Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

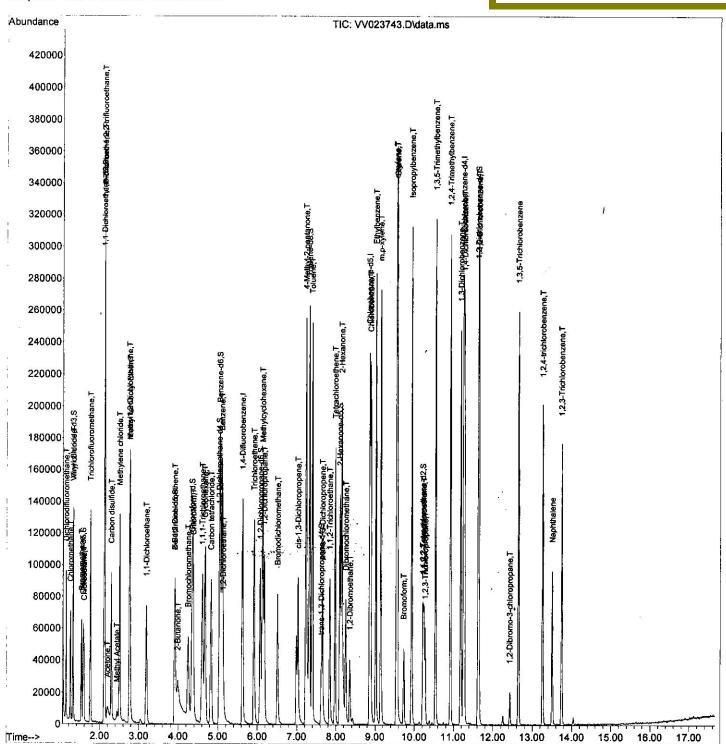
Data File : W023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD Sample

: VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER ALS Vial : 6 Sample Multiplier: 1


Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration

Instrument: MSVOA_V **LabSampleld**:

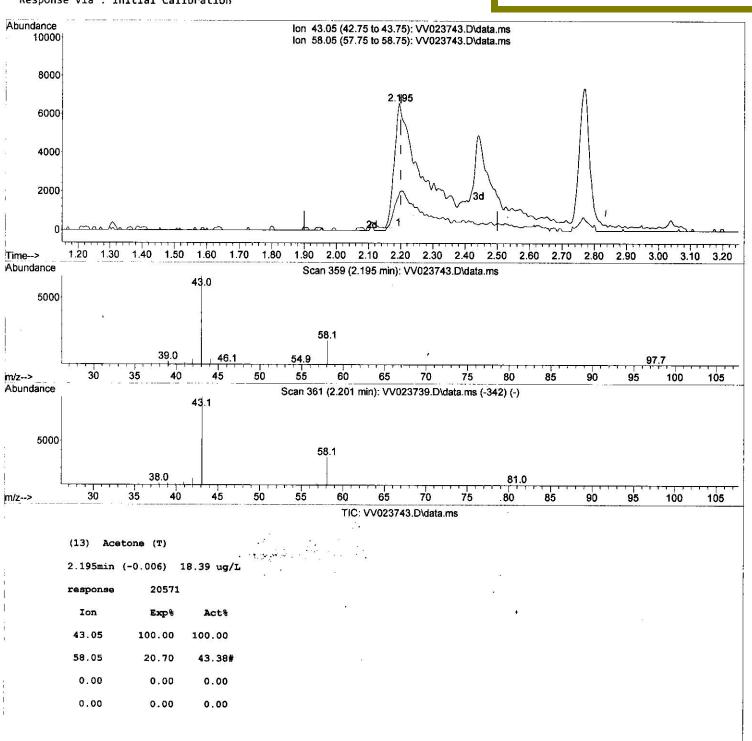
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD Sample : VSTDCCC005EC


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration Instrument: MSVOA_V LabSampleId: VSTDCCC005EC

Manual IntegrationsAPPROVED

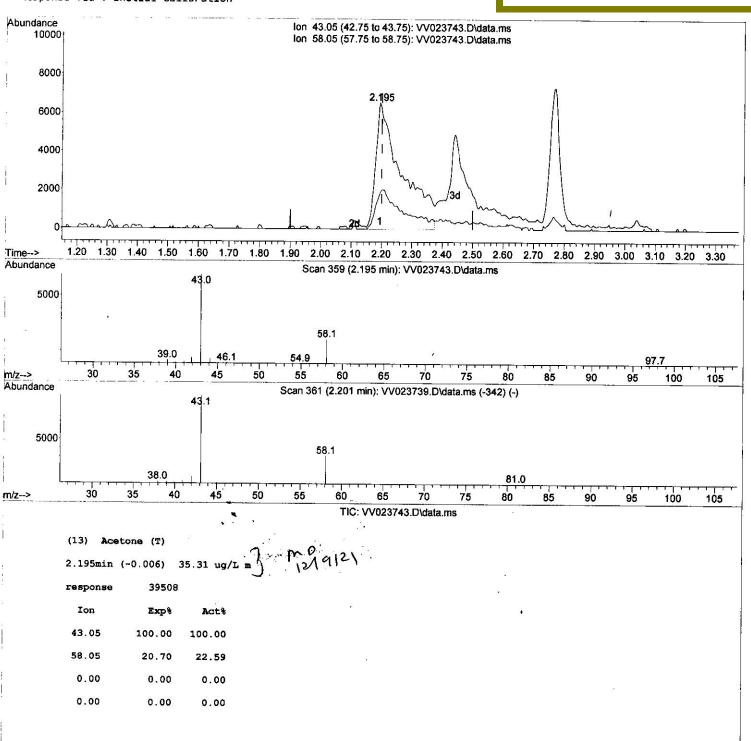
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD

Sample : VSTDCCC005EC


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration Instrument :
MSVOA_V
LabSampleId :
VSTDCCC005EC

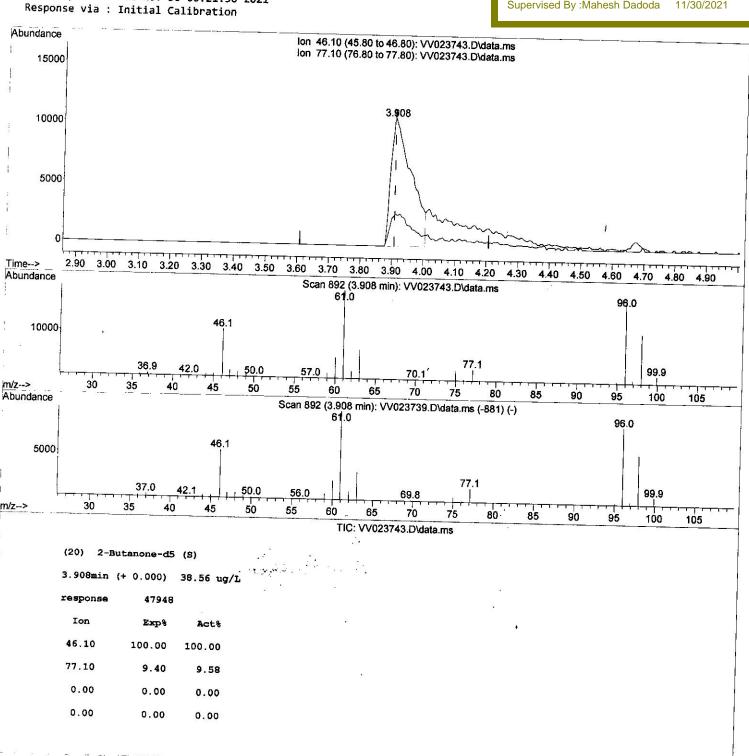
Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : W023743.D

: 29 Nov 2021 14:16

Operator : SY/MD Sample : VSTDCCC005EC


: 25.0mL/MSVOA_V/WATER Misc ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Instrument: MSVOA_V **LabSampleld**: STDCCC005E0

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023743.D

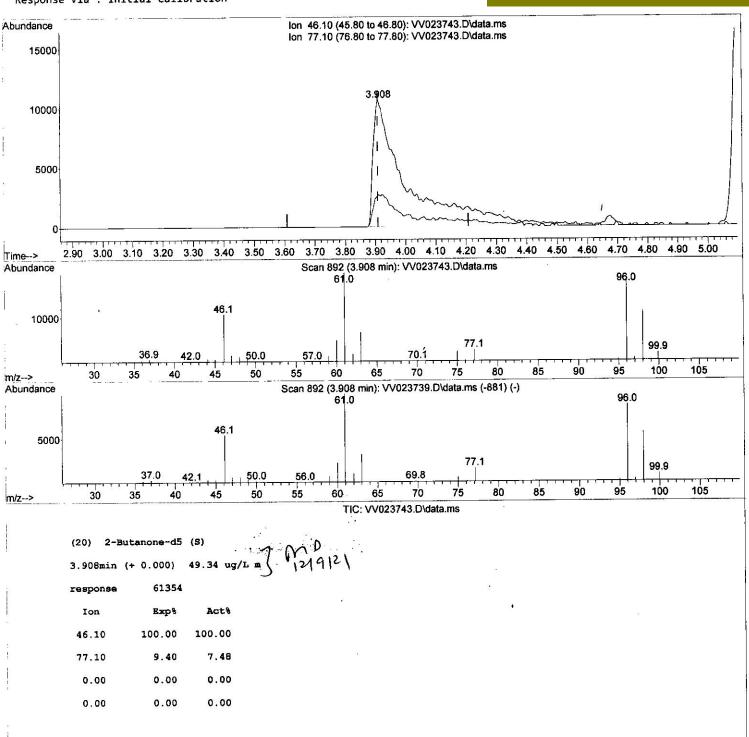
: 29 Nov 2021 14:16 Acq On

Operator : SY/MD : VSTDCCC005EC Sample

: 25.0mL/MSVOA_V/WATER Misc

Sample Multiplier: 1 ALS Vial : 6

Quant Time: Nov 30 00:22:36 2021


Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Tue Nov 30 00:21:36 2021 Response via: Initial Calibration

Instrument: MSVOA_V **LabSampleld**: /STDCCĊ005E0

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

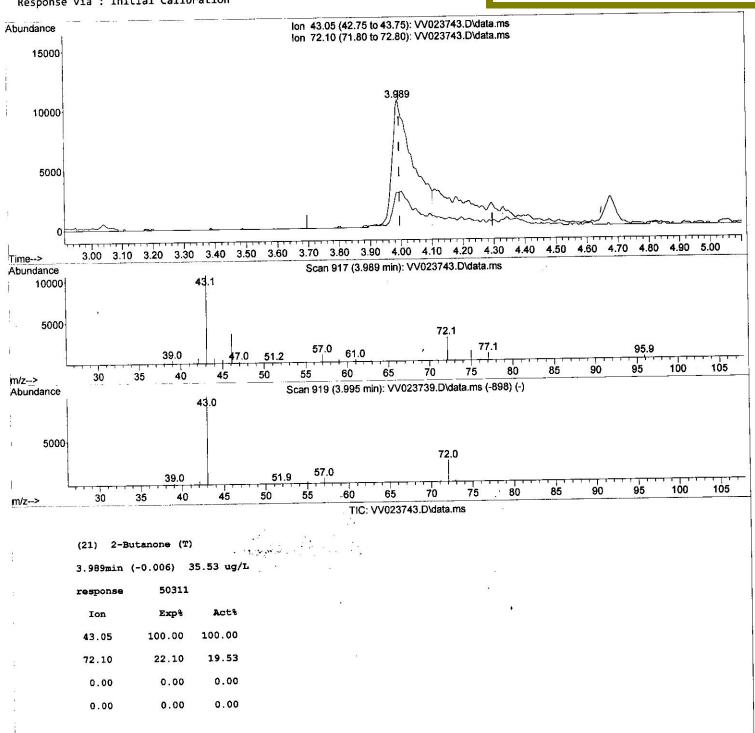
Data File : VV023743.D

: 29 Nov 2021 14:16 Acq On

: SY/MD Operator : VSTDCCC005EC Sample

: 25.0mL/MSVOA_V/WATER Misc Sample Multiplier: 1 ALS Vial : 6

Quant Time: Nov 30 00:22:36 2021


Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration

Instrument: MSVOA_V LabSampleId : STDCCĊ005E0

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

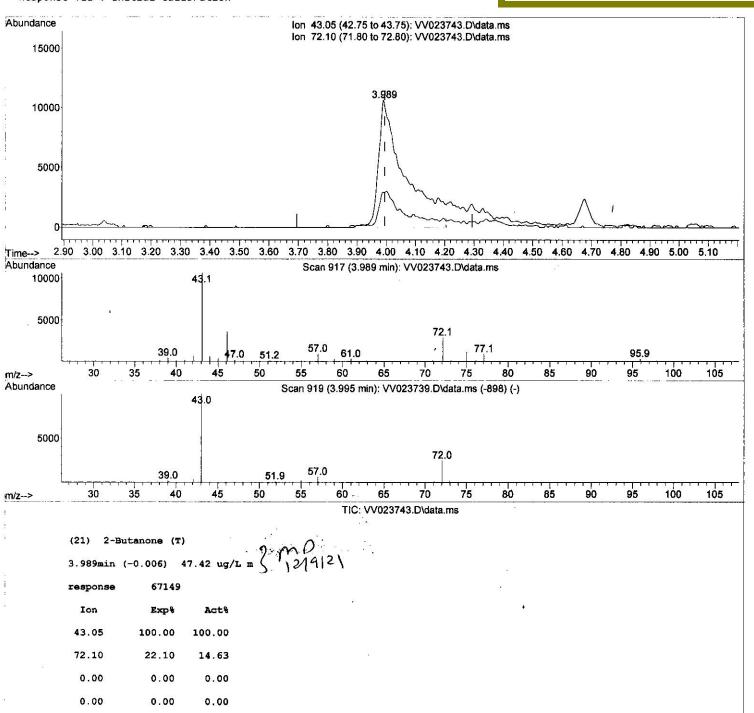
Data File: VV023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD

Sample : VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 6 Sample Multiplier: 1


Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0
QLast Update : Tue Nov 30 00:21:36 2021
Response via : Initial Calibration

Instrument: MSVOA_V LabSampleId: VSTDCCC005EC

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD Sample : VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration

MSVOA_V **LabSampleId :** VSTDCCC005EC

Instrument:

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/30/2021 Supervised By :Mahesh Dadoda 11/30/2021

Compound		кл	. OTOU	kesponse	conc un:	its bevi	min)	
Internal Standards								
1) 1,4-Difluorobenzene		5.61	6 114	125994	5.000	ug/L	0.00	
28) Chlorobenzene-d5		8.85	0 117	125048	5.000	ug/L	0.00	
58) 1,4-Dichlorob	enzene-d4	11.24	9 152	69201	5.000	ug/L	0.00	
System Monitoring	Compounds							
4) Vinyl Chlorid		1.30	7 65	43075	4.165	ug/L	0.00	
Spiked Amount	5.000	Range 4	0 - 130	Recove		83.200%	8800 88000	
7) Chloroethane-	d5	1.56	8 69	34780	4.278	ug/L	0.00	
Spiked Amount	5.000	Range 69	5 - 130			85.600%		
11) 1,1-Dichloroe	thene-d2	2.10		81320	4,461	ug/L	0.00	
Spiked Amount	5.000	Range 60	0 - 125	Recove	ry =	89.200%		0
20) 2-Butanone-d5		3.90	8 46	61354m	49.344	ug/L	0.00	-1
Spiked Amount	50.000	Range 40	0 - 130	Recove	ry =	98.680%		
24) Chloroform-d		4.34	6 84	85120	4.726	ug/L	0.00	
Spiked Amount	5.000	Range 70	0 - 125	Recove		94.600%		
26) 1,2-Dichloroe	thane-d4	5.03	1 65	41066	4.881	ug/L	0.00	
Spiked Amount	5.000	Range 70	0 - 130	Recove		97.600%		
32) Benzene-d6		5.04	7 84	166709	4.894	ug/L	0.00	
Spiked Amount	5.000	Range 70	0 - 125	Recove		97.800%		
36) 1,2-Dichlorop	ropane-d6	6.06	9 67	47035	4.925	ug/L	0.00	
Spiked Amount	5.000	Range 60	0 - 140	Recove	ry =	98.600%		
41) Toluene-d8		7.31	4 98	168530	5.295	ug/L	0.00	
Spiked Amount	5.000	Range 70	0 - 130	Recove		106.000%		
43) trans-1,3-Dic	hloroprop.	7.62	2 79	18765	4.875	ug/L	0.00	
Spiked Amount	5.000		5 - 130	Recove	ry =	97.400%		
46) 2-Hexanone-d5		8.09	2 63	63367	49.546	ug/L	0.00	
Spiked Amount	50.000	Range 4	5 - 130	Recove	ry =	99.100%		
56) 1,1,2,2-Tetra	chloroeth.	10.21	4 84	34724	5.053	ug/L	0.00	
Spiked Amount	5.000	Range 6	5 - 120	Recove	ry = :	101.000%		
66) 1,2-Dichlorob	enzene-d4	11.62	2 152	62186	5.083	ug/L	0.00	
Spiked Amount	5.000	Range 8	0 - 120	Recove	ry = :	101.600%		
Target Compounds						Qva	lue	
2) Dichlorodiflu	oromethane	1.12	7 85	48697	4.074	E-15	99	
3) Chloromethane		1.24	0 50	41284	3.973	5.00	99	
5) Vinyl chlorid		1.31	1 62	44816	4.106	W. Control of the Control	97	
6) Bromomethane			3 94	25524	4.124	1000	99	
8) Chloroethane		1.584	CENTRAL STORY	27211	3.935	CARCOLLEGE CONTRACTOR	- 95	
9) Trichlorofluo	romethane	1.75		78471	4.413		99	*
10) 1,1,2-Trichlo				40325	4.525		99	. 10
12) 1,1-Dichloroe	(15) (15)	2.11		37157 <	4.402	1000	86	
13) Acetone		2.19	5 43	39508m	35.311	Andrew - Andrews Comment		1.

2.294

2.442

2.507

2.767

2.757

3.188

3.989

3.908

4.246 128

76

43

84

73

96

63

43

96

102914

10522

53089

82319

40851

73061

67149m

42540

20028

3.627 ug/L

4.143 ug/L

4.407 ug/L

4.758 ug/L

4.249 ug/L

4.519 ug/L

47.417 ug/L

4.613 ug/L

4.628 ug/L

1,5) 4/5.

100

96

98

100

98

95

93

14) Carbon disulfide

16) Methylene chloride

19) 1,1-Dichloroethane

23) Bromochloromethane

17) Methyl tert-butyl Ether

18) trans-1,2-Dichloroethene

22) cis-1,2-Dichloroethene

15) Methyl Acetate

21) 2-Butanone

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV112921\

Data File : VV023743.D

Acq On : 29 Nov 2021 14:16

Operator : SY/MD

Sample : VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 30 00:22:36 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Tue Nov 30 00:21:36 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev(Min)
25) Chloroform	4.375	83	82958	4.606 ug/L	100
27) 1,2-Dichloroethane	5.130	62	44624	4.660 ug/L	99
29) 1,1,1-Trichloroethane	4.606	97	75386	4.613 ug/L	99
30) Cyclohexane	4.674	56	56818	4.166 ug/L	99
31) Carbon tetrachloride	4.825	117	68267	4.561 ug/L	98
33) Benzene	5.098	78	163671	4.591 ug/L	100
34) Trichloroethene	5.912	95	43961	4.603 ug/L	95
35) Methylcyclohexane	6.130	83	64087	4.304 ug/L	98
37) 1,2-Dichloropropane	6.172	63	40010	4.721 ug/L	100
38) Bromodichloromethane	6.510	83	55822	4.854 ug/L	97
39) cis-1,3-Dichloropropene	7.027	75	56254	4.665 ug/L	97
40) 4-Methyl-2-pentanone	7.227	43	202202	49.985 ug/L	99
42) Toluene	7.384	91	186716	4.830 ug/L	96
44) trans-1,3-Dichloropropene	7.651	75	50348	4.968 ug/L	98
45) 1,1,2-Trichloroethane	7.838	97	29714	5.064 ug/L	98
47) Tetrachloroethene	7,973	164	39709	4.568 ug/L	99
48) 2-Hexanone	8.140	43	150207	50.239 ug/L	100
49) Dibromochloromethane	8.246	129	40735	5.066 ug/L	99
50) 1,2-Dibromoethane	8.352	107	27686	4.839 ug/L	99
51) Chlorobenzene	8.879	112	122846	4.793 ug/L	98
.52) Ethylbenzene	9.011	91	195063	4.827 ug/L	98
53) m,p-xylene	9.137	106	76549	4.759 ug/L	99
54) o-xylene	9.542	106	73490	4.804 ug/L	100
55) Styrene	9.558	104	128547	4.988 ug/L	99
57) 1,1,2,2-Tetrachloroethane	10.239	83	32517	4.981 ug/L	97
59) Bromoform	9.731	173	22254	4.869 ug/L	97
60) Isopropylbenzene	9.931	105	200789	4.859 ug/L	99
61) 1,2,3-Trichloropropane	10.275	75	23443	4.777 ug/L	99
62) 1,3,5-Trimethylbenzene	10.538	105	165014	4.799 ug/L	99
63) 1,2,4-Trimethylbenzene	10.915	105	165159	4.857 ug/L	100
64) 1,3-Dichlorobenzene	11.182	146	103371	4.893 ug/L	97
65) 1,4-Dichlorobenzene	11.272		102647	4.834 ug/L	99
67) 1,2-Dichlorobenzene	11.641		93762	4.849 ug/L	97
68) 1,2-Dibromo-3-chloropr	12.426		4655		85
69) 1,3,5-Trichlorobenzene	12.644		80777	4.898 ug/L	99
70) 1,2,4-trichlorobenzene	13.262	100	61138		98
71) Naphthalene	13.503		77381	4.493 ug/L	99
72) 1,2,3-Trichlorobenzene	13.744	. 180	54319	4.898 ug/L	99

(*) = qualifier out of range (m) = manual integration (+) = signals summed \cdot

Instrument: MSVOA_V LabSampleId: VSTDCCC005EC

Manual IntegrationsAPPROVED