Data File: VX025092.D

: 08 Nov 2021 11:13 Acq On

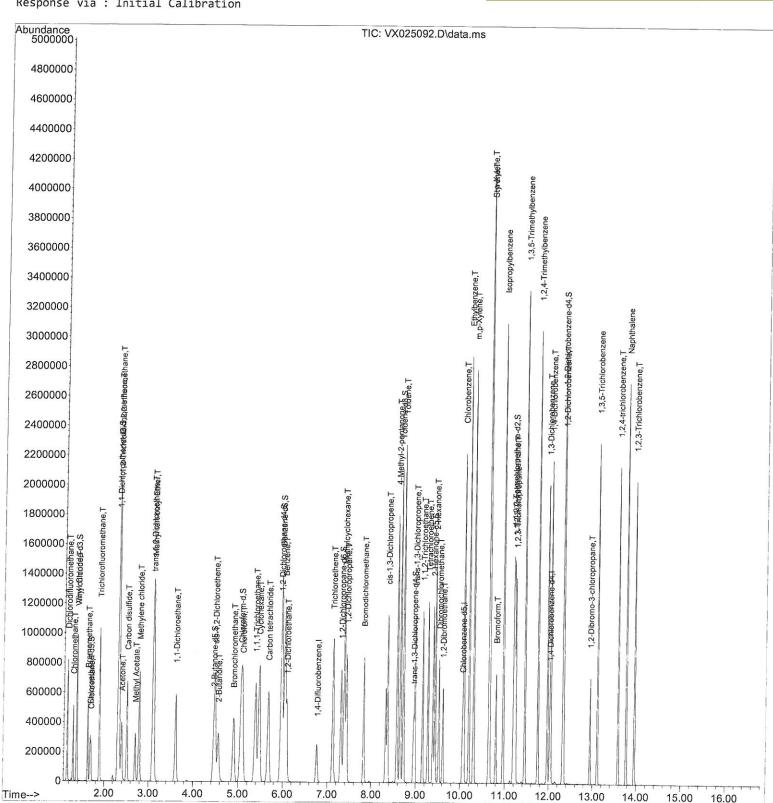
Operator : JC/MD Sample : VSTD20028

Misc : 5.0mL/MSVOA X/WATER ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis


QLast Update : Tue Nov 09 03:33:09 2021

Response via: Initial Calibration

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By: Mahesh Dadoda 11/09/2021

Data File : VX025092.D

Acq On : 08 Nov 2021 11:13

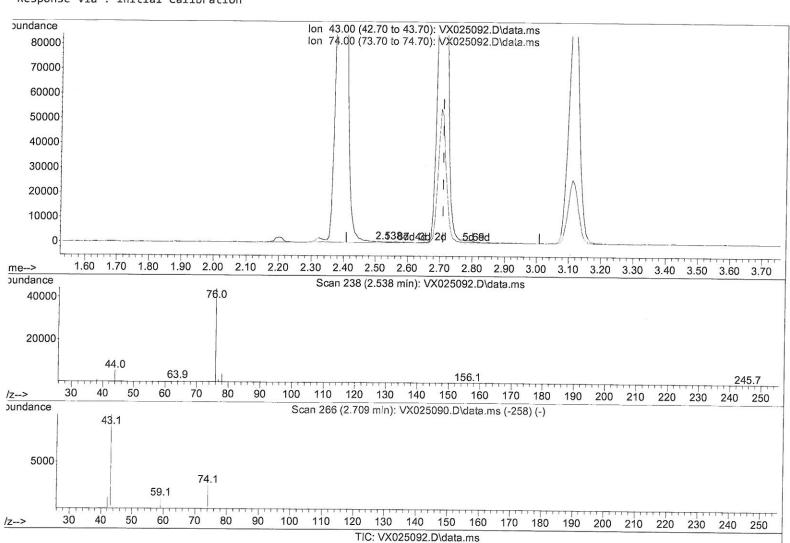
Operator : JC/MD Sample : VSTD20028

Misc : 5.0mL/MSVOA_X/WATER ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis


QLast Update : Tue Nov 09 03:33:09 2021

Response via: Initial Calibration

Manual Integrations APPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By: Mahesh Dadoda 11/09/2021

(15) Methyl Acetate (T)

2.538min (-0.171) 0.10 ug/L

response	213	
Ion	Exp%	Act%
43.00	100.00	100.00
74.00	35.70	37.56
0.00	0.00	0.00
0.00	0.00	0.00

Data File: VX025092.D

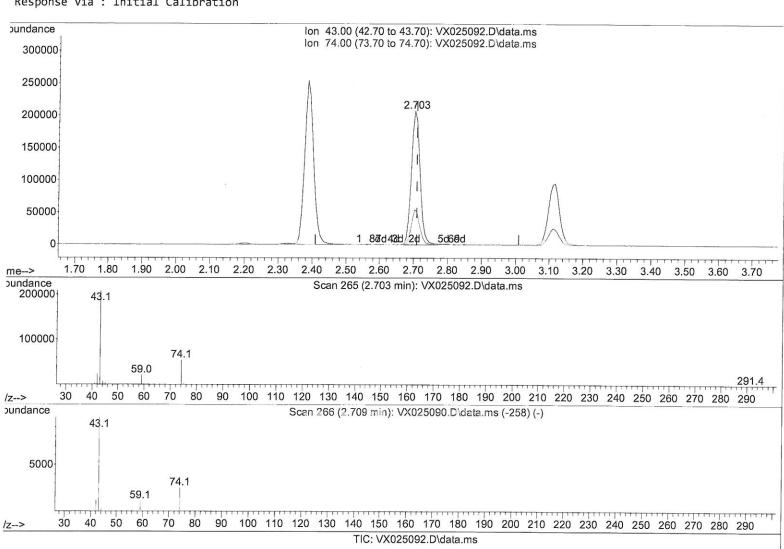
Acq On : 08 Nov 2021 11:13

Operator : JC/MD Sample : VSTD20028

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M


Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:33:09 2021 Response via : Initial Calibration

Instrument : MSVOA_X ClientSampleld : VSTD200628

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

(15) Methyl Acetate (T)

2.703min (-0.006) 176.15 ug/L m 7 M0/2/2

response	368949	
Ion	Exp%	Act%
43.00	100.00	100.00
74.00	35.70	0.02#
0.00	0.00	0.00
0.00	0.00	0.00

Data File: VX025092.D

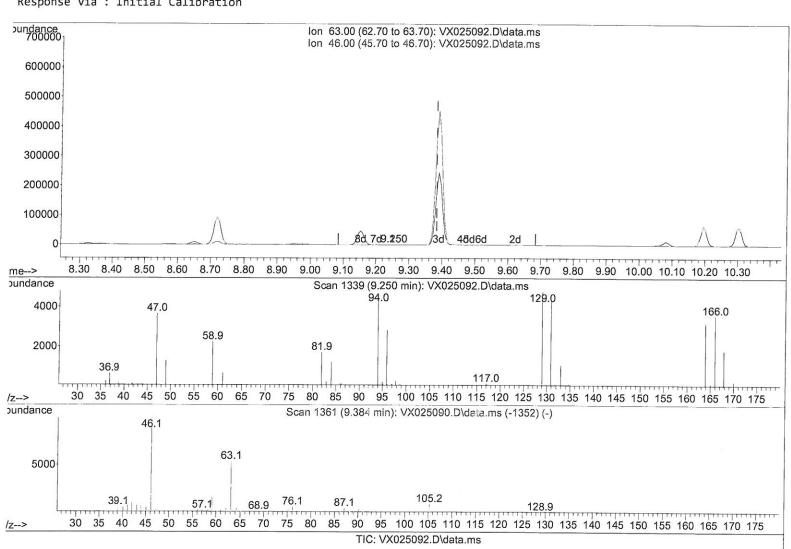
Acq On : 08 Nov 2021 11:13

Operator : JC/MD Sample : VSTD20028

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method: Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M


Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:33:09 2021 Response via : Initial Calibration

Instrument : MSVOA_X ClientSampleId : VSTD200628

Manual Integrations APPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

(47) 2-Hexanone-d5 (S)

9.250min (-0.134) 0.08 ug/L

response	80	
Ion	Exp%	Act%
63.00	100.00	100.00
46.00	140.40	106.25
0.00	0.00	0.00
0.00	0.00	0.00

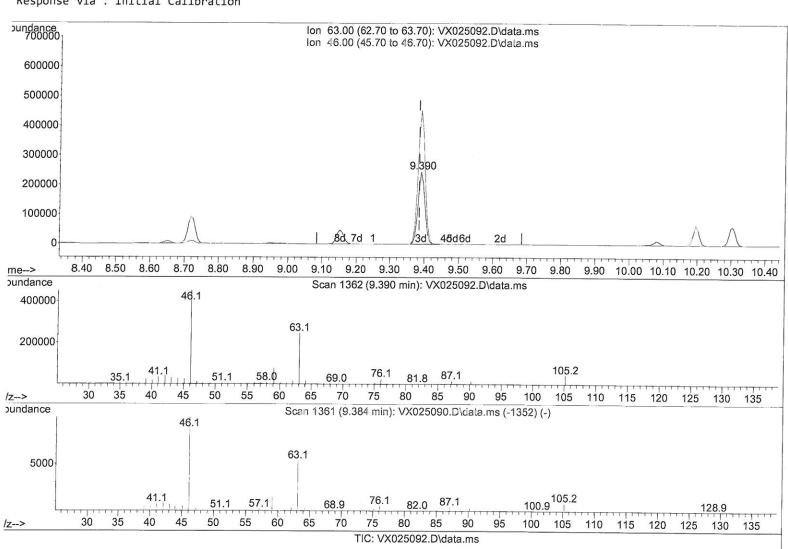
Data File : VX025092.D

Acq On : 08 Nov 2021 11:13

Operator : JC/MD Sample : VSTD20028

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021


Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:33:09 2021 Response via : Initial Calibration Instrument : MSVOA_X ClientSampleId : VSTD200628

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

(47) 2-H	exanone-d5	(S)
----------	------------	-----

9.390min (+ 0.006) 341.33 ug/L m 339506 response Ion Act% Exp% 63.00 100.00 100.00 46.00 140.40 0.03# 0.00 0.00 0.00

0.00

0.00

0.00

Data File : VX025092.D

Acq On : 08 Nov 2021 11:13

Operator : JC/MD Sample : VSTD20028

1isc : 5.0mL/MSVOA_X/WATER ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:33:09 2021 Response via : Initial Calibration

Instrument : MSVOA_X
ClientSampleId: VSTD200628

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By: Mahesh Dadoda 11/09/2021

Compound	R.T.	QIon	Response	Conc Units Dev	(Min)	
Internal Standards						
1) 1,4-Difluorobenzene	6.769	114	244374	50.000 ug/L	0.00	
28) Chlorobenzene-d5	10.055			50.000 ug/L	0.00	
58) 1,4-Dichlorobenzene-d4	12.024			50.000 ug/L	0.00	
		132	30170	30.000 ug/ L	0.00	
System Monitoring Compounds						
4) Vinyl Chloride-d3	1.368	65	380347	228.720 ug/L	0.00	
7) Chloroethane-d5	1.666	69		152.188 ug/L	0.00	
11) 1,1-Dichloroethene-d2	2.306	63		197.930 ug/L	0.00	
21) 2-Butanone-d5	4.458	46	541730	354.394 ug/L	0.00	
24) Chloroform-d	5.062	84	809564	198.424 ug/L	0.00	
26) 1,2-Dichloroethane-d4	5.958	65	507309	172.385 ug/L	0.00	
32) Benzene-d6	5.976	84	1372536	220.566 ug/L	0.00	
36) 1,2-Dichloropropane-d6	7.312	67	389012	197.803 ug/L	0.00	
41) Toluene-d8	8.653	98	1147119	205.622 ug/L	0.00	
43) trans-1,3-Dichloroprop	8.952	79	209414	183.737 ug/L	0.00	- 20 D
47) 2-Hexanone-d5	9.390	63	339506m	341.335 ug/L	0.00	11041
56) 1,1,2,2-Tetrachloroeth	11.195	84	566205	215.959 ug/L	0.00	111
66) 1,2-Dichlorobenzene-d4	12.323	152	358622	205.991 ug/L	0.00	
Target Compounds				Ova	alue	
2) Dichlorodifluoromethane	1.166	85	440702	191.587 ug/L	98	
Chloromethane	1.288	50	296265	184.904 ug/L	90	
Vinyl chloride	1.374	62	363655	197.620 ug/L	99	
6) Bromomethane	1.611	94	201238	169.964 ug/L	94	
8) Chloroethane	1.685	64	137809	143.018 ug/L	95	
9) Trichlorofluoromethane	1.886	101	663426	168.806 ug/L	99	
10) 1,1,2-Trichloro-1,2,2	2.325	101	363619	201.281 ug/L	92	
12) 1,1-Dichloroethene	2.319	96	318458	205.857 ug/L	90	
13) Acetone	2.386	43	464424	317.237 ug/L	100	
14) Carbon disulfide	2.514	76	844786	204.671 ug/L	100	- 20
15) Methyl Acetate	2.703	43	368949m	176.154 ug/L		7m3/21
16) Methylene chloride	2.788	84	355806	202.704 ug/L	83	91/01/21
<pre>17) trans-1,2-Dichloroethene</pre>	3.093	96	327542	208.944 ug/L	96	, ,
18) Methyl tert-butyl Ether	3.111	73	1266434	197.613 ug/L #	93	
19) 1,1-Dichloroethane	3.611	63	672193	187.225 ug/L	95	
20) cis-1,2-Dichloroethene	4.489	96	380262	212.432 ug/L	85	
22) 2-Butanone	4.562	43	607713	339.375 ug/L	86	
23) Bromochloromethane	4.897	128	180179	205.048 ug/L #	74	
25) Chloroform	5.099	83	752429	188.245 ug/L	98	
27) 1,2-Dichloroethane	6.092	62	583815	168.745 ug/L	98	
29) Cyclohexane	5.470	56	586493	204.098 ug/L #	81	
30) 1,1,1-Trichloroethane	5.385	97	684580	189.800 ug/L #	94	
31) Carbon tetrachloride33) Benzene	5.678	117	573804	188.434 ug/L	99	
34) Trichloroethene	6.044 7.123	78 95	1432969	214.203 ug/L	100	
35) Methylcyclohexane	7.385	83	403401 552726	212.318 ug/L 202.760 ug/L #	98	
37) 1,2-Dichloropropane	7.434	63	323063	180.279 ug/L #	88	
38) Bromodichloromethane	7.824	83	513928	185.211 ug/L #	96 96	
39) cis-1,3-Dichloropropene	8.366	75	560076	195.381 ug/L #	98	
40) 4-Methyl-2-pentanone	8.580	43	1098545	399.131 ug/L #	79	
42) Toluene	8.720	91	1375540	199.560 ug/L	100	
44) trans-1,3-Dichloropropene	8.982	75	518022	172.121 ug/L	96	
		50.00		%6/ -	20	

121

Data File : VX025092.D

Acq On : 08 Nov 2021 11:13

Dperator : JC/MD
Sample : VSTD20028

disc : 5.0mL/MSVOA_X/WATER
ALS Vial : 6 Sample Multiplier: 1

Quant Time: Nov 09 03:36:48 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:33:09 2021
Response via : Initial Calibration

Instrument: MSVOA_X ClientSampleId: VSTD200628

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

Compound	R.T.	QIon	Response	Conc Units Dev(Mi	.n)
45) 1,1,2-Trichloroethane	9.153	97	274889	159.892 ug/L	95
46) Tetrachloroethene	9.275	164	183670	154.309 ug/L	98
48) 2-Hexanone	9.439	43	790426	341.191 ug/L #	80
49) Dibromochloromethane	9.525	129	336413	177.935 ug/L	95
50) 1,2-Dibromoethane	9.610	107	347700	185.522 ug/L	97
51) Chlorobenzene	10.079	112	866642	206.615 ug/L	90
52) Ethylbenzene	10.195	91	1578320	200.397 ug/L	99
53) m,p-Xylene	10.305	106	579560	211.801 ug/L	99
54) o-Xylene	10.646	106	564283	212.645 ug/L	97
55) Styrene	10.659	104	1005534	222.905 ug/L	99
57) 1,1,2,2-Tetrachloroethane	11.219	83	550361	206.915 ug/L	98
59) Bromoform	10.805	173	246848	223.758 ug/L #	96
60) Isopropylbenzene	10.963	105	1568847	222.800 ug/L	98
61) 1,2,3-Trichloropropane	11.244	75	447617	206.137 ug/L #	90
62) 1,3,5-Trimethylbenzene	11.457	105	1418880	241.372 ug/L	98
63) 1,2,4-Trimethylbenzene	11.756	105	1228285	206.790 ug/L	97
64) 1,3-Dichlorobenzene	11.975	146	545262	205.799 ug/L	98
65) 1,4-Dichlorobenzene	12.042	146	547519	200.669 ug/L	97
67) 1,2-Dichlorobenzene	12.341	146	560777	206.543 ug/L	99
68) 1,2-Dibromo-3-chloropr	12.945	75	155612	217.384 ug/L #	85
69) 1,3,5-Trichlorobenzene	13.115	180	440647	224.579 ug/L	98
70) 1,2,4-trichlorobenzene	13.591	180	414322	241.787 ug/L	98
71) Naphthalene	13.780	128	1530878	253.457 ug/L	99
72) 1,2,3-Trichlorobenzene	13.963	180	400020	227.247 ug/L	96

(#) = qualifier out of range (m) = manual integration (+) = signals summed