Data Path : Z:\voasrv\HPCHEM1\MSVOA_X\Data\VX110821\

Data File : VX025107.D

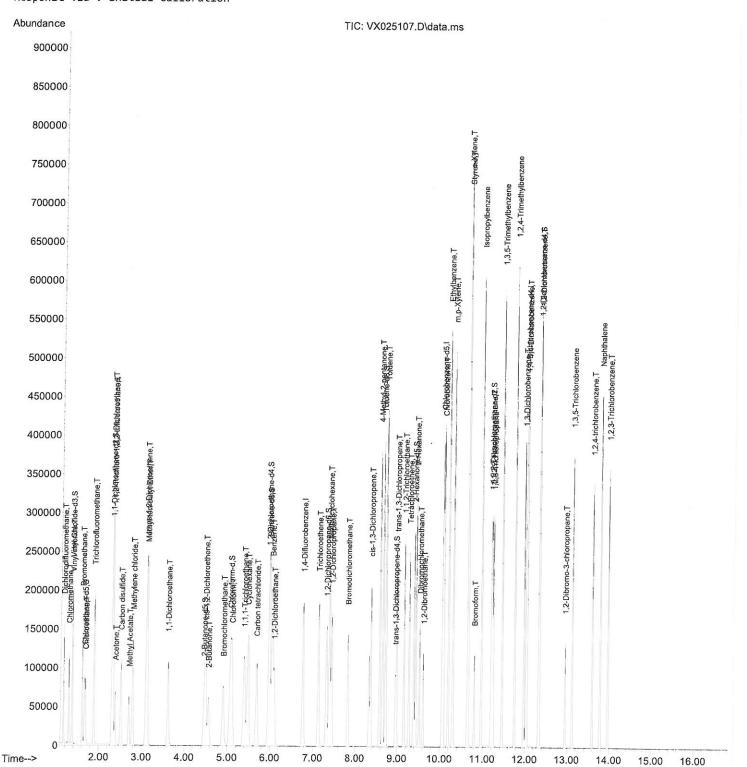
Acq On : 08 Nov 2021 19:50

Operator : JC/MD Sample : VSTDCCC050EC

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 22 Sample Multiplier: 1

Quant Time: Nov 09 04:21:58 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M


Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:59:51 2021 Response via : Initial Calibration

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_X\Data\VX110821\

Data File : VX025107.D

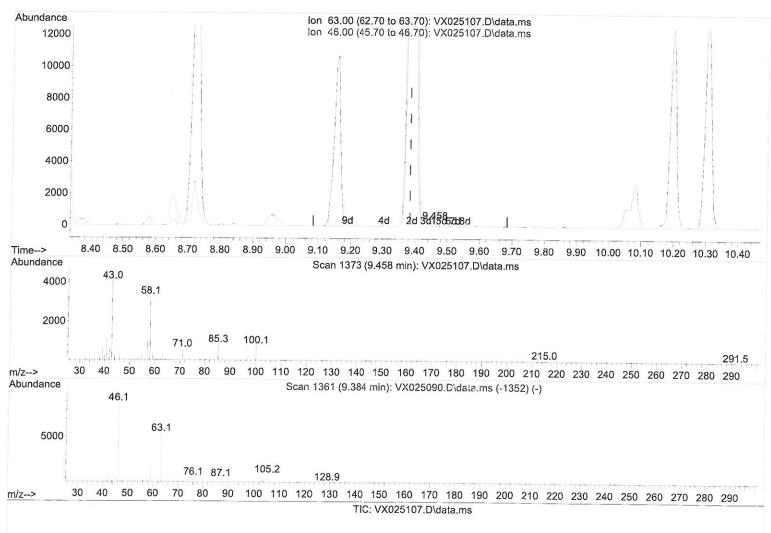
Acq On : 08 Nov 2021 19:50

Operator : JC/MD Sample : VSTDCCC050EC

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 22 Sample Multiplier: 1

Quant Time: Nov 09 04:21:58 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M


Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:59:51 2021 Response via : Initial Calibration

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

(47) 2-Hexanone-d5 (S)

9.458min (+ 0.074) 0.34 ug/L

222			
Exp%	Act%		
100.00	100.00		
140.40	133.78		
0.00	0.00		
0.00	0.00		
	Exp% 100.00 140.40 0.00		

Quantitation Report (Qedit)

Data Path : Z:\voasrv\HPCHEM1\MSVOA_X\Data\VX110821\

Data File: VX025107.D

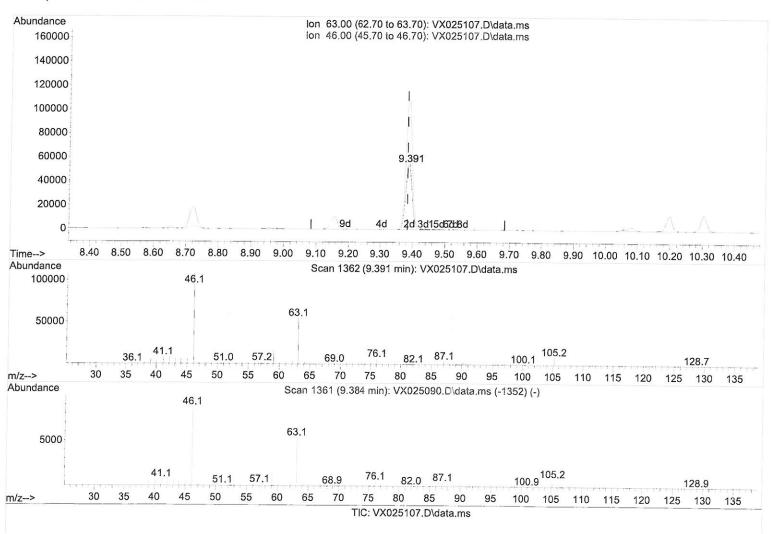
Acq On : 08 Nov 2021 19:50

Operator : JC/MD Sample : VSTDCCC050EC

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 22 Sample Multiplier: 1

Quant Time: Nov 09 04:21:58 2021

 $\label{thm:loss} \mbox{Quant Method}: \mbox{Z:\voasrv\HPCHEM1\MSVOA}_X\Method\SFAMXLM110821WMA.M$


Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:59:51 2021 Response via : Initial Calibration

Manual Integrations APPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

(47) 2-E	lexanone-d5	(S)	
9.391min	(+ 0.007)	116.33 ug/L m	>m/19/21
response	76741		21/1.7
Ion	Exp%	Act%	
63.00	100.00	100.00	
46.00	140.40	0.39#	

0.00

0.00

0.00

0.00

0.00

0.00

Data Path : Z:\voasrv\HPCHEM1\MSVOA_X\Data\VX110821\

Data File : VX025107.D

Acq On : 08 Nov 2021 19:50

Operator : JC/MD

Sample : VSTDCCC050EC
Misc : 5.0mL/MSVOA X/WA

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 22 Sample Multiplier: 1

Quant Time: Nov 09 04:21:58 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:59:51 2021 Response via : Initial Calibration Instrument: MSVOA_X LabSampleId: VSTDCCC050EC

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

Compound	R.T. QIon	Response Conc Units Dev(Min)	
Internal Standards			
1) 1,4-Difluorobenzene	6.769 114	159248 50.000 ug/L # 0.00	
28) Chlorobenzene-d5	10.055 117	159248 50.000 ug/L # 0.00 147204 50.000 ug/L 0.00	
58) 1,4-Dichlorobenzene-d4	12.024 152	69153 50.000 ug/L 0.00	
System Monitoring Compounds			
4) Vinyl Chloride-d3	1.368 65	67919 47.167 ug/L 0.00	
Spiked Amount 50.000	Range 60 - 135		
7) Chloroethane-d5	1.666 69		
Spiked Amount 50.000	Range 70 - 130 2.306 63		
11) 1,1-Dichloroethene-d2		132743 47.859 ug/L 0.00	
Spiked Amount 50.000	Range 60 - 125		
21) 2-Butanone-d5	4.459 46	109129 110.272 ug/L 0.00	
Spiked Amount 100.000	Range 40 - 130		
24) Chloroform-d	5.068 84	135753 47.954 ug/L 0.00	
Spiked Amount 50.000	Range 70 - 125		
26) 1,2-Dichloroethane-d4	5.964 65	96253 51.974 ug/L 0.00	
Spiked Amount 50.000	Range 70 - 125		
32) Benzene-d6	5.983 84	220501 42.070 ug/L 0.00	
Spiked Amount 50.000	Range 70 - 125		
36) 1,2-Dichloropropane-d6	7.312 67	72873 47.185 ug/L 0.00	
Spiked Amount 50.000	Range 70 - 120	Recovery = 94.380%	
41) Toluene-d8	8.653 98	210205 47.710 ug/L 0.00	
Spiked Amount 50.000	Range 80 - 120	Recovery = 95.420%	
43) trans-1,3-Dichloroprop.	8.952 79	42034 50.995 ug/L 0.00	
Spiked Amount 50.000	Range 60 - 125	Recovery = 101.980%	
47) 2-Hexanone-d5	9.391 63	76741m 116.328 ug/L 0.00	
Spiked Amount 100.000	Range 45 - 130	Recovery = 116.330%	
56) 1,1,2,2-Tetrachloroeth.	11.195 84	103941 48.621 ug/L 0.00	
Spiked Amount 50.000	Range 65 - 120	Recovery = 97.240%	
66) 1,2-Dichlorobenzene-d4	12.323 152	67936 50.120 ug/L 0.00	
Spiked Amount 50.000	Range 80 - 120	Recovery = 100.240%	
Target Compounds Qvalue			
2) Dichlorodifluoromethane	1.166 85	75877 46.123 ug/L 99	
2) 217 11	4 000 50	CERRE EC 140 (1 00	

1.288

1.374

1.611

1.685

1.886

2.331

2.319

2.386

2.514

2.709

2.794

3.099

3.117

3.611

4.495

4.562

5.105

4.910 128

50

62

94

64

101

101

96

43

76

43

84

96

73

63

96

43

83

65227

71047

57297

42703

118865

57577

49416

78326

124348

72098

56957

49055

210427

113490

58207

107476

26487

123751

56.418 ug/L

51.782 ug/L

65.483 ug/L

53.397 ug/L

46.910 ug/L

44.540 ug/L #

43.467 ug/L #

53.547 ug/L #

44.557 ug/L #

47.016 ug/L #

43.550 ug/L #

42.088 ug/L #

80.435 ug/L

42.129 ug/L

42.506 ug/L

47.094 ug/L

92.928 ug/L

46.523 ug/L

74

93

86

96

67

80

50

93

) mo

3) Chloromethane

5) Vinyl chloride

9) Trichlorofluoromethane

12) 1,1-Dichloroethene

16) Methylene chloride

19) 1,1-Dichloroethane

23) Bromochloromethane

14) Carbon disulfide

15) Methyl Acetate

22) 2-Butanone

25) Chloroform

10) 1,1,2-Trichloro-1,2,2-...

17) trans-1,2-Dichloroethene

18) Methyl tert-butyl Ether

20) cis-1,2-Dichloroethene

6) Bromomethane

8) Chloroethane

13) Acetone

Data Path : Z:\voasrv\HPCHEM1\MSVOA_X\Data\VX110821\

Data File : VX025107.D

Acq On : 08 Nov 2021 19:50

Operator : JC/MD Sample : VSTDCCC050EC

Misc : 5.0mL/MSVOA_X/WATER
ALS Vial : 22 Sample Multiplier: 1

Quant Time: Nov 09 04:21:58 2021

Quant Method : Z:\voasrv\HPCHEM1\MSVOA_X\Method\SFAMXLM110821WMA.M

Quant Title : VOC Analysis

QLast Update : Tue Nov 09 03:59:51 2021 Response via : Initial Calibration Instrument:
MSVOA_X
LabSampleId:
VSTDCCC050EC

Manual IntegrationsAPPROVED

Reviewed By :John Carlone 11/09/2021 Supervised By :Mahesh Dadoda 11/09/2021

Compound	R.T.	QIon	Response	Conc Units De	v(Min)
27) 1,2-Dichloroethane	6.092	62	110588	53.826 ug/L	99
<pre>29) Cyclohexane</pre>	5.477	56	97532	43.289 ug/L	
30) 1,1,1-Trichloroethane	5.385	97	113522	42.570 ug/L	
31) Carbon tetrachloride	5.684	117	89815	41.994 ug/L	98
33) Benzene	6.044	78	233043	42.073 ug/L	100
34) Trichloroethene	7.129	95	68782	48.750 ug/L	96
35) Methylcyclohexane	7.385	83	97441	46.431 ug/L	
37) 1,2-Dichloropropane	7.434	63	63293	49.206 ug/L	
38) Bromodichloromethane	7.824	83	93495	48.589 ug/L	
39) cis-1,3-Dichloropropene	8.372	75	101155	48.723 ug/L	99
40) 4-Methyl-2-pentanone	8.580	43	224126	111.823 ug/L	# 76
42) Toluene	8.720	91	261455	49.583 ug/L	99
44) trans-1,3-Dichloropropene	8.982	75	106244	51.040 ug/L	94
45) 1,1,2-Trichloroethane	9.153	97	58921	49.664 ug/L	92
46) Tetrachloroethene	9.275	164	36980	47.332 ug/L	95
48) 2-Hexanone	9.433	43	171568	104.021 ug/L	# 79
49) Dibromochloromethane	9.525	129	61012	48.471 ug/L	99
50) 1,2-Dibromoethane	9.616	107	63447	50.098 ug/L	95
51) Chlorobenzene	10.086	112	150196	48.628 ug/L	91
52) Ethylbenzene	10.195	91	297186	52.420 ug/L	95
53) m,p-Xylene	10.305	106	100314	48.645 ug/L	90
54) o-Xylene	10.646	106	100463	51.481 ug/L	87
55) Styrene	10.659	104	173336	51.021 ug/L	94
57) 1,1,2,2-Tetrachloroethane	11.213	83	103170	48.618 ug/L #	[‡] 93
59) Bromoform	10.805	173	37227	45.804 ug/L #	[‡] 96
60) Isopropylbenzene	10.963	105	283226	49.133 ug/L	97
61) 1,2,3-Trichloropropane	11.244	75	89441	53.334 ug/L #	ŧ 90
62) 1,3,5-Trimethylbenzene	11.457	105	243759	51.057 ug/L	100
63) 1,2,4-Trimethylbenzene	11.756	105	251713	53.759 ug/L	100
64) 1,3-Dichlorobenzene	11.975	146	104404	50.021 ug/L	98
65) 1,4-Dichlorobenzene	12.043	146	106007	49.957 ug/L	97
67) 1,2-Dichlorobenzene	12.335	146	106588	49.487 ug/L	94
68) 1,2-Dibromo-3-chloropr	12.945	75	26414	50.719 ug/L	93
69) 1,3,5-Trichlorobenzene	13.116	180	69100	46.176 ug/L	99
70) 1,2,4-trichlorobenzene	13.591	180	61600	48.064 ug/L	98
71) Naphthalene	13.780	128	253664	55.007 ug/L	99
72) 1,2,3-Trichlorobenzene	13.963	180	62501	49.709 ug/L	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed