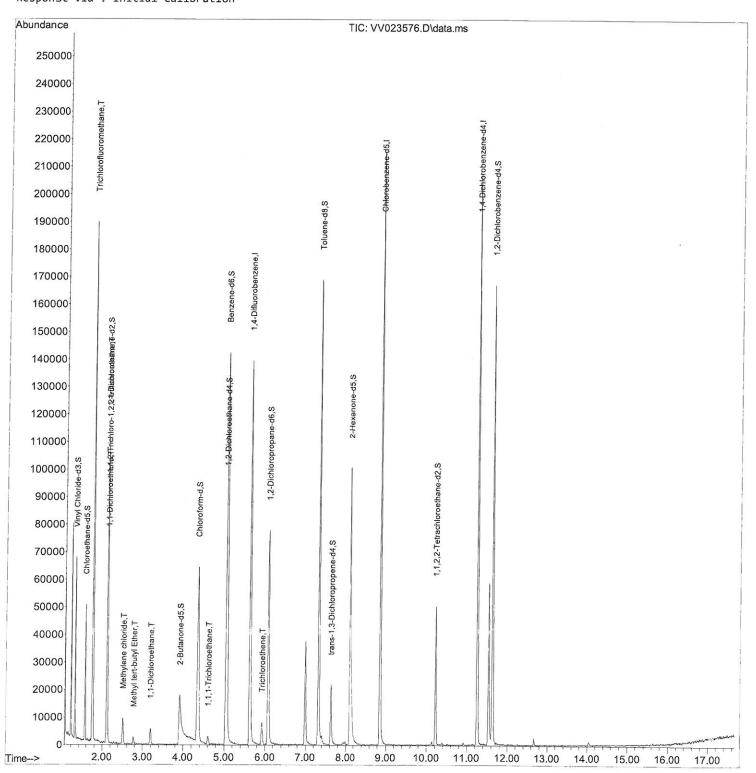
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111721\

Data File : VV023576.D

Acq On : 17 Nov 2021 17:47

Operator : SY/MD

Sample : M4617-10DL 4X


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 13 Sample Multiplier: 1

Quant Time: Nov 18 00:23:15 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 18 00:20:29 2021 Response via : Initial Calibration Instrument:
MSVOA_V
ClientSampleId:
BG208DL

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111721\

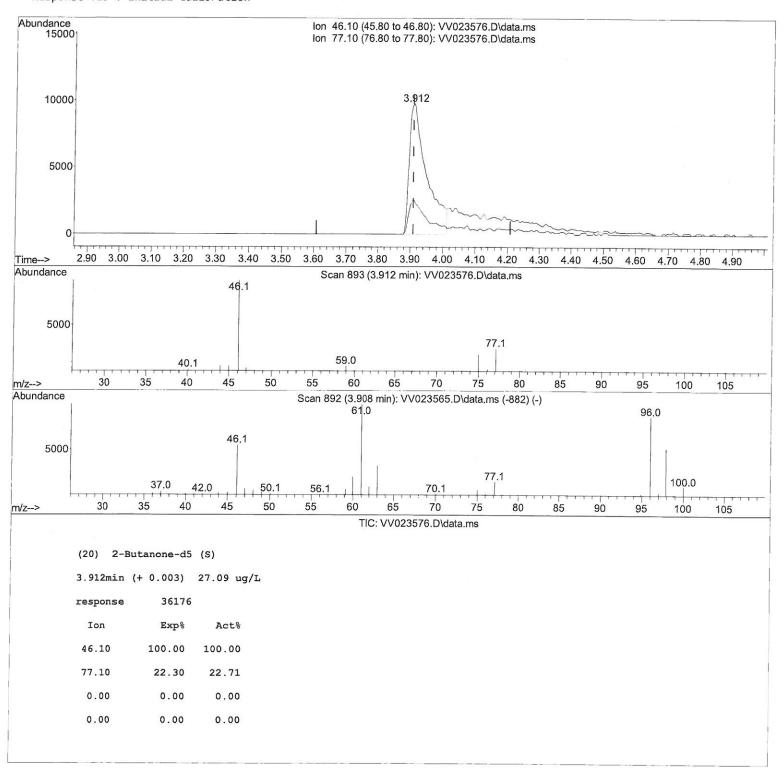
Data File : VV023576.D

Acq On : 17 Nov 2021 17:47

Operator : SY/MD

Sample

: M4617-10DL 4X


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 13 Sample Multiplier: 1

Quant Time: Nov 18 00:23:15 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 18 00:20:29 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId : BG208DL

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

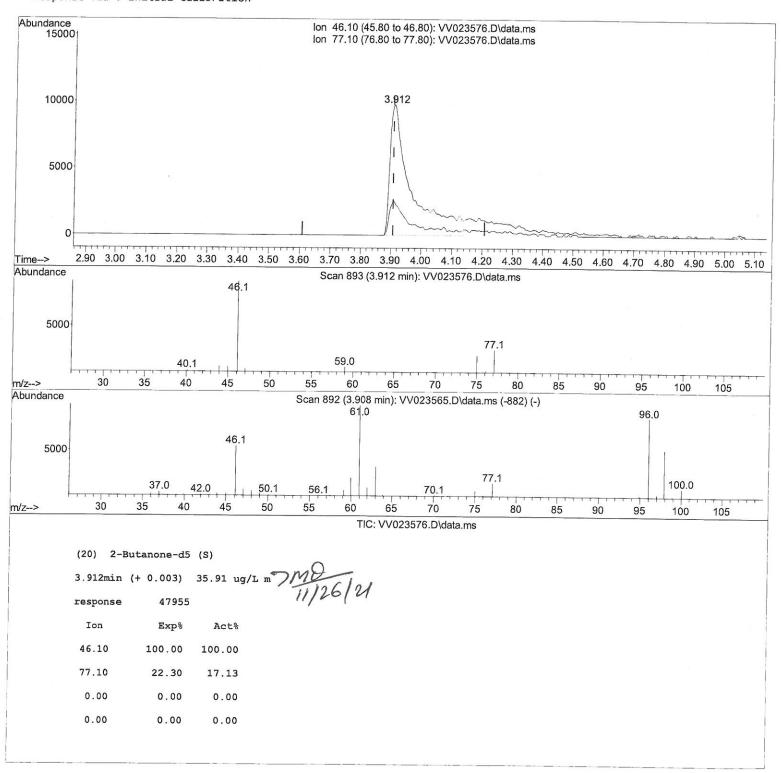
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111721\

Data File : VV023576.D

Acq On : 17 Nov 2021 17:47

Operator : SY/MD

Sample : M4617-10DL 4X Misc : 25.0mL/MSVOA V/W


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 13 Sample Multiplier: 1

Quant Time: Nov 18 00:23:15 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 18 00:20:29 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId : BG208DL

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV111721\

Data File : VV023576.D

Acq On : 17 Nov 2021 17:47

Operator : SY/MD

Sample : M4617-10DL 4X

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 13 Sample Multiplier: 1

Quant Time: Nov 18 00:23:15 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR110421WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Nov 18 00:20:29 2021 Response via : Initial Calibration Instrument : MSVOA_V ClientSampleId : BG208DL

Manual IntegrationsAPPROVED

Compound		R.T. QIor				Response	Col	nc Ur	c Units Dev(Min)		
Internal Standards											
 1,4-Difluorobenzene 		5	.619)	114	123747		5.000	g ug/L	0.6	30
28) Chlorobenzene-d5		8	.854		117	120606			ug/L	0.6	
58) 1,4-Dichlorobenzene-d4		11	. 249)	152	56316			ug/L	0.6	335
System Monitoring	Compounds										
4) Vinyl Chlorid		1	.304		65	40258		193	ug/L	0.00	a
Spiked Amount	5.000	Range				Recovery		=	103.800%		,
7) Chloroethane-	d5	-	.568		69	30713			ug/L	0.00	4
Spiked Amount	5.000	Range			130	Recovery		=	97.200%		,
11) 1,1-Dichloroe	thene-d2	_	.108		63	54893			ug/L	0.00	,
Spiked Amount	5.000	Range			125	Recovery		=	75.600%	0.00	
20) 2-Butanone-d5		_	.912		46	47955m			ug/L	0.00	2
Spiked Amount	50.000	Range			130	Recovery		=	71.820%	0.00	1
24) Chloroform-d		_	.349		84	63093			ug/L	0.00	
Spiked Amount	5.000	Range	70	-	125	Recovery		=	76.400%	0.00	
26) 1,2-Dichloroet	chane-d4	-	.034		65	30787			ug/L	0.00	
Spiked Amount	5.000	Range	70	_	130	Recovery		=	82.800%	0.00	
32) Benzene-d6			.050		84	131465			ug/L	0.00	
Spiked Amount	5.000	Range	70		125	Recovery		=	85.000%	0.00	
36) 1,2-Dichloropr	opane-d6	6.	072		67	37037			ug/L	0.00	
Spiked Amount	5.000	Range	60	-	140	Recovery		=	81.400%	0.00	
41) Toluene-d8		7.	317		98	112947		.895	ug/L	0.00	
Spiked Amount	5.000	Range	70	-	130	Recovery		=	77.800%		
43) trans-1,3-Dich	loroprop.	7.	625		79	13457	3	.896	ug/L	0.00	
Spiked Amount	5.000	Range	55	-	130	Recovery		=	78.000%		
46) 2-Hexanone-d5		8.	092		63	44214	34	.790	ug/L	0.00	
Spiked Amount	50.000	Range	45	-	130	Recovery		=	69.580%		
56) 1,1,2,2-Tetrac	hloroeth.	10.	217		84	23599	3	.602	ug/L	0.00	
Spiked Amount	5.000	Range	65	-	120	Recovery		=	72.000%		
66) 1,2-Dichlorobe	nzene-d4	11.	625	1	.52	44434	4	.738	ug/L	0.00	
Spiked Amount	5.000	Range	80	-	120	Recovery		=	94.800%		
Target Compounds									Qval	ue.	
Trichlorofluoromethane		1.	1.751		01	107420	6.	977	ug/L	100	
10) 1,1,2-Trichloro-1,2,2					01	1709			ug/L	92	
12) 1,1-Dichloroet			118		96	3063			ug/L #	1	
16) Methylene chloride			510		84	3726			ug/L	84	
17) Methyl tert-butyl Ether			770		73	2271			ug/L #	70	
19) 1,1-Dichloroethane			195		63				ug/L "	95	
29) 1,1,1-Trichloroethane			609		97				ug/L	94	
34) Trichloroethene		921		95			278		91		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed