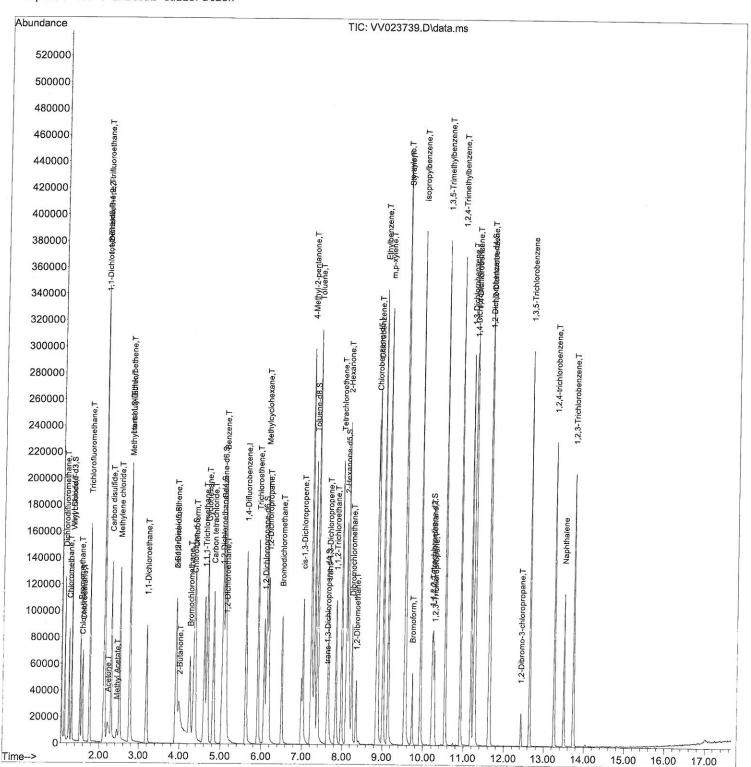
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1


Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration

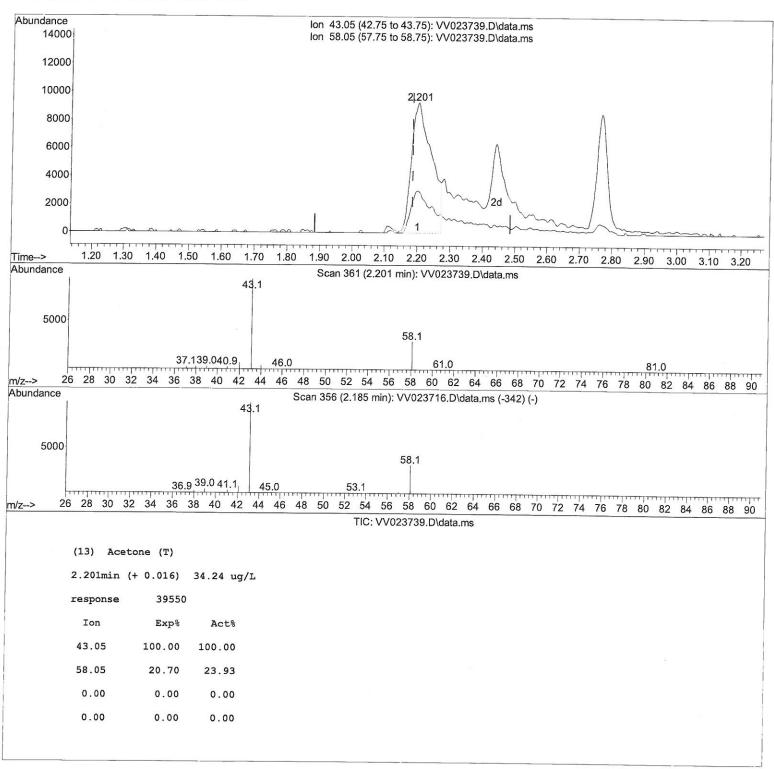
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument:
MSVOA_V
LabSampleId:
VSTDCCC005

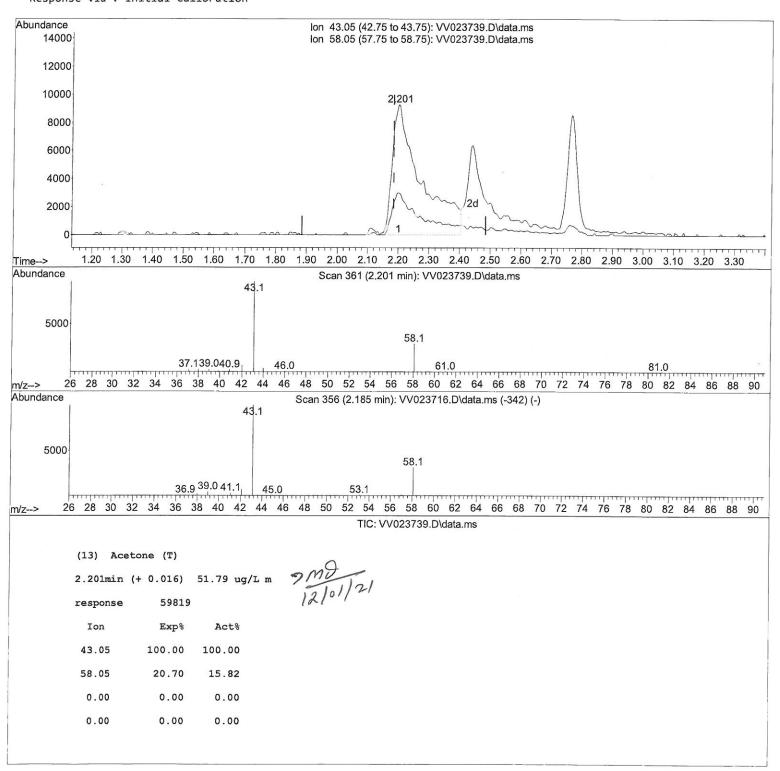
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File: W023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005

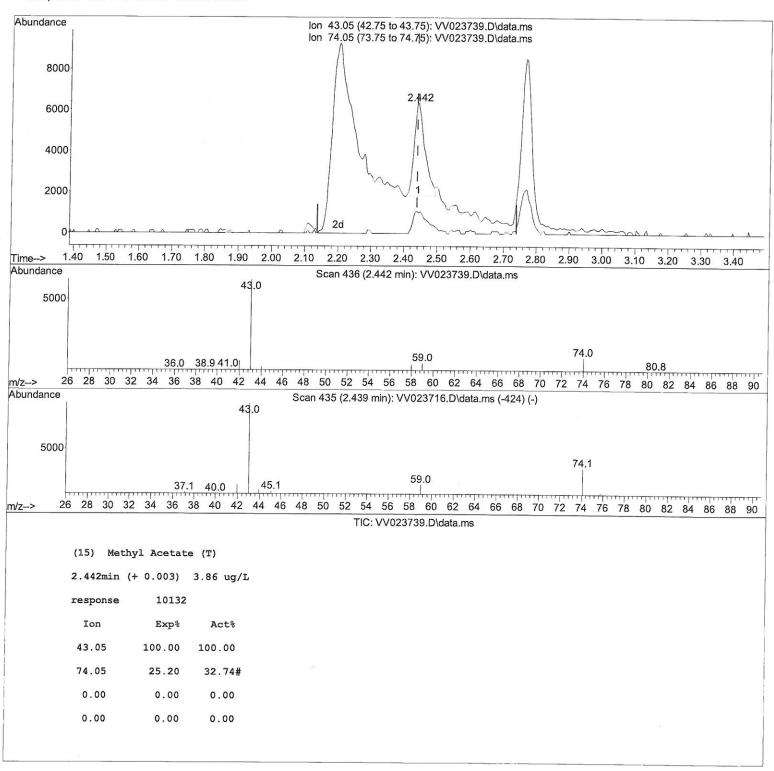
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005

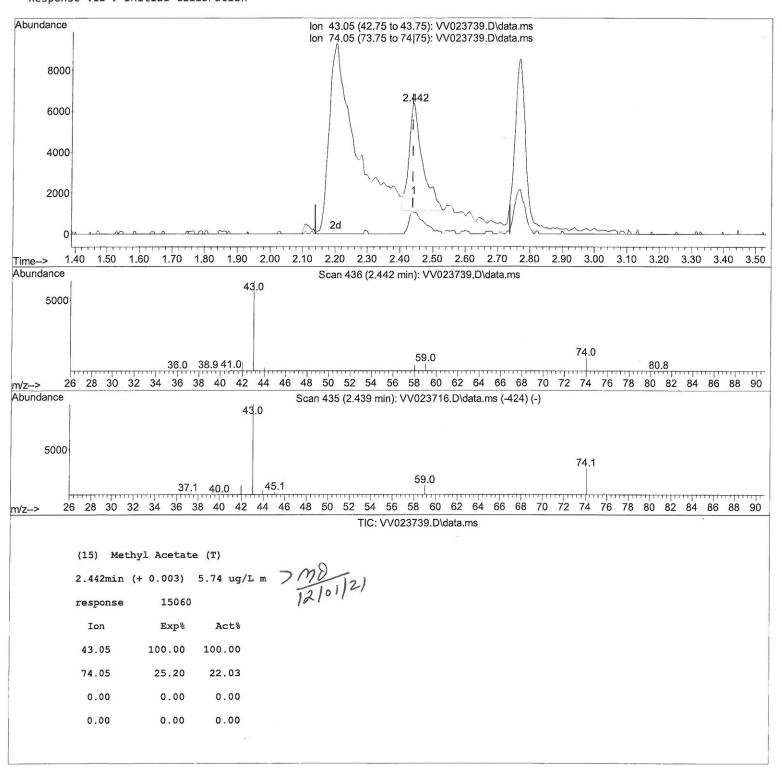
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual Integrations APPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File: VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument:
MSVOA_V
LabSampleId:
VSTDCCC005

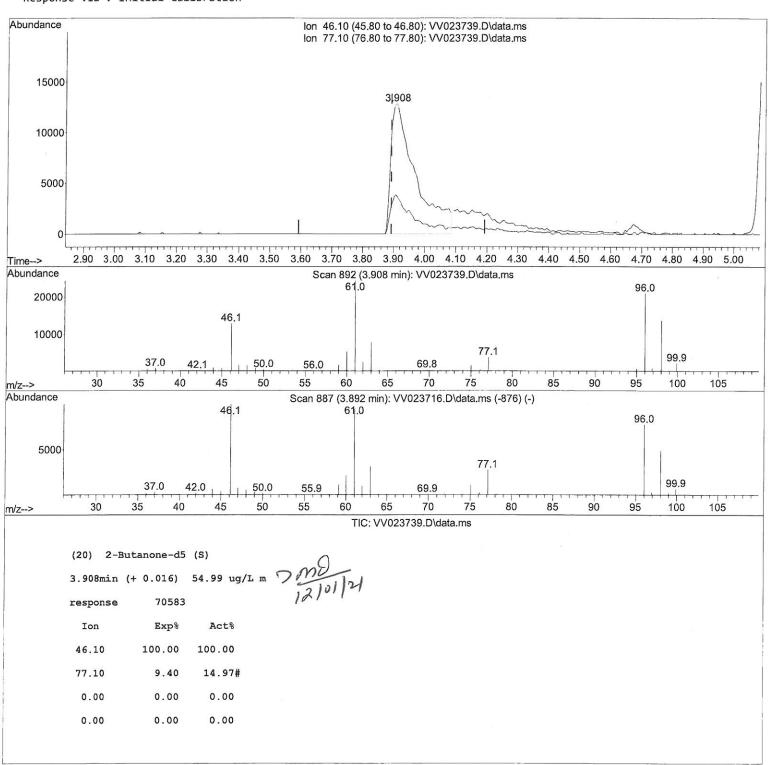
Manual Integrations APPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005

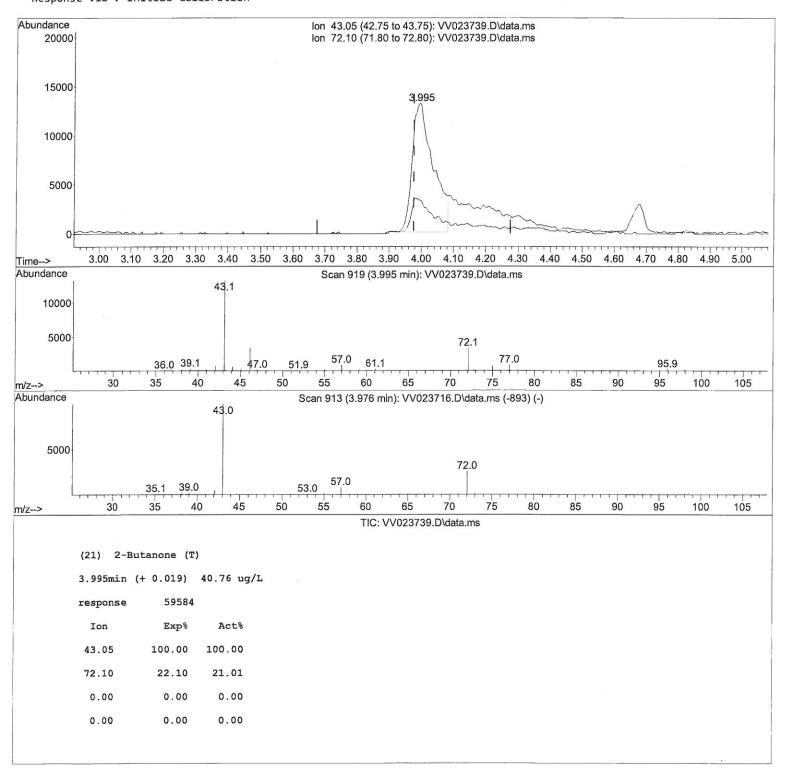
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File: VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005

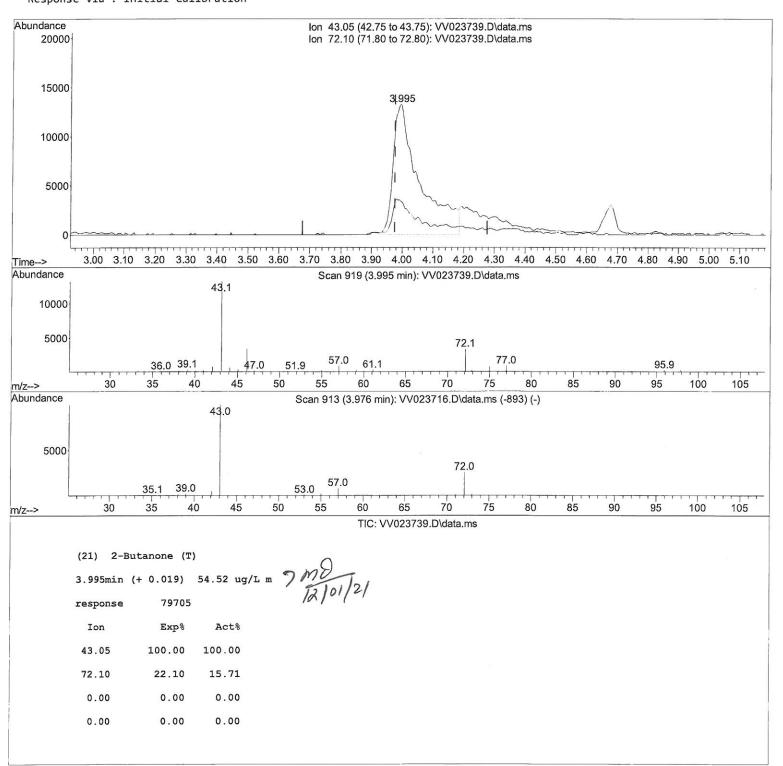
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD Sample : VSTDCCC005


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File: VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD

Sample : VSTDCCC005
Misc : 25.0mL/MSVOA_V/WATER Misc ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Sat Nov 27 03:48:32 2021 Response via: Initial Calibration

Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual IntegrationsAPPROVED

1) 1,4-Difluorobenzene	Compound		OTon	Response	Conc Un	its Dev <i>(</i>	Minl	
1) 1,4-Difluorobenzene-ds								
1.380 1.4 - Dichlorobenzene - ds			200			4		
System Monitoring Compounds 4) Vinyl Chloride-d3 5piked Amount 5.000 7) Chloroethane-d5 5piked Amount 5.000 20) 2-Butanone-d5 5piked Amount 5.000 4) Vinyl Chloride-d3 5piked Amount 5.000 3 31.307 65 5piked Amount 5.000 3 31.415 3 .743 Ug/L 6 .00 8 20, 2-Butanone-d5 5piked Amount 5.000 4) Alake Amount 5.000 8 20, 2-Butanone-d5 5piked Amount 5.000 8 20, 1.2-Dichloroethane-d4 5piked Amount 5.000 8 20, 1.2-Dichloroethane-d4 5piked Amount 5.000 8 20, 1.2-Dichloropropane-d6 6 3.300 8 20, 1.2-Dichloropropane-d6 8 20, 1.2-Dichloropropane-d6 8 20, 1.2-Dichloropropane-d6 9 20, 1.2-Dichloropro						•		
System Monitoring Compounds 4) Vinyl Chloride-d3 5piked Amount 5.000 7) Chloroethane-d5 5piked Amount 5.000 8ange 60 - 125 8piked Amount 5.000 8ange 70 - 125 8ecovery = 74.800% 8ange 70 - 125 8ecovery = 75.600% 8ange 70 - 125 8ecovery = 74.800% 8ange 70 - 125 8ecovery = 75.600% 8ange 70 - 125 8ecovery = 10.980% 8ange 70 - 130 8ecovery = 10.980% 8ange 70 - 130 8ecovery = 92.000% 8ange 70 - 130 8ecovery = 89.000% 8ange 70 - 130 8ecovery = 82.600% 8ange 70 - 130 8ecovery = 82.600% 8ange 70 - 130 8ecovery = 89.000% 8ange 70 - 130 8ecovery = 110.00% 8ange 70 - 130 8ange	The state of the s					1000		
4) Vinyl Chloride-d3 Spiked Amount 5.000 Range 40 - 130 Recovery = 62.200% 7) Chloroethane-d5 Spiked Amount 5.000 Range 65 - 130 Recovery = 74.800% 7) Chloroethane-d5 Spiked Amount 5.000 Range 65 - 130 Recovery = 74.800% 70 Spiked Amount 5.000 Range 60 - 125 Recovery = 75.600% 70 Spiked Amount 5.000 Range 60 - 125 Recovery = 75.600% 70 Spiked Amount 5.000 Range 70 - 130 Recovery = 109.980% A.346 Spiked Amount 5.000 Range 70 - 130 Recovery = 92.000% 3.988 70 - 125 Recovery = 87.400% 8.000 Recovery = 109.980% A.340 Recovery = 92.000% 3.9899 A.604 Ug/L 0.00 Recovery = 92.000% 3.98999 A.604 Ug/L 0.00 Recovery = 81.800% 3.98999 A.604 Ug/L 0.00 Recovery = 81.800% A.340 Recovery = 82.600% A.341 Recovery = 82.600% A.342 A.341 Recovery = 82.600% A.342 Recovery = 82.600% A.341 Recovery = 82.600% A.342 Recovery = 82.600% A.342 Recovery = 82.600% A.343 Recovery = 82.600% A.343 Recovery = 82.600% A.341 Recovery = 82.600% A.342 Recovery = 82.600% A.343 Recovery = 82.600% A.344 A.345 A.345 A.345 A.346 A.347 A.128 A.347 A.128 A.346 A.347 A.128 A.347 A.128 A.347 A.128 A.347 A.128 A.36	58) 1,4-Dichlorobenzene-d4	11.246	152	71988	5.000	ug/L	0.0	0
Spiked Amount S.000 Range A - 130 Recovery = 62.206%	System Monitoring Compounds							
7) Chloroethane-d5 spiked Amount 5.000 11) 1,1-Dichloroethene-d2 spiked Amount 5.000 Range 60 - 125 spiked Amount 50.000 Range 70 - 125 Recovery = 109.980% A3.46 84 Spiked Amount 5.000 Range 70 - 125 Recovery = 109.980% A3.46 84 Spiked Amount 5.000 Range 70 - 125 Recovery = 109.980% Range 70 - 125 Recovery = 87.460% Range 70 - 125 Recovery = 87.460% Range 70 - 130 Recovery = 109.980% Range 70 - 130 Recovery = 92.000% Range 70 - 130 Recovery = 92.000% Range 70 - 130 Recovery = 81.880% Range 70 - 130 Recovery = 81.860% Range 70 - 130 Recovery = 100.00% Range 70 - 130 Recove					3,109	ug/L	0.00	
Spiked Amount	Spiked Amount 5.000	Range 40	- 130	Recove	-			
11) 1,1-Dichloroethene-d2		1.568	69	31415	3.743	ug/L	0.00	
Spiked Amount		Range 65	- 130	Recove	ry =	74.800%		
20) 2-Butanone-d5 Spiked Amount Spiked Spike							0.00	
Spiked Amount 5.000 Range 70 - 125 Recovery = 87.400% 26) 1,2-Dichloroethane-44 5.030 65 39989 4.604 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 92.000% 32) Benzene-d6 5.047 84 146342 4.085 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 81.800% 36) 1,2-Dichloropropane-d6 6.069 67 44649 4.446 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 89.000% 41) Toluene-d8 7.313 98 138167 4.128 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.000% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.800% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanore-d5 8.088 63 73955 54.987 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.200% 66) 1,2-Dichlorodifluoromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.524 64 35805 5.015 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 11) 1,1-Dichloromethane 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 98 10) 1,1-Dichloroethane 2.760 96 52121 5.251 ug/L 98 11-Dichloroethane 3.188 63 87562 5.247 ug/L 99 13) 1,1-Dichloroethane 3.988 96 50746 5.331 ug/L 97	Spiked Amount 5.000	Range 60	- 125	Recove	ry =	75.600%		220
Spiked Amount 5.000 Range 70 - 125 Recovery = 87.400% 26) 1,2-Dichloroethane-44 5.030 65 39989 4.604 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 92.000% 32) Benzene-d6 5.047 84 146342 4.085 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 81.800% 36) 1,2-Dichloropropane-d6 6.069 67 44649 4.446 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 89.000% 41) Toluene-d8 7.313 98 138167 4.128 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.000% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.800% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanore-d5 8.088 63 73955 54.987 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.200% 66) 1,2-Dichlorodifluoromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.524 64 35805 5.015 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 11) 1,1-Dichloromethane 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 98 10) 1,1-Dichloroethane 2.760 96 52121 5.251 ug/L 98 11-Dichloroethane 3.188 63 87562 5.247 ug/L 99 13) 1,1-Dichloroethane 3.988 96 50746 5.331 ug/L 97				70583m	54.990	ug/L	0.02	2110
Spiked Amount 5.000 Range 70 - 125 Recovery = 87.400% 26) 1,2-Dichloroethane-44 5.030 65 39989 4.604 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 92.000% 32) Benzene-d6 5.047 84 146342 4.085 ug/L 0.00 Spiked Amount 5.000 Range 70 - 125 Recovery = 81.800% 36) 1,2-Dichloropropane-d6 6.069 67 44649 4.446 ug/L 0.00 Spiked Amount 5.000 Range 60 - 140 Recovery = 89.000% 41) Toluene-d8 7.313 98 138167 4.128 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.000% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 70 - 130 Recovery = 89.800% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanore-d5 8.088 63 73955 54.987 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 91.200% 66) 1,2-Dichlorodifluoromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.524 64 35805 5.015 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 11) 1,1-Dichloromethane 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 98 10) 1,1-Dichloroethane 2.760 96 52121 5.251 ug/L 98 11-Dichloroethane 3.188 63 87562 5.247 ug/L 99 13) 1,1-Dichloroethane 3.988 96 50746 5.331 ug/L 97		Range 40	- 130	Recove	ry = 1	.09.980%		12/01/4
26) 1,2-Dichloroethane-d4		4.346	84	81267	4.371	ug/L	0.00	€ 200 € 1000
Spiked Amount 5.000 Range 70 - 130 Recovery = 92.000%								
32) Benzene-d6 Spiked Amount 5.000 Range 70 - 125 Recovery = 81.800% Spiked Amount 5.000 Range 60 - 140 Spiked Amount 5.000 Range 60 - 140 Recovery = 89.000% A1) Toluene-d8 7.313 98 Spiked Amount 5.000 Range 70 - 130 Recovery = 82.600% A3) trans-1,3-Dichloroprop 7.622 79 Spiked Amount 5.000 Range 70 - 130 Recovery = 82.600% A3) trans-1,3-Dichloroprop 7.622 79 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% A6) 2-Hexanone-d5 Spiked Amount 50.000 Range 45 - 130 Recovery = 89.800% Spiked Amount 5.000 Range 45 - 130 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 80 - 120 Recovery = 101.200% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 5.000 Range 65 - 120 Recovery = 109.980% Spiked Amount 60.000 Recovery = 109.98							0.00	
Spiked Amount 5.000 Range 70 - 125 Recovery = 81.800%		Range 70	- 130					
36) 1,2-Dichloropropane-d6						STATE OF STA	0.00	
Spiked Amount S.000 Range 60 - 140 Recovery = 89.000%		-			(F)			
41) Toluene-d8				44649	4.446	ug/L	0.00	
Spiked Amount 5.000 Range 70 - 130 Recovery = 82.600% 43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanone-d5 8.088 63 73955 54.987 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Farget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 10) 1,1,2-Trichloro-thene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 15060m 5.745 ug/L 98 12) 1,1-Dichloroethene 2.760 96 52121 5.251 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 19) 1,1-Dichloroethane 3.908 96 50746 5.331 ug/L 97		-						
43) trans-1,3-Dichloroprop 7.622 79 18164 4.487 ug/L 0.00 Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanone-d5				138167	4.128	ug/L	0.00	
Spiked Amount 5.000 Range 55 - 130 Recovery = 89.800% 46) 2-Hexanone-d5 8.088 63 73955 54.987 ug/L 0.00 Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% arget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 16) Methylene chloride 2.506 84 53806 4.327 ug/L 97 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.985 96 50746 5.331 ug/L 97 22) cis-1,2-Dichloroethene 3.995 43 79705m 54.522 ug/L 98 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97					-5.00			
46) 2-Hexanone-d5						O .	0.00	
Spiked Amount 50.000 Range 45 - 130 Recovery = 109.980% 56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% arget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 16) Methylene chloride 2.506 84 53806 4.327 ug/L 97 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 98 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97								
56) 1,1,2,2-Tetrachloroeth 10.214 84 36546 5.057 ug/L 0.00 Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% arget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 97 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 97 16) Methylene chloride 2.506 84 53806 4.327 ug/L 97 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 98 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97							0.00	
Spiked Amount 5.000 Range 65 - 120 Recovery = 101.200% 66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% arget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 19) 1,1-Dichloroethane 3.995 43 79705m 54.522 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97					-			
66) 1,2-Dichlorobenzene-d4 11.625 152 58077 4.563 ug/L 0.00 Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Farget Compounds 2) Dichlorodifluoromethane 1.130 85 62993 5.105 ug/L 100 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl Acetate 2.506 84 53806 4.327 ug/L 97 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97							0.00	
Spiked Amount 5.000 Range 80 - 120 Recovery = 91.200% Compounds							_	
Carbon disulfide Carbon disu							0.00	
2) Dichlorodifluoromethane 3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 13) Acetone 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 99 19) 1,1-Dichloroethane 3.995 43 79705m 54.522 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97	Spiked Amount 5.000	Range 80	- 120	Recover	^y =	91.200%		
3) Chloromethane 1.240 50 53657 5.002 ug/L 99 5) Vinyl chloride 1.310 62 56908 5.051 ug/L 98 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 13) Acetone 2.201 43 59819m 51.791 ug/L 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 1.760 96 52121 5.251 ug/L 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 19) 1,1-Dichloroethane 3.995 43 79705m 54.522 ug/L 21) 2-Butanone 3.908 96 50746 5.331 ug/L 97	Target Compounds					Qva]	.ue	
5) Vinyl chloride 6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 97 17) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 18) trans-1,2-Dichloroethene 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97		1.130	85	62993	5.105	ug/L	100	
6) Bromomethane 1.523 94 33173 5.193 ug/L 97 8) Chloroethane 1.584 64 35805 5.015 ug/L 98 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 15) Methylene chloride 2.506 84 53806 4.327 ug/L 97 17) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97		1.240	50				99	
6) Bromomethane 1.523 94 33173 5.193 ug/L 8) Chloroethane 1.584 64 35805 5.015 ug/L 9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 13) Acetone 2.201 43 59819m 51.791 ug/L 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 17) Methyl tert-butyl Ether 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L			62	56908			98	
9) Trichlorofluoromethane 1.754 101 94659 5.156 ug/L 98 10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 97 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 98 16) Methylene chloride 2.506 84 53806 4.327 ug/L 97 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97		1.523	94	33173	5.193			
10) 1,1,2-Trichloro-1,2,2 2.117 101 48329 5.253 ug/L 98 12) 1,1-Dichloroethene 2.117 96 45138 5.180 ug/L 97 13) Acetone 2.201 43 59819m 51.791 ug/L 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97	•						98	
12) 1,1-Dichloroethene			101	94659			98	
13) Acetone 2.201 43 59819m 51.791 ug/L 14) Carbon disulfide 2.294 76 148957 5.085 ug/L 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97								
14) Carbon disulfide 2.294 76 148957 5.085 ug/L 98 15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97			96	45138			97	
15) Methyl Acetate 2.442 43 15060m 5.745 ug/L 16) Methylene chloride 2.506 84 53806 4.327 ug/L 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97								•
16) Methylene chloride 2.506 84 53806 4.327 ug/L 97 12/01/2/ 17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97							98	aa()
17) Methyl tert-butyl Ether 2.767 73 96051 5.379 ug/L 99 18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97			43				7	Mo
18) trans-1,2-Dichloroethene 2.760 96 52121 5.251 ug/L 99 19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 97 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97							100000	12/01/21
19) 1,1-Dichloroethane 3.188 63 87562 5.247 ug/L 98 21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97								
21) 2-Butanone 3.995 43 79705m 54.522 ug/L 22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L 97						_	1	
22) cis-1,2-Dichloroethene 3.908 96 50746 5.331 ug/L √ 97							98	
	The state of the s							
23) Bromochloromethane 4.246 128 24221 5.422 ug/L 96								
	23) Bromochloromethane	4.246	128	24221	5.422 u	ıg/L	96	

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File: VV023739.D

Acq On : 29 Nov 2021 11:50

Operator : SY/MD
Sample : VSTDCCC005
Misc : 25.0mL/MSVOA_V/WATER ALS Vial : 2 Sample Multiplier: 1

Quant Time: Nov 30 00:11:14 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Sat Nov 27 03:48:32 2021 Response via : Initial Calibration

Instrument : MSVOA_V LabSampleId : VSTDCCC005

Manual IntegrationsAPPROVED

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
25) Chloroform	4.371	83	100323	5.396 ug/L	99
27) 1,2-Dichloroethane	5.130	62	53773	5.440 ug/L	100
<pre>29) 1,1,1-Trichloroethane</pre>	4.606	97	91649	5.333 ug/L	99
30) Cyclohexane	4.674	56	73392	5.118 ug/L	98
31) Carbon tetrachloride	4.821	117	83779	5.322 ug/L	100
33) Benzene	5.095	78	198652	5.299 ug/L	100
34) Trichloroethene	5.911	95	53052	5.283 ug/L	97
35) Methylcyclohexane	6.127	83	81339	5.195 ug/L	98
37) 1,2-Dichloropropane	6.172	63	45720	5.130 ug/L	99
38) Bromodichloromethane	6.506	83	64786	5.356 ug/L	98
39) cis-1,3-Dichloropropene	7.024	75	66434	5.238 ug/L	99
40) 4-Methyl-2-pentanone	7.226	43	236554	55.607 ug/L	99
42) Toluene	7.384	91	227923	5.606 ug/L	97
44) trans-1,3-Dichloropropene	7.651	75	59166	5.551 ug/L	100
45) 1,1,2-Trichloroethane	7.837	97	34739	5.630 ug/L	98
47) Tetrachloroethene	7.972	164	49612	5.427 ug/L	97
48) 2-Hexanone	8.140	43	178043	56.626 ug/L	98
49) Dibromochloromethane	8.246	129	47326	5.597 ug/L	99
50) 1,2-Dibromoethane	8.352	107	33363	5.545 ug/L	96
51) Chlorobenzene	8.879	112	147012	5.454 ug/L	98
52) Ethylbenzene	9.011	91	233564	5.496 ug/L	100
53) m,p-xylene	9.136	106	94611	5.593 ug/L	99
54) o-xylene	9.541	106	90233	5.610 ug/L	100
55) Styrene	9.558	104	154333	5.694 ug/L	98
57) 1,1,2,2-Tetrachloroethane	10.239	83	37807	5.507 ug/L	97
59) Bromoform	9.731	173	25361	5.334 ug/L	100
60) Isopropylbenzene	9.931	105	242418	5.640 ug/L	100
61) 1,2,3-Trichloropropane	10.275	75	27210	5.330 ug/L	99
62) 1,3,5-Trimethylbenzene	10.538	105	200166	5.596 ug/L	99
63) 1,2,4-Trimethylbenzene	10.914	105	199631	5.644 ug/L	99
64) 1,3-Dichlorobenzene	11.178	146	124070	5.645 ug/L	98
65) 1,4-Dichlorobenzene	11.271	146	121447	5.498 ug/L	99
67) 1,2-Dichlorobenzene	11.641	146	110363	5.487 ug/L	98
68) 1,2-Dibromo-3-chloropr	12.429	75	5749	5.671 ug/L	91
69) 1,3,5-Trichlorobenzene	12.644	180	94736	5.521 ug/L	97
70) 1,2,4-trichlorobenzene	13.262	180	72666	5.458 ug/L	98
71) Naphthalene	13.503	128	93319	5.209 ug/L	99
72) 1,2,3-Trichlorobenzene	13.744	180	63006	5.462 ug/L	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed