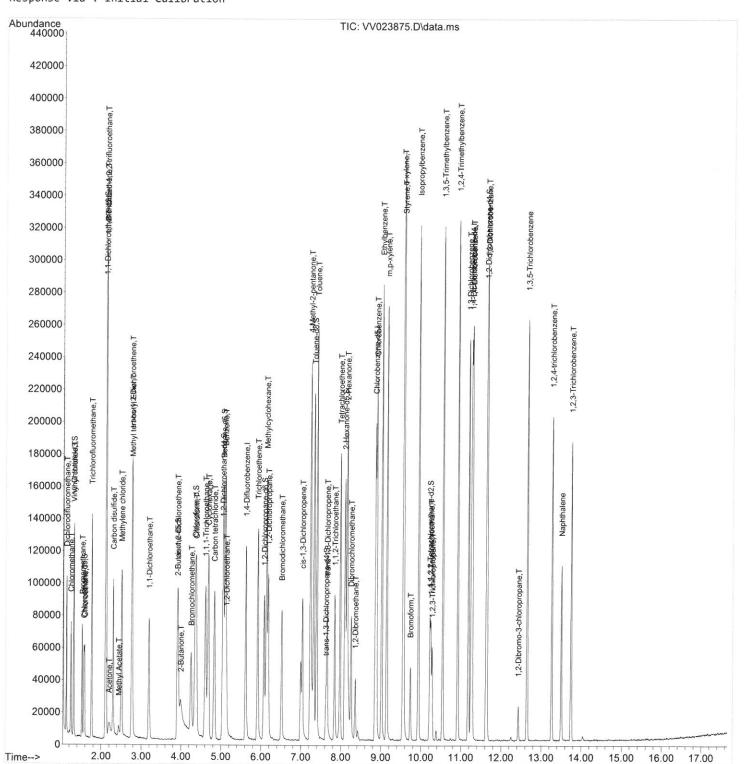
Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV120921\

Data File: VV023875.D

Acq On : 09 Dec 2021 20:40

Operator : SY/MD Sample : VSTDCCC005EC


Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 21 Sample Multiplier: 1

Quant Time: Dec 10 03:27:06 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Dec 02 02:08:23 2021 Response via : Initial Calibration Instrument : MSVOA_V LabSampleId : VSTDCCC005EC

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

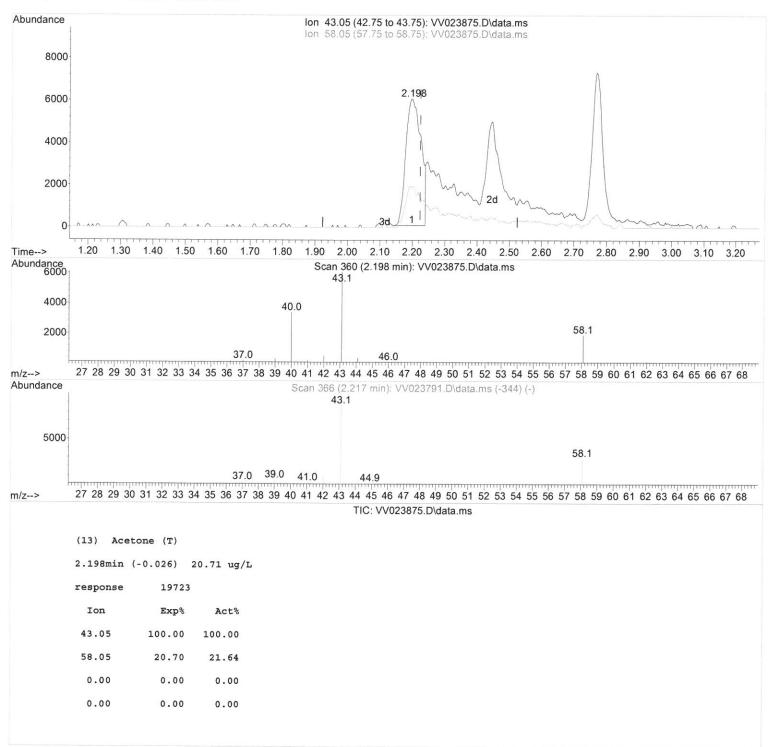
Data Path : Z:\voasrv\HPCHEM1\MSVOA V\Data\VV120921\

Data File: VV023875.D

Acq On : 09 Dec 2021 20:40

Operator : SY/MD Sample : VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 21 Sample Multiplier: 1


Quant Time: Dec 10 03:27:06 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Dec 02 02:08:23 2021 Response via : Initial Calibration

Manual IntegrationsAPPROVED

Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV120921\

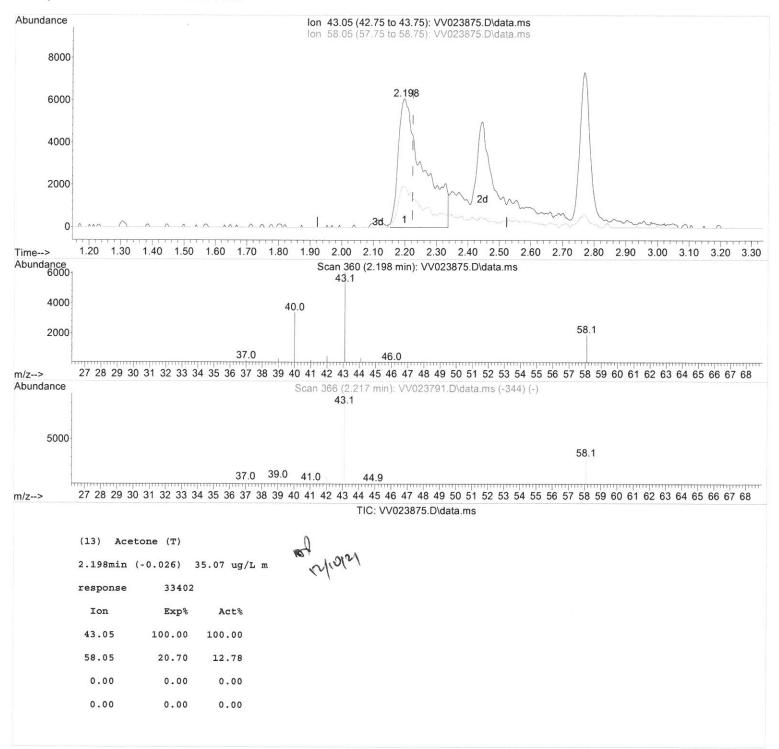
Data File: VV023875.D

Acq On : 09 Dec 2021 20:40

Operator : SY/MD Sample : VSTDCCC005EC

Misc : 25.0mL/MSVOA_V/WATER
ALS Vial : 21 Sample Multiplier: 1

Quant Time: Dec 10 03:27:06 2021


Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Thu Dec 02 02:08:23 2021 Response via : Initial Calibration

Manual IntegrationsAPPROVED

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV120921\

Data File : VV023875.D

Acq On : 09 Dec 2021 20:40

Operator : SY/MD

Sample : VSTDCCC005EC
Misc : 25.0mL/MSVOA_V/WATER ALS Vial : 21 Sample Multiplier: 1

Quant Time: Dec 10 03:27:06 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0 QLast Update : Thu Dec 02 02:08:23 2021 Response via : Initial Calibration

Instrument : MSVOA_V LabSampleId : VSTDCCC005EC

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 12/10/2021 Supervised By: Mahesh Dadoda 12/10/2021

Compound	R.T.	QIon	Response Conc Units Dev(Mir	1)
Internal Standards				
 1,4-Difluorobenzene 	5.619	114	107257 5.000 ug/L 0	0.00
28) Chlorobenzene-d5	8.854	117	<u> </u>	0.00
58) 1,4-Dichlorobenzene-d4	11.249	152	60474 5.000 ug/L 0	9.00
System Monitoring Compounds				
4) Vinyl Chloride-d3	1.307	65	37917 4.306 ug/L 0.	.00
Spiked Amount 5.000	Range 40		Recovery = 86.200%	
7) Chloroethane-d5	1.568	69		.00
Spiked Amount 5.000	Range 65		Recovery = 90.800%	200
11) 1,1-Dichloroethene-d2	2.111	63	5.	.00
Spiked Amount 5.000	Range 60		Recovery = 88.400%	
20) 2-Butanone-d5	3.905	46	<u>.</u>	00
Spiked Amount 50.000	O	- 130	Recovery = 90.160%	2.2
24) Chloroform-d	4.352	84	9.	00
Spiked Amount 5.000	0	- 125	Recovery = 105.400%	
26) 1,2-Dichloroethane-d4	5.037	65	0,	99
Spiked Amount 5.000	Range 70		Recovery = 102.800%	
32) Benzene-d6	5.053	84	142540 4.991 ug/L 0.	99
Spiked Amount 5.000	Range 70		Recovery = 99.800%	00
36) 1,2-Dichloropropane-d6	6.072	67	42657 5.328 ug/L 0.	99
Spiked Amount 5.000 41) Toluene-d8	Range 60		Recovery = 106.600%	~~
	7.317	98	134656 5.046 ug/L 0.	90
Spiked Amount 5.000 43) trans-1,3-Dichloroprop.		- 130	Recovery = 101.000%	00
Spiked Amount 5.000		79	17523 5.430 ug/L 0.	90
46) 2-Hexanone-d5	•	- 130	Recovery = 108.600%	00
Spiked Amount 50.000	8.092 Range 45	63 - 130	77072 71.880 ug/L 0. Recovery = 143.760%#	99
56) 1,1,2,2-Tetrachloroeth.		84		aa
Spiked Amount 5.000	Range 65		33558 5.825 ug/L 0.0 Recovery = 116.400%	99
66) 1,2-Dichlorobenzene-d4	11.625	152	55169 5.160 ug/L 0.0	aa
Spiked Amount 5.000	Range 80		Recovery = 103.200%	00
Target Compounds			Ovalue	
2) Dichlorodifluoromethane	1.130	85	c	99
3) Chloromethane	1.240	50	G.	97
5) Vinyl chloride	1.310	62	O.	98
6) Bromomethane	1.523	94		99
8) Chloroethane	1.587	64		96
9) Trichlorofluoromethane	1.754	101		00
10) 1,1,2-Trichloro-1,2,2		101		98
12) 1,1-Dichloroethene	2.121	96		98
13) Acetone	2.198	43	33402m /35.069 ug/L	
14) Carbon disulfide	2.298	76		99
15) Methyl Acetate	2.445	43		98
16) Methylene chloride	2.507	84		97
17) Methyl tert-butyl Ether	2.770	73		99
18) trans-1,2-Dichloroethene	2.764	96		99
19) 1,1-Dichloroethane	3.191	63	0.	98
/ -j- brenzen de chane	2 005	43		96
21) 2-Butanone	3.995	43	303/3 32.333 ug/L	
	3.995	96	.	98
21) 2-Butanone			42797 5.452 ug/L	98 94

MUSIN

Data Path : Z:\voasrv\HPCHEM1\MSVOA_V\Data\VV120921\

Data File : VV023875.D

Acq On : 09 Dec 2021 20:40 Operator : SY/MD

Sample : VSTDCCC005EC
Misc : 25.0mL/MSVOA_V/WATER ALS Vial : 21 Sample Multiplier: 1

Quant Time: Dec 10 03:27:06 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_V\Method\SFAMVTR112321WMA.M

Quant Title : TRACE VOA SFAM1.0

QLast Update : Thu Dec 02 02:08:23 2021 Response via : Initial Calibration

Instrument : MSVOA_V LabSampleId : VSTDCCC005EC

Manual IntegrationsAPPROVED

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)
27) 1,2-Dichloroethane	5.133	62	43552	5.343 ug/L	97
29) 1,1,1-Trichloroethane	4.609	97	75949	5.544 ug/L	99
30) Cyclohexane	4.680	56	60135	5.260 ug/L	99
31) Carbon tetrachloride	4.828	117	68090	5.426 ug/L	98
33) Benzene	5.101	78	161785	5.413 ug/L	100
34) Trichloroethene	5.915	95	43414	5.422 ug/L	97
35) Methylcyclohexane	6.130	83	66672	5.341 ug/L	98
37) 1,2-Dichloropropane	6.175	63	37597	5.292 ug/L	99
38) Bromodichloromethane	6.510	83	53024	5.499 ug/L	97
39) cis-1,3-Dichloropropene	7.027	75	53805	5.322 ug/L	100
40) 4-Methyl-2-pentanone	7.227	43	193646	57.099 ug/L	98
42) Toluene	7.387	91	188518	5.816 ug/L	98
44) trans-1,3-Dichloropropene	7.651	75	46848	5.513 ug/L	90
45) 1,1,2-Trichloroethane	7.841	97	28035	5.699 ug/L	98
47) Tetrachloroethene	7.976	164	39893	5.474 ug/L	96
48) 2-Hexanone	8.143	43	139976	55.842 ug/L	98
49) Dibromochloromethane	8.246	129	38715	5.743 ug/L	96
50) 1,2-Dibromoethane	8.352	107	27140	5.658 ug/L	97
51) Chlorobenzene	8.882	112	121035	5.632 ug/L	99
52) Ethylbenzene	9.011	91	194303	5.735 ug/L	98
53) m,p-xylene	9.140	106	77633	5.757 ug/L	100
54) o-xylene	9.542	106	74589	5.816 ug/L	98
55) Styrene	9.561	104	129862	6.010 ug/L	99
57) 1,1,2,2-Tetrachloroethane	10.243	83	30555	5.583 ug/L	99
59) Bromoform	9.731	173	20877	5.227 ug/L	98
<pre>60) Isopropylbenzene</pre>	9.931	105	204101	5.652 ug/L	100
61) 1,2,3-Trichloropropane	10.275	75	22355	5.212 ug/L	96
62) 1,3,5-Trimethylbenzene	10.538	105	168542	5.609 ug/L	99
63) 1,2,4-Trimethylbenzene	10.915	105	170366	5.734 ug/L	99
64) 1,3-Dichlorobenzene	11.181	146	103000	5.579 ug/L	98
65) 1,4-Dichlorobenzene	11.271	146	101366	5.463 ug/L	100
67) 1,2-Dichlorobenzene	11.641	146	92683	5.485 ug/L	98
68) 1,2-Dibromo-3-chloropr	12.429	75	5076	5.960 ug/L	95
69) 1,3,5-Trichlorobenzene	12.644	180	81066	5.624 ug/L	100
70) 1,2,4-trichlorobenzene	13.262	180	61827	5.528 ug/L	98
71) Naphthalene	13.503	128	86880	5.772 ug/L	99
72) 1,2,3-Trichlorobenzene	13.744	180	55670	5.745 ug/L	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed