

DATA PACKAGE

GENERAL CHEMISTRY
METALS
GC SEMI-VOLATILES
SEMI-VOLATILE ORGANICS
VOLATILE ORGANICS

PROJECT NAME: MCUA - NEW BRUNSWICK

ROMAN E&G CORP 14 Ogden St

Newark, NJ - 07104

Phone No: 973-482-1123

ORDER ID: Q3604

ATTENTION: Amanda Gentle

Table Of Contents for Q3604

1) Signature Page	3
2) Case Narrative	5
3) Qualifier Page	9
4) QA Checklist	11
5) TCLP VOA Data	12
6) TCLP BNA Data	17
7) TCLP Pesticide Data	23
8) PCB Data	29
9) TCLP Herbicide Data	34
10) EPH_NF Data	40
11) Metals-TCLP Data	48
12) Genchem Data	53
13) Shipping Document	57
13.1) CHAIN OF CUSTODY	58
13.2) Lab Certificate	59

Q3604 **2 of 59**

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labora	atory Name :	Alliance Technical Group LLC		Client :	Roman E&G Co	orp				
Projec	t Location:	New Brunswick		Project Number :	25-717					
Labora	atory Sample ID	(s): Q3604		Sampling Date(s):	11/10/2025					
List DI	KQP Methods U	lsed (e.g., 8260,8270, et Cetra)	,1030,1 8260D,	311,1311 ZHE, 6010 8270E,9012B,9034,	DD,7470A,8081B 9045D,NJEPH	,8082	A,815	1 A ,		
1 For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?									No	
1A	Were the meth	od specified handling, preserva	tion, and I	holding time requirer	nents met?		Yes	\checkmark	No	
1B		Was the EPH method conducted frespective DKQ methods)	l without s	significant modification	ons (see	V	Yes		No	□ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?								No	
3	Were samples	received at an appropriate temp	erature (4	4±2° C)?			Yes	$\overline{\mathbf{A}}$	No	□ N/A
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?							V	No	
5		ng limits specified or referenced to the laboratory prior to sampl				$\overline{\mathbf{A}}$	Yes		No	
	b)Were these r	reporting limits met?				V	Yes		No	□ N/A
6	results reporte	rtical method referenced in this I ed for all constituents identified in the DKQP documents and/or site	n the met	hod-specific analyte		V	Yes		No	
7	Are project-spe	ecific matrix spikes and/or labora	atory dupl	icates included in thi	s data set?		Yes	V	No	

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information should be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

Q3604 3 of 59

S-2

Cover Page

Order ID:	Q3604
-----------	-------

Q3604-02

Project ID: MCUA - New Brunswick

Client: Roman E&G Corp

Lab Sample Number Q3604-01 Client Sample Number S-1

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature :		
Jigilature .	 Date:	11/17/2025

NYDOH CERTIFICATION NO - 11376 NJDEP CERTIFICATION NO - 20012

Q3604 4 of 59

CASE NARRATIVE

Roman E&G Corp

Project Name: MCUA - New Brunswick

Project # N/A Order ID # Q3604

Test Name: TCLP VOA, TCLP BNA, EPH_NF, PCB, TCLP Herbicide, TCLP Pesticide, TCLP ICP Metals, TCLP Mercury, Corrosivity, Ignitability, Reactive

Cyanide, Reactive Sulfide

A. Number of Samples and Date of Receipt:

2 Solid samples were received on 11/10/2025.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: TCLP VOA,TCLP BNA,EPH_NF,PCB,TCLP Herbicide,TCLP Pesticide,TCLP ICP Metals,TCLP Mercury,Corrosivity,Ignitability,Reactive Cyanide,Reactive Sulfide. This data package contains results for TCLP VOA(8260D),TCLP BNA(8270E),EPH_NF(NJEPH),PCB(8082A),TCLP Herbicide(8151A),TCLP Pesticide(8081B),TCLP ICP Metals(6010D),TCLP Mercury(7470A),Corrosivity(9045D),Ignitability(1030),Reactive Cyanide(9012B),Reactive Sulfide(9034).

C. Analytical Techniques:

TCLP VOA: The analysis performed on instrument MSVOA_X were done using GC column DB-624UI 20m 0.18mm 1.0 um. Cat#121-1324UI. The analysis of TCLP VOA was based on method 8260D and TCLP extraction method was 1311.

TCLP BNA: The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um df. The analysis of TCLP BNA was based on method 8270E and extraction was done based on method 3510 and TCLP extraction method was 1311.

PCB : The analyses were performed on instrument GCECD_P. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11. The analyses were performed on instrument GCECD_O. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalogue # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 μ m; Catalogue # 7HM-G017-11. The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

Q3604 5 of 59

TCLP Pesticide: The analysis was performed on instrument ECD_D. The front column is ZB-MR1 which is 30 meters, 0.32 mm ID, 0. 5 um df,: Catalog # 7HM-G016-17. The rear column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HMG017- 11. The analysis of TCLP Pesticides was based on method 8081B and extraction was done based on method 3510 and TCLP extraction method was 1311.

EPH_NF: The analysis were performed on instrument FID_E. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 10224. The analysis were performed on instrument FID_G. The column is RXI-1MS which is 20 meters, 0.18mm ID, 0.18 um df, catalog 13302. The analysis of EPH_NFs was based on method NJEPH and extraction was done based on method 3541.

TCLP Herbicide: The analysis was performed on instrument ECD_S. The front column is RTX-CLPesticides which is 30 meters, 0.32 mm ID, 0.5 um df,: Catalog # 11139. The rear column is RTX-CLPesticides2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 11324. The analysis of TCLP Herbicides was based on method 8151A and extraction was done based on method 3510 and TCLP extraction method was 1311.

TCLP ICP Metals, TCLP Mercury: The analysis of TCLP ICP Metals was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of TCLP Mercury was based on method 7470A and TCLP extraction method was 1311

Wetchem: The analysis of Corrosivity, Ignitability, Reactive Cyanide, Reactive Sulfide was based on method 1030,9012B,9034,9045D and extraction was done based on method 8015B.

D. QA/ QC Samples:

The Holding Times were met for all analysis except following Wetchem: S-1 of Corrosivity and for S-2 of Corrosivity as samples were receive out of holding time.

The Surrogate recoveries were met for all analysis except following TCLP Herbicide: PB170516BL [2,4-DCAA(2)48%], PB170493TB [2,4-DCAA(2)48%]S-1MSD [2,4-DCAA(1)67%], S-2 [2 and4-DCAA(1)68%]. These compounds did not meet the NJDKQP criteria but met the in-house criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except following TCLP Herbicide: The MS {Q3604-01MS} with File ID: PS032388.D recoveries met the requirements for all compounds except for [2,4,5-TP(Silvex)(1)51% - 2,4,5-TP(Silvex)(2)50%] and [2,4-D(1)45% - 2,4-D(2)47%]. These compounds did not meet the NJDKQP criteria and in-house criteria, due to matrix interference.

Q3604 **6 of 59**

TCLP ICP Metals, TCLP Mercury: The Matrix Spike (S-2MS) analysis met criteria for all compounds except for Barium due to Chemical Interference during Digestion Process.

The MSD recoveries met the requirements for all compounds except following TCLP Herbicide: The MSD {Q3604-01MSD} with File ID: PS032389.D recoveries met the requirements for all compounds except for [2,4,5-TP(Silvex)(1)51%] and [2,4-D(1)45% - 2,4-D(2)56%]. These compounds did not meet the NJDKQP criteria and inhouse criteria, due to matrix interference.

TCLP ICP Metals, TCLP Mercury: The Matrix Spike Duplicate (S-2MSD) analysis met criteria for all compounds except for Barium due to Chemical Interference during Digestion Process.

The RPD were met for all analysis except following

TCLP Herbicide: The RPD for {Q3604-01MSD} with File ID: PS032389.D met criteria except for [2,4,5-TP(Silvex)(2)-41%]. Due to difference in MS and MSD concentrations.

The Blank Spike met requirements for all compounds.

The Blank Spike Duplicate met requirements for all compounds.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements except following

TCLP BNA: The Continuous Calibration File ID BF144230.D met the requirements except for Pyridine. Failing high but associated samples have no positive hit for this compound therefore noc orrective action was taken.

The Tuning criteria met requirements.

The Duplicate analysis met criteria for all samples.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

The soil samples results are based on a dry weight basis.

The temperature of the samples at the time of receipt was 15.7°C.

TCLP ICP Metals, TCLP Mercury: The Post Digest Spike (S-2A) analysis met criteria for all compounds except for Barium due to unknown chemical interference of matrix with the addition of spike amount after digestion and before analysis; matrix has suppression effect during addition of spike.

TCLP VOA: Samples for MS/MSD for VOC analysis were not provided with this set of samples. The Blank Spike Duplicate is reported with the data.

Trip Blank was not provided with this set of samples.

Q3604 7 of 59

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		
Signature		

Q3604 **8 of 59**

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

- J Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates the analyte was analyzed for, but not detected.
- ND Indicates the analyte was analyzed for, but not detected
- E Indicates the reported value is estimated because of the presence of interference
- M Indicates Duplicate injection precision not met.
- N Indicates the spiked sample recovery is not within control limits.
- S Indicates the reported value was determined by the Method of Standard Addition (MSA).
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for the MSA is less than 0.995.
- D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- M Method qualifiers
 - **"P"** for ICP instrument
 - "PM" for ICP when Microwave Digestion is used
 - "CV" for Manual Cold Vapor AA
 - "AV" for automated Cold Vapor AA
 - "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi –Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - **"T"** for Titrimetric
 - "NR" for analyte not required to be analyzed
- OR Indicates the analyte's concentration exceeds the calibrated range of the
 - instrument for that specific analysis.
- Q Indicates the LCS did not meet the control limits requirements
- H Sample Analysis Out Of Hold Time

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. " $10\mathrm{U}$ ". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

Alliance

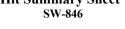
APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: Q3604

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	<u> </u>
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	' ' ' ' ' '
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u> </u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	' ' ' ' ' '
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

QA Review Signature: SOHIL JODHANI Date: 11/17/2025


Q3604 **11 of 59**

Hit Summary Sheet

SDG No.: Q3604

Client: Roman E&G Corp

Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units
Client ID:	S-1							
Q3604-01	S-1	TCLP	2-Butanone	5.70	J	0.98	25.0	ug/L
			Total Voc:	5.70				
			Total Concentration:	5.70				
Client ID:	S-2							
Q3604-02	S-2	TCLP	2-Butanone	4.80	J	0.98	25.0	ug/L
			Total Voc:	4.80				
			Total Concentration:	4.80				

Q3604 12 of 59

SAMPLE DATA

5

Α

D

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01 Analytical Method: 8260D

analytical Method: 8260D Level: LOW

Sample Wt/Vol: 5 mL Final Vol: 5000 uL

Date Collected: 11/10/25
Date Received: 11/10/25
SDG No.: Q3604
Matrix: TCLP
% Solid: 0

Test: TCLP VOA

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
75-01-4	Vinyl Chloride	0.26	U	1	0.26	5.00	ug/L	11/12/25 12:40	VX111225
75-35-4	1,1-Dichloroethene	0.23	U	1	0.23	5.00	ug/L	11/12/25 12:40	VX111225
78-93-3	2-Butanone	5.70	J	1	0.98	25.0	ug/L	11/12/25 12:40	VX111225
56-23-5	Carbon Tetrachloride	0.25	U	1	0.25	5.00	ug/L	11/12/25 12:40	VX111225
67-66-3	Chloroform	0.25	U	1	0.25	5.00	ug/L	11/12/25 12:40	VX111225
71-43-2	Benzene	0.15	U	1	0.15	5.00	ug/L	11/12/25 12:40	VX111225
107-06-2	1,2-Dichloroethane	0.22	U	1	0.22	5.00	ug/L	11/12/25 12:40	VX111225
79-01-6	Trichloroethene	0.090	U	1	0.090	5.00	ug/L	11/12/25 12:40	VX111225
127-18-4	Tetrachloroethene	0.23	U	1	0.23	5.00	ug/L	11/12/25 12:40	VX111225
108-90-7	Chlorobenzene	0.12	U	1	0.12	5.00	ug/L	11/12/25 12:40	VX111225
SURROGAT	TES								
17060-07-0	1,2-Dichloroethane-d4	53.9			70 (74) - 130 (125)	108%	SPK: 50		
1868-53-7	Dibromofluoromethane	44.0			70 (75) - 130 (124)	88%	SPK: 50		
2037-26-5	Toluene-d8	48.8			70 (86) - 130 (113)	98%	SPK: 50		
460-00-4	4-Bromofluorobenzene	54.7			70 (77) - 130 (121)	109%	SPK: 50		
INTERNAL	STANDARDS	Area C	ount						
363-72-4	Pentafluorobenzene	179000							
540-36-3	1,4-Difluorobenzene	357000							
3114-55-4	Chlorobenzene-d5	369000							
3855-82-1	1,4-Dichlorobenzene-d4	192000							

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q3604 **14 of 59**

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-2
Lab Sample ID: Q3604-02
Analytical Method: 8260D

Analytical Method: 8260D Level: LOW

Sample Wt/Vol: 5 mL Final Vol: 5000 uL

Date Collected: 11/10/25
Date Received: 11/10/25
SDG No.: Q3604
Matrix: TCLP
% Solid: 0

Test: TCLP VOA

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	_ Units	Date Ana.	BatchID
TARGETS									
75-01-4	Vinyl Chloride	0.26	U	1	0.26	5.00	ug/L	11/12/25 13:00	VX111225
75-35-4	1,1-Dichloroethene	0.23	U	1	0.23	5.00	ug/L	11/12/25 13:00	VX111225
78-93-3	2-Butanone	4.80	J	1	0.98	25.0	ug/L	11/12/25 13:00	VX111225
56-23-5	Carbon Tetrachloride	0.25	U	1	0.25	5.00	ug/L	11/12/25 13:00	VX111225
67-66-3	Chloroform	0.25	U	1	0.25	5.00	ug/L	11/12/25 13:00	VX111225
71-43-2	Benzene	0.15	U	1	0.15	5.00	ug/L	11/12/25 13:00	VX111225
107-06-2	1,2-Dichloroethane	0.22	U	1	0.22	5.00	ug/L	11/12/25 13:00	VX111225
79-01-6	Trichloroethene	0.090	U	1	0.090	5.00	ug/L	11/12/25 13:00	VX111225
127-18-4	Tetrachloroethene	0.23	U	1	0.23	5.00	ug/L	11/12/25 13:00	VX111225
108-90-7	Chlorobenzene	0.12	U	1	0.12	5.00	ug/L	11/12/25 13:00	VX111225
SURROGAT	ES								
17060-07-0	1,2-Dichloroethane-d4	57.1			70 (74) - 130 (125)	114%	SPK: 50		
1868-53-7	Dibromofluoromethane	45.5			70 (75) - 130 (124)	91%	SPK: 50		
2037-26-5	Toluene-d8	51.4			70 (86) - 130 (113)	103%	SPK: 50		
460-00-4	4-Bromofluorobenzene	55.4			70 (77) - 130 (121)	111%	SPK: 50		
INTERNAL	STANDARDS	Area C	ount						
363-72-4	Pentafluorobenzene	213000							
540-36-3	1,4-Difluorobenzene	430000							
3114-55-4	Chlorobenzene-d5	445000							
3855-82-1	1,4-Dichlorobenzene-d4	215000							

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Q3604 **15 of 59**

LAB CHRONICLE

OrderID: Q3604

Client: Roman E&G Corp
Contact: Amanda Gentle

OrderDate: 11/10/2025 4:28:38 PM
Project: MCUA - New Brunswick

Location: D41

ClientID Sample Date **Prep Date** Received LabID Matrix Test Method **Anal Date** Q3604-01 11/10/25 S-1 **TCLP** 11/10/25 TCLP VOA 8260D 11/12/25 Q3604-02 11/10/25 S-2 **TCLP** 11/10/25 TCLP VOA 8260D 11/12/25

Q3604 **16 of 59**

Hit Summary Sheet SW-846

SDG No.: Q3604

Client: Roman E&G Corp

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

0.000

Total Svoc: 0.00
Total Concentration: 0.00

Q3604 17 of 59

6

Е

SAMPLE DATA

Q3604 **18 of 59**

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: PB170493TB Lab Sample ID: PB170493TB

Analytical Method: 8270E Level: LOW

Sample Wt/Vol: 100 mL Final Vol: 1000 uL

Prep Method: SW3541 Prep Date: 11/12/25

Date Collected:	11/12/25
Date Received:	11/12/25
SDG No.:	Q3604
Matrix:	TCLP
% Solid:	0

TCLP BNA Test:

CAS Numbe	r Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana. Prep BatchID
TARGETS								
110-86-1	Pyridine	12.8	U	1	12.8	50.0	ug/L	11/12/25 19:20 PB170515
106-46-7	1,4-Dichlorobenzene	5.30	U	1	5.30	50.0	ug/L	11/12/25 19:20 PB170515
95-48-7	2-Methylphenol	11.2	U	1	11.2	50.0	ug/L	11/12/25 19:20 PB170515
65794-96-9	3+4-Methylphenols	11.0	U	1	11.0	100	ug/L	11/12/25 19:20 PB170515
67-72-1	Hexachloroethane	6.50	U	1	6.50	50.0	ug/L	11/12/25 19:20 PB170515
98-95-3	Nitrobenzene	7.60	U	1	7.60	50.0	ug/L	11/12/25 19:20 PB170515
87-68-3	Hexachlorobutadiene	5.40	U	1	5.40	50.0	ug/L	11/12/25 19:20 PB170515
88-06-2	2,4,6-Trichlorophenol	5.10	U	1	5.10	50.0	ug/L	11/12/25 19:20 PB170515
95-95-4	2,4,5-Trichlorophenol	6.20	U	1	6.20	50.0	ug/L	11/12/25 19:20 PB170515
121-14-2	2,4-Dinitrotoluene	12.2	U	1	12.2	50.0	ug/L	11/12/25 19:20 PB170515
118-74-1	Hexachlorobenzene	5.20	U	1	5.20	50.0	ug/L	11/12/25 19:20 PB170515
87-86-5	Pentachlorophenol	15.8	U	1	15.8	100	ug/L	11/12/25 19:20 PB170515
SURROGATI	ES							
367-12-4	2-Fluorophenol	119			15 (10) - 110 (134)	79%	SPK: 1:	50
13127-88-3	Phenol-d6	123			15 (10) - 110 (135)	82%	SPK: 1:	50
4165-60-0	Nitrobenzene-d5	84.3			30 (39) - 130 (138)	84%	SPK: 10	00
321-60-8	2-Fluorobiphenyl	76.1			30 (52) - 130 (132)	76%	SPK: 10	00
118-79-6	2,4,6-Tribromophenol	114			15 (44) - 110 (137)	76%	SPK: 1:	50
1718-51-0	Terphenyl-d14	95.6			30 (42) - 130 (152)	96%	SPK: 10	00
INTERNAL S	TANDARDS	Area C	ount					
3855-82-1	1,4-Dichlorobenzene-d4	43200)					
1146-65-2	Naphthalene-d8	16900	00					
15067-26-2	Acenaphthene-d10	97700)					
1517-22-2	Phenanthrene-d10	16600	00					
1719-03-5	Chrysene-d12	88200)					
1520-96-3	Perylene-d12	10300	00					

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01

Analytical Method: 8270E Level: LOW

Sample Wt/Vol: 100 mL Final Vol: 1000 uL

Prep Method: SW3541 Prep Date: 11/12/25

Date Collected:	11/10/25
Date Received:	11/10/25
SDG No.:	Q3604
Matrix:	TCLP
% Solid:	0

TCLP BNA Test:

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana. Prep BatchID
Pyridine	12.8	U	1	12.8	50.0	ug/L	11/12/25 19:50 PB170515
1,4-Dichlorobenzene	5.30	U	1	5.30	50.0	ug/L	11/12/25 19:50 PB170515
2-Methylphenol	11.2	U	1	11.2	50.0	ug/L	11/12/25 19:50 PB170515
3+4-Methylphenols	11.0	U	1	11.0	100	ug/L	11/12/25 19:50 PB170515
Hexachloroethane	6.50	U	1	6.50	50.0	ug/L	11/12/25 19:50 PB170515
Nitrobenzene	7.60	U	1	7.60	50.0	ug/L	11/12/25 19:50 PB170515
Hexachlorobutadiene	5.40	U	1	5.40	50.0	ug/L	11/12/25 19:50 PB170515
2,4,6-Trichlorophenol	5.10	U	1	5.10	50.0	ug/L	11/12/25 19:50 PB170515
2,4,5-Trichlorophenol	6.20	U	1	6.20	50.0	ug/L	11/12/25 19:50 PB170515
2,4-Dinitrotoluene	12.2	U	1	12.2	50.0	ug/L	11/12/25 19:50 PB170515
Hexachlorobenzene	5.20	U	1	5.20	50.0	ug/L	11/12/25 19:50 PB170515
Pentachlorophenol	15.8	U	1	15.8	100	ug/L	11/12/25 19:50 PB170515
2-Fluorophenol	113			15 (10) - 110 (134)	76%	SPK: 15	50
Phenol-d6	110			15 (10) - 110 (135)	73%	SPK: 15	50
Nitrobenzene-d5	86.8			30 (39) - 130 (138)	87%	SPK: 10	00
2-Fluorobiphenyl	80.3			30 (52) - 130 (132)	80%	SPK: 10	00
2,4,6-Tribromophenol	120			15 (44) - 110 (137)	80%	SPK: 15	50
Terphenyl-d14	84.8			30 (42) - 130 (152)	85%	SPK: 10	00
ANDARDS	Area Co	ount					
1,4-Dichlorobenzene-d4	38700						
Naphthalene-d8	14900	0					
Acenaphthene-d10	83500						
Phenanthrene-d10	14000	0					
Chrysene-d12	78400						
Perylene-d12	90800						
	Pyridine 1,4-Dichlorobenzene 2-Methylphenol 3+4-Methylphenols Hexachloroethane Nitrobenzene Hexachlorobutadiene 2,4,6-Trichlorophenol 2,4-5-Trichlorophenol 2,4-Dinitrotoluene Hexachlorobenzene Pentachlorophenol 2-Fluorophenol 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14 ANDARDS 1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12	Pyridine 12.8 1,4-Dichlorobenzene 5.30 2-Methylphenol 11.2 3+4-Methylphenols 11.0 Hexachloroethane 6.50 Nitrobenzene 7.60 Hexachlorobutadiene 5.40 2,4,6-Trichlorophenol 5.10 2,4,5-Trichlorophenol 6.20 2,4-Dinitrotoluene 12.2 Hexachlorobenzene 5.20 Pentachlorophenol 15.8 2-Fluorophenol 15.8 2-Fluorophenol 13 Phenol-d6 110 Nitrobenzene-d5 86.8 2-Fluorobiphenyl 80.3 2,4,6-Tribromophenol 120 Terphenyl-d14 84.8 ANDARDS Area Collaboration 83500 Phenanthrene-d10 83500 Phenanthrene-d10 14000 Chrysene-d12 78400	Pyridine 12.8 U 1,4-Dichlorobenzene 5.30 U 2-Methylphenol 11.2 U 3+4-Methylphenols 11.0 U Hexachloroethane 6.50 U Nitrobenzene 7.60 U Hexachlorobutadiene 5.40 U 2,4,6-Trichlorophenol 5.10 U 2,4,5-Trichlorophenol 6.20 U 2,4-Dinitrotoluene 12.2 U Hexachlorobenzene 5.20 U Pentachlorophenol 15.8 U 2-Fluorophenol 15.8 U 2-Fluorophenol 15.8 U 2-Fluorophenol 12.2 U 2-Fluorophenol 15.8 U 2-Fluorophenol 12.2 U 2-Fluorophenol 13 Phenol-d6 110 Nitrobenzene-d5 86.8 2-Fluorobiphenyl 80.3 2,4,6-Tribromophenol 120 Terphenyl-d14 84.8 ANDARDS Area Count 1,4-Dichlorobenzene-d4 38700 Naphthalene-d8 149000 Acenaphthene-d10 83500 Phenanthrene-d10 140000 Chrysene-d12 78400	Pyridine 12.8 U 1 1,4-Dichlorobenzene 5.30 U 1 2-Methylphenol 11.2 U 1 3+4-Methylphenols 11.0 U 1 Hexachloroethane 6.50 U 1 Nitrobenzene 7.60 U 1 Hexachlorobutadiene 5.40 U 1 2,4,6-Trichlorophenol 5.10 U 1 2,4,5-Trichlorophenol 6.20 U 1 2,4-Dinitrotoluene 12.2 U 1 Hexachlorobenzene 5.20 U 1 Pentachlorophenol 15.8 U 1 2-Fluorophenol 15.8 U 1 2-Fluorophenol 12.8 U 1 2-Fluorophenol 12.9 U 1 2-Fluorophenol 12.9 U 1 2-Fluorophenol 13 Phenol-d6 110 Nitrobenzene-d5 86.8 2-Fluorobiphenyl 80.3 2,4,6-Tribromophenol 120 Terphenyl-d14 84.8 ANDARDS Area Count 1,4-Dichlorobenzene-d4 Naphthalene-d8 149000 Acenaphthene-d10 83500 Phenanthrene-d10 140000 Chrysene-d12 78400	Pyridine 12.8 U 1 12.8 1,4-Dichlorobenzene 5.30 U 1 5.30 2-Methylphenol 11.2 U 1 11.2 3+4-Methylphenols 11.0 U 1 11.0 Hexachloroethane 6.50 U 1 6.50 Nitrobenzene 7.60 U 1 7.60 Hexachlorobutadiene 5.40 U 1 5.40 2,4,6-Trichlorophenol 5.10 U 1 5.10 2,4,5-Trichlorophenol 6.20 U 1 6.20 2,4-Dinitrotoluene 12.2 U 1 12.2 Hexachlorobenzene 5.20 U 1 5.20 Pentachlorophenol 15.8 U 1 15.8 2-Fluorophenol 15.8 U 1 15.8 2-Fluorophenol 113 15 (10) - 110 (134) Phenol-d6 110 15 (10) - 110 (135) Nitrobenzene-d5 86.8 30 (39) - 130 (138) 2,4,6-Tribromophenol 120 15 (44) - 110 (137) Terphenyl-d14 84.8 30 (42) - 130 (152) ANDARDS Area Count 1,4-Dichlorobenzene-d4 38700 Naphthalene-d8 149000 Phenanthrene-d10 140000 Chrysene-d12 78400	Pyridine 12.8 U 1 12.8 50.0 1,4-Dichlorobenzene 5.30 U 1 5.30 50.0 2-Methylphenol 11.2 U 1 11.2 50.0 3+4-Methylphenols 11.0 U 1 11.0 100 Hexachloroethane 6.50 U 1 6.50 50.0 Nitrobenzene 7.60 U 1 7.60 50.0 Hexachlorobutadiene 5.40 U 1 5.40 50.0 2,4,6-Trichlorophenol 5.10 U 1 5.10 50.0 2,4,5-Trichlorophenol 6.20 U 1 6.20 50.0 Hexachlorobenzene 5.20 U 1 5.20 50.0 Hexachlorobenzene 5.20 U 1 5.20 50.0 Phenachlorophenol 15.8 U 1 15.8 100	Pyridine 12.8 U 1 12.8 50.0 ug/L 1,4-Dichlorobenzene 5.30 U 1 5.30 50.0 ug/L 2-Methylphenol 11.2 U 1 11.2 50.0 ug/L 3+4-Methylphenols 11.0 U 1 11.0 100 ug/L 4-Methylphenols 11.0 U 1 11.0 100 ug/L 4-Methylphenols 11.0 U 1 11.0 100 ug/L 4-Methylphenols 11.0 U 1 5.40 50.0 ug/L 6-Mexachloroethane 6.50 U 1 6.50 50.0 ug/L 6-Mexachlorobutadiene 5.40 U 1 5.40 50.0 ug/L 6-Mexachlorobutadiene 5.40 U 1 5.40 50.0 ug/L 6.2,4,6-Trichlorophenol 5.10 U 1 5.10 50.0 ug/L 6.2,4-Dinitrotoluene 12.2 U 1 12.2 50.0 ug/L 6-Mexachlorobenzene 5.20 U 1 5.20 50.0 ug/L 6-Mexachlorobenzene 5.20 U 1 5.20 50.0 ug/L 6-Mexachlorophenol 15.8 U 1 15.8 100 ug/L 6-Mexachlorophenol 15.8 U 1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-2 Lab Sample ID: Q3604-02

Analytical Method: 8270E Level: LOW

Sample Wt/Vol: 100 mL Final Vol: 1000 uL Prep Method: SW3541 Prep Date: 11/12/25 Date Collected: 11/10/25
Date Received: 11/10/25
SDG No.: Q3604
Matrix: TCLP
% Solid: 0

Test: TCLP BNA

CAS Numbe	er Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana. Prep BatchID
TARGETS								
110-86-1	Pyridine	12.8	U	1	12.8	50.0	ug/L	11/12/25 21:19 PB170515
106-46-7	1,4-Dichlorobenzene	5.30	U	1	5.30	50.0	ug/L	11/12/25 21:19 PB170515
95-48-7	2-Methylphenol	11.2	U	1	11.2	50.0	ug/L	11/12/25 21:19 PB170515
65794-96-9	3+4-Methylphenols	11.0	U	1	11.0	100	ug/L	11/12/25 21:19 PB170515
67-72-1	Hexachloroethane	6.50	U	1	6.50	50.0	ug/L	11/12/25 21:19 PB170515
98-95-3	Nitrobenzene	7.60	U	1	7.60	50.0	ug/L	11/12/25 21:19 PB170515
87-68-3	Hexachlorobutadiene	5.40	U	1	5.40	50.0	ug/L	11/12/25 21:19 PB170515
88-06-2	2,4,6-Trichlorophenol	5.10	U	1	5.10	50.0	ug/L	11/12/25 21:19 PB170515
95-95-4	2,4,5-Trichlorophenol	6.20	U	1	6.20	50.0	ug/L	11/12/25 21:19 PB170515
121-14-2	2,4-Dinitrotoluene	12.2	U	1	12.2	50.0	ug/L	11/12/25 21:19 PB170515
118-74-1	Hexachlorobenzene	5.20	U	1	5.20	50.0	ug/L	11/12/25 21:19 PB170515
87-86-5	Pentachlorophenol	15.8	U	1	15.8	100	ug/L	11/12/25 21:19 PB170515
SURROGAT	ES							
367-12-4	2-Fluorophenol	119			15 (10) - 110 (134)	79%	SPK: 15	50
13127-88-3	Phenol-d6	114			15 (10) - 110 (135)	76%	SPK: 15	50
4165-60-0	Nitrobenzene-d5	90.9			30 (39) - 130 (138)	91%	SPK: 10	00
321-60-8	2-Fluorobiphenyl	84.7			30 (52) - 130 (132)	85%	SPK: 10	00
118-79-6	2,4,6-Tribromophenol	134			15 (44) - 110 (137)	89%	SPK: 15	50
1718-51-0	Terphenyl-d14	82.6			30 (42) - 130 (152)	83%	SPK: 10	00
INTERNAL S	STANDARDS	Area C	ount					
3855-82-1	1,4-Dichlorobenzene-d4	38000)					
1146-65-2	Naphthalene-d8	15100	00					
15067-26-2	Acenaphthene-d10	83600)					
1517-22-2	Phenanthrene-d10	14700	00					
1719-03-5	Chrysene-d12	78500)					
1520-96-3	Perylene-d12	60400)					

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

LAB CHRONICLE

Q3604 OrderID:

Roman E&G Corp Client: Contact:

Amanda Gentle

11/10/2025 4:28:38 PM OrderDate:

Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	TCLP			11/10/25			11/10/25
			TCLP BNA	8270E		11/12/25	11/12/25	
Q3604-02	S-2	TCLP			11/10/25			11/10/25
			TCLP BNA	8270E		11/12/25	11/12/25	

Q3604 22 of 59

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q3604 Order ID: Q3604

Client: Roman E&G Corp Project ID: MCUA - New Brunswick

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

Total Concentration: 0.000

Q3604 **23 of 59**

Α

_

SAMPLE DATA

Q3604 **24 of 59**

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp

Project: MCUA - New Brunswick

Client Sample ID: PB170493TB Lab Sample ID: PB170493TB Analytical Method: 8081B

Sample Wt/Vol: 100 mL Final Vol: 10000 uL

Prep Method: SW3541B Prep Date: 11/12/25 Date Collected:

Date Received: 11/12/25 SDG No.: O3604 **TCLP** Matrix:

% Solid: 0

Test: TCLP Pesticide

CAS Number	· Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
58-89-9	gamma-BHC (Lindane)	0.037	U	1	0.037	0.50	ug/L	11/12/25 22:15	PB170498
76-44-8	Heptachlor	0.027	U	1	0.027	0.50	ug/L	11/12/25 22:15	PB170498
1024-57-3	Heptachlor epoxide	0.096	U	1	0.096	0.50	ug/L	11/12/25 22:15	PB170498
72-20-8	Endrin	0.032	U	1	0.032	0.50	ug/L	11/12/25 22:15	PB170498
72-43-5	Methoxychlor	0.11	U	1	0.11	0.50	ug/L	11/12/25 22:15	PB170498
8001-35-2	Toxaphene	1.70	U	1	1.70	10.0	ug/L	11/12/25 22:15	PB170498
57-74-9	Chlordane	0.88	U	1	0.88	5.00	ug/L	11/12/25 22:15	PB170498
SURROGAT	ES								
2051-24-3	Decachlorobiphenyl	23.8			30 (31) - 150 (149)	119%	SPK: 20		
877-09-8	Tetrachloro-m-xylene	21.8			30 (41) - 150 (134)	109%	SPK: 20		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements Q3604

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01 Analytical Method: 8081B

Sample Wt/Vol: 100 mL Final Vol: 10000 uL

Prep Method: SW3541B Prep Date: 11/12/25 Date Collected: 11/10/25 Date Received: 11/10/25 SDG No.: Q3604 **TCLP** Matrix: % Solid: 0

Test: TCLP Pesticide

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
58-89-9	gamma-BHC (Lindane)	0.037	U	1	0.037	0.50	ug/L	11/12/25 22:29	PB170498
76-44-8	Heptachlor	0.027	U	1	0.027	0.50	ug/L	11/12/25 22:29	PB170498
1024-57-3	Heptachlor epoxide	0.096	U	1	0.096	0.50	ug/L	11/12/25 22:29	PB170498
72-20-8	Endrin	0.032	U	1	0.032	0.50	ug/L	11/12/25 22:29	PB170498
72-43-5	Methoxychlor	0.11	U	1	0.11	0.50	ug/L	11/12/25 22:29	PB170498
8001-35-2	Toxaphene	1.70	U	1	1.70	10.0	ug/L	11/12/25 22:29	PB170498
57-74-9	Chlordane	0.88	U	1	0.88	5.00	ug/L	11/12/25 22:29	PB170498
SURROGATE	ES								
2051-24-3	Decachlorobiphenyl	20.0			30 (31) - 150 (149)	100%	SPK: 20		
877-09-8	Tetrachloro-m-xylene	20.6			30 (41) - 150 (134)	103%	SPK: 20		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements Q3604

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: S-2 Lab Sample ID: Q3604-02 Analytical Method: 8081B

Sample Wt/Vol: 100 mL Final Vol: 10000 uL

Prep Method: SW3541B Prep Date: 11/12/25 Date Collected: 11/10/25 Date Received: 11/10/25 SDG No.: Q3604 **TCLP** Matrix: % Solid: 0

Test: TCLP Pesticide

CAS Number	· Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
58-89-9	gamma-BHC (Lindane)	0.037	U	1	0.037	0.50	ug/L	11/12/25 23:10	PB170498
76-44-8	Heptachlor	0.027	U	1	0.027	0.50	ug/L	11/12/25 23:10	PB170498
1024-57-3	Heptachlor epoxide	0.096	U	1	0.096	0.50	ug/L	11/12/25 23:10	PB170498
72-20-8	Endrin	0.032	U	1	0.032	0.50	ug/L	11/12/25 23:10	PB170498
72-43-5	Methoxychlor	0.11	U	1	0.11	0.50	ug/L	11/12/25 23:10	PB170498
8001-35-2	Toxaphene	1.70	U	1	1.70	10.0	ug/L	11/12/25 23:10	PB170498
57-74-9	Chlordane	0.88	U	1	0.88	5.00	ug/L	11/12/25 23:10	PB170498
SURROGAT	ES								
2051-24-3	Decachlorobiphenyl	24.6			30 (31) - 150 (149)	123%	SPK: 20		
877-09-8	Tetrachloro-m-xylene	19.5			30 (41) - 150 (134)	98%	SPK: 20		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements Q3604

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

LAB CHRONICLE

OrderID: Q3604

Client: Roman E&G Corp
Contact: Amanda Gentle

OrderDate: Project:

Location: D41

11/10/2025 4:28:38 PM

MCUA - New Brunswick

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/13/25	
			TCLP Herbicide	8151A		11/12/25	11/12/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	
Q3604-02	S-2	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/12/25	
			TCLP Herbicide	8151A		11/12/25	11/13/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	

Q3604 **28 of 59**

A

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q3604 Order ID: Q3604

Client: Roman E&G Corp Project ID: MCUA - New Brunswick

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

Total Concentration: 0.000

Q3604 **29 of 59**

8

SAMPLE DATA

Q3604 **30 of 59**

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01 Analytical Method: 8082A

Sample Wt/Vol: 30.03 g Final Vol: 10000 uL Prep Method: SW3541B Prep Date: 11/12/25

Date Collected: 11/10/25
Date Received: 11/10/25
SDG No.: Q3604
Matrix: SOIL
% Solid: 82.8
Test: PCB

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
12674-11-2	Aroclor-1016	4.80	U	1	4.80	20.5	ug/kg	11/12/25 13:53	PB170497
11104-28-2	Aroclor-1221	4.90	U	1	4.90	20.5	ug/kg	11/12/25 13:53	PB170497
11141-16-5	Aroclor-1232	4.50	U	1	4.50	20.5	ug/kg	11/12/25 13:53	PB170497
53469-21-9	Aroclor-1242	4.80	U	1	4.80	20.5	ug/kg	11/12/25 13:53	PB170497
12672-29-6	Aroclor-1248	7.10	U	1	7.10	20.5	ug/kg	11/12/25 13:53	PB170497
11097-69-1	Aroclor-1254	3.90	U	1	3.90	20.5	ug/kg	11/12/25 13:53	PB170497
37324-23-5	Aroclor-1262	6.10	U	1	6.10	20.5	ug/kg	11/12/25 13:53	PB170497
11100-14-4	Aroclor-1268	4.30	U	1	4.30	20.5	ug/kg	11/12/25 13:53	PB170497
11096-82-5	Aroclor-1260	3.90	U	1	3.90	20.5	ug/kg	11/12/25 13:53	PB170497
SURROGATI	ES								
877-09-8	Tetrachloro-m-xylene	27.9			30 (21) - 150 (165)	140%	SPK: 20		
2051-24-3	Decachlorobiphenyl	20.1			30 (10) - 150 (170)	101%	SPK: 20		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

 $M = MS/MSD \ acceptance \ criteria \ did \ not \ meet \ requirements \ Q3604$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-2 Lab Sample ID: Q3604-02 Analytical Method: 8082A

Sample Wt/Vol: 30.06 g Final Vol: 10000 uL Prep Method: SW3541B Prep Date: 11/12/25 Date Collected: 11/10/25
Date Received: 11/10/25
SDG No.: Q3604
Matrix: SOIL
% Solid: 82.7
Test: PCB

РСВ

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
12674-11-2	Aroclor-1016	4.80	U	1	4.80	20.5	ug/kg	11/12/25 14:10	PB170497
11104-28-2	Aroclor-1221	4.90	U	1	4.90	20.5	ug/kg	11/12/25 14:10	PB170497
11141-16-5	Aroclor-1232	4.50	U	1	4.50	20.5	ug/kg	11/12/25 14:10	PB170497
53469-21-9	Aroclor-1242	4.80	U	1	4.80	20.5	ug/kg	11/12/25 14:10	PB170497
12672-29-6	Aroclor-1248	7.10	U	1	7.10	20.5	ug/kg	11/12/25 14:10	PB170497
11097-69-1	Aroclor-1254	3.90	U	1	3.90	20.5	ug/kg	11/12/25 14:10	PB170497
37324-23-5	Aroclor-1262	6.10	U	1	6.10	20.5	ug/kg	11/12/25 14:10	PB170497
11100-14-4	Aroclor-1268	4.30	U	1	4.30	20.5	ug/kg	11/12/25 14:10	PB170497
11096-82-5	Aroclor-1260	3.90	U	1	3.90	20.5	ug/kg	11/12/25 14:10	PB170497
SURROGATI	ES								
877-09-8	Tetrachloro-m-xylene	28.7			30 (21) - 150 (165)	143%	SPK: 20		
2051-24-3	Decachlorobiphenyl	20.9			30 (10) - 150 (170)	104%	SPK: 20		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

 $M = MS/MSD \ acceptance \ criteria \ did \ not \ meet \ requirements \ Q3604$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

LAB CHRONICLE

OrderID: Q3604

Client: Roman E&G Corp
Contact: Amanda Gentle

OrderDate: 11/10/2025 4:28:38 PM

Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/13/25	
			TCLP Herbicide	8151A		11/12/25	11/12/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	
Q3604-02	S-2	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/12/25	
			TCLP Herbicide	8151A		11/12/25	11/13/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	

Q3604 **33 of 59**

Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: Q3604 Order ID: Q3604

Client: Roman E&G Corp Project ID: MCUA - New Brunswick

Sample ID Client ID Matrix Parameter Concentration C MDL RDL Units

Client ID:

Total Concentration: 0.000

Q3604 **34 of 59**

SAMPLE DATA

9

Α

Q3604 **35 of 59**

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Date Collected:

Project:MCUA - New BrunswickDate Received:11/12/25Client Sample ID:PB170493TBSDG No.:Q3604Lab Sample ID:PB170493TBMatrix:TCLPAnalytical Method:8151A% Solid:0

Sample Wt/Vol: 100 mL Final Vol: 10000 uL Test: TCLP Herbicide

Prep Method: 8151A Prep Date: 11/12/25

CAS Number	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
94-75-7	2,4-D	9.20	U	1	9.20	20.0	ug/L	11/12/25 22:28	PB170516
93-72-1	2,4,5-TP (Silvex)	7.80	U	1	7.80	20.0	ug/L	11/12/25 22:28	PB170516
SURROGAT	ES								
19719-28-9	2,4-DCAA	405			70 (24) - 130 (167)	81%	SPK: 500		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements Q3604

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Fax: 908 789 8922

Report of Analysis

Client:Roman E&G CorpDate Collected:11/10/25Project:MCUA - New BrunswickDate Received:11/10/25Client Sample ID:S-1SDG No.:Q3604Lab Sample ID:Q3604-01Matrix:TCLP

Lab Sample ID:Q3604-01Matrix:TCLPAnalytical Method:8151A% Solid:0Sample Wt/Vol:100 mLFinal Vol: 10000 uLTest:TCLP Herbicide

Prep Method: 8151A Prep Date: 11/12/25

CAS Number	Parameter	Conc.	Qua. D	F MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS								
94-75-7	2,4-D	9.20	U 1	9.20	20.0	ug/L	11/12/25 22:52	PB170516
93-72-1	2,4,5-TP (Silvex)	7.80	U 1	7.80	20.0	ug/L	11/12/25 22:52	PB170516
SURROGAT	ES							
19719-28-9	2,4-DCAA	367		70 (24) - 1	30 (167) 73%	SPK: 500)	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements Q3604

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Date Collected: 11/10/25 Project: MCUA - New Brunswick Date Received: 11/10/25 Client Sample ID: S-2 SDG No.: Q3604 Lab Sample ID: **TCLP** Q3604-02 Matrix: Analytical Method: 8151A % Solid: 0

Sample Wt/Vol: 100 mL Final Vol: 10000 uL Test: TCLP Herbicide

Prep Method: 8151A Prep Date: 11/12/25

CAS Number	· Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Date Ana.	BatchID
TARGETS									
94-75-7	2,4-D	9.20	U	1	9.20	20.0	ug/L	11/13/25 00:05	PB170516
93-72-1	2,4,5-TP (Silvex)	7.80	U	1	7.80	20.0	ug/L	11/13/25 00:05	PB170516
SURROGAT	ES								
19719-28-9	2,4-DCAA	385			70 (24) - 130 (167)	77%	SPK: 500		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

 $M = MS/MSD \ acceptance \ criteria \ did \ not \ meet \ requirements \ Q3604$

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

() = Laboratory InHouse Limit

LAB CHRONICLE

Q3604 OrderID:

Roman E&G Corp Client: Contact:

Amanda Gentle

11/10/2025 4:28:38 PM OrderDate:

Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/13/25	
			TCLP Herbicide	8151A		11/12/25	11/12/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	
Q3604-02	S-2	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/12/25	
			TCLP Herbicide	8151A		11/12/25	11/13/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	

Q3604 39 of 59

10

SAMPLE DATA

Q3604 **40 of 59**

Report of Analysis

Client: Roman E&G Corp Date Collected: 11/10/25 Project: MCUA - New Brunswick Date Received: 11/10/25

Client Sample ID: S-1 SDG No.: Q3604 Lab Sample ID: Matrix: Solid Q3604-01 Analytical Method: **NJEPH** % Solid: 82.8 Sample Wt/Vol: 30.09 g Final Vol: 2000 uL Test: EPH NF

Prep Method: Prep Date: 11/12/25

CAS Number	Parameter	Conc.	Qua	. DF	MDL	LOQ / CRQL	Units	Datafile	Date Ana.	Prep BatchID
TARGETS										
Aliphatic C28-C40	Aliphatic C28-C40	6.04		1	1.42	2.41	mg/kg	FE056813.D	11/13/25 11	:59 PB170504
Aliphatic C9-C28	Aliphatic C9-C28	2.79	J	1	1.10	4.81	mg/kg	FE056813.D	11/13/25 11	:59 PB170504
Total AliphaticEPH	Total AliphaticEPH	8.83			2.52	7.22	mg/kg			
Total EPH	Total EPH	8.83			2.52	7.22	mg/kg			

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C40 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C40 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01 Analytical Method: NJEPH Sample Wt/Vol:

30.09 g Final Vol: 2000 uL

Prep Method: Prep Date 11/12/25 Date Collected: 11/10/25 Date Received: 11/10/25 SDG No.: Q3604 Solid Matrix: % Solid: 82.8

Test: EPH_NF

CAS Number	Parameter	Conc.	Qu	a. DF	MDL	LOQ / CRQL	Units	Date Ana.	Prep BatchID
TARGETS									
Aliphatic C9-C28	Aliphatic C9-C28	2.79	J	1	1.10	4.81	mg/kg	11/13/25	PB170504
Aliphatic C28-C40	Aliphatic C28-C40	6.04		1	1.42	2.41	mg/kg	11/13/25	PB170504
SURROGATES									
3383-33-2	1-chlorooctadecane (SURF	26.3			40 - 140	53%	SPK: 50)	
84-15-1	ortho-Terphenyl (SURR)	31.9			40 - 140	64%	SPK: 50)	

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Acq On: Q3604-01 13 Nov 2025 11:59

Client Sample ID: S-1 Operator: $YP \backslash AJ$

Data file: FE056813.D Misc:

Instrument: FID_E ALS Vial: 14 Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.214	6.836	361458	2.112	300	ug/ml
Aliphatic C12-C16	6.837	10.282	950871	5.319	200	ug/ml
Aliphatic C16-C21	10.283	13.654	5094185	27.314	300	ug/ml
Aliphatic C21-C28	13.655	17.323	1151775	5.975	400	ug/ml
Aliphatic C28-C40	17.324	22.256	11992573	75.276	600	ug/ml
Aliphatic EPH	3.214	22.256	19550862	115.996		ug/ml
ortho-Terphenyl (SURR)	11.952	11.952	6668866	31.92		ug/ml
1-chlorooctadecane (SURR)	13.389	13.389	4232525	26.27		ug/ml
Aliphatic C9-C28	3.214	17.323	7558289	40.72	1200	ug/ml

Q3604 43 of 59

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Date Collected: 11/10/25
Project: MCUA - New Brunswick Date Received: 11/10/25

Project: Client Sample ID: S-2 SDG No.: Q3604 Lab Sample ID: Matrix: Solid Q3604-02 Analytical Method: **NJEPH** % Solid: 82.7 Sample Wt/Vol: 30.06 g Final Vol: 2000 uL Test: EPH NF

Prep Method: Prep Date: 11/12/25

CAS Number	Parameter	Conc.	Qua	. DF	MDL	LOQ / CRQL	Units	Datafile	Date Ana.	Pr	ep BatchID
TARGETS											
Aliphatic C28-C40	Aliphatic C28-C40	14.8		1	1.42	2.41	mg/kg	FG016890.D	11/12/25	19:53	PB170504
Aliphatic C9-C28	Aliphatic C9-C28	1.10	U	1	1.10	4.84	mg/kg	FG016890.D	11/12/25	19:53	PB170504
Total AliphaticEPI	H Total AliphaticEPH	14.8			2.52	7.25	mg/kg				
Total EPH	Total EPH	14.8			2.52	7.25	mg/kg				

^{*} As samples are not fractionated, all aliphatic and aromatic carbon compounds in the C9-C40 carbon range are calculated against the aliphatic calibration curve, and reported as Aliphatic EPH. Therefore, the aliphatic C9-C40 concentration for the sample is reported as the Total EPH.

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp Project: MCUA - New Brunswick

Client Sample ID: S-2 Lab Sample ID: Q3604-02 Analytical Method: NJEPH

Sample Wt/Vol: 30.06 g Final Vol: 2000 uL

Prep Method: Prep Date 11/12/25

Date Collected:	11/10/25
Date Received:	11/10/25
SDG No.:	Q3604
Matrix:	Solid
% Solid:	82.7

Test: EPH_NF

CAS Number	Parameter	Conc.	Qua	ı. DF	MDL	LOQ / CRQL	Units	Date Ana.	Prep BatchID
TADOFTO									
TARGETS Aliphatic C9-C28	Aliphatic C9-C28	1.10	U	1	1.10	4.84	mg/kg	11/12/25	PB170504
Aliphatic C28-C40	Aliphatic C28-C40	14.8	Ü	1	1.42	2.41	mg/kg	11/12/25	PB170504
. CHIND O CATERO									
SURROGATES									
3383-33-2	1-chlorooctadecane (SURR	22.1			40 - 140	44%	SPK: 50)	
84-15-1	ortho-Terphenyl (SURR)	27.3			40 - 140	55%	SPK: 50)	

Q3604 45 of 59

Quantitation Report For Aliphatic EPH Range.

Lab Sample ID: Q3604-02 Acq On: 12 Nov 2025 19:53

Client Sample ID: S-2 Operator: YP\AJ

Data file: FG016890.D Misc:

Instrument: FID_G ALS Vial: 42
Dilution Factor: 1 Sample Multiplier: 1.00

Compound	R.T.		Response	Conc	highest_standard	Units
Aliphatic C9-C12	3.261	6.902	266020	2.18	300	ug/ml
Aliphatic C12-C16	6.903	10.360	546581	4.449	200	ug/ml
Aliphatic C16-C21	10.361	13.749	366073	2.765	300	ug/ml
Aliphatic C21-C28	13.750	17.437	644077	4.632	400	ug/ml
Aliphatic C28-C40	17.438	22.463	20954866	184.146	600	ug/ml
Aliphatic EPH	3.261	22.463	22777617	198.174		ug/ml
ortho-Terphenyl (SURR)	12.041	12.041	4304570	27.26		ug/ml
1-chlorooctadecane (SURR)	13.487	13.487	2660630	22.09		ug/ml
Aliphatic C9-C28	3.261	17.437	1822751	14.026	1200	ug/ml

Q3604 **46 of 59**

LAB CHRONICLE

Q3604 OrderID:

Roman E&G Corp Client: Contact:

Amanda Gentle

11/10/2025 4:28:38 PM OrderDate:

Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/13/25	
			TCLP Herbicide	8151A		11/12/25	11/12/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	
Q3604-02	S-2	SOIL			11/10/25			11/10/25
			PCB	8082A		11/12/25	11/12/25	
			EPH_NF	NJEPH		11/12/25	11/12/25	
			TCLP Herbicide	8151A		11/12/25	11/13/25	
			TCLP Pesticide	8081B		11/12/25	11/12/25	

Q3604 47 of 59

Q3604

SDG No.:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone : 908 789 8900, Fax : 908 789 8922

Hit Summary Sheet SW-846

Order ID: Q3604

Client: Roman E&G Corp Project ID: MCUA - New Brunswick

Circut.	Roman Eac Corp			Trojecti	•	Weell new Branswick		
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	RDL	Units
Client ID:	S-1							
Q3604-01	S-1	TCLP	Barium	341		7.28	50.0	ug/L
Q3604-01	S-1	TCLP	Chromium	5.32		1.06	5.00	ug/L
Q3604-01	S-1	TCLP	Lead	6.11		1.15	6.00	ug/L
Client ID:	S-2							
Q3604-02	S-2	TCLP	Barium	395		7.28	50.0	ug/L
Q3604-02	S-2	TCLP	Chromium	4.51	J	1.06	5.00	ug/L
Q3604-02	S-2	TCLP	Lead	2.84	J	1.15	6.00	ug/L
O3604-02	S-2	TCLP	Mercury	0.83	J	0.76	2.00	ug/L

SAMPLE DATA

Report of Analysis

Client: Roman E&G Corp Date Collected: 11/10/25
Project: MCUA - New Brunswick Date Received: 11/10/25

Client Sample ID:S-1SDG No.:Q3604Lab Sample ID:Q3604-01Matrix:TCLPLevel (low/med):low% Solid:0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7440-38-2	Arsenic	2.56	U	1	2.56	10.0	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7440-39-3	Barium	341	N	1	7.28	50.0	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7440-43-9	Cadmium	0.25	U	1	0.25	3.00	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7440-47-3	Chromium	5.32		1	1.06	5.00	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7439-92-1	Lead	6.11		1	1.15	6.00	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7439-97-6	Mercury	0.76	U	1	0.76	2.00	ug/L	11/12/25 11:30	11/12/25 15:05	7470A	7470A
7782-49-2	Selenium	4.82	U	1	4.82	10.0	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050
7440-22-4	Silver	0.81	U	1	0.81	5.00	ug/L	11/12/25 12:30	11/12/25 18:43	6010D	SW3050

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q3604

Fax: 908 789 8922

Report of Analysis

Client:Roman E&G CorpDate Collected:11/10/25Project:MCUA - New BrunswickDate Received:11/10/25Client Sample ID:S-2SDG No.:Q3604

Lab Sample ID: Q3604-02 Matrix: TCLP Level (low/med): low % Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	Prep Met.
7440-38-2	Arsenic	2.56	U	1	2.56	10.0	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7440-39-3	Barium	395	N	1	7.28	50.0	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7440-43-9	Cadmium	0.25	U	1	0.25	3.00	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7440-47-3	Chromium	4.51	J	1	1.06	5.00	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7439-92-1	Lead	2.84	J	1	1.15	6.00	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7439-97-6	Mercury	0.83	J	1	0.76	2.00	ug/L	11/12/25 11:30	11/12/25 15:07	7470A	7470A
7782-49-2	Selenium	4.82	U	1	4.82	10.0	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050
7440-22-4	Silver	0.81	U	1	0.81	5.00	ug/L	11/12/25 12:30	11/12/25 18:47	6010D	SW3050

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Q3604

LAB CHRONICLE

OrderID: Q3604

Client: Roman E&G Corp
Contact: Amanda Gentle

OrderDate: 11/10/2025 4:28:38 PM
Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	TCLP			11/10/25			11/10/25
			TCLP ICP Metals	6010D		11/12/25	11/12/25	
			TCLP Mercury	7470A		11/12/25	11/12/25	
Q3604-02	S-2	TCLP			11/10/25			11/10/25
			TCLP ICP Metals	6010D		11/12/25	11/12/25	
			TCLP Mercury	7470A		11/12/25	11/12/25	

Q3604 **52 of 59**

SAMPLE DATA

Q3604 53 of 59

Fax: 908 789 8922

Report of Analysis

Client: Roman E&G Corp
Project: MCUA - New Brunswick

Client Sample ID: S-1 Lab Sample ID: Q3604-01 Date Collected: 11/10/25 14:40

Date Received: 11/10/25 SDG No.: Q3604 Matrix: SOIL % Solid: 82.8

			_							_
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Corrosivity	7.70	Н	1	0	0	рН		11/12/25 14:25	9045D	
Ignitability	NO		1	0	0	oC		11/11/25 12:55	1030	
Reactive Cyanide	0.0084	U	1	0.0084	0.050	mg/Kg	11/12/25 11:00	11/12/25 16:15	9012B	
Reactive Sulfide	4.78	J	1	0.20	10.0	mg/Kg	11/11/25 16:05	11/12/25 09:37	9034	

Comments: pH result reported at temperature 20.6 °C

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

54 of 59

Q3604

Roman E&G Corp

Client:

284 Sheffield Street, Mountainside, New Jersey 07092, Phone: 908 789 8900,

Fax: 908 789 8922

Project: MCUA - New Brunswick Date Received: 11/10/25 Client Sample ID: S-2 SDG No.: Q3604 Lab Sample ID: Matrix: SOIL Q3604-02

% Solid: 82.7

Date Collected: 11/10/25 14:45

										_
Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Corrosivity	8.66	Н	1	0	0	рН		11/12/25 14:37	9045D	
Ignitability	NO		1	0	0	oC		11/11/25 13:03	1030	
Reactive Cyanide	0.0084	U	1	0.0084	0.050	mg/Kg	11/12/25 11:00	11/12/25 16:22	9012B	
Reactive Sulfide	3.16	J	1	0.20	10.0	mg/Kg	11/11/25 16:05	11/12/25 09:42	9034	

Report of Analysis

Comments: pH result reported at temperature 20.1 °C

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q3604

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

55 of 59

LAB CHRONICLE

OrderID: Q3604

Client:

Roman E&G Corp

Contact: Amanda Gentle

OrderDate: 11/10/2025 4:28:38 PM

Project: MCUA - New Brunswick

Location: D41

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
Q3604-01	S-1	SOIL			11/10/25			11/10/25
					14:40			
			Corrosivity	9045D			11/12/25	
							14:25	
			Ignitability	1030			11/11/25	
							12:55	
			Reactive Cyanide	9012B		11/12/25	11/12/25	
							16:15	
			Reactive Sulfide	9034		11/11/25	11/12/25	
							09:37	
Q3604-02	S-2	SOIL			11/10/25			11/10/25
Q5004 02	32	3012			14:45			11, 10, 25
			Corrosivity	9045D			11/12/25	
							14:37	
			Ignitability	1030			11/11/25	
							13:03	
			Reactive Cyanide	9012B		11/12/25	11/12/25	
							16:22	
			Reactive Sulfide	9034		11/11/25	11/12/25	
							09:42	

Q3604 **56 of 59**

SHIPPING DOCUMENTS

Q3604 **57 of 59**

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 · Fax (908) 789-8922 www.chemtech.net

ALLIANCE PROJECT NO.

QUOTE NO.

COC Number 2046994

	CLIEN	TINFORMATION	700				CLIENT P	ROJECT IN	FORM.	ATION	149	4	11.53	100		CLIEN	IT BILLI	NG INF	ORMATION	
COMPANY:		RTTO BE SENT TO:	G	PROJE	CT.N	MAN	E: N :	ew Br	ws-	~ icK	- 45	RP	BILL	o: /	Ron	N L	29 6	, >	PO#: 6	25-717
ADDRESS:	1401	SDEN.	57	PROJEC	CT NO	D.: 💣	25-71	7 LOCA	TION:	Neu	Bru	* Norti	ADDF	ESS:	14	06	DE-	J S		
CITY Ne	WHICK		UJZIP: OZIOY	PROJEC	CT MA	ANAG	ER: A	naND/	4 6	en	le		CITY	NE	2000	RK		STA	TE: NJ	:ZIP: 07/0
ATTENTION:	AMA	DA Ge	atle	e-mail:	En	Q ₁	neer	@ Ron	han	eq.	con				-					73-482-11
	173-63	8218				900		218 FA		J								ALYSIS		
FIIONE.	DATA TURNAI	ROUND INFORM	ATION	THORE				RABLE IN		ATION		0.00		اللالإ		,		,	بسب	
EDD: AS	VED BY CHEM		DAYS*DAYS*DAYS* S 10 BUSINESS	□ Leve	I 2 (Re I 3 (Re aw Dat	sults - sults - a)	+ QC) U + QC U	Level 4 (QC NJ Reduced NYS ASP A Other	d 🗆 US	S EPA C	LP /	/3.	/4	/5	6	/	/8	/9.		
ALLIANCE		222122			SAM			MPLE ECTION	LES				PRE	SERVA	TIVES					DMMENTS fy Preservatives
SAMPLE ID	S	PROJECT AMPLE IDENTIF		SAMPLE MATRIX	COMP	GRAB I	DATE	TIME	# OF BOTTLES	1	2	3	4	5	6	7	8	9	A-HCI B-HN03 C-H2SO4	D-NaOH E-ICE F-OTHER
1. 5-1	NBL	SRP Sta	ckfile	5			11/10	2:40 A	. 7	İ										
2. S-2		SRP Sto		S			11/10	2:45 Pa												
3.																				
4.	-																			7
5.	1																			
6.																				
7.																				
8.																				
9.																				
10.																				
RELINQUISHED B 1. X Q RELINQUISHED B 2. RELINQUISHED B 3.	Y SAMPLER:	DATE/TIME: 11/10/25	RECEIVED BY: RECEIVED BY: RECEIVED BY: 3.		161 10	8	Condition	ons of bottles onts:	AMA	at receip	ii: 000	Dei	S NON	COMPLIA CKK	nt oc Pil	OOLER TE	MP	9 1	AS P	t Complete

Laboratory Certification

Certified By	License No.
Connecticut	PH-0830
DOD ELAP (ANAB)	L2219
Maine	2024021
Maryland	296
New Hampshire	255425
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	525-24-234-08441
Texas	TX-C25-00189
Virginia	460312

QA Control Code: A2070148

Q3604 **59 of 59**