name: Residential Soil Testing

Client Contact: Khadija Smith

Receive DateTime: 8/21/2025 12:00:00 AM

Invoice Name: Hero Construction

Purchase Order:

Project Mgr:

Report Type: Level 1

EDD Type: EQUIS

Hard Copy Date:

Date Signoff:

LAB ID	CLIENT ID	MATRIX SAMPLE DATE	SAMPLE TIME	TEST	TEST GROUP	METHOD	FAX DATE	DUE DATES
Q2928-02	27-BELL	Solid 08/21/2025	13:10	VOC-TCLVOA-10		8260D	5 1 0 B us. Days	

En cols

Studied mr. A
FRZH 02

Relinguished By:

Date / Time : \$ 22 25

Received By:

Date / Time:

Storage Area: VOA Refridgerator Room