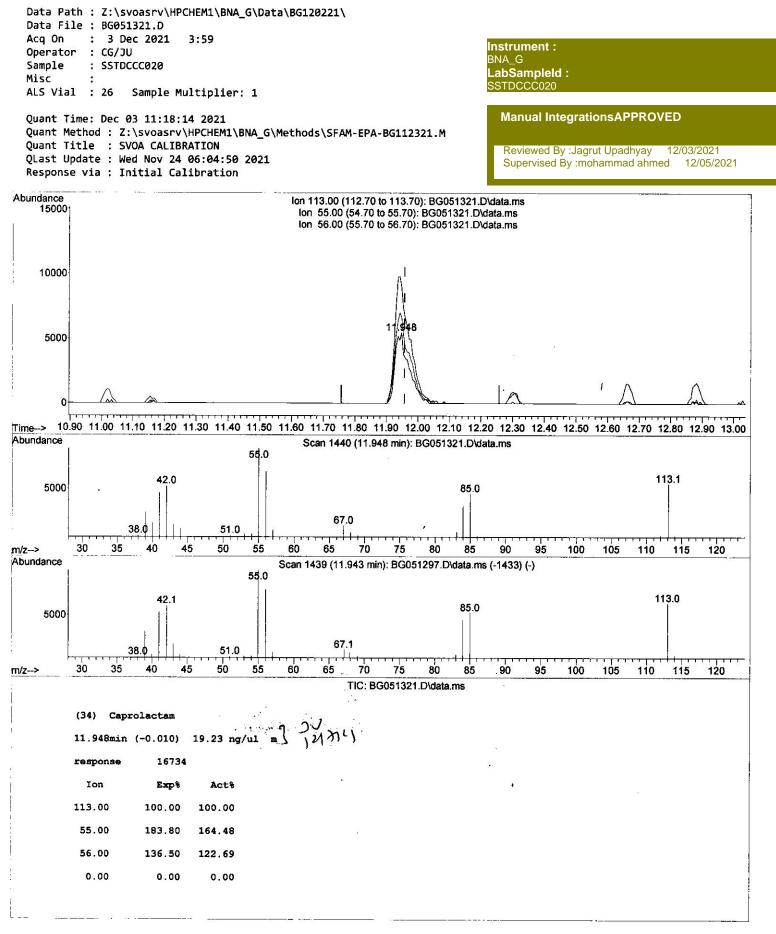
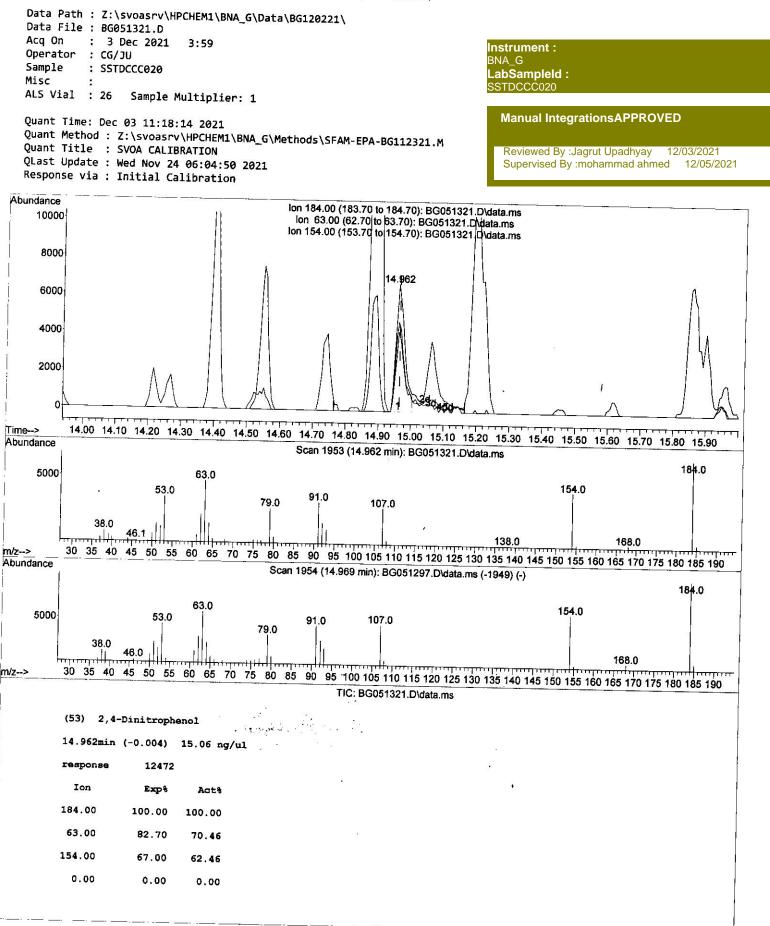
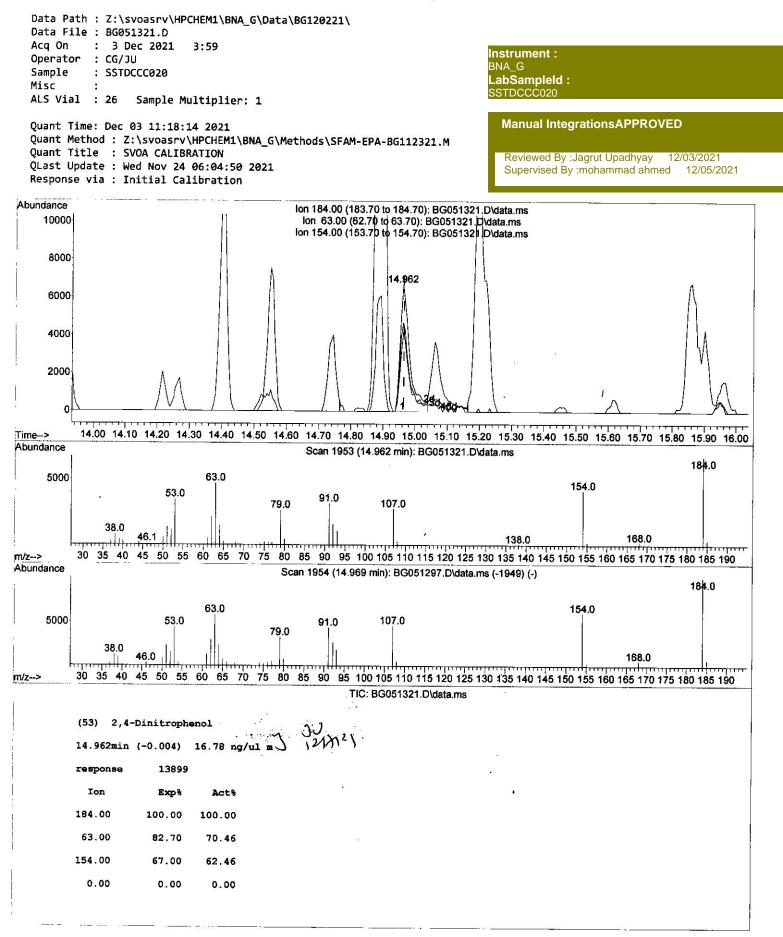
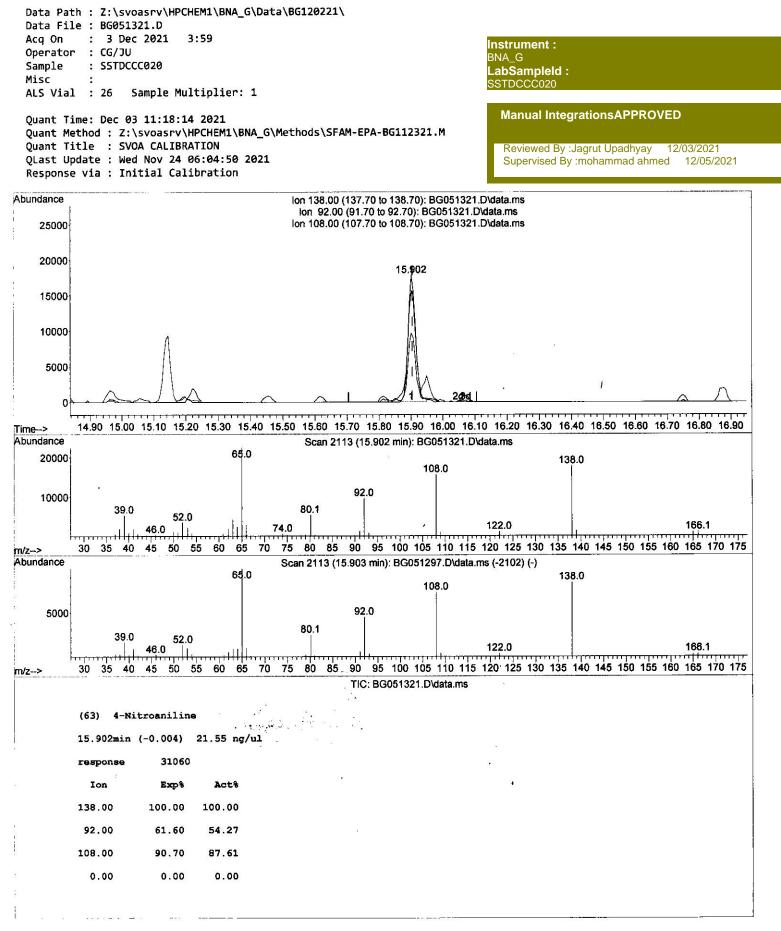
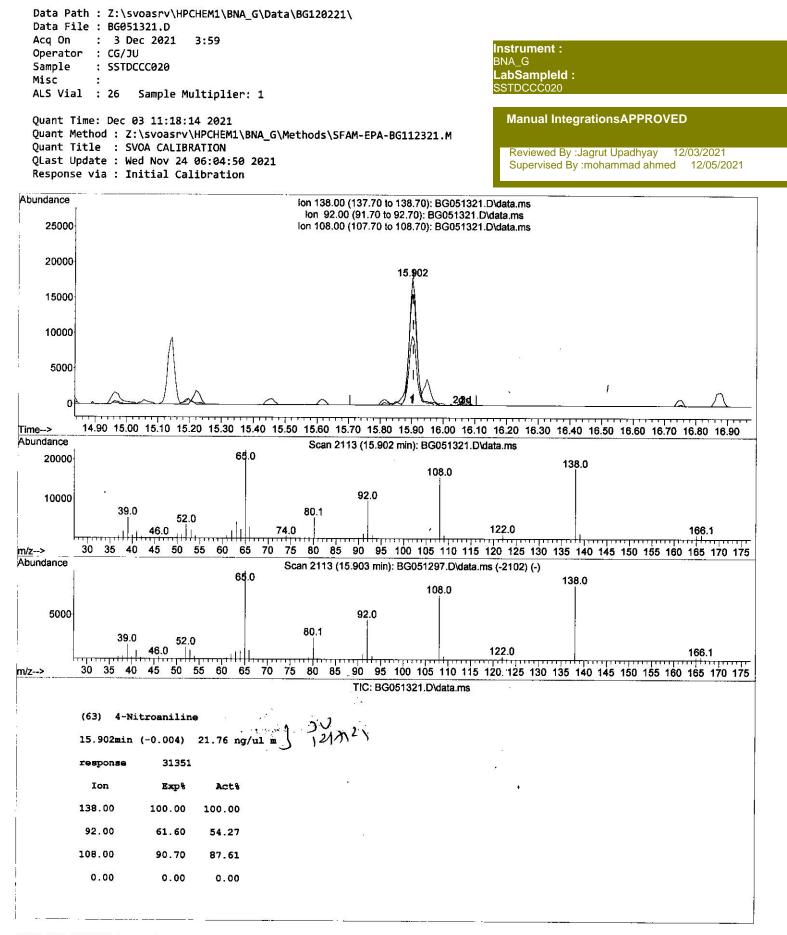

SFAM-EPA-BG112321.M Fri Dec 03 11:22:16 2021

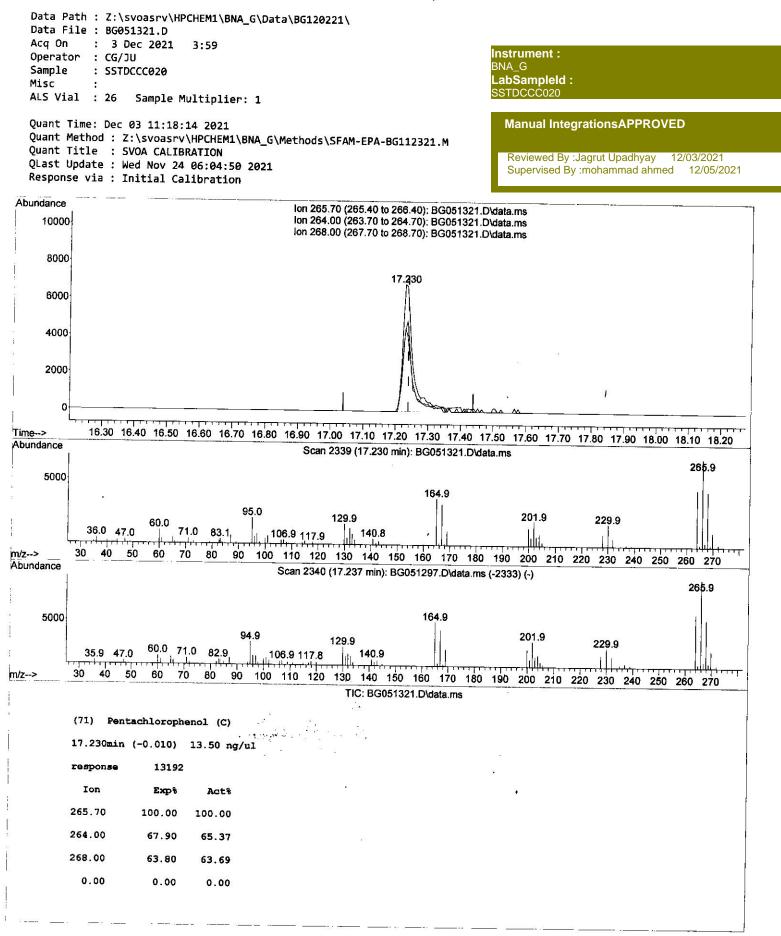

AM-EPA-BG112321.M Fri Dec 03 11:18:36 2021

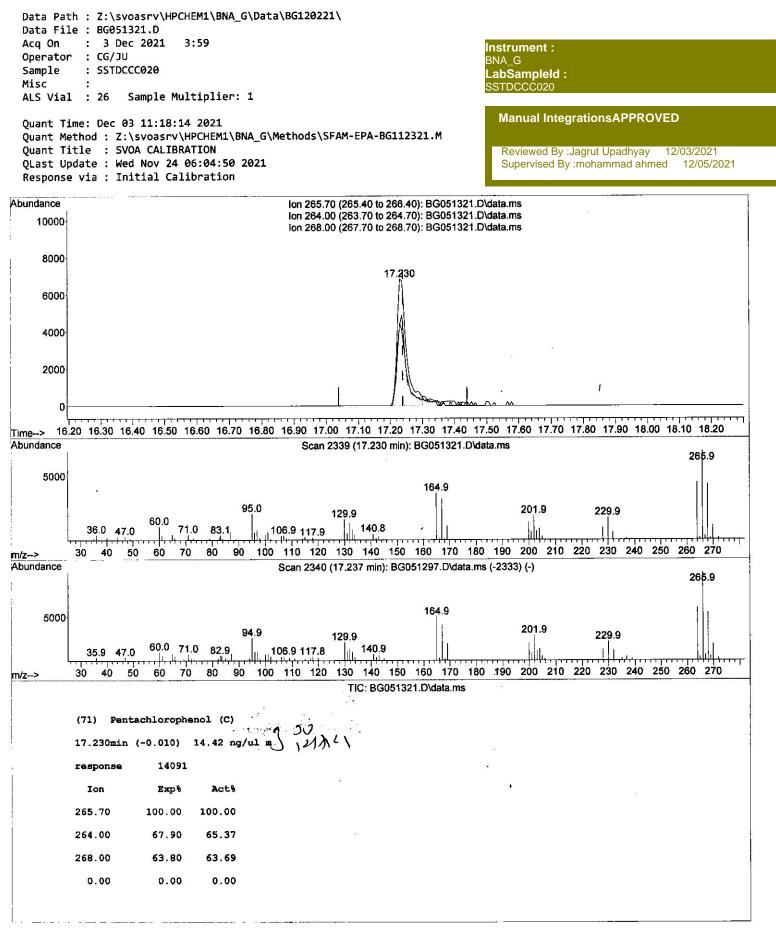

SFAM-EPA-BG112321.M Fri Dec 03 11:19:18 2021


SFAM-EPA-BG112321.M Fri Dec 03 11:19:49 2021


SFAM-EPA-BG112321.M Fri Dec 03 11:20:01 2021


SFAM-EPA-BG112321.M Fri Dec 03 11:20:17 2021


SFAM-EPA-BG112321.M Fri Dec 03 11:20:30 2021


SFAM-EPA-8G112321.M Fri Dec 03 11:20:44 2021

SFAM-EPA-BG112321.M Fri Dec 03 11:20:56 2021

SFAM-EPA-BG112321.M Fri Dec 03 11:21:08 2021

SFAM-EPA-BG112321.M Fri Dec 03 11:21:48 2021

Quantitation Report (QT Reviewed)

100

......

Acq 0n : 1 Sec 2021 3:59 Departor : Co7JU Co7JU Sample : SSTRCC020 Mais :	Data Path : Z:\svoasrv\HPCHEM1\BNA_G\Data\BG120221\ Data File : BG051321.D												
Operator: : Gr/JU Staple :: Structored by: Structo							Instrument :						
Misc : AlS Vial : 6 Sample Multiplier: 1 Quant Time: Dec 63 11:18:14 2021 Quant Time: Vox ACLIDANC CHENAMA Givethods (SFAM-EPA-BG112321.M Quant Time: Vox ACLIDANC VOX BELS 2021 Response Vox 20 BE184 2021 Internal Standards 1) 1.4-801Abrochenzene-44 8.1.99 152 29679 28.000 mg/ul 8.00 SB Accamptheme-610 17.575 188 20173 28.000 mg/ul 8.00 SB Accamptheme-610 17.575 188 20173 28.000 mg/ul 8.00 SB Perylene-612 25.779 264 18253 28.000 mg/ul 8.00 SB Perylene-612 35.28 96 6226 7.200 mg/ul 8.00 SB Perylene-612 35.28 96 73 2263 20.000 mg/ul 8.00 SB Berziden-65 3.963 84 46641 39.885 ng/ul 8.00 SB Berziden-64 3.528 96 73 2263 20.000 mg/ul 8.00 SB Berziden-64 3.528 96 73 2263 20.000 mg/ul 8.00 SB Berziden-64 3.528 196 73228 20.000 mg/ul 8.00 SB Berziden-64 31.636 3388 191 39.558 mg/ul 8.00 SB Berziden-64 31.646 135388 1923 39.558 mg/ul 8.00 SB Perziden 3.586 78 77 .629 mg/ul 8.00 SB Perziden 3.586 78 8 677 7.629 mg/ul 8.00 SB Perziden-012 25.644 264 185513 15.598 mg/ul 8.00 SB Perziden-012 25.644 264 185513 15.588 mg/ul 99 SB Perziden-012 25.644 264 185513 15.598 mg/ul 99 SB Perziden-012 25.644 264 185513 15.588 mg/ul 99 SB Perziden-012 25.644 264 185513 15.658 mg/ul	•												
ALS Vial : 26 Sample Multiplier: 1 Quart Michoel : 21:Sass74-VerMaNBA, Givethods \SFAM-EPA-BG112321.M Quart Michoel : 21:Sass74-VerMaNBA, Givethods \SFAM-EPA-BG112321.M Quart Michoel : Wolk Nov 24 Beidenstein : 21:Sass74-VerMaNBA, Standards Last Update : Wolk Nov 24 Beidenstein : 2002.2021 Response vis : Initial Calibration Thermal Standards 1) 1,4-Dichlorobernere-d4 8.193 152 29679 28.000 mg/ul 0.00 Chrysene-d12 1.1.4-Dichlorobernere-d4 8.193 152 29679 28.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 2.2.5279 24.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 2.2.527 240 184004 28.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 2.2.527 240 184004 28.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 2.2.527 240 184004 28.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 2.2.527 240 184004 28.000 mg/ul 0.00 System Monitoring Compounds 1) 1,4-Dichlorobersene-d4 1.1.69 131 64407 19.514 mg/ul 0.00 1) 2-Chiorophenol-d4 1.0.69 133 6427 19.513 mg/ul 0.00 2) 2.4-Dichorophenol-d4 1.0.69 133 6427 19.513 mg/ul 0.00 2) 2.4-Dichorophenol-d4 1.0.69 133 6427 19.513 mg/ul 0.00 2) 2.4-Dichorophenol-d4 1.0.69 136 64356 13908 mg/ul 0.00 2) 2.4-Dichorophenol-d4 1.0.69 153 6420 2) 2.4-Dichorophenol-d4 1.0.69 153 6420 2) 2.4-Dichorophenol-d4 1.0.69 153 6420 2) 2.4-Dichorophenol-d4 1.0.69 1542 156 190 mg/ul 0.00 2) 2.4-Dichorophenol-d4 1.0.69 153 6420 2) 2.4-Dichorophenol-d4 1.0.69 153 6420 2) 2.4-Dichorophenol-d5 2) 2.4-Dichorophenol-d5 2) 2.4-Dichorophenol-d5 2) 3.4-Chiorophenol-d6 2) 3.4-Chiorophenol-d6 2) 3.4-Chiorophenol-d6 2) 4.4-Dibrophenol-d6 2) 5.44 264 2) 5.44 264 2) 5.44 264 2) 5.44 264 2) 5.44 264 2) 5.44 264 2) 5.44 264 2) 5.45 mg/ul 0.00 2) 2.4-Dichorophenol-d7 2) 5.44 264 2) 5.44 264 2) 5	The provide the second se												
Quent Time: Dec 03 11:18:14 2021 Manual IntegrationsAPPROVED Quent Time: Volt ACLIDENCIFFLANG_Civethods (SFAM-EPA-BG112321.M Composition of the co		ion: 1					SSIDCCC020						
Cubic Table: Def 05 1119:14 2021. 21.119:14 2021. 21.119:14 2021. Glast Vector 1 Voice 21.119:14 2021. 21.119:14 2021. 21.119:14 2021. Glast Vector 1 Voice 21.119:14 2021. 21.119:14 2021. 21.119:14 2021. Response vis : Initial Calibration 8.133 152 29679 20.000 ng/ll 0.000 Internal Standards 11.14:13 66 1319:32 20.000 ng/ll 0.000 0.000 1.1.4-02Chlorobersen-cl2 11.677 126 11.802 127.22 20.000 ng/ll 0.000 200 Naphthene-cl3 14.827 164 215.73 20.000 ng/ll 0.000 0.000 0.000 201 Naphthene-cl3 12.1677 246 184004 25.000 ng/ll 0.000 0.000 0.000 201 Argothane-cl3 3.528 96 5225 7.290 ng/ul 0.000 0.000 0.000 201 Argothane-cl3 3.528 96 5226 7.290 ng/ul 0.000 0.000 0.000 21 Argothane-cl3 3.528 96 5226 7.290 ng/ul 0.000 0.000 0.000 201 Argothane-cl3 3.528 96 5226 7.290 ng/ul 0.000 0.000 0.000 0.000 21 Argothane-cl3 3.963 84 49634 19.800 ng/ul 0.000 0.000 0.000 <td< td=""><td>ALS VIGE . LO SAMPLE MULLIPI</td><td>161. 1</td><td></td><td></td><td></td><td></td><td>Manual Integrations A BRBOVED</td></td<>	ALS VIGE . LO SAMPLE MULLIPI	161. 1					Manual Integrations A BRBOVED						
Quant Title : SVAC ALIBRATION (Last Update: Week Nov 24 08:04:59 201) Response Vis : Initial Calibration Response Vis : Initial Calibration Internal Schnlares Internal Schnlares (Markowski Kalibrate Vision) R.T. Qion Response Conc Units Dev(Min) 0.90 10 motival Schnlares Internal Schnlares (Markowski Kalibrate Vision) Response Conc Units Dev(Min) 0.90 20 Motival Schnlares (Markowski Kalibrate Vision) 11.021 23.0779 20.000 mg/ul 0.90 20 Motival Schnlares (Markowski Kalibrate Vision) 11.021 23.0779 20.000 mg/ul 0.90 20 Motival Schnlares (Markowski Kalibrate Vision) 11.021 23.0779 20.000 mg/ul 0.90 21 Motival Schnlares (Markowski Kalibrate Vision) 11.021 23.02079 20.000 mg/ul 0.00 22 Motival Schnares (Markowski Kalibrate Vision) 11.527 24.000 mg/ul 0.00 0.00 23 J.4-012xane-d8 3.528 6 6226 7.290 mg/ul 0.00 0.00 23 J.4-012xane-d8 3.528 6 6326 7.290 mg/ul 0.00 0.00 23 J.4-012xane-d8 5.938 128 2270 18.9353 mg/ul 0.00 0.00 24 -Chiorophenol-d4 7.723							Manual IntegrationSAPPROVED						
Qiast Update : Wei Nov 24 00:24:09:29:21 Supervised By mohamimad atimed 12005/2021 Response vis : Initial Calibration Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards 1: 14-02 fibration 29: 000 ng/ul e.ee 23 Maphthelme-d8 1: 019 136 13913 29: 000 ng/ul e.ee 23 Maphthelme-d8 1: 019 22 fibration 20: 000 ng/ul e.ee 23 Maphthelme-d8 1: 019 22 fibration 20: 000 ng/ul e.ee 23 Maphthelme-d8 3: 52 2679 28: 000 ng/ul e.ee 0: 000 ng/ul e.ee 23 Maphthelme-d8 3: 52 2679 28: 000 ng/ul e.ee 0: 000 ng/ul e.ee 29 Chrystem-d12 21: 577 266 135959 22: 28: 000 ng/ul e.ee 0: 000 ng/ul e.ee 31 J_4-OlorAmed 3: 528 96 6226 7.299 ng/ul e.ee 0: 000 ng/ul e.ee 29 Dis-(2-Chloroethyl)teth 7.566 67 37203 22: 1895 ng/ul e.ee 0: 000 ng/ul e.ee 20 Mitrobenel-d5 9: 368 12: 22: 22: 22: 22: 22: 22: 22: 22: 22:	Quant Method : Z:\svoasrv\HPCHE	M1\BNA_G	\Metho	ds\SFAM-EP	A-BG112321.M		Poviewod Ry : logrut Upodbyoy 12/02/2021						
Essponse via : Initial Calibration Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards 11,4-01Abrobenzene-d4 8.193 152 29679 20.000 ng/ul 0.000 20 Naphthalene-d8 11.019 136 139133 20.000 ng/ul 0.000 0.000 21 Naphthalene-d1 17.575 188 20.000 ng/ul 0.000 0.000 0.000 23 Nacensphere-d12 22.1877 240 188005 20.000 ng/ul 0.000 0.000 29 Chrysne-d12 23.578 96 6226 7.200 ng/ul 0.000 0.000 31 J4-Olovane-d12 3.528 96 6226 7.200 ng/ul 0.000 0.000 System Monitoring Compounds 3.528 96 67 3723 32.014 ng/ul 0.000 0.000 31 J4-Olovane-d3 3.528 96 67 3723 32.014 ng/ul 0.000 0.000 31 J4-Olovane-d5 3.968 128 22270 13.953 ng/ul 0.000 0.000 32 -Attrophenol-d4 10.007 143 22244 13.0800 ng/ul 0.000 0.000 31 -Chlorophenol-d3 10.643 155 43806 13.479 ng/ul 0.000 0.000 32 -Attrophenol-d4 15.000 131 6200 13.090 ng/ul 0.000 0.000 33 -Chlorophenol-d3 15.643 155 139.050 ng/ul 0.000 0.000													
Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards 1,1,4-01chloroberzene-d4 8,193 152 29679 20.000 ng/ul 0.00 20 Maphthalene-d8 11.031 136 13939 20.000 ng/ul 0.00 31 Accemptitiene-d10 11.627 164 91573 20.000 ng/ul 0.00 32 Accemptitiene-d12 21.877 240 184004 20.000 ng/ul 0.00 35 Peryleme-d12 21.877 240 184004 20.000 ng/ul 0.00 5ystem Monitoring Compounds 3.528 96 6226 7.290 ng/ul -0.02 31 J.4-010came.d8 3.528 95 5741 39.514 ng/ul -0.02 31 Schonar.d8 3.528 96 6226 7.290 ng/ul -0.02 31 Actoryphenol-d4 7.392 132 24167 13.514 ng/ul 0.00 32 Achonarbulphthalate-d6 13.618 128 129.70 18.953 ng/ul <t< td=""><td>Response via : Initial Calibrat</td><td>100 2021</td><td></td><td></td><td></td><td></td><td></td></t<>	Response via : Initial Calibrat	100 2021											
Internal Standards 1) 1,4-01chDorobenzene-44 1),401chDorobenzene-46 10,401 14,827,154 14,457,1547,155 14,457,1547,155 14,457,1547,1557,1557,1557,1557,1557,155	nere production induction in contraction of the Margania Sources (1953)												
Internal Standards 1) 1, 4-0 Lichlorobenzene-d4 8.192 152 29679 20.0000 8.000	STANDED AND AND AND AND AND AND												
1) 1,4-Dichlorobenzene-d4 11.019 136 13903 20.000 ng/L1 0.00 8) Naphthalene-d8 11.019 136 13903 20.000 ng/L1 0.00 8) Accnaphthene-d10 17.576 188 20173 20.000 ng/L1 0.00 7) Chrysene-d12 21.877 240 184004 20.000 ng/L1 0.00 5) Sytem Monitoring Compounds 3) 1,4-Dioxane-d8 3.528 96 6226 7.290 ng/L1 0.02 7) Phenol-d5 3.968 84 4964 19.080 ng/L1 0.02 7) Phenol-d5 3.966 67 3723 20.100 ng/L1 0.02 7) Phenol-d5 3.966 67 3723 20.100 ng/L1 0.00 1) 2-Chlorophenol-d4 8.910 113 4547 19.514 ng/L1 0.00 1) 2-Chlorophenol-d4 8.910 113 4547 19.513 ng/L1 0.00 1) 2-Chlorophenol-d4 10.007 143 26270 18.953 ng/L1 0.00 2) Mitrobenzene-d5 9.366 128 22270 18.953 ng/L1 0.00 2) Attrophenol-d4 10.037 143 2624 19.800 ng/L1 0.00 2) Attrophenol-d4 10.037 143 2620 18.050 ng/L1 0.00 2) Attrophenol-d4 15.050 143 1365 3200 18.00 3) 4-Chlorophenol-d3 10.643 165 43200 18.00 40 Dimethylphthalate-d6 14.216 160 135638 19.165 ng/L1 0.00 40 Dimethylphthalate-d6 14.216 160 135638 19.165 ng/L1 0.00 40 Dimethylphthalate-d6 14.216 160 135638 19.165 ng/L1 0.00 5) 4-Methylphthalate-d6 14.22 210 18.953 ng/L1 0.00 5) 4/-Chlorophenol-d4 15.050 143 18011 15.792 ng/L1 0.00 5) 4/-Chlorophenol-d4 15.050 143 18011 15.792 ng/L1 0.00 5) Attrophenol-d4 15.050 143 18011 15.792 ng/L1 0.00 5) Attrophenol 7.382 777 7.292 ng/L1 97 6) Acconphylere-d12 25.044 26 189518 19.318 ng/L1 0.00 7) Attrophenol 8.4507 77 7.927 ng/L1 97 6) Acconphylere-d12 25.044 261 19.956 19.072 ng/L1 98 10 4-Attrophenol 7.382 77 59872 19.338 ng/L1 98 10 4-Attrophenol 8.509 188 47651 19.075 ng/L1 98	-												
28) Maphthalene-d8 11.019 136 139.93 20.000 ng/ll 0.00 64) Phenanthrene-d10 17.576 188 201.733 20.000 ng/ll 0.00 64) Phenanthrene-d12 21.877 240 184.004 20.000 ng/ll 0.00 88) Perylene-d12 25.279 264 183695 20.000 ng/ll 0.00 5ystem Monitoring Compounds 31.4-010xame-d8 3.528 96 6226 7.290 ng/ul 0.00 9 Bis-(2-chlorophenol-d4 7.353 99 57/241 15.14 ng/ul 0.00 .00 13 4-010xphenol-d6 7.333 99 57/2781 19.511 ng/ul 0.00 13 4-010xphenol-d8 8.910 113 45227 19.951 ng/ul 0.00 14 2-chlorophenol-d4 19.863 19.615 ng/ul 0.00 .00 .00 24 2-Nitrophenol-d4 19.097 143 25244 19.806 ng/ul 0.00 25 2-4.010xophenol-d4 19.069 19.856 19.615 ng/ul 0.00 24 2-Nitrophenol-d4<		8.193	152	29679	20.000 ng/ul	0.00							
6.4) Phenanthrene-419 17.576 188 201723 20.800 mg/ul 8.80 79) Chrysme-d12 21.277 240 183604 20.000 mg/ul 8.60 88) Perylene-d12 25.279 264 183695 20.000 mg/ul 8.60 59:tem Monitoring Compounds 31 1,4-foloxane-d3 3.528 96 6226 7.290 mg/ul -0.82 4) Pyridine-d5 7.353 99 57241 19.516 mg/ul -0.82 4) Pyridine-d5 7.353 99 57241 19.516 mg/ul -0.82 4) Pyridine-d5 7.353 99 57241 19.516 mg/ul -0.82 50:tem Monitoring Compounds 7.723 132 14577 13.731 mg/ul 0.80 9) Bis-(2-ChiOrophenol-d4 7.723 132 14577 13.731 mg/ul 0.80 24) 2-Mitrophenol-d4 7.723 132 14577 13.731 mg/ul 0.80 24) 2-Mitrophenol-d4 10.007 143 26244 19.806 mg/ul 0.80 24) 2-Mitrophenol-d3 10.643 155 143806 19.409 mg/ul 0.80 24) 2-Mitrophenol-d3 10.643 155 143806 19.409 mg/ul 0.80 24) 2-Mitrophenol-d4 11.663 151 43806 19.69 mg/ul 0.80 24) 4-ChiOropathine-d6 14.521 166 135038 19.165 mg/ul 0.80 40) Macmaphthylane-d6 14.521 166 135038 19.165 mg/ul 0.80 41) Accmaphthylane-d8 15.534 176 12388 19.165 mg/ul 0.80 42) Accmaphthylane-d8 15.534 176 12388 19.155 mg/ul 0.80 43) Activation 1556 222 218895 19.56 mg/ul 0.80 44) Accmaphthylane-d8 15.534 176 12388 19.155 mg/ul 0.80 45) Activation 12 556 222 218895 19.651 mg/ul 0.80 45) Activation 12 556 222 218895 19.651 mg/ul 8.00 46) Pincerne-d12 15.534 176 188 189131 15.752 mg/ul 8.00 47) Activation 12 556 222 218895 19.651 mg/ul 8.00 48) Pyreme-d12 15.552 22 218895 19.651 mg/ul 8.00 49) Benzaldehyde 7.324 77 42834m 22.520 mg/ul 89 30 Pyridine 3.800 79 52880 (20.238 mg/ul 89 31 Pyridine 3.560 88 6770 7.897 mg/ul 89 31 Pyridine 3.560 88 6770 7.897 mg/ul 89 32 Pyridine 3.800 79 52880 (20.238 mg/ul 89 33 Pyridine 3.560 88 6770 7.897 mg/ul 89 34 Activation 4.154 156 625 519.797 mg/ul 89 35 Pyridine 3.800 79 52880 (20.238 mg/ul 89 36 Pyridine 3.800 79 52880 (20.238 mg/ul 89 37 Pyridine 3.800 79 52880 (20.388 mg/ul 97 37 Pyridine-d1 8.640 188 44266 19.601 mg/ul 94 32 Pyridine 3.800 79 52880 (20.388 mg/ul 97 39 Haxchorophane 9.622 185 73.767 mg/ul 98 30 Nathrozone 9.622 82 1767 19.662 mg/ul 98 31 A													
79 Chrysene-d12 21.877 240 128004 20.000 ng/ul 5.00 88) Perylene-d12 25.279 264 133695 20.000 ng/ul 6.00 System Monitoring Compounds 3.14-010xane-d8 3.063 84 4954 19.065 ng/ul -6.02 4) Pyridine-d5 3.063 84 4954 19.051 ng/ul -6.02 7) Phenol-d5 7.2363 99 57241 19.514 ng/ul -0.00 13 4-fettylphenol-d4 7.726 67 37283 20.134 ng/ul -0.00 13 4-fettylphenol-d8 8.310 113 45427 19.151 ng/ul -0.00 24) 2-Nitrophenol-d3 10.0673 133 62247 19.353 ng/ul -0.00 21 A-follorophenol-d3 10.0673 133 62968 15.05 ng/ul -0.00 21 A-follorophenol-d3 14.521 166 155083 15.05 ng/ul -0.00 24 Arampthylane-d8 14.521 150 150 ng/ul -0.00 </td <td>and the second sec</td> <td>14.827</td> <td>164</td> <td>91573</td> <td></td> <td></td> <td></td>	and the second sec	14.827	164	91573									
B8) Perylene-d12 25.279 264 B35695 20.000 $mg/11$ 0.00 System Monitoring Compounds 31 1.4-010xane-d8 3.528 96 6226 7.290 $mg/11$ 0.00 9 Phenol-d5 7.353 99 57241 19.514 $mg/11$ 0.00 10 2-Chloroethyl)eth 7.535 99 57241 19.731 $mg/11$ 0.00 11 2-Chloroethyl)eth 7.536 97 57243 20.49 $mg/11$ 0.00 12 -Chlorophenol-d4 7.723 132 41677 19.731 $mg/11$ 0.00 21 Attrophenol-d4 10.097 133 26244 19.806 mg/11 0.00 22 Attrophenol-d4 10.097 133 26244 19.806 mg/11 0.00 24 -Attrophenol-d4 14.205 166 157729 19.778 mg/11 0.00 24 -Attrophenol-d4 15.697 133 186113 15.997 mg/11 8.00 24 -Attrophenol-1.43 15.990 15.990		17.576	188		20.000 ng/ul	0.00							
System Monitoring Compounds 3.528 96 6226 7.290 ng/uL -6.62 4) Pyridine-d5 3.663 4.6634 19.865 ng/uL -6.62 9) Phenol-d5 7.353 99 57241 19.514 ng/uL 0.60 9) Bls-(2-Chioroethyl)eth 7.353 99 57241 19.514 ng/uL 0.60 11 2-Chiorophenol-d4 7.723 132 12.61677 19.731 ng/uL 0.60 12 A-Methylphenol-d8 8.910 113 45427 19.191 ng/uL 0.60 24) 2-Nitrophenol-d3 18.643 1563 19.79 ng/uL 0.60 21) Attrophenol-d4 11.663 156 15638 19.165 ng/uL 0.60 22.Nitrophenol-d4 15.65 143 15698 19.65 ng/uL 0.60 23.4-Chloroanhilme-d8 14.521 166 15598 19.65 ng/uL 0.60 40 Accmaphthylene-d8 14.521 122 12889 10.60 0.60 23 Anthracene-d10 17.675 188 1823 15.69 ng/uL 8.00 24 Pyrid4 3.569 88	· · · · · · · · · · · · · · · · · · ·				양 지 않았는 것 않는 것 같아요. 그는 것 것 같아요.								
3) 1,4-Dioxane-d8 3.528 96 6226 7.299 ng/uL -0.62 4) Pyrindine-d5 3.963 84 49634 19.865 ng/uL -0.62 9) Bis-(2-Chlorophenol-d4 7.353 99 57241 19.514 ng/uL 0.00 10) 2-Chlorophenol-d4 7.731 132 20.194 ng/uL 0.00 11) 4-Methylphenol-d4 8.910 113 45427 19.191 ng/uL 0.00 22 2-Nitrophenol-d4 10.097 143 26244 19.800 ng/uL 0.00 24) 2-Nitrophenol-d4 11.6643 165 165 ng/uL 0.00 24) 2-Nitrophenol-d4 11.663 165 165 ng/uL 0.00 25) 4-chloroaniline-d4 11.160 131 62900 18.850 ng/uL 0.00 40) Mitrophenol-d4 15.659 143 1561 ng/uL 0.00 0.00 41 Mitrophenol 15.814 176 121588 19.165 ng/uL 0.00 42 Atrophenol 15.849 176 12589 ng/uL	88) Perylene-d12	25.279	264	183695	20.000 ng/ul	0.00							
3) 1,4-Dioxane-d8 3.528 96 6226 7.299 ng/uL -0.62 4) Pyrindine-d5 3.963 84 49634 19.865 ng/uL -0.62 9) Bis-(2-Chlorophenol-d4 7.353 99 57241 19.514 ng/uL 0.00 10) 2-Chlorophenol-d4 7.731 132 20.194 ng/uL 0.00 11) 4-Methylphenol-d4 8.910 113 45427 19.191 ng/uL 0.00 22 2-Nitrophenol-d4 10.097 143 26244 19.800 ng/uL 0.00 24) 2-Nitrophenol-d4 11.6643 165 165 ng/uL 0.00 24) 2-Nitrophenol-d4 11.663 165 165 ng/uL 0.00 25) 4-chloroaniline-d4 11.160 131 62900 18.850 ng/uL 0.00 40) Mitrophenol-d4 15.659 143 1561 ng/uL 0.00 0.00 41 Mitrophenol 15.814 176 121588 19.165 ng/uL 0.00 42 Atrophenol 15.849 176 12589 ng/uL	System Monitoring Compounds												
4) Pyridine-d5 3.963 84 49634 19.885 mg/u1 5.00 7) Phenol-d5 7.333 99 57241 19.514 mg/u1 0.60 13) 2-Chlorophenol-d4 7.723 132 41677 19.731 mg/u1 0.60 13) 2-Chlorophenol-d3 10.603 134 4527 19.731 mg/u1 0.60 21) Mitrophenol-d3 10.603 145 42644 19.880 mg/u1 0.60 24) 2-Mitrophenol-d3 10.603 165 43866 19.479 mg/u1 0.60 24) 2-Mitrophenol-d4 10.697 143 165 19.880 mg/u1 0.60 24) 2-Mitrophenol-d4 11.66 13 6289 19.478 mg/u1 0.60 34) -Chloroanlline-d4 11.56 15.792 mg/u1 0.60 60 91 Arcinche-d8 14.216 166 135638 19.618 mg/u1 0.60 54 0.501mitro-2-methylph 15.499 20.1994 16.60 19.717 19.618 mg/u1 0.60 71 4.610itro-2-methylph		3, 528	96	6226	7 200 ng/ul	-0 02	12						
7) Phenol-d5 7.353 99 57241 19.51 mg/ul 0.00 9) Biz-(2-Chlorophenol-d4 7.723 132 41677 19.731 mg/ul 0.00 13 4-Methylphenol-d8 8.919 113 44277 19.191 mg/ul 0.00 13 4-Methylphenol-d4 10.037 143 22270 19.531 mg/ul 0.00 24 12-Mitrophenol-d4 10.037 143 22244 19.800 mg/ul 0.00 25 2.4-Dithlorophenol-d3 10.633 165 13.947 mg/ul 0.00 21 4-Chlorophenol-d4 11.60 135038 19.157 mg/ul 0.00 24 -Aitrophenol-d4 15.690 143 18011 15.792 mg/ul 0.00 40 -Mitrophenol-d4 15.690 13 18011 15.792 mg/ul 0.00 41 -Aitrophenol-d4 15.690 13 19.157 mg/ul 0.00 73 Anthracene-d10 17.676 188 18213 19.590 mg/ul 0.00 74 status 14.900 7.382 94 62.285 mg/ul 98 74 92) Benco(3)pyrene-d12 25.642 26.285 mg/ul 96 1													
9) Bis-(2-Chlorocthyl)eth 7.566 67 37283 22.194 ng/ul 0.00 11) 2-Chlorophenol-04 7.723 132 41677 19.131 ng/ul 0.00 15) 4-Methylphenol-08 8.910 113 45427 19.131 ng/ul 0.00 21) Mitrobenzene-05 9.368 128 22270 18.953 ng/ul 0.00 22 2.4-Dichlorophenol-03 10.643 165 43806 19.479 ng/ul 0.00 23) 4-Chloroanillane-04 11.60 131 62890 Blas 850 ng/ul 0.00 46) Dimethylphthalate-06 14.216 166 135038 19.165 ng/ul 0.00 47) A-Chloroanillane-04 15.050 143 1801 15.792 ng/ul 0.00 46) Dimethylphthalate-06 14.51 160 175729 19.778 ng/ul 0.00 47) A-thirophenol-04 15.690 143 18011 15.792 ng/ul 0.00 46) Dimethylphthalate-06 14.521 160 175729 19.778 ng/ul 0.00 47) A-thirophenol-04 15.690 143 18011 15.792 ng/ul 0.00 48) Pyrene-08 14.51 1407 121588 19.165 ng/ul 0.00 49) Acenaphthylene-08 14.521 160 19542 15.699 ng/ul 0.00 40) Pyrene-010 19.956 212 218095 19.661 ng/ul 0.00 41) Pyrene-010 19.956 212 218095 19.661 ng/ul 0.00 42) 1,4-010xane 3.569 88 6770 7.029 ng/ul 80 42) 19,4-010xane 3.569 88 6770 7.029 ng/ul 89 5) Pyridine 3.980 79 52898 22.502 ng/ul 98 5) Pyridine 3.980 79 52898 22.502 ng/ul 98 5) Pyridine 3.980 79 52898 22.502 ng/ul 98 5) Pyridine 7.660 93 45111 19.623 ng/ul 96 19 22-Chlorocthyl)ether 7.680 93 4511 19.634 ng/ul 96 19 22-Chlorophenol 7.758 128 42497 19.743 ng/ul 96 19 22-Chlorophenol 8.6640 108 44366 19.641 ng/ul 96 19 22-Vethylphenol 8.640 108 44361 19.071 ng/ul 99 19 Mexachloroothane 9.222 165 71767 19.602 ng/ul 99 19 Mexachloroothane 9.228 117 71592 19.328 ng/ul 98 18 4-Methylphenol 8.669 108 47691 19.795 ng/ul 99 19 Mexachloroothane 9.228 113 71759 19.380 ng/ul 98 20 2,4-01chlorophenol 10.26 139 2019 71 433 ng/ul 97 21 Jsophorone 9.926 82 115644 19.302 ng/ul 98 22 4-Dichlorophenol 10.126 139 26197 19.308 ng/ul 98 23 2.4-Uthylphenol 10.126 139 26197 19.308 ng/ul 98 24 2.4-Uthylphenol 10.126 139 26197 19.308 ng/ul 98 25 2.4-Uthylphenol 10.126 139 26197 19.308 ng/ul 98 26 2.4-Othorophenol 10.673 162 42079 19.088 ng/ul 98 27 2.4-Othorophenol 10.1673 122 287(ul 98 28 2.4-Othorophenol		1000 Contraction (1000 Contraction)					,						
11) 2-Chlorophenol-d4 7.723 132 41677 19.731 $ng/ul = 0.00$ 15) 4-Methylphenol-d8 8.919 113 45427 19.191 $ng/ul = 0.00$ 21) Nitrobenzen-d5 9.368 128 22270 18.953 $ng/ul = 0.00$ 24) 2-Nitrophenol-d4 10.097 143 26244 19.800 $ng/ul = 0.00$ 23) 4-Chlorophenol-d3 10.643 155 43806 19.479 $ng/ul = 0.00$ 24) 2-Nitrophenol-d4 11.60 131 62020 18.869 $ng/ul = 0.00$ 24) 4-Chlorophenol-d3 10.651 155 43806 19.479 $ng/ul = 0.00$ 25) Acenaphthylene-d8 14.521 160 1375729 19.778 $ng/ul = 0.00$ 26) Dimethylpithalate-d6 14.521 160 135038 19.165 $ng/ul = 0.00$ 27) Actmaphthylene-d8 14.521 160 175729 19.778 $ng/ul = 0.00$ 26) Acenaphthylene-d8 14.521 160 175729 19.778 $ng/ul = 0.00$ 27) Actmapter 15.949 200 19.542 15.699 $ng/ul = 0.00$ 28) Proceedule 7.676 188 188213 19.569 $ng/ul = 0.00$ 29) Benzo(a)pyrene-d12 25.044 264 189518 19.318 $ng/ul = 0.00$ 20) 1.4-Dioxane 3.569 88 6770 7.029 $ng/ul = 80$ 20) 1.4-Dioxane 3.569 88 6770 7.029 $ng/ul = 80$ 20) 21,4-Dioxane 3.569 88 6770 7.029 $ng/ul = 80$ 20) 1.4-Dioxane 3.569 88 6770 7.029 $ng/ul = 80$ 3) Pyridine 3.980 79 52888 22.628 $ng/ul = 70$ 2) 1.4-Dioxane 3.569 88 6770 7.029 $ng/ul = 80$ 3) Phenol 7.324 77 42034M 19.641 $ng/ul = 90$ 3) Pyridine 3.980 79 52888 20.285 $ng/ul = 90$ 3) Phenol 7.382 94 59664 19.641 $ng/ul = 90$ 3) Actmorphenol 8.592 7.604 93 45111 19.623 $ng/ul = 91$ 4) 42.2'-oxybis(1-Chloropr 8.716 45 66256 19.972 $ng/ul = 91$ 3) Acetophenone 9.022' 105 7.7767 19.602 $ng/ul = 92$ 40 Acetophenone 9.022' 105 7.7767 19.602 $ng/ul = 92$ 31 Acetophenone 9.022' 105 7.7767 19.602 $ng/ul = 92$ 32 Acetophenone 9.022' 105 7.7588 $ng/ul = 98$ 32 Mitrobenzene 9.415 77 59872 19.438 $ng/ul = 98$ 32 Acetophenone 9.628 117 59872 19.438 $ng/ul = 98$ 33 Hexachlorocthane 9.426 177 59872 19.438 $ng/ul = 98$ 34 Hexachlorocthane 10.126 139 26197 19.602 $ng/ul = 98$ 35 2-Nitrophenol 10.126 139 26197 19.602 $ng/ul = 98$ 36 2.4-Dichorophenol 10.126 139 26197 19.608 $ng/ul = 98$ 37 Mexachlorocthane 10.126 139 26197 19.608 $ng/ul = 98$ 37 Mexachlorocthane 10	9) Bis-(2-Chloroethyl)eth	7.506					. /						
21) Nitrobenzen-d5 9.368 128 22270 19.953 ng/ul 9.06 24) 2-Nitrophenol-d4 10.097 143 26244 19.800 ng/ul 9.00 28) 2,4-Dichlorophenol-d3 10.643 165 43806 19.475 ng/ul 9.00 31) 4-Chloroanline-d4 11.160 131 62090 18.869 ng/ul 9.00 40) Distribuylphthalate-d6 14.216 166 13593 19.165 ng/ul 9.00 44<-Nitrophenol-d4		7.723	132	41677		0.00							
24) 2-Nitrophenol-d4 10.037 143 26244 19.800 ng/ul 0.00 28) 2,4-Dichlorophenol-d3 10.643 165 43806 19.473 ng/ul 0.00 31 4-Chloroanline-d4 11.560 135038 19.165 ng/ul 0.00 46) Dimethylphthalate-d5 14.216 166 135038 19.165 ng/ul 0.00 54) 4-Nitrophenol-d4 15.650 143 18011 15.792 ng/ul 0.00 60 Fluorene-d10 15.814 176 121588 19.165 ng/ul 0.00 73) Anthracene-d10 17.676 188 188213 19.590 ng/ul 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 7 7.422 ng/ul 0.00 0.00 0.00 0.00 0.00 7 7.423 ng/ul 9.00 19.42 0.00 0.00 0.00 7 7.423 ng/ul 9.00 19.62 0.00 0.00 0.00 7 7.					19.191 ng/ul	0.00							
28) 2,4-Dichlorophenol-d3 10:643 155 43806 19:479 ng/ul 0.00 31) 4-Chloroaniline-d4 11.160 131 62090 18:869 ng/ul 0.00 40) Dimethylphthalate-d6 14.216 166 135081 19:165 ng/ul 0.00 44) 4-Nitrophenol-d4 15:050 14:521 166 175729 19:778 ng/ul 0.00 66) Fluorene-d10 15:050 13:061 15:059 ng/ul 0.00 67) Anthracene-d10 17:676 18:81 19:518 19:661 ng/ul 0.00 73) Anthracene-d10 17:676 18:9518 19:518 ng/ul 0.00 73) Anthracene-d10 19:956 21:2 218955 19:661 ng/ul 0.00 81) Pyrene-d12 25:044 26 189518 19:318 ng/ul 9.00 70 21:3,4-Dioxane 3.569 86 6770 7.0229 ng/ul 98 80 Phenol 7.324 77 42034m 22:560 ng/ul 97 1/1712/1 12:2-Chloropthyl)ether													
31) 4-Chlorozniline-d4 11.160 131 62090 18.865 ng/ul 0.00 46) Dimethylphthalate-d6 14.216 166 135038 19.165 ng/ul 0.00 47) Acenaphthylphen-d4 15.050 143 18011 15.792 ng/ul 0.00 44.11rophenol-d4 15.809 143 18011 15.792 ng/ul 0.00 651 4.4.521 166 175729 19.778 ng/ul 0.00 73) Anthracene-d10 17.676 188 18213 19.509 ng/ul 0.00 73) Anthracene-d10 17.676 188 182313 19.560 ng/ul 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 8.00 93) Pyridine 3.569 86 6770 7.029 ng/ul 89 94) Benzo(a)pyrene-d12 25.044 264 18.041 ng/ul 96 95) Pyridine 3.569 86 6770 7.029 ng/ul													
46) Dimethylphthalate-d6 14.216 166 135038 19.165 ng/ul 0.00 49) Acenaphthylene-d8 14.521 160 175729 19.778 ng/ul 0.00 44) Hitrophenol-d4 15.841 175729 19.778 ng/ul 0.00 60) Fluorene-d10 15.814 176 121588 19.165 ng/ul 0.00 73) Anthracene-d10 17.676 188 188131 19.509 ng/ul 0.00 81) Pyrene-d10 19.956 212 218895 19.661 ng/ul 0.00 73) Anthracene-d12 25.044 264 189518 19.318 ng/ul 0.00 81) Pyrene-d12 25.044 264 189518 19.651 ng/ul 9.00 70/1 J-4-Dioxane 3.569 86 6770 7.029 ng/ul 89 92) Benzo(a)pyrene-d12 25.044 26.200 ng/ul 98 1/1/1/2 1/1/1/2 18) Pheno1 7.324 7174 20.200													
49) Acenaphtylene-d8 14.521 160 175729 19.778 ng/ll 0.00 54) 4-Nitrophenol-d4 15.050 143 18011 15.792 ng/ll 0.00 65) 4,6-Dinitro-2-methylph 15.949 200 19542 15.699 ng/ll 0.00 73) Anthracene-d10 17.676 188 188213 19.509 ng/ll 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.661 ng/ll 0.00 73) Anthracene-d10 17.676 188 188213 19.509 ng/ll 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ll 0.00 7 1.4-Dioxane 3.569 88 6770 7.029 ng/ll 89 95) Pyridine 3.980 79 52885 20.285 ng/ll 98 11.71 11.91 10.23 ng/ll 98 91) Bis(2-Chloroethyl)ether 7.669 34 5111 19.623 ng/ll 97 12.23 ng/ll 97 12 2-Chloroethonon 9.022													
54) 4-Nitrophenol-d4 15.050 143 18011 15.792 ng/ul 0.00 60) Fluorene-d10 15.814 176 121588 19.163 ng/ul 0.00 63) 4,6-Dinitro-2-methylph 15.949 200 1542 15.699 ng/ul 0.00 73) Anthracene-d10 17.676 188 188213 19.509 ng/ul 0.00 81) Pyrene-d10 19.956 212 218895 19.661 ng/ul 0.00 73) Anthracene-d12 20.044 264 189518 19.318 ng/ul 0.00 81) Pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 70 1.4-Dioxane 3.569 88 6770 7.029 ng/ul 89 91 Phenol 7.324 7 42034m 22.502 ng/ul 96 91 Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 96 91 2-chlorophenol 7.758 128 42497 19.743 ng/ul 94 142 2-coxybis(1-chloropr 8.716													
66) Fluorene-d10 15.814 176 121588 19.163 ng/ul 0.00 65) 4,6-0initro-2-methylph 15.949 200 19542 15.699 ng/ul 0.00 73) Anthracene-d10 17.676 188 188213 19.509 ng/ul 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 73) Anthracene-d10 17.676 188 188213 19.509 ng/ul 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 73) Anthracene-d10 7.559 88 6770 7.829 ng/ul 89 90) Phenol 7.324 77 42034m 22.502 ng/ul 97 18) Phenol 7.324 77 42034m 19.621 ng/ul 96 19) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 12.2-chyorophenol 7.758 128 42497													
65) 4,6-Dinitro-2-methylph 15.949 200 19542 15.969 ng/ul 0.00 73) Anthracene-di0 17.676 188 188213 19.599 ng/ul 0.00 81) Pyrene-d10 19.956 212 218895 19.661 ng/ul 0.00 92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 7arget Compounds Ovalue 0.00 0.00 0.00 0.00 7 1,4-Dioxane 3.569 88 6770 7.029 ng/ul 89 9 Pyridine 3.980 79 52898 22.282 ng/ul 94 8) Phenol 7.382 94 59684 19.641 ng/ul 96 180 815(2-Chloroethyl)ether 7.669 93 45111 19.623 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 142,2- -oxybis(1-Chloropr 8.716 45 662256 19.972 ng			176										
B1) Pyrene-d1019.95621221889519.661ng/ul0.0092) Benzo(a)pyrene-d1225.04426418951819.318ng/ul0.00Target Compounds $Qvalue$ 2) 1,4-Dioxane3.5698867707.029ng/ul895) Pyridine3.980795289820.285ng/ul986) Benzaldehyde7.3247742034m22.502ng/ul18) Phenol7.324945968419.641ng/ul9610) Bis(2-Chloroethyl)ether7.600934511119.623ng/ul9712) 2-Chlorophenol7.7581284249719.743ng/ul9613) 2-Methylphenol8.6401084249719.743ng/ul9714) A2,2'-oxybis(1-Chloropr8.7167166719.602ng/ul9716) Accetophenone9.922108776719.602ng/ul9818) 4-Methylphenol8.9591084769119.705ng/ul9819) Hexachloroethane9.2268211564419.320ng/ul9820) Nitrobenzene9.415775987219.433ng/ul9821) 2,4-Dimethylphenol10.1791075515819.651ng/ul9822) -2,4-Dionorphenol10.1791075515819.651ng/ul9823) Isophorone9.9268211564419.208ng/ul9824) -2,4-Dimethyl		15.949	200	19542		0.00							
92) Benzo(a)pyrene-d12 25.044 264 189518 19.318 ng/ul 0.00 Target Compounds 0.14 0.00 0.00 0.00 2) 1,4-Dioxane 3.569 88 6770 7.029 ng/ul 89 5) Pyridine 3.980 79 52898 20.285 ng/ul 98 0.00 8) Phenol 7.324 77 42034m 22.502 ng/ul 96 1.11 19.623 ng/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 1.11 19.623 ng/ul 97 11) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 97 12) 2-Chlorophenol 8.766 19.621 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.622' 105 71767 19.602 ng/ul 98 98 18) 4-Methylphenol 8.992 70 43221 20.580 ng/ul 98						0.00							
Qvalue2) 1, 4-Dioxane 3.569 88 6770 7.029 mg/uL 89 5) Pyridine 3.980 79 52898 20.285 mg/ul 98 6) Benzaldehyde 7.324 77 $42034m$ 22.502 ng/ul 98 7) 8) Phenol 7.382 94 59684 19.641 mg/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 mg/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 mg/ul 196 13) 2-Methylphenol 8.640 108 44366 19.601 mg/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 mg/ul 97 16) Acetophenone 9.022 1085 71767 19.602 mg/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 mg/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 mg/ul 98 22) Nitrobenzene 9.280 117 17552 19.350 mg/ul 98 23) Isophorone 9.926 82 115644 19.320 mg/ul 98 25) 2-Nitrophenol 10.179 107 55158 19.651 mg/ul 98 26) 2,4-Dimethylphenol 10.773 162 42079 19.008 mg/ul 98 27) 8is(2-Chloroethoxy)met 10.408 36 5051 19.674 mg/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 mg/ul													
2) 1,4-Dioxane 3.569 88 6770 7.029 ng/ul 89 5) Pyridine 3.980 79 52838 20.285 ng/ul 98 6) Benzaldehyde 7.324 77 42034m 22.502 ng/ul 98 7) MA121 8) Phenol 7.382 94 59684 19.641 ng/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.644 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022 105 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 98 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 98 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.179 107 55158 19.651 ng/ul 98 26) 2,4-Dimethylphenol 106.179 107 55158 19.651 ng/ul 98 26) 2,4-Dichlorophenol 106.73 162 42079 19.008 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 106.73 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 31) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 34) Caprolactam 11.948 113 16734m 19.228 ng/ul	sz) benzo(a)pyrene-uiz	25.044	264	183218	19.318 ng/ul	0.00							
2) 1,4-Dioxane 3.569 88 6770 7.029 ng/ul 89 5) Pyridine 3.980 79 52898 20.285 ng/ul 98 6) Benzaldehyde 7.324 77 42034m 22.502 ng/ul 98 7) Phenol 7.382 94 59684 19.641 ng/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.972 ng/ul 97 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022 105 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 98 22) Nitrobenzene 9.926 82 115644 19.320 ng/ul 98 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.179 107 55158 19.651 ng/ul 98 26) 2,4-Dinethylphenol 10.673 162 42079 19.008 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 31) Hexachlorobutadiene 11.331 225 28110 18.814 ng/ul 97 32) 4-Chloroaniline 11.331 225 28110 18.410 ng/ul 98 34) Caprolactam 11.948 113 16734m 19.228 ng/ul	Target Compounds				Ov:	alue							
5) Pyridine 3.980 79 52898 20.285 ng/ul 98 \mathcal{M} \mathcal{M} 6) Benzaldehyde 7.324 77 42034m 22.502 ng/ul \mathcal{M} \mathcal{M} 8) Phenol 7.382 94 59684 19.641 ng/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 98 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 26) 2,4-Dinethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65613 19.674 ng/ul 99 29) 2,4-Ditchlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroathine 11.184 127 62218 18.834 ng/ul 97 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 34) Caprolactam 11.948 113 16734m 19.228 ng/ul	2) 1,4-Dioxane	3.569	88	6770	(E)		1						
8) Phenol 7.382 94 59684 19.641 ng/ul 96 10) Bis(2-Chloroethyl)ether 7.600 93 45111 19.623 ng/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022' 105' 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 98 21) Nitrobenzene 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158<		3.980	79				20,221						
10) Bis(2-Chloroethyl)ether 7.660 93 45111 19.623 ng/ul 97 12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Accetophenone 9.022' 105' 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 93 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2.4-Dimethylphenol 10.179 <					22.502 ng/ul		NAICI						
12) 2-Chlorophenol 7.758 128 42497 19.743 ng/ul 100 13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022 105 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.992 70 43221 20.543 ng/ul 98 22) Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.992 70 43221 20.543 ng/ul 98 22) Nitrobenzene 9.280 117 17592 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 26) 2,4-Dimethylphenol 10.126 139 26													
13) 2-Methylphenol 8.640 108 44366 19.601 ng/ul 94 14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022' 105' 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70' 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97' 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Napthalene 11.072 128 144011<													
14) 2,2'-oxybis(1-Chloropr 8.716 45 66256 19.972 ng/ul 97 16) Acetophenone 9.022'105 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.614 ng/ul 97 12/m²/m²/m²/m²/m²/m²/m²/m²/m²/m²/m²/m²/m²/													
16) Acetophenone 9.022 105 71767 19.602 ng/ul 97 17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 34) Caprolactam 11.948 113 16734m	· ·												
17) N-Nitroso-di-n-propyla 8.992 70 43221 20.543 ng/ul 98 18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.0088 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 12/37 1 33) Hexac													
18) 4-Methylphenol 8.969 108 47691 19.705 ng/ul 99 19) Hexachloroethane 9.280 117 17592 19.350 ng/ul 98 22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 121 M 2 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 121 M 2 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 121 M 2	17) N-Nitroso-di-n-propyla						2						
22) Nitrobenzene 9.415 77 59872 19.433 ng/ul 97 23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 12/7 1 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 12/7 1 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 1 1			108		19.705 ng/ul	99							
23) Isophorone 9.926 82 115644 19.320 ng/ul 98 25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 121 M 2 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 121 M 2													
25) 2-Nitrophenol 10.126 139 26197 19.082 ng/ul 98 26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 121 121 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 121 121 121							,						
26) 2,4-Dimethylphenol 10.179 107 55158 19.651 ng/ul 98 27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 121 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 121 121													
27) Bis(2-Chloroethoxy)met 10.408 93 65013 19.674 ng/ul 99 29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 121 121 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 121 121													
29) 2,4-Dichlorophenol 10.673 162 42079 19.008 ng/ul 98 30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 10.72 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 21 2 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 11													
30) Naphthalene 11.072 128 144011 19.014 ng/ul 97 1/ 32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 1/ 1/ 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 21 1/ 34) Caprolactam 11.948 113 16734m 19.228 ng/ul 98 21 1/													
32) 4-Chloroaniline 11.184 127 62218 18.834 ng/ul 99 パレスコン 33) Hexachlorobutadiene 11.331 225 28110 18.410 ng/ul 98 21 アン 34) Caprolactam 11.948 113 16734m 19.228 ng/ul							A11						
34) Caprolactam 11.948 113 16734m 19.228 ng/ul							121						
34) Caprolactam 11.948 113 16734m 19.228 ng/ul							121/11						
557 4-Child 6-5-methylphenol 12.300 10/ 51321 19.299 ng/ul 93						200							
	557 4-Chilor 0-5-methylphenol	12.300	191	51321 -	19.299 ng/ul	93							

SFAM-EPA-BG112321.M Fri Dec 03 11:22:14 2021

1

\$

--

Data Path : Z:\svoasrv\HPCHEM1\BNA_G\Data\BG120221\ Data File : BG051321.D Acq On : 3 Dec 2021 3:59 Operator : CG/JU Sample : SSTDCCC020 Misc : ALS Vial : 26 Sample Multiplier: 1

Quant Time: Dec 03 11:18:14 2021 Quant Method : Z:\svoasrv\HPCHEM1\BNA_G\Methods\SFAM-EPA-BG112321.M Quant Title : SVOA CALIBRATION QLast Update : Wed Nov 24 06:04:50 2021 Response via : Initial Calibration Instrument :

BNA_G LabSampleId:

SSTDCCC020

Manual IntegrationsAPPROVED

1

2

\$

×

Reviewed By :Jagrut Upadhyay 12/03/2021 Supervised By :mohammad ahmed 12/05/2021

Response via : Initial Calibratio	on					Supervised By :m
Compound	R.T.	QIon	Response	Conc Units De	v(Min)	
36) 2-Methylnaphthalene	12.664	142	98346	19.090 ng/ul		
37) 1-Methylnaphthalene	12.882	142	100960	19.049 ng/ul		
39) 1,2,4,5-Tetrachloroben	13.029	216	55806	19.412 ng/ul		
40) Hexachlorocyclopentadiene	12.993	237	21767	18.732 ng/ul		
41) 2,4,6-Trichlorophenol	13.270	196	34312	19.019 ng/ul		
42) 2,4,5-Trichlorophenol	13.358	196	36916	19.540 ng/u]		
43) 1,1'-Biphenyl	13.657	154	135384	19.794 ng/u]		
44) 2-Chloronaphthalene	13.710	162	106586	19.591 ng/ul		
45) 2-Nitroaniline	13.916	65	38662	20.532 ng/ul		
47) Dimethylphthalate	14.263	163	134606	18.874 ng/ul		
48) 2,6-Dinitrotoluene	14.404	165	29016	19.368 ng/u]		
50) Acenaphthylene	14.550	152	172301	19.628 ng/u		
51) 3-Nitroaniline	14.738	138	31072	20.983 ng/ul		
52) Acenaphthene	14.891	153	112777			
53) 2,4-Dinitrophenol	14.962	184	13899m	16.785 ng/u		
55) 4-Nitrophenol	15.067	109	15679	15.847 ng/u	(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	
56) Dibenzofuran	15.220	168	160228	19.189 ng/u		
57) 2,4-Dinitrotoluene	15.197		40768	(19.053 ng/u)		
58) 2,3,4,6-Tetrachlorophenol	15.455	232	26100	17.593 ng/u		
59) Diethylphthalate	15.620	149	140180	18.725 ng/u		
61) Fluorene	15.872	166	128853	19.265 ng/u		
62) 4-Chlorophenyl-phenyle	15.855		66910	18.563 ng/u		JAN Y
63) 4-Nitroaniline	15.902	138	31351m	21.756 ng/u		N
66) 4,6-Dinitro-2-methylph	15.966	1000 and 100 and 100	18780	15.644 hg/u		
67) N-Nitrosodiphenylamine	16.072	11 March 10	114960	19.907 ng/u		
68) 4-Bromophenyl-phenylether	16.748		40799	18.871 ng/u		
69) Hexachlorobenzene	16.877		42884	19.453 ng/u		
70) Atrazine	17.012		47328	19.500 ng/u		
71) Pentachlorophenol	17,230		14091m	14.425 ng/u	2	د د
72) Phenanthrene	17.617		219324		-	
74) Anthracene	17.711	Concernance of	217794	19.689 ng/u		
75) 1,2,3,4-Tetrachloroben	13.634		57804	19.645 ng/u 19.697 ng/u		
76) Pentachlorobenzene	15.144		54001	20.222 ng/u		
77) Carbazole	17.982		196342	19.739 ng/u		
78) Di-n-butylphthalate	18.505			19.725 ng/u		
80) Fluoranthene	19.621			19.826 ng/u		
82) Pyrene	19.985		265201	19.717 ng/u	20 (and	
83) Butylbenzylphthalate	20.843	14		19.696 ng/u		
84) 3,3'-Dichlorobenzidine	21.760	-		19.441 ng/L		
85) Benzo(a)anthracene	21.854			19.682 ng/u		
<pre>86) Bis(2-ethylhexyl)phtha</pre>	21.713			19.274 ng/u	•	
87) Chrysene	21.924			20.054 ng/u		
89) Di-n-octyl phthalate	22.976			19.137 ng/u		
90) Benzo(b)fluoranthene	24.186			19.388 ng/u		
91) Benzo(k)fluoranthene	24.257			19.572 ng/u		
93) Benzo(a)pyrene	25.115			18.984 ng/u		
94) Indeno(1,2,3-cd)pyrene	29.186			18.998 ng/i		
95) Dibenzo(a,h)anthracene	29.245			18.849 ng/t		
96) Benzo(g,h,i)perylene	30.426			10:043 HB/		3 4

(#) = qualifier out of range (m) = manual integration (+) = signals summed

SFAM-EPA-BG112321.M Fri Dec 03 11:22:14 2021