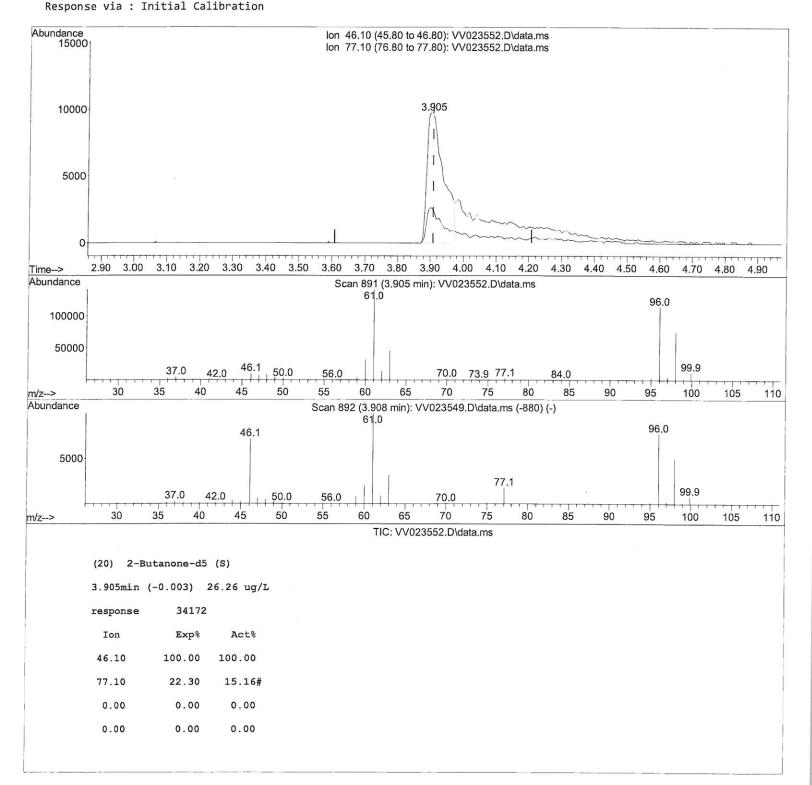
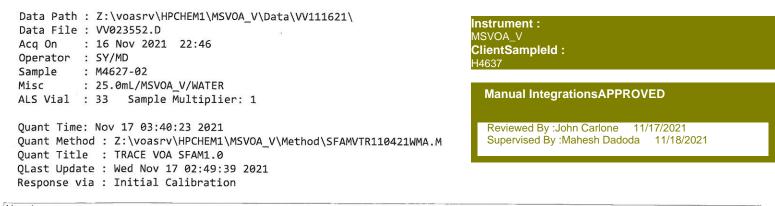
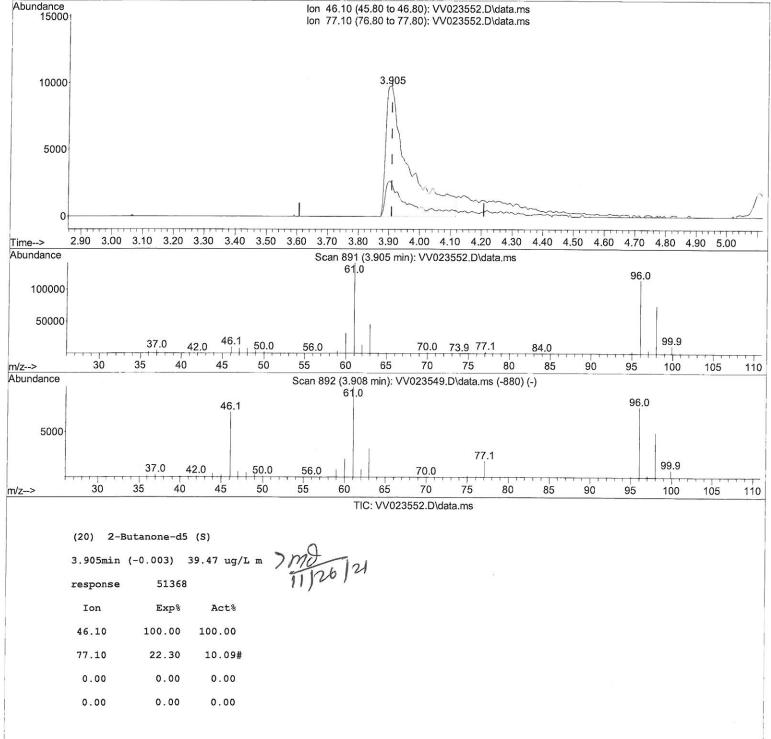
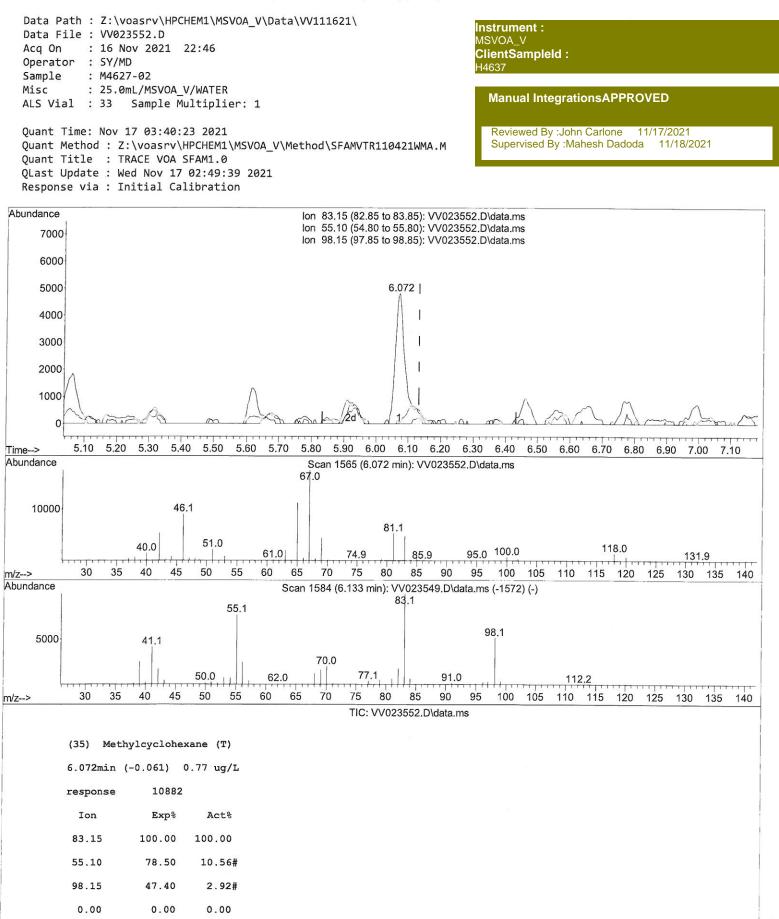

(QT Reviewed)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111621\ Data File : VV023552.D Acq On : 16 Nov 2021 22:46 Operator : SY/MD	Instrument : MSVOA_V ClientSampleld : H4637
Sample : M4627-02	
Misc : 25.0mL/MSVOA_V/WATER	Manual IntegrationsAPPROVED
ALS Vial : 33 Sample Multiplier: 1	
Quant Time: Nov 17 03:40:23 2021	Reviewed By :John Carlone 11/17/2021
<pre>Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M</pre>	Supervised By :Mahesh Dadoda 11/18/2021
Quant Title : TRACE VOA SFAM1.0	
QLast Update : Wed Nov 17 02:49:39 2021	
Response via : Initial Calibration	

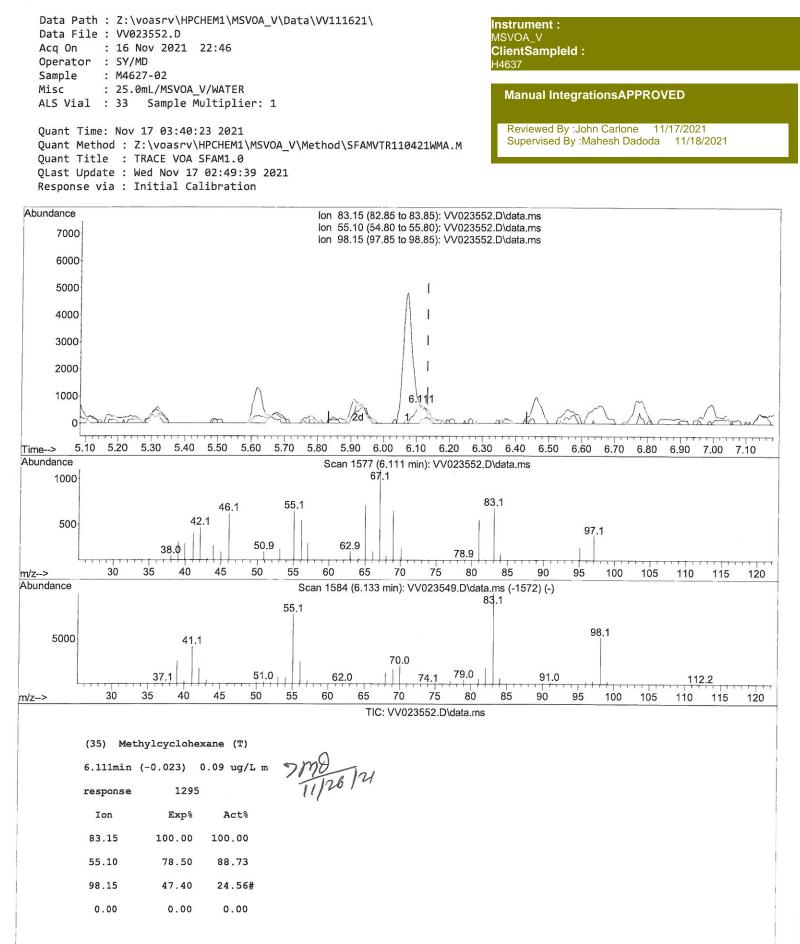












Data Pith : 21:Voosser/VHPCHEMIMSYOQ_VIDuta(VV)11621/ Instrument: Data File : Voosser/VHPCHEMIMSYOQ_VIDuta(VV)11621/ Instrument: Acq On : 16 Rov 2021 22:46 Voosser/VHPCHEMIMSYOQ_VIDUTA Misc : 2:5 dmL/SYOA_VIDUTA Acq On : 16 Rov 2021 22:46 Quant Time: Nov 17 83:46:23 2021 Reviewed By John Calfone 11/17/2021 Quant Time: Nov 17 83:46:23 2021 Reviewed By John Calfone 11/17/2021 Quant Time: Nov 17 83:46:23 2021 Reviewed By John Calfone 11/17/2021 Quant Time: Nov 17 83:46:23 2021 Reviewed By John Calfone 11/17/2021 Quant Time: Nov 17 82:46:13 2021 Reviewed By John Calfone 11/17/2021 Quant Time: Nov 17 80:46:13 1:14 128586 5.080 ug/L 0.68 20 (Ast Update : Hed Nev 17 92:40:13 2011 255911 5.080 ug/L 0.68 21 1.4016/rde-d3 1.397 65 3166 4.112 ug/L 0.88 21 (A-016/rde-d3 1.397 65 3166 4.112 ug/L 0.80 22 1		C	(e)	
Date File : VM02352.0 MSVOA.V Arg On : 16 Nov 262.22:46 MSVOA.V Operator : 5Y/M0 Sample : Model25VA Sample : Model25VA Manual IntegrationsAPPROVED Manual IntegrationsAPPROVED Manual IntegrationsAPPROVED Quant Title : TRACE VOA SFAMI.8 Manual IntegrationsAPPROVED Quant Title : TRACE VOA SFAMI.8 Manual IntegrationsAPPROVED Quant Title : TRACE VOA SFAMI.8 Manual IntegrationsAPPROVED Caseponse via : Initial Calibration Manual IntegrationsAPPROVED Internal Standards 11.4-01/Loroberna J 1.4-01/Loroberna 5.619 114 120365 5.0000 ug/L 0.80 20) Garburane-d5 5.619 114 120365 5.0000 ug/L 0.80 21) L4-01/Loroberna 1.307 05 31066 4.112 ug/L 0.80 20) J Arbitorebare-d5 1.307 05 31066 4.112 ug/L 0.80 21) L4-01/Loroberna 1.307 05 31066 4.112 ug/L 0.80 21) L4-01/Loroberna 1.308 05 2.224 ug/L 0.80 21 L4-01/Loroberna 1.308 05 3.3224 ug/L 0.80 21 L4-01/Loroberna 1.308 05 3.3254 ug/L 0.80 21 L4-01/Loroberna 1.308 05 3.3254 ug/L 0.80 21 L4-01/Loroberna		l\MSVOA_V\Data\	/V111621\	Instrument :
Operator:: SY/MO Simple::: Stanple:: Marcal IntegrationsAPPROVED Misc :: Stanple:: Marcal IntegrationsAPPROVED Quant Time:: Rv:rewed By:: Control Stanple:: Marcal IntegrationsAPPROVED Quant Time:: Rv:rewed By:: Control Stanple:: Marcal IntegrationsAPPROVED Quant Time:: Trans.: Trans.: Stanple:: Marcal IntegrationsAPPROVED Compound R.T. Qion Response Conc Units Dev(Min) Standards 1.1.4.0110robenzene S.615 11.4 12055 S.800 ug/L 0.00 29) Chlorobenzene-d5 8.83 117 120217 S.800 ug/L 0.00 0.00 5ystem Monitoring Compounds 1.566 21806 4.112 ug/L 0.00 0.00 4) Ming: Chlorobenzene-d4 1.2021 S.200 ug/L 0.00 0.00 5) A.4-Dilorocethane-d5 3.9365 3.920 ug/L 0.00 0.00 5) A.4-Dilorocethane-d5 3.9365 2.224 ug/L 0.00 0.00 5) A.4-Dilorocethane-d5 3.9365 2.224 ug/L 0.00 0.00 5) A.4-Diloroc				
Simple : M427-92 Misc :: Schur/MSVOk V/WATER ALS Vial :: 33 Sample Multiplier: 1 Quant Time: Nov 17 03:40:23 2021 Quant Mcthod: 12:VoosY-WATERALWSVOk V/Wathod/SFAMVTR110421MMA.H Quant Time: Nov 17 03:40:23 2021 Quant Mcthod: 12:VoosY-WATERALWSVOk V/Wathod/SFAMVTR110421MMA.H Quant Tille : TRACE VOA SFAML.0 Quant Mcthod: 12:VoosY-WATERALWSVOk V/Wathod/SFAMVTR110421MMA.H Quant Tille : TRACE VOA SFAML.0 Quant Mcthod: 12:VoosY-WATERALWSVOk V/Wathod/SFAMVTR110421MMA.H Quant Tille : TRACE VOA SFAML.0 Quant Mcthod: 12:VoosY-WATERALWSVOk V/Wathod/SFAMVTR110421MMA.H Reported by John Calone 11/17/2021 Spannese Via : Initial Calibration Compound	A second se	16		ClientSampleId :
Misc 2:5.8mL/NPUOA_V/WATER ALS Vial: 33 Sample Multiplier: 1 Quant Time: Nov 17 03:40:23 2021 Quant Time: Nov 17 03:40:23 2021 Reviewed By: John Calone 11/17/2021 Quant Time: Nov 17 03:40:23 2021 Reviewed By: John Calone 11/17/2021 Quant Time: Nov 17 03:40:23 2021 Reviewed By: John Calone 11/17/2021 Response Via: Initial Calibration Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards Standards 0.00 System Monitoring Compounds 1.1249 152 55951 5.000 ug/L 0.00 4) Vinyi Chloriderazne-da 1.1367 05 5.000 ug/L 0.00 System Monitoring Compounds 1.1249 152 55951 5.000 ug/L 0.00 4) Vinyi Chloriderazne-da 1.387 65 5.3086 ug/L 0.00 System Monitoring Compounds 1.1249 152 55951 5.000 ug/L 0.00 4) Vinyi Chloriderazne-da 1.387 65 1.388 02 ug/L 0.00 591ked Amount 5.000 Range 60 - 130 Recovery = 82.000X 0.00 0.00 20) Laborothene-d2 2.188 63 3.45592 3.224 ug/L 0.00 21) Laborothene-d3 3.905 46 51368m 30.409 ug/L 0.00 20) Lobrothene-d4 <td></td> <td></td> <td></td> <td>H4637</td>				H4637
ALS Vial : 33 Semple Multiplier: 1 Quant Mcthod : 2:/Voas-VMCEMU MSVOAU_VMethod/SFAMVTR118421MWA.M Quant Time: Nov 17 03:40:23 2021 Quant Mcthod : 2:/Voas-VMCEMU MSVOAU_VMethod/SFAMVTR118421MWA.M Quant Tile : TRACE VOA SFAML.0 Quant Tile : TRACE VOA SFAML.0 Quant Tile : TRACE VOA SFAML.0 Compound A.T. Qion Response Conc Units Dev(Min) Thernal Standards Internal Standards System Monitoring Compounds 4) Vinyl (Honide-da 1.37 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 4) Vinyl (Honide-da 1.37 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 4) Vinyl (Honide-da 1.37 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 4) Vinyl (Honide-da 1.37 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 4) Jingl (Honide-da 1.32 1.23 1.27 1.22 1.24 1.22 1.24 1.22 1.24 1.22 1.24 1.25 1.24 1.24 1.25 1.24 1.25 1.24 1.24 1.25 1.24 1.24 1.25 1.24 1.24 1.25 1.24 1.24 1.25 1.25 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24		TEP		
Quant Time: Nov 17 03:40:23 2021 Supervised By John Carlone 11/17/2021 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Quant Tile: TRACE VOA SPANL 0 Reponse Via Initial Galibration Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) 1,4-01Tluoroberzene 3 6.619 114 128586 5.000 ug/L 0.00 20 Androberzene 4 8.855 1512 12221 0.00 0.00 30 Anothorsenene 45 8.855 1312 12221 0.00 0.00 39 Loc Anount 5.000 Range 60 1.307 65 31066 4.112 ug/L 0.00 4) Vinyl Chloride-d3 1.367 65 3106 4.122 ug/L 0.00 30 Loc Anount 5.000 Range 60 1.288 69 2500 Range 60 0.00 31,1-OiChloroethane-45 3.985 46 51368 3.490 Ug/L 0.00 31,2-Dichloroptane-46 5.037 65 2500 Garbane 40 0.00 31,2-Dichloropt				Manual IntegrationsAPPROVED
Quart Titl: TRACE VOA SFAML:0 Supervised By Maheeh Dadoda 1/1/82021 Want Titl: TRACE VOA SFAML:0 Quart Titl: TRACE VOA SFAML:0 Supervised By Maheeh Dadoda 1/1/82021 Response via : Initial Calibration R.T. Qion Response Conc Units Dev(Min) Internal Standards 1 1.1 4-Difluorobenzene-05 8.833 117 120217 5.000 ug/L 0.00 29) Chlorobenzene-04 11.249 152 55951 5.000 ug/L 0.00 System Monitoring Compounds 1.307 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 1.307 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 1.307 65 32065 2.200X 0.00 System Monitoring Compounds 1.080 Range 66 23093 3.832 ug/L 0.00 System Monitoring Compounds 1.010-10-10-10 1.010-10-10 1.010-10-10 1.010-10-10 1.010-10-10 1.010-10-10-10 1.010-10-10 1.010-10-10 1.010-10 1.010-10-10 1.010-10-10 1.010-10-10 1.010-10-10 1.010-10-10 1.000				
Quant 151Le : TRACE VOA SFMM.0 Diversion Control (Diversion Contrect) (Diversion Control (Diversion Contrect) (Diversi	Quant Time: Nov 17 03:40:23 2	021		Reviewed By :John Carlone 11/17/2021
Quast Update : Wed Nov 17 02:09:39 0221 Response via : Initial Calibration Internal Standards 1) 1,4-05fluoroberzene : 5.619 114 120586 5.000 ug/L 0.00 28) Chloroberzene : 5.619 114 120586 5.000 ug/L 0.00 59) 1,4-05fluoroberzene : 5.619 114 120586 5.000 ug/L 0.00 59) 1,4-05fluoroberzene : 5.619 114 120586 5.000 ug/L 0.00 59) 1,4-05fluoroberzene : 6.619 114 120586 5.000 ug/L 0.00 59) 1,4-05fluoroberzene : 6.619 114 120586 5.000 ug/L 0.00 59 1,4-05fluoroberzene : 6.619 114 120586 5.000 ug/L 0.00 59 1,4-05fluoroberzene : 6.619 114 120586 5.000 ug/L 0.00 59 1,4-05fluoroberzene : 6.619 114 120586 5.000 ug/L 0.00 59 1,4-05fluoroberzene : 6.619 1299 3.022 ug/L 0.00 59 1,4-05fluoroberzene : 7.000% 10) 1,1-05fluoroberzene : 7.000% 50 1,2-05fluoroberzene : 7.000% 50 1,2-05fluoroberzene : 7.000% 50 1,2-05fluoroberzene : 7.000% 50 1,2-05fluoroberzene : 7.000% 51 1,2-05fluoroberzene : 7.000% 52 1,2-05fluoroberzene : 7.000% 52 1,2-05fluoroberzene : 7.000% 52 1,2-05fluoroberzene : 7.000% 51 1,2-05fluoroberzene : 7.000% 52 1,2-05fluoroberzene : 7.000% 52 1,2-05fluoroberzene : 7.000% 53 1,2-05fluoroberzene : 7.000%	Quant Method : Z:\voasrv\HPCH	IEM1\MSVOA_V\Me	hod\SFAMVTR110421WMA.M	Supervised By :Mahesh Dadoda 11/18/2021
Response via : Initial Calibration Compound R.T. Qion Response Conc Units Dev(Min) Internal Standands				
Compound R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) 1,4-Difluorobenzene 5.619 114 128586 5.080 ug/L 0.08 28) Chiorobenzene-d4 11.249 152 55951 5.080 ug/L 0.08 58) 1,4-Dichlorobenzene-d4 11.249 152 55951 5.080 ug/L 0.08 5ytked Anount 5.080 Range 40 130 Recovery = 82.2084 7) Chiorochane-d5 1.568 592933 3.822 ug/L 0.00 Spiked Anount 5.0800 Range 65 130 Recovery = 77.6084 20) 2-Butanne-d5 3.596 46 513668 3.090 Wg/L 0.00 Spiked Anount 5.0800 Range 70 -125 Recovery = 78.9084 0.00 20) 1.2-Dichlorochane-d5 5.080 Range 70 -125 Recovery = 78.9084 0.00 31) 1,1-Dichlorochane-d6 5.080 Range 70 -125 Recovery = 78.8084 20) 1.2-Dichlorochane-d6 5.0806 Range 70				
$\begin{array}{c} \mbox{Internal Standards} \\ Internal Standard$	Response via : Initial Calibr	ation		
$\begin{array}{c} \mbox{Internal Standards} \\ Internal Standard$	Compound	P T OTO	Pochanca Canc Unite Day	(Mi =)
1) 1,4-Difluorobenzene 5.619 114 128586 5.000 ug/L 0.00 28) Chlorobenzene-d4 11.249 152 55951 5.000 ug/L 0.00 5ystem Monitoring Compounds 4) Vinyl Chloride-d3 1.307 65 31066 4.112 ug/L 0.00 5ysted Mount 5.000 Range 40 - 130 Recovery = 82.200% 7) Chloroethane-d5 1.558 69 23903 3.822 ug/L 0.00 5ysted Mount 5.000 Range 65 - 130 Recovery = 77.600% 20) 2-Butanone-d5 2.108 63 45592 3.224 ug/L 0.00 5ysted Mount 5.000 Range 60 - 125 Recovery = 78.940% 20) 2-Butanone-d5 3.995 46 51368m 39.469 ug/L 0.00 5ysted Mount 5.000 Range 70 - 126 Recovery = 78.940% 20) 2-Butanone-d5 3.995 46 51368m 39.469 ug/L 0.00 5ysted Mount 5.000 Range 70 - 126 Recovery = 78.940% 20) 1.2-Dichloroethane-d4 5.637 65 28507 3.938 ug/L 0.00 5ysted Anount 5.000 Range 70 - 130 Recovery = 78.840% 23) Benzene-d5 5.000 Range 70 - 130 Recovery = 78.840% 24) Chloroform-d 4.352 84 57853 3.594 ug/L 0.00 5ysted Anount 5.000 Range 70 - 130 Recovery = 78.800% 23) Benzene-d5 5.000 Range 70 - 130 Recovery = 76.000% 34) 1.2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 5ysted Anount 5.000 Range 70 - 130 Recovery = 72.000% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 5ysted Anount 5.000 Range 70 - 130 Recovery = 73.800% 41) Toluene-d5 8.000 Range 65 - 120 Recovery = 73.800% 41) Toluene-d5 8.000 Range 65 - 120 Recovery = 73.800% 41) Toluene-d5 8.000 Range 65 - 120 Recovery = 73.800% 41) Toluene-d4 1.525 152 472 4.580 ug/L 0.00 5piked Anount 5.000 Range 65 - 120 Recovery = 71.300% 51 1.1,2.2-Tetrachloropt 7.62 79 12673 3.598 ug/L 0.00 5piked Anount 5.000 Range 65 - 120 Recovery = 91.800% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 5piked Anount 5.000 Range 65 - 120 Recovery = 73.800% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 5piked Anount 5.000 Range 65 - 120 Recovery = 73.800% 41) Toluene-d6 7.000 Range 65 - 120 Recovery = 91.800% 51 1.1,2.2-Tetrachloroeth 10.217 84 520 82.80 ug/L 98 51 1.1,2.2-Tetrachloroeth 10.217 84 520 82.80 ug/L 98 51 1.1,2.2-Tetrachloroeth 10.217 84 520 820 82/L 4 59 51 1.1,2.2-Tetrachloroeth 10.217 84 520 820 82		K.I. QIU	Response concontrs bev	
28) Chlorobenzene-d5 8.853 117 120217 5.000 ug/L 0.00 System Monitoring Compounds 11.249 152 55951 5.000 ug/L 0.00 System Monitoring Compounds 1.307 65 31066 4.112 ug/L 0.00 Spiked Amount 5.000 Range 40 130 Recovery = 82.200X 0.00 Spiked Amount 5.000 Range 65 130 Recovery = 77.600X 0.00 Spiked Amount 5.000 Range 60 125 Recovery = 78.200X 0.00 MMMM Spiked Amount 5.000 Range 70 130 Recovery = 78.300X 0.00 MMMM Spiked Amount 5.000 Range 70 130 Recovery = 78.300X 0.00 MMMM Spiked Amount 5.000 Range 70 130 Recovery = 78.800X 0.00 Spiked Amount 5.000 Range 70 125 Recovery = 76.000X 0.00 Spiked Amount 5.000 Range 70 130 Recovery = 73.000X 0.00 0.00	Internal Standards			
28) Chlorobenzene-d5 8.853 117 120217 5.000 ug/L 0.00 System Monitoring Compounds 4) Vinyl Chloride-d3 1.307 65 31066 4.112 ug/L 0.00 System Monitoring Compounds 1.307 65 31066 4.112 ug/L 0.00 Spiked Amount 5.000 Range 40 130 Recovery = 77.6002 Spiked Amount 5.000 Range 60 125 Recovery = 78.22.00% Ol Chloroethene-d2 2.108 63 45592 3.224 ug/L 0.00 Spiked Amount 5.000 Range 60 125 Recovery = 78.9408/L 0.00 Spiked Amount 5.000 Range 70 130 Recovery = 78.9408/L 0.00 Spiked Amount 5.000 Range 70 125 Recovery = 78.800% 30) 1,2-Dichloroethane-d4 5.872 330 ug/L 0.00 0.00 Spiked Amount 5.000 Range 70 125 Recovery = 72.000K 0.00 Spiked Amount 5.000 Range 70 125 Recove	1) 1,4-Difluorobenzene	5.619 114	120586 5.000 ug/L	0.00
System Monitoring Compounds 1.307 65 31866 4.112 ug/L 0.00 4) Vinyl Chloride-d3 1.568 69 23903 3.882 ug/L 0.00 Spiked Amount 5.000 Range 60 128 Recovery = 77.560% 0.00 Spiked Amount 5.000 Range 60 128 Recovery = 64.400% 0.00 Spiked Amount 5.000 Range 60 128 Recovery = 74.940% 0.00 5piked Amount 5.000 Range 70 128 Recovery = 73.940% 0.00 5piked Amount 5.000 Range 70 125 Recovery = 74.800% 0.00 5piked Amount 5.000 Range 70 125 Recovery = 78.900% 0.00 5piked Amount 5.000 Range 70 125 Recovery = 78.800% 0.00 32) Benzened6 5.050 84 117123 37.97 ug/L 0.00 41) Toluene-d3 7.317 91 1.600 8.000 0.00 5piked Amount 5.000 Range 70 125 Recovery = 73.000% 0.00 41) Toluene-d3 7.317 91	28) Chlorobenzene-d5		0	
(A) Vinyl Chloride-d3 1.367 65 31666 4.112 ug/L 0.00 Spiked Amount 5.000 Range 65 130 Recovery = 77.600% 1) 1, 1.Dichloroethane-d2 2.108 63 45592 3.224 ug/L 0.00 Spiked Amount 5.000 Range 65 130 Recovery = 64.400% 2) 2.Butanone-d5 3.965 46 51368m 39.469 ug/L 0.00 MMMM 2) 2.Butanone-d5 3.965 45 51368m 39.469 ug/L 0.00 MMMM 2) Calutanone-d5 3.965 46 51368m 39.469 ug/L 0.00 MMMM 2) Calutanone-d5 3.985 46 133 Recovery = 78.804% 2) Lay Calutanone-d5 6.937 65 28507 3.938 ug/L 0.00 MMMM 2) Lay Calutanone-d6 5.080 Range 70 125 Recovery = 76.080% 3) Berce/de 1.40 Recovery = 76.080% 0.00 0.00 Spiked Amount 5.000	58) 1,4-Dichlorobenzene-d4	11.249 152	55951 5.000 ug/L	0.00
(A) Vinyl Chloride-d3 1.367 65 31666 4.112 ug/L 0.00 Spiked Amount 5.000 Range 65 130 Recovery = 77.600% 1) 1, 1.Dichloroethane-d2 2.108 63 45592 3.224 ug/L 0.00 Spiked Amount 5.000 Range 65 130 Recovery = 64.400% 2) 2.Butanone-d5 3.965 46 51368m 39.469 ug/L 0.00 MMMM 2) 2.Butanone-d5 3.965 45 51368m 39.469 ug/L 0.00 MMMM 2) Calutanone-d5 3.965 46 51368m 39.469 ug/L 0.00 MMMM 2) Calutanone-d5 3.985 46 133 Recovery = 78.804% 2) Lay Calutanone-d5 6.937 65 28507 3.938 ug/L 0.00 MMMM 2) Lay Calutanone-d6 5.080 Range 70 125 Recovery = 76.080% 3) Berce/de 1.40 Recovery = 76.080% 0.00 0.00 Spiked Amount 5.000				
spiked Amount 5.000 Range 40 - 130 Recovery = 82,200% 7) Chloroothane-d5 1.568 69 23903 3.882 ug/L 0.00 11) 1,1-Dichloroothnen-d2 2.108 63 45592 3.224 ug/L 0.00 20) 2-Butanone-d5 3.965 46 51368m 39.469 Ug/L 0.00 MD 20) 2-Butanone-d5 3.965 46 51368m 39.469 Ug/L 0.00 MD 24) Chloroform-d 4.352 84 57853 3.594 Ug/L 0.00 MD 25) Lied Amount 5.000 Range 70 125 Recovery = 71.800% 78.400% 26) 1,2-Dichloroorbane-d4 5.037 65 28507 3.938 Ug/L 0.00 MD 26) 1,2-Dichloroorbane-d6 6.072 67 75766 4.043 Ug/L 0.00 Recovery 76.000% 31) followid-followorbane-d6 6.072 67 76766 4.043 Ug/L 0.00 5piked Amount 5.000 Range 65 130 Recovery = 72.000% 73 41) Toluene-d8 7.317 98 Recovery = 73.6004 9.00				6.00 XH400
7) Chloroethane-d5 1.568 69 23093 3.882 ug/L 0.00 Spiked Amount 5.000 Range 65 - 130 Recovery = 77.600% 0.00 Spiked Amount 5.000 Range 60 - 125 Recovery = 64.400% 0.00 MD Spiked Amount 5.000 Range 40 - 130 Recovery = 78.940% 0.00 MD 20 2.01040rofmm-d 4.352 84 57853 3.594 ug/L 0.00 MD Spiked Amount 5.000 Range 70 - 125 Recovery = 78.800% 0.00 MD 20 1.2-Dichloropthane-d4 5.037 65 28507 3.938 ug/L 0.00 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 78.800% 0.00 0.00 30) 1,2-Dichloropropane-d6 6.072 67 36766 4.043 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 73.800% 0.00 41) toluene-d8 7.317 98 124013 3.594 ug/L 0.00 Spiked Amount 5.000 Range 45 - 130 Recovery = 71.300% 0.00			•	
Spiked Amount5.000Range 65- 130Recovery =77.600%11) 1,1-Dichloroethen-d22.10863455923.224 ug/L0.00Spiked Amount5.000Range 60- 125Recovery = $= 6.4.00\%$ 20) 2-Butanone-d53.9954651368m39.469ug/L0.00Spiked Amount5.000Range 40- 130Recovery = $= 78.940\%$ 24) Chloroform-d4.35284578533.594 ug/L0.00Spiked Amount5.000Range 70125Recovery = 78.806% 26) 1, 2-Dichloroethane-d45.03765285073.938 ug/L0.00Spiked Amount5.000Range 70- 125Recovery = 78.806% 20) 1, 2-Dichloropone-d66.07267367664.043 ug/L0.00Spiked Amount5.000Range 70- 130Recovery = 78.806% 30) 1, 2-Dichloropone-d66.07267367664.043 ug/L0.00Spiked Amount5.000Range 70130Recovery = 73.806% 41) Toluen-d87.31791040133.598 ug/L0.00Spiked Amount5.000Range 55130Recovery = 77.306% 45) 1,1,2,2-Tetrachloroeth10.2178425303.888 ug/L0.00Spiked Amount5.000Range 65- 130Recovery = 77.306% 46) 1,1,2,2-Tetrachloroethen.1.625152427524.58540) 2-Hexanone-d5 <td></td> <td></td> <td>er en en</td> <td></td>			er en	
11) 1,1-Dichloroethene-dz 2.108 63 45592 3.224 ug/L 0.00 Spiked Amount 5.000 Range 60 125 Recovery = 64.400% 20) 2-Butanone-d5 3.905 46 51365m 39.469 ug/L 0.00 MD Spiked Amount 50.000 Range 70 - 125 Recovery = 78.946% Spiked Amount 5.000 Range 70 - 125 Recovery = 71.806% 22) 1,2-Dichloroethane-d4 5.037 65 28507 3.938 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 78.806% 32) Benzene-d6 5.050 Range 70 - 125 Recovery = 78.806% 36) 1,2-Dichloroethane 74 5.000 Range 70 - 125 Recovery = 78.806% 36) 1,2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 72.000% 36) 1,2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 70 - 126 Recovery = 73.000% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 73.000% 43) trans-1,3-Dichloroprop 7.628 79 12567 3.659 ug/L 0.00 Spiked Amount 5.000 Range 8 - 130 Recovery = 73.000% 43) trans-1,2-Dichloropthoreth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 8 - 130 Recovery = 77.806% 50) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds 5.000 Range 80	•			
Spiked Amount5.000Range 60-125Recovery= 62.400% 20) 2-Buttanone-d53.99546 $51368m$ 39.469 yg/L 0.00 MD 24) Chloroform-d4.35284 57353 3.594 yg/L 0.00 MD 24) Chloroform-d4.35284 57353 3.594 yg/L 0.00 MD 26) 1,2-Dichloroethane-d45.0376528507 3.938 yg/L 0.00 Spiked Amount5.000Range 70-125Recovery= 71.800% 32) Benzene-d65.060Range 70-125Recovery= 76.000% 35) 1,2-Dichloropropane-d66.072 67 36706 4.043 yg/L 0.00 Spiked Amount5.000Range 60-140Recovery= 72.000% 30) 1,2-Dichloropropane-d66.072 67 36706 4.043 yg/L 0.00 Spiked Amount5.000Range 60-140Recovery= 72.000% 41) Toluene-d87.31798 104013 3.598 yg/L 0.00 Spiked Amount5.000Range 55 130 Recovery= 72.000% 45) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 yg/L 0.00 Spiked Amount5.000Range 65 120 Recovery= 77.800% 46) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 yg/L 0.00 <			provide the second s	
2a) 2-Butanone-d5 3.905 46 51368m 39.469 ug/L 0.00 MC Spiked Amount 50.000 Range 40 - 130 Recovery = 78.940% MC Spiked Amount 5.000 Range 70 - 125 Recovery = 71.800% 26) 1,2-Dichloroethane-d4 5.037 65 28507 3.938 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 78.800% 32) Benzene-d6 5.069 84 117123 3.797 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 76.000% 36) 1,2-Dichloroptopane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 43) trans-1,3-Dichloroptopane.762 79 12557 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 73.000% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 71.300% 50) 1,1,2,2-Tetrachloropth 10.217 84 2530 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 71.300% 51) 1,2,2-Tetrachloropth 10.217 84 2530 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 71.300% 75) 1,1,2-Dichloropthene. 2.117 96 14546 2.023 ug/L 98 12) 1,1-Dichloropthene 2.118 43 2587m 3.253 ug/L 95 91 30 Acetone 2.188 43 2587m 3.253 ug/L 95 13 Acetone 2.188 43 2587m 3.253 ug/L 95 13 Acetone 2.188 43 2587m 3.253 ug/L 95 13 Acetone 4.378 83 6280 0.395 ug/L 97 23 cis-1,2-Dichloropthene 3.912 62 297431 34.962 ug/L 95 33 Berzene 5.104 78 19284 0.574 ug/L 100 34 Jordon 4.378 83 6280 0.395 ug/L 97 35 Benzene 5.104 78 19284 0.574 ug/L 100 36 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 MUA 37 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 38 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 39 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 30 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 30 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 30 Methylcyclohexane 6.111 83 1295m 0.692 ug/L 92 3				
Spiked Amount 5.000 Range 70 - 125 Recovery = 71.800% 26) 1,2-Dichloroethane-d4 5.037 65 28507 3.938 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 78.800% 3.000 32) Benzene-d6 5.050 84 117123 3.797 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 76.800% 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 80.800% 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 73.000% 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 71.300% 0.00 Spiked Amount 5.000 Range 55 - 120 Recovery = 71.300% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 <td< td=""><td>• Contraction of the second se</td><td></td><td>-</td><td>0.00 Ma</td></td<>	• Contraction of the second se		-	0.00 Ma
Spiked Amount 5.000 Range 70 - 125 Recovery = 71.800% 26) 1,2-Dichloroethane-d4 5.037 65 28507 3.938 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 78.800% 3.000 32) Benzene-d6 5.050 84 117123 3.797 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 76.800% 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 80.800% 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 73.000% 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 71.300% 0.00 Spiked Amount 5.000 Range 55 - 120 Recovery = 71.300% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.800% 0.00 <td< td=""><td>Spiked Amount 50.000</td><td>Range 40 - 13</td><td></td><td>6 -11/26/21</td></td<>	Spiked Amount 50.000	Range 40 - 13		6 -11/26/21
26) 1,2-Dichloroethane-d4 5.037 65 28507 3.938 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 78.800% 32) Benzene-d6 5.050 Range 70 - 125 Recovery = 76.000% 36) 1,2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 80.800% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 43) trans-1,3-Dichloroprop 7.623 79 12567 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 71.300% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 5.000 Range 45 - 130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 71.800% 56) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds Qvalue 5) Vinyl chloride 1.310 62 S81093 S8.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 99 13) Acetone 2.188 43 2587m 3.253 ug/L 97 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 95 19) 1,1-Dichloroethene 3.012 65 0.637 ug/L 95 19) 1,1-Dichloroethene 3.012 63 9505 0.637 ug/L 95 19) 1,1-Dichloroethene 3.012 63 9505 0.637 ug/L 95 19) 1,1-Dichloroethene 3.012 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.012 63 9505 0.637 ug/L 95 19) 1,1-Dichloroethene 3.012 96 297431 34.962 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 1924 0.574 ug/L 100 34) Trichoroethene 5.915 75 4234 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 94 36) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 94 37) Trichoroethene 7.394 91 13348 0.371 ug/L 92 38) Benzene 9.017 91 4249 0.112 ug/L 95	24) Chloroform-d	4.352 84	57853 3.594 ug/L	0.00
Spiked Amount5.000Range70130Recovery=78.80%32) Benzene-d65.000Range70125Recovery=76.000%36) 1,2-Dichloropropane-d66.07267367064.043 y_1/L 0.00Spiked Amount5.000Range70126Recovery=80.800%41) Toluene-d87.317981040133.598 y_1/L 0.00Spiked Amount5.000Range70130Recovery=72.000%43) trans-1,3-Dichloroprop7.62879125673.650 y_1/L 0.00Spiked Amount5.000Range55130Recovery=73.000%45) 2-Hexanone-d58.091634516135.551 y_1/L 0.00Spiked Amount5.000Range65- 120Recovery=73.800%56) 1,1,2,2-Tetrachloroeth10.21784253903.888 y_1/L 0.00Spiked Amount5.000Range65- 120Recovery=77.800%56) 1,1,2,2-Tetrachloroeth10.21784253903.888 y_1/L 0.00Spiked Amount5.000Range80- 120Recovery=77.800%56) 1,1,1,2,2-Tetrachloroethene2.11794253903.888 y_1/L 0.00Spiked Amount5.000Range80- 120Recovery=91.800%Targe	•	Range 70 - 12	•	6
32) Benzene-d6 5.050 84 117123 3.797 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 76.000% 36) 1,2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 80.800% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 43) trans-1,3-Dichloroprop 7.628 79 12567 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 71.300% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 5.000 Range 45 - 130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 77.800% 66) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 85 - 120 Recovery = 91.800% Target Compounds Qvalue 5) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 9 13) Acetone 2.188 43 2587m 3.253 ug/L 9 14) Carbon disulfide 2.188 43 2587m 3.253 ug/L 9 19) 1,1-Dichloroethene 3.191 63 9505 0.637 ug/L 97 20) cis-1,2-Dichloroethene 3.191 63 9505 0.637 ug/L 97 21) cis-1,2-Dichloroethene 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.191 63 9505 0.637 ug/L 97 23) Chloroform 4.378 83 6280 0.95 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 94 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 94 36) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 96 37) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 96 38) Methylcyclohexane 9.017 91 4249 0.112 ug/L 96			_	
Spiked Amount5.000Range70 - 125Recovery=76.000%36)1,2-Dichloropropane-d66.07267367064.043ug/L0.00Spiked Amount5.000Range60 - 140Recovery=80.800%41)Toluene-d87.317981040133.598ug/L0.00Spiked Amount5.000Range70 - 130Recovery=72.000%43)trans-1,3-Dichloroprop7.62879125673.650ug/L0.00Spiked Amount5.000Range45 - 130Recovery=73.000%46)2-Hexanone-d58.091634516135.651ug/L0.00Spiked Amount5.000Range45 - 130Recovery=71.300%56)1,1,2,2-Tetrachloroeth10.21784253903.888ug/L0.00Spiked Amount5.000Range65 - 120Recovery=91.800%66)1,2-Dichlorobenzene-d411.625152427524.589ug/L9812)1,1-Dichloroethene2.11796145462.023ug/L9813)Acetone2.188432587m3.253ug/L9814)Carbon disulfide2.2977623480.687ug/L9713)Acetone3.1916395050.637ug/L9714)Carbon disulfide2.297762348<				
36) 1,2-Dichloropropane-d6 6.072 67 36706 4.043 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 80.80% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 72.000% 43) trans-1,3-Dichloroprop 7.628 79 12567 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 73.000% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 77.800% 66) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds $Vulue$ 5) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 98 12) 1,1-Dichloroethene 2.118 43 2587m 3.253 ug/L 97 13) Acetone 2.188 43 2587m 3.253 ug/L 97 14) Carbon disulfide 2.297 76 2348 0.897 ug/L 97 13) Acetone 3.191 63 9565 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.191 63 9565 0.637 ug/L 97 23) Chloroform 4.378 83 6280 0.395 ug/L 96 30 (Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 96 30 (Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 96 34) Trichloroethene 5.915 95 4234 0.897 ug/L 96 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 96 36) Mylcyclohexane 6.111 83 1295m 0.092 ug/L 96 37) Methylcyclohexane 9.017 91 4249 0.112 ug/L 96 30 Methylcyclohexane 9.017 91 4249 0.112 ug/L 96	- and a second sec			
Spiked Amount 5.000 Range 60 - 140 Recovery = 80.80% 41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 72.000% 0.00 43) trans-1,3-Dichloroprop 7.628 79 12567 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 130 Recovery = 73.000% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 50.000 Range 65 -130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 -120 Recovery = 71.300% 56) 1,2-Dichlorobenzene-d4 11.625 152 4.2752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.806% 91 12) 1,2-Dichlorob			the second se	
41) Toluene-d8 7.317 98 104013 3.598 ug/L 0.00 Spiked Amount 5.000 Range 70 130 Recovery 72.000% 43) trans-1,3-Dichloroprop 7.628 79 12567 3.650 ug/L 0.00 Spiked Amount 5.000 Range 55 130 Recovery = 73.000% 46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 5.000 Range 45 - 130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 120 Recovery = 77.800% 66) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 120 Recovery = 91.800% Target Compounds Qvalue 9 9 11.10rothene 1.021 9 91.10rhothothene 2.117 96 14546 2.023 ug/L 90				
Spiked Amount5.000Range70130Recovery=72.000%43) trans-1,3-Dichloroprop7.62879125673.659ug/L0.00Spiked Amount5.000Range55130Recovery=73.000%46) 2-Hexanone-d58.091634516135.651ug/L0.00Spiked Amount50.000Range45-130Recovery=77.300%56) 1,1,2,2-Tetrachloroeth10.21784253903.888ug/L0.00Spiked Amount5.000Range65-120Recovery=77.800%66) 1,2-Dichlorobenzene-d411.625152427524.589ug/L0.00Spiked Amount5.000Range80-120Recovery=91.800%Target CompoundsQvalue5) Vinyl chloride1.3106258109358.200ug/L9812) 1,1-Dichloroethene2.11796145462.023ug/L9913) Acetone2.188432587m3.253ug/L9714) Carbon disulfide2.2977623480.807ug/L9719) 1,1-Dichloroethene3.9129629743134.962ug/L9722) cis-1,2-Dichloroethene3.9129629743134.962ug/L9225) Chloroform4.3788362800.395ug/L92<			····	
Spiked Amount5.000Range55 - 130Recovery= 73.000%46)2-Hexanone-d58.091634516135.651 y/L 0.00Spiked Amount50.000Range45 - 130Recovery= 71.300%56)1,1,2,2-Tetrachloroeth10.21784253903.888 y/L 0.00Spiked Amount5.000Range65 - 120Recovery= 77.800%66)1,2-Dichlorobenzene-d411.625152427524.589 y/L 0.00Spiked Amount5.000Range80 - 120Recovery= 91.800%ValueOvalueSpiked Amount5.000Range80 - 120Spiked Amount5.000Range80 - 120Spiked Amount5.000Range80 - 120Spiked Amount5.000Range80 - 120Spiked Amount5.000RangeSpiked Amount5.000Recovery= 91.800%Target CompoundsQvalueSpiked Amount5.000Recovery= 91.800%Target CompoundsQvalueSpiked Amount5.000Recovery= 91.800%Target CompoundsQvalueSpiked Amount5.000Recovery= 91.800% <t< td=""><td></td><td></td><td></td><td></td></t<>				
46) 2-Hexanone-d5 8.091 63 45161 35.651 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 71.300% 56) 1,1,2,2-Tetrachloroeth 10.217 84 25390 3.888 ug/L 0.00 Spiked Amount 5.000 Range 65 120 Recovery = 77.300% 66) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.800% Value 5) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 9 13) Acetone 2.188 43 2587m 3.253 ug/L 9 9 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 95 18) trans-1,2-Dichloroethene 3.191 63 9505 0.637 ug/L	43) trans-1,3-Dichloroprop.	. 7.628 79	12567 3.650 ug/L	0.00
Spiked Amount50.000Range45-130Recovery=71.300%56)1,1,2,2-Tetrachloroeth10.21784253903.888ug/L0.00Spiked Amount5.000Range65-120Recovery=77.800%66)1,2-Dichlorobenzene-d411.625152427524.589ug/L0.00Spiked Amount5.000Range80-120Recovery=91.800%Variable CompoundsQvalue5)Vinyl chloride1.3106258109358.200ug/L9812)1,1-Dichloroethene2.11796145462.023ug/L9813)Acetone2.188432587m3.253ug/L914)Carbon disulfide2.2977623480.087ug/L9519)1,1-Dichloroethene2.7609611854213.410ug/L9519)1,1-Dichloroethene3.9129629743134.962ug/L9620)cis.1,2-Dichloroethene3.9129629743134.962ug/L9630)Cyclohexane4.6705617200.131ug/L9233)Benzene5.10478192840.574ug/L10034)Trichloroethene5.91595423344.738ug/L9435)Methylcyclohexane6.111 <t< td=""><td></td><td>0</td><td>0 Recovery = 73.000%</td><td></td></t<>		0	0 Recovery = 73.000%	
56)1,1,2,2-Tetrachloroeth10.21784253903.888ug/L0.00Spiked Amount5.000Range65- 120Recovery=77.800%66)1,2-Dichlorobenzene-d411.625152 42752 4.589 ug/L 0.00 Spiked Amount5.000Range80- 120Recovery= 91.800% Target Compounds5)Vinyl chloride1.31062 581093 58.200 ug/L9812)1,1-Dichloroethene2.1179614546 2.023 ug/L9913)Acetone2.18843 $2587m$ 3.253 ug/L7414)Carbon disulfide2.29776 2348 0.087 ug/L9719)1,1-Dichloroethene3.191639505 0.637 ug/L9722)cis-1,2-Dichloroethene3.9129629743134.962ug/L9630)Cyclohexane4.670561720 0.131 ug/L9233)Benzene5.1047819284 0.574 ug/L10034)Trichloroethene5.91595423344.738ug/L9435)Methylcyclohexane6.111831295m 0.092 mM 36)Setter7.3949113348 0.371 ug/L9237)Dilene7.3949113348 0.371 ug/L92				
Spiked Amount 5.000 Range 65 - 120 Recovery = 77.800% 66) 1,2-Dichlorobenzene-d4 11.625 152 42752 4.589 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.800% Target Compounds Qvalue 5) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L # 69 13) Acetone 2.188 43 2587m 3.253 ug/L # 7/1/2.6/M 14) Carbon disulfide 2.297 76 2348 0.087 ug/L # 74 7/1/2.6/M 18) trans-1,2-Dichloroethene 3.191 63 9565 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 <	•			
66) 1,2-Dichlorobenzene-d411.625152 42752 4.589 ug/L 0.00 Spiked Amount5.000Range80 - 120Recovery $=$ 91.800% CompoundsQvalueS) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 98 13) Acetone 2.188 43 $2587m$ 3.253 ug/L 74 $71/26/24$ 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 97 13) Acetone 3.191 63 9505 0.637 ug/L 97 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 97 13) Acetone 3.191 63 9505 0.637 ug/L 97 14) Carbon disulfide 3.912 96 297431 34.962 ug/L 92 15) Chloroethene 3.912 96 297431 34.962 ug/L 92 25) Chloroform 4.378 83 6280 0.395 ug/L 92 33) Benzene 5.104 78 19244 0.774 1000 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 $1295m$ 0.092 ug/L md 42) Toluene 7.394 91 13348 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Spiked Amount5.000Range80 - 120Recovery $=$ 91.800%Qvalue5) Vinyl chloride1.3106258109358.200ug/L9812) 1,1-Dichloroethene2.11796145462.023ug/L #6913) Acetone2.188432587m3.253ug/LMD14) Carbon disulfide2.2977623480.087ug/L #7418) trans-1,2-Dichloroethene2.7609611854213.410ug/L9519) 1,1-Dichloroethene3.1916395050.637ug/L9722) cis-1,2-Dichloroethene3.9129629743134.962ug/L9630) Cyclohexane4.6705617200.131ug/L9233) Benzene5.10478192840.574ug/L10034) Trichloroethene5.91595423344.738ug/L9442) Toluene7.39491133480.371ug/L9277752) Ethylbenzene9.0179142490.112ug/L96			1.1	
QvalueQvalue5) Vinyl chloride1.31062 581093 58.200 ug/L 98 12) 1, 1-Dichloroethene2.1179614546 2.023 ug/L 98 13) Acetone2.18843 $2587m$ 3.253 ug/L 74 14) Carbon disulfide2.297762348 0.087 ug/L 74 18) trans-1,2-Dichloroethene2.7609611854213.410 ug/L 95 19) 1,1-Dichloroethane3.191639505 0.637 ug/L 97 22) cis-1,2-Dichloroethene3.9129629743134.962 ug/L 96 30) Cyclohexane4.670561720 0.131 ug/L 96 33) Benzene5.1047819284 0.574 ug/L 100 34) Trichloroethene5.9159542334 4.738 ug/L 94 35) Methylcyclohexane6.111831295m 0.092 ug/L MT 42) Toluene7.3949113348 0.371 ug/L 92 52) Ethylbenzene9.01791 4249 0.112 ug/L 96			0.	
5) Vinyl chloride 1.310 62 581093 58.200 ug/L 98 12) 1,1-Dichloroethene 2.117 96 14546 2.023 ug/L 69 13) Acetone 2.188 43 2587m 3.253 ug/L 96 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 74 11/126/14 18) trans-1,2-Dichloroethene 2.760 96 118542 13.410 ug/L 95 19) 1,1-Dichloroethane 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L # 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L MJ 42) Toluene 7.394 91 13348 0.				
12)1,1-Dichloroethene2.11796145462.023 ug/L 6913)Acetone2.188432587m3.253 ug/L 7414)Carbon disulfide2.2977623480.087 ug/L 747418)trans-1,2-Dichloroethene2.7609611854213.410 ug/L 9519)1,1-Dichloroethane3.1916395050.637 ug/L 9722)cis-1,2-Dichloroethene3.9129629743134.962 ug/L 9225)Chloroform4.3788362800.395 ug/L 9630)Cyclohexane4.6705617200.131 ug/L 9233)Benzene5.10478192840.574 ug/L 10034)Trichloroethene5.91595423344.738 ug/L 9435)Methylcyclohexane6.111831295m0.092 ug/L MAA 42)Toluene7.39491133480.371 ug/L 9252)Ethylbenzene9.0179142490.112 ug/L 96	Target Compounds		Qva	lue
13) Acetone 2.188 43 2587m 3.253 ug/L model 14) Carbon disulfide 2.297 76 2348 0.087 ug/L 74 11 126 18) trans-1,2-Dichloroethene 2.760 96 118542 13.410 ug/L 95 19) 1,1-Dichloroethane 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L model 42) Toluene 7.394 91 13348 0.371 ug/L 92 11726 52) Ethylbenzene 9.017 91 <td>, ,</td> <td>1.310 62</td> <td>581093 58.200 ug/L</td> <td>98</td>	, ,	1.310 62	581093 58.200 ug/L	98
18) trans-1,2-Dichloroethene 2.760 96 118542 13.410 ug/L 95 19) 1,1-Dichloroethane 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L # 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.692 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 11126M 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			0, =	
18) trans-1,2-Dichloroethene 2.760 96 118542 13.410 ug/L 95 19) 1,1-Dichloroethane 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L # 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.692 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 11126M 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96	· · · · · · · · · · · · · · · · · · ·		0.	106/21
19) 1,1-Dichloroethane 3.191 63 9505 0.637 ug/L 97 22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.692 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			0.	
22) cis-1,2-Dichloroethene 3.912 96 297431 34.962 ug/L # 92 25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.692 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 11126M 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			0.	
25) Chloroform 4.378 83 6280 0.395 ug/L 96 30) Cyclohexane 4.670 56 1720 0.131 ug/L 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96	the same 201 Billion of these strength interviews and the same			
30) Cyclohexane 4.670 56 1720 0.131 ug/L # 92 33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L M 42) Toluene 7.394 91 13348 0.371 ug/L 92 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96				
33) Benzene 5.104 78 19284 0.574 ug/L 100 34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L) M 42) Toluene 7.394 91 13348 0.371 ug/L 92 1126/M 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			5.	
34) Trichloroethene 5.915 95 42334 4.738 ug/L 94 35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L 94 42) Toluene 7.394 91 13348 0.371 ug/L 92 112617 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			0.	
35) Methylcyclohexane 6.111 83 1295m 0.092 ug/L) MT 42) Toluene 7.394 91 13348 0.371 ug/L 92 11126 52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96			9.	
52) Ethylbenzene 9.017 91 4249 0.112 ug/L 96		6.111 83	1295m 0.092 ug/L) ME in
			5.	
53) m,p-xylene 9.149 106 2352 0.158 ug/L 92			0.	
	53) m,p-xyiene	9.149 106	2352 0.158 ug/L	92

(#) = qualifier out of range (m) = manual integration (+) = signals summed