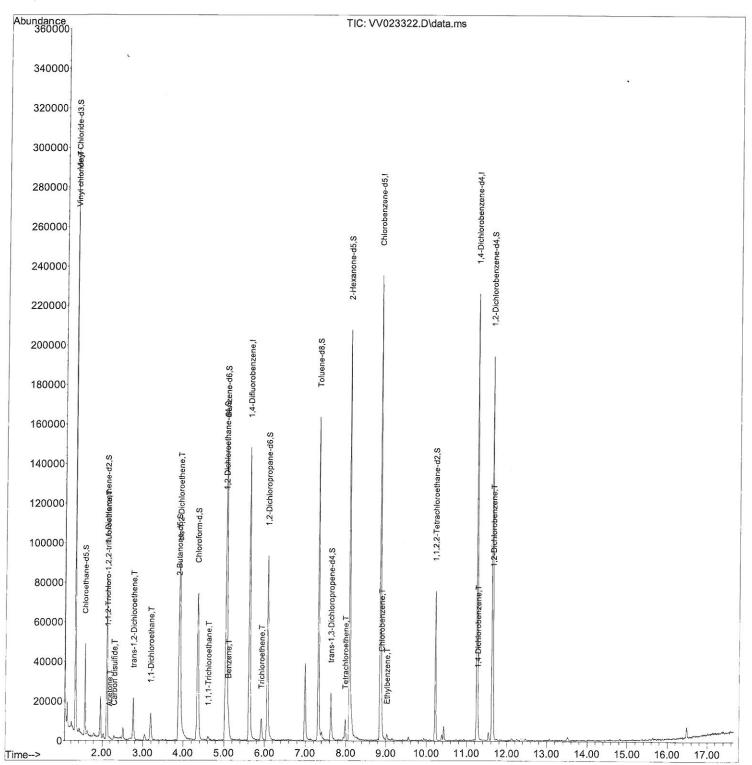
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV110921\

Data File: VV023322.D

Acq On : 10 Nov 2021 11:03

Operator : SY/MD Sample : M4522-13


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 31 Sample Multiplier: 1

Quant Time: Nov 11 00:40:04 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 11 00:38:57 2021 Response via : Initial Calibration Instrument:
MSVOA_V
ClientSampleId:
BG326

Manual IntegrationsAPPROVED

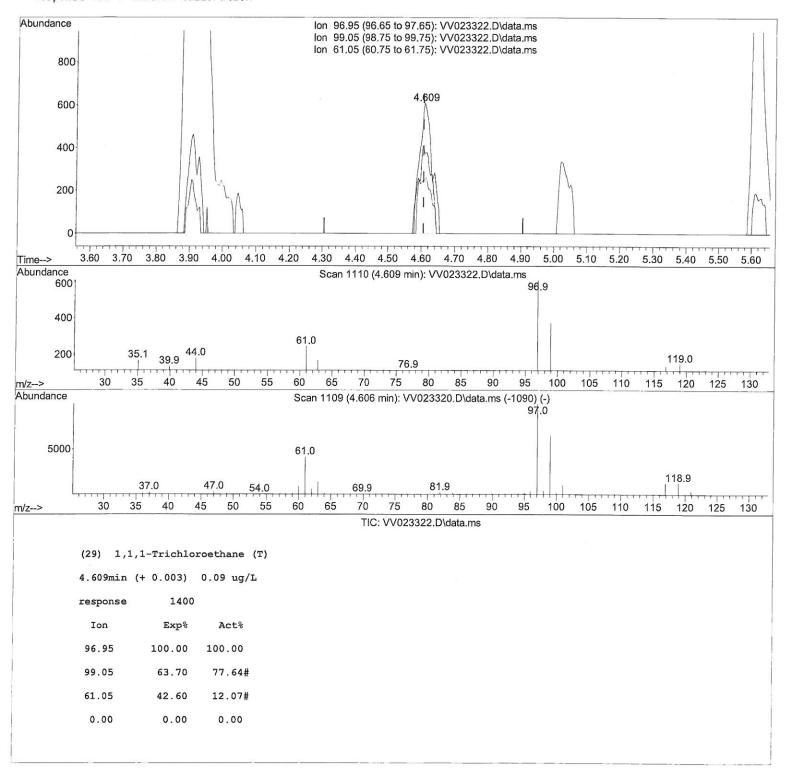
Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV110921\

Data File: VV023322.D

Acq On : 10 Nov 2021 11:03

Operator : SY/MD Sample : M4522-13


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 31 Sample Multiplier: 1

Quant Time: Nov 11 00:40:04 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 11 00:38:57 2021 Response via : Initial Calibration Instrument :
MSVOA_V
ClientSampleId :

Manual IntegrationsAPPROVED

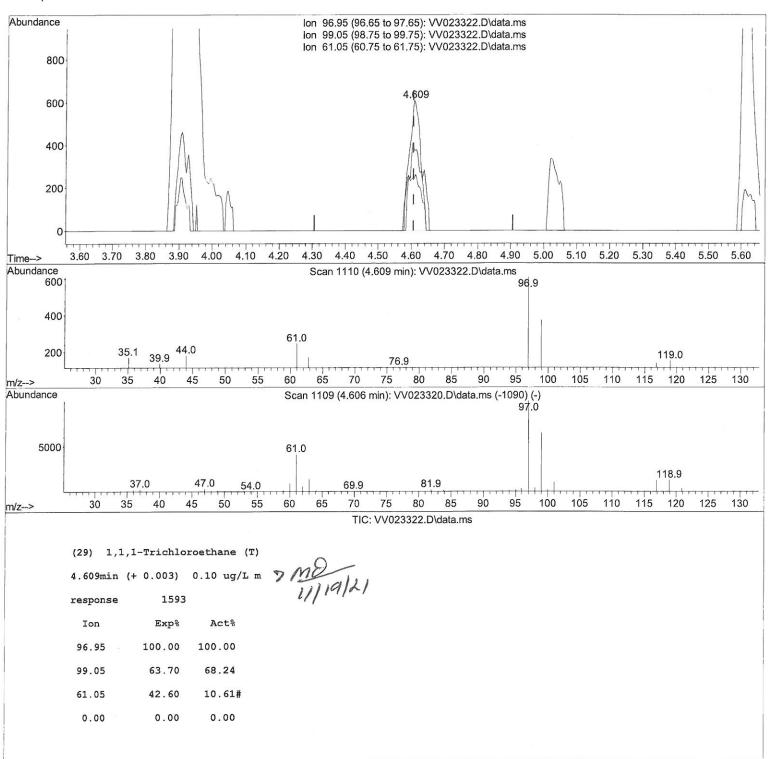
Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV110921\

Data File: VV023322.D

Acq On : 10 Nov 2021 11:03

Operator : SY/MD Sample : M4522-13


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 31 Sample Multiplier: 1

Quant Time: Nov 11 00:40:04 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 11 00:38:57 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId :

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV110921\

Data File : VV023322.D

Acq On : 10 Nov 2021 11:03

Operator : SY/MD Sample : M4522-13

Misc : 25.0mL/MSVOA_V/WATER ALS Vial : 31 Sample Multiplier: 1

Quant Time: Nov 11 00:40:04 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Thu Nov 11 00:38:57 2021

Response via : Initial Calibration

Instrument : MSVOA_V ClientSampleId : BG326

Manual IntegrationsAPPROVED

Compound	R.T.	QIon	Response	Conc Ur	nits Dev((Min)	
Internal Standards							
1) 1,4-Difluorobenzene	5.616	114	128147	5.000	ug/L	0.00	
28) Chlorobenzene-d5	8.854		131063		ug/L	0.00	
58) 1,4-Dichlorobenzene-d4	11.249		62172		ug/L	0.00	
55, 2, 1 52011201 0501120110 01			02272	3.000	46/ -	0.00	
System Monitoring Compounds							
4) Vinyl Chloride-d3	1.307	65	27252	3.395	ug/L	0.00	
Spiked Amount 5.000	Range 40		Recover		67.800%		
7) Chloroethane-d5	1.568		26065		ug/L	0.00	
Spiked Amount 5.000	Range 65	- 130	Recover				
11) 1,1-Dichloroethene-d2	2.108	63	39245	2.611		0.00	
Spiked Amount 5.000	Range 60	- 125	Recover		52.200%		
20) 2-Butanone-d5	3.886	46		70.959		-0.01	
Spiked Amount 50.000	Range 40	- 130	Recover		141.920%		
24) Chloroform-d	4.349	84	75762	4.428		0.00	
Spiked Amount 5.000	Range 70	- 125	Recover		88.600%		
26) 1,2-Dichloroethane-d4	5.034	65	37320	4.851		0.00	
Spiked Amount 5.000	Range 70		Recover		97.000%		
32) Benzene-d6	5.050	84		4.011		0.00	
Spiked Amount 5.000	Range 70	- 125	Recover		80.200%		
36) 1,2-Dichloropropane-d6	6.069	67		4.719		0.00	
Spiked Amount 5.000	Range 60	- 140	Recover		94.400%		
41) Toluene-d8	7.317	98	108795	3.452		0.00	
Spiked Amount 5.000	Range 70	- 130	Recover		69.000%		
43) trans-1,3-Dichloroprop.	7.625	79	14506	3.865	ug/L	0.00	
Spiked Amount 5.000	Range 55	- 130	Recover		77.200%		
46) 2-Hexanone-d5	8.088	63	67030	48.535	ug/L	0.00	
Spiked Amount 50.000	Range 45	- 130	Recover	y =	97.080%		
56) 1,1,2,2-Tetrachloroeth	. 10.217	84	34262	4.813	ug/L	0.00	
Spiked Amount 5.000	Range 65	- 120	Recover	y =	96.200%		
66) 1,2-Dichlorobenzene-d4	11.625	152	48290	4.665	ug/L	0.00	
Spiked Amount 5.000	Range 80	- 120	Recover	y =	93.200%		
Target Compounds					Qva]	lue	
Vinyl chloride	1.310	62	150114	14.148	ug/L	98	
10) 1,1,2-Trichloro-1,2,2		101	3767	0.469	ug/L	99	
13) Acetone	2.179	43	1403	1.660		78	
14) Carbon disulfide	2.294	76	2034	0.071	ug/L	95	
18) trans-1,2-Dichloroethene	2.764	96	8193	0.872	ug/L	93	
<pre>19) 1,1-Dichloroethane</pre>	3.191	63	13785	0.869		96	_
22) cis-1,2-Dichloroethene	3.912	96	31617	3.497	ug/L #	85	mo 121
29) 1,1,1-Trichloroethane	4.609	97	1593m	0.100		7	MO 121
33) Benzene	5.101	78	13630	0.372		100	7///
34) Trichloroethene	5.918	95	3732	0.383		88	
47) Tetrachloroethene	7.979	164	2378	0.282		94	
51) Chlorobenzene	8.886	112	13381	0.514		94	
52) Ethylbenzene	9.021	91	2465	0.060		94	
65) 1,4-Dichlorobenzene	11.275	146	1174	0.063		88	
67) 1,2-Dichlorobenzene	11.644	146	15511	0.951	ug/L	100	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed