Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111621\

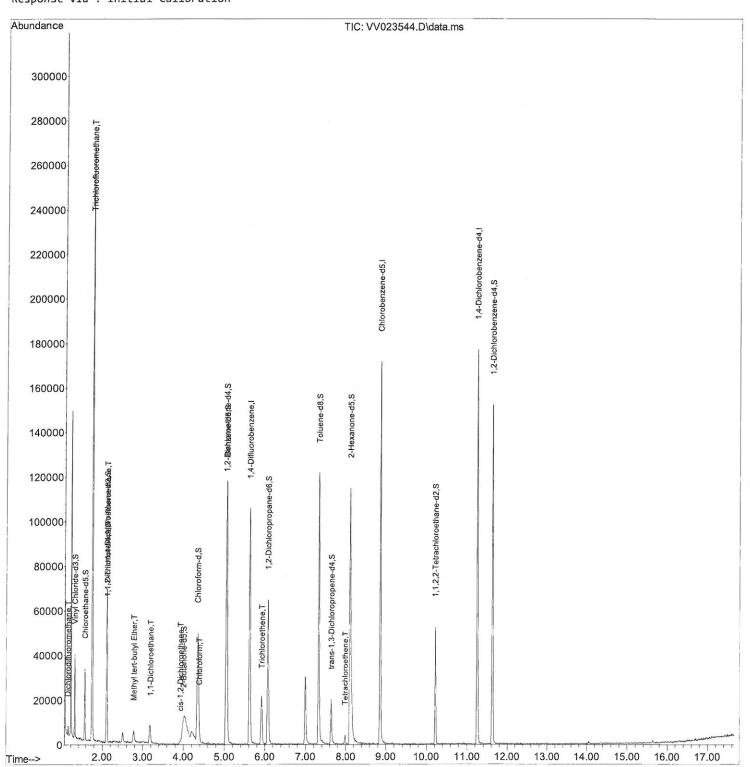
Data File : VV023544.D

Acq On : 16 Nov 2021 19:13

Operator : SY/MD

Sample : M4616-18DL 10X

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 24 Sample Multiplier: 1


Quant Time: Nov 17 00:55:00 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Wed Nov 17 00:48:57 2021 Response via : Initial Calibration

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

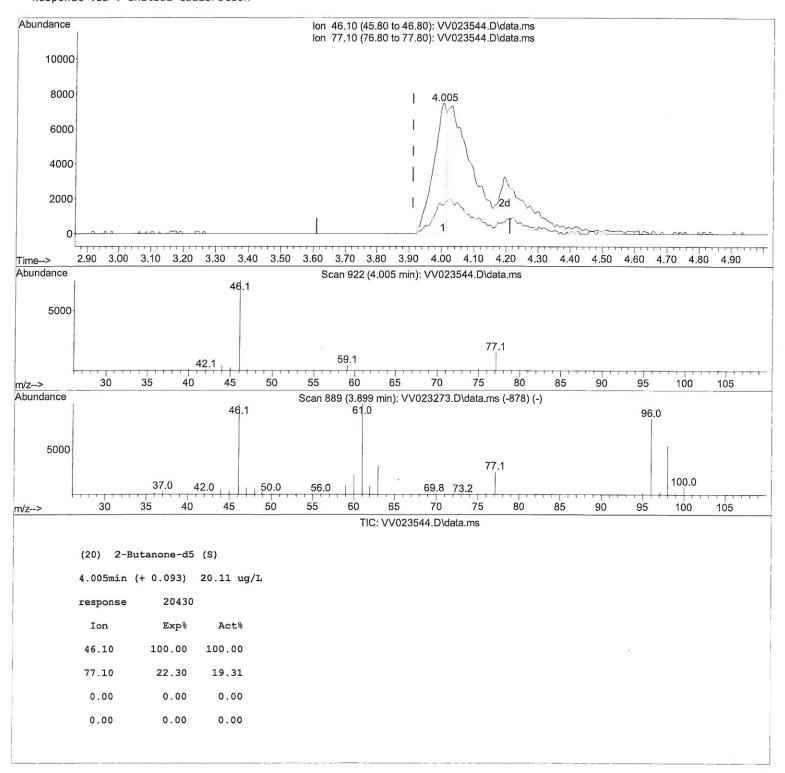
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111621\

Data File: VV023544.D

Acq On : 16 Nov 2021 19:13

Operator : SY/MD

Sample : M4616-18DL 10X


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 24 Sample Multiplier: 1

Quant Time: Nov 17 00:55:00 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Wed Nov 17 00:48:57 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId : BG203DL

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

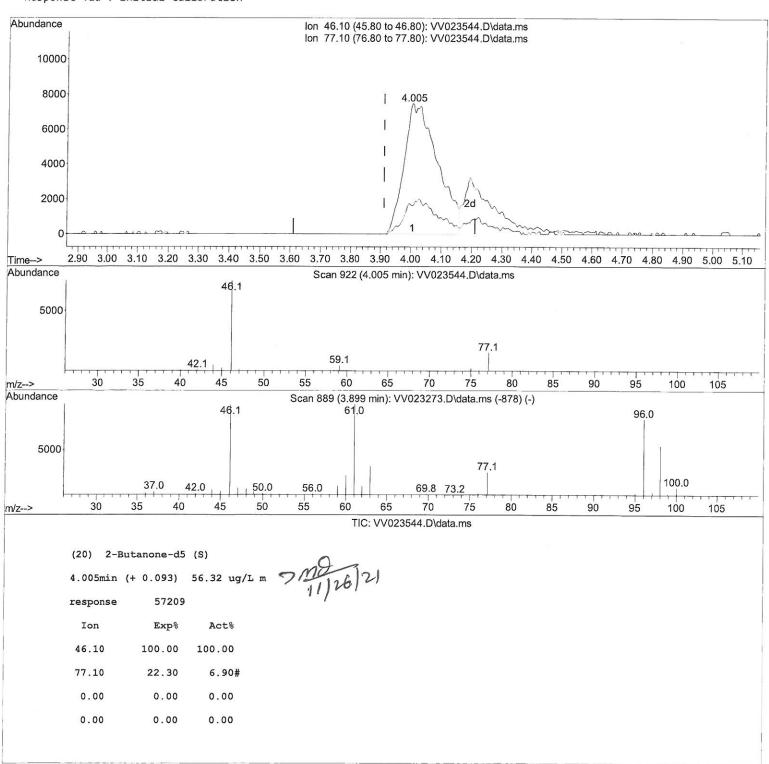
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111621\

Data File : VV023544.D

Acq On : 16 Nov 2021 19:13

Operator : SY/MD

Sample : M4616-18DL 10X


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 24 Sample Multiplier: 1

Quant Time: Nov 17 00:55:00 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Wed Nov 17 00:48:57 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId : BG203DL

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111621\

Data File : VV023544.D

Acq On : 16 Nov 2021 19:13

ALS Vial : 24 Sample Multiplier: 1

Quant Time: Nov 17 00:55:00 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Wed Nov 17 00:48:57 2021 Response via : Initial Calibration

Instrument : MSVOA_V ClientSampleId : BG203DL

Manual IntegrationsAPPROVED

Compound		R.T.	QIon	Response (Conc Un	its Dev(Min)
Internal Standards							
1) 1,4-Difluorobenzene		5.619	114	94115	5.000	ug/L	0.00
28) Chlorobenzene-d5		8.853	117	98618	5.000	ug/L	0.00
58) 1,4-Dichlorobenzene-d4		11.249	152	49856	5.000	ug/L	0.00
System Monitoring C	ompounds						
4) Vinyl Chloride-d3		1.301	65	20363	3.454	ug/L	0.00
Spiked Amount	5.000	Range 40	- 130	Recovery	/ =	69.000%	
7) Chloroethane-d	5	1.561	69	18393	3.828	ug/L	0.00
Spiked Amount	5.000	Range 65	- 130	Recovery		76.600%	
11) 1,1-Dichloroet	hene-d2	2.101	63	32152	2.913		0.00
Spiked Amount 5.000		Range 60	- 125	Recovery		58.200%	
20) 2-Butanone-d5		4.005	46	57209m	56.321		0.09 - 200 121
Spiked Amount	50.000	Range 40		Recovery		112.640%	0.09 7 MOZE 121
24) Chloroform-d	30.000	4.346	84	49315	3.925		0.00 111
Spiked Amount	5.000	Range 70				78.400%	0.00
			65	Recovery			0.00
26) 1,2-Dichloroeth		5.037		28120	4.977		0.00
Spiked Amount	5.000	Range 70		Recovery		99.600%	0.00
32) Benzene-d6		5.046	84	97182	3.841		0.00
Spiked Amount	5.000	Range 70		Recovery		76.800%	
36) 1,2-Dichloropropane-d6		6.072	67	30596	4.108		0.00
Spiked Amount	5.000	Range 60	- 140	Recovery	=	82.200%	
41) Toluene-d8		7.316	98	83108	3.505	ug/L	0.00
Spiked Amount	5.000	Range 70	- 130	Recovery	=	70.000%	
43) trans-1,3-Dichloroprop.		7.628	79	12122	4.292	ug/L	0.00
Spiked Amount	5.000	Range 55	- 130	Recovery	=	85.800%	
46) 2-Hexanone-d5		8.104	63	45934	44.203	ug/L	0.01
Spiked Amount	50.000	Range 45	- 130	Recovery		88.400%	
56) 1,1,2,2-Tetrach	loroeth.	10.217	84	24062	4.492	ug/L	0.00
Spiked Amount	5.000	Range 65	- 120	Recovery		89.800%	
66) 1,2-Dichlorober	zene-d4	11.625		40346	4.860		0.00
Spiked Amount	5.000	Range 80		Recovery		97.200%	
Target Compounds						0val	ue
2) Dichlorodifluoromethane		1.127	85	1464	0.160		99
9) Trichlorofluoromethane		1.748	101		12.676		98
10) 1,1,2-Trichloro-1,2,2			101	2447		ug/L #	94
12) 1,1-Dichloroethene		2.111	96	1111		ug/L #	1
17) Methyl tert-butyl Ether		2.780	73	4981		ug/L #	87
19) 1,1-Dichloroethane		3.188	63	5929	0.509		97
			96				
22) cis-1,2-Dichloroethene		3.924		667		ug/L #	65
25) Chloroform		4.381	83	5896	0.475		98
34) Trichloroethene		5.918	95	7070	0.965		100
47) Tetrachloroethene		7.979	164	1020	0.161	ug/L #	69

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed