Data Path : Z:\voasrv\HPCHEM1\MSVOA V\Data\VV112621\

Data File: VV023716.D

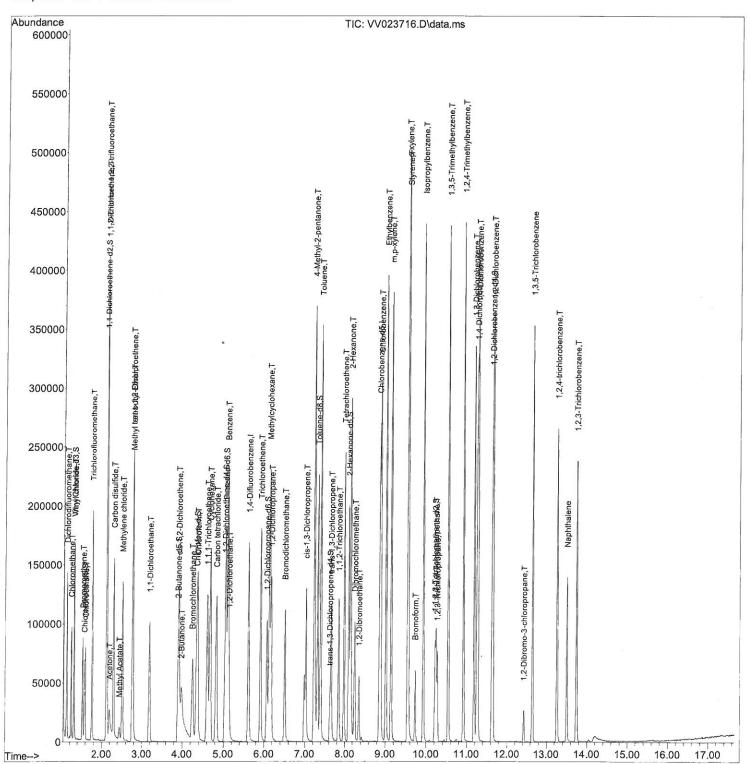
Acq On : 26 Nov 2021 10:10

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 27 03:29:44 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M


Quant Title : TRACE VOA SFAM1.0

QLast Update : Fri Nov 26 01:51:50 2021

Response via: Initial Calibration

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

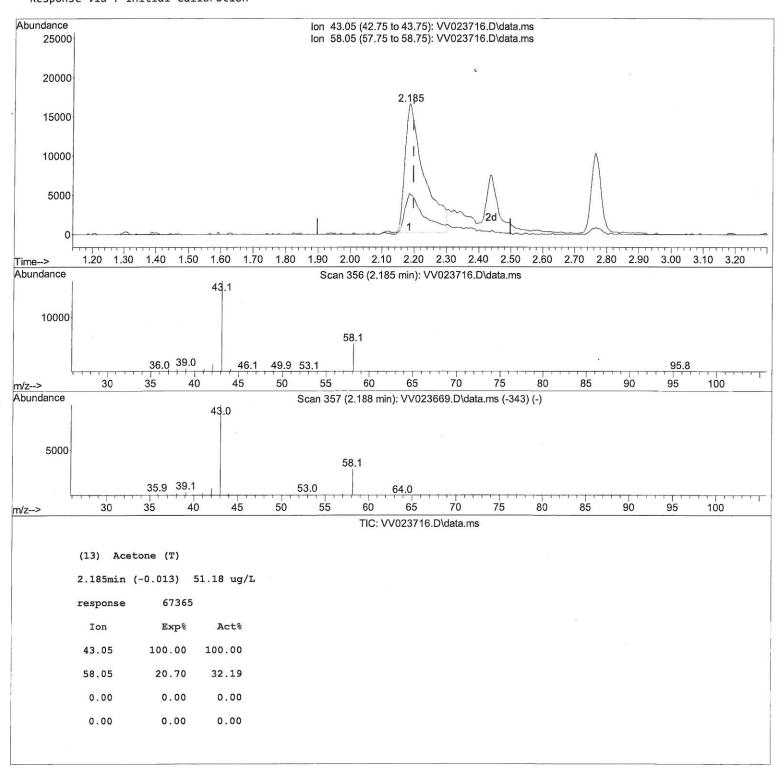
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112621\

Data File: VV023716.D

Acq On : 26 Nov 2021 10:10

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1


Quant Time: Nov 27 03:29:44 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Fri Nov 26 01:51:50 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

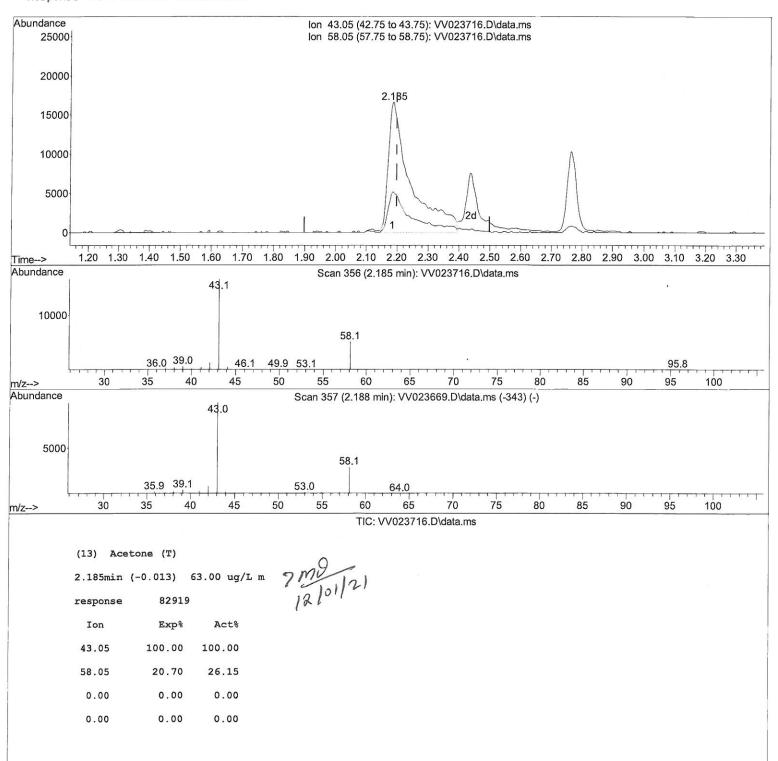
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112621\

Data File: VV023716.D

Acq On : 26 Nov 2021 10:10

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1


Quant Time: Nov 27 03:29:44 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Fri Nov 26 01:51:50 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112621\

Data File : VV023716.D

Acq On : 26 Nov 2021 10:10

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 27 03:29:44 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Fri Nov 26 01:51:50 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual IntegrationsAPPROVED

Response via : Initial Calibration						
Compound R. 7		Response				
Internal Standards						
1) 1.4-Difluorobenzene 5.63	L2 114	148221	5.000	ug/L	0.00	
28) Chlorohenzene-d5 8.85	50 117	142287	5.000	ug/L	0.00	
58) 1,4-Dichlorobenzene-d4 11.24	16 152	81072	5.000	ug/L	0.00	
50) 1,4 D10,100 000,120,10 1				0.		
System Monitoring Compounds						
	7 65	41923	3.445	ug/L	0.00	
Spiked Amount 5.000 Range	10 - 130	Recover	ry =	69.000%		
7) Chloroethane-d5 1.56			3.752	ug/L	0.00	
Spiked Amount 5.000 Range 6	55 - 130	Recover	ry =	75.000%		
11) 1,1-Dichloroethene-d2 2.10					0.00	
Spiked Amount 5.000 Range 6	0 - 125	Recover	ry =	78.800%		
20) 2-Butanone-d5 3.89					-0.02	
Spiked Amount 50.000 Range	10 - 130	Recover	ry = :	111.000%		
24) Chloroform-d 4.34	19 84	88297	4.167	ug/L	0.00	
Spiked Amount 5.000 Range 7	70 - 125	Recover	ry =	83.400%		
26) 1,2-Dichloroethane-d4 5.03		43148	4.359	ug/L	0.00	
Spiked Amount 5.000 Range 7	70 - 130	Recover	ry =	87.200%		
32) Benzene-d6 5.04		163613			0.00	
Spiked Amount 5.000 Range 7	70 - 125	Recover	·y =	84.400%		
36) 1,2-Dichloropropane-d6 6.06	66 67	47124		-	0.00	
Spiked Amount 5.000 Range 6	60 - 140		ry =			
41) Toluene-d8 7.31		149835	4.137	ug/L	0.00	
Spiked Amount 5.000 Range 7	0 - 130		' y =			
43) trans-1,3-Dichloroprop 7.61	.9 79	19873			0.00	
Spiked Amount 5.000 Range 5	55 - 130	Recover				
46) 2-Hexanone-d5 8.08					0.00	
Spiked Amount 50.000 Range 4	5 - 130	Recover	'y = 2	106.340%	1000 0.000.0000	
56) 1,1,2,2-Tetrachloroeth 10.21	.4 84	38074	4.869		0.00	
Spiked Amount 5.000 Range 6	55 - 120	Recover	`y =	97.400%		
66) 1,2-Dichlorobenzene-d4 11.62	22 152	60913	4.250	ug/L	0.00	
Spiked Amount 5.000 Range 8	80 - 120	Recover	`y =	85.000%		
					f	
Target Compounds		70706	F 476	Qval		
2) Dichlorodifluoromethane 1.13		72786			100	
3) Chloromethane 1.24		60814			98	
	.0 62	63825	4.9/1	ug/L	97	
0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3 94	33986 40307	4.008	ug/L	99 98	
8) Chloroethane 1.58				<u> </u>	98	
9) Trichlorofluoromethane 1.75		107902	5.158		100	
10) 1,1,2-Trichloro-1,2,2 2.11		55732	5.316		98	
12) 1,1-Dichloroethene 2.11		51538	5.190		30	mu
13) Acetone 2.18		82919m	62.997	1000 THE LOSS	98	12/01/21
14) Carbon disulfide 2.29		170723	5.114		85	12/01/21
15) Methyl Acetate 2.43		11375		ug/L #	97	. ,
16) Methylene chloride 2.50		58564 111744	4.133 5.491		99	
17) Methyl tert-butyl Ether 2.76		59259	5.239		99	
18) trans-1,2-Dichloroethene 2.75		100119	5.264	2000-00-00-00-00-0	98	
19) 1,1-Dichloroethane 3.18 21) 2-Butanone 3.97		91866	55.143	10.70	73	
		60427	5.571		96	
,,-		27442	5.390		93	
23) Bromochloromethane 4.24	120	21772	5.550	~B/ L	,,	

Data Path : Z:\voasrv\HPCH&M1\MSVOA_V\Data\VV112621\

Data File : VV023716.D

Acq On : 26 Nov 2021 10:10

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 27 03:29:44 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Fri Nov 26 01:51:50 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual IntegrationsAPPROVED

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
25) Chloroform	4.368	83	111448	5.260 ug/L	99
27) 1,2-Dichloroethane	5.127	62	58599	5.202 ug/L	99
29) 1,1,1-Trichloroethane	4.603	97	102503	5.513 ug/L	100
30) Cyclohexane	4.677	56	86785	5.593 ug/L	98
31) Carbon tetrachloride	4.825	117	94161	5.528 ug/L	100
33) Benzene	5.095	78	230377	5.679 ug/L	100
34) Trichloroethene	5.911	95	60315	5.551 ug/L	96
35) Methylcyclohexane	6.127	83	96157	5.676 ug/L	99
37) 1,2-Dichloropropane	6.169	63	53184	5.515 ug/L	100
38) Bromodichloromethane	6.506	83	72695	5.555 ug/L	99
39) cis-1,3-Dichloropropene	7.024	75	78060	5.689 ug/L	98
40) 4-Methyl-2-pentanone	7.223	43	263359	57.216 ug/L	99
42) Toluene	7.384	91	257524	5.854 ug/L	98
44) trans-1,3-Dichloropropene	7.648	75	65649	5.692 ug/L	100
45) 1,1,2-Trichloroethane	7.837	97	38351	5.744 ug/L	96
47) Tetrachloroethene	7.973	164	54669	5.527 ug/L	97
48) 2-Hexanone	8.136	43	195843	57.566 ug/L	99
49) Dibromochloromethane	8.243	129	51050	5.580 ug/L	95
50) 1,2-Dibromoethane	8.352	107	36325	5.580 ug/L	97
51) Chlorobenzene	8.879	112	163521	5.607 ug/L	99
52) Ethylbenzene	9.011	91	269890	5.869 ug/L	99
53) m,p-xylene	9.136	106	107080	5.851 ug/L	98
54) o-xylene	9.542	106	101778	5.848 ug/L	99
55) Styrene	9.558	104	177538	6.054 ug/L	99
57) 1,1,2,2-Tetrachloroethane	10.239	83	41606	5.601 ug/L	99
59) Bromoform	9.728	173	28822	5.383 ug/L	97
60) Isopropylbenzene	9.931	105	281430	5.814 ug/L	100
61) 1,2,3-Trichloropropane	10.271	75	28830	5.014 ug/L	97
62) 1,3,5-Trimethylbenzene	10.538	105	232224	5.765 ug/L	99
63) 1,2,4-Trimethylbenzene	10.911	105	235044	5.901 ug/L	99
64) 1,3-Dichlorobenzene	11.178	146	138896	5.612 ug/L	98
65) 1,4-Dichlorobenzene	11.271	146	136576	5.490 ug/L	100
67) 1,2-Dichlorobenzene	11.641	146	124754	5.508 ug/L	99
68) 1,2-Dibromo-3-chloropr	12.426	75	6149	5.385 ug/L	98
69) 1,3,5-Trichlorobenzene	12.644	180	108452	5.613 ug/L	99
70) 1,2,4-trichlorobenzene	13.262	180	83079	5.541 ug/L	98
71) Naphthalene	13.503	128	111618	5.532 ug/L	97
72) 1,2,3-Trichlorobenzene	13.744	180	71692	5.518 ug/L	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed